$R B /$ Solid State DATABOOK Series

Application Notes

RADIO EQUIPEMENTS-ANTARES
9, Rue Ernest Cognacq - BP 5
92301 - LEVALLOIS PERRET
Tel. 737.54.80 270.87.01

RB/ 1 Solid State DATABOOK Series

Linear Integrated Circuits and MOS Devices

This DATABOOK contains application notes on linear integrated circuits and MOS field-effect (MOS/FET) devices presently available from RCA Solid State Division as standard products. Data sheets on both linear IC's and MOS/FET devices are contained in a separate DATABOOK, SSD-201A. For ease of reference, the application notes in this book are grouped in the same categories used in the SSD-201A: (a) IC receiver circuits; (b) IC arrays; (c) IC amplifier, control, and special-function circuits; (d) IC operational amplifiers; (e) MOS/FET devices.

A feature of this DATABOOK is the complete Guide to RCA Solid State Devices at the back of the book. This section includes a developmental-to-commercial-number cross-reference index, a comprehensive subject index, and a complete index ${ }^{+} \mathrm{n}$ all standard devices in the solid-state product line: linear 11. + +ed circuits, MOS field-effect (MOS/FET) devices, COS/MIUS integrated circuits, power transistors, power hybrid circuits, rf power devices thyristors, rectifiers, and diacs. All listings include references to volume number and page number in the 1973 DATABOOK series.

Trade Mark (s) Registered ${ }^{(8)}$
Marca(s) Registrada(s)

Copyright 1972 by RCA Corporation
(All rights reserved under Pan-American Copyright Convention)

Printed in Western Germany / 12-72

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

RCA Solid State |Box 3200 |Somerville, N. J., U.S.A. 08876
RCA Limited |Sunbury-on-Thames |Middlesex TW16 7HW, England
RCA s.a. 14400 Herstal |Liege, Belgium

RCA Solid State Total Data Service System

The RCA Solid State DATABOOKS are supplemented throughout the year by a comprehensive data service system that keeps you aware of all new device announcements and lets you obtain as much or as little product information as you need - when you need it.

New solid-state devices and related publications announced during the year are described in a monthly newsletter entitled "What's New in Solid State". If you obtained your DATABOOK(s) directly from RCA, your name is already on the mailing list for this newsletter. If you obtained your book(s) from a source other than RCA and wish to receive the newsletter, please fill out the form on page 4, detach it, and mail it to RCA.

Each newsletter issue contains a "bingo"-type fast-response form for your use in requesting information on new devices of interest to you. If you wish to receive all new product information published throughout the year, you may subscribe to a mailing service which will bring you all new data sheets, application notes, and product guides in a package every other month. You can also obtain a binder for easy filing of all your supplementary material. Provisions for obtaining information on the update mailing service and the binder are included in the order form on page 4.

Because we are interested in your reaction to this approach to data service, we invite you to add your comments to the form when you return it, or to send your remarks to one of the addresses listed at the top of the form. We solicit your constructive criticism to help us improve our service to you.

Order Form for "What's New in Solid State"
and for further information on Update Mailings and Binders

Please fill out just one copy of this form, and mail it to:
(a) from U.S.A. and Canada:

RCA Solid State Division
Box 3200
Somerville, N. J., U.S.A. 08876
(b) from Latin America and Far East:

RCA Solid State
International Sales
Somerville, N. J., U.S.A. 08876
(c) from United Kingdom, Europe, Middle East, and Africa:

```
RCA Limited RCA s.a.
Sunbury-on-Thames or 4400 Herstal
Middlesex TW16 7HW, England Liege, Belgium
```Please add my name to the mailing list for "What's New in Solid State"Please send me details on obtaining update mailings for my DATABOOKS and a binder for filing of supplementary material.

\begin{tabular}{|c|c|}
\hline Function: (Check One) & Activity: (Check One) \\
\hline A \(口\) Executive/Administration & A \(\square\) Broadcast \\
\hline B \(\square\) Purchasing/Procurement & B - Communication \\
\hline \(C \square\) Research/Development & C - Instrumentation/Control \\
\hline D \(\square\) Design Engineer & D - Computer/Data Processing \\
\hline E Application/Components & E C Computer, Peripheral \\
\hline Engineer & F \(\square\) Automotive \\
\hline F ロ Production/Manufacturing & G Industrial \\
\hline G I Documentation/Library & 1 M Research \\
\hline Ho Reliability/QA & J Transportation \\
\hline \(1 \square\) Education/Training & K C Consumer Electron \\
\hline \(J\) ㅁ Program/Project Management & L Consumer, Applianc \\
\hline \(K \square\) Marketing & \(\mathrm{M} \square\) Space \\
\hline & \begin{tabular}{l}
M 1 Space \\
\(N\) O Ordnance
\end{tabular} \\
\hline & O - Avionics \\
\hline & \(P\) - Electronic Warfare \\
\hline
\end{tabular}
Product Interest:
(Indicate order of interest if
more than one is marked)
A \(\square\) Linear IC's
B \(\square\) Digital IC's, COS/MOS
C \(\square\) Digital IC's, Bipolar
D \(\square\) Thyristors/Rectifiers
E \(\square\) Liquid Crystals
F \(\square\) Semiconductor Diodes
G \(\square\) RF Power Semiconductors
H \(\square\) MOSFETS
I \(\square\) Power Transistors
J Power Hybrid Circuits

\section*{Table of Contents}
Page
Index to Application Notes on Linear IC's and MOS/FET Devices 6
Operating Considerations for RCA Solid-State Devices 8
Application Notes on IC Receiver Circuits 13
Application Notes on IC Arrays 67
Application Notes on IC Amplifier, Control, and Special-Function Circuits 87
Application Notes on IC Operational Amplifiers 261
Application Notes on MOS/FET Devices 335
Guide to RCA Solid State Devices Developmental-to-Commercial-Number Cross Reference 378
Military (JAN and JAN-TX) Types 384
Subject Index 385
Index to Devices 399
Form No.
Title Page No.
ICE-402 "Operating Considerations for RCA Solid-State
Devices" 8
Linear IC's
ICAN-4072 "Applications of the RCA-CA3048 Integrated-Circuit Amplifier Array" 68
ICAN-5015 "Application of the RCA-CA3008 and CA3010 Integrated- Circuit Operational Amplifiers" 262
ICAN-5022 "Application of the RCA-CA3004, CA3005, and CA3006 Integrated-Circuit RF Amplifiers" 88
ICAN-5025 "Application of RCA Integrated Circuits CD2150, CD2151, and CD2152 ECCSL Logic Gates" 114
ICAN-5030 "Application of the RCA-CA3000 Integrated-Circuit DC Amplifıer' 130
ICAN-5036 IF Amplifier" 141
ICAN-5037 "Application of the RCA-CA3007 Integrated-Circuit Audio Amplifier" 150
"Application of the RCA-CA3001 Integrated-Circuit Video Amplifier' 153
ICAN-5038
"Application of the RCA-CA 3015 and CA3016 Integrated- Circuit Operational Amplifiers" 277
ICAN-5213
14
ICAN-5269 "Integrated Circuits for FM Broadcast Receivers"
ICAN-5290
283
283
"Integrated-Circuit Operational Amplifiers"
"Integrated-Circuit Operational Amplifiers"
76
"Application of the RCA-CA3018 Integrated-Circuit Transistor Array"
ICAN-5299 "Application of the RCA-CA3019 Integrated-Circuit Diode Array' 81
ICAN-5337 Integrated-Circuit RF Amplifiers in the HF and VHF Ranges" 163
ICAN-5338 "Application of the RCA-CA3021, CA3022, and CA3023 Integrated-Circuit Wideband Amplifiers' 173
ICAN-5380 'Integrated-Circuit Frequency-Modulation IF Amplifiers" 21
ICAN-5641 "Application of RCA-CA3033 and CA3033A High-Perfor- mance Integrated-Circuit Operational Amplifiers". 303
ICAN-5765 "'Power-Supply Considerations for CA3041 and CA3042 Integrated Circuits" 28
ICAN-5766 "Application of the RCA-CA3020 and CA3020A Integrated- Circuit Multi-Purpose Wide-Band Power Amplifiers'' 187
ICAN-5831 "Application of the RCA-CA3044 and CA3044V1 Inte- grated Circuits in Automatic-Fine-Tuning Systems' 33
ICAN-5841 "Feedback-Type Volume-Control Circuits for RCA-CA3041 and CA3042 Integrated Circuits" 38
ICAN-5977 "Principal Features and Applications of the RCA- CA3040 Integrated-Circuit Wideband Amplifier" 195
ICAN-6022 "An IC for AM Radio Applications" 42
ICAN-6048 "Some Applications of a Programmable Power-Switch/ Amplifier IC' 206
ICAN-6080 "Digital-to-Analog Conversion
Using the RCA-CD4007A COS/MOS IC' 218
ICAN-6158 "Application of the RCA-CA3058 and RCA-CA3059 Zero- Voltage Switches in Thyristor Circuits' 224
ICAN-6268 "Applications and Extended Operating Conditions for the RCA-CA3059 IC Zero-Voltage Switch" 236
ICAN-6294 "Features and Applications of RCA-CD2500E-Series MSI BCD-to-7-Segment Decoder-Drivers" 244
ICAN-6538 "Applications of the RCA-CA3062 IC Photo-Detector and Power Amplifier in Switching Circuits' 255
ICAN-6544 "A Single IC for the Complete PIX-IF-System in TV Receivers' \({ }^{\prime \prime}\) 46

\section*{Index to Application Notes on Linear IC's and MOS/FET Devices (cont'd)}
Form No. Title Page No.
Linear IC's
ICAN-6668 "Applications of the CA3080 and CA3080A High- Performance Operational Transconductance Amplifiers' 311
ICAN-6724 "A Flexible Integrated-Circuit Color Demodulator for Color Television" 58
ICAIN-6732 "Measurement of Burst ("Popcorn'") Noise in Linear Integrated Circuits" 327
MOS/FET Devices
AN-3193 "Application Considerations for the RCA-3N128 VHF MOS Field-Effect Transistor" 336
AN-3341 "VHF Mixer Design Using the RCA-3N128 MOS Transistor" 344
Transistors" 347
AN-3453 "An FM Tuner Using an RCA-40468 MOS-Transistor RF Amplifier" 354
AN-3535 "An FM Tuner Using Single-Gate MOS Field-Effect
Transistors as RF Amplifier and Mixer" 360
AN-4018 "Design of Gate-Protected MOS Field-Effect Transistors" 366
AN-4431 "RF Applications of the Dual-Gate MOS FET up to \(500 \mathrm{MHz}^{\prime \prime}\) 371

\section*{Operating Considerations for RCA Solid State Devices}

Solid state devices are being designed into an increasing variety of electronic equipment because of their high standards of reliability and performance. However, it is essential that equipment designers be mindful of good engineering practices in the use of these devices to achieve the desired performance.

This Note summarizes important operating recommendations and precautions which should be followed in the interest of maintaining the high standards of performance of solid state devices.

The ratings included in RCA Solid State Devices data bulletins are based on the Absolute Maximum Rating System, which is defined by the following Industry Standard (JEDEC) statement:

Absolute-Maximum Ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

It is recommended that equipment manufacturers consult RCA whenever device applications involve unusual electrical, mechanical or environmental operating conditions.

\section*{GENERAL CONSIDERATIONS}

The design flexibility provided by these devices makes possible their use in a broad range of applications and under many different operating conditions. When incorporating these devices in equipment, therefore, designers should anticipate the rare possibility of device failure and make certain that no safety hazard would result from such an occurrence.

The small size of most solid state products provides obvious advantages to the designers of electronic equipment. However, it should be recognized that these compact devices
usually provide only relatively small insulation area between adjacent leads and the metal envelope. When these devices are used in moist or contaminated atmospheres, therefore, supplemental protection must be provided to prevent the development of electrical conductive paths across the relatively small insulating surfaces. For specific information on voltage creepage, the user should consult references such as the JEDEC Standard No. 7 "Suggested Standard on Thyristors," and JEDEC Standard RS282 "Standards for Silicon Rectifier Diodes and Stacks".

The metal shells of some solid state devices operate at the collector voltage and for some rectifiers and thyristors at the anode voltage. Therefore, consideration should be given to the possibility of shock hazard if the shells are to operate at voltages appreciably above or below grcund potential. In general, in any application in which devices are operated at voltages which may be dangerous to personnel, suitable precautionary measures should be taken to prevent direct contact with these devices.

Devices should not be connected into or disconnected from circuits with the power on because high transient voltages may cause permanent damage to the devices.

\section*{TRANSISTORS WITH FLEXIBLE LEADS}

Flexible leads are usually soldered to the circuit elements. It is desirable in all soldering operations to provide some slack or an expansion elbow in each lead, to prevent excessive tension on the leads. It is important during the soldering operation to avoid excessive heat in order to prevent possible damage to the devices. Some of the heat can be absorbed if the flexible lead of the device is grasped between the case and the soldering point with a pair of pliers.

\section*{TRANSISTORS WITH MOUNTING FLANGES}

The mounting flanges of JEDEC-type packages such as the TO-3 or TO-66 often serve as the collector or anode terminal. In such cases, it is essential that the mounting flange be securely fastened to the heat sink, which may be the equipment chassis. UNDER NO CIRCUMSTANCES, HOWEVER, SHOULD THE MOUNTING FLANGE BE SOLDERED DIRECTLY TO THE HEAT SINK OR CHASSIS BECAUSE THE HEAT OF THE SOLDERING OPERATION COULD PERMANENTLY DAMAGE THE DEVICE.

Such devices can be installed in commercially available sockets. Electrical connections may also be made by soldering directly to the terminal pins. Such connections may
be soldered to the pins close to the pin seals provided care is taken to conduct excessive heat away from the seals; otherwise the heat of the soldering operation could crack the pin seals and damage the device.

During operation, the mounting-flange temperature is higher than the ambient temperature by an amount which depends on the heat sink used. The heat sink must have sufficient thermal capacity to assure that the heat dissipated in the heat sink itself does not raise the device mountingflange temperature above the rated value. The heat sink or chassis may be connected to either the positive or negative supply.

In many applications the chassis is connected to the voltage-supply terminal. If the recommended mounting hardware shown in the data bulletin for the specific solid-state device is not available, it is necessary to use either an anodized aluminum insulator having high thermal conductivity or a mica insulator between the mounting-flange and the chassis. If an insulating aluminum washer is required, it should be drilled or punched to provide the two mounting holes for the terminal pins. The burrs should then be removed from the washer and the washer anodized. To insure that the anodized insulating layer is not destroyed during mounting, it is necessary to remove the burrs from the holes in the chassis.

It is also important that an insulating bushing, such as glass-filled nylon, be used between each mounting bolt and the chassis to prevent a short circuit. However, the insulating bushing should not exhibit shrinkage or softening under the operating temperatures encountered. Otherwise the thermal resistance at the interface between transistor and heat sink may increase as a result of decreasing pressure.

\section*{PLASTIC POWER TRANSISTORS AND THYRISTORS}

RCA power transistors and thyristors (SCR's and triacs) in molded-silicone-plastic packages are available in a wide range of power-dissipation ratings and a variety of package configurations. The following paragraphs provide guidelines for handling and mounting of these plastic-package devices, recommend forming of leads to meet specific mounting requirements, and describe various mounting arrangements, thermal considerations, and cleaning methods. This information is intended to augment the data on electrical characteristics, safe operating area, and performance capabilities in the technical bulletin for each type of plastic-package transistor or thyristor.

\section*{Lead-Forming Techniques}

The leads of the RCA VERSAWATT in-line plastic packages can be formed to a custom shape, provided they are not indiscriminately twisted or bent. Although these leads can be formed, they are not flexible in the general sense, nor are they sufficiently rigid for unrestrained wire wrapping

Before an attempt is made to form the leads of an in-line package to meet the requirements of a specific application, the desired lead configuration should be determined, and a lead-bending fixture should be designed and constructed. The use of a properly designed fixture for this operation
eliminates the need for repeated lead bending. When the use of a special bending fixture is not practical, a pair of long-nosed pliers may be used. The pliers should hold the lead firmly between the bending point and the case, but should not touch the case.

When the leads of an in-line plastic package are to be formed, whether by use of long-nosed pliers or a special bending fixture, the following precautions must be observed to avoid internal damage to the device:
1. Restrain the lead between the bending point and the plastic case to prevent relative movement between the lead and the case.
2. When the bend is made in the plane of the lead (spreading), bend only the narrow part of the lead.
3. When the bend is made in the plane perpendicular to that of the leads, make the bend at least \(1 / 8\) inch from the plastic case.
4. Do not use a lead-bend radius of less than \(1 / 16\) inch.
5. Avoid repeated bending of leads.

The leads of the TO-220AB VERSAWATT in-line package are not designed to withstand excessive axial pull. Force in this direction greater than 4 pounds may result in permanent damage to the device. If the mounting arrangement tends to impose axial stress on the leads, some method of strain relief should be devised.

Wire wrapping of the leads is permissible, provided that the lead is restrained between the plastic case and the point of the wrapping. Soldering to the leads is also allowed. The maximum soldering temperature, however, must not exceed \(275^{\circ} \mathrm{C}\) and must be applied for not more than 5 seconds at a distance not less than \(1 / 8\) inch from the plastic case. When wires are used for connections, care should be exercised to assure that movement of the wire does not cause movement of the lead at the lead-to-plastic junctions.

The leads of RCA molded-plastic high-power packages are not designed to be reshaped. However, simple bending of the leads is permitted to change them from a standard vertical to a standard horizontal configuration, or conversely. Bending of the leads in this manner is restricted to three 90 -degree bends; repeated bendings should be avoided.

\section*{Mounting}

Recommended mounting arrangements and suggested hardware for the VERSAWATT transistors are given in the data bulletins for specific devices and in RCA Application Note AN-4124. When the transistor is fastened to a heat sink, a rectangular washer (RCA Part No. NR231A) is recommended to minimize distortion of the mounting flange. Excessive distortion of the flange could cause damage to the transistor. The washer is particularly important when the size of the mounting hole exceeds 0.140 inch (6-32 clearance). Larger holes are needed to accommodate insulating bushings; however, the holes should not be larger than necessary to provide hardware clearance and, in any case, should not exceed a diameter of 0.250 inch.

Flange distortion is also possible if excessive torque is used during mounting. A maximum torque of 8 inch-pounds
is specified. Care should be exercised to assure that the tool used to drive the mounting screw never comes in contact with the plastic body during the driving operation. Such contact can result in damage to the plastic body and internal device connections. An excellent method of avoiding this problem is to use a spacer or combination spacer-isolating bushing which raises the screw head or nut above the top surface of the plastic body. The material used for such a spacer or spacer-isolating bushing should, of course, be carefully selected to avoid "cold flow" and consequent reduction in mounting force. Suggested materials for these bushings are diallphtalate, fiberglass-filled nylon, or fiber-glass-filled polycarbonate. Unfilled nylon should be avoided.

Modification of the flange can also result in flange distortion and should not be attempted. The transistor should not be soldered to the heat sink by use of lead-tin solder because the heat required with this type of solder will cause the junction temperature of the transistor to become excessively high.

The TO-220AA plastic transistor can be mounted in commercially available TO-66 sockets, such as UID Electronics Corp. Socket No. PTS-4 or equivalent. For testing purposes, the TO-220AB in-line package can be mounted in a Jetron Socket No. CD74-104 or equivalent. Regardless of the mounting method, the following precautions should be taken:
1. Use appropriate hardware.
2. Always fasten the transistor to the heat sink before the leads are soldered to fixed terminals.
3. Never allow the mounting tool to come in contact with the plastic case.
4. Never exceed a torque of 8 inch-pounds.
5. Avoid oversize mounting holes.
6. Provide strain relief if there is any probability that axial stress will be applied to the leads.
7. Use insulating bushings to prevent hot-creep problems. Such bushings should be made of diallphthalate, fiber-glass-filled nylon, or fiberglass-filled polycarbonate.

The maximum allowable power dissipation in a solid state device is limited by the junction temperature. An important factor in assuring that the junction temperature remains below the specified maximum value is the ability of the associated thermal circuit to conduct heat away from the device.

When a solid state device is operated in free air, without a heat sink, the steady-state thermal circuit is defined by the junction-to-free-air thermal resistance given in the published data for the device. Thermal considerations require that a free flow of air around the device is always present and that the power dissipation be maintained below the level which would cause the junction temperature to rise above the maximum rating. However, when the device is mounted on a heat sink, care must be taken to assure that all portions of the thermal circuit are considered.

To assure efficient heat transfer from case to heat sink when mounting RCA molded-plastic solid state power devices, the following special precautions should be observed:
1. Mounting torque should be between 4 and 8 inchpounds.
2. The mounting holes should be kept as small as possible.
3. Holes should be drilled or punched clean with no burrs or ridges, and chamfered to a maximum radius of 0.010 inch.
4. The mounting surface should be flat within 0.002 inch/inch.
5. Thermal grease (Dow Corning 340 or equivalent) should always be used on both sides of the insulating washer if one is employed.
6. Thin insulating washers should be used. (Thickness of factory-supplied mica washers range from 2 to 4 mils).
7. A lock washer or torque washer, made of material having sufficient creep strength, should be used to prevent degradation of heat sink efficiency during life.

A wide variety of solvents is available for degreasing and flux removal. The usual practice is to submerge components in a solvent bath for a specified time. However, from a reliability stand point it is extremely important that the solvent, together with other chemicals in the solder-cleaning system (such as flux and solder covers), do not adversely affect the life of the component. This consideration applies to all non-hermetic and molded-plastic components.

It is, of course, impractical to evaluate the effect on long-term transistor life of all cleaning solvents, which are marketed with numerous additives under a variety of brand names. These solvents can, however, be classified with respect to their component parts, as either acceptable or unacceptable. Chlorinated solvents tend to dissolve the outer package and, therefore, make operation in a humid atmosphere unreliable. Gasoline and other hydrocarbons cause the inner encapsulant to swell and damage the transistor. Alcohol and unchlorinated freons are acceptable solvents. Examples of such solvents are:

\section*{1. Freon TE}
2. Freon TE-35
3. Freon TP-35 (Freon PC)
4. Alcohol (isopropanol, methanol, and special denatured alcohols, such as SDA1, SDA30, SDA34, and SDA44)

Care must also be used in the selection of fluxes for lead soldering. Rosin or activated rosin fluxes are recommended, while organic or acid fluxes are not. Examples of acceptable fluxes are:
1. Alpha Reliaros No. 320-33
2. Alpha Reliaros No. 346
3. Alpha Reliaros No. 711
4. Alpha Reliafoam No. 807
5. Alpha Reliafoam No. 809
6. Alpha Reliafoam No. 811-13
7. Alpha Reliafoam No. 815-35
8. Kester No. 44

If the completed assembly is to be encapsulated, the effect on the molded-plastic transistor must be studied from both a chemical and a physical standpoint.

\section*{RECT\|FIERS AND THYRISTORS}

A surge-limiting impedance should always be used in series with silicon rectifiers and thyristors. The impedance value must be sufficient to limit the surge current to the value specified under the maximum ratings. This impedance may be provided by the power transformer winding, or by an external resistor or choke.

A very efficient method for mounting thyristors utilizing packages such as the JEDEC TO-5 and "modified TO-5" is to provide intimate contact between the heat sink and at least one half of the base of the device opposite the leads. These packages can be mounted to the heat sink mechanically with glue or an epoxy adhesive, or by soldering. Soldering to the heat sink is preferable because it is the most efficient method.

The use of a "self-jigging" arrangement and a solder preform is recommended. Such an arrangement is illustrated in RCA Publication MHI-300B, "Mounting Hardware Supplied with RCA Semiconductor Devices". If each unit is soldered individually, the heat source should be held on the heat sink and the solder on the unit. Heat should be applied only long enough to permit solder to flow freely. For more detailed thyristor mounting considerations, refer to Application Note AN382:2, "Thermal Considerations in Mounting of RCA Thyristors".

\section*{MOS FIELD-EFFECT TRANSISTORS}

Insulated-Gate Metal Oxide-Semiconductor Field-Effect Transistors (MOS FETs), like bipolar high-frequency transistors, are susceptible to gate insulation damage by the electrostatic discharge of energy through the devices. Electrostatic discharges can occur in an MOS FET if a type with an unprotected gate is picked up and the static charge, built in the handler's body capacitance, is discharged through the device. With proper handling and applications procedures, however, MOS transistors are currently being extensively used in production by numerous equipment manufacturers in military, industrial, and consumer applications, with virtually no problems of damage due to electrostatic discharge.

In some MOS FETs, diodes are electrically connected between each insulated gate and the transistor's source. These diodes offer protection against static discharge and in-circuit transients without the need for external shorting mechanisms. MOS FETs which do not include gateprotection diodes can be handled safely if the following basic precautions are taken:
1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs attached to the device by the vendor, or by the insertion into conductive material such as "ECCOSORB* LD26" or equivalent.
(NOTE: Polystyrene insulating "SNOW" is not sufficiently conductive and should not be used.)
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means, for example, with a metallic wristband.

\footnotetext{
*Trade Mark: Emerson and Cumming, Inc.
}
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.

\section*{INTEGRATED CIRCUITS}

In any method of mounting integrated circuits which involves bending or forming of the device leads, it is extremely important that the lead be supported and clamped between the bend and the package seal, and that bending be done with care to avoid damage to lead plating. In no case should the radius of the bend be less than the diameter of the lead, or in the case of rectangular leads, such as those used in RCA 14-lead and 16-lead flat-packages, less than the lead thickness. It is also extremely important that the ends of the bent leads be straight to assure proper insertion through the holes in the printed-circuit board.

\section*{COS/MOS (Complementary-Symmetry MOS) \\ Integrated Circuits}

Although protection against electrostatic effects is provided by built-in circuitry, the following precautions should be taken in handling these circuits:
1. Soldering-iron tips and test equipment should be grounded.
2. Devices should not be inserted in non-conductive containers such as conventional plastic snow or trays. A conductive material such as "ECCOSORB LD26" or equivalent should be used.
Low-source-impedance pulse generators connected to the inputs of these devices must be disconnected before the dc power supply is turned off. All unused input leads must be connected to either \(\mathrm{V}_{\mathrm{SS}}\) or \(\mathrm{V}_{\mathrm{DD}}\), whichever is appropriate for the logic circuit operation desired.

