Service Manual

Stereo Cassette Deck

DOLBY B.C NR HX PRO *

RS-TR280

Colour

Cassette Deck

(K) : Black

Areas

 Suffix for Model No.	Area	Colour
(PP)	U.S.A.	(K)

*1: Dolby noise reduction and HX PRO headroom extension manufactured under license from Dolby Laboratories Licensing Corporation.

"Dolby", the double-D symbol and "HX PRO" are trademarks of Dolby Laboratories Licensing Corporation.

AR-2 MECHANISM SERIES Specifications (IHF '78)

■ Cassette Deck Section

Deck systemStereo cassette deckTrack system4-track, 2-channelRecording systemAC biasBias frequency80 kHz (approx.)Erasing systemAC eraseHeadsPlayback head (Permalloy)×1DECK 1Playback head (Permalloy)×1DECK 2Recording/Playback head (Permalloy)×1

Motors
DECK 2 Recording/Playback head (Permalloy) × 1
Erasing head (Double-gap ferrite) × 1

Motors
DECK 1 Capstan/Reel table drive (DC servo motor) × 1
DECK 2 Capstan/Reel table drive (DC servo motor) × 1

Tape speed 4.8 cm/sec. (1-7/8 ips)
Wow and flutter 0.18% (WRMS)

Fast forward and rewind times

Approx. 120 seconds with C-60 cassette tape

Frequency response (Dolby NR off)
TYPE I (NORMAL)

TYPE I (NORMAL) 40 Hz-14 kHz, ±3 dB 20 Hz-17 kHz

TYPE II (HIGH POSITION) 40 Hz-14 kHz, ±3 dB

20 Hz–17 kHz **TYPE IV (METAL)**40 Hz–15 kHz, ±3 dB
20 Hz–18 kHz

S/N (signal level = max recording level, TYPE II type tape)
NR off
54 dB (A

NR off 54 dB (A weighted)
Dolby B NR on 64 dB (A weighted)
Dolby C NR on 72 dB (A weighted)
Input sensitivity and impedance

input sensitivity and impedance

REC (IN) 320 mV/47 kΩ

Output voltage and impedance PLAY (OUT)

320 mV/500 Ω

General

 $(16-15/16" \times 5-5/32" \times 11-1/4")$ 3.8 kg (8.9 lb)

Weight

Specifications are subject to change without notice.

Weight and dimensions are approximate.

∆WARNING

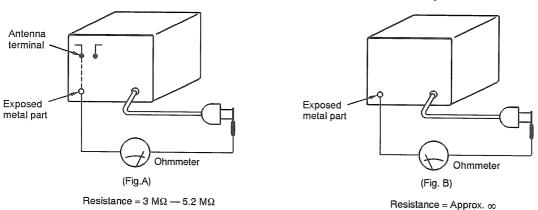
This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.

© 1996 Matsushita Electric Industrial Co., Ltd. All rights reserved. Unauthorized copying and distribution is a violation of law.

Contents

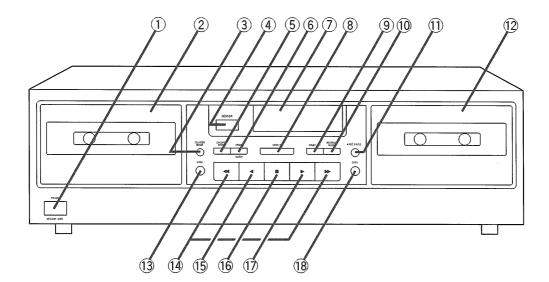
	Pag
Safety Precaution	
Front Panel Controls	
Listening to Tapes	4 ~
Making a Recording	
Tape-to-Tape Recording	10. 1
To Erase Recorded Sound	
Service Mode Function of Cassette Mechanism	12. 1
Operation Check and	
Main Component Replacement Procedures	14 ~ 2
EEPROM Data Write	
Adjusted Value Rewrite	

		⊃ag
Measurements and Adjustments	28 -	~ 30
Schematic Diagram	31 -	- 37
Printed Circuit Board Diagram	38 -	- 41
Wiring Connection Diagram		42
Function of IC Terminals		43
Block Diagram	44 -	- 46
Replacement Parts List	~ 51	. 58
Mechanism Parts Location (Deck 1)	. 52	. 53
Mechanism Parts Location (Deck 2)	. 54	. 55
Cabinet Parts Location	56	, 57


■ Safety Precaution

- 1. Before servicing, unplug the power cord to prevent an electric shock.
- 2. When replacing parts, use only manufacturer's recommended components for safety.
- 3. Check the condition of the power cord. Replace if wear or damage is evident.
- 4. After servicing, be sure to restore the lead dress, insulation barriers, insulation papers, shields, etc.
- 5. Before returning the serviced equipment to the customer, be sure to make the following insulation resistance test to prevent the customer from being exposed to a shock hazard.

• INSULATION RESISTANCE TEST


- 1. Unplug the power cord and short the two prongs of the plug with a jumper wire.
- 2. Turn on the power switch.
- 3. Measure the resistance value with ohmmeter between the jumpered AC plug and each exposed metal cabinet part, such as screwheads antenna, control shafts, handle brackets, etc. Equipment with antenna terminals should read between 3 M Ω and 5.2 M Ω to all exposed parts. (Fig. A) Equipment without antenna terminals should read approximately infinity to all exposed parts. (Fig. B)

Note: Some exposed parts may be isolated from the chassis by design. These will read infinity.

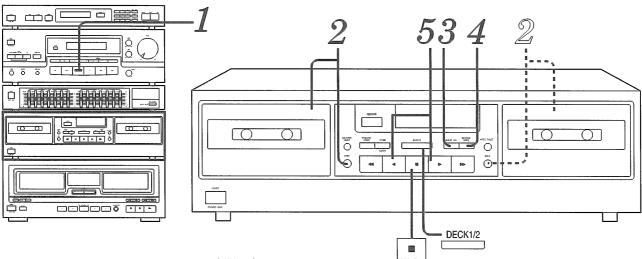
4. If the measurement is outside the specified limits, there is a possibility of a shock hazard. The equipment should be repaired and rechecked before it is returned to the customer.

■ Front Panel Controls

No.	Name
(PO\ Press	er "STANDBY ()/ON" switch NER, STANDBY ()/ON) to switch the unit from on to standby mode or vice versa. ndby mode, the unit is still consuming a small amount of
② Cass	sette holder for deck 1
·	nter reset button JNTER RESET)
_	ote control signal sensor ISOR)
	chro-start button NCHRO START)
⑥ Tape	e-to-tape recording-speed button
⑦ Disp	lay
-	e deck select button CK 1/2)
9 Dolb	by noise-reduction button

(DOLBY NR)

① Reverse-mode select button (REVERSE MODE)

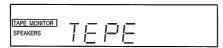

No.	Name
① Rec p	pause button (REC PAUSE)
② Casso	ette holder for deck 2
① Open	button for deck 1 (▲ OPEN)
4 Rewin	nd/fast-forward buttons (◀◀ ,▶▶)
15 Revei	rse-side playback button (◀)
16 Stop	button (■)
① Forwa	ard-side playback button (▶)
® Open	button for deck 2 (▲ OPEN)

Listening to Tapes

Type of tape which can be played on this unit:

NORMAL POSITION/TYPE I	0
HIGH POSITION/TYPE II	0
Metal/TYPE IV	0

The unit automatically identifies the type of tape.


Have you performed the steps 1–2 of "Basic operations"?

The procedures described below are an example of playback on Deck 1.

Press the input selector on the amplifier marked "TAPE MONITOR".

On the amplifier's display

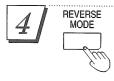
2

Press
OPEN on Deck 1, and then insert the cassette tape.

Close the cassette holder.

To play back on Deck 2, press the button (2) for Deck 2.

3



Press DOLBY NR to select the appropriate noise-reduction system.

Each time the button is pressed, the indicators will change in the order: $B \rightarrow C \rightarrow$ off.

Select the same type as that used for recording. When playing back a tape which was not recorded using a Dolby NR system, press so that the indicators go off.

Press REVERSE MODE to select the appropriate reverse mode.

: One side only.

: Both sides repeatedly (up to 8

CD: Both sides, once only. (Refer to the right side of the page.)

Each time the button is pressed, the indicator will change in the order: $\xrightarrow{*} \rightarrow (\stackrel{\leftarrow}{\Rightarrow}) \rightarrow \stackrel{\leftarrow}{\diamondsuit}$.

To stop playback

To temporarily stop playback (Only availabre from the remote control.)

Press II.

The play indicator will flash.
Press once again to resume playback.

To change the Deck to be used

Press DECK 1/2 to select the Deck you want to play.

Each time the button is pressed, the indicator will change: DECK 1 → DECK 2

Reverse function

The reverse function on this unit has three modes ($\stackrel{\longrightarrow}{\longleftarrow}$, $\stackrel{\hookrightarrow}{\hookrightarrow}$). Read the descriptions below and select the mode as desired

Mode	Tape travel	
→	Only one side of the tape (either the forward side or the reverse side) will be played, and operation will automatically stop when playback has been com- pleted.	
(\$)	Both sides of the tape will be played repeatedly eight times, and then operation will automatically stop. (If playback is begun from the reverse side, the forward side will be played seven times.)	
\$\$	When there is a tape in only one of the decks Both sides of the tape will be played once, and then operation will automatically stop. (If playback is begun from the reverse side, the for- ward side will not be played.) When there is a tape in each of the decks The forward and reverse sides of the tape in Deck 1 will be played, followed by the forward and reverse sides of the tape in Deck 2, and after this operation is repeated eight times, operation will automatically stop. (If playback is begun from Deck 2, the tape in Deck 1 will be played seven times.)	

Dolby noise-reduction system

The Dolby noise-reduction system is designed to effectively reduce the annoying high-frequency "hissing" noise which can occur with cassette tapes. During recording, the system functions to increase the high-frequency sound level, and then, during playback, that same portion is weakened to bring it back to the previous level.

Dolby B-type noise-reduction

Noise is reduced to about one-third.

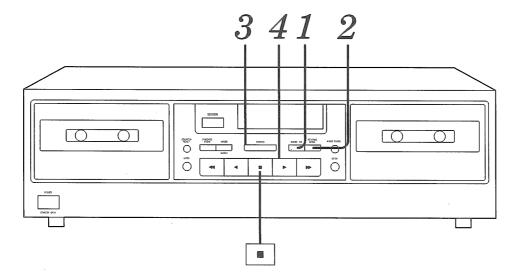
Use this system when playing back tapes recorded by the Dolby-B noise-reduction system, such as prerecorded music tapes, etc.

Dolby C-type noise-reduction

Noise is reduced to about one-tenth.

Use this system for the recording and playback of sound sources that have a wide dynamic range and good tone quality, such as FM broadcasts of live performances, etc., and for playing back such tapes.

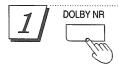
Dolby HX-Pro headroom extension system

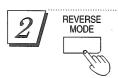

By functioning to improve the maximum output level of the tape's high-frequency range, this system permits recordings without a reduction in the level of the sound source's high-frequency range. In addition, by using the system in parallel with this unit's noise-reduction system, recording and playback with a greatly extended dynamic range is possible.

Dolby noise reduction and HX Pro headroom extension manufactured under license from Dolby Laboratories Licensing Corporation. HX Pro originated by Bang & Olufsen.

"DOLBY", the double-D symbol DD and "HX PRO" are trademarks of Dolby Laboratories Licensing Corporation.

Series playback


Both sides of the tape in Deck 1 will be played, followed by both sides of the tape in Deck 2. (Repeated up to eight times.)


Preparation

Load the tapes to be played into Deck 1 and Deck 2.

Note that for series playback it is not possible to select different types of Dolby NR for Deck 1 and Deck 2. It is recommended that you use two tapes which were recorded using the same type of Dolby NR (or both recorded without Dolby NR).

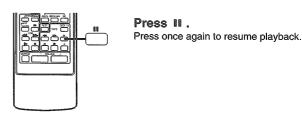
Press DOLBY NR to select the appropriate noise-reduction system.

Press REVERSE MODE to select the " �� " mode.

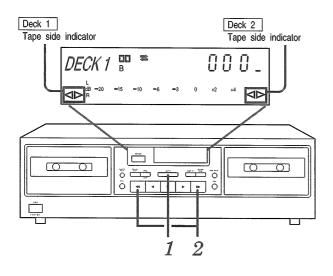
Press DECK 1/2 to select the Deck 1.

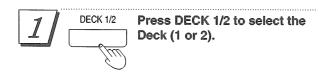
Press >

(Series playback will begin from the forward side of the tape in Deck 1.)


For your reference:

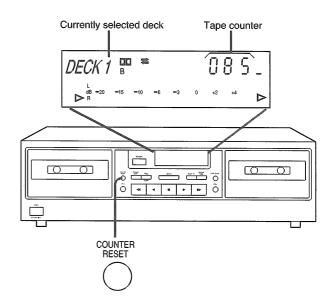
It is also possible to begin series playback from the reverse side of the tape in Deck 1 or from Deck 2. (Refer to the tape travel table on page 5.)


To stop playback



To temporarily stop playback (Only available from the remote control.)

To fast-forward or rewind the tape


Because this unit is capable of playing back both sides of the tape, the operation changes in accordance with the direction of the tape side indicator.

Tape side indicator	Rewind	Fast forward
	⋖	▶▶
	>>	44

 Cassette tapes in Deck 1 and Deck 2 can be advanced or rewound at the same time.

Tape counter

The tape counter indicates the amount of tape travel as a numerical value based on the number of revolutions of the tape hub. As you switch between Deck 1 and Deck 2, the tape counter shown on the display changes too.

To reset the tape counter

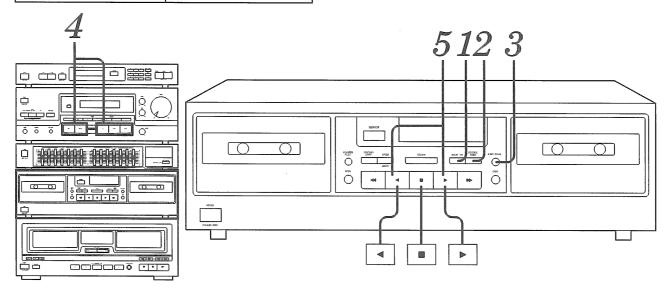
COUNTER

Press COUNTER RESET.

The tape counter of the currently selected deck will revert back to "000", while that of the other deck will remain unchanged.

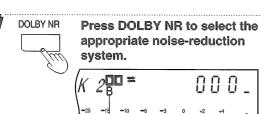
For your reference:

When the tape is travelling in the reverse direction, the value displayed on the tape counter will count down.


After "000" is reached, the display will switch to "999" and will then continue counting down.

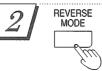
■ Making a Recording

Recording from the radio or external source


Type of tape which can be used for recording:

NORMAL POSITION/TYPE I	0
HIGH POSITION/TYPE II	0
Metal/TYPE IV	0

Preparation


Load a tape which has been advanced to the end of the leader tape (the transparent part at both ends of the tape) into Deck 2.

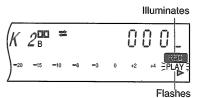
Each time the button is pressed, the indicator will change in the order:

$$B \rightarrow C \rightarrow off$$

When recording a tape without using a Dolby NR system, press so that the indicators go off.

Press REVERSE MODE to select the desired reverse mode.

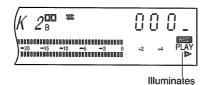
Each time the button is pressed, the indicator will change in the order:


⇒: Only one side will be recorded, and then operation will automatically


, \$\times\$: Both sides (the forward side first, and then the reverse side) will be recorded, and then operation will automatically stop.

Press REC PAUSE.

(The unit will be in the recording standby mode.)



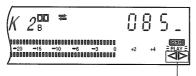
Press to select the desired source to be recording.

Press ◀ or ▶ to begin recording, and play the source to be recorded.

- : To begin recording from the forward side
- To begin recording from the reverse side.

Note

When recording on both sides of the tape, be sure to press the ▶ button.


To temporarily stop recording

REC PAUSE

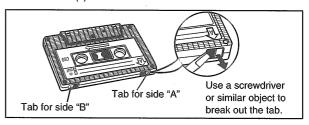
Press REC PAUSE.

To resume recording
Press either ◀ or ▶, corresponding to the side of
the tape side indicator which is lit.

Tape side indicator

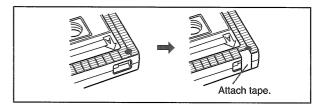
To stop recording

Press .