\section*{SOLID STATE CHIPS}

Solid state chips, unlike packaged devices, are nonhermetic devices, normally fragile and small in physical size, and therefore, require special handling considerations as follows:
1. Chips must be stored under proper conditions to insure that they are not subjected to a moist and/or contaminated atmosphere that could alter their electrical, physical, or mechanical characteristics. After the shipping container is opened, the chip must be stored under the following conditions:
A. Storage temperature, \(40^{\circ} \mathrm{C}\) max.
B. Relative humidity, \(50 \%\) max.
C. Clean, dust-free environment.
2. The user must exercise proper care when handling chips to prevent even the slightest physical damage to the chip.
3. During mounting and lead bonding of chips the user must use proper assembly techniques to obtain proper electrical, thermal, and mechanical performance.
4. After the chip has been mounted and bonded, any necessary procedure must be followed by the user to insure that these non-hermetic chips are not subjected to
moist or contaminated atmosphere which might cause the development of electrical conductive paths across the relatively small insulating surfaces. In addition, proper consideration must be given to the protection of these devices from other harmful environments which could conceivably adversely affect their proper performance.

\section*{SOLID STATE LASERS AND EMITTING DIODES}

Optoelectronic devices should employ the same mounting and heat-sink procedures utilized with other solid state devices. The temperature ratings established for storing, mounting, and operating these devices must not be exceeded to avoid damaging the emitters. Because the extremely small size and high driving-current requirements of some of these devices preclude the use of polarity marks on the housing and package configurations, care must be taken to insure that voltage is always applied in the proper direction. It is important, therefore, to refer to the data bulletin for the proper polarity before applying voltage to the device. Pulse driving circuitry should be designed to prevent transients (positive or negative) or momentary surges from exceeding drive conditions. The following suggestions are offered:
1. High-speed clipping diodes should be placed at terminals to bypass negative transients.
2. High-speed, sense-and-clamp circuitry should be used to prevent overdrive in peak or average current by clamping or disconnect techniques. For short pulses, ordinary thermal fuses should not be used because they do not provide adequate device protection.

The characteristics of solid state emitters vary substantially with changes in ambient temperature. Threshold, the point at which lasing starts, is highly dependent on temperature and requires compensation of drive current in applications where operation over a wide temperature range is a design requirement. A room-temperature laser can be damaged if a constant drive current is maintained while the ambient temperature is reduced to cryogenic levels. Published data bulletins for individual devices specify safe levels of operation.

In most cases, the voltage drop across a solid state emitter is of comparatively low amplitude; however, the required drive current may be many amperes. As in the case
of other high-operating-current devices, therefore, clean and low-impedance contacts are required in all applications.

High voltage may be present in pulse-driven circuits utilizing these devices. Therefore, consideration should be given to the possibility of shock hazard which may result from contact with these high voltages. In general, where devices are operating at potentials which may be dangerous to personnel, suitable precautionary measures should be taken to prevent direct contact with these devices.

\section*{Radiation Safety Considerations}

Injection laser diodes emit electromagnetic radiation at wavelengths which may be invisible to the human eye. Suitable precautions must be taken to avoid possible damage to the eye from overexposure to this radiant energy. Precautionary measures include the following:
1. In Systems with No External Lens - Avoid viewing the laser source at close range. Since the emitted beam is not collimated, increasing the distance to the laser source greatly reduces the risk of overexposure.
2. In Systems Utilizing External Optics - Avoid viewing the emitter directly along the optical axis of the radiated beam.
3. Reflections From Surfaces - Minimize unwanted specular reflections in the system.

\section*{ADDITIONAL DATA}

Additional information on handling, mounting, and operating RCA Solid State Devices is given in the following publications which are available on request from RCA/ Commercial Engineering, Harrison, N.J. 07029.
MHI-300B "RCA Mounting Hardware Supplied with RCA Semiconductor Devices"

1CE-338 "RCA Integrated Circuits Mounting and Connection Techniques"

AN-3822 "Thermal Considerations in Mounting of RCA Thyristors"

AN-4124 "Handling and Mounting of RCA Molded-Plastic Transistors and Thyristors"

\section*{Application Notes on IC Receiver Circuits}

\title{
Integrated Circuits For FM Broadcast Receivers
}

\author{
by
}
R.L. Sanquini

Silicon monolithic integrated circuits have certain design features which make them more attractive than discrete-component circuits for consumer electronic applications. These features include small size, light weight, high reliability, and more potential circuit functions per dollar of cost. Until recently, the major limitation to the extensive use of integrated circuits in commercial FM (88-to-108-MHz) broadcast receivers has been the relatively high cost of such circuits when they were designed to perform the same functions as their discrete-circuit counterparts. This limitation has now been removed by the introduction of high-reliability, lowcost, multifunction integrated circuits
such as the RCA CA3005, CA3011, CA3012, CA3013, and CA3014. With these circuits, high-performance inexpensive FM receivers can be designed to meet the rigorous standards set by high-quality commercial FM receivers using vacuum tubes and transistors.

This note describes several approaches to \(F M\) receiver design using silicon monolithic integrated circuits. The tuner section is described first, and then the if-amplifier and detector sections. Performance characteristics are described where applicable. The FM receivers discussed are designed for use from a +9 -volt supply. The key to design simplicity is the use of the RCA multifunction integrated circuits

CA3005, CA3012, and CA3014. The CA3005 may be used as a cascode rf amplifier, a differential rf amplifier, a mixeroscillator, and an if amplifier; the CA3012 and CA3014 perform if amplification, limiting, detection, and preamplification.

\section*{FM Tuner}

The CA3005 is the basic building block for the three front-end approaches discussed below. A schematic diagram of the CA3005 is shown in Fig. 1. Fig. 2

Note: Connect terminal 9 to most positive dc supply voltage.

Fig. 1 - Schematic diagram of RCA CA3005 integrated-circuit rf amplifier.
shows a single-chip front end that uses one CA3005 and a two-gang capacitor tuning system. The CA3005 performs the functions of rf amplifier, oscillator, and mixer in a unique manner.

The circuit operation may best be explained by reference to Figs. 1 and 2. The first function of the current-sink
transistor \(Q_{3}\) in Fig.l is to supply the emitter currents for the differentialamplifier transistors \(Q_{1}\) and \(Q_{2}\). Positive feedback from the collector of \(Q_{2}\) (terminal 10) to the base of \(Q_{1}\) (terminal 1) through the 5-picofarad capacitor shown in Fig. 2 establishes the oscillator function; the frequency of oscillation is determined by the tuned circuit \(L_{2}\) and \(C_{2}\). Because the output impedance at the collector of \(Q_{3}\) is high compared to the input impedance at the emitter of \(Q_{1}\) and \(Q_{2}, Q_{3}\) is isolated from \(Q_{1}\) and \(Q_{2}\) and receives very little oscillator signal. Therf input signal

\(\mathrm{L}_{1}-4\) turns of No. 22 wire, centertapped; 1/4" O.D. coil form, "E" mat'1 slug
\(L_{2}-6\) turns No. 32 wire on toroid core; Radio Industries Inc., 1/4" 0.D., No. 8 mat'1

T \({ }_{1}\) - TRW No. 21629 , or equiv.

Fig. 2 - Single-chip front end using the CA3005. Curves show oscillator stability with time and supply voltage.
is. applied to the base of \(Q_{3}\) (terminal 3), amplified, and injected into the emitter of \(Q_{1}\) and \(Q_{2}\) to mix with the oscillator signal. The \(10.7-\mathrm{MHz}\) intermediate frequency is obtained from the collector of \(Q_{1}\) (terminal 11).

The CA3005 draws a total current of 4.5 milliamperes from the +9 -volt supply. The front end shown in Fig. 2 has a power gain of 15 dB and a sensitivity of 10 microvolts for 30 dB of quieting; it can handle a maximum input signal of 7 millivolts. Automatic frequency control can be applied to the oscillator in a conventional manner by connection of a voltage-dependent capacitor (diode) to the oscillator tuned circuit \(L_{2}\) and \(C_{2}\). Curves of oscil-
lator stability as a function of time and supply voltage are also shown in Fig. 2.

The approach to the front end shown in Fig. 2, although economical, results in only adequate performance. Improved performance can be obtained by addition of an rf amplifier to the mixeroscillator circuit, as shown in Fig. 3. In this figure, a CA3005 used as an rf amplifier and a three-gang capacitor tuning system are added to the basic single-chip circuit to provide higher power gain, lower noise figure, and improved selectivity. The CA 3005 is connected as a cascode amplifier in Fig. 3(a) and in an emitter-coupled configuration in Fig. 3(b). Both configurations require no neutralization.

\(L_{1}-4\) turns No. 22 wire; center- tapped; \(1 / 4\)-inch outer-diameter coil form; "E" material slug \(L_{2}\) - Same as \(L_{1}\) without center tap
\(L_{3}-6\) turns No. 32 wire on toroid core; Radio Industries, Inc.; \(1 / 4\)-inch outer diameter; No. 8 material Mixer Transformer - TRW No. 21629, or equiv.

\(L_{1}-4\) turns of No. 22 wire; center-tapped; \(1 / 4\)-inch outer-diameter coil form: "E" material slug \(L_{2}-\) Same as \(L_{1}\) without center tap L3-6 turns of No. 22 wire on toroid core; Radio Industries, Inc.; 1/4-inch outer diameter; No. 8 material Mixer Transformer - TRW No.21629, or equiv.

Fig. 3 - Two-chip front ends using CA3005 rf amplifier connected (a) in cascode, and (b) in emitter-coupled configuration.

The cascode front end has a higher power gain (28 dB , as compared to 24 dB for the emitter-coupled configuration), but the emitter-coupled front end has better cross-modulation characteristics. The emitter-coupled amplifier can handle interfering signals up to about 15 millivolts with 10 per cent crossmodulation at maximum gain, while the capability of the cascode amplifier is
limited to that of a single transistor. \({ }^{1}\) The cascode front end has a sensitivity of 2 microvolts for 30 dB of quieting, while the emittercoupled front end has a sensitivity of 3 microvolts. Reverse agc can be applied to both configurations by variations of the voltage at terminal 12 from 9 volts (maximum gain) to 3 volts (full cutoff) from a \(0.5-\mathrm{milliampere}\) agc source. Both amplifiers have a dynamic agc range of 60 dB .

10.7-MHz IF SELECTIVITY CURVE
(Markers are 100 kHz apart with center at 10.7 MHz)

DETECTOR "S" CURVE
(Markers are \(\begin{gathered}100 \mathrm{kHz} \text { apart } \text { with center } \\ \text { at } 10.7 \mathrm{MHz} \text {) }\end{gathered}\)

Fig. 4 - Two-chip 10.7-MHz if amplifier, limiter, and discriminator using CA3005, CA3014, and Interstage transformer. Photographs show selectivity curve, detector " \(S\) " curve.

FM IF Amplifier, Limiter, and Detector
Fig. 4 shows a \(10.7-\mathrm{MHz}\) FM if strip and detector that uses a CA3005 and a CA3014 to provide 95 dB of gain. The schematic diagram of the CA3005 was shown in Fig.l; the CA3014 schematic is shown in Fig. 5. The heart of both these integrated circuits is the differential amplifier, which is probably the best simple configuration on the market today for symmetrical limiting over a wide input-voltage range. The differentialamplifier configuration is also ideal for integration because the parameters that are most important in integratedcircuit design (matched \(V_{B E}\), matched beta, and resistor ratios) are the easiest to control on a single silicon chip. In the FM if strip, therefore, three advantages are obtained: high performance, low cost, and fewer individual components.

The input limiting knee for the if strip shown in Fig. 4 is 30 microvolts. The recovered audio obtained fromterminal 9 of the CA3014 is 220 millivolts rms. The if selectivity curve and the detector " S " curve are also shown in Fig. 4. The AM rejection referenced to a 30 -percent modulated (FM and AM) signal with the AM signal at 30 millivolts is 50 dB .

The \(10.7-\mathrm{MHz}\) if-amplifier circuit of Fig. 4 operates as follows: The 10.7-MHz FM signal from the mixer is applied to terminal 7 of the CA3005. The gain from this point to the input of the CA3014 is 25 dB . The interstage transformer \(\mathrm{T}_{2}\) is designed so that the collector output of the CA3005 at terminal 1 does not saturate. As a result, bandpass spreading is kept to a minimum over large swings in input voltage. The \(10.7-\mathrm{MHz} \mathrm{FM}\) signal receives additional gain of 70 dB and limiting from terminal 1 to terminal 5 in the CA30l4. The FM output at terminal 5 is applied to the primary winding of the phase-shift (discriminator) transformer T3. The secondary winding, which is connected to terminals 6 and 7, is in quadrature with the primary voltage at the center frequency, 10.7 MHz . As the FM signal varies, the phase shift of the secondary voltage follows the modulation. The detected output at the base of Qll in the CA3014 (terminals 6 and 7) is thus amplified and buffered. The recovered audio is taken from the low-impedance terminal 9.

If more selectivity in the if strip is desired, an additional double-tuned transformer can be added to the circuit.

Fig. 5 - Schematic diagram of RCA CA3014 wide-band amplifier-discriminator.

Fig. 6 shows an approach in which the two transformers areplaced immediately after the mixer stage. Fig. 7 shows the details of the input filter and Fig. 8 shows the schematic of the CA3012 used in the if stages of this circuit. When the transformers (\(10.7-\mathrm{MHz}\) filter) are placed immediately after the mixer, better adjacent-channel rejection is obtained.

\section*{References}
1. "Application of RF Amplifier-Mixer Integrated Circuits CA3004, CA3005, and CA3006," RCA APPLICATION NOTE ICAN-5022, November 1965 2. Mischa Schwartz, INFORMATION TRANSMISSION MODULATION AND NOISE, McGraw-Hill Book Company, 1959
3. J. Avins, "It's a television first. . .receivers with integrated circuits, " ELECTRONICS, March 21, 1966
4. RCA Technical Bulletins: CA3005, CA30113012, CA3013-3014
5. R. L. Sanquini, "Multipurpose Chips Cut Costs of FM Receiver," ELECTRONICS, May 16 , 1966

Fig.6-10-MHz if amplifier and detector.

Winding 1-5 - 17 turns *36SE or equiv., \(\mathrm{Q}_{\mu} \approx 70\)
Winding 3-4 - 40 turns *36SE or equiv., \(\mathrm{Q}_{\mu} \approx 75\)
Winding 4-6 - 5 turns max; RX-Meter-900 ohms (no load)
Tuning slug: Winding 1-5 - Carbonyl TH or equiv., \(1 / 4^{\text {n }}\) Iong
Winding 3-4 - Carbonyl TH or equiv., 5/16"long
Front End: \(K Q \leq 1, L m=K \quad \sqrt{L A L B}=0.049 \mu H\)

\section*{TEST CIRCUIT:}

Fig. 7 - Details of 10.7-MHz input filter, \(T_{1}\).

Fig. 8 - Schematic diagram of RCA CA3012 wide-band amplifier.

\title{
Integrated-Circuit Frequency-Modulation IF Amplifiers
}
by
H.C. Kiehn and R.L. Sanquini

Silicon monolithic integrated circuits that use a differential-amplifier configuration have certain design features which make them more attractive than discretecomponent circuits for FM if-amplifier applications. These features include better performance, small size, light weight, and more potential circuit functions per dollar of cost.

\section*{The Differential Amplifier}

The heart of integrated-circuit FM if amplifiers is the differential amplifier, which is probably the best simple configuration available today for symmetrical limiting over a wide input-voltage range. Each half of the differential amplifier is alternately cut off on positive and negative half-cycles of the input signal.

As shown in Fig.1, the total current through the circuit \(\mathrm{I}_{\mathrm{T}}\) is relatively constant. A current equal to \(\mathrm{I}_{\mathrm{T} / 2}\) flows through each transistor at balance (quiescent condition). When the base voltage \(\mathrm{V}_{\mathrm{B} 1}\) is made

Fig. 1 - Basic differential-amplifier configuration.

\footnotetext{
This material was presented at the IEEE Second Annual Semi-conductor-Device Clinic on Linear Integrated Circuits in New York City, March 24, 1967.
}
more positive than \(\mathrm{V}_{\mathrm{B}_{2}}\), however, the collector current \({ }^{\mathrm{I}_{\mathrm{C}}}\) increases and \(\mathrm{I}_{\mathrm{C}}\) decreases. The value of \(\mathrm{I}_{\mathrm{C}} 1\) becomes equal to the total current \(\mathrm{I}_{\mathrm{T}}\) when the following condition exists:
\[
\mathrm{V}_{\mathrm{B}_{1}}-\mathrm{V}_{\mathrm{B}_{2}}-\mathrm{V}_{\mathrm{BE}_{1}} \geq \mathrm{V}_{\mathrm{BE}_{2}} \text { (threshold) }
\]

The transistor \(\mathrm{Q}_{1}\) is then full on, and Q 2 is then cut off. Similarly, when \(\mathrm{V}_{\mathrm{B}_{1}}\) is made more negative than \(\mathrm{V}_{\mathrm{B}_{2}}\), the value of \(\mathrm{I}_{2}\) becomes equal to \(\mathrm{I}_{\mathrm{T}} ; \mathrm{Q}_{1}\) is then cut off and Q 2 is full on. When the worst-case value of \(\mathrm{I}_{\mathrm{T}}\) is known, the maximum load impedance for symmetrical limiting is selected so that collector saturation does not occur, as follows:
\[
\begin{array}{ll}
\text { Resistive Load: } & \mathrm{R}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{T}} \\
\text { Tuned Load: } & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~V}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{T}}
\end{array}
\]

Under these conditions, symmetrical limiting is obtained without spurious phase modulation.

The transfer characteristics for a typical differential amplifier shown in Fig. 2 illustrate the excellent

Fig. 2 - Transfer characteristics of basic differentialamplifier circuit.
limiting characteristics. Further increases in input voltage (\(\mathrm{V}_{\mathrm{B}_{1}}-\mathrm{V}_{\mathrm{B}_{2}}\)) produce no change in collector current above \(4 \mathrm{KT} / \mathrm{q}\) units of input signal.

There are two basic approaches to the design of integrated-circuit FM if-amplifier stages using differential amplifiers: (1) lumped-filter FM if amplifiers using high-gain multi-stage integrated-circuit packages, or (2) individually tuned FM if amplifiers using singlestage integrated-circuit packages. This paper discusses the performance obtained with these approaches and outlines their merits and limitations.

\section*{Evolution of High-Gain Selective Building Blocks}

The tuned rf amplifiers used in early broadcast receivers soon exhibited a point of diminishing returns with regard to gain and selectivity improvements. With
the advent of the superheterodyne principle, the inter-mediate-frequency amplifier became the first building block that had fixed-frequency tuning, relatively high gain, and good selectivity as a result of its operation at a frequency lower than the signal frequency.

Because of its demands for high gain, phase linear amplification, and good symmetrical amplitude limiting, and because of the numerous FCC station allocations, FM broadcasting is now facing the dilemma of providing selectivity with good phase response. That is, receiver selectivity must be maintained for large signal inputs without deterioration of phase response. (A discussion of the practical solution of this problem is beyond the scope of this paper.) Successive limiting from the last stage back to the first stage can no longer be tolerated.

\section*{High-Gain-Per-Package Differential Integrated-Circuit IF Strips}

Fig. 3 shows the schematic diagram of a high-gain integrated circuit, the CA3012, which can be used in an if-amplifier strip to drive a ratio detector. The CA3012 wideband amplifier, designed for use in FM broadcast or communications receivers, is basically an if ampli-fier-limiter intended for use with external FM detectors. It consists of three direct-coupled cascaded differentialamplifier stages and a built-in regulated power supply. Each of the first two stages consists of an emittercoupled amplifier and an emitter-follower. The operating conditions are selected so that the dc voltage at the

Fig. 3 - Schematic diagram of CA3012 integrated-circuit wideband amplifier.
output of each stage is identical to that at the input of the stage. This condition is achieved by operation of the bases of the emitter-coupled differential pair of transistors at one-half the supply voltage and selection of the value of the common-emitter load resistor to be one-half that of the collector load resistor. As a result,
the voltage drops across the emitter and collector load resistors are equal, and the collector of the emittercoupled stage operates at a voltage equal to the base-toemitter voltage VBE plus the common base potential. The potential at the output of the emitter-follower, therefore, is the same as the common base potential.

At an operating point 3 dB down from the knee of the transfer curve, therefore, the CA3012 requires an input between 400 and 600 microvolts, depending on the ratio-detector design. Fig. 4 shows the use of two CA3012 units in a \(10.7-\mathrm{MHz}\) if-amplifier strip. A double-
practical and does not impose too much burden on alignment. Because IHFM selectivity includes other factors than passband, a combined filter design that provides second-channel attenuation between 52 and 60 dB becomes imperative.

Investigation of various types of inductance-capacitance filters indicates the use of a triple-tuned type to form the major lumped selectivity of the FM receiver. Fig. 6 shows the response curve and two configurations for such a filter. Economy and ease of alignment are the major features in this approach.

Fig. 4 - 10.7-MHz if-amplifier strip using CA3012 integrated circuit.
tuned filter that has a voltage insertion loss of 8 dB is located between the two CA3012 units to provide a filter input of approximately 1000 microvolts (at terminal 5 of the first CA3012). For an if-strip sensitivity of 4 microvolts, a gain of 48 dB is required. However, if the CA3012 used has a load impedance of 1200 ohms, the available gain is 65 dB , or approximately 17 dB more than required. The extra gain is not wasted, but drives the second CA3012 harder, causing it to limit so that its gain is reduced by approximately 17 dB .

Fig. 5 shows the selectivity of the double-tuned interstage filter. The \(3-\mathrm{dB}\) bandwidth is 200 kHz at an input of 10 microvolts and 240 kHz at inputs from 500 microvolts to 0.5 volt. The coefficient of critical coupling is approximately 0.5 at 10 microvolts and increases to 1.0 but still maintains good phase response. The double-tuned filter should be coupled capacitanceaiding to avoid a nearly in-phase over-all relationship. Otherwise, bypassing of terminal 10 and the ratiodetector primary becomes critical and over-all stability is impaired.

The connection of the FM front end to the integrat-ed-circuit if strip must provide good selectivity and good phase response. A double-tuned filter is not suitable from the standpoint of selectivity. An actual IHFM* receiver selectivity between 35 and 40 dB is

\footnotetext{
* Institute of High-Fidelity Manufacturers.
}

Fig. 5 - Selectivity curve for double-tuned interstage filter.
The triple-tuned filter, which is located between the mixer and the first integrated circuit, may have a voltage insertion loss of 33 dB , depending on the desired gain distribution. The power insertion loss of the filter, which is between 12 and 17 dB , is the loss that contributes to if noise. If the primary impedance is reduced to provide a lower voltage insertion loss, the front-end gain is decreased by a corresponding amount. Stability criteria must be the deciding factor in impedance and gain distribution.

Fig. 6 - Configurations and response curve for tripletuned interstage filter.

Most FM front ends come equipped with a doubletuned \(10.7-\mathrm{MHz}\) if transformer in which a secondary high-impedance winding is brought out capacitively unterminated and non-polarized with respect to ground. This configuration does not lend itself readily to optimum skirt selectivity (form factor) when connected with an additional single-tuned transformer to form a tripletuned filter. Most effective use of the existing front-end filter is accomplished by the addition of another doubletuned filter, such as those shown in Fig.7. Either

Fig. 7 - Configurations of two quadruple-tuned interstage filters.
bottom inductance or capacitance coupling can be used. Voltage insertion losses from 18 dB to 26 dB can be expected. Fig. 8 shows the response curve obtained

Fig. 8 - Response curve obtained with quadruple-tuned filter.
with a quadruple-tuned interstage filter. The per-cent coupling between filters and the coupling mode must be determined on the basis of over-all stability and performance.

It may be appropriate to consider briefly the noise associated with high-insertion-loss filters. Over-all receiver noise F is calculated as follows:
\[
\mathrm{F}^{\prime}=\mathrm{F}_{1}+\frac{\mathrm{F}_{2}-1}{\mathrm{G}_{1}}+\frac{\mathrm{F}_{3}-1}{\mathrm{G}_{1} \mathrm{G}_{2}}
\]
where \(F_{1}, F_{2}\), and \(F_{3}\) are the noise figures of the first (rf), second (mixer), and third (if) stages, respectively; and \(\mathrm{G}_{1}\) and \(\mathrm{G}_{2}\) are the power gains of the first and second stages. If a value of 27 dB is assumed for the if noise figure \(\mathrm{F}_{3}\) (filter plus integrated circuit), 10 dB for the mixer noise figure, and 30 dB for mixer power gain, the effect of if noise on mixer noise is determined as follows:
\[
\mathrm{F}_{2}^{\prime}=\mathrm{F}_{2}+\frac{\mathrm{F} 3-1}{\mathrm{G}_{2}}=10+\frac{27-1}{1000}=10.026 \mathrm{~dB}
\]

If the rf stage is assumed to have a power gain of 15 dB and a noise figure of 5 dB , total receiver noise is then determined as follows:
\[
F=F_{1}+\frac{F_{2}-1}{G_{1}}=5+\frac{10.87-1}{31.7}=5.285 \mathrm{~dB}
\]

These calculations show that the power gain of the rf-amplifier stage overrides both if noise and mixer noise. A minimum power gain of 10 dB is advisable.

The use of a tuning capacitance of 82 picofarads in the collector circuit of the mixer stage provides a loaded primary impedance of approximately 10,000 ohms and eliminates the need for a tap. The 27 -picofarad tuning capacitances that comprise the other poles of this filter could be reduced to obtain more favorable loaded-to-unloaded-Q ratios without use of additional resistor loading. The choice of 27 picofarads was based primarily on circuit stability considerations.

Fig. 9 shows one type of complete integrated-circuit if strip, and Fig. 10 shows the accompanying voltage gains and impedances. Values are given for two levels of mixer output impedance. All other impedance levels shown have exhibited good stability. Over-all performance of the circuit is illustrated in Fig.11.

Capture ratio, which was measured at various levels, varies from 5 dB at 2 microvolts to 1.2 dB above 500 microvolts. With careful adjustment, values as low as 0.8 dB can be obtained. The selectivity curve for the integrated circuit if strip is shown in Fig.12. Over-all selectivity for a given ratio detector and the if strip is shown in Fig.13. Some distributed-selectivity receivers have very little second-channel selectivity at an antenna input of 2000 microvolts. The points marked in Fig. 13 show such selectivity for several antenna input levels.

Fig. 14 shows an if strip that combines high gain per package and the single-stage-per-package approach. CA3012 and CA3028 integrated circuits are used in a differential-mode connection. An if sensitivity of 15 microvolts can be obtained with this if strip.

If discrete circuits are directly replaced by single differential integrated-circuit amplifiers, a minimum of if transformer and printed-circuit-board redesign is required. Values of voltage gain and impedance are indicated on the block diagram in Fig.15. All three doubletuned transformers are made symmetrical with respect to primary and secondary windings and taps.

Because the single- or double-tuned circuit used between the mixer and the if strip has inherently less

Fig. 9 - Complete 10.7-MHz if-amplifier strip using two CA3012 integrated circuits.

Fig. 10 - Voltage gain and impedance values for if-amplifier strip of Fig.7.
insertion loss than a triple-tuned input filter, the input required is 20 instead of 3.5 microvolts. All three double-tuned if transformers have an insertion loss of 6 dB and a \(3-\mathrm{dB}\) bandwidth of 280 to 300 kHz . The ratiodetector primary impedance dictates the stage gain of 36 dB for the last integrated circuit. Each of the remaining three stages has a gain of 21.5 dB , for the total required gain of 100 dB . The impedance required for the desired stage gain was calculated to be 660 ohms for both the primary and secondary windings of the if transformers.

Fig.11-Performance curves for if-amplifier strip of Fig.7.

Fig. 13 - Measured over-all selectivity curve for if-amplifier strip of Fig. 7 and a given ratio detector.
Fig. 12 - Selectivity curve for if-amplifier strip of Fig.7.

Fig. 14 - IF-amplifier strip using CA3028 and CA3012 integrated circuits.

Fig. 15 - Voltage gain and impedance values for if-amplifier strip of Fig. 12.

With inputs from 20 to 200 microvolts, secondchannel selectivity as high as 52 to 59 dB can be attained for three double-tuned and four double-tuned filters, respectively, for a \(3-\mathrm{dB}\) bandwidth of 196 kHz . For higher inputs, the same deterioration of selectivity occurs as that experienced with discrete circuits, as shown in Fig. 16.

\begin{tabular}{lccc}
& \begin{tabular}{c}
INPUT \\
\((\mu \mathrm{V})\)
\end{tabular} & \begin{tabular}{c}
ACA \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c}
\(2 A C A\) \\
\((\mathrm{~dB})\)
\end{tabular} \\
\(\times\) & \(\frac{25}{10}\) & \(\frac{42.6}{42.6}\) \\
0 & 1000 & 8.6 & 32 \\
\(\square\) & 5000 & 5 & 22 \\
\(\Delta\) & \(20 K\) & 3 & 15 \\
Ist & STAGE & AGC. &
\end{tabular}

Fig.16 - Selectivity curves for discrete-component if strip using six double-tuned filters.

Several receivers incorporating the if strips shown have been field-tested in areas of \(200-\mathrm{kHz}\) station separation, where a weak station was sandwiched between two strong stations. The weak station was received without interference, as compared to the performance of other high-quality FM receivers fabricated
with discrete-component if circuits, where lack of selectivity marred reception.

\section*{Conclusions}

The preceding discussion has shown that the simplest approach to the use of integrated circuits in FM if-amplifier strips is to replace each stage in present discrete-transistor if strips with a differential amplifier. This integrated-circuit approach requires a minimum of re-engineering because a cascade of individually tuned if stages is used. From a performance point of view, this approach results in better AM rejection than that obtained with discrete circuits because of the inherent limiting achieved with the differ-ential-amplifier configuration.

This approach, however, is not the best for cost performance in the long run. The single stage of gain is most difficult to justify economically when a single transistor stage is replaced with a single integratedcircuit package. The boundary condition for such an approach is that ultimately the cost of fabricating a package containing three transistors and three resistors (a typical complement for a differential-amplifier stage) must be the same as that of the one transistor the stage replaces.

Approaches to FM if stages which use the high-gain-per-package concept achieve the excellent AM rejection of differential amplifiers, as well as superior adjacent-channel attenuation, because more gain is inserted between the selectivity elements. From a performance point of view, this approach is superior to both discrete-stage and individually tuned integratedcircuit if strips.

From the point of view of cost, this approach has better possibilities because two packages are equivalent to four single stages of gain (four integrated-circuit packages). This approach results in maximum utilization of present-day monolithic integrated-circuit technology, and is closer to the optimum FM if amplifier shown in Fig. 17.

Fig. 17 - Optimum FM if-amplifier configuration.

\title{
Power-Supply Considerations For CA3041 and CA3042 Integrated Circuits
}

\author{
by \\ J. H. Sundburg
}

The RCA CA3041 and CA3042 integrated circuits are designed for use as a major subsystem in FM receivers or the sound section of television receivers. In such applications, each circuit can provide if amplification and limiting, FM detection, and audio preamplification. These units, shown schematically in Fig. 1, offer exceptional versatility in circuit design because the wideband if amplifier/limiter section, the FM detector section, and the audio preamplifier/driver section can be used independent of each other The dc operating voltage for the integrated circuits, applied at terminal 14 , is usually provided from the external supply through a series dropping resistor. The CA3041 and CA3042 include Zener-diode-regulated power supplies that provide proper operating voltages to the various circuit stages independent of external power-supply considerations.

The shunt regulation provided by Zener diodes \(Z_{2}\) and \(\mathrm{Z}_{3}\) stabilizes circuit voltages, but may also cause wide variations in the dissipation on the integrated-circuit chip, depending upon power-supply and device variations. The external power supply for CA3041 and CA3042 integrated circuits, therefore, must be carefully designed to insure both that the maximum dissipation rating of the integrated
circuit is not exceeded, even under worst-case conditions, and that adequate voltage regulation is provided under all conditions.

This Note provides the data required to design an adequate power supply and describes a simple procedure that may be used to determine the value and tolerance of the required series dropping resistor when supply voltages differ from those specified in the published data for the CA3041 and CA3042 integrated circuits.

\section*{General Considerations}

The main variables to be considered in determination of the external series dropping resistors are as follows: (1) power-supply voltage and tolerance, (2) maximum allowable integrated-circuit dissipation at the maximum ambient temperature, and (3) variations in integrated-circuit characteristics.

When the CA3041 or CA3042 is operated at high power-supply voltages, the integrated-circuit dissipation does not vary widely; operation of the circuit at higher temperatures is then permitted. Under such conditions, however, total system dissipation is increased and a higher power rating is required for the series dropping resistor.

Fig. 1 - Schematic diagrams of (a) the CA3041 and (b) the CA3042 integrated circuits.

When low-voltage supplies are used, the power rating of the series resistor may be reduced, but a decrease in the temperature range of the integrated circuit also results.
The maximum value of the series dropping resistor \(\mathrm{R}_{\mathrm{s}}\) is the value for which a Zener current of 1 milliampere is allowed to flow under worst-case conditions, i.e., under conditions of low line voltage, high Zener voltage, and high integrated-circuit current drain. The minimum value of the resistor \(\mathrm{Rs}_{\mathrm{s}}\) is the value for which the worst-case dissipation is limited to that defined by the maximum ambient temperature and the circuit derating curve shown in Fig. 2.
The procedure used to define the resistor Rs differs slightly for the two types of integrated circuits. A few additional steps are required for the CA3041 because the dissipation of this circuit is a function of the load resistor of the audio-amplifier stage (this resistor is not used in CA3042). Tables I and II outline the procedure used to determine the resistor Rs for the CA3042 and CA3041,
respectively. The voltage-current curves for the CA3041 and CA3042 also differ because of the difference in the audio-amplifier stage of these circuits.

Fig. 2 - Maximum device dissipation derating curve for the CA3041 and CA3042 integrated circuits.

\section*{TABLE I- PROCEDURE FOR FINDING THE SERIES DROPPING RESISTOR RS FOR THE CA3042 (Points referred to in the procedure are shown on Fig. 4.)}

\section*{EXAMPLE}
1. Define nominal supply voltage and tolerance, minimum and maximum supply voltage, and maximum ambient temperature
2. Compute maximum value of \(R_{s}\) using voltage and current at point \(X\)
\[
\mathbf{R}_{\mathrm{S} \text { MAX }}=\frac{\mathbf{V}_{\mathrm{s} \text { MIN }}-V_{\mathrm{x}}}{\mathbf{I}_{\mathrm{x}}}
\]
3. Assume resistor tolerance, and compute nominal value of \(\mathbf{R}_{\mathrm{s}}\)
\[
\mathbf{R}_{\mathrm{s} \text { NOM }}=\mathbf{R}_{\mathrm{s} \operatorname{MAX}}(1-\% \text { Tolerance })
\]

\section*{FIND NEXT LOWER STANDARD VALUE}
4. Construct the worst-case load line using the minimum value of \(R_{s}\) and the maximum value of \(\mathrm{V}_{\mathrm{s}}\). Two points are required. Because the voltage scale is incomplete, find the current at 10 volts and 13 volts.
\[
I_{10}=\frac{\mathrm{V}_{\mathrm{S} \text { MAX }}-10}{\mathrm{R}_{\mathrm{S} \text { MIN }}} \quad I_{13}=\frac{\mathrm{V}_{\mathrm{S} \text { MAX }}-13}{\mathrm{R}_{\mathrm{S} \text { MIN }}}
\]

Connect Points \(10, \mathrm{I}_{10}(\mathrm{~F})\) and \(13, \mathrm{I}_{13}(\mathrm{G})\)
5. Compute the worst-case dissipation. This condition occurs at the point at which the load line F-G intersects either curve A or curve D. Multiply the voltage and current at each intersection, and use the higher value.
6. Find the maximum allowable temperature permitted for \(\mathbf{P}_{\mathrm{MAX}}\) on Fig. 2.
7. If \(T_{\Delta \text { max }}\) is greater than the maximum value required, the design is satisfactory.
8. If \(T_{A m a x}\) is less than the maximum value required, go back to step (2) and recompute for a tighter tolerance on \(\mathbf{R}_{8}\), or go back and choose a higher supply voltage.
9. Compute the required dissipation rating for \(R_{8}\). Use \(V_{s \text { MaX }}, R_{\text {MIN }}\) and the lower of the two values of power calculated in step (5).
\[
P=\frac{V_{S_{\text {MAX }}}}{R_{S \text { MIN }}}-P(\text { from } 5)
\]
\(\mathrm{V}_{\mathrm{s}}=40 \mathrm{~V} \pm 10 \%\)
\(\mathbf{V}_{\mathbf{s} \text { Min }}=36 \mathrm{~V}\).
\(\mathbf{V}_{\mathrm{S} \text { max }}=44 \mathrm{~V}\).
\(\mathrm{T}_{\mathrm{A} \text { max }}=75^{\circ} \mathrm{C}\)
\(\mathrm{R}_{\mathrm{S} \text { MAX }}=\frac{36-11.55}{21}=1.16 \mathrm{~K} \Omega\)

Tolerance \(=10 \%\)
\(\mathrm{R}_{\mathrm{s} \text { NOM }}=1.16 \times 0.9=1.05 \mathrm{~K} \Omega\)
\(1 \mathrm{~K} \Omega\)
\(I_{10}=\frac{44-10}{0.9 \mathrm{~K} \Omega}=36.8 \mathrm{~mA}\)
\(\mathrm{I}_{13}=\frac{44-13}{0.9 \mathrm{~K} \Omega}=34.5 \mathrm{~mA}\)
\(P_{1}=36 \times 11.1=400 \mathrm{~mW}\)
\(\mathrm{P}_{2}=34.8 \times 12.4=432 \mathrm{~mW}\)
\(P_{\mathrm{MAX}}=432 \mathrm{~mW}\)
From Fig. 2, \(\mathrm{T}_{\mathrm{Amax}}>85^{\circ} \mathrm{C}\)
\(P=\frac{44^{2}}{900}-0.400=1.75\) watts
\(R_{s}\) is a \(1 \mathrm{~K} \Omega\) resistor with a \(\pm 10 \%\) tolerance

\section*{TABLE II - PROCEDURE FOR FINDING THE SERIES DROPPING RESISTOR RS FOR CA3041}
(Points referred to in the procedure are shown on Fig. 5.)

\section*{EXAMPLE}
1. Follow steps 1 through 5 from CA3042 procedure except note that the dissi-

Select power-supply voltage and nominal operating point for audio amplifier. Note from published data for CA3041 that the ac voltage swing is limited to the range of +1 to +29 volts by saturation effects and breakdown voltage.
7. Find the audio load resistor \(\mathrm{R}_{\mathrm{L}}\)
\[
\mathbf{R}_{\mathrm{L}}=\frac{\mathbf{V}_{\mathrm{SNOM}}-\mathbf{V}_{\mathrm{C} \text { NOM }}}{\mathbf{I}_{\mathrm{C} \text { NOM }}}
\]
8. Find worst-case load line using \(\mathrm{V}_{\mathrm{S} \text { Max }}\) and \(\mathrm{R}_{\mathrm{L} \text { Min }}\)
\(\mathrm{R}_{\mathrm{L} \text { Min }}=\mathrm{R}_{\mathrm{L}}(1-\%\) Tolerance \()\)
Load line intersects \(\mathrm{V}=0\) at
\[
\begin{gathered}
I=\frac{V_{\text {SMAX }}}{R_{\mathrm{L} \text { MIN }}} \\
\text { Load line intersects } \mathrm{V}=30 \mathrm{~V} \text { at } \mathrm{I}=\frac{\mathrm{V}_{\mathrm{S} \text { MAX }}-30}{\mathbf{R}_{\mathrm{L} \text { MIN }}}
\end{gathered}
\]
9. Compute \(P_{\text {audio }}\) at point \(P_{\text {audio }}=I_{R} \times V_{R}\)
10. Add \(P_{\text {audio }}\) to \(P_{\text {Max }}\) from Step 5, and proceed with steps 6 through 9 of the pation does not include the power dissipated in the audio amplifier. CA3042 procedure.

Use same supply as before
\[
\begin{aligned}
& \mathbf{V}_{\mathrm{S} \text { NOM }}=40 \\
& \mathbf{V}_{\mathrm{SMAX}}=44 \\
& \mathbf{V}_{\mathrm{G} \text { NOM }}=15 \text { volts } \\
& (\text { Point } \mathrm{N})
\end{aligned}
\]
\(R_{L}=\frac{40-15}{4 \mathrm{~mA}}=6.25 \mathrm{~K}\)
use nearest \(10 \%\) resistor, 6.8 K
\(\mathrm{R}_{\mathrm{L} \text { MIN }}=6.8 \mathrm{~K} \times .9=6.1 \mathrm{~K}\)
\(I=\frac{44}{6.1}=7.2 \mathrm{~mA}\)
(Point P)
\(I=\frac{14}{6.1}=2.3(\) Point \(Q\))
\(P_{\mathrm{audio}}=4.7 \times 16=75 \mathrm{~mW}\),

\section*{Voltage-Current Curves}

Figs. 3 and 4 show the limiting power-supply condition, together with the test circuit used to determine this condition, for the CA3041 and CA3042 circuits, respectively. For supply-voltage values (at terminal 14) below 10 volts, the Zener diodes \(Z_{2}\) and \(Z_{3}\) do not conduct, and the current drain is that of the connected portions of the integrated circuit. The vertical distances between the curves in Figs. 3 and 4 represent the limits of current drawn by the operating portions of the circuit. The current drawn

Fig. 3 - Supply current as a function of supply voltage for the CA3041 integrated circuit: (a) test circuit; (b) voltage-current curves.
by the Zener diodes adds to the circuit current at supply voltages (at terminal 14) above 10 volts. The voltage difference between curves A and C at a total drain of 25 milliamperes indicates a tolerance of less than \(\pm 5\) per cent on the Zener voltage.

The voltage-current curves for the CA3041 and CA3042 differ because the current for the final amplifier stage is
drawn from the main dropping resistor in the CA3042 and through an external resistor in the CA3041. Fig. 5 shows the dc voltage-current relationship for the audio-amplifier stage in the CA3041. The stage is self-biased by the \(100-\) kilohm resistor between terminals 6 and 7 so that a unique curve is formed.

(b)

Fig. 4 - Supply current as a function of the supply voltage for the CA3042 integrated circuit: (a) test circuit; (b) voltage-current curves.

(a)

Fig. 5 - Collector characteristic of the audio-amplifier stage of the CA3041 integrated circuit: (a) test circuit; (b) voltage-current curves.

Linear Integrated Circuits
Application Note
ICAN-5831

\title{
Application of the RCA-CA3044 and CA3044VI Integrated Circuits in Automatic-Fine-Tuning Systems
}
by

\author{
W. M. Austin, H. M. Kleinman, and J. Sundburg
}

This Note describes the use of the RCA-CA3044 and CA3044V1 integrated circuits as automatic-fine-tuning (AFT) system components and discusses the advantages of integrated circuits in this application. The CA3044V1 is electrically identical to the CA3044, butis supplied with formed leads for easier printed-circuitboard mounting; throughout this Note a reference to the CA3044 implies a similar reference to the CA3044V1.

The RCA-CA3044 is a special-function subsystem integrated circuit that represents a second generation of the AFT integrated circuit, the CA3034, that was designed specifically for frequency-control applications. The CA3044, unlike the CA3034, has an internal zenerregulated power supply that improves performance and reduces system cost. It is designed to replace the CA3034 in similar applications with only minor changes in the system circuit.

\section*{Circuit Description and Operation}

The schematic diagram of the CA3044 is shown in Fig. 1; the use of the circuit in a typical automatic-finetuning (AFT) system for a color television receiver is shown in Fig. 2. In such a system, the CA3044 provides all of the signal-processing components needed (with the exception of the tuned phase-detector transformer) to derive the AFT correction signals from the output of the video-if amplifier. The other components of the system provide signal coupling and power-supply decoupling as required for proper signal processing in the video inter-mediate-frequency range.

The CA3044 integrated circuit can be considered as the combination of four functional blocks: a limiteramplifier, a balanced detector, a differential amplifier, and a regulator. The \(45-\mathrm{MHz}\) limiter-amplifier composed of \(Q_{1}\) and \(Q_{2}\) is a differential amplifier that supplies a
peak-to-peak output current of approximately 4 milliamperes for input levels above the limiting threshold. The use of a load impedance which does not exceed 2000 ohms guarantees an excellent limiting characteristic and eliminates detuning effects caused by saturation of the amplifier under worst-case conditions. In the system shown in Fig. 2, the load impedance at the center frequency is about 1800 ohms.

Fig. 1 - Schematic diagram of the CA3044 and CA3044VI.

Fig. 2 - System diagram of a typical automatic-finetun ing (AFT) application showing the CA3044 or CA3044VI in use in a color-TV receiver.

The diode matrix composed of \(\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}\), and \(\mathrm{D}_{4}\) constitutes a balanced detector that converts the output of the phase transformer to a filtered dc signal. Diodes \(\mathrm{D}_{1}\) through \(\mathrm{D}_{4}\) perform the detection function. Diodes \(\mathrm{D}_{7}\) and \(\mathrm{D}_{8}\) are always reverse-biased and serve as capacitors; they filter the output of the detector in conjunction with \(\mathrm{R}_{9}\) through \(\mathrm{R}_{12}\). Diodes \(\mathrm{D}_{5}\) and \(\mathrm{D}_{6}\) are included to balance the parasitic diodes that exist between the cathodes of \(D_{2}\) and \(D_{3}\) and the substrate.

Transistors \(Q_{3}, Q_{4}\), and \(Q_{5}\) form a constant-current driven differential amplifier that is directly coupled to the output of the detector. The amplifier contributes greatly to the high sensitivity of the system and, in addition, provides sufficient power to allow the use of a lowcost tuning element. The output impedance at either output of the amplifier is approximately 12,000 ohms.

The zener-diode regulator comprising \(\mathrm{D}_{10}\) and \(\mathrm{D}_{11}\) provides the regulation necessary for a differential post-detection amplifier output that is both stable and independent of temperature and power-supply variations. The junction of \(D_{10}\) and \(D_{11}\) is connected to a bias divider network that assures correct base bias on both differential-amplifier pairs.

During normal operation, the proper dc bias for terminals 1,3 , and 7 of the CA3044 is supplied through terminal 6 and external rf coils, as shown in Fig.2. RF bypassing is required both for terminal 6 and for terminal 10 , which is connected through the primary winding of the detector transformer to terminal 2.

\section*{Operating Characteristics}

The CA3044 is designed to operate from supply voltages greater than the zener regulating voltage; because the zener-diode voltage varies from 10.5 to 11.9 volts at the 14 -milliampere current-drain level, the supply voltage should be greater than 15 volts for proper regula tion and circuit operation. The effect of all component and power-supply tolerances on zener regulating current must be taken into account in calculation of the value of the series regulating resistor \(\mathrm{R}_{\mathrm{S}}\) shown at the top of Fig. 2. In the typical circuit shown in Fig. 2, power is supplied to terminal 10 of the CA3044 from a +30 -volt supply through a 1500 ohm series dropping resistor. The recommended value of \(R_{S}\) can be determined for other supply conditions by use of the curves in Fig.3, which show current at terminal 10 as a function of supply voltage.* An \(\mathrm{R}_{\mathrm{S}}\) load line may be drawn through the safe operating area to show extremes of voltage and current for normal variations in product. Safe operation with proper regulation is achieved on any load line that avoids the lower cross-hatched area and does not exceed the allowable maximum dissipation as determined for a given ambient temperature. The cross-hatched area represents voltage-regulation dropout resulting from an insufficient amount of zener-diode current.

\footnotetext{
*This type of curve is described in RCA Application Note ICAN-5765, "Power-Supply Considerations for CA-3041 and CA-3042 Integrated Circuits."
}

Fig. 3 - Curves for determining the zener-diode regulating voltage at terminal 10.
The maximum value of \(R_{S}\) is determined by construction of a load line from the minimum supply voltage (\(\mathrm{V}_{\mathrm{CC}}\)) to the upper right comer of the cross-hatched area. The largest standard resistor having a maximum value (including tolerance) smaller than the slope of this line is selected. Dissipation under the worst-case conditions of minimum \(R_{S}\) and maximum \(V_{C C}\) must then be checked to assure compliance with the maximum device ratings.

The dissipation rating of the CA3044 is 830 milliwatts at an ambient temperature of \(25^{\circ} \mathrm{C}\). At ambient temperatures above \(25^{\circ} \mathrm{C}\), this maximum value must be derated by a factor of 5.6 milliwatts per degree. Fig. 4 shows the permissible dissipation of the CA3044 as a function of ambient temperature. The worst-case dissipation may occur at either a voltage or a current maximum. The equation for total dissipation \(P_{d}\) in the CA3044 is
\[
P_{d}=\frac{\left(V_{C C}-V_{10}\right)}{R_{s}} \quad V_{10}
\]
where \(V_{10}\) is the voltage at terminal 10 and \(V_{C C}\) is the power-supply voltage supplied through the series dropping resistor \(R_{S}\) to terminal 10 . The permissible ambient-temperature operating range for the CA3044 is \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).

\section*{Dynamic Performance}

The system diagram of Fig. 2 shows the CA3044 in its function as rf amplifier, frequency discriminator, and post-detection differential dc amplifier. The circuit shown is a portion of a color television receiver in which critical tuning is essential because of the presence of the color subcarrier and its sidebands. The

Fig. 4 - Dissipation rating of the CA3044 and CA3044VI as a function of ambient temperature.
CA3044 AFT system provides a uniform and accurate tuning reference. When the correction voltage developed at terminals 4 and 5 of the CA3044 is sufficient, the system locks on the picture-carrier intermediate frequency and holds the tuner oscillator within \(\pm 25 \mathrm{kHz}\) of the picture carrier so that a high-quality picture is produced at all times. Operation within such a narrow band of oscillator frequencies represents a color-reference deviation of less than 5 per cent from the \(\pm 500\) kHz color-subcarrier sidebands; this deviation is in general far smaller than the amplitude and phase-change errors that are introduced by other receiver and transmitter functions.

The system shown in Fig. 2 can be used in a typical color receiver. The sampling connection from the pic-ture-if amplifier to the AFT circuit is made from the output of the last if stage directly to the input of the CA3044 rf amplifier. The loading effect of the AFTsystem coupling circuit on the picture-if amplifier is negligible and does not distort the if response. Unless provision has been made to trap out the adjacent-channel sound carrier elsewhere in the circuit, such action must be taken at the input to the CA3044. Trapping of the adjacent-channel sound carrier is essential because it may have sufficient amplitude to cause limiting at the rf amplifier/limiter stage of the CA3044. The trapping circuit, composed of \(\mathrm{L}_{3}\) and \(\mathrm{C}_{3}\) in Fig. 2, also helps to peak the picture carrier at 45.75 MHz while trapping the adjacent-channel sound carrier at 47.25 MHz . To compensate for an if response that places the picture carrier at the 50 -per-cent point on the if slope, the input trap should be adjusted to peak the response above 45.75 MHz at the input to the CA3044.

Proper dc biasing of the amplifier/limiter stage composed of \(Q_{1}\) and \(Q_{2}\) requires that a small choke, \(L_{4}\), be used to couple terminal 6 to terminal 7. The common bias connection at terminal 6 is bypassed with a 0.001 -microfarad disc capacitor. No form of external dc connection should be made to either terminal 6 or terminal 7.