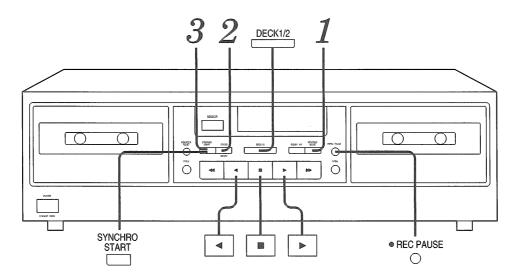

About the selection of the Dolby NR type

The Dolby NR effect can be obtained by using the same type of Dolby NR during both recording and playback. Refer to the following table when selecting the type (either B or C).

Туре В	Use this type when the deck on which the tape will be played back is equipped with only type B Dolby NR.
Туре С	Use this type when the deck on which the tape will be played back is equipped with type C Dolby NR. (for example, when this unit is also going to be used to play back the tape.)

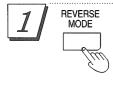

Erasure prevention

Remove the tab(s).


To re-record on a protected cassette

Cover the slot with adhesive tape.

■ Tape-to-Tape Recording

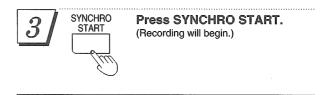

Use Deck 2 to record the sound being played back on Deck 1.

Preparation

Load tapes which have been advanced to the end of the leader tape into both decks.

Deck 1: For playback Deck 2: For recording

Press REVERSE MODE to select the desired reverse mode.



Each time the button is pressed, the indicator will change in the order:

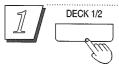
$$\stackrel{\longrightarrow}{\longleftarrow} \stackrel{(5)}{\longrightarrow} \stackrel{(5)}{\longrightarrow} \stackrel{(5)}{\longrightarrow}$$

- : Only one side of the tape will be recorded, and then operation will automatically stop.
- : Both sides of the tape (first the forward side and then the reverse side) will be recorded, and then operation will automatically stop. If the recording tape is longer than the playback tape, the playback tape will be played repeatedly as many as eight times until the recording tape is finished.
- : Both sides of the tape (first the forward side and then the reverse side) will be recorded once, and then operation will automatically stop.

To stop recording

- 1. Press DECK 1/2 to select the Deck 2.
- 2. Press .

Note


To record on only one side of the tape, set the tape side indicators $(\triangleleft \text{ or } \triangleright)$ on Deck 1 and Deck 2 in accordance with the tape sides to be played back and recorded.

To record on both sides of the tape, set the tape side indicators on both Deck 1 and Deck 2 to the forward side (\triangleright).

Note

In order to avoid operation errors later, be sure to switch off the SPEED button (the "NOR" and "HI" indicator will go out) after the tape-to-tape recording has finished.

To record selected tracks

[During recording]

Press DECK 1/2 to select the Deck 1.

Press

(Deck 1 will stop, and Deck 2 will record a 4-second silent interval and then enter the recording standby mode.)

Operate Deck 1 to find the track you wish to record.

It is also possible to change the playback tape at this time.

Press SYNCHRO START.

(Recording will resume.

To cut unwanted parts during recording

REC PAUSE

Deck 2, which was recording, will enter the pause mode, and Deck 1 will continue playback.

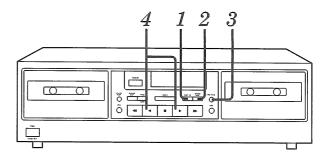
(If you were recording at hi-speed, Deck 1 will change to normal speed while Deck 2 is on pause, but will return to hi-speed when you resume recording.)

[When Deck 1 reaches a part you wish to record]

Press either ◀ or ▶, corresponding to the side of the tape side indicator which is lift

(Deck 2 will resume recording.)

For your reference:


- The Dolby effect will be recorded as they are on the tape being played back.
- Because the signal being recorded from Deck 1 onto Deck 2 does not pass through the amplifier, it is possible to change the setting of the amplifier's input selector during recording in order to listen to some other sound source.

Note

When recording with the recording speed set to double speed, noise interference may be recorded onto the tape if there is a television set nearby, so make the recording in a location separated from the television set or switch off the television set during recording.

■ To Erase Recorded Sound

When new recordings are made on a pre-recorded tape, all sounds recorded on that portion of the tape are automatically erased. To erase a tape without making a new recording, follow the steps below.

Preparation

- Load the tape to be erased into Deck 2.
- Set the input source on the amplifier to "TAPE MONITOR" position.

Press DOLBY NR so that the Dolby NR indicators ("B" and "C") are off.

Press REVERSE MODE to select the desired reverse mode.

: To erase one side of the tape. : To erase both sides of the tape.

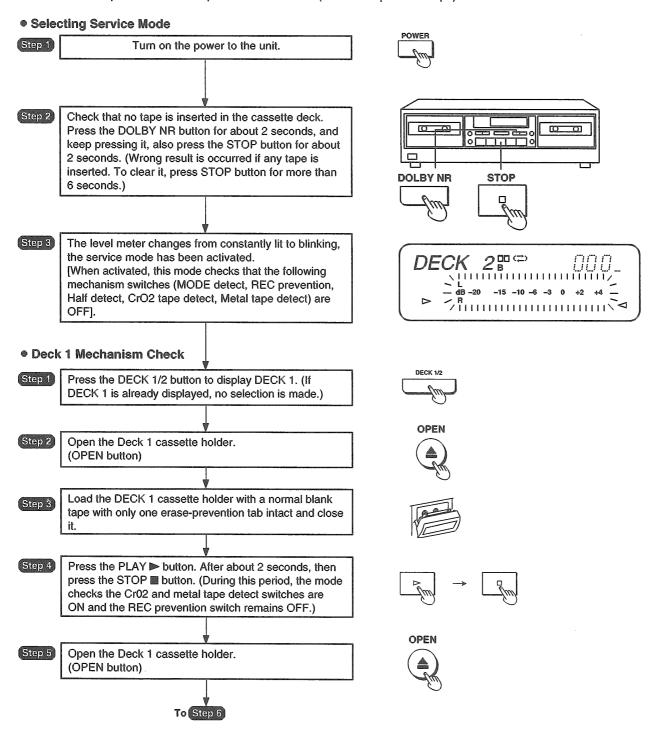
Press REC PAUSE.

(The unit will be in the recording standby mode.)

Press ◀ or ▶ to begin erasing the tape.

- >: To erase the forward side of the tape.
- To erase the reverse side of the tape.

Note

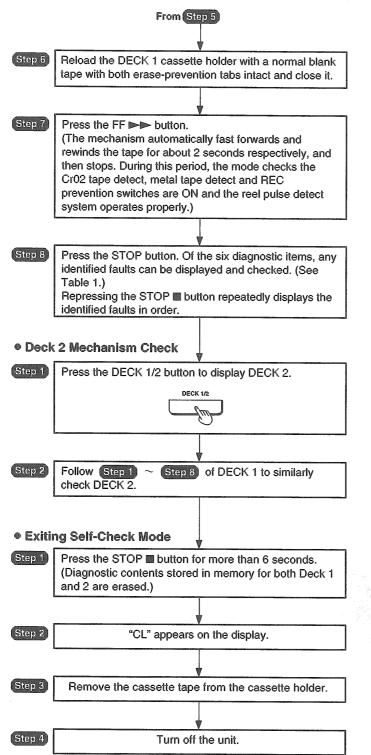

To erase both sides of the tape, be sure to press the ▶ button.

■ Service Mode Function of Cassette Mechanism

This unit is equipped with a self-check mode of its cassette mechanisms using the display of diagnostic items. As the mode is capable of identifying the faults described below, make the most of it when servicing the unit.

Cassette tapes to be prepared

Normal blank tape with only one erase-prevention tab intact (use middle portion of tape). Normal blank tape with both erase-prevention tabs intact (use middle portion of tape).



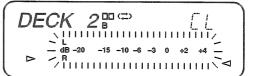


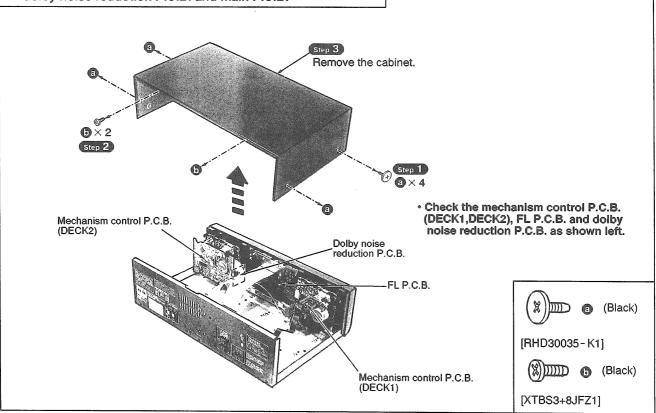
Table 1: Service Mode Diagnostic Items

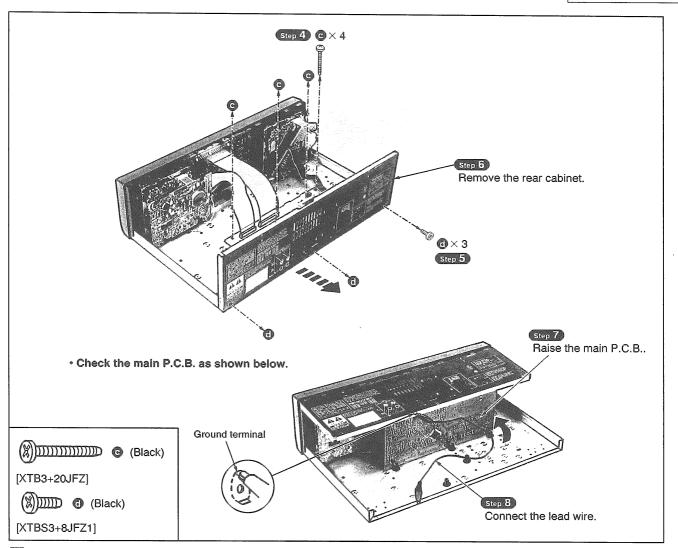
No.	Display	Fault location
1.	H01	MODE detect switch
2.	H02	REC prevention switch
3.	H03	Half detect switch
4.	H06	CrO2 tape detect switch
5.	H07	Metal tape detect switch
6.	F01	Reel pulse detect system (Hall IC, etc.)

 When each diagnostic item is normal, its counter display remains unchanged.

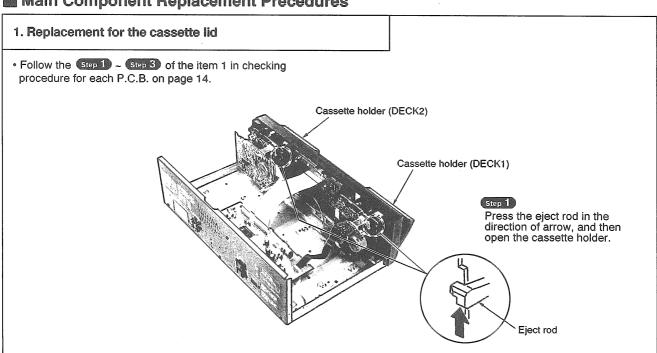
MOPERATION CHECKS AND MAIN COMPONENT REPLACEMENT PROCEDURES

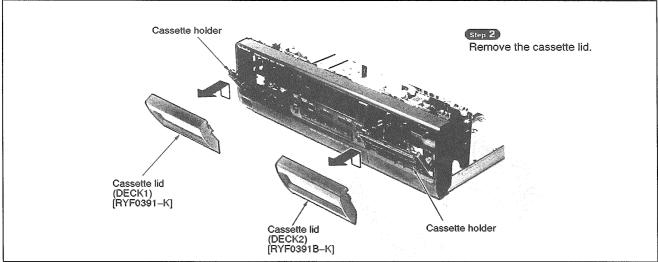
NOTE

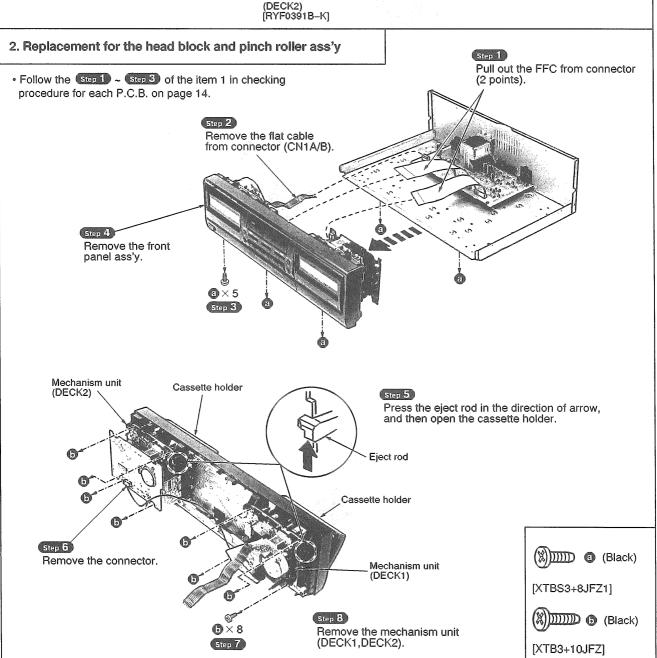

- 1. This section describes procedures for checking the operation of the major printed circuit boards and replacing the main components.
- 2. For reassembly after operation checks or replacement, reverse the respective procedures. Special reassembly procedures are described only when required.
- 3. Select items from the following index when checks or replacement are required.
- 4. Illustrated screws are equivalent to actual size.
- 5. Refer the parts No. on the page of "Main Component Replacement Procedures", if necessary.

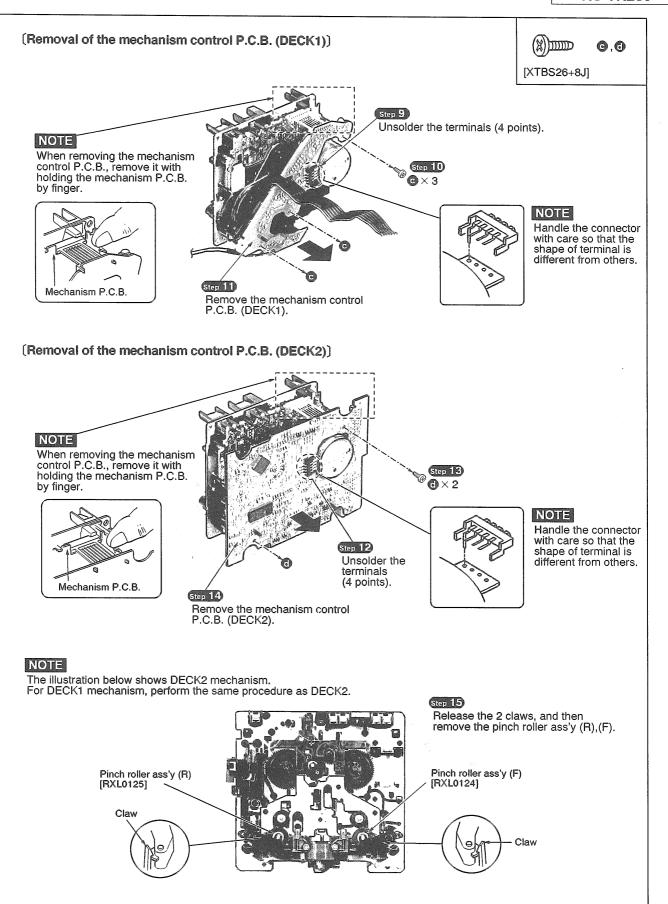

Contents

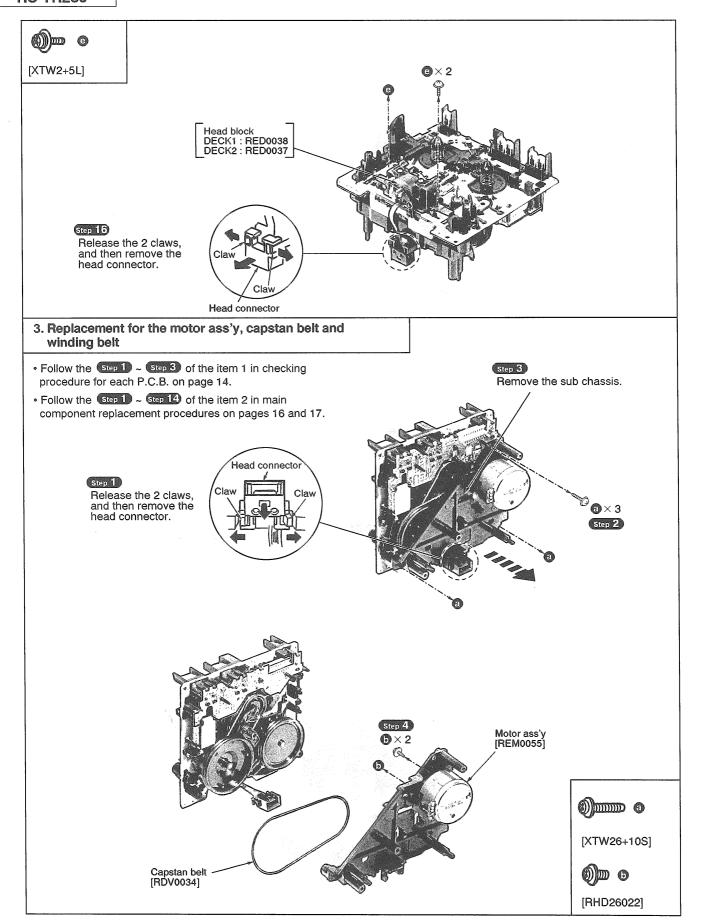
•Checking Procedure for each P.C.B.	Page.
1. Checking for the mechanism control P.C.B., FL P.C.B., dolby noise reduction P.C.B. and main P.C.B • • • • • • • •	14,15.
Main Component Replacement Procedures	
1. Replacement for the cassette lid. ••••••••••••••••••••••••••••••••••••	15,16.
2. Replacement for the head block and pinch roller ass'y. • • • • • • • • • • • • • • • • • • •	16~18.
3. Replacement for the motor ass'y, capstan belt and winding belt.	18~21.
4. Replacement for the plunger ass'y and the parts mounted on mechanism P.C.B • • • • • • • • • • • • • • • • • •	21,22.
5. Replacement for the cassette holder. • • • • • • • • • • • • • • • • • • •	• • 22.