The output load on the differential amplifier consists of the impedance of the phase-shift transformer
comprising \(L_{1}\) and \(L_{2}\). The differential-amplifier stage assures symmetrical limiting above 100 millivolts at the input of terminal 7. The primary of the phase-shift transformer is typically tuned to 46.1 MHz as an additional error-correction device to help peak the picture carrier at 45.75 MHz . The secondary is tuned to 45.75 MHz and symmetrically drives the double-balanced detector comprising diodes \(\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}\), and \(\mathrm{D}_{4}\). The detector diodes \(D_{1}\) through \(D_{4}\) minimize frequency shifting by symmetrically loading the discriminator transformer. Symmetrical loading is assured by diodes \(\mathrm{D}_{5}\) and \(D_{6}\), which are used as capacitors to balance the inherent substrate capacitances associated with \(D_{2}\) and \(D_{3}\).

The error signal detected by the double-balanced detector is filtered by the 6000 -ohm resistors \(\mathrm{R}_{9}, \mathrm{R}_{10}\), \(R_{11}\), and \(R_{12}\) and diodes \(D_{7}\) and \(D_{8}\) at the inputs to the differential output amplifier composed of \(Q_{3}\) and \(Q_{4}\). The differential output amplifier is compensated for all temperature-change effects including those of the zenerdiode regulator. In the absence of an error signal, output terminals 4 and 5 are at a dc level of 6.5 volts; in mistuning or frequency correction, the output level varies from 33 to 85 per cent of the zener-regulated voltage over the \(\pm 25-\mathrm{kHz}\) limits. Fig. 5 shows the typical narrow-band response of the system shown in Fig.2; Fig. 6 shows the wide-band response. The curves shown are characteristic of the Fig. 2 circuit for an input rf signal level of 200 millivolts rms at terminal 7. Both narrow- and wide-band response characteristics are a function of the CA3044 limiting level. The narrow-band crossover slope decreases and the wide-band response becomes narrow as the signal level decreases.

The reference levels(A, B, C, and D) indicated on the curves of Fig. 5 and 6 refer to the narrow- and wideband control points expressed as a percentage of the zener reference voltage at terminal 10 . References \(A\) and \(B\) are narrow-band (\(\pm 25-\mathrm{kHz}\)) control points at 85

Fig. 5 - Typical narrow-band dynamic control voltage characteristics.

Fig.6-Typical wide-band dynamic control voltage characteristics.
and 33 per cent of the terminal 10 reference voltage, while references \(C\) and \(D\) are the wide-band (\(\pm 0.9-\mathrm{MHz}\)) control points at 75 and 43 per cent of the same voltage. The dynamically controlled test circuit for measuring performance in the recommended application circuit is similar to that circuit and is shown in Fig.7. The correction voltages from terminals 4 and 5 are applied to

Fig. 7 - Correction voltage test circuit for the CA3044 and CA3044VI.
the tuning elements of the voltage-controlled oscillator portion of the uhf and vhf tuners. These voltages may be used single-ended and of either phase-polarity for uhf oscillator control. The vhf oscillator may be controlled with a push-pull output to assure attainment of maximum tuning range. The channel-tuning defeatswitch function is normally accomplished by shorting the control-voltage terminals 4 and 5 together. For fil-
tering purposes and to protect the integrated circuit, it is best to include a shunt capacitor and series resistor between the tuning elements and terminals 4 and 5 ; in Fig. 2, 1000 -ohm resistors and 0.001 -microfarad feedthrough capacitors are used.

Fig. 8 - Printed circuit board containing the circuit of Fig.2.

\section*{Construction}

Fig. 8 shows a circuit board containing the circuit of Fig. 2; Fig. 9 is an unobstructed view of the printedcircuit board used. The location and orientation of the discriminator transformer coils affect the over-all response of the circuit; therefore, their placement should be given the greatest attention. Because the metal pattern must be taken into account in component placement, some experimentation may be necessary to achieve the best results. It is recommended that the circuit be shielded to prevent radiation of the \(45.75-\mathrm{MHz}\) signal.

Fig. 9 - An unobstructed view of the top (a) and bottom (b) of the printed circuit board used in Fig. 8.

The circuit described in this Note has been duplicated many times with both hand-made and commercial coils. Alignment has always been rapid and positive and the performance extremely uniform.

\title{
Feedback－Type Volume－Control Circuits for RCA－CA3041 and CA3042 Integrated Circuits
}

\author{
by \\ L．Kaplan
}

This Note describes feedback－type volume controls for use with RCA－CA3041 and CA3042 integrated cir－ cuits in television receivers．In television sets using these integrated circuits，the volume control is often located remote from the amplifier．The long leads re－ quired in such a configuration sometimes pick up un－ desirable signals that，in turn，cause the system to exhibit hum and noise at low volume levels．The pro－ posed feedback－type volume control reduces hum and noise pick－up by reducing the gain of the system rather than the signal level，and thus eliminates the cost of shielding the leads．

\section*{Types of Volume Controls}

Fig． 1 shows a conventional or＂losser＂type of volume control that is susceptible to hum and noise． When the input impedance of the amplifier is high，the input voltage \(\mathrm{E}_{\mathrm{i}}\) and the output voltage \(\mathrm{E}_{\mathrm{O}}\) depend on the voltage division between resistances \(R_{1}\) and \(R_{2}\) ．The gain of the amplifier is constant，but the input signal is increased or decreased according to the potentiometer rotation．

Fig． 1 －Conventional volume－control circuit．
Fig． 2 shows the basic variable－feedback volume control．＊When the wiper arm of the potentiometer is close to the input terminal，which has a signal input \(\mathrm{E}_{\mathrm{S}}\) ， the gain of the system is essentially the open－loop gain \(A_{0}\) ．As the wiper arm approaches the output termi－ nal，the gain is reduced to a closed－loop value \(A_{C}\) according to the following formula：
\[
A_{c}=\frac{A_{o}}{1+\beta A_{o}}
\]
where \(\beta\) is the feedback factor．

\footnotetext{
＊RCA Linear Integrated Circuits，Technical Series IC－41， ＂Integrated－Circuit Operational－Amplifier Configurattion，＂， pp．73－112，RCA Electronic Components，Harrison，N．J．
}

Fig. 2 - A variable-feedback volume-control circuit.

\section*{Feedback Control}

Fig. 3 shows the equivalent circuit of a feedback control. Gain control in this circuit is provided by the potentiometer, which varies according to the resistance ratio of \(\mathrm{R}_{\mathrm{S}}\) and \(\mathrm{Rf}_{\mathrm{f}}\). The system gain \(\mathrm{E}_{\mathrm{O}} / \mathrm{E}_{\mathrm{S}}\) for this circuit can be described by the following equation:
\[
\begin{equation*}
\frac{E_{o}}{E_{S}}=\frac{G_{S}\left(1-\frac{g_{m}}{G_{f}}\right)}{\left(G_{S}+G_{i}\right)\left(1+\frac{G_{L}}{G_{f}}\right)+g_{m}+G_{L}} \tag{1}
\end{equation*}
\]
where \(\mathrm{E}_{\mathrm{O}}\) and \(\mathrm{E}_{\mathrm{S}}\) are the output and input signal levels, respectively; \(\mathrm{g}_{\mathrm{m}}\) is the transconductance of the amplifier device; and \(G_{S}, G_{f}, G_{i}\), and \(G_{L}\) are the conductances of the source, feedback, input, and load resistances, respectively.

Fig. 3 - Equivalent circuit of a feedback volume control.

When the control is set for maximum gain (\(\mathrm{R}_{\mathrm{S}}=0\); \(G_{S}=\infty\)), the system reduces to the following expression:
\[
\begin{equation*}
\frac{E_{o}}{E_{s}}=\frac{G_{f}-g_{m}}{G_{f}+G_{L}}=\frac{R_{L}-g_{m} R_{f} R_{L}}{R_{L}+R_{f}} \tag{2}
\end{equation*}
\]

At the minimum-gain setting, the gain of the system is given by
\(\frac{E_{o}}{E_{s}}=\frac{1}{1+\frac{1}{G_{S}}\left(G_{i}+G_{L}+g_{m}\right)}=\frac{1}{1+R_{s}\left(\frac{1}{R_{i}}+\frac{1}{R_{L}}+g_{m}\right)}\)
The resistance \(R_{f}\) of Eq.(2) and the resistance \(R_{S}\) of Eq.(3) are the same because they represent the total resistance of the volume-control potentiometer. If the value of \(\mathrm{R}_{\mathrm{f}}\) in Eq.(2) is made large with respect to the load resistance \(R_{L}\), the gain and maximum volume reduce to the familiar expression \(g_{m} R_{L}\).

Eq.(3) shows that the gain of the system is not zero at the minimum volume setting. For both the RCA-

CA3041 and CA3042 integrated circuits, typical values encountered indicate that the expression is dominated by the transconductance \(\mathrm{g}_{\mathrm{m}}\). Substitution of typical values in Eq.(3) shows that the minimum-voltage gain of a 0.25 -megohm volume control is of the order of 98 dB and 136 dB below the maximum gain for the RCA-CA3041 and CA3042 circuits, respectively, which is well below the normally acceptable residual levels.

\section*{Loudness Contouring}

A desirable feature of audio systems in which lowfrequency overload may be encountered is bass roll-off at high volume levels. The low-frequency overload may result because of limited amplifier power output or an inadequate loudspeaker. In either case, an unpleasant "honking" can be avoided by use of variable low-frequency cut-off. This cut-off is achieved by use of the characteristics of the circuit shown in Fig.3. The input impedance \(Z_{i}\) of the system, as shown in Fig.3, is as follows:
\[
\begin{equation*}
Z_{i}=R_{s}+\frac{1+G_{L} R_{f}}{G_{i}+G_{L}+g_{m}+G_{i} G_{L} R_{f}} \tag{4}
\end{equation*}
\]

If the total resistance of the volume-control potentiometer is denoted by \(R_{V}\), the input impedance at minimum volume \(Z_{i}\) (min) is given by
\[
\begin{equation*}
Z_{i}(\min)=R_{V}+\frac{1}{G_{i}+G_{L}+g_{m}} \approx R_{v} \tag{5}
\end{equation*}
\]

At maximum volume, the input impedance \(Z_{i}\) (max) changes to the following expression:
\[
\begin{equation*}
Z_{i}(\max)=\frac{1+G_{L} R_{V}}{G_{i}+G_{L}+g_{m}+G_{i} G_{L} R_{L}} \tag{6}
\end{equation*}
\]

Thus, the input coupling capacitor can be selected to roll off at the desired frequency at maximum volume with assurance that at lower volumes the lower frequencies will be enhanced. With typical device parameter values of the CA3041 or CA3042, the input impedance reduces to approximately 10,000 ohms at maximum volume. When the CA3041 and CA3042 are used in the circuits shown in Figs. 4 through 8, the input impedance at minimum volume is essentially the resistance of the volume control used.

Fig. 4 shows a diagram of a feedback-type volumecontrol circuit for the CA3041. This circuit offers enhanced power output and gain as compared to a conventional 'losser" type of volume-control-circuit such as that shown in Fig.5. At a carrier frequency of 4.5 MHz , the circuit provides one watt of power output at \(\pm 8.5-\mathrm{kHz}\) deviation. In this circuit, the coupling capacitor and the resistor to the grid of the output tube are eliminated. This arrangement offers cost savings because it uses fewer parts and is easier to assemble.

Fig. 6 shows a circuit in which the CA3042 is used in a feedback control. The circuit shown in Fig. 6 can provide 2 watts of audio power output at \(\pm 7 \mathrm{kHz}\) maximum

Fig. 4 - A feedback volume-control circuit for the RCA-CA3041.

Fig. 5 - A conventional volume-control circuit for the RCA-CA3041.

Fig. 6 - A feedback volume-control circuit for the RCA-CA3042.

Fig. 7 - A conventional volume-control circuit for the RCA-CA3042.

Fig. 8 - A low-cost feedback volume-control circuit for the RCA-CA3042.
frequency deviation from the \(4.5-\mathrm{MHz}\) carrier. This circuit costs less than a conventional circuit such as that shown in Fig. 7 because it uses smaller coupling capacitors.

Fig, 8 shows a very-low-cost circuit that provides essentially the same performance as the circuit shown in Fig.6. An additional capacitor and resistor are eliminated in this circuit. Although a steady-state current flows through the volume control, it is limited to about 1.5 microamperes under worst-case conditions. Because of the small but finite current flowing through \(R_{1}\), the current shifts in the output transistor as the control is rotated from minimum to maximum. The current deviation is \(\pm 6\) milliamperes maximum about the nominal value, and the flow is in a direction that reduces current at low volume and increases it at high volume.

\section*{Tapers}

Because the gain of the system, rather than the input signal, is varied, the volume taper of a feedback
control is characteristically different from that of a conventional "losser" type of control. Therefore, Eq.(1) can be rewritten as follows:
\[
\begin{equation*}
\frac{E_{o}}{E_{S}}=\frac{1-a g_{m} R_{V}}{1+(1-a) G_{i} R_{V}\left(1+a R_{v} G_{L}\right)+R_{V} G_{L}+g_{m}(1-a)} \tag{7}
\end{equation*}
\]
where the term \(\mathrm{R}_{\mathrm{f}}\) of Eq.(1) is replaced by (\(a R_{V}\)) and \(R_{S}\) is replaced by (1-a) \(R_{V}\). The gain then becomes a function of the term a, which expresses the taper of the control. Curves of this equation for various tapers are shown in Fig. 9.

The exponential functions of the taper factor, \(a\), actually define the familiar logarithmic tapers; however, they are arranged counterclockwise so that, as the con-
trol is rotated clockwise, the resistance increases very rapidly at first and then more slowly toward maximum resistance. A linear taper (bottom curve of Fig.9) exhibits almost a step-function response, while the parabolic taper is slightly smoother. Clockwise log tapers fall below the linear-taper curve, and are thus totally unacceptable. The controls which are probably most satisfactory are those which correspond to very-lowpercentage counterclockwise log tapers.*
* The percentage taper is calculated as follows:
\[
\frac{R_{\text {(measured from start of control to wiper arm) }}}{\text { Total resistance }} \times 100,
\]

The measurement is taken at 50 -per-cent rotation of the control.

Fig. 9 - Gain as a function of rotation for various types of potentiometers.

Linear Integrated Circuits

\title{
An IC for AM Radio Applications
}

\author{
by \\ L. Baar \\ RCA Solid State Division \\ Somerville, N. J.
}

An integrated circuit intended to be used in AM radio applications can assume many forms depending on the class of service in which it is to be used. The RCA-CA3088E is designed for use in high-quality AM superheterodyne receivers. It provides the basic functions of signal conversion, if amplification, detection, and audio preamplification sufficient to drive a separate power amplifier. Auxiliary functions supplied are: a supply-voltage regulator, internal agc for the first if amplifier, agc voltage for an optional external rf stage, and an amplified signal to drive a tuning-meter output. This device is housed in a 16-lead dual-in-line plastic package.

While the circuit design is intended for use in commercial AM broadcast receivers, it is equally suited for use in most AM receiver applications up to a frequency of 30 MHz . In addition, since most functions are externally accessible this device is also a general-purpose amplifier array. The possible number and variety of uses of the CA3088E are largely a function of the needs and imagination of the designer.

\section*{INTEGRATED CIRCUIT DESCRIPTION}

The schematic diagram of the RCA-CA3088E is shown in Fig. 1. The correspondence of terminals to functional section within the device is shown in Table I. The various stages are designated in terms of AM-radio functions because the primary functions of the device are so intended; the AM-radio terminology is continued throughout the paper for the sake of continuity.

The heart of this integrated circuit is the second if amplifier-detector combination. The if amplifier consists of Q7, Q9 and Q10 with their associated components. Q7 and Q10 are emitter followers which isolate the gain stage, Q9. The supply voltage to the collectors is regulated by the zener diode, Z 1 . The quiescent operating point is stabilized by connecting the emitter of Q10 to the base of Q7 through R14. The connection is made by externally tying pin 7 to pin 8 through a suitable impedance. For dc stabilization, pin 7 should be at ac ground

Fig. 1 - Schematic diagram of the RCA CA3088E.

TABLE I. CORRESPONDENCE OF TERMINALS TO FUNCTION
\begin{tabular}{ll}
Function & Terminal \\
Converter & \(1,2,3\) \\
First IF Amplifier & 4,6 \\
Second IF Amplifier-Detector & \(7,8,9,10\) \\
AGC Amplifier & 11,13 \\
Tuning-Meter Amplifier & 12 \\
Audio Preamplifier & \(14,15,16\)
\end{tabular}
potential, otherwise signal feedback will modify the basic characteristic of the stage. The output of Q10 is fed directly to Q12, an emitter follower operating at a quiescent current of approximately 100 microamperes. This stage becomes a detector by connecting the proper filter circuit to the emitter; the emitter is brought out on pin 9 . The rectified emitter current develops a voltage at the junction of R20 and R21; the junction is connected to the bases of the agc and meter amplifiers.

Q11 is an emitter follower normally used to drive a tuning meter at pin 12 . Q11 is biased off with no signal and will deliver approximately 150 microamperes with a maximum signal as indicated in the curve of Fig. 2.

Q8 is an agc amplifier intended to control an optional external rf amplifier. Collector voltage, applied through a load resistor to pin 13 , provides a decreasing voltage at pin 13 with increasing signal. The voltage drop across diode D5 must be overcome by the drive voltage to the base of Q 8 , thus introducing a delay in the application of gain control to the rf stage. The agc curve of a typical circuit is shown in Fig. 2.

Fig. 2 - Typical performance curves for the CA3088E.

Q5 is the first if amplifier and is biased to draw one milliampere of current under zero signal conditions. This condition is set by the biasing circuit of Q2, Q3, Q4 and diodes D1 through D4. A nominal current of one milliampere is established in Q3, which is a mirror of Q5, thus determining the current in Q5. The supply voltage to the biasing circuit is also regulated by Z 1 . With no signal, Q6 is cut off and has no affect on the operating point of Q5. As signal strength increases and the base drive voltage increases, Q6 conducts some of the base current being applied to Q5 and reduces the collector current and, thus, the gain, as shown in Fig. 2.

Q1 is normally used as a converter stage. It is biased to a nominal current of 0.35 milliampere by diodes D3 and D4 in combination with the source resistor, R 2 . The emitter is brought out on pin 1; this terminal may be bypassed or may be used to apply a local-oscillator signal to the emitter.

Q13 and Q14 form the audio driver stage, a grounded emitter stage coupled directly to an emitter follower. The emitter follower provides a low-impedance drive for an external audio amplifier. This stage must be externally biased; a convenient method is to feed a portion of the dc potential on the emitter of Q14 to the base of Q13 with the proper network connected between pins 14 and 15 . A nominal voltage gain from pin 14 to pin 15 of 30 times is determined by the ratio of resistor R18 to R17.

In addition to the voltage regulation provided by the zener diode, Z1, the circuit is temperature compensated by the bias circuit described previously. Transistors Q1, Q5, and Q13 are large-geometry devices which provide low-noise performance in the CA3088E. All emitter follower stages which have the emitters brought out to external terminals are protected against inadvertently shorted terminals. The size of the chip is 52 mils by 52 mils.

\section*{APPLICATIONS}

\section*{AM Broadcast Receivers}

When would a designer use the CA3088E as the basic subsystem of an AM radio? The typical low-cost table model or portable radio ordinarily has neither an rf amplifier stage nor a tuning meter; therefore, two features of the CA3088E have no use in simple AM radios. Furthermore, economic considerations make it difficult for integrated devices to compete with discrete devices in these minimal-performance receivers. On the other hand, the high-performance console receiver is an application in which all of the features of the CA3088E are useable. The CA3088E, in which the biasing of most stages is accomplished internally, provides savings in the number of components to be specified, purchased, handled, and connected.

Fig. 3 shows the circuit for a typical AM receiver using the CA3088E. Double-tuned transformer-coupled circuits are shown here, but any of the other forms of band-pass filters may be used that best suit the needs of the designer. The rf stage may take on any of several forms and so is shown only as a gain block. The intention here is not to present an optimum receiver design, but to show how a specific device, the CA3088E, may be used. Fig 4 shows performance curves obtained in a receiver using the CA3088E in conjunction with an external rf stage.

In addition to commercial broadcast-receiver, a multitude of receiver applications exist in communications equipment of all forms. The CA3088E will suit many of these applications with the extra features available in the circuit. The CA3088E may be used as a straight if amplifier for use with a separate tuner, or it could serve as a subsystem in a double-conversion receiver.

Fig. 3 - Typical AM broadcast receiver using the CA3088E.

Fig. 4 - Performance curves for an AM receiver with an rf stage using the CA3088E.
Amateur radio receivers are a natural for the circuit. Narrowband or fixed-tuned systems, such as remote control systems, and hand-carried receivers, systems in which the space saving features of an integrated circuit could be important, could make good use of the CA3088E.

\section*{High-Frequency Applications}

Many receivers use if amplifiers at the higher frequencies; therefore, the high-frequency characteristics of the CA3088E are important. Table II shows some of the four pole characteristics of the individual signal stages of the CA3088E at 1 MHz and 30 MHz . The forward transconductance is not significantly affected in the frequency range considered.

The high-frequency performance of the second-if-amplifier/ detector stage is determined within the chip. Fig. 5 is a plot of the voltage gain of the stage as a function of frequency. The gain is down about 6 decibels at 10 MHz and about 16 decibels

TABLE II. INPUT AND OUTPUT IMPEDANCE DATA
\begin{tabular}{lccccccc}
& \begin{tabular}{c}
CIN \\
Picofarads
\end{tabular} & \begin{tabular}{c}
COUT \\
Picofarads
\end{tabular} & \begin{tabular}{c}
\(C_{f b}\) \\
Picofarads
\end{tabular} & \begin{tabular}{c}
1 MHz \\
\(R_{i}\) \\
Ohms
\end{tabular} & \begin{tabular}{c}
30 MHz \\
\(R_{i}\) \\
Ohms
\end{tabular} & \begin{tabular}{c}
\(\mathrm{R}_{\mathrm{o}}\) \\
Ohms
\end{tabular} & \begin{tabular}{c}
\(R_{\mathrm{o}}\) \\
Ohms
\end{tabular} \\
\(\mathrm{Q}_{1}\) & 12 & 5 & 1.5 & 3500 & 2000 & 100 K & 9 K \\
\(\mathrm{Q}_{5}\) & 17 & 5 & 1.5 & 2000 & 1000 & 100 K & 9 K \\
\(\mathrm{O}_{7}\) & 3.5 & - & - & 75 K & 45 K & - & -
\end{tabular}
at 30 MHz . The nominal gain of this stage is 40 decibels; therefore, this stage has considerable gain at these frequencies.

The converter and first-if stages will operate at higher frequencies, but stability considerations will control the practical gain. Calculations of maximum useable gain (MUG) and maximum available gain (MAG), using the data in Table I for the unneutralized single-stage amplifier, show that about 10 decibels of power gain must be sacrificed to maintain good stability at 30 MHz . More gain can be obtained by neutralizing, but at the expense of circuit simplicity.

The audio-preamplifier stage may also be used as another if stage provided that the low-output impedance of the emitter follower is not detrimental to performance. The stage may be used to drive a crystal or ceramic filter in which the typical matching impedances are quite low. The frequency response of this stage is very similar to that of the second-if stage with about 6 decibels drop in gain at 10 MHz . This stage may also be controlled by the output from pin 13 as is the case with the external rf stage.

Fig. 6 shows the circuit of a 10.7 MHz if amplifier using two ceramic filters. This circuit shows how the use of the CA3088E with low-impedance filters can simplify a design. Stability is maintained by the low-impedance terminations used with the filters. The first two stages are coupled together with a single-tuned circuit which provides impedance matching. A

Fig. 5 - Plot of voltage gain as a function of frequency for the second-if-amplifier/detector stage of a CA3088E.

50 -microvolt input signal with 30 -percent modulation produces a detected audio signal of 22 millivolts at the detector output. The audio stage may be used as an audio driver or as an additional if stage to drive the input ceramic filter.

\section*{General-Purpose Amplifier Array}

The CA3088E is versatile enough to be used as a general-purpose amplifier array. Q1 and Q5 are internally biased and require only a collector load to produce an amplifier. These devices may be operated to a maximum collector voltage of 16 volts. With the addition of external biasing, the operating points of these stages may be varied from the internally established quiescent point. The second-if-amplifier/ detector combination is biased externally as discussed previously. Q12, which is normally connected as an envelope detector may be connected as another emitter follower by loading resistors R20 and R21 with an external resistor.

Fig. 6 - A 10.7-MHz if amplifier using the CA3088E and two ceramic filters.

The audio preamplifier is independent and biased externally. The gain-control circuits may be used as in the AM-radio applications. If Q12 is not used as a detector, the gain-control voltage can be applied on pin 11. Q11 provides a positive-going voltage with increasing signal and Q8 provides a negative-going voltage.

\section*{Acknowledgements}

The author thanks Messrs. Leo Harwood and Max Malchow for their aid and suggestions in discussions concerning this project, and Mr. Frank Curley for his aid in circuit construction and collection of data.

Solid State Division

\title{
A Single IC for the Complete PIX-IF-System in TV Receivers
}

\author{
by S. Reich and R. T. Peterson
}

The RCA CA3068 linear integrated circuit is a PIX-IF-subsystem in a shielded quad-formed dual-in-line plastic package of 20 -lead configuration. This package contains all the active devices and most of the passive elements necessary for a high performance, PIX-IF-system for a TV receiver. This Note describes the receiver functions performed by the CA3068, and its application to color and black \& white TV receivers.

Specifically, the receiver functions performed by the CA3068 are:
(1) Video IF Amplification
(2) Linear video detection
(3) Noise-limited amplification of detected video
(4) Keyed AGC, with noise-immunity circuits
(5) AGC delay for tuner RF stage
(6) Buffered output signal to drive Automatic-Fine-Tuning (AFT) circuits
(7) Amplification of intercarrier frequencies
(8) Sound-carrier detection
(9) Sound-carrier amplification
(10) Zener reference diode for voltage regulation.

Fig. 1- Block diagram of a typical color TV receiver utilizing the CA3068.

The only external components required for the operation of this IF subsystem are bandwidth shaping networks, biasing networks and a power supply. A complete functional block diagram of a typical color TV receiver is shown in Fig. 1. A detailed block diagram of the CA3068, together with its peripheral tuned-circuits, is provided in Fig. 2. It should be noted that the circuit functions performed by the CA3068 represent a breakthrough in terms of IC design for PIX-IF systems, and that these circuit functions are accomplished without compromise in quality of performance.

This Note contains a detailed description of circuit functions within the integrated circuit, together with examples of the use of the CA3068 in actual PIX-IF amplifier PC-boards for color and black-and-white TV.

\section*{General Description of Circuit Functions in the CA3068}

As shown in the block diagram of Fig. 2, the IF-signal from the tuner is applied to the input (terminal No. 6) of the cascode IF amplifier. Output from the cascode amplifier is then coupled to a wideband amplifier at terminal No. 13 through the interstage transformer (\(\mathrm{T}_{2}\)). Under maximumgain conditions the overall gain of the CA3068 is typically 75 dB at PIX-IF frequencies. This signal is then applied to a linear video detector, whose output signal is fed to a video amplifier having a gain of 12 dB .

Bandpass shaping is accomplished by means of tunedcircuits preceding the input stage (terminal No. 6) and at the interstage circuit comprising input and output terminations via terminals 9, 12 and 13 as shown in Fig. 2. Terminal No. 16 is tied in at this point to provide loop bias for the input stages of the amplifiers connected to terminals 12 and 13. The AGC-voltage developed within the CA3068 is applied to its input stage by an external path from terminal No. 4 to terminal No. 6 through the input circuitry, as shown in Fig. 2. The developed-AGC is gated by a keying pulse applied to terminal No. 3 from the horizontal sweep circuit of the TV receiver. Delayed AGC for the tuner's RF amplifier is obtained from terminal No. 7; the delay is variable by adjustment of a resistance (\(25 \mathrm{k} \Omega\)) in series with the supply to terminal No. 8.

The zener reference voltage for the power-supply regulating pass-transistor is developed at terminal No. 18 when this terminal is connected to a voltage supply through a current limiting resistor. This resistor value should be selected to provide a quiescent current into the zener of 0.5 to 1.5 mA (excluding the base current for the pass transistor).

Terminal No. 15 is the dc input terminal that provides power for most of the CA3068 and should be connected to a regulated supply of 11.3 V . The CA3068 package has a 20 -lead configuration with 18 active terminals. Terminal Nos. 11 and 20 have been omitted from the package; their

Fig. 2- Detailed block diagram of CA3068 showing interconnections with external components.
corresponding leads are internally connected to the shield. Terminals Nos. \(1 \& 5\) are grounding pins. In addition, terminals Nos. \(10 \& 14\) (not shown in Fig. 2) are at ground potential. Additional information relative to dc grounding is given in the section that discusses IF design.

\section*{Detailed Circuit Functions}

A simplified schematic diagram of the CA3068 appears in Fig. 3. The diagram is partitioned to facilitate the explanation of the circuit configuration and its functions. Similar circuit function designations are used in the block diagram shown in Fig. 2.

The cascode input amplifier (1st IF) is a unique circuit designed for dual-mode operation. At low level input signals, the buffer stages formed by Q19 and Q20 drive the base of the cascode - IF amplifier comprised of Q3 and Q2. Negative-going AGC is applied to Q19 (through an external connection to terminal No. 6) which increases in proportion to the increase of the input signal level. After approximately 40 dB of gain reduction is reached in this operational mode, Q3 is cut-off, and its function is assumed by Q4. Emitter degeneration in Q4 increases the dynamic input range of the cascode amplifier sufficiently to cope with the higher range of input signal level. The point at which Q4 assumes the input amplifier function is sensed by Q1. It should be understood that transistors Q1, Q20 and Q3 approach cut-off at essentially the same signal level. As Q1 approaches cut-off, it draws less shunting current from terminal No. 8 and base current drive to Q21 is increased. The point at which sufficient base current is available to drive Q21 into conduction is determined by an external delay-AGC potentiometer connected in series with the \(\mathrm{V}+\) supply-lead and
terminal No. 8. As Q1 cuts-off, the current flowing into terminal No. 8 is diverted to the base of Q21. When Q21 starts to conduct it turns on Q5, thereby causing the open-circuit voltage at terminal No. 7 to drop and produce a negative-going AGC voltage for the tuner's RF stage. Q21 is also part of the IF-AGC feedback loop and provides an increase in AGC loop-gain. This increase compensates for the decrease in AGC loop-gain that occurs when the cascode-IF amplifier is transitioned to its modified cut-off characteristic. After tuner gain reduction has reached its maximum, an additional 10 dB of gain reduction can be obtained in the cascode amplifier under this modified cut-off condition.

This reverse AGC system is used for the cascode input stages because the stability achieved under maximum-gain conditions is maintained throughout the range of AGC functioning.

The wideband-IF amplifier consists of transistors Q6, Q7 and Q8. Q6 serves as a buffer stage between the interstage tuned-circuits and the AFT output signal terminal. The actual IF signal amplification takes place in Q7 and Q8, effectively serving the function of 2 nd \& 3rd PIX-IF stages. Transistor Q8 is the driving source to Q22, the video detector. This driving source impedance is approximately 500 ohms as a result of the degenerative feedback loop through R13. The feedback network also extends the 3 dB -down frequency response to beyond 70 MHz . It is this low detector driving point impedance and the absence of a tuned-circuit at this interstage point that contribute to the superior performance of the detector system. In most conventional detection systems, the detector is driven from a high-impedance source involving a double-tuned interstage

Fig. 3- CA3068 - Simplified schematic diagram.
transformer with unequal primary and secondary Q's. In such a system, variations in detector impedance (caused by normal video excursions) can produce significant phase shifts that adversely affect color fidelity. In the CA3068, the untuned, low-impedance detector drive circuit produces a nearly optimum condition for the detector circuit.

The detector circuit consists of transistor Q22 and its biasing network Q9, Q23 and R19. Q23 is biased to the same potential as Q22 because the bases are tied together through the resistance element of the low pass filter that consists of R18 and C1. R19 and C2 form a conventional peak detector in which the time constants are selected for optimum detector efficiency and desired video bandwidth. This system detects chroma subcarrier without introducing differential phase errors as a function of the video signal, and detects the video signals with a minimum of amplitude distortion. The low signal-level requirements for the detector, the absence of tuned-circuits in the detector drive circuit, and the low source impedance for the detector, all contribute to the superior detector performance.

The video detector is direct-coupled to the video amplifier. Consequently, a dc input voltage above the level of one \(\mathrm{V}_{\mathrm{be}}(0.7 \mathrm{~V})\) drop at the input to Q 12 determines the condition for white level (dc) at the output (terminal No. 19). It is, therefore, necessary to prevent the conduction of Q12 in the absence of detected video. This function is accomplished by the differential amplifier circuit arrangement consisting of transistors Q10 and Q24. In the absence of signal. the dc potential at the emitters of Q10 and Q24 is identical. The current through Q10 must equal the current through Q24, because R21 is similar in value to R22. This current also flows through D2 (which has the same geometry as Q11). Consequently, Q11 carries all the current supplied by Q24 and no current is available for D3, so that Q12 is held on the edge of conduction. When an RF carrier is present, the current in Q24 increases in direct proportion to the carrier level. However, the current in Q10 remains fixed. When the current increases in Q24, this increase can only flow through D3. Since the current in Q12 is directly proportional to the current in D3, increased current flow in D3 causes a corresponding increase in current through Q12, and produces a video output at terminal No. 19.

As the video carrier signal increases, the dc level at the base of Q12 increases, and there is an accompanying decrease in the dc level at the base of Q25 and at terminal No. 19. With a sufficiently strong RF signal, the current through Q12 and R23 increases such that the base voltage of Q25 is driven toward dc ground. The "bottoming" level, at terminal No. 19, under nominal signal conditions is locked to about 0.8 V as a result of the high loop gain of the AGC system. Any further increase in the signal, after "bottoming" is reached, will be clipped. This operational feature serves as a highly effective mechanism to limit impulse noise.

When a signal is present at the input, the composite video signal appears at the emitter of Q25. The sync tips in this
composite waveform drive the keyed AGC amplifier Q13 which in turn drives Q14. Without a video RF signal there is no video signal output and Q13 conducts during the keying intervals, (horizontal pulse connected to terminal No. 3). As the detected signal level increases in amplitude and the output voltage at terminal No. 19 approaches its typical operational level of 7.0 volts peak-to-peak, the peak potential at the base of Q13 begins to fall below 0.8 V . Under these conditions, the keying current formerly channeled through Q13 is diverted through the diode D4. As the signal level rises even higher, a greater portion of the Q13 collector current is diverted through D4 and the base current to Q14 is proportionately increased. A \(10 \mu \mathrm{~F}\) capacitor is normally connected between terminal No. 4 and ground and is, thereby, connected in shunt with Q13. The charge on this external capacitor is maintained through a bleeder resistor to \(\mathrm{V}+\). As the base current to Q14 increases, Q14 discharges the capacitor at a rate that is proportional to the base current of Q14. Integrating the total charge on the capacitor over the keying interval yields a dc level (AGC voltage) that is inversely proportional to the incoming signal level, i.e. AGC voltage approaches zero as the signal increases.

Any high performance AGC system must have noise immunity characteristics in order to avoid the establishment of false AGC levels. AGC voltage developed from random noise can produce "wash-out", "blank raster" and/or a momentary "loss of sync". The CA3068 is designed with an improved noise immunity circuit that essentially removes the keying current during periods of high noise input. The active devices responsible for providing protection against this deleterious effect of the impulse noise are the "noise detector", Q26, and the "noise clamp" Q15. Impulse noise is channeled through the high pass filter network consisting of C3 and R27 to the detector input Q26. Q26 and C4 comprise a conventional peak detector. The dc level across C 4 , which is proportional to the level of impulse noise, turns on Q15, thereby clamping the keying supply voltage (terminal No. 3) to ground. In actual operation, the terminal No. 3 supply has a series resistance that is large enough to limit the peak current into the zener diode (Z5) to approximately 0.8 mA . When Q15 conducts it shunts this current to ground.

The sound-IF-channel and PIX-IF-channel signals whose "carrier" frequencies are 41.25 MHz and 45.75 MHz respectively, are applied to terminal No. 12. Q16 functions as a buffer between the interstage-tuned-circuits associated with terminal No. 12 and the PIX/sound-channels amplifier Q17. The intercarrier frequency (the difference frequency between the PIX and sound "carrier" frequencies) is detected by the peak detector Q27 and C5. The resultant 4.5 MHz FM sound-intercarrier signal is fed to transistor Q28. This transistor and Q18 form a differential pair that provides an amplified intercarrier sound-IF signal to the base of Q29. A feedback system through the RC networks in the emitter of Q29 provides bandpass shaping in the region of 4.5 MHz while maintaining a low dc gain. The low level of dc gain is desirable because the circuit receives its bias in an open-loop
manner from terminal No. 16. The bandpass of this amplifier system is fairly broad and even though it is optimized for 4.5 MHz operation, there is relatively high output at other intercarrier frequencies as shown in the curve in Fig. 4.

Fig. 4- Relative sound-carrier output-vs-frequency.

The internal zener reference-diode consists of the series diode arrangement shown connected between terminal No. 18 and the substrate. A regulator circuit configuration, showing the pass transistor interconnected with the reference diode, is given as part of the color and b\&w IF amplifier circuits that are discussed in the following paragraphs. Similarly, the regulation curves shown in Figs. 5a and 5b will be discussed below in more detail. It should be noted that (with a proper heat sink for the 2 N 5183 and a lower value for the resistor in series with the collector) the regulated voltage from this supply may be used to provide power to other circuits in addition to the CA3068.

The distribution of tuned circuits around the CA3068 amplifier circuit is a matter of preference by the circuit designer. In general, a total of five tuned circuits will be required subsequent to the mixer for proper selectivity and band-pass shaping. In addition, at least one 47.25 MHz adjacent sound-channel and one 41.25 MHz sound-channel traps will be required. The systems to be discussed in this application Note are driven from a single tuned circuit connected to the mixer output.

In addition, both the color and b\&w IF systems described subsequently utilize two double-tuned circuits; one at the input to the cascode amplifier and one at its output. The second transformer is used to couple output from the cascode-IF amplifier to the wide-band IF amplifier (i.e. the output from terminal No. 9 to input terminal No. 13 for the PIX-channel and input terminal No. 12 for the soundchannel). All the IF transformers are synchronously tuned.

Fig. 5- Regulated supply of CA3068 (a) Voltage-vs-current for zener reference diode of CA3068 (b) Voltage-vs-current for regulated supply of CA3068.

The IF system for a color-tv receiver was designed to operate with a tuner containing an MOS fieldeffect transistor RF amplifier to illustrate the operation of the CA3068 with a "reverse" AGC arrangement. In contrast, the IF system for a b\&w receiver was designed to operate with a tuner containing a bipolar transistor in the RF amplifier, to illustrate the operation of the CA3068 with a "forward" AGC arrangement.

\section*{IF Design for Color-TV Receiver}

The circuit diagram of the IF system for a color receiver is shown in Fig. 6a. A schematic drawing of the PC board component layout and an actual size bottom view of the PC board are shown in Fig. 6 b and 6 c , respectively. The basic operation of the system may be explained by reference to the block and schematic diagram in Figs. 6a and 7. The input to the IF system is coupled through a 50 ohm cable from the TV mixer, that employs a single-tuned output coil having an impedance transformed down to 50 ohms. The input and interstage circuits include double-tuned over-coupled transformers. The IF input circuit drives a cascode-IF amplifier with a gain capability of 35 dB . The input impedance to the cascode IF-amplifier is greater than 4000 -ohms at minimum signal levels and increases with AGC action. The source impedance as seen by the CA3068 is approximately 500 ohms, which completely dominates the input circuit conductance node. Similarly, the output impedance of the cascode amplifier is loaded by a tuned circuit with an impedance of approximately 3000 ohms. Again, the tunedcircuit conductance dominates the output node. For this reason, the IF amplifier stability is unaffected by the IC impedance variations and is a function of the feedback component. This feedback component consists of coupling within the IC packaging, PC-board stray capacitances, and PC-board common impedances. It can be shown that with the maximum device feedback capacitance the amplifier is stable. For example, with circuit bias conditions of \(\mathrm{I}_{9}=2 \mathrm{~mA} ; \mathrm{Y}_{21}=50 \mathrm{mmhos}\) and \(\mathrm{C}_{\mathrm{fb}}(\max)=0.005 \mathrm{pf}\), the maximum usable gain (MUG) is 42 dB (which allows for a
\(20 \%\) skew factor). The fact that this value of MUG is greater than the actual circuit gain (35 dB) substantiates the stability.

Although these calculations show the device to be theoretically stable, it must be realized that it is possible for external feedback mechanisms to, in effect, raise the level of feedback in any high-gain physically small RF amplifier and produce instabilities. For this reason, the PC-board layout is extremely important, and any high-gain IF amplifier design would be incomplete without a board layout such as that shown in Fig. 6b.

As mentioned previously, the interstage transformer loads the cascade amplifier with approximately 3000 ohms. It provides a 500 -ohm source impedance to the input terminal No. 13, (the wide-band IF amplifier section). The impedance at terminal No. 13 is approximately 5000 ohms. The driving-point impedance to the sound-IF terminal No. 12 is about 1000 ohms and it looks into a 5000 -ohm input circuit.

The circuit design shown in Fig. 6a includes a 47.25 MHz bridged " \(T\) " adjacent-sound-channel trap at the input circuit. It may also be desirable to include a 39.75 MHz trap for adjacent video carrier when the receiver is intended for operation in CATV systems or in areas where adjacent channels are available. Such a trap may consist of a 39.75 MHz bridge " T " connected in parallel directly across the 47.25 MHz trap. The 41.25 MHz trap is a rejection filter for the video amplifier and allows the carrier to pass into the sound system. Both traps provide the additional selectivity necessary for attenuation of the undesired frequencies by more than 40 dB .

Fig. 6a-Schematic diagram and coil data.

* SEE FIG. 6A

Fig. 6b- Top view of circuit board layout.

Fig. 6c-Bottom view of color P.C. board. (actual size).

The wide-band IF amplifier provides two extra stages of gain (approximately 40 dB). It presents a very low drivingpoint impedance to the linear detector, as described earlier. The detected signal then undergoes an additional 12 dB of video amplification. The video output at terminal No. 19 is nomimally 7 volts (peak-to-peak). AGC is developed when the input signal reaches and exceeds the magnitude necessary to produce this video output level. Fig. 8a shows the developed AGC bias (terminal No. 4 voltage) as a function of signal level at terminal No. 6. Fig. 8b shows the delayed AGC voltage at terminal No. 7 (for application to the tuner) with R1 adjusted so that this delay-bias is generated whenever the IF input signal at terminal No. 6 exceeds 8 mV . The curve in Fig. 8c depicts the over-all AGC characteristic in terms of AGC bias voltage at terminal No. 4 when the AGC system is adjusted to yield the curves in Figs. 8a and 8b. Similarly Fig. 8d shows the AGC characteristics when delayed-voltage from terminal No. 7 is applied to the tuner.

Fig. 7 shows the CA3068 coupled to an RCA tuner that uses an RCA type 40820 MOSFET in the RF amplifier stage. AGC voltages are applied (shown in Fig. 7) to optimize over-all TV receiver performance; so that, when maximum receiver sensitivity is required, (such as during the reception of weak signals from the antenna), the tuner will operate at optimum noise factor and maximum gain. As the input signal level increases, it is still desirable to operate the RF stage at optimum signal-to-noise ratio until the signal level is of sufficient magnitude as to override any tuner noise degradation brought about by the application of AGC. Therefore, the gain reduction voltage should be delayed to the tuner until the signal level builds up. Fig. 8 b shows that this AGC is delayed until the IF signal level reaches an 8 mV level. Then the tuner-gain-reduction mode is initiated. After the tunergain reduction is expended, at least another 10 dB gain reduction is still available in the cascode portion of the IF amplifier.

An output signal is available at terminal No. 14 to drive an automatic-fine-tuning (AFT) subsystem-IC such as the

Fig. 7- Block diagram of a color IF system.

RCA Type CA3064. This connection is a buffered output from an emitter follower as described earlier. The level of signal at 45.75 MHz to drive the AFT circuit is nominally 15 mV .

The AGC system is, for the most part, self-contained. An optimized AGC response characteristic can be achieved by use of a high quality tantalum \(10 \mu \mathrm{~F}\) capacitor connected between terminal No. 4 and ground. The 1500 -ohm series resistor connected between terminal No. 4 and the \(0.005 \mu \mathrm{~F}\) capacitor to ground form a decoupling network which smooths the AGC ripple associated with the charge and discharge of the \(10 \mu \mathrm{~F}\) capacitor, at the horizontal oscillator frequency rate. The AGC system is normally keyed from the horizontal output circuit in the TV system. This keying pulse should be applied to terminal No. 3. The magnitude of the pulse should be sufficient to supply a nominal peak current value of 0.8 mA into terminal No. 3. The value of the series resistor \(\mathrm{R}_{\mathrm{S}}\), associated with terminal No. 3 may be computed as follows:
a. During the conduction period (with keying applied), the constant voltage components within the integrated circuit account for
\[
\left.\mathrm{V}_{\mathrm{K}}=8.2 \mathrm{~V} \text { (it is assumed that } \mathrm{I}_{3}=0.8 \mathrm{~mA}\right)
\]
b. If the keying pulse magnitude is \(\mathrm{V}_{\mathrm{p}}=15 \mathrm{~V}\), then
\[
\begin{aligned}
& \mathrm{I}_{3}=0.8 \mathrm{~mA}=\frac{15-\mathrm{V}_{\mathrm{k}}}{\mathrm{R}_{\mathrm{S}}}=\frac{(15-8.2) \mathrm{V}}{\mathrm{R}_{\mathrm{s}}} \\
& \mathrm{R}_{\mathrm{s}}=8.5 \mathrm{k} \Omega
\end{aligned}
\]

The sound output is derived from terminal No. 2 at a level compatible with the input requirements of a TV sound IF-subsystem IC such as the RCA Type CA3065. There is also a dc component of approximately 6.7 V present at terminal No. 2. Coupling networks to subsequent circuits must contain a suitable dc blocking capacitor.

Small chokes located in the sound and video outputs are self-resonating (terminals Nos. 2 and 19) at the intermediate frequencies to prevent IF leakage into subsequent stages.

The CA3068 IF subsystem has an internal zener reference-diode for operation with an external voltageregulator pass transistor. A suggested circuit arrangement is shown as part of the over-all IF schematic in Fig. 5b. The voltage-regulator pass-transistor has a nominal output voltage of 11.3 V . Bypassing of the \(\mathrm{V}+\) supply with reference to the IF subsystem is important and the suggested arrangement shown in the schematic should be used. Specifically, the base of the pass transistor should be bypassed to ground. The emitter is bypassed to terminal No. 17 on the CA3068. Even though terminal No. 17 is at dc ground potential it should not be tied to ground but rather should be bypassed in the manner shown, to avoid mutual impedance coupling within the CA3068.

Fig. 8- Color TV IF AGC characteristics (a) AGC voltage-vs-IF input signal (b) Delayed AGC-vs-IF input signal (c) AGC-vstuner input signal (d) Delayed AGC-vs-tuner input signal.

The IF circuit shown in Fig. 6a was designed with two overcoupled IF transformers. The alignment procedure is straight forward and should follow the procedure given below:
1. Apply a negative bias supply through a \(470 \mathrm{k} \Omega\) series resistor to the terminal marked "gain adjust". This bias is intended to override the AGC loop-bias during the alignment procedure.
2. Apply a swept signal from a terminated 50 -ohm signal generator directly to terminal No. 6. This signal will, in effect, "swamp" the response characteristic of the input circuit and enable alignment of the interstage transformer.
3. Adjust the level of the sweep generator so that approximately 2 mV of IF signal (at carrier) is present at terminal No. 6.
4. Advance the negative bias from the external AGC override supply so that 5 to 6 volts peak-to-peak of video output is present at terminal No. 19.
5. Adjust the response characteristic so that the curve as shown in Fig. 9a is duplicated.
6. (This step may be omitted). If observation of the input IF response is desired, it can be accomplished by the swamping of the interstage transformer with a parallel \(100-\) ohm resistor and \(.01 \mu \mathrm{~F}\) bypass capacitor, and
observing the response curve on an oscilloscope (shown in Fig. 9b) at terminal No. 19 while a swept IF signal is applied to the input terminal from a generator (50 -ohmsource). The external bias must be adjusted to maintain the video output level at 5 to 6 volts peak-to-peak output 2 mV carrier present at terminal No. 6 .
7. Apply a 2 mV IF signal to the system input from a 50 -ohm-source generator, then tune the input transformer for an over-all response characteristic shown in Fig. 9c. The AGC override supply must be adjusted for 5 to 6 volts peak-to-peak output at terminal No. 19.
8. The overall response characteristic when the IF signal is applied to the mixer input is shown in Fig. 9d. The level of this IF signal is such as to keep the IF input at terminal No. 6 at 2 mV , with AGC override adjusted for 5 to 6 volts peak-to-peak output at terminal No. 19.

\section*{IF Design for B\&W Receivers}

The schematic diagram, PC-board layout and PC-board bottom view (actual size) of the IF system for a b \& w receiver are shown in Figs.10a, b, c. Coil information is shown on the schematic. Alignment procedures are similar to those described above in the section that discusses the IF system for a color receiver. The curves shown in Fig. 11 should be substituted for those cited for the color IF alignment procedure. These curves indicate a narrower bandwidth as reflected by the higher circuit Q's of the interstage transformers used in the b \& w receivers.

Fig. 9- CA3068-Color TV Waveforms (a) Video IF response of interstage transformer (b) Video IF response of mixer stage transformer (c) Video IF over-all system response (d) IF and mixer response.

Fig. 10a-Schematic diagram and coil data.

Fig. 10b- Top view board layout.

Fig. 10c-Bottom view of circuit board (actual size).

Fig. 11- CA3068 B\&W TV waveforms; a) Video IF response of interstage transformer; b) Video IF response of input stage transformer; c) Video IF over-all system response; d) IF and mixer response.

In the color-IF system, the delay AGC was used to control a MOSFET in the RF stage of the tuner. This type arrangement permits direct application of the delayed AGC voltage from the CA3068 to the tuner. In the system for a
b\&w receiver the CA3068 AGC delay circuit is designed to control a bipolar transistor (which requires forward AGC) in the RF stage of the tuner. This function is accomplished by an inverter network utilizing a p-n-p transistor as shown in the circuit of Fig. 12. The forward-AGC delay is developed when the voltage at terminal No. 7 decreases, as the input signal level is increased. Under maximum gain conditions, the AGC voltage applied to the tuner (Fig. 12) is 1.6 V measured at the collector of the p-n-p transistor. As the delay AGC voltage is generated, the base of the p-n-p inverter is driven into hard conduction, causing more current to flow through the collector circuit so as to generate a positive (or forward) AGC potential for the bipolar transistor in the tuner.

Fig. 12- Block diagram of B\&W IF system showing required peripheral circuitry.

When incorporating RCA Solid State Devices in equipment, it is recommended that the designer refer to "Operating Considerations for RCA Solid State Devices", Form No. 1CE-402, available on request from RCA, Commercial Engineering, Harrison, N. J. 07029.

\section*{CONCLUSIONS}

A complete IF subsystem was described for both color and b\&w TV Applications. The only signal inputs required by the CA3068 are IF signals from the tuner and a keying pulse from the horizontal circuitry. The CA3068 provides all outputs needed to drive the video output stage, delay line, sync separator circuitry, RCA type CA3065 sound-IF subsystem, RCA type CA3064 AFT subsystem, and delayedAGC voltage for the RF stage in the tuner. Additionally, circuits for noise immunity and signal overload protection are designed into the CA3068. These subsystems have typical input sensitivities of \(100 \mu \mathrm{~V}\) for 4 volts peak-to-peak video output. A unique video detector arrangement provides extremely linear output throughout the 7 volts peak-to-peak video output range of the system.