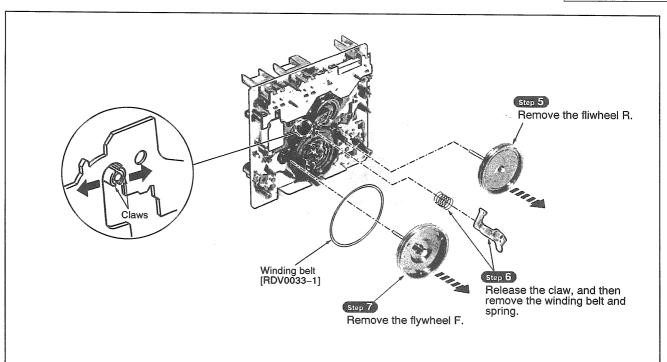

Checking Procedure for each P.C.B.

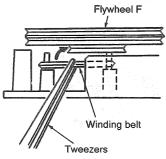

1. Checking for the mechanism control P.C.B., FL P.C.B., dolby noise reduction P.C.B. and main P.C.B.

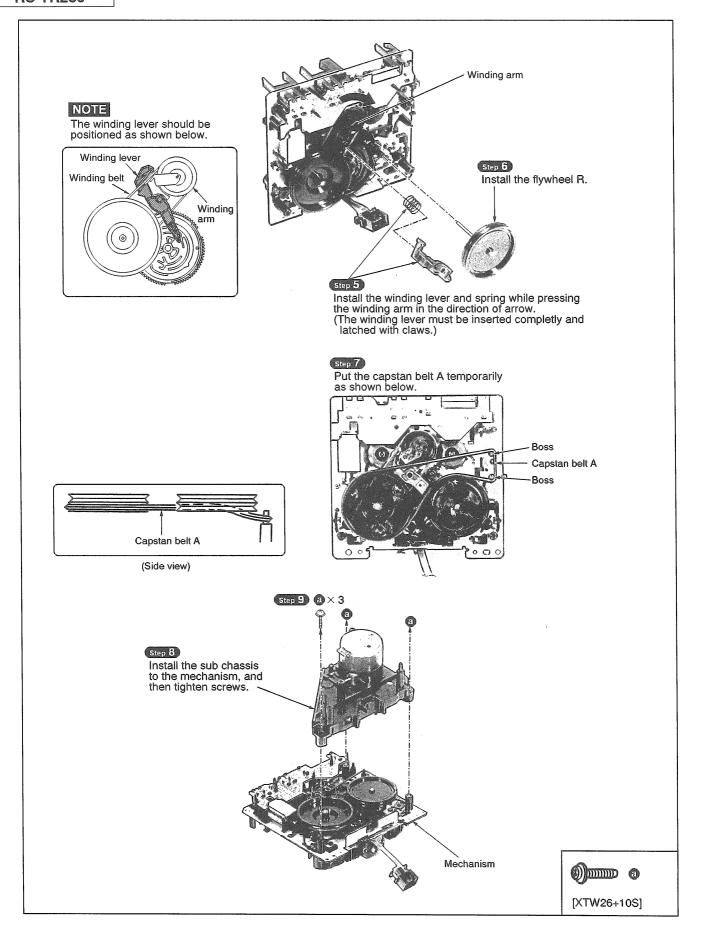


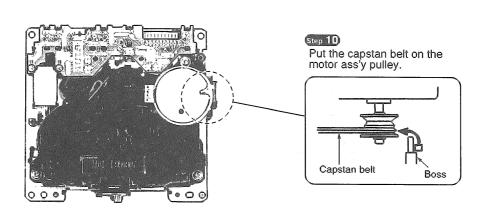



Main Component Replacement Precedures

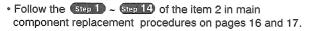


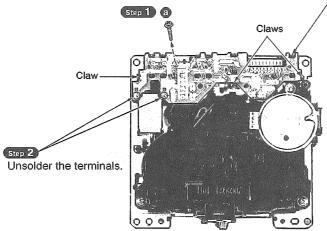


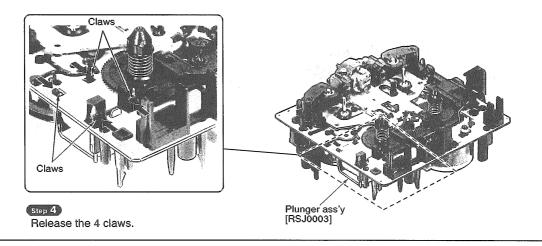

Installing the belt

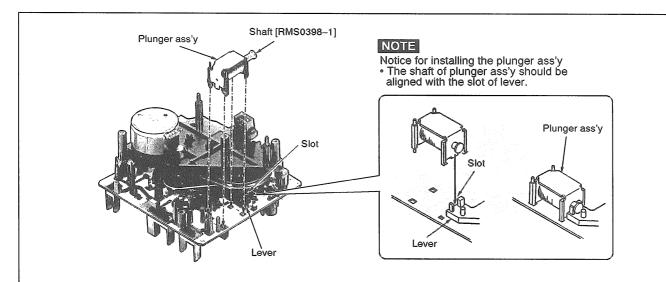


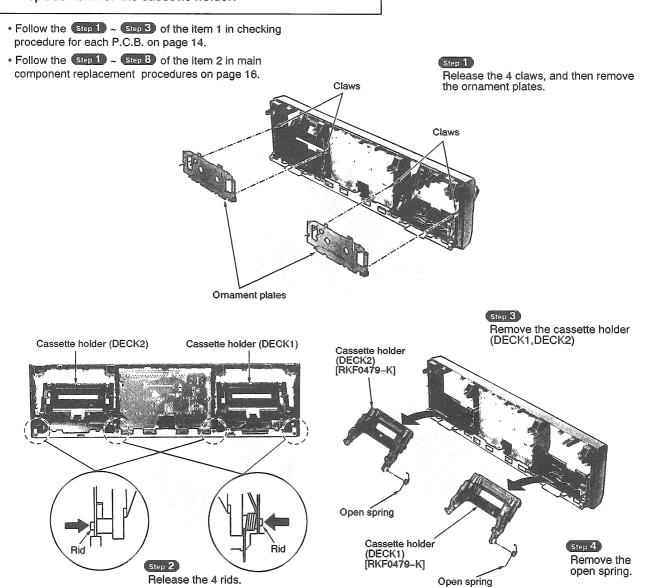
Step 4


Put the winding belt on the flywheel F.




- 4. Replacement for the plunger ass'y and the parts mounted on mechanism P.C.B.
- Follow the Step 1 ~ Step 3 of the item 1 in checking procedure for each P.C.B. on page 14.




Step 3
Release the 3 claws, and then remove the mechanism P.C.B..

4. Replacement for the cassette holder.

■ EEPROM Data Write

Various factory-preset data and adjusted values are stored in this unit's EEPROM (IC502). When the IC502 EEPROM is replaced, its data and adjusted values need to be written to a new EEPROM.

EEPROM Write Procedure

Note:

Follow this procedure only when the IC502 EEPROM is replaced. No writing of EEPROM data and adjusted values is required for the replacement of any other component.

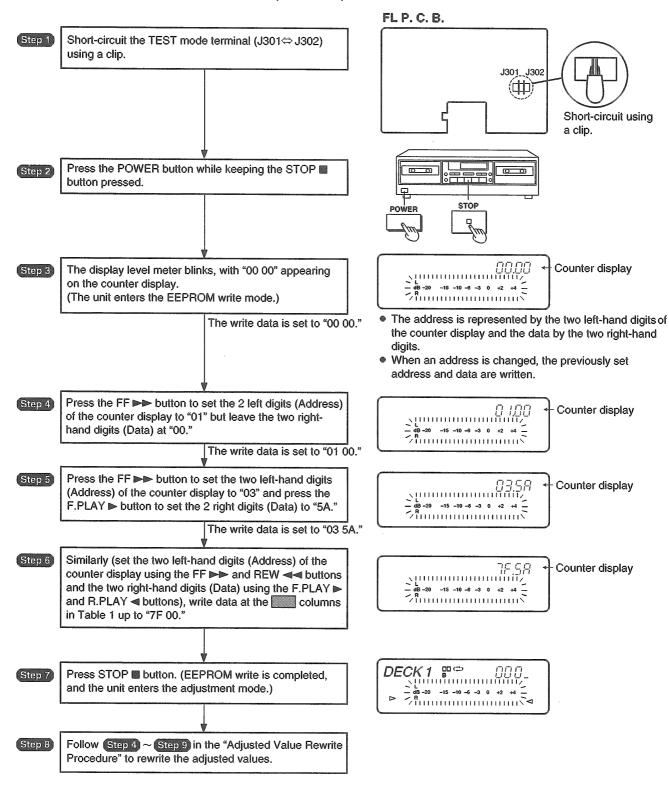


Table 1: EEPROM Address/Data map

Address	Data	Address	Data	Address	Data	Address	Data
0.0	010	2.0	20 () 20 ()	40		50	92
0.1	910	21	240	41		61	A(8)
02	6.00mm/drS	222	A0	42		62	8.9
0.0	3/4	2.8	935	43	Carrisona	2.0	70
04	-	24	***************************************	44		624	60
05	estiferentita	25	-	45	**************************************	0.5	5.0
06	www.control	26	6000000000	46	60//5040	210	4.0
07	estidentica	27	terconnecto	47	CONSTRUCTOR		3.0
08	AND COLUMN TO SERVICE	28	dhistianus	48		6.8	73
09	GARAGE	29		49		(2)	70
0A	финанция	2,A	7.8	4A	COMMAND	0)	2/8
0B	омуровани	25	71	4B	STATE OF A	6.8	4(0)
0C		2.0	45	4C		6.0	75
0D	600000000	20	8.6	4D		(n)	9)
0E		2/2	42	4E		6E	6000ppp
0F		9 20 70	SE	4F	one constraints	6F	
10		3.0	Α(3)	50	7/8	7/8	30
11			7/1	200 100	8.4	7	DO
12		32	2/2	572	성문	72	AS
13			17	573	615	7/3	9.4
14	450mminum		73.8	77.4	40		76 Y 18 Y
15	ENGERGER	35	57.0	516 216	64	765	26
16	Enachmento	36		#(6)	915	7/6	40
	=0	37		577	100 E	77	588
100		38	444	218	8(8)	778	A (8)
(5)	30	39		50	410	7.3	9.0
TA	30	3A		S7.5	4.0	7/4	40
18	8(8)	3B		20.50 0.50	27	73	50
10	000	3C	· ·	519	7/5	70	910
	100 100 100	3D	-	5.0		70	210
15	8(8)	3E		5E	-	7.5	92.A.
115	510	3F		5F		7/3	0.0

Note: At an address with no data value indicated (e.g. 02 —), the EEPROM operates normally irrespective of the kind of the data supplied.

Adjusted Value Rewrite

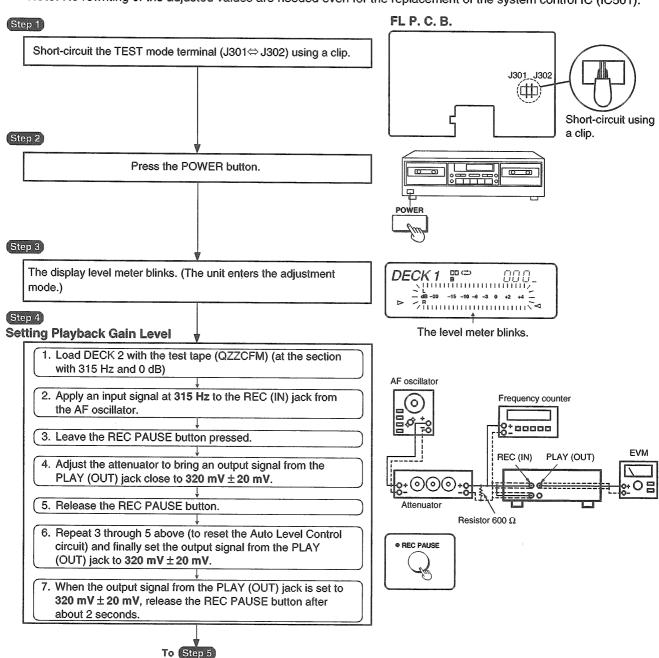
Various factory-preset data and adjusted values are stored in the EEPROM (IC502) of this unit. Re-adjust the following components when replaced. Upon completion of the re-adjustments, the necessary data can be automatically rewritten.

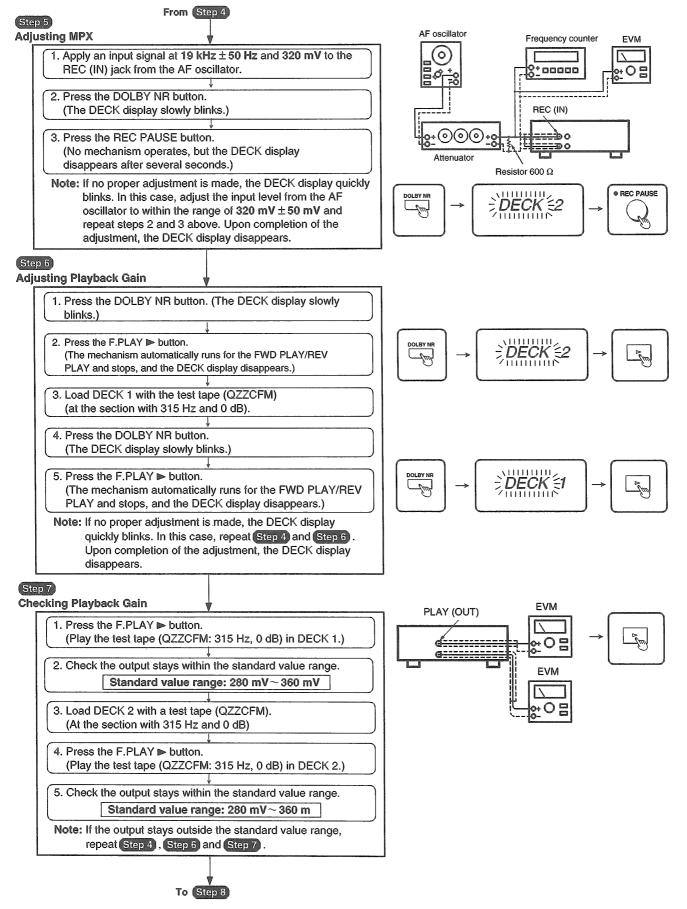
Applicable components

- MECHANISM HEAD
- IC2: PLAY BACK AMP IC
- IC302: DOLBY HX PRO IC
- IC401: DOLBY BC IC
- @Q301, Q302

Cassette tapes to be prepared

- Normal blank tape: QZZCRA
- Playback gain adjustment (315 Hz, 0 dB); QZZCFM


Measurement Condition


- Make sure heads are clean.
- Make sure capstan and pressure roller are clean.
- Judgeable room temperature 20 ± 5°C (68 ± 9°F)

Measuring Instrument

- EVM (Electronic Voltmeter)
- AF oscillator
- Digital frequency counter
- Attenuator
- Resistor (600 Ω)

Adjusted Value Rewrite Procedure (Adjusted values can be automatically rewritten.)
 Note: No rewriting of the adjusted values are needed even for the replacement of the system control IC (IC501).

From Step 7

Step 8

Adjusting Overall Gain and Overall Frequency Characteristics

- 1. Load DECK 2 with a normal blank tape (QZZCRA).

 2. Press the DOLBY NR button.
 (The DECK display slowly blinks.)

 3. Press the BEC PAUSE button.
- Press the REC PAUSE button.
 (The mechanism automatically performs the following operations.)

Forward record (for recording the reference signal)

Rewind (for rewinding the tape and locating the start of the reference signal)

Forward play (for playing the reference signal)

Adjusted values to be written in the EEPROM

STOP (The DECK display disappears.)

Note: If no proper adjustment is made, the DECK display quickly blinks. In this case, check the tape for scratches, creases and any other damage. If the tape is damaged, replace it with a new one and repeat the above step. Upon completion of the adjustment, the DECK display disappears.

Step 9

Clearing the Adjusted Value Rewrite mode

- (1. Remove the clip from the TEST mode terminal.
- 2. Press the POWER button to turn off the unit.

■ Measurements and Adjustments

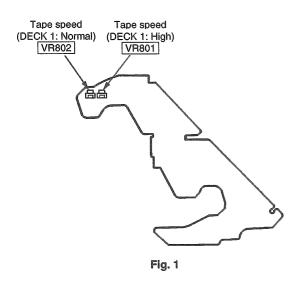
Measurement Condition

- Dolby NR switch; OFF
- Make sure heads are clean.
- Make sure capstan and pressure roller are clean.
- Judgeable room temperature 20 ± 5°C (68 ± 9°F)

Measuring Instrument

- EVM (Electronic Voltmeter)
- AF oscillator
- Digital frequency counter
- Attenuator
- Resistor (600 Ω)

Test Tape


- Head azimuth adjustment (8 kHz, -20 dB); QZZCFM
- Tape speed adjustment (3 kHz, -10 dB); QZZCWAT
- Playback gain adjustment (315 Hz, 0 dB); QZZCFM
- Recording/playback frequency response adjustment;
 QZZCFM (315 Hz/0 dB, 315 Hz/-20 dB, 12.5 kHz~63 Hz/-20 dB)
 QZZCRA (Normal blank Tape)

QZZCRX (CrO2 blank Tape)

QZZCRZ (Metal blank Tape)

Adjustment Points

Deck 1 Mechanism Control P.C.B.

Deck 2 Mechanism Control P.C.B.

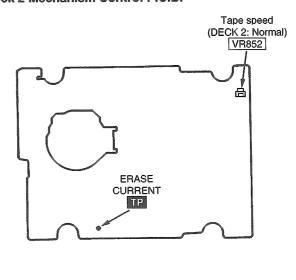
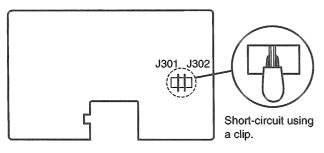



Fig. 2

FL P.C.B.

Main P.C.B.

Fig. 3

Fig. 4

EVM

Head Azimuth Adjustment (Decks 1 and 2)

- 1. Connect the measuring instruments as shown in Fig. 5.
- Replace the azimuth adjustment screws (for both forward and reverse plays) with new ones.

At this point, remove the screw lock bond stuck to the area around the heads. If the screw lock bond remains in place, no fine adjustment can be made. (Azimuth adjustment screw supply model: RHD17015)

- Forward play the azimuth adjusting portion (8 kHz, -20 dB) of a test tape (QZZCFM) and adjust the azimuth adjustment screw so the output at the left and right channels is at the maximum. (See Fig. 6.)
- 4. For the reverse play, make the azimuth adjustment in a similar manner.

Difference check between forward and reverse play levels

- Play the playback gain adjusting portion (315 Hz, 0 dB) of the test tape (QZZCFM) and ensure the difference between the forward and reverse play levels remains within the range of 1.5 dB.
- 6. After completing the adjustment, lock the azimuth adjustment screws.

PLAY (OUT)

Azimuth adjustment screw (forward play side)

Azimuth adjustment screw (reverse play side)

Fig. 6

Tape Speed Adjustment (Decks 1 and 2)

 Turn on the power to the unit and short-circuit the TEST mode terminal (J301⇔ J302) using a clip.

Normal speed adjustment (adjust in the FWD play mode)

Product specification value: 3,000 Hz \pm 45 Hz

- 2. Connect the measuring instruments as shown in Fig. 7.
- 3. Press the SPEED button to set the tape speed to the Normal position.
- 4. Play the middle portion of the test tape (QZZCWAT).
- Adjust VR802 for DECK 1 and VR852 for DECK 2 so their outputs have the following value.

Adjusted value: 3,000 Hz ± 15 Hz (Normal speed)

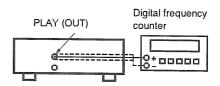
High speed adjustment (Adjust in the FWD play mode.)

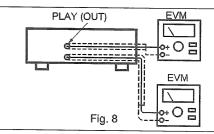
Product specification value: 3,000 Hz ± 45 Hz

- 6. Play the middle portion of the test tape (QZZCWAT).
- 7. Press the SPEED button to set the tape speed to the High position.
- 8. At this point, ensure the output of DECK 2 stays within the specification value.

DECK 2 specification value: 6,000 Hz ± 600 Hz (High speed)

- Adjust VR801 for DECK 1 so its output frequency remains within ± 30 Hz of that of DECK 2.
- 10. Clear the short circuit of the TEST terminal.




Fig. 7

Playback Gain Check (Decks 1 and 2)

- 1. Connect the measuring instruments as shown in Fig. 8.
- 2. Play the 315 Hz, 0 dB section of the test tape (QZZCFM).
- 3. Ensure the output stays within the standard value range.

Standard value range (Decks 1 and 2): 280 mV ~ 360 mV

Note: If the output is outside the standard value range, follow Step 1 ~ Step 4 in the "Adjusted Value Rewrite." (See page 25)

Erase Current Check (Decks 1 and 2)

- 1. Connect the measuring instruments as shown in Fig. 9.
- 2. Load DECK 2 with a normal, CrO2 or metal tape.
- 3. Press the REC PAUSE button to pause the recording.
- 4. Ensure the measured erase current of the tape stays within the standard value.

 Standard value
 Measured value with EVM

 Normal tape : 140 mA ± 25 mA
 (140 mA ± 25 mV)

 CrO2 tape : 140 mA ± 25 mA
 (140 mA ± 25 mV)

 Metal tape : 220 mA ± 25 mA
 (220 mA ± 25 mV)

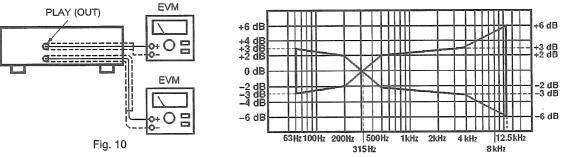

Note: If the measured value is outside the standard range, follow Step 1 ~ Step 9 in the "Adjusted Value Rewrite." (See pages 25, 26)

Fig. 9

Playback Frequency Characteristic Check (Decks 1 and 2)

- 1. Connect the measuring instruments as shown in Fig. 10.
- 2. Play the playback frequency characteristic check portions (315 Hz, 12.5 kHz ~ 63 Hz, -20 dB) of the test tape (QZZCFM).
- 3. With the output produced at 315 Hz as a standard, check the playback output levels (both L- and R-channels) at the individual frequencies stay within the range shown in Fig. 11.

Note: If these levels are outside the standard value range, follow Step 1) ~ Step 6 in the "Adjusted Value Rewrite." (See pages 25, 26)

Fig. 11

Record/Playback Frequency Characteristic Check (Deck 2)

Normal tape check

- 1. Connect the measuring instruments as shown in Fig. 12.
- 2. Load DECK 2 with a test tape (QZZCRA: normal blank tape).
- 3. Press the DOLBY NR button to set it to the DOLBY OFF position.
- 4. Using an input level of 32 mV, record signals at 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 2 kHz, 10 kHz and 12.5 kHz. (The recording time at each individual frequency is immaterial.)
- 5. Play the recorded signals.
- 6. With the output produced at 1 kHz as a standard, ensure the playback output levels (both left and right channels) at the individual frequencies stay within the range shown in Fig. 13.

CrO2/metal tape check

- 7. Load DECK 2 with a CrO2 or metal tape.
- 8. Follow the procedure for the "Normal Tape Check" and ensure the playback output levels stay within the range shown in Fig. 14.

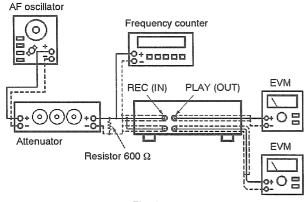


Fig. 12

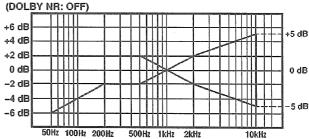

Normal tape overall frequency characteristics (DOLBY NR: OFF) +6 dB -5 dB +4 dE +2 dE 0 dB 0 dB -2 dB -4 dB 4 dB -6 dB

Fig. 13

2kHz

CrO2/metal tape overall frequency characteristics

50Hz 100Hz 200Hz

Note: If the outputs stay outside the standard value range, follow Step 1 ~ Step 9 in the "Adjusted Value Rewrite." (See pages 25 ~ 27)

Fig. 14

■ Schematic Diagram

	. Page
A	MAIN CIRCUIT 32, 33
	MECHANISM CONTROL CIRCUIT (DECK 2) $34{\sim}36$
C	DOLBY NOISE REDUCTION CIRCUIT 34
D	MECHANISM CIRCUIT (DECK 2) 35
Ē	FL CIRCUIT 37
F	POWER SWITCH CIRCUIT 37
G	MECHANISM CIRCUIT (DECK 1) 37
	MECHANISM CONTROL CIRCUIT (DECK 1) 34, 37
Thi	is schomatic diagram may be modified at any time with the development of new technical

[•] This schematic diagram may be modified at any time with the development of new technology.

Notes:

- S701 : Power switch (STAND BY 🖒/ON)
- \$707 : DECK 1 cassette holder open switch (♣ OPEN) • \$708 : Dolby noise-reduction switch (DOLBY NR)
- \$708 : Dolby noise-reduction switch (DOLBY NR)
 \$709 : Reverse-mode select switch (REVERSE M
- \$709
 Reverse-mode select switch (REVERSE MODE)
 \$710
 Synchro-start switch (SYNCHRO START)
- \$711 : Tape-to-tape recording-speed switch (SPEED)
- \$714 : Stop switch ()
- \$715 : Forward-side playback switch (>>>)
- \$716 : Reverse-side playback switch (
- \$717 : Fast forward switch (>>>)
- **S718** : Rewind switch (◀◀)
- S719 : DECK 2 cassette holder open switch (OPEN)
- \$720 : Record pause switch (● REC PAUSE)
- \$721 : Tape deck select switch (DECK 1/2)
- \$723 : Counter reset (COUNTER RESET)
- \$951 : DECK 1 mode detect switch
- \$952 : DECK 1 half detect switch
- \$953 : DECK 1 CrO2 tape detect switch
- \$971 : DECK 2 mode detect switch
- S972 : DECK 2 half detect switch
- \$973 : DECK 2 CrO2 tape detect switch
- S974 : DECK 2 reverse side record prevention tab detect switch
- S975 : DECK 2 forward side record prevention tab detect switch
- \$976 : DECK 2 METAL tape detect switch
- Indicated voltage values are the standard values for the unit measured by the DC electronic circuit tester (high-impedance) with the chassis
 taken as standard. Therefore, there may exist some errors in the voltage values, depending on the internal impedance of the DC circuit tester.

No mark: Playback

): Recording

Important safety notice:

Components identified by A mark have special characteristics important for safety.

Furthermore, special parts which have purposes of fire-retardant (resistors), high-quality sound (capacitors), low-noise (resistors), etc. are used. When replacing any of components, be sure to use only manufacturer's specified parts shown in the parts list.

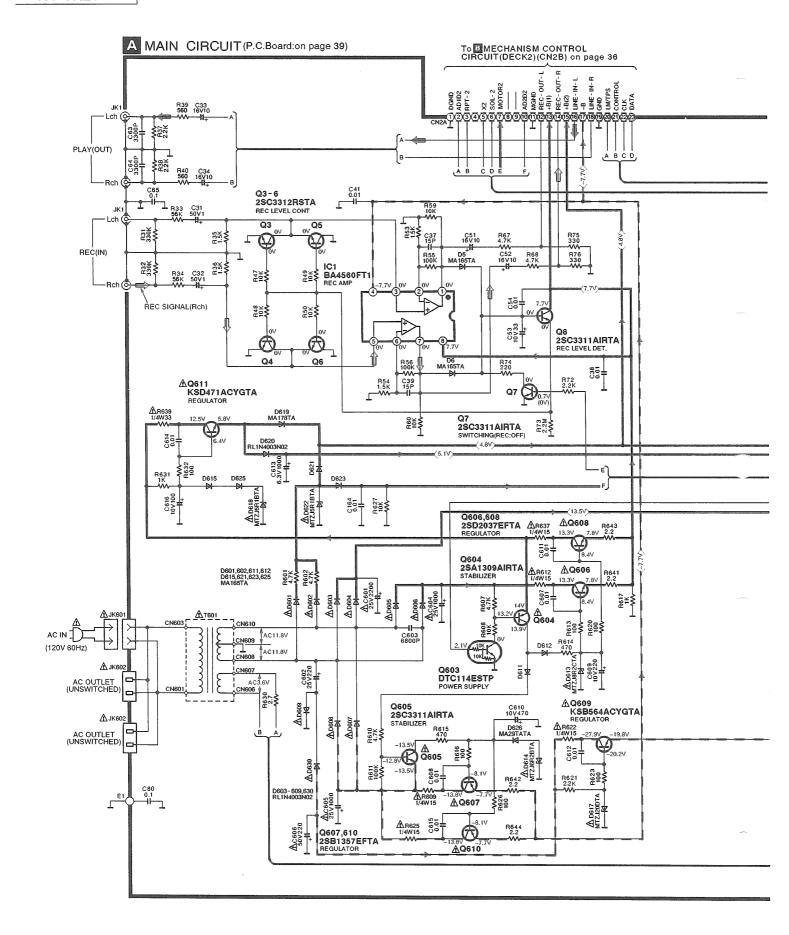
Caution!

IC and LSI are sensitive to static electricity.

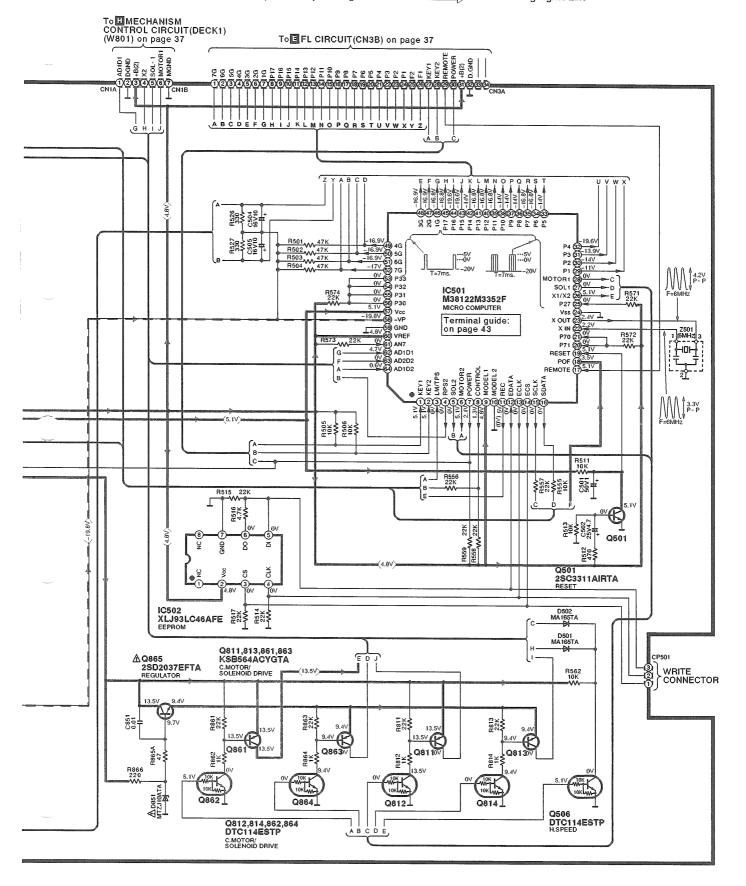
Secondary trouble can be prevented by taking care during repair.