Although this Application Note deals with subsystem designs in TV receivers, the CA3068 is suitable for performance in other AM systems requiring performance at frequencies within the range of \(10-70 \mathrm{MHz}\).

\section*{ACKNOWLEDGEMENT}

The authors wish to express their gratitude to Mr. J.R. Harford, the designer of the CA3068 for his assistance during the evaluations required for this Note.

\title{
A Flexible Integrated－Circuit Color Demodulator for Color Television
}

\author{
By W．M．Austin
}

New color－TV receiver designs indicate a rapidly changing trend toward all solid－state circuitry with special emphasis on monolithic integrated circuits．The solid－state color－demodulator circuits in these receivers provide excel－ lent demodulation gain，linearity，and uniformity．These advantages are easily achieved by the integrated－circuit design of the balanced demodulator．At present，the integrated circuit is economically adaptable to the current design requirements of the color－picture－tube drive circuits．The choice between a color－difference（CD）or a red－green－blue （RGB）receiver system has changed in favor of the RGB which has additional design advantages．Because of improved phosphors and improved color picture tubes in general，color shifting has caused the establishment of a new reference for the demodulation parameters．Consideration of these refer－ ences and of many other recent requirements have set the design guidelines for the RCA CA3067 demodulator inte－ grated circuit．

The CA3067，which is supplied in a quad－in－line 16 － lead plastic package，provides the following color－demodu－ lator circuit functions：
（1）Amplification
（2）Blanced chroma demodulation＊
（3）DC－operated tint（phase）control
（4）Zener－diode voltage regulation
This Note describes the circuit operation and application of the CA3067 in a color television receiver．Fig． 1 shows the CA3067 interconnected with other units in a complete receiver．

The CA3067 has a phase－shift circuit for tint control and a limiting amplifier for the elimination of amplitude modu－

\footnotetext{
＊＂Chroma＂，defined here，means side bands of the modulated chrominance subcarrier．
}
lation on the reference subcarrier．＊＊In addition，it has preamplifier circuits which amplify the subcarrier signal before it is injected into the balanced demodulators．Because integral rf iilters remove the high－frequency products of demodulation，external filtering is unnecessary．The R－Y and B－Y color－difference signals are obtained by demodu－ lation and the G－Y signal is derived from a matrix of the complementary R－Y and B－Y signals．The output amplifier for each of the color－difference signals has a very low output impedance for positive and negative signals and a sufficient drive capability for high－level voltage amplifiers for either a Red－Green－Blue（RGB）or a color－difference（CD）circuit．The operation of the CA3067 is described in the reverse signal－flow order to emphasize the output drive capability and requirements in direct－coupled circuit applications．Fig． 2（a）shows the CA3067 in a typical application．

\section*{The Output Amplifiers of the CA3067}

An outstanding feature of the CA3067 output amplifier circuit is the feedback emitter－follower arrangement which keeps the output impedance low during both the positive and negative peak signal swings of the output stage．This arrangement assures sufficient drive capability for the high－voltage output transistors of present color systems without degradation of bandwidth characteristics，par－ ticularly when signal amplitudes are at peak values．The largest output drive capability from the B－Y color－difference stage is a voltage drive in excess of 3.0 V peak－to－peak．This range of output drive will satisfy the design requirements of most RGB or color－difference systems．

As shown in Fig．2（b），the B－Y amplifier，which is similar to the R－Y and G－Y color－difference output circuits，has a feedback path from the collector of the emitter－follower \(\mathrm{Q}_{30}\) to the base of \(\mathrm{Q}_{2} 9\) ．The zener diode， \(\mathrm{Z}_{1}\) ，has a voltage drop of

\footnotetext{
＊＊＂Reference subcarrier＂，as used in this Note，means the same as ＂chrominance－carrier reference．＂
}

Fig.1-Block diagram of a typical color-TV receiver utilizing the RCA CA3067.
approximately 7 V (dc) and, with resistors \(\mathrm{R}_{46}\) and \(\mathrm{R}_{47}\), establishes a bias voltage of \(0.7 \mathrm{~V}(\mathrm{dc})\) at the base of \(\mathrm{Q}_{2} 9\). Because \(\mathrm{Z}_{1}, \mathrm{R}_{46}\), and \(\mathrm{R}_{47}\) are the feedback-loop components, they also establish the correction current that must flow in the collectors of \(\mathrm{Q}_{29}\) and \(\mathrm{Q}_{30}\) to provide the required voltage drop across \(\mathrm{R}_{50}\). The current in \(\mathrm{Q}_{29}\) and Q30 is typically 1.5 mA ; the current in the feedback loop is 0.5 mA . The loop gain is sufficient to keep the voltage errors small at the emitter-to-collector output junction (terminal No. 8). Within a normal range of circuit tolerances, \(\mathrm{Q}_{29}\) and Q30 may have minimum values of collector-to-emitter current of approximately 1.1 mA . When external current loads are connected to terminal No. 8 , no appreciable change in the voltage at this terminal occurs unless the maximum load current exceeds 1.1 mA .

When there is a high-current drain at terminal No. 8, the collector voltage of \(\mathrm{Q}_{30}\) decreases and the reduced bias to

Q29 may cut off \(\mathrm{Q}_{29}\). Consequently, excessive loading at terminal No. 8 can bias \(Q_{29}\) and \(Q_{30}\) out of their feedback range of operation. For this reason, loads that draw current in excess of 1.1 mA are not recommended.

\section*{Demodulation and Matrix}

The demodulator is a balanced type that provides both positive and negative color-difference output signals. The chroma signal of terminal No. 14 is applied to the chroma amplifier transistors \(\mathrm{Q}_{13}, \mathrm{Q}_{14}, \mathrm{Q}_{20}\), and \(\mathrm{Q}_{21}\) [Fig. 2(b)]. These chroma amplifiers provide the emitter drive to the demodulator-switching transistors \(\mathrm{Q}_{15}, \mathrm{Q}_{16}, \mathrm{Q}_{17}\), and \(\mathrm{Q}_{18}\) in the \(\mathrm{B}-\mathrm{Y}\) demodulator and \(\mathrm{Q}_{22}, \mathrm{Q}_{23}, \mathrm{Q}_{24}\), and \(\mathrm{Q}_{25}\) in the \(\mathrm{R}-\mathrm{Y}\) demodulator. Transistors \(\mathrm{Q}_{22}\) and \(\mathrm{Q}_{25}\) sum the positive output of the \(\mathrm{R}-\mathrm{Y}\) demodulator in resistors \(\mathrm{R}_{38}\) and \(\mathrm{R}_{39}\). The transistors \(\mathrm{Q}_{23}\) and \(\mathrm{Q}_{24}\) provide the negative output voltage of the R-Y demodulator across the load resistors \(\mathrm{R}_{37}\) and \(R_{32}\).

\footnotetext{
ALL RESISTANCE VALUES ARE IN OHMS
UNLESS OTHERWISE INDICATED, ALL CAPACITANCE VALUES
O OR GREATER ARE IN PICOFARADS
}

Fig. 2(a)-RCA-CA3067 in a typical application.

The positive output voltage of the B-Y demodulator provided by \(\mathrm{Q}_{16}\) and \(\mathrm{Q}_{17}\) is developed across the load resistor \(\mathrm{R}_{33}\), and the negative output voltage is the sum of the \(\mathrm{Q}_{15}\) and \(\mathrm{Q}_{18}\) outputs developed across resistor \(\mathrm{R}_{32}\). Thus, the addition of the negative outputs of the R-Y and B-Y demodulators provides the G-Y color difference signal. In this process, the negative outputs of the B-Y and R-Y demodulators are added in a ratio of 1.05:2.25, which are, respectively, the resistance values of \(\mathrm{R}_{32}\) and \(\mathrm{R}_{32}+\mathrm{R}_{37}\). Fig. 3 shows the vector additions of the complementary R-Y and B-Y color-difference signals that yield the G-Y colordifference signal. The matrix circuit at the CA3067 demodulator stages establishes the ratio of R-Y to B-Y colordifference signals as 1.0:1.2. This value is the ratio of \(\mathrm{R}_{38}+\) \(\mathrm{R}_{39}\) to \(\mathrm{R}_{33}\) resistance values, which are 6.7 and 8.2 kilohms, respectively.

An internal matrix circuit may, at first, appear to be disadvantageous. However, the ability to process uniform monolithic resistors on a single chip makes it desirable to matrix the R-Y and B-Y for the G-Y color-difference signal and to set a fixed ratio for all color-difference signals at the demodulator stages. The ratio of color-difference signal amplitudes at terminal Nos. 8, 9,10 is easily modified by alteration of the gain- controlling circuit components that are either added to or used as a part of the high-level output stages.

The angle of demodulation is determined by the user's choice of reference-subcarrier phase applied to terminal Nos. 6 and 12. The signal input at terminal No. 6 relative to that of terminal No. 12 must be of opposite polarity to provide
the same demodulation angle in each of the two demodulators. The CA3067 is presently being used in systems having demodulation angles separated by more than \(90^{\circ}\). The reference-subcarrier signal at terminal No. 6 is displaced by \(76^{\circ}\) relative to the signal at terminal No. 12. This displacement produces a demodulation angle of \(0^{\circ}\) and \(\left(180^{\circ}-\right.\) \(76^{\circ}\)) or \(104^{\circ}\) in the B-Y and R-Y demodulator stages. This phase relationship relative to the color-difference signal amplitudes at terminal Nos. 8, 9, and 10 (which are respectively the B-Y, G-Y, and R-Y color-difference output terminals) is shown in the polar plot of Fig. 3.

Fig. 4 shows the typical demodulator voltage linearity and amplitudes at terminal Nos. 8, 9 , and 10 for the circuit of Fig. 2(a). For a \(76^{\circ}\) phase difference of the voltage at terminal No. 6 relative to the voltage at terminal No. 12, (which is a \(104^{\circ}\) separation of the demodulation angles), the G-Y amplitude relative to the R-Y amplitude is 33 per cent. In a true quadrature demodulation, when the demodulation angles have \(90^{\circ}\) of phase separation, this ratio is \(37 / 100\).

\section*{Polarity}

The polarity of the color-difference output signals may be reversed by the choice of chroma drive signal to terminal Nos. 14 or 15 [Fig. 2(b)]. Both terminal Nos. 14 and 15 are accessible to permit selection of the polarity for either the grid or cathode drive to the picture tube or to minimize the cost of the phase-shift components. Terminal No. 14 is the preferred chroma-signal input terminal for an RGB system which drives the cathodes of the picture tube when the CA3066 chroma processor system is used. An rf coil or

Fig.2(b)-RCA-CA3067, schematic diagram.
choke coupling is used between terminal Nos. 14 and 15. This coupling provides nearly equal bias to the chroma amplifiers \(\mathrm{Q}_{13}, \mathrm{Q}_{14}, \mathrm{Q}_{20}\), and \(\mathrm{Q}_{21}\). The balanced connections of the demodulators compensate for an unbalance in the external bias, if unbalance is not excessive. Resistors \(\mathrm{R}_{43}\) and R44 may cause some signal loss when terminal No. 15 is the chroma-input terminal. The input impedance, however, is approximately 10 times greater than the output impedance of the chroma amplifier of the CA3066.

\section*{Filtering Capacitors}

Capacitors \(\mathrm{C}_{2}, \mathrm{C}_{3}\), and \(\mathrm{C}_{4}\) serve as ripple filters to reduce the \(3.58-\mathrm{MHz}\) and higher harmonic components of demodulation. The tolerance of the RC time constant is set for a minimum bandwidth of 450 kHz . Even without precise control over the RC time constant, there are three important advantages for the use of monolithic capacitor filtering at the output of the demodulator stages. First, ripple filtering before the output amplifiers extends the linear dynamic-voltage-swing capability of the output stages of the CA3067. Second, a savings in cost is realized because no added
external ripple filter components are required. Third, the performance of the RGB high-level amplifier system is improved by the very low drive impedance from the output of the CA3067. This low output impedance is not degraded because no external filtering components are needed.

\section*{Demodulator Preamplifier}

The R-Y and B-Y demodulators are driven by their respective subcarrier preamplifiers, which are transistors \(\mathrm{Q}_{11}\), \(\mathrm{Q}_{44}, \mathrm{Q}_{45}\), and \(\mathrm{Q}_{9}, \mathrm{Q}_{40}, \mathrm{Q}_{41}\) [Fig. 2(b)]. Although the preferred signal-drive voltage level is approximately 2.5 mV (rms), as little as 1.0 mV (rms) of signal at terminal Nos. 6 and 12 provides efficient demodulator conversion gain. Curves of the demodulation sensitivity as a function of signal levels at terminal No. 12 are shown in Fig. 5. These curves are determined from the circuit shown in Fig. 2(a). The drive voltage is applied to terminal No. 3 of the tint-control amplifier.

Each subcarrier preamplifier has a voltage gain of 100 when operated as a common-emitter amplifier having termi-

Fig.3-Vector plot of color-difference signals.
nal Nos. 7 and 11 bypassed for rf. Because of the collector-to-base feedback, each subcarrier preamplifier has a low input impedance which is a function of the amplifier gain. Terminal Nos. 6 and 12 have drive requirements of a few millivolts; there are no disadvantages associated with input attenuation caused by the low input impedance. Phase shift of the injected subcarrier caused by stray capacitance coupling is minimized.

\section*{Tint Control Amplifier}

The tint-control section of the CA3067 contains the phase-shift and limiting-amplifier circuits that control the

Fig.4-Demodulation linearity.
reference subcarrier signal \((3.58-\mathrm{MHz})\). This signal is received from the CA3066 oscillator circuit and is adjusted to a nominally correct phase reference for the CA3067 tintcontrol system. The phase errors caused by transmission, circuit tolerance, and oscillator drift are corrected by the tint control. The tint control in the CA3067 circuit is a potentiometer which controls the direct current flowing into terminal No. 2. The \(3.58-\mathrm{MHz}\) signal is ac-coupled to the

Fig.5-Demodulation sensitivity as a function of subcarrier signal level at terminal No. 3 and terminal Nos. 6 and 12.
tint-control amplifier input terminal No. 3. The amplitudelimited output signal is available at the collector of Q7, terminal No. 1 [Fig. 2(b)].

The 3.58 MHz signal is differentially amplified following its injection into the base of \(\mathrm{Q}_{3}\), which is common to terminal No. 3. The differential amplifier consisting of \(Q_{2}\) and Q \(_{3}\) amplifies and divides the reference-subcarrier signal into two out-of-phase components. The current into the collector of \(\mathrm{Q}_{2}\) is in phase with the base current of \(\mathrm{Q}_{3}\); the current into the collector of \(\mathrm{Q}_{3}\) is out of phase with the base current of \(\mathrm{Q}_{3}\). Resistor \(\mathrm{R}_{1}\) in parallel with the cumulative circuit stray capacitance and the capacitance of \(\mathrm{C}_{1}\) form an RC time constant which causes a phase delay of approximately \(45^{\circ}\) at the collector of \(\mathrm{Q}_{2}\). Thus, the two components of the reference-subcarrier signal current are the "delayed phase" at the collector of \(Q_{2}\) and the "reverse-phase" at the collector of \(\mathrm{Q}_{3}\). The "reverse-phase" signal current is divided between the diode \(D_{2}\) and the emitter of \(Q_{4}\) at the collector of \(Q_{3}\); the amount of this division depends on the position of the tint-control adjustment. The divided current that passes through diode \(\mathrm{D}_{2}\) is bypassed to ground at terminal No. 2. The "delayed-phase" signal current at the collector of \(\mathrm{Q}_{2}\) is amplified in \(Q_{37}\) (an emitter-follower) and added to the "reverse-phase" signal which is present at the collector of \(\mathrm{Q}_{4}\). Because the current flow in the collector of \(\mathrm{Q}_{3}\) is typically 1.0 mA , the resistance range of the tint control shown in Fig. 2(a) is adequate for the full range of adjustment desired.

The vector addition of the "delayed-phase" and "reversephase" signals provides a controlled phase shift that is typically \(105^{\circ}\). Fig. 6 shows the phase diagram for the minimum and maximum settings of the tint control. Vector B, in Fig. 6, is the maximum "reverse-phase" signal amplitude that may be obtained at the collector of \(\mathrm{Q}_{4}\) [Fig. 2(b)] and vector A is the "delayed-phase" signal amplitude. The relative voltage amplitude of each phase-separated signal is proportional to the load impedances at the collectors of \(\mathrm{Q}_{2}\) and Q4. The "reverse-phase" signal amplitude is approxi-

Fig.6-Vector addition of tint-control amplifier.
mately two times greater than that of the "delayed phase". A minimum adjustment of the tint control will decrease the "reverse phase" signal at the collector of \(\mathrm{Q}_{4}\) to approximately zero amplitude. The resultant vector is determined from the addition of the "delayed-phase" and "reversephase" signals at the collector of \(\mathrm{Q}_{4}\) and may be any vector between vectors A and C shown in Fig. 6.

The resulting signal for any setting of the tint-control adjustment is amplified in the limiter-amplifier circuit consisting of Q37, Q38, and Q39 [Fig. 2(b)]. There is no further phase shift in the limiter-amplifier, which serves to limit any amplitude modulation of the reference-subcarrier signal, including the amplitude variations caused by the tint-control adjustment. The complete tint-control amplifier circuit limits the output signal at terminal No. 1 when the input signal amplitude at terminal No. 3 is greater than 7.0 mV (rms). Characteristic curves of the limiting of the CA3067 tintcontrol amplifier are shown in Fig. 7. In addition, curves of phase as a function of frequency are shown in Fig. 8.

Fig.7-Limiting-characteristic curve for tint-control amplifier.

Fig.8-Typical phase characteristic of the tint-control amplifier as a function of frequency.

(c)

(d)

(e)

Fig.9-Use of RCA-CA3067 in RGB system of color drive to the picture tube: (a) basic systems; (b) emitter-drive control; (c) collector-feedback drive control; (d) emitter drive and bias controls; (e) automatic bias and drive control in the RCA CTC46 and CTC49 color-TV receivers.

The circuit of Fig. 2(a) shows one possible method of providing phase separation of signals to the R-Y and B-Y subcarrier amplifier. The tint-control amplifier output signal, which is the processed reference subcarrier, is separated in an RLC signal-tuned circuit that provides a phase separation of \(76^{\circ}\) at terminal Nos. 6 and 12. This circuit is considered a preferred matching network because it relates to the published data characterization. However, it is an arbitrary choice which yields the desired amplitude and phase separation to match the tint-control amplifier to the R-Y and B-Y subcarrier amplifiers. Fixed-tuned RC or delay-line circuits may also be considered as possible matching networks to meet the application needs in other systems which include monitoring equipment and test instruments.

\section*{CA3067 Application in RGB Color System}

The basic connections for an RGB system are shown in Fig. 9(a). The CA3067 output amplifiers are direct-coupled to the RGB output amplifier circuits. Regardless of the direct-coupled bias considerations, it is always necessary to provide drive control to obtain proper gray-scale tracking. This control is accomplished by the adjustment of the relative gains of the R.GB amplifiers. Usually the emitter or collector resistors are varied for gain-control adjustment. The emitter-resistor adjustment provides feedback gain control, and the collector-resistor adjustment is used for either attenuation or feedback control. Four different drive control methods are shown in Figs. 9(b) through 9(e).

When a design-center drive condition is established, the circuit of Fig. 9(b) is correct for center-value components. The dc shift at the limit adjustments of the drive control resulting from component tolerance require other supplementary adjustments such as a grid-to-cathode voltage adjustment at the picture tube. Fig. 9(c) shows a circuit that uses voltage feedback to stabilize the bias. Because an isolation resistance \(\mathrm{R}_{\mathrm{i}}\) must be added at the base of \(\mathrm{Q}_{1}\) to develop feedback voltage at that point, a capacitor \(\mathrm{C}_{\mathrm{i}}\) may be added to peak the luminance signal response. This capacitor
is not needed to filter the \(3.58-\mathrm{MHz}\) signal and higher harmonics of demodulation; the CA3067 has internal filtering for this purpose.

The two circuits shown in Figs. 9(d) and 9(e) illustrate a more precise method of adjustment. The circuit of Fig. 9(d) has a dc-bias control which can be adjusted to compensate for any dc change caused by the drive control. The disadvantages of this circuit are the added bias control and the adjustment interaction of the drive and bias controls. The circuit of Fig. 9(e), which is presently used in the RCA CTC-46 and CTC-49 color-TV receivers, illustrates an emitter-type drive-control adjustment and an automatic bias-control circuit which compensates for both short-and long-term drift of the output circuit. The automatic biascontrol circuit samples the voltage level at the output of the RGB amplifier during the horizontal retrace period. This voltage is compared with a fixed reference, and an error signal is fed back to the emitter of \(\mathrm{Q}_{1}\). The collector of transistor \(\mathrm{Q}_{\mathrm{fb}}\) acts as `a voltage source with the correct line-by-line value of voltage to stablize the RGB output amplifier. The feedback error from the sampling circuit is returned to the base of \(\mathrm{Q}_{\mathrm{fb}}\), and provides the correction for any temperature drift as well as for the voltage error caused by the drive-control adjustment.

The design of an RGB amplifier circuit to be driven from the CA3067 depends on the economics and the performance requirements of the application. Because the CA3067 output amplifiers have a very low source impedance, networks that add to the source impedance at the CA3067 output terminals detract from the inherent advantage of the use of the CA3067. An obvious performance advantage of the circuit of Fig. 9(e) is that the added cost of the feedback and the sampling components is offset by the performance gains of a self-adjusting system. Also, rigid specifications related to thermal tracking such as leakage currents and heat sinking may be relaxed. When modular construction and trouble-free interchangeability are primary design considerations, both cost and performance advantages are realized by the use of the CA3067.

\section*{Application Notes on IC Arrays}
ICAN-4072 "Applications of the RCA-CA3048 Integrated-Circuit
Amplifier Array" 68
ICAN-5296 "Application of the RCA-CA3018 Integrated-Circuit
Transistor Array" 76
ICAN-5299"Application of the RCA-CA3019 Integrated-CircuitDiode Array"81

\title{
Applications of the RCA CA3048 Integrated-Circuit Amplifier Array
}

\author{
by \\ L. Kaplan
}

The RCA CA3048 integrated circuit is an array of four identical amplifiers, each with independent inputs and outputs, all on a single monolithic silicon chip. The circuit is housed in a 16 -lead dual-in-line plastic package. It has an operating and storage temperature range of \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\). Each amplifier in the array has a typical open-loop gain of 58 dB and input impedance of 90,000 ohms. The noise in the CA3048 is inherently very low and is tightly controlled in rigorous factory and quality-control testing.

The combination of low noise, high gain, and high input impedance make, the CA3048 a very versatile unit. and numerous applications suggest themselves for its use.

\section*{CIRCUIT DESCRIPTION}

Fig. 1 shows the complete schematic of the CA3048 integrated-circuit amplifier array. Each amplifier (\(\mathrm{A}_{1}\) through \(\mathrm{A}_{4}\)) provides two stages of voltage gain.

The input stage is basically a differential amplifier with a Darlington transistor added on the one side. The output stage consists of a combination of three transistors and associated resistors connected in an inverting configuration. For example, in amplifier \(A_{3}, Q_{19}\) is the Darlington input transistor, and \(Q_{20}\) and \(Q_{21}\) are the
differential-pair transistors. The load resistor \(\mathrm{R}_{29}\) for the differential input stage is located in the collector lead of transistor \(Q_{20}\). Transistors \(Q_{13}, Q_{14}\), and \(Q_{17}\) are used in the output stage. Transistor \(Q_{17}\) is the actual output transistor; transistors \(\mathrm{Q}_{13}\) and \(\mathrm{Q}_{14}\) raise the input impedance of the output stage so that the loading of the 30,000 -ohm source resistance \(R_{29}\) (i.e., load resistor for the differential-amplifier input stage) is small. The ratio of total collector resistance to emitter resistance \(\left[\left(R_{31}+R_{38}\right) / R_{50}\right]\) in the output stage is \(1000 / 200\), or 5 . In view of the small source loading, the stage gain, therefore, is essentially equal to 5 .

A feedback network \(\left(R_{41}, R_{42}, R_{46}\right.\), and \(\left.D_{7}\right)\) is connected between the output terminal and the base of transistor \(Q_{21}\). The resistor values are chosen so that the output transistor is biased at approximately 5 milliamperes for maximum dynamic range. Diode \(D_{7}\) compensates for variations in the base-to-emitter voltage of \(Q_{21}\) with changes in temperature. Because the other transistor \(\left(Q_{20}\right)\) of the differential amplifier has two emitter-base junctions in series, two diodes, \(D_{3}\) and \(D_{4}\), are required for temperature compensation. Diodes \(D_{3}\) and \(D_{4}\) also provide temperature compensation for the differential-pair transistor \(Q_{1}\) in amplifier \(A_{2}\) (similarly diodes \(D_{5}\) and \(D_{6}\) are shared by amplifiers \(A_{1}\) and \(A_{4}\)).

Diodes \(D_{3}\) and \(D_{4}\) and diodes \(D_{5}\) and \(D_{6}\) are connected to their respective inputs through a relatively stiff voltage divider (for amplifier \(A_{3}\), the divider consists of \(\mathrm{R}_{27}\) and \(\mathrm{R}_{28}\)). The input to amplifier \(\mathrm{A}_{3}\) is normally applied to the base of the Darlington transistor \(Q_{19}\). The 100 -kilohm resistor \(R_{37}\) supplies bias current to this transistor. The voltage drop across resistor \(R_{37}\) is small because of the very small base current of transistor \(\mathrm{Q}_{19}\).