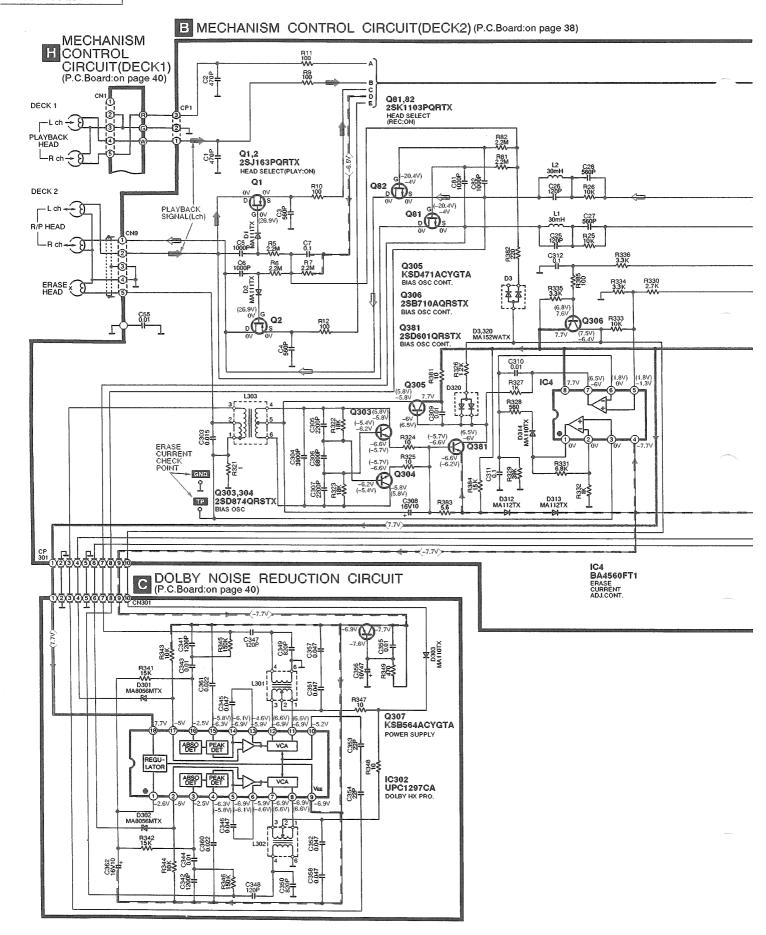
Cover the parts boxes made of plastics with aluminum foil.

Ground the soldering iron.

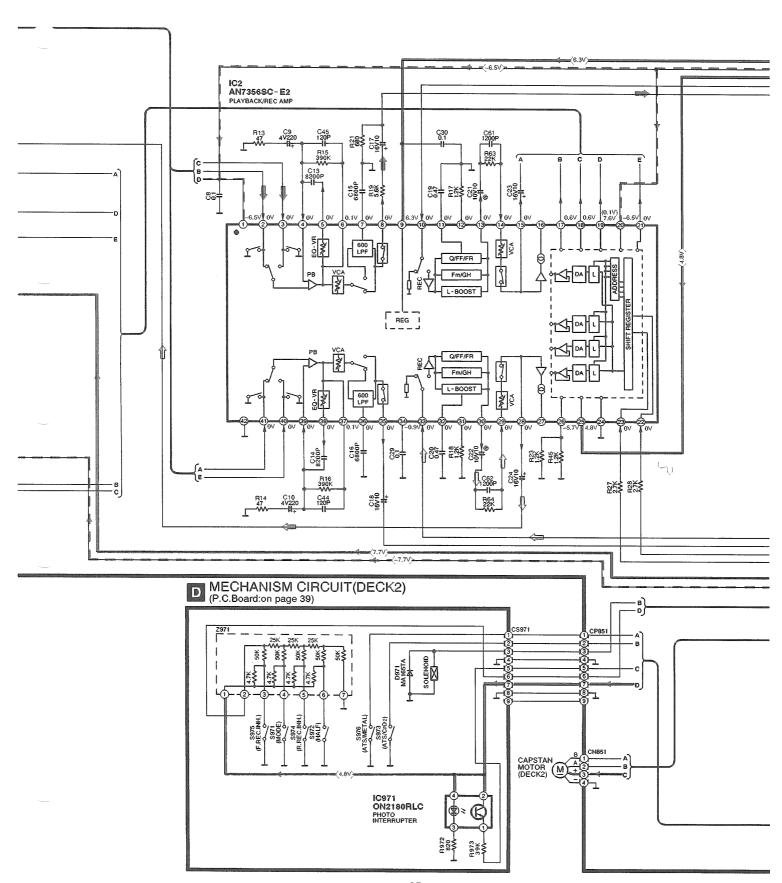

Put a conductive mat on the work table.

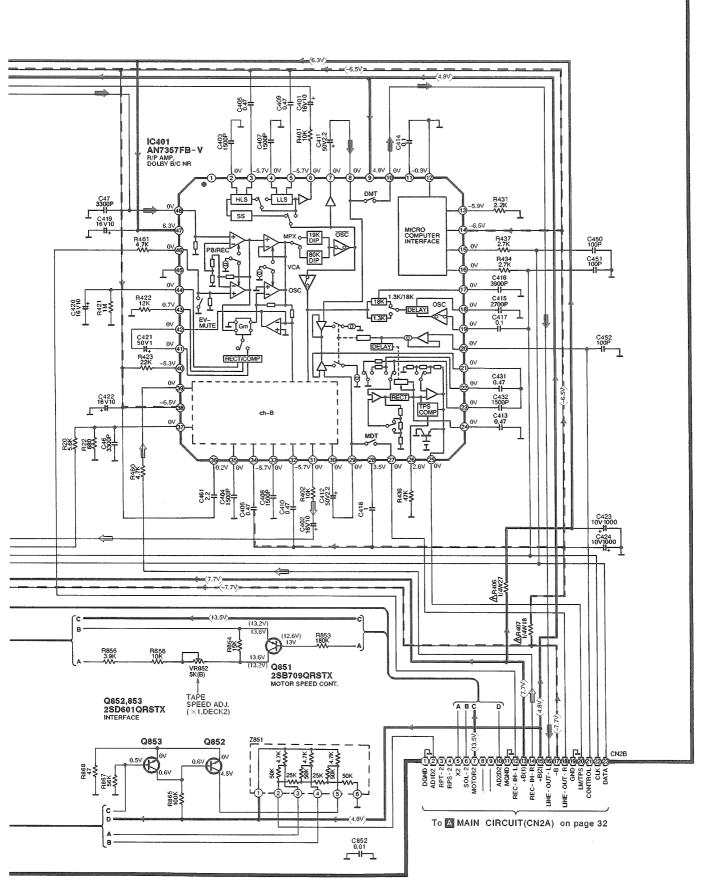
Do not touch the legs of IC or LSI with the fingers directly.

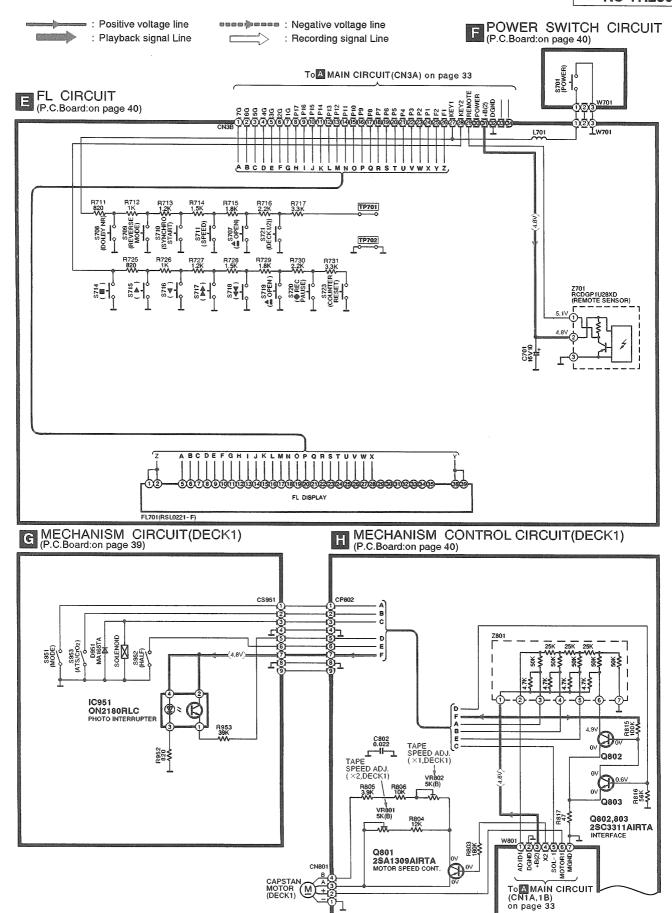

Voltage and signal line


: Positive voltage line
: Negative voltage line

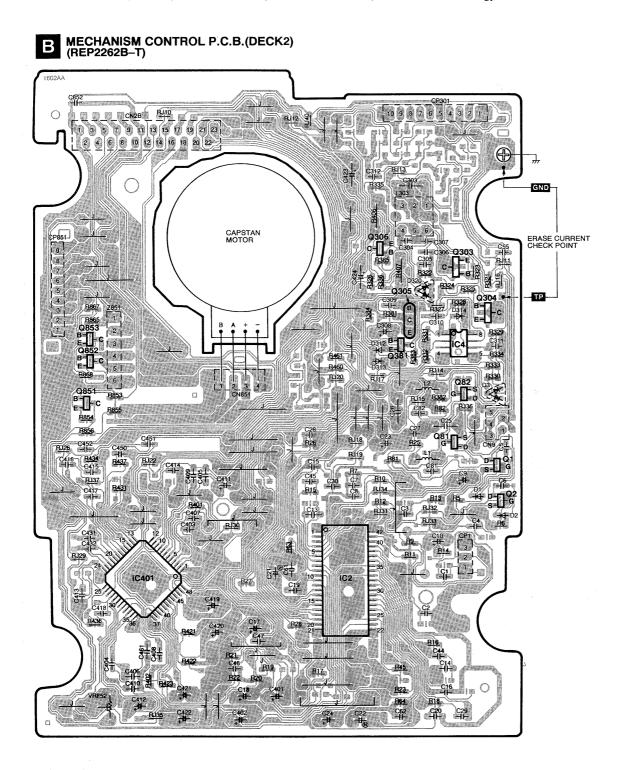
: Playback signal Line : Recording signal Line

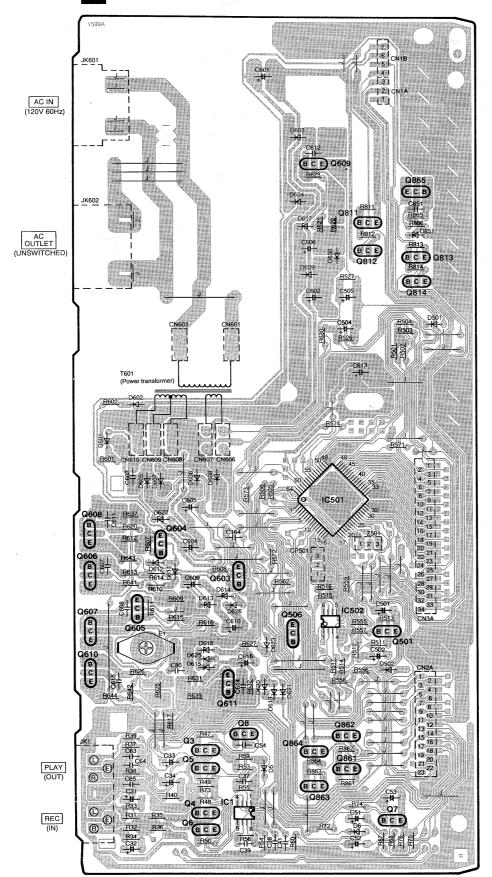



: Positive voltage line : Playback signal Line : Negative voltage line : Recording signal Line

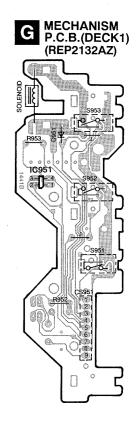


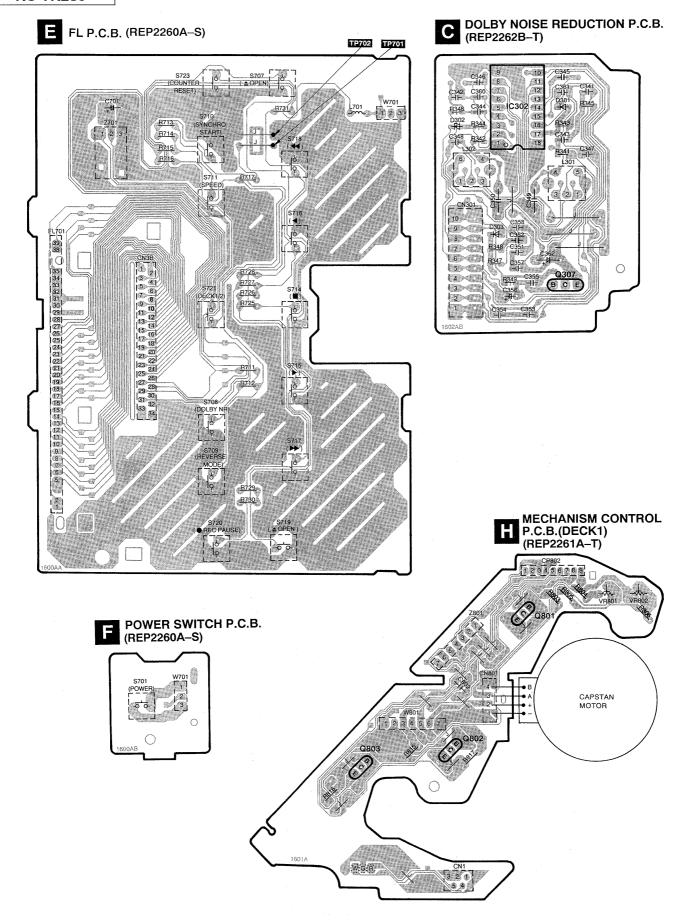
: Negative voltage line : Recording signal Line



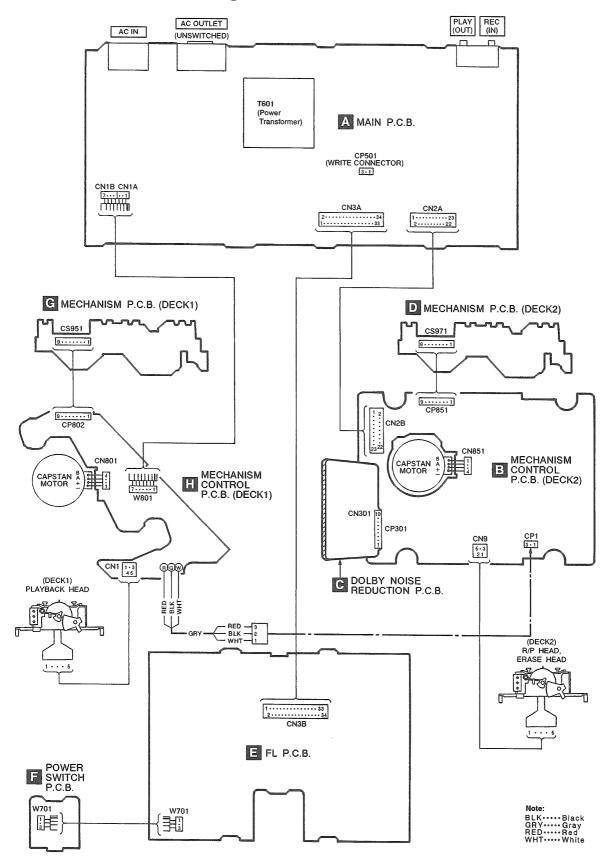



■ Printed Circuit Board Diagram


• This circuit board diagram may be modified at any time with the development of new technology.