Each amplifier of the CA3048 may be viewed as an ac operational amplifier in which a fixed resistance is permanently connected between the output and the inverting input. The built-in feedback resistor delimits the characteristics of the CA3048 amplifiers in the following ways:
1. The impedance as viewed from the noninverting input terminal consists mainly of the 100 kilohm inputbias resistance (\(\mathrm{R}_{13}, \mathrm{R}_{15}, \mathrm{R}_{37}\), or \(\mathrm{R}_{39}\)). This resistance is shunted by the input capacitance of approximately 10 picofarads and the additional resistive loading presented by the input impedance of the

Darlington input pairs. When the amplifier is operated under open-loop conditions (inverting input at ac ground), the total input impedance consists of 90 kilohms in shunt with the input capacitance. When the built-in feedback loop is allowed to function (by insertion of an unbypassed resistance in the noninverting input lead), then the loading caused by the Darlington input pairs is reduced, and the input resistance rises asymptotically towards 100 kilohms.
2. The impedance as viewed from the inverting input terminal is small (in the order of 40 to 50 ohms.)
3. When the CA3048 is used in its normal mode of operation, each amplifier in the array may be represented by the equivalent circuit shown in Fig. 2. (The capacitances shown are the sum of the device capacitances, socket capacitances, and stray capacitances.) The transconductance \(\mathrm{G}_{\mathrm{m}}\), which is equal to the product of the voltage gain and the output conductance (\(10^{-3} \mathrm{mho}\)), is typically 0.8 mho at midband.

Fig. 1 - Schematic of the CA3048 integrated-circuit amplifier array.

Fig. 2-Equivalent circuit of a CA3048 amplifier.

\section*{GAIN-FREQUENCY RESPONSE}

Curves of the transconductance of any amplifier in the CA3048 array as a function of frequency up to 30 MHz show two break points. At frequencies above the first break point, which occurs at 300 kHz , the transconductance rolls off at a rate of 6 dB per octave to 12 MHz . At frequencies above 12 MHz , the rate of roll-off increases to 12 dB per octave. At frequencies up to 12 MHz , therefore, the transconductance of any amplifier in the CA3048 array is expressed by the following equation:
\[
\begin{equation*}
g_{m}=\frac{\omega_{0} g_{m o}}{\omega_{o}+S} \tag{1}
\end{equation*}
\]
where \(S\) is the complex frequency, \(g_{m o}\) is the mid-band transconductance, and \(\omega_{o}=2 \pi \times 300 \times 10^{3}\).

Fig. 3 shows the open-loop transconductance for an amplifier in the CA3048 array as a function of frequency. This response indicates potential uses of the CA3048 integrated circuit at frequencies that extend into the video range.

\section*{STABILITY}

The equivalent circuit shown in Fig. 2 can be used to determine the stability of the amplifiers in the CA3048 array under various conditions of loading when undesirable external capacitance is present in the wiring and socket. With no external generator connected to the circuit, the input conductance \(G_{1}\) is equal to \(1 / 100000\) mho, and the output conductance \(G_{3}\) is equal to \(1 / 1000\) mho (for amplifiers \(A_{1}, A_{2}, A_{3}\), or \(A_{4}\), respectively, \(G_{1}\) is equal to \(1 / R_{15}, 1 / R_{13}, 1 / R_{37}\), or \(1 / R_{29}\), and \(G_{3}\) is
equal to \(1 /\left(R_{16}+R_{22}\right), 1 /\left(R_{14}+R_{19}\right), 1 /\left(R_{31}+R_{38}\right)\), or \(1 /\left(R_{36}+R_{40}\right)\). The capacitance \(C_{4}\) and the conductance \(G_{4}\) shown in Fig. 2 represent an external damping network which can be varied or deleted as demanded by stability or gain-bandwidth requirements.

A necessary and sufficient condition for a system to be stable is that the roots of the characteristic equation of the system have no positive real parts. The characteristic equation for the circuit of Fig. 2 is obtained by expansion of the circuit determinant and collection of the coefficients of the complex frequency \(S\). The equation assumes the following form:
\[
\begin{equation*}
A_{1}+A_{2} S+A_{3} S^{2}+A_{4} S^{3}+A_{5} S^{4}=0 \tag{2}
\end{equation*}
\]

After much tedious algebra, the coefficients are determined as follows:
\[
\begin{align*}
A_{1}= & \omega_{o} G_{1} G_{3} G_{4} \\
A_{2}= & \omega_{o} G_{4}\left[G_{3}\left(C_{1}+C_{2}\right)+G_{1}\left(C_{2}+C_{3}\right)-g_{m_{o}} G_{2}\right] \\
& +G_{1} G_{3}\left(C_{3} \omega_{o}+G_{4}\right) \\
A_{3}= & \omega_{o}\left\{C_{2} C_{3}\left(G_{1}+G_{3}+G_{4}-g_{m_{o}}\right)+C_{1}\left[C _ { 3 } \left(G_{3}\right.\right.\right. \\
& \left.\left.\left.+G_{4}\right)+C_{2} G_{4}\right]\right\}+G_{4}\left[G_{3}\left(C_{1}+C_{2}\right)\right. \\
& \left.+G_{1}\left(C_{2}+C_{3}\right)\right]+G_{1} G_{3} C_{3} \\
A_{4}= & G_{4}\left[C_{1}\left(C_{2}+C_{3}\right)+C_{2} C_{3}\right]+C_{3}\left[C _ { 1 } \left(\omega_{o} C_{2}\right.\right. \\
& \left.\left.+G_{3}\right)+C_{2}\left(G_{1}+G_{3}\right)\right] \\
A_{5}= & C_{1} C_{2} C_{3} \tag{3}
\end{align*}
\]

With the aid of a computer, it is possible to check very quickly many combinations of circuit values for stability by solving for the roots of Eq. (2) with different circuit values assigned to the various components.

Although there are many variables involved, it is possible to state in a general sense the results of several solutions of Eq. 2.

The system cannot oscillate without capacitor \(\mathrm{C}_{2}\) to introduce positive feedback. The analysis is reduced, therefore, to the determination of the maximum value of \(\mathrm{C}_{2}\) before oscillation occurs. With careful printed-circuit-board layout, the feedback capacitance \(C_{2}\) is small, and the system is usually stable. If a socket is used the feedback capacitance is greatly increased, and

Fig. 3-Typical gain-frequency response for a CA3048 amplifier.
stabilization of the circuit is generally required.
As with any two-port network, any increase in source or load conductance aids stability. In addition, analyses of Eq. (2) shpw that addition of shunt capacitance at the input is a very effective stability technique when the source impedance is high. Introduction of negative feedback into the circuit [which is simulated in Eq. (2) by a decrease in the value assigned to the transconductance \(g_{m}\) and an increase in the cutoff frequency] also improves circuit stability.

Another stability method, which is effective for any source impedance or gain value, is the addition of a damping network such as that formed by capacitance \(\mathrm{C}_{4}\) and conductance \(G_{4}\) in Fig. 2. In this method, the value of \(\mathrm{C}_{4}\) is chosen so that its reactance is equal to the parallel combination of \(R_{3}\) and \(R_{L}\) at the highest frequency of desired amplification. The value of \(R_{4}\) is made small so that the gain is reduced at high frequencies and is typically \(1 / 10\) or \(1 / 20\) the value of the parallel combination of \(R_{3}\) and \(R_{L}\).

The series of curves in Fig. 4 show the results of the computation for the roots of \(\mathrm{E}_{\mathrm{q}}\). (2). It should be noted that the maximum value shown for capacitance \(C_{2}\) is that obtained just before oscillation occurs. Severe peaking of the response (or ringing) may result before the listed value of \(\mathrm{C}_{2}\) is reached. It is advisable, therefore, to maintain the capacitance of \(\mathrm{C}_{2}\) well below the indicated value.
\[
\begin{aligned}
& \text { (a) } \\
& \text { (a) }
\end{aligned}
\]

(b)

\section*{OUTPUT SWING VS. SUPPLY VOLTAGE}

Fig. 5 shows the output voltage for any one of the CA3048 amplifiers as a function of supply voltage. The solid lines represent the performance obtained with the full open-loop gain. The dotted line shows the improvement obtained when 12 dB of negative feedback is added by inclusion of a 150 -ohm unbypassed resistor in the in-verting-input lead. The values obtained for this curve are those which prevail when the output is loaded only by the measuring equipment. It should be realized that any substantial loading will tend to reduce the magnitude of the available output voltage for equivalent distortion figures. For example, an additional 1000 -ohm load exactly balances the internal load resistor, and would reduce the available output voltage by 50 per cent.

output voltage - rms volts
Fig. 5-Total harmonic distortion of CA3048 amplifier as a function of output voltage for different value of dc supply voltage.

\section*{NOISE}

Fig. 6 shows output noise obtained when a single amplifier of the CA3048 is operated at 40 dB gain into a "C" filter. Table I shows typical values of noise

TABLE I
TYPICAL NOISE VOLTAGE AND CURRENT FOR AN AMPLIFIER IN THE CA3048 ARRAY
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Frequency \\
\((H z)\)
\end{tabular} & \begin{tabular}{c}
\(E_{\text {noise }}\) \\
(volts)
\end{tabular} & \begin{tabular}{c}
\(I_{\text {noise }}\) \\
(amperes)
\end{tabular} \\
10 & \(30.5 \times 10^{-9}\) & \(7.5 \times 10^{-12}\) \\
100 & \(17 \times 10^{-9}\) & \(4.3 \times 10^{-12}\) \\
1000 & \(8 \times 10^{-9}\) & \(1.2 \times 10^{-12}\) \\
10000 & \(6 \times 10^{-9}\) & \(0.5 \times 10^{-12}\) \\
100000 & \(4 \times 10^{-9}\) & \(0.3 \times 10^{-12}\) \\
\hline
\end{tabular}
voltage (\(\mathrm{E}_{\text {noise }}\)) and current (\(\mathrm{I}_{\text {noise }}\)) for the CA3048 at spot frequencies of \(10,100,1000,10000\), and 100000 Hz . From these values, the equivalent input noise voltage for any value of source resistance may be computed by use of the following equation:
\[
\begin{equation*}
E_{\text {equiv }}=\sqrt{\left(E_{\text {noise }}\right)^{2}+\left(I_{\text {noise }} R_{\text {source }}\right)^{2}} \tag{4}
\end{equation*}
\]

Laboratory measurements have shown that the noise performance of the CA3048 is not significantly affected by variation of the supply voltage. The values shown in Fig. 6, therefore, may be used with supply voltages down to about 2 volts if it is remembered that the openloop gain decreases to about 35 dB at a supply voltage of 2.5 volts.

Fig. 6 - Noise output as a function of source resistance for a CA3048 amplifier.

\section*{CIRCUIT APPLICATIONS}

In all the foregoing discussions, a single amplifier has been described as though it existed alone. The CA3048, however, consists of four separate amplifiers, which may be used independently or in combination. A glance at the complete schematic of the CA3048 reveals other aspects worthy of consideration.

Two supply-voltage terminals and two ground terminals are indicated. Terminal No. 12 supplies the \(\mathrm{V}_{\mathrm{CC}}\) voltage to amplifiers \(A_{2}\) and \(A_{3}\), and terminal No. 15 supplies the \(\mathrm{V}_{\mathrm{CC}}\) voltage to amplifiers \(\mathrm{A}_{1}\) and \(\mathrm{A}_{4}\). The ground return for amplifiers \(A_{1}\) and \(A_{4}\) is provided by terminal No. 2; all other ground returns are provided by terminal No. 5.

When two units are cascaded, it is preferred to let amplifiers \(A_{2}\) and \(A_{3}\) be the input units, and amplifiers \(A_{1}\) and \(A_{4}\) be the output units. This arrangement permits separation of both the \(\mathrm{V}_{\mathrm{CC}}\) and ground lines for lowand high-level signals.

If resistive decoupling is used, amplifiers \(A_{2}\) and \(\mathrm{A}_{3}\) can be operated at lower \(\mathrm{V}_{\mathrm{CC}}\) voltages to effect a savings in current consumption.

\section*{Hartley Oscillator}

The Hartley oscillator is easily designed and constructed using the CA3048 amplifier. No feedback capacitor is required, and it is possible to extract "square", sawtooth, or sinusoidal waveshapes.

In the circuit shown in Fig. 7, the tap on the coil is located at one-fourth the total turns, capacitors \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) provide dc blocking, and capacitor \(\mathrm{C}_{3}\) tunes with inductor \(L_{1}\left(\omega_{0}=1 / \sqrt{L_{1}} C_{3}\right)\). When the circuit is oper-

A IS ANY AMPLIFIER OF THE CA3O48
Fig. 7 - Hartley oscillator.
ated from a 12 -volt supply, the output voltage is a clipped sine wave that has a peak-to-peak value of about 7 volts. The voltage at the inverting input is a sawtooth that has a peak-to-peak value of about 0.300 volt. If an unclipped sine wave is desired, it is available across the coil \(L_{1}\). A sine wave can be obtained in the single-ended connection if the value of \(\mathrm{C}_{2}\) is made large with respect to \(\mathrm{C}_{3}\) so that it effectively bypasses the sawtooth to ground; the voltage across \(L_{1}\) is then sinusoidal with respect to ground.

\section*{Colpitts Oscillator}

A tunable Colpitts oscillator is readily designed using one of the amplifiers of the CA3048 array. Fig. 8 shows an example of the CA3048 used in this way. Capacitors \(C_{1}\) and \(C_{2}\) are dc blocking capacitors; the series combination of capacitors \(C_{3}\) and \(C_{4}\) resonates with coil L . The ratio of \(\mathrm{C}_{3}\) to \(\mathrm{C}_{4}\) determines the relative amounts of signal fed back to the two inputs, and may be chosen on the basis of stability or strength of oscillation.

For the component values shown in Fig. 8, the frequency of oscillation is 33.536 kHz with a 12 -volt supply and decreases to 33.546 kHz when the supply voltage is reduced 25 per cent to 9 volts.

Fig. 8 - Colpitts oscillator.

Three waveshapes are available from the Colpitts oscillator. A sawtooth waveform is obtained at the output, a sinusoidal waveform is obtained at the inverting input, and a clipped sinusoidal waveform appears at the noninverting input.

\section*{Astable Multivibrator}

The CA3048 may be connected as an astable multivibrator with the addition of only two external components. An example of this type of operation is shown in Fig. 9.

A IS ANY AMPLIFIER OF THE CA3048
Fig. 9 - Astable multivibrator.
The resistor \(R\) introduces positive feedback into the circuit, and the capacitor \(C\) sets the period of the waveform. The operation of the circuit can be explained more easily if it is assumed that transistor \(Q_{17}\) (of amplifier \(A_{3}\)) has just turned OFF so that the voltage at terminal No. 11 becomes very positive. This positive voltage is fed through R to the base of \(\mathrm{Q}_{19}\) to maintain the conduction of this transistor and to hold transistors \(Q_{21}, Q_{13}, Q_{14}\), and \(Q_{17}\) cut off. Meanwhile, capacitor \(C\) charges through the internal bias resistors \(R_{41}\) and \(\mathrm{R}_{42}\). When the voltage on capacitor C reaches the level at which transistor \(Q_{21}\) begins to become forward-biased, some current is diverted from \(Q_{20}\) to \(Q_{21}\) and \(Q_{13}\), \(Q_{14}\), and \(Q_{17}\) begin to turn \(O N\). The action is regenerative because the negative-going voltage from the collector of \(Q_{17}\) feeds a negative-going signal back to the base of \(Q_{19}\) to enhance the switching action. When \(C\) discharges to the point at which \(Q_{21}\) turns OFF, \(Q_{20}\) begins to turn \(O N\) and the process repeats itself.

Two waveforms are available from the astable multivibrator circuit, both at low impedance. A rectangular waveform that has a peak-to-peak amplitude of 7 volts or greater is obtained from the output terminal. The waveform available at the inverting input is an isosceles triange that has a peak-to-peak amplitude of approximately 0.220 volt.

With the circuit as shown, reliable oscillation is obtained for values of the resistor R in the order of 2.2 megohms, with supply voltages as low as six volts.

\section*{4-Channel Linear Mixer}

Fig. 10 illustrates the use of the CA3048 as a linear mixer. Each input is connected to its own CA3048

Fig. 10 - Linear mixer.
amplifier through the gain-control potentiometers \(\mathrm{R}_{1}\), \(R_{2}, R_{3}\), and \(R_{4}\). Capacitors \(C_{1}, C_{2}, C_{3}\), and \(C_{4}\) block the dc voltage at the inputs.

The gain of any input to the corresponding output is 20 dB for the circuit values shown and a load impedance of 10000 ohms or greater. Resistors \(\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}\), and \(R_{8}\) program the gain of the system, and may be varied to provide more or less gain, depending on the requirements of the application. The curve in Fig. 11 illustrates the effect of variation in the resistance in the feedback circuit of the CA3048. The difference in the 20 dB gain indicated for the mixer circuit and the approximately 34 dB shown in Fig. 12 results from the loss in the combining circuit that consists of \(\mathrm{R}_{13}, \mathrm{R}_{14}\), \(R_{15}, R_{6}\), and \(R_{L}\).

A resistor-capacitor combination \(\left(\mathrm{R}_{9}, \mathrm{C}_{9}, \mathrm{R}_{10}, \mathrm{C}_{10}\right.\), \(\mathrm{R}_{11}, \mathrm{C}_{11}, \mathrm{R}_{12}, \mathrm{C}_{12}\)) connected to the output of each amplifier stabilizes the amplifiers when source and load conductances aretoo small to provide adequate damping.

Fig. 11 - Gain of a CA3048 amplifier as a function of feedback resistance.

Fig. 12 - Balanced-line driver.

The input impedance of each amplifier of the CA3048 is nominally 90 kilohms. In the linear mixer, however, the input potentiometers \(R_{1}\) through \(R_{4}\) are 500 kilohms. The effective impedance presented to the device, therefore, is quite high except when the circuit is adjusted for maximum gain. At this time, the impedance decreases to about 75 kilohms.

\section*{Driver for \(\mathbf{6 0 0}\)-ohm Balanced Line}

Two amplifiers of the CA3048 may be connected to drive a 600 -ohm balanced line at levels up to 1 volt rms with a gain of 40 dB . When the circuit is connected as shown in Fig. 12, the distortion is less than 1 per cent at an output level of 1 volt and a gain of 40 dB .

The output of the circuit is limited to a value slightly greater than 1 volt rms, primarily because of drivecurrent limitations to the output transistors. In this respect, it is self-protecting. Should a short circuit develop across the line, the circuit will not destroy itself.

Resistor \(\mathrm{R}_{1}\) in Fig. 12 is common to the output and input circuits of both amplifiers \(\mathrm{A}_{1}\) and \(\mathrm{A}_{3}\). Should a gain unbalance exist, or should the input signals be of unequal amplitude, then the outputs would tend to become unbalanced with respect to ground. For example, if amplifier \(A_{1}\) had the larger output, a signal in phase with the output at \(A_{1}\) would be developed across resistor \(R_{1}\). In this event, the voltage developed at \(R_{1}\) would tend to reduce the output of amplifier \(A_{1}\) because this voltage is applied to the inverting input. At the same time, the voltage at \(R_{1}\) is applied to the inverting input of amplifier \(\mathrm{A}_{3}\) and tends to increase the effective input voltage of that amplifier and, in this way, help to restore balance. The balancing effect takes place regardless of the cause of the initial unbalance.

\section*{Gain-Controlled Amplifier}

Any amplifier of the CA3048 may be used as a gaincontrolled amplifier in order to accommodate a wide range of input signal amplitude. Fig. 13 shows one amplifier of the CA3048 used in this type of configura tion. By variation of the dc potential at the gate No. 1 of the MOS transistor \(Q_{1}\), the gain of the amplifier may be varied from 14 dB to 49 dB . In this circuit, the MOS transistor \(Q_{1}\) acts as a variable impedance in the feedback loop of the CA3048.

Fig. 13 - Gain-controlled amplifier.
In a circuit such as that shown in Fig. 13, the voltage gain may be expressed as follows:
\[
\begin{equation*}
\frac{E_{o}}{E_{s}}=\frac{A\left(R_{a}+R_{f}\right)}{R_{f}+R_{a}(A+1)} \tag{5}
\end{equation*}
\]
where \(R_{a}\) is the equivalent resistance of the MOS transistor and \(R_{f}\) is the feedback resistance, which includes the internal feedback resistance of the integrated circuit together with any paralleled external feedback resistance.

As the value of resistor \(R_{a}\) approaches zero, the gain of the circuit approaches the open-loop gain of the amplifier (A). For very large values of resistor \(R_{a}\) the gain of the circuit approaches \(A /(A+1)\), or approximately unity. The maximum theoretical agc range then is A.

The practical agc range of this circuit is limited on the high end by the "ON" resistance of the MOS transistor, and on the low end by the finite input impedance of the CA3048. In the circuit shown in Fig. 13, the range of control is 35 dB .

There is no necessity for direct current to flow in the MOS transistor, and if a low impedance source of about five volts is available, this voltage may be substituted for the Zener diode-resistor combination so that the power requirements of the circuit are further reduced.

Distortion, which is inherently low, ranges from 0.65 per cent at minimum gain (output of 2 volts rms) to 0.4 per cent at maximum gain.

\title{
APPLICATION OF THE RCA-CA3018 INTEGRATED-CIRCUIT TRANSISTOR ARRAY
}

\author{
G.E. THERIAULT, A.J. LEIDICH, AND T.H. CAMPBELL
}

The CA3018 integrated circuit consists of four silicon epitaxial transistors produced by a monolithic process on a single chip mounted in a 12 -lead TO-5 package. The four active devices, two isolated transistors plus two transistors with an emitter-base common connection, are especially suitable for applications in which closely matched device characteristics are required, or in which a number of active devices must be interconnected with non-integrable components such as tuned circuits, largevalue resistors, variable resistors, and microfarad bypass capacitors. Such areas of application include if, rf (through 100 MHz), video, agc, audio, and dc amplifiers. Because the CA3018 has the feature of device balance, it is useful in special applications of the differential amplifier, and can be used to advantage in circuits which require temperature compensation of base-to-emitter voltage.

\section*{CIRCUIT DESCRIPTION AND OPERATING CHARACTERISTICS}

The circuit configuration for the CA3018 is shown in Fig. 1. In a 12 -lead TO-5 package, because it is necessary to provide a terminal for connection to the substrate, two transistor terminals must be connected to a common lead. The particular configuration chosen is useful in emitter-follower and Darlington circuit connections. In
addition, the four transistors can be used almost independently if terminal 2 is grounded or ac grounded so that Q3 can be used as a common-emitter amplifier and Q4 as a common-base amplifier. In pulse video amplifiers and line-driver circuits, Q4 can be used as a forwardbiased diode in series with the emitter of Q3. Q3 may be

Fig. 1-Schematic diagram and TO-5 terminal connections for the CA3018 integrated-circuit transistor array.
used as a diode connected to the base of Q4; in a reversebiased connection, Q3 can serve as a protective diode in rf circuits connected to operational antennas. The presence of Q3 does not inhibit the use of Q4 in a large number of circuits.

In transistors Q1, Q2, and Q4, the emitter lead is interposed between the base and collector leads to minimize package and lead capacitances. In Q3, the substrate lead serves as the shield between base and collector. This lead arrangement reduces feedback capacitance in commonemitter amplifiers, and thus extends video bandwidth and increases tuned-circuit amplifier gain stability.

Operating characteristics for the CA3018 are given in the technical bulletin.

\section*{CIRCUIT APPLICATIONS}

The applications for the CA3018 are many and varied. The typical applications discussed in this Note have been selected to demonstrate the advantages of four matched devices available on a single chip. These few examples should stimulate the generation of a great many more applications.

\section*{Video Amplifiers}

A common approach to video-amplifier design is to use two transistors in a configuration designed to reduce the feedback capacitance (appearing as a Miller capacitance) inherent in a single triode device. Three configurations which utilize two devices are (1) the cascode circuit, (2) the single-ended differential-amplifier, and (3) the common-collector, common-emitter circuit. In all three circuits, the output-to-input feedback capacitance is minimized by isolation inherent in the configuration. The availability of four identical transistors in a common package provides a convenient vehicle for these circuit configurations for video-amplifier design. Two of the many possible circuit variations are discussed below.

Broadband Video Amplifier. A broadband videoamplifier design using the CA3018 is shown in Fig. 2. This amplifier may be considered as two dc-coupled stages, each consisting of a common-emitter, common-collector configuration. The common-collector transistor provides a low-impedance source to the input of the commonemitter transistor and a high-impedance, low-capacitance load at the common-emitter output. Iterative operation of the video amplifier can be achieved by capacitive coupling of stages.

Two feedback loops provide dc stability of the broadband video amplifier and exchange gain for bandwidth. The feedback loop from the emitter of \(Q_{3}\) to the base of \(Q_{1}\) provides dc and low-frequency feedback; the loop from the collector of \(Q_{4}\) to the collector of \(Q_{1}\) provides both dc feedback and ac feedback at all frequencies.

The frequency response of the broadband video amplifier is shown in Fig. 3. The upper 3-dB break occurs at a frequency of 32 MHz . The low-frequency \(3-\mathrm{dB}\) characteristics are determined primarily by the values of capacitors \(C_{1}, C_{2}\), and \(C_{3}\). The low-frequency 3-dB break

Fig. 2—Schematic diagram for a CA3018 broadband video amplifier.
occurs at 800 Hz . The mid-frequency gain of 49 dB is constant to within 1 dB over the temperature range from \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\). The upper \(3-\mathrm{dB}\) break is constant at 32 MHz from \(-55^{\circ} \mathrm{C}\) to \(+25^{\circ} \mathrm{C}\), and drops to 21 MHz at \(+125^{\circ} \mathrm{C}\).
The total power dissipation over the entire temperature range is 22.8 milliwatts. The dc output voltage varies from 2.33 volts at \(-55^{\circ} \mathrm{C}\) to 3 volts at \(+125^{\circ} \mathrm{C}\). The tangential sensitivity occurs at 20 microvolts peak-to-peak. The dynamic range is from 20 microvolts peak-to-peak to 4 millivolts rms at the input.

The circuit of Fig. 2 demonstrates a typical approach that can be altered, especially with regard to gain and bandwidth, to meet specific performance requirements.

Fig. 3-Voltage gain as a function of frequency for the broadband video amplifier of Fig. 2.