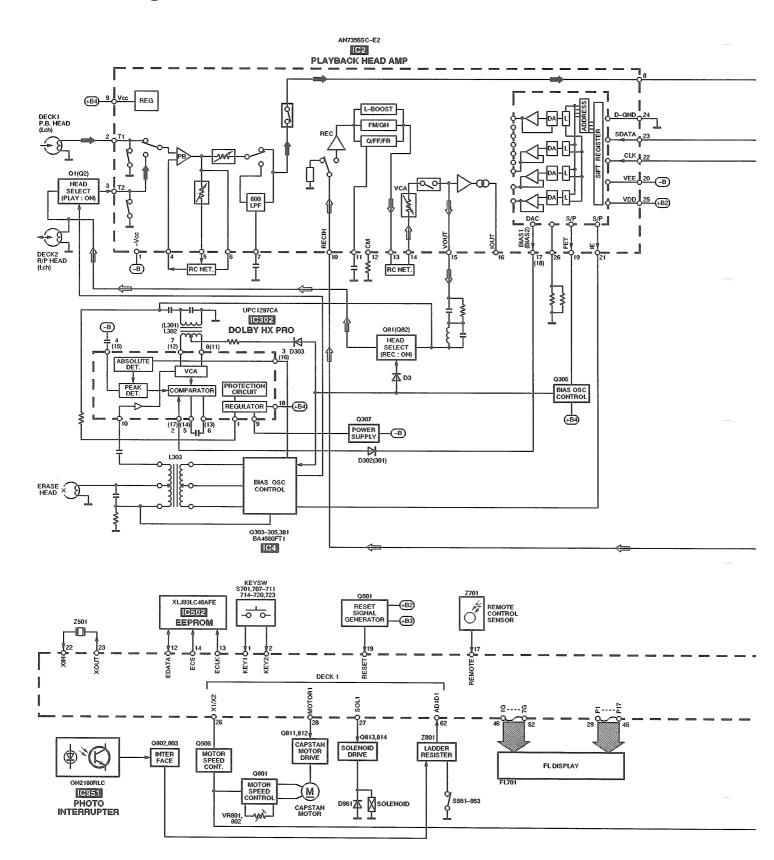


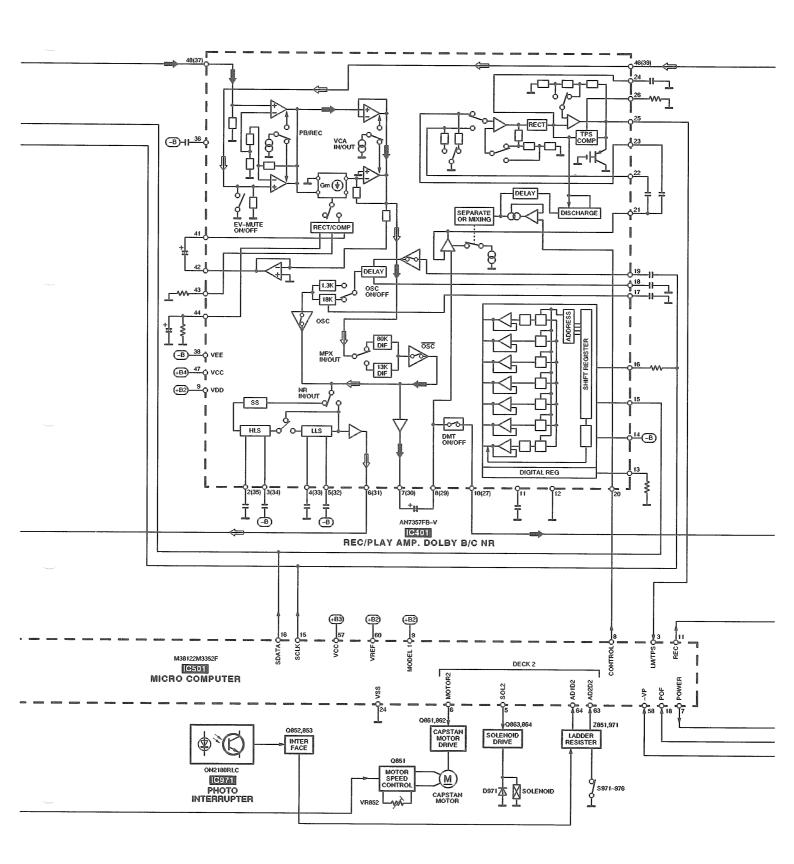
A MAIN P.C.B. (REP2259B-M)

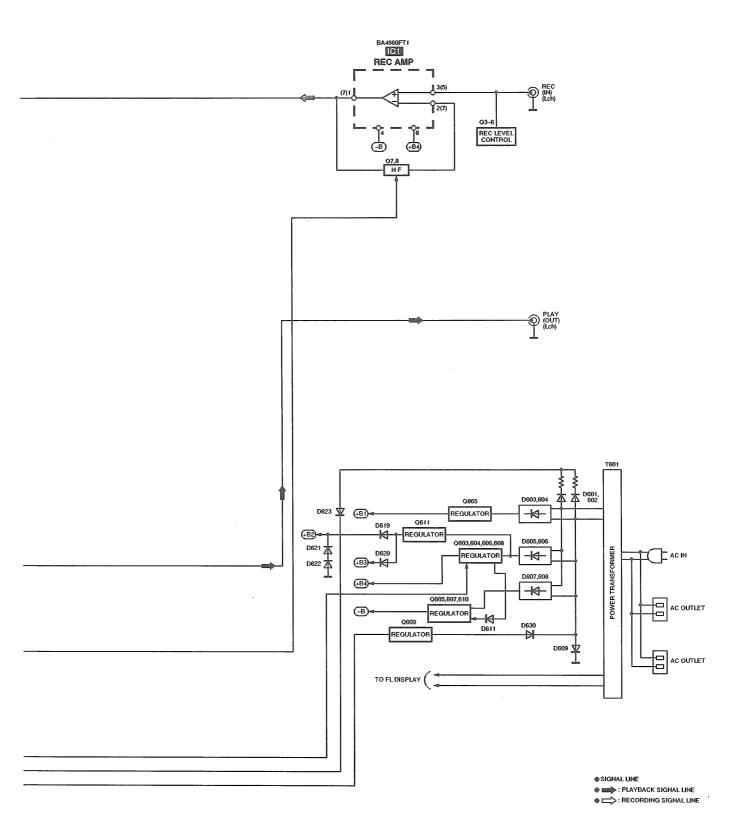


SVIBA4560FT1 XLJ93LC46AFE	AN7356SC-E2	UPC1297CA		N7357FB-V 48PIN	ON2180RLC
ALJ93LC46AFE	1 May 22 22 21	10 18	No.1	/338122M3352F 64PIN	1 2 3 3 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5
KSB564ACYGTA KSD471ACYGTA	2SB1357EFTA 2SD2037EFTA	2SD874QRSTX	K \	2SA1309AIRTA 2SC3311AIRTA	DTC114ESTP
E C B	BCE	B C E	E C B	2SC3312RSTA	BCE
2SJ163PQRTX 2SK1103PQRTX	2SB709QRSTX 2SB710AQRSTX	0.	MTZJ10ATA MTZJ20DTA	MA165	MA178TA Ca
G G G	2SD601QRSTX	Cathod A Cathod	MTZJ5R1BTA MTZJ6R2BTA MTZJ8R2CTA	Ca Cathode Anode	Cathode
MA29TATA	RL1N4003N02	MA8056MTX	MA110TX MA111TX	MA152WATX	
Ca Cathode Anode	Cathode Anode	Anode Ca	MA112TX Cathode Ca Anode	Cathode Cathode	

■ Wiring Connection Diagram


■ Function of IC Terminals


• IC501 (M38122M3352F)


Pin No.	Terminal Name	I/O	2M3352F) Function
	****		Operation switch (S701, S707, S708, S709,
1	KEY1		S710, S711, S721) signal input Operation switch (S714, S715, S716, S717,
2	KEY2	ı	S718, S719, S720, S723) signal input
3	LM/MSP	1	Level meter signal input
4	RPS 2	0	Not used
5	SOL2	0	DECK 2 solenoid drive signal output
6	MOTOR2	0	DECK 2 motor drive signal output
7	POWER	0	Power control signal output
8	CONTROL	0	Level meter (Lch/Rch) select signal output
9	MODEL 1	ı	Model select terminal
10	MODEL 2	ı	
11	REC-L	0	Auto level control circuit drive signal output
12	EDATA	I/O	EEPROM (IC502) serial data input/output
13	ECLK	0	EEPROM (IC502) clock signal output
14	ECS	I/O	EEPROM (IC502) chip select signal output
15	SCLK	0	Audio adjustment signal output
16	SDATA	0	Audio IC (IC2) serial data output
17	REMOTE	ı	Remote control signal input
18	POF	1	Power off detection signal input
19	RESET	1	Reset signal input
20	P71	I	Not used
21	P70	ı	
22	XIN	1	Clock signal (6 MHz) input
23	XOUT	0	Clock signal (6 MHz) output
24	VSS	_	GND terminal
25	P27	ı	Not used
26	X1/X2	0	Motor speed control signal output

Pin No.	Terminal Name	I/O	Function
27	SOL1	0	DECK 1 solenoid drive signal output
28	MOTOR1	0	DECK 1 motor drive signal output
29~45	P1~P17	0	Segment signal output
46~52	G1~G7	0	Grid signal output
53~56	P33~P30	0	Not used
57	vcc	_	Power supply (+5 V)
58	VEE		FL meter pull down voltage input terminal
59	AVSS	_	GND terminal for A/D converter
60	VREF	_	Reference voltage input terminal for A/D converter (+5 V)
61	AN7	ı	Not used
62	AD1D1	ı	DECK 1 mechanism switch signal input (Half, Mode, CrO2, Reel pulse)
63	AD2D2	ı	DECK 2 mechanism switch signal input (Half, Mode, F. REC INH., R. REC INH.)
64	AD1D2	ı	DECK 1 mechanism switch signal input (Metal, CrO2, Reel pulse)

■ Block Diagram

■ Replacement Parts List

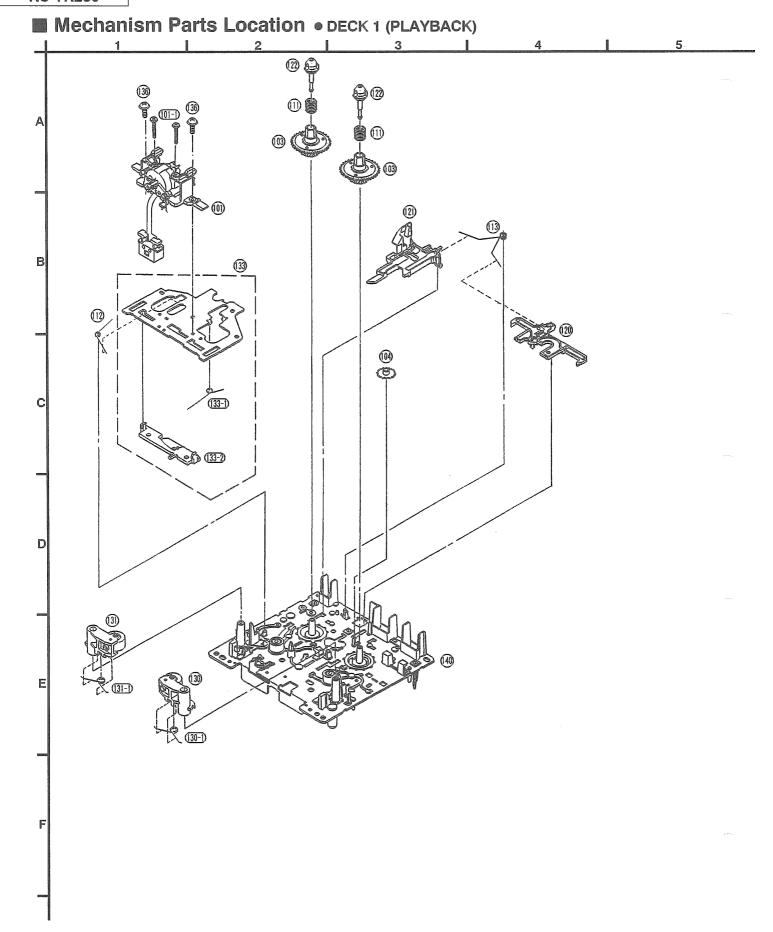
Notes: *Important safety notice:
Components identified by \(\triangle \) mark have special characteristics important for safety.

Furthermore, special parts which have purposes of fire-retardant (resistors), high-quality sound (capacitors), low-noise (resistors), etc. are used. When replacing any of components, be sure to use only manufacture's specified parts shown in the parts list.

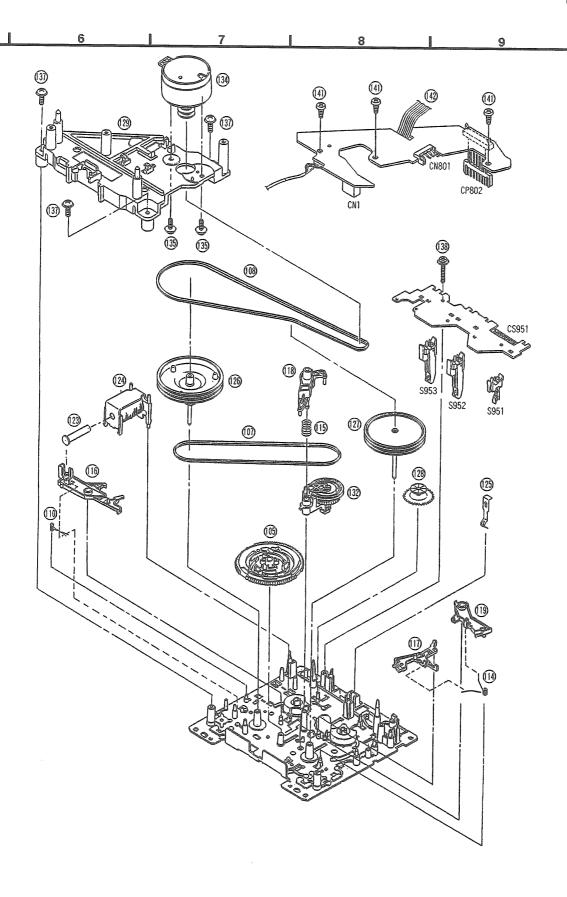
*The parenthesized indications in the Remarks columns specify the areas. (Refer to the cover page for area.)

Parts without these indications can be used for all areas.

Ref. No.	Part No.	Part Name & Description	Remarks	Ref. No.	Part No.	Part Name & Description	Remarks
				Q864	DTC114ESTP	TRANSISTOR	
		INTEGRATED CIRCUIT (S)		Q865	2SD2037EFTA	TRANS ISTOR	Δ
IC1	BA4560FT1	I. C, REC AMP				DIODE (S)	
IC2	AN7356SC-E2	I. C, PLAY BACK/REC AMP		1		11000 (0)	
IC4	BA4560FT1	I. C, ERASE CURRENT ADJ. CONT		D1, 2	MA111TX	DIODE	
IC302	UPC1297CA	I. C, DOLBY HX PRO		D3	MA152WATX	DIODE	
IC401	AN7357FB-V	I. C, R/P AMP DOLBY B/C NR		D5, 6	MA165	DIODE	
IC501	M38122M3352F	I. C, MICRO COMPUTER		D301, 302	MA8056MTX	DIODE	
IC502	XLJ93LC46AFE	I. C, EEPROM		D303	MA110TX	DIODE	
IC951	ON2180RLC	I. C, PHOTO INTERRUPTER		D312, 313	MA112TX	DIODE	
IC971	ON2180RLC	I. C, PHOTO INTERRUPTER		D314	MA110TX	DIODE	
		,		D320	MA152WATX	DIODE	
	 	TRANSISTOR(S)		D501, 502	MA165	DIODE	
				D601, 602	MA165	DIODE	Δ
Q1, 2	2SJ163PQRTX	TRANSISTOR		D603-609	RL1N4003N02	DIODE	Δ
23-6	2SC3312RSTA	TRANSISTOR		D611, 612	MA165	DIODE	713
27, 8	2SC3311AIRTA	TRANSISTOR		D613	MTZJ8R2CTA	DIODE	^
281, 82	2SK1103PQRTX	TRANSISTOR		_			Δ
Q303, 304	2SD874QRSTX	TRANSISTOR		D614	MTZJ6R2BTA	DIODE	Δ
2305	KSD471ACYGTA	TRANSISTOR		D615	MA165	DIODE	
2306	2SB710AQRSTX	TRANSISTOR		D617	MTZJ20DTA	DIODE	Δ
Q30 7	KSB564ACYGTA	TRANSISTOR		D618	MTZJ5R1BTA	DIODE	Δ
Q381	2SD601QRSTX	TRANSISTOR		D619	MA178TA	DIODE	
2501	2SC3311AIRTA	TRANSISTOR		D620	RL1N4003N02	DIODE	
2506	DTC114ESTP	TRANSISTOR		D621 D622	MA165	DIODE	
Q603	DTC114ESTP	TRANSISTOR		D623	MTZJ5R1BTA	DIODE	Δ
Q604	2SA1309AIRTA	TRANSISTOR	Δ		MA165	DIODE	
2605	2SC3311AIRTA	TRANSISTOR		D625	MA165	DIODE	
2606	2SD2037EFTA		Δ	D626	MA29TATA	DIODE	
·		TRANSISTOR	Δ	D630	RL1N4003N02	DIODE	Δ
2607	2SB1357EFTA	TRANSISTOR	Δ	D851	MTZJ10ATA	DIODE	Δ
800	2SD2037EFTA	TRANSISTOR	Δ.	D951	MA165TA	DIODE	
)609	KSB564ACYGTA	TRANSISTOR	Δ	D971	MA165TA	DIODE	
610	2SB1357EFTA	TRANSISTOR	Δ				
0611	KSD471ACYGTA		Δ			VARIABLE RESISTOR(S)	
801	2SA1309AIRTA	TRANSISTOR					
802, 803	2SC3311AIRTA	TRANSISTOR		VR801, 802	EVND1AA00B53	V. R, TAPE SPEED ADJ.	
811		TRANSISTOR		VR852	EVNDCAA03B53	V. R, TAPE SPEED ADJ.	
812	DTC114ESTP	TRANSISTOR					
813	KSB564ACYGTA	TRANSISTOR				COMPONENT COMBINATION (S)	
814	DTC114ESTP	TRANSISTOR					
851	2SB709QRSTX	TRANSISTOR		2501	EF0EC6004T4	CERAMIC OSCILLATOR (6MHZ)	
852, 853	2SD601QRSTX	TRANSISTOR		2701	RCDGP1U28XD	REMOTE SENSOR	
)861	KSB564ACYGTA	TRANSISTOR		Z801	EXBF7L355SYV	COMPONENT COMBINATION	
862	DTC114ESTP	TRANSISTOR		Z851	EXBF6L306SYV	COMPONENT COMBINATION	
2863	KSB564ACYGTA	TRANSISTOR		Z971	EXBF7L355SYV	COMPONENT COMBINATION	

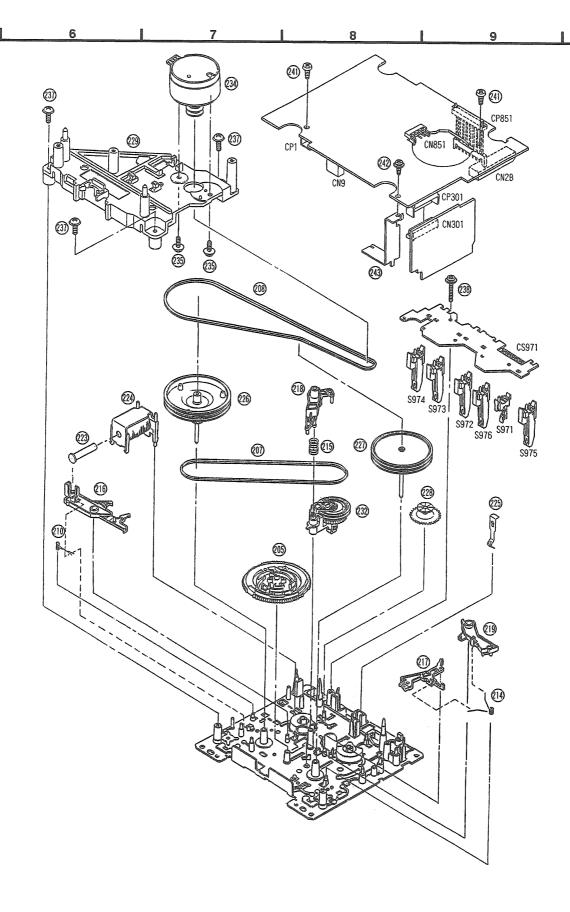

Ref. No.	Part No.	Part Name & Description	Remarks	Ref. No.	Part No.	Part Name & Description	Rema
				CN851	RJR0113	CONNECTOR (4P)	
		COIL (S)		CN1A	RJS1A1703	CONNECTOR (3P)	
				CN2A	RJS1A6823	CONNECTOR (23P)	
.1, 2	RLQX303JT-K	COIL		CN3A	RJS1A6834	CONNECTOR (34P)	
		COIL		CN1B	RJS1A1704	SOCKET (4P)	
.303	SL09B4-K	COIL		CN2B	RJS1A6723	CONNECTOR (23P)	
L701		COIL		CN3B	RJS1A6234-1	CONNECTOR (34P)	
	III ATI TOOKI I	0016		CP1	RJP3G17ZA	CONNECTOR (3P)	
		POWER TRANSFORMER(S)		CP301	RJT057W010-1	CONNECTOR (10P)	
		POWER TRANSPORMER(S)		CP501	RJT029W03VT	CONNECTOR (3P)	
TCO1	RTP1K4C022-V	POWER TRANSFORMER	Δ	CP802	RJT071H09A	CONNECTOR (9P)	
T601	MIPIN4CUZZ-V	POWER TRANSFORMER	<u> </u>				
		DICDLAY TIDE		CP851	RJT071H09A	CONNECTOR (9P)	-
		DISPLAY TUBE		CS951	RJU071H09M	CONNECTOR (9P)	
CI 701	DOLOGO 2	DIODLAY MUDO		CS971	RJU071H09M	CONNECTOR (9P)	
FL701	RSL0221-F	DISPLAY TUBE			ļ	OND DADE (O)	
		aurmou (pa)				GND PART(S)	
	ļ	SWITCH(ES)			1		
				E1	SNE1004-2	GND PLATE	-
S701	EVQ21405R	SW, POWER			1		
S707	EVQ21405R	SW, OPEN/CLOSE			ļ	JACK(S)	
S708	EVQ21405R	SW, DOLBY NR					
S709	EVQ21405R	SW, REVERSE MODE		JK1	SJF3069-5N	JACK, PLAY & REC	
S710	EVQ21405R	SW, SYNCHRO START		JK601	SJSD16-1	AC INLET	Δ
5711	EVQ21405R	SW, SPEED		JK602	RJS2A0102-1S	AC OUTLET	Δ
S714	EVQ21405R	SW, STOP					
S715	EVQ21405R	SW, F. PLAY					
S716	EVQ21405R	SW, R, PLAY					
S717	EVQ21405R	SW, FF					
S718	EVQ21405R	SW, REW					
S719	EVQ21405R	SW, OPEN/CLOSE					
S720	EVQ21405R	SW, REC PAUSE		1			1
S721	EVQ21405R	SW, DECK1/2			1		
S723	EVQ21405R	SW, COUNTER RESET					1
S951	RSH1A018-1U	SW, MODE (DECK1)					†
S952	RSH1A019-2U	SW, HALF (DECK1)		1			
S953	RSH1A019-2U	SW, ATS/CrO2 (DECK1)					
S971	RSH1A018-1U	SW, MODE (DECK2)					1
S972	RSH1A019-2U	SW, HALF (DECK2)	 	1			+
S973	RSH1A019-2U	SW, ATS/Cr02 (DECK2)					-
S974	RSH1A019-2U	SW, R. REC. 1NH. (DECK2)		 			-
S975	RSH1A019-2U	SW, F. REC. 1NH. (DECK2)		 	-		+
S976	RSH1A019-2U	SW. ATS/METAL (DECK2)					-
	I CILITIOIS AU	on, ATO/ HE TAB (DEGIZE)	 	1	-		
		COMMECTODOGY	 		-		
	 	CONNECTOR8S)					
ONI	DIOGRAPHIC CO	COMPONED (ED)		∤	-		ļ
CN1		CONNECTOR (5P)	-		-		ļ
CN9		CONNECTOR (5P)					ļ
CN301	RJU057W010	SOCKET (10P)					
CN601	RJS1A1101T1	CONNECTOR (1P)					
CN603	RJS1A1101T1	CONNECTOR (1P)					
CN606-610	RJS1A1101T1	CONNECTOR (1P)					
CN801	RJR0113	CONNECTOR (4P)					

Notes: * Capacity values are in microfarads (uF) unless specified otherwise, P=Pico-farads(pF) F=Farads(F) * Resistance values are in ohms, unless specified otherwise, 1K=1,000(01M), 1M=1,000k(01M)

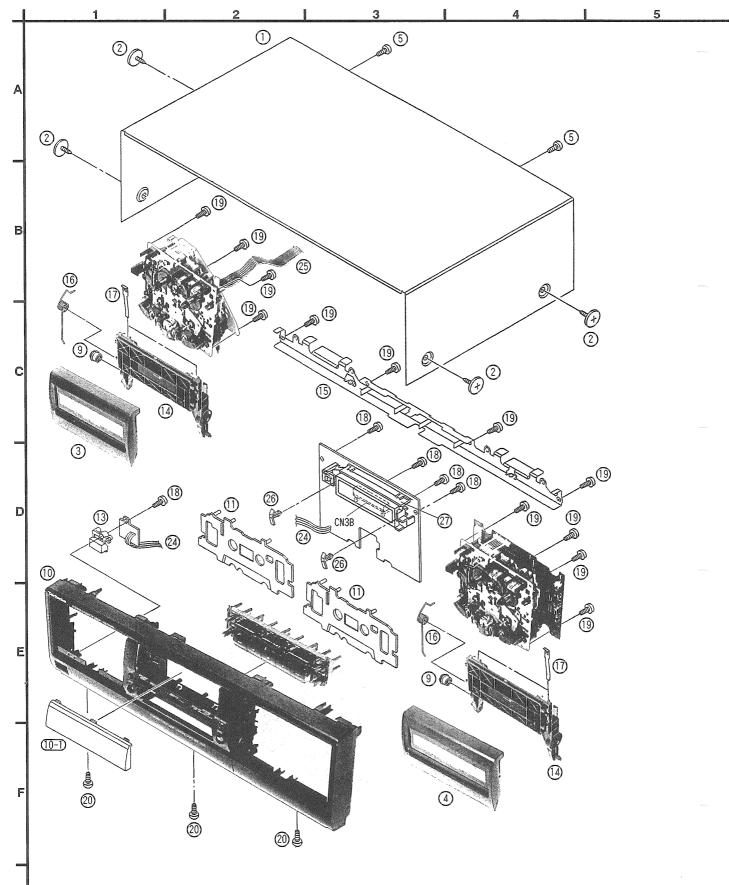

Ref. No.	Part No.	Values & Remarks	Ref. No.	Part No.	Val	ues & Remarks	Ref. No.	Part No.	Val	ues & Remarks
	 	DEGLOSOPO	R382	ERJ6GEYJ221V	1/10W	220	R637 <u>∧</u>	ERD2FCVG150T	1/4₩	15
	 	RESISTORS	R383	ERJ6GEYJ5R6V	1/10₩	5. 6	R639 <u>∧</u>	ERD2FCVG330T	1/4₩	33
מייים	ED TOORN TOORS	1 4000 0 000	R384	ERJ6GEYJ153V	1/10W	15K	R641-644	ERDS2TJ2R2T	1/4W	2. 2
R5-7	ERJ6GEYJ225V	1/10W 2. 2M	R385	ERJ6GEYJ101V	1/10W	100	R711	ERDS2TJ821	1/4W	820
R9	ERJ6GEYJ101V	1/10W 100	R401, 402	ERJ6GEYJ103V	1/10W	10K	R712	ERDS2TJ102	1/4W	1K
R10-12	ERJ6GEYJ101V	1/10W 100	R406∆	ERD2FCVG270T	1/4W	27	R713	ERDS2TJ122	1/4W	1. 2K
R13, 14	ERJ6GEYJ470V	1/10W 47	R407△	ERD2FCVG180T	1/4W	18	R714	ERDS2TJ152	1/48	1. 5K
R15, 16	ERJ6GEYJ394V	1/10W 390K	R421	ERJ6GEYJ105	1/10W	1M	R715	ERDS2TJ182	1/4W	1. 8K
R17, 18	ERJ6GEYJ122V	1/10W 1.2K	R422	ERJ6GEYJ123V	1/10W	12K	R716	ERDS2TJ222	1/4W	2. 2K
R19, 20	ERJ6GEYJ562V	1/10W 5.6K	R423	ERJ6GEYJ223V	1/10W	22K	R717	ERDS2TJ332	1/4W	3. 3K
R21, 22	ERJ6GEYJ681V	1/10W 680	R431	ERJ6GEYJ222V	1/10W	2. 2K	R725	ERDS2TJ821	1/4₩	820
R23	ERJ6GEYJ122V	1/10W 1.2K	R434	ERJ6GEYJ272V	1/10W	2. 7K	R726	ERDS2TJ102	1/4W	1K
R25, 26	ERJ6GEYJ103V	1/10W 10K	R436	ERJ6GEYJ473V	1/10W	47K	R727	ERDS2TJ122	1/4W	1. 2K
R27, 28	ERJ6GEYJ272V	1/10W 2.7K	R437	ERJ6GEYJ272V	1/10W	2. 7K	R728	ERDS2TJ152	1/4W	1. 5K
R31, 32	ERDS2TJ334	1/4W 330K	R460, 461	ERJ6GEYJ472V	1/10W	4. 7K	R729	ERDS2TJ182	1/4W	1. 8K
R33, 34	ERDS2TJ563	1/4W 56K	R501-504	ERDS2TJ473	1/4W	47K	R730	ERDS2TJ222	1/4W	2. 2K
R35, 36	ERDS2TJ152	1/4W 1.5K	R505, 506	ERDS2TJ103	1/4W	10K	R731	ERDS2TJ332	1/4W	3. 3K
R37, 38	ERDS2TJ222	1/4W 2.2K	R511	ERDS2TJ103	1/4W	10K	R803	ERDS2TJ184T	1/4W	180K
R39, 40	ERDS2TJ561	1/4W 560	R512	ERDS2TJ471	1/4W	470	R804	ERDS2TJ123	1/4W	12K
R45	ERJ6GEYJ122V	1/10W 1.2K	R513	ERDS2TJ103	1/4W	10K	R805	ERDS2TJ392T	1/4W	3. 9K
R47-50	ERDS2TJ103T	1/4W 10K	R514, 515	ERDS2TJ223	1/4W	22K	R806	ERDS2TJ103	1/4W	10K
R53, 54	ERDS2TJ152	1/4W 1.5K	R516	ERDS2TJ472	1/4W	4. 7K	R811	ERDS2TJ223	<u> </u>	
R55, 56	ERDS2TJ104	1/4W 100K	R517	ERDS2TJ223	1/4W	22K	R812		1/4₩	22K
R59, 60	ERDS2TJ103	1/4W 10K	R526, 527	ERDS2TJ331	1/4W	330		ERDS2TJ102	1/4W	1K
R63, 64	ERJ6GEYJ223V	1/10W 22K	R555	 	<u> </u>		R813	ERDS2TJ223	1/4W	22K
R67, 68	ERDS2TJ472	1/4W 4.7K	R556-559	ERDS2TJ103	1/4W	10K	R814	ERDS2TJ102	1/4W	1K
R72	ERDS2TJ222			ERDS2TJ223	1/4W	22K	R815	ERDS2TJ104	1/4W	100K
R73	ERDS2TJ225	1/4W 2. 2K	R562	ERDS2TJ103	1/4W	10K	R816	ERDS2TJ563	1/4W	56K
R74	 	1/4W 2. 2M	R571-574	ERDS2TJ223	1/4W	22K	R817	ERDS2TJ470	1/4W	47
R75, 76	ERDS2TJ221	1/4W 220	R601, 602	ERDS2TJ472	1/4W	4. 7K	R853	ERJ6GEYJ184V	1/10W	180K
<u> </u>	ERDS2TJ331	1/4W 330	R607	ERDS2TJ472	1/4W	4. 7K	R854	ERJ6GEYJ153V	1/10W	15K
R81, 82	ERJ6GEYJ225V	1/10W 2.2M	R608	ERDS2TJ103	1/4W	10K	R855	ERJ6GEYJ392V	1/10W	3. 9K
R321	ERJ6GEYJ1ROV	1/10W 1. 0	R609△	ERD2FCVG150T	1/4W	15	R856	ERJ6GEYJ103V	1/10W	10K
R322, 323	ERJ6GEYJ183V	1/10W 18K	R610	ERDS2TJ472	1/4W	4. 7K	R861	ERDS2TJ223	1/4W	22K
R324, 325	ERJ6GEYJ100	1/10W 10	R611	ERDS2TJ104	1/4W	100K	R862	ERDS2TJ102	1/4W	1K
R326	ERJ6GEYJ122V	1/10W 1.2K	R612∕A	ERD2FCVG150T	1/4W	15	R863	ERDS2TJ223	1/4W	22K
R327	ERJ6GEYJ102V	1/10W 1K	R613	ERDS2TJ101	1/4W	100	R864	ERDS2TJ102	1/4W	1K
R328	 	1/10W 560	R614, 615	ERDS2TJ471	1/4W	470	R865A	ERDS2TJ470	1/4W	47
R329		1/10W 39K	R616	ERDS2TJ101	1/4W	100	R865	ERJ6GEYJ104V	1/10W	100K
R330	ERJ6GEYJ272V	1/10W 2.7K	R617	ERDS2TJ102	1/4W	1K	R866	ERDS2TJ221	1/4W	220
R331	ERJ6GEYJ682V	1/10W 6.8K	R620	ERDS2TJ101	1/4W	100	R867	ERJ6GEYJ563V	1/10W	56K
R332	ERJ6GEYJ102V	1/10W 1K	R621	ERDS2TJ222	1/4W	2. 2K	R868	ERJ6GEYJ470V	1/10W	47
R333	ERJ6GEYJ103V	1/10W 10K	R622∕∆	ERD2FCVG150T	1/4W	15	R952	ERDS2TJ821	1/4W	820
R334-336	ERJ6GEYJ332V	1/10W 3. 3K	R623	ERDS2TJ101	1/4W	100	R953	ERDS2TJ393	1/4₩	39K
R341, 342		1/10W 15K	R625∕∆	ERD2FCVG150T	1/4W	15	R972	ERDS2TJ821	1/4W	820
R343, 344		1/10W 10K	R626	ERDS2TJ101	1/4W	100		ERDS2TJ393	1/4W	39K
		1/10W 150K		ERDS2TJ103	1/4W	10K		F100510333	1/34	JJN
		1/10W 10	R630	ERDS2TJ2R7T	1/4W	2. 7	<u> </u>		CHIP JUN	WED (C)
		1/10W 470		ERDS2TJ102	1/4W	1K			OUTL 101	aren (5)
R381		1/10W 10		ERDS2TJ102	1/4W		D 110 00	ED ICCEVODOOS	OLIV D	Theore
		-,, 10	11002	F1MO7 10101	1/411	100	RJ10-20	ERJ6GEYOROOV	CHIP .	JUMPER

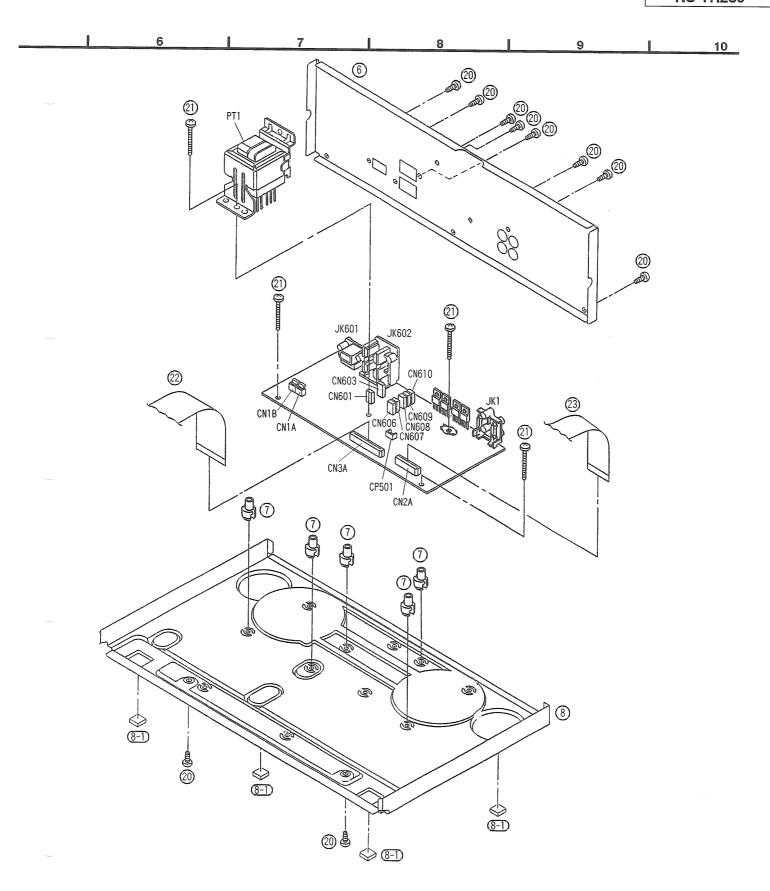
Ref. No.	Part No.	Values & Remarks	Ref. No.	Part No.	Values & Remarks			
RJ22	ERJ6GEYOROOV	CHIP JUMPER	C349, 350	ECKR2H821KB5	500V 820P			
RJ26	ERJ6GEYOROOV	CHIP JUMPER	C351, 352	ECUV1E473ZFN	25V 0. 047U			
RJ29-37	ERJ6GEYOROOV	CHIP JUMPER		ECUV1H22OKCN	50V 22P			
RJ40	ERJ6GEYOROOV	CHIP JUMPER		ECUV1H103ZFN	50V 0.01U			
				ECEA1AKS470	10V 47U			
		CAPACITORS		ECUV1E473ZFN	25V 0. 047U			***************************************
			C360, 361	ECUV1E223KBN	25V 0. 022U			Mrs v.
C1, 2	ECUV1H471KBN	50V 470P	C362	RCE1CKA100BG	16V 10U			
C3, 4	ECUV1H561KBN	50V 560P	C401, 402	ECEA1CKS100I	16V 10U			
C5, 6	ECUV1H102KBN	50V 1000P	C403, 404	ECUV1H152KBN	50V 1500P			
C7, 8	ECUVNE 104ZFN	25V 0.1U	C405, 406	ECUVNC474KBM	16V 0.47U			
C9	RCEOGKS2211G	4V 220U	C407, 408	ECUV1H152KBN	50V 1500P			
C10	RCEOGKS221IG	4V 220U	C409, 410	ECUVNC474KBM	16V 0.47U			
C13, 14	ECUV1H822KBN	50V 8200P	C403, 410	ECEA1HKS2R2I	50V 2. 2U	-		
C15, 16	ECUV1H682KBN	50V 6800P	C411, 412	ECUVNC474KBM				
C13, 10 C17, 18	ECEA1CKS100 I	16V 10U	C413	ECUVNC474RBM	16V 0. 47U 25V 0. 1U			
C17, 18	ECUVNC474KBM	16V 0. 47U	C414					
C21, 22	ECUVNC474RBM ECEA1ASN100I			ECUVI H272KBN				
C23, 24	 		C416	ECUVI H392KBN	50V 3900P			
	ECEA1CKS1001	16V 10U	C417	ECUVNE104ZFN	25V 0. 1U			
C25, 26	ECKR2H121KB5	500V 120P	C418	ECUVNC105ZFN	16V 1U			
C27, 28	ECUV1H561KBN	50V 560P	C419, 420	ECEA1CKS100I	16V 10U			
C29, 30	ECUVNE 1042FN	25V 0. 1U	C421	ECEA1HKS010	50V 1U			
C31, 32	ECEA1HKA010B	50V 1U	C422	ECEA1CKS1001	16V 10U			
C33, 34	RCE1CKA100BG	16V 10U	C423, 424	RCE1AM102BV	10V 1000U			
C37	ECBT1H150J5	50V 15P	C431	ECUV1C474ZFN	16V 0.47U			
C38	ECBT1E103ZF	25V 0.01U	C432	ECUV1H152KBN	50V 1500P			
C39	ECBT1H150J5	50V 15P	C450-452	ECUV1H101KCN	50V 100P			
C41	ECBT1E103ZF	25V 0.01U	C461	ECUVNC225ZFM	16V 2. 2U			
C44, 45	ECUV1H121KCN	50V 120P	C501	ECEA1HKA010B	50V 1U			
C46, 47	ECUV1H332KBN	50V 3300P	C502	ECEA1EKA4R7B	25V 4. 7U			
C51, 52	RCE1CKA100BG	16V 10U	C504, 505	RCE1CKA100BG	16V 10U			
C53	RCE1AKA330BG	10V 33U	C601∆	ECA1EM222B	25V 2200U			
C54	ECBT1E103ZF	25V 0. 01U	C602	ECA1EM221B	25V 220U			
C55	ECUV1H103ZFN	50V 0. 01U	C603	ECKR2H682PE	500V 6800P			
C61, 62	ECUV1H122KBN	50V 1200P	C604, 605∆	ECA1EM102B	25V 1000U			
C63, 64	ECBT1C332KR5	16V 3300P	C606∆	RCE1HM221BV	50V 220U			
C65	ECBT1H104ZF5	50V 0.1U	C607, 608	ECBT1E103ZF	25V 0.01U			
C80	ECBT1H1042F5	50V 0.1U	C609	ECEA1AKA221B	10V 220U			
C81, 82	ECUV1H102KBN	50V 1000P	C610	ECA1AM471B	10V 470U			
C164	ECBT1E103ZF	25V 0. 01U	C611, 612	ECBT1E103ZF	25V 0.01U			
C303	ECQP1153JZ	100V 0.015U	C613	ECAOJM102B	6. 3V 1000U			
C304	ECUV1H392KBN	50V 3900P	C614, 615	ECBT1E103ZF	25V 0.01U			
C305	ECUV1H222KBN	50V 2200P	C616	RCE1AKA101BG	10V 100U			
C306	ECUV1H682KBN	50V 6800P	C701	RCE1CKA100BG	16V 10U			1000
C307	ECUV1H222KBN	50V 2200P	C802	ECBT1E223ZF	25V 0. 022U	l		
C308	ECEA1CKS100I	16V 10U	C851	ECBT1E103ZF	25V 0.01U			
C309, 310	ECUV1H103ZFN	50V 0. 01U	C852	ECUV1H103ZFN	50V 0.01U	l 		
C311, 312	ECUVNE104ZFN	25V 0.1U		333.111308111		 		
C341, 342	ECUV1H122KBN	50V 1200P	 			 		
C343, 344	ECUV1H103KBN	50V 0.01U	 			 		
C345, 346	ECUV1E473KBN	25V 0. 047U		 		 		
C347, 348	ECUV1H121KCN					II		
0347, 340	Tron Till STUCK	50V 120P	JL			JL	<u> </u>	

Ref. No.	Part No.	Part Name & Description	Remarks	Ref. No.	Part No.	Part Name & Description	Remarks
		DECK 1				DECK 2	
		MECHANISM PARTS (P. B)				MECHANISM PARTS(R/P)	
.02	RED0038	HEAD BLOCK(P. B)		202	RED0037	HEAD BLOCK (R/P)	
.02-1	RHD17015	SCREW		202-1			
103	RDG0300	REEL TABLE ASS' Y			RHD17015	SCREW	···
104	RDG0300	GEAR		203	RDG0300	REEL TABLE ASS' Y	
105	ļ			204	RDG0301	GEAR	
	RDK0026	GEAR		205	RDK0026	GEAR	
107	RDV0033-1	BELT1		207	RDV0033-1	BELT1	
108	RDV0034	BELT2		208	RDV0034	BELT2	
110	RUW147ZA	SPRING		210	RMB0399	SPRING	
111	RMB0400	SPRING		211	RMB0400	SPRING	
112	RMB0403	SPRING		212	RMB0403	SPRING	
113	RMB0404	SPRING		213	RMB0404	SPRING	
114	RMB0406	SPRING		214	RMB0406	SPRING	
115	RMB0408	SPRING		215	RMB0408	SPRING	
116	RML0370	LEVER		216	RML0370	LEVER	
117	RML0371	LEVER		217	RML0371	LEVER	
118	RML0372	LEVER		218	RML0372	LEVER	
119	RML0374	LEVER		219	RML0374	LEVER	
120	RMMO131	ROD		220	RMM0131	ROD	
121	RMMO133	ROD	· · · · · · · · · · · · · · · · · · ·	221	RMM0133	ROD	
122	RMQ0519	REEL CAP		222	RMQ0519	REEL CAP	
123	RMS0398-1	SHAFT					
124	RSJ0003	PLUNGER ASS' Y		223	RMS0398-1	SHAFT	
125	RUS609ZC			224	RSJ0003	PLUNGER ASS' Y	
~		SPRING		225	RUS609ZC	SPRING	·
126	RXF0049	FLYWHEEL ASS' Y		226	RXF0049	FLYWHEEL ASS' Y	1794
127	RXF0050	FLYWHEEL ASS' Y		227	RXF0050	FLYWHEEL ASS' Y	
128	RXG0040	GEAR		228	RXG0040	GEAR	
129	RMK0283	SUB CHASSIS		229	RMK0283	SUB CHASSIS	
130	RXL0124	PINCH ROLLER ASS' Y		230	RXL0124	PINCH ROLLER ASS' Y	
130-1	RMB0401	SPRING		230-1	RMB0401	SPRING	
131	RXL0125	PINCH ROLLER ASS' Y		231	RXL0125	PINCH ROLLER ASS' Y	
31-1	RMB0402	SPRING		231-1	RMB0402	SPRING	
132	RXL0126	ARM		232	RXL0126	ARM	
133	RXQ0412	CHASSIS ASS' Y		233	RXQ0412	CHASSIS ASS' Y	
33-1	RMB0405	SPRING		233-1	RMB0405	SPIRNG	
33-2	RMMO132	ROD		233-2	RMM0132	ROD	
34	REM0055	MOTOR ASS' Y		234	REM0055	MOTOR ASS' Y	
35	RHD26022	SCREW		235	RHD26022	SCREW	
36	XTW2+5L	SCREW		236	XTW2+5L	SCREW	
.37	XTW26+10S	SCREW		237		 	
.38	XYC2+JF17	SCREW			XTW26+10S	SCREW	
.40		MAIN CHASSIS ASS'Y		238	XYC2+JF17	SCREW	
41	XTBS26+8J	SCREW		240	RFKJSTR280PP	MAIN CHASSIS ASS'Y	
42	REZ0893			241	XTBS26+8J	SCREW	****
44	NE ZUOSS	WIRE ASS'Y		242	XYC26+JF6	SCREW	
				243	RMA0942	ANGLE	
							W.E
				-			
			T	-			



10




■ Mechanism Parts Location • DECK 2 (RECORD/PLAYBACK) 22 🚇 **@** @ <u>(233-1)</u>

10

■ Cabinet Parts Location

Ref. No.	Part No.	Part Name & Description	Remarks
		CABINET PARTS	
l .	RKM0260-K	CABINET	
}	RHD30035-K1	SCREW	
}	RYF0391-K	CASSETTE LID (DECK1)	
4	RYF0391B-K	CASSETTE LID(DECK2)	
	XTBS3+8JFZ1	SCREW	
	RGR0228D-B	REAR PANEL	
7	RKQ0089	P. C. B. HOLDER	
' В		BOTTOM BOARD ASS' Y	
9	RDG0357	DUMPPING GEAR	
10			
	 	FRONT PANEL ASS' Y	
0-1	RKW0443-R	TRANSPARENT PLATE	
11	RGK0802-K	ORNAMENT PLATE	
2	RGU1380-K	BUTTON	
.3	RGU1381-K	POWER	
4	RKF0479-K	CASSETTE HOLDER	
5	RMA0766	MECHANISM ANGLE	
6	RMB0477	OPEN SPRING	
17	RUS757ZA	SPRING	
.8	XTBS26+8J	SCREW	
.9	XTB3+10JFZ	SCREW	
20	XTBS3+8JFZ1	SCREW	
21	XTB3+20JFZ	SCREW	
22	REZ0787	FLAT CABLE (34P)	
23	REZ0788	FLAT CABLE (23P)	
24	REZ0823	FLAT CABLE (3P)	
25	RMN0195	STOPPER	
26	RMN0259	HOLDER	
	141110233	INCOLL	
		DACKING MATERIAL	
	ļ	PACKING MATERIAL	
D1	DDCCCAA	DAGUING GAGS	
P1	RPG2849	PACKING CASE	
P2	RPN0664-1	CUSHION	
P3	SPP740	PROTECTION COVER	
	-		
	<u> </u>		
	+		
	1		
L			
			<u> </u>