Cascode Video Amplifier. The cascode configuration offers the advantages of common-emitter gain with reduced feedback capacitance and thus greater bandwidth. Fig. 4 shows a typical circuit diagram of a cascode video amplifier using the CA3018. Transistors \(Q_{2}\) and \(Q_{1}\) comprise the common-emitter and common-base portions of
the cascode, respectively. The common-base unit is followed by cascaded emitter followers (\(Q_{3}\) and \(Q_{4}\)) which provide a low output impedance to maintain bandwidth for iterative operation.

Fig. 4-Schematic diagram for a CA3018 cascode video amplifier.

The frequency response of the cascode video amplifier is shown in Fig. 5. The lower and upper 3-dB points occur at frequencies of 6 KHz and 11 MHz , respectively. The lower \(3-\mathrm{dB}\) point is primarily a function of capacitors \(\mathrm{C} 1, \mathrm{C} 2\), and C3. The upper \(3-\mathrm{dB}\) point is a function of the devices and of the load resistor \(\mathrm{R}_{1}\), and is 10.5 MHz at \(-55^{\circ} \mathrm{C}\) and 5 MHz at \(+125^{\circ} \mathrm{C}\).

Fig. 5-Voltage gain as a function of frequency for the cascode amplifier of Fig. 4.

The mid-frequency voltage gain of the amplifier is 37 \(\mathrm{dB} \pm 1 \mathrm{~dB}\) over the temperature range from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). The power dissipation varies from 16.8 milliwatts at \(-55^{\circ} \mathrm{C}\) to 17.6 milliwatts at \(+125^{\circ} \mathrm{C}\). The amplifier has a tangential sensitivity of 40 microvolts peak-topeak and a useful dynamic input range from 40 microvolts to \(\mathbf{1 6 . 6}\) millivolts peak-to-peak.

\section*{15-MHz RF Amplifier}

Fig. 6 shows a typical design approach for a tuned amplifier for use in the frequency range of 2 to 30 MHz in military receivers. This circuit was designed for a midband frequency of 15 MHz to demonstrate its capability. Gain is obtained in a common-emitter stage (\(\mathrm{Q}_{4}\)). Transistor \(Q_{2}\) is used as a variable resistor in the emitter of \(Q_{\mathbf{4}}\) to provide improved signal-handling capability with agc. Transistor \(Q_{1}\) is used as a bias diode to stabilize \(Q_{4}\) with temperature, and the reverse breakdown of \(Q_{3}\) as a diode is used to protect the common-emitter stage from signal overdrive of adjacent transmitters.

Fig. 6-Schematic diagram for a CA3018 15-MHz rf amplifier.

The tuned-circuit design of Fig. 6 utilizes mismatching to obtain stability. Although the usable stable gain for a common-emitter amplifier using this type of transistor is 26 dB at 15 mHz , the tuned rf amplifier was designed for a total gain of 20 dB to obtain greater stability and more uniform performance with device variations. The general performance characteristics of the circuit are as follows:
```

Power Gain ............................. 20 dB
Power-Gain Variation from - 55 to

```

\begin{tabular}{|c|c|}
\hline Bandwidth & 315 kHz \\
\hline Noise Figure at Full Gain & 7.4 dB \\
\hline AGC Range & 45 dB \\
\hline Power Dissipation & 1.8 mW \\
\hline
\end{tabular}

Fig. 7 shows the cross-modulation characteristics of the circuit for in-band signals. For out-of-band undesired signals, the cross-modulation performance is improved by the amount of attenuation provided by the input tuned circuit. Cross-modulation performance also improves (i.e. more interfering signal voltage is required for crossmodulation distortion of 10 per cent) with increased age as a result of the degeneration in the emitter of \(Q_{4}\).

Fig. 7-In-band cross-modulation characteristic of \(15-\mathrm{MHz}\) amplifier of Fig. 6 (data taken with untuned input).

\section*{Final If Amplifier Stage and Second Detector}

Fig. 8 illustrates the use of the CA3018 as a last if amplifier and second detector (0.1 volt emitter voltage on terminal 1). The bias on transistor \(Q_{4}\) is maintained at approximately cutoff to permit the cascaded emitter-follower configuration (\(Q_{3}\) and \(Q_{4}\)) to be used as a second detector. Because this stage is driven by a common collector configuration, the input impedance to the detector can be kept high. A low output load impedance can be used as a result of the output current capability of the cascaded emitter-follower configuration. The input impedance (terminal 9) of approximately 9000 ohms is largely determined by the bias network. A minimum if input power of 0.4 microwatt must be delivered to terminal 9 for linear operation. The audio output power for 60 per cent modulation for this drive condition is 0.8 microwatt. Linear detection is obtained through an input range of 20 dB for 60 per cent modulation. This detector arrangement requires less power-output capability from the last if amplifier than a conventional diode detector yet allows a low dc load resistor to achieve a good ac-to-dc ratio for the first audio amplifier.

Fig. 8-Schematic diagram for a CA3018 final if amplifier and second detector.

The if amplifier of Fig. 8 has a voltage gain of 30 dB at 1 MHz . Transistor \(Q_{1}\) is used in the base-bias loop of the common-emitter amplifier \(Q_{2}\) to stabilize the output operating point against temperature variations. This arrangement also eliminates the need for an emitter resistor and bypass capacitor, and thus provides a larger voltage-swing capability for \(Q_{2}\). If \(Q_{2}\) is biased conventionally with base-bias resistors, \(\mathrm{Q}_{1}\) can be made available for the first audio or age amplifier.

\section*{Class B Amplifier}

Characteristics were obtained on a low-level class B amplifier to establish the idling-current performance of nearly identical devices on a single chip with respect to temperature variations. The transistors in the CA3018 can be used only for low-power class \(B\) operation (maximum output of 40 milliwatts) because of the \(h_{\text {FE }}\) roll-off and moderately high saturation resistance at high currents. A typical circuit is shown in Fig. 9. Idling-current bias is provided to \(Q_{1}\) and \(Q_{2}\) by use of transistor \(Q_{3}\) as a diode (with collector and base shorted) and connection of a series resistor to the supply. The idling current for each transistor in the class \(B\) output is equal to the current established in the resistance-diode loop. Because the resistor \(\mathbf{R}_{1}\) is the predominant factor in controlling the current in the bias loop, the bias current is relatively independent of temperature. In addition, because the devices have nearly equal characteristics and are at the same temperature, the idling current is nearly independent through the full military temperature range. The total idling current for transistors \(Q_{1}\) and \(Q_{2}\) in Fig. 9 varies from 0.5 to 0.6 milliampere from -55 to \(+125^{\circ} \mathrm{C}\). Excellent balance between output devices is achieved throughout the range.
AC feedback as well as dc feedback can be obtained by substitution of two resistors \(R_{2}\) and \(R_{3}\) in place of \(R_{1}\),
as shown by the dotted lines in Fig. 9. These two resistors, which have a parallel combination equal to \(R_{1}\), are connected between collector and base of transistors \(Q_{2}\) and \(Q_{1}\). The added feedback reduces the power gain by approximately 6 dB (30 to 24 dB), but improves the linearity of the circuit. Although the output-power capability for the circuit shown in Fig. 9 is approximately 18 milliwatts, output levels up to 40 milliwatts can be obtained in similar configurations with optimized components.

\(T_{1}\) - ADC Products No. 5SX1322 or equiv.
\(\mathrm{T}_{\mathbf{2}}\) - Chicago Standard Trans. Corp. No. TA-10 or equiv.
Note: \(\mathbf{R}_{\mathbf{1}}\) is removed when \(\mathbf{R}_{\mathbf{2}}\) and \(\mathbf{R}_{3}\) are added.
Fig. 9—Schematic diagram for a CA3018 class B amplifier.

\[
\begin{aligned}
& \mathbf{t}_{1}=0.11 \text { to } 0.17 \mu \mathrm{H} \\
& \mathbf{t}_{2}=0.5 \text { to } 0.8 \mu \mathrm{H}
\end{aligned}
\]

Fig. 10-Schematic diagram for a CA3018 \(100-\mathrm{MHz}\) cascode amplifier.

\section*{100-MHz Tuned RF Amplifier}

Fig. 10 illustrates the use of the CA3018 in a \(100-\mathrm{MHz}\) cascode circuit with an agc amplifier. Transistors \(Q_{1}\) and \(Q_{2}\) are used in a cascode configuration, and transistors \(\mathrm{Q}_{3}\) and \(\mathrm{Q}_{4}\) are used to provide an agc capability and amplification. With a positive-going age signal, current in the cascode amplifier is transferred to the Darlington configuration by differential-amplifier action. This agc amplifier has the advantage of low-power drive (high input impedance). In addition, the emitter of \(\mathrm{Q}_{1}\) can be backbiased with respect to the base to provide larger input-signal-handling capability under full agc conditions.

The operating characteristics of the amplifier shown in Fig. 10 are as follows:
\begin{tabular}{ll}
Power Gain & -26 dB \\
Agc Range & -70 dB \\
3-dB Bandwidth & -4.5 MHz \\
Noise Figure & -6.8 dB \\
Power Dissipation & -7.7 mW
\end{tabular}

The response characteristic is shown in Fig. 11

Fig. 11-Response characteristic of \(100-\mathrm{MHz}\) amplifier of Fig. 10.

Solid State Division

\title{
APPLICATION OF THE RCA-CA3019 INTEGRATED-CIRCUIT DIODE ARRAY
}

\section*{BY}

\author{
G. E. THERIAULT AND R. G. TIPPING
}

The RCA-CA3019 integrated circuit diode array provides four diodes internally connected in a diode-quad arrangement plus two individual diodes. Its applications include gating, mixing, modulating, and detecting circuits.

The CA3019 features all-monolithic-silicon epitaxial construction designed for operation at ambient temperatures from \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\). It is supplied in a 10 -terminal TO-5 low silhouette package.

Because all the diodes are fabricated simultaneously on a single silicon chip, they have nearly identical characteristics, and their parameters track each other with temperature variations as a result of their close proximity and the good thermal conductivity of silicon. Consequently, the CA3019 is particularly useful in circuit configurations which require either a balanced diode bridge or identical diodes.

\section*{CIRCUIT CONFIGURATION AND OPERATING CHARACTERISTICS}

Fig. 1 shows the circuit diagram and terminal connections for the CA3019. Diodes \(D_{1}\) through \(D_{4}\) are internally interconnected to form a diode quad, while diodes \(D_{5}\) and \(D_{6}\) are available as independent diodes. Each diode is formed from a transistor by connection of the collector and the base to form the diode anode and use

Fig. 1-Schematic diagram and terminal connections for the CA3019 integrated-circuit diode array.
of the emitter for the diode cathode (this technique is one of five methods by which the transistor structure can be utilized as a diode). This diode configuration, in which the collector-base junction is shorted, is the most useful connection for a high-speed diode because it has the lowest storage time. The only charge stored is that in the base. This configuration also exhibits the lowest forward voltage drop, and is the only one which has no p-n-p transistor action to the substrate. The diode has the emitter-to-base reverse breakdown voltage characteristic (typically 6 volts).

The monolithic process produces a substrate diode between the collector of a transistor and its supporting substrate, as shown in Fig. 2. Connected at each diode anode,
therefore, is the cathode of a substrate diode for which the anode is the substrate (terminal 7). In some applications, the substrate can be left floating because a forward bias on any substrate diode creates a self reverse-bias on the other substrate diodes. However, the uncertainty of this bias and the capacitive feedthrough paths provided by the substrate make it advisable to apply a reverse bias to all substrate diodes by returning the substrate through terminal 7 to a dc voltage which is more negative than the most negative voltage on a diode anode. Such reverse bias is most important when ac circuit balance is essential because the capacitance of the substrate diodes is a nonlinear function of the voltage across them. In such circuits, the changing capacitance of these parasitic elements can make good balance over a wide dynamic range impossible.

(b) Diode equivalent circuit
(a) Cross section of monolithic diode structure

Fig. 2-Diagram and equivalent circuit of the monolithic array.
Reverse bias of the substrate diodes is always indicated, therefore, and should be omitted only if the inclusion of such bias is not possible or practical. Terminal 7 may be returned to a negative power supply as long as the combined value of that supply voltage and the maximum positive voltage on any diode anode does not exceed the maximum rating of 25 volts. In systems that use single power supplies, the active circuit may be raised above ground potential and the signals coupled into the diodes by capacitive or inductive means.

The operating characteristics of the CA3019 integrated diode array are determined primarily by the individual diode characteristics, which are given in the technical bulletin.

\section*{APPLICATIONS}

Although there are many possible applications for the CA3019, this note describes a few practical circuits to stimulate the thinking of the potential user. Besides the obvious uses as separate diodes and possible quad combinations, some of which are covered in the following discusssion, it should be noted that shorting of terminals 2 and 6 in the quad effectively provides two diodes in series. This diode connection can be used as the elements of special balanced mixers, as ring modulators, and as compensating networks that provide two diode drops. Fig. 3 shows an example of a typical synthesizer mixer circuit.

Fig. 3-Typical synthesizer mixer circuit.
Shorting of terminals 5 and 8 provides two independent sets of back-to-back diodes useful for limiting and clipping, as shown in Fig. 4.

Fig. 4-Limiters using the CA3019.

\section*{Balanced Modulator}

Fig. 5 shows the use of the CA3019 as a balanced modulator which minimizes the carrier frequency from the output by means of a symmetrical bridge network. A carrier of one polarity causes all the diodes to conduct, and thus effectively short-circuits the signal source. A carrier of the opposite polarity cuts off all the diodes and allows signal current to flow to the load. If the four diodes are identical, the bridge is perfectly balanced and no carrier current flows in the output load. Table I lists the characteristics of the balanced modulator.

\section*{High-Speed Gates}

In high-speed gates, the gating signal often appears at the output and causes the output signal to ride a "pedestal." A diode-quad bridge circuit can be used to balance out the undesired gating signal at the output and reduce the pedestal to the extent that the bridge is balanced.

TABLEI. CHARACTERISTICS OF BALANCED MODULATOR OF FIG. 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Carrier Voltage \\
VRMS at \\
30 KHz
\end{tabular} & \multicolumn{2}{|r|}{0.75} & \multicolumn{2}{|c|}{0.75} & \multicolumn{2}{|c|}{0.75} & \multicolumn{2}{|c|}{0.50} & \multicolumn{2}{|c|}{1.0} \\
\hline Signal Voltage mVRMS at 2 KHz & \multicolumn{2}{|c|}{77} & \multicolumn{2}{|c|}{245} & \multicolumn{2}{|c|}{770} & \multicolumn{2}{|c|}{245} & & \\
\hline \begin{tabular}{l}
Output \\
Frequency
\end{tabular} & Output
Voltage
\(m V\)
rms & \[
\begin{gathered}
d b \\
\text { Below } \\
V_{S}
\end{gathered}
\] & \[
\begin{gathered}
\text { Output } \\
\text { Voltage } \\
\text { mV } \\
\text { rms }
\end{gathered}
\] & \[
\begin{gathered}
d b \\
\text { Below } \\
V_{S}
\end{gathered}
\] & Output
Voltage
\(m V\)
rms & \[
\begin{gathered}
d b \\
\text { Below } \\
V_{\mathrm{S}}
\end{gathered}
\] & Output
Voltage
\(m V\)
\(r m s\) & \[
\begin{gathered}
d b \\
\text { Below } \\
V_{S}
\end{gathered}
\] & & \[
\begin{gathered}
d b \\
\text { Below } \\
V_{S}
\end{gathered}
\] \\
\hline 28 and 32* & 34 & 6.5 & 115 & 7 & 440 & 5 & 51 & 14 & 170 & 3 \\
\hline 30 & 0.7 & 41 & 0.82 & 49 & 2.6 & 50 & 0.1 & 68 & 3.6 & 37 \\
\hline 26 and 34 & 0.02 & 72 & 0.05 & \(72+\) & 0.48 & 64 & 0.04 & \(72+\) & 0.07 & 71 \\
\hline 24 and 36 & 0.03 & 69 & 0.49 & 54 & 60 & 22 & 0.58 & . 52.5 & 0.6 & 53 \\
\hline 22 and 38 & 0.001 & \(72+\) & 0.01 & \(72+\) & 1.4 & 55 & . 015 & \(72+\) & 0.02 & \(72+\) \\
\hline
\end{tabular}
* Double-Sideband, Suppressed-Carrier Output.

All other outputs are spurious signals.

\(\mathrm{T}_{1}\) - Technitrol No. 8511660 or equiv.
Fig. 5-Balanced modulator using the CA3019.
A diode-quad gate functions as a variable impedance between a source and a load, and can be connected either in series or in shunt with the load. The circuit configuration used depends on the input and output impedances of the circuits to be gated. A series gate is used if the source and load impedances are low compared to the diode back resistance, and a shunt gate is used if the source and load impedances are high compared to the diode forward resistance.

Series Gate. Fig. 6 shows the use of the CA3019 as a series gate in which the diode bridge, in series with the load resistance, balances out the gating signal to provide
a pedestal-free output. With a proper gating voltage (1 to 3 volts rms, 1 to 500 kHz), diodes \(\mathrm{D}_{\tilde{5}}\) and \(\mathrm{D}_{6}\) conduct during one half of each gating cycle and do not conduct during the other half of the cycle. When diodes \(D_{5}\) and \(D_{6}\) are conducting, the diode bridge (\(D_{1}\) through \(D_{4}\)) is not conducting and the high diode back resistance prevents the input signal \(\mathrm{V}_{\mathrm{s}}\) from appearing across the load resistance \(\mathrm{R}_{\mathrm{L}}\); when diodes \(\mathrm{D}_{5}\) and \(\mathrm{D}_{6}\) are not conducting, the diode bridge conducts and the low diode forward resistance allows the input signal to appear across the load resistance. Resistor \(\mathrm{R}_{1}\) may be adjusted to minimize the

Fig. 6-Series gate using the CA3019.
gating voltage present at the output. The substrate (terminal 7) is connected to the -6 -volt supply. Fig. 7 shows the on-to-off ratio of the series gate as a function of frequency.

Fig. 7 -On-to-off ratio for the series gate of Fig. 6 as a function of frequency.

Shunt Gate. Fig. 8 shows the use of the CA3019 as a shunt gate in which the diode bridge, in shunt with the load resistance, balances out the gating signal to provide a pedestal-free output. When the gating voltage \(\mathrm{V}_{\mathrm{g}}\) is of sufficient amplitude, the diode bridge (\(\mathrm{D}_{1}\) through \(\mathrm{D}_{4}\)) conducts during one half of each gating cycle and does not conduct during the other half of the cycle. When the diode bridge is conducting, its low diode forward resistance shunts the load resistance \(R_{L}\) and prevents the input signal \(\mathrm{V}_{\mathrm{s}}\) from appearing at the output; when the diode bridge is not conducting, its high diode back resistance allows the input signal to appear at the output. Diode \(\mathrm{D}_{5}\) and resistor \(R_{1}\) keep the transformer load nearly constant during both halves of the gating cycle. The substrate (terminal 7) can either be left floating or returned to a negative voltage, but it cannot be returned to ground. The characteristics of the shunt gate are as follows:

Gating frequency \(\left(\mathrm{f}_{\mathrm{g}}\right)-1\) to 100 kHz
Gating voltage \(\left(\mathrm{V}_{\mathrm{g}}\right)\) - 0.8 to 1.2 Vrms
Signal frequency (\(\mathrm{f}_{\mathrm{s}}\)) - dc to 500 kHz (2 dB down)
Signal voltage \(\left(\mathrm{V}_{\mathrm{g}}\right)\) - 0 to 1 Vrms

The frequency range of this circuit can be extended by application of a reverse bias to the substrate. The amount of gating voltage \(\mathrm{V}_{\mathrm{g}}\) present at the output as a function of the amplitude and frequency of \(\mathrm{V}_{\mathrm{g}}\) is shown in Table II.

Fig. 8 -Shunt gate using the CA3019.

\section*{TABLE II. GATING CHARACTERISTICS OF SHUNT GATE SHOWN IN FIG. 8}
\begin{tabular}{ccc}
\begin{tabular}{c}
Frequency \\
of \(V_{g}\) \\
\(k H z\)
\end{tabular} & \begin{tabular}{c}
Amplitude \\
of \(V_{g}\) \\
volts
\end{tabular} & \begin{tabular}{c}
Prosent at the \\
Amount of \(V_{g}\) \\
Output \\
\(m v s\)
\end{tabular} \\
1 & 0.8 & 0.2 \\
1 & 1.0 & 0.5 \\
1 & 1.2 & 1.3 \\
10 & 0.8 & 2.0 \\
10 & 1.0 & 4.7 \\
10 & 1.2 & 8.7 \\
50 & 0.8 & 11.0 \\
50 & 1.0 & 24.0 \\
50 & 1.2 & 40.0
\end{tabular}

\section*{Series-Shunt Gate.}

A series-shunt gate which utilizes all six diodes of the CA3019 is shown in Fig. 9 This configuration combines the good on-to-off impedance ratio of the shunt gate with the low-output pedestal of the series gate.

On the gating half-cycle during which the voltage at A is positive with respect to the voltage at \(B\), there is no output because the shunt diodes are forward-biased and
the series diodes are reverse-biased. Any signal passing through the input diodes (\(\mathrm{D}_{4}\) and \(\mathrm{D}_{2}\)) encounters a low shunt impedance to ground (\(\mathrm{D}_{5}\) and \(\mathrm{D}_{6}\)) and a high impedance in series with the signal path to the load (\(\mathrm{D}_{3}\) and \(\mathrm{D}_{1}\)). This arrangement assures a good on-to-off impedance ratio. When the voltages at \(A\) and \(B\) reverse, the conduction states of the shunt and series diodes reverse, and the signal passes through the gate to the load resistor \(\mathrm{R}_{\mathrm{L}}\). Any pedestal at the output is a function of the resistor, transformer, and diode balance.

Fig. 9 -Series-shunt gate using the CA3019.
The gate continues to operate successfully with resistors \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) shorted if the transformer center tap is removed from ground. In either case, no dc supply is required to bias the gate diodes.

\section*{Balanced Mixer}

Fig. 10 illustrates the use of the CA3019 as a conventional balanced mixer. The load resistor across the output tuned circuit is selected to provide maximum power output. The conversion gain of the mixer for a \(45-\mathrm{MHz}\) input

Fig. 10 -Balanced mixer using the CA3019.
signal and a \(55-\mathrm{MHz}\) oscillator signal is shown in Fig. 11. The input impedance at point \(A\) is approximately 600 -ohms for a 0.6 -volt-rms oscillator drive.

Fig. 11 - Conversion gain as a function of oscillator amplitude for the balanced mixer of Fig.10.

The CA3019 mixer shown in Fig. 12 is essentially a balanced mixer with two additional diodes (\(D_{3}\) and \(D_{4}\)) added to form a half-wave carrier switch. The additional diodes permit both legs of the circuit (\(D_{1}-D_{2}\) and \(\mathrm{D}_{3}-\mathrm{D}_{4}\)) to function throughout the ac cycle. As compared with a conventional balanced mixer, shown in Fig.10, this circuit effectively doubles the desired output voltage

Fig. 12 - Balanced mixer with half-wave carrier switch using the CA3019.
and reduces the output voltage at the oscillator frequency by half. However, the capacitances associated with the integrated diodes prevent this circuit configuration from realizing the improvement in conversion gain at frequencies above 20 MHz .

\section*{Ring Modulator}

The use of the CA3019 as a ring modulator is shown in Fig. 13. If a perfectly balanced arrangement were used, carrier current of equal magnitude and opposite direction would flow in each half of the center-tapped transformer \(\mathrm{T}_{2}\). Thus, the effect of the carrier current in transformer \(\mathrm{T}_{2}\) would be cancelled, and the carrier frequency would not appear in the output. However, the ring modulator of Fig. 13 is not exactly balanced because diodes \(\left(D_{1}+D_{2}\right)\) and \(\left(D_{3}+D_{4}\right)\) are actually two diodes in
parallel, while diodes \(\left(\mathrm{D}_{5}\right)\) and (\(\mathrm{D}_{6}\)) are individual diodes. Nevertheless, this circuit attenuates the carrier in the output as well as an arrangement that uses both individual diodes in two CA3019 circuits.

As the carrier passes through half of its cycle, diodes \(\left(D_{1}+D_{2}\right)\) and (\(D_{6}\)) conduct, and diodes \(\left(D_{3}+D_{4}\right)\) and (D5) do not conduct. When the carrier passes through the other half of its cycle, the previously nonconducting diodes conduct, and vice versa. As a result, the output amplitude, is alternately switched from plus to minus at the carrier frequency. The signal-frequency component of the output waveform is thus symmetrical about the zero axis and is not present in the output. Therefore, the ring modulator suppresses both the carrier frequency and the signal frequency so that the output theoretically contains only the upper and lower sidebands. For single-sideband transmission, one of these sidebands can be eliminated by selective filtering. The performance of the CA3019 as a ring modulator is shown in Table III.

Fig. 13 -Ring modulator using the CA3019.

TABLE III. PERFORMANCE CHARACTERISTICS OF RING MODULATION OF FIG. 13
\begin{tabular}{clcccc}
\hline & & For a given \(\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{g}}, \mathrm{e}_{\mathrm{o}}\) in millivolts \\
\begin{tabular}{l}
Output \\
Freq. KHz
\end{tabular} & \(\mathrm{V}_{\mathrm{s}} \mathrm{mvs}\) & 300 & 350 & 450 & 500 \\
\cline { 2 - 6 } & \(\mathrm{~V}_{\mathrm{c}} \mathrm{mvs}\) & 600 & 500 & 350 & 300 \\
\hline 28 or 32 & \begin{tabular}{l}
Upper or \\
Lower \\
Sidebands
\end{tabular} & 86 & 97 & 83 & 91 \\
\hline 2 & \begin{tabular}{l}
Sig. \\
Freq.
\end{tabular} & 0.042 & 0.02 & 0.015 & 0.020 \\
\hline 30 & \begin{tabular}{l}
Carrier \\
Freq.
\end{tabular} & \(1.3(-37 \mathrm{db})\) & \(0.88(-41 \mathrm{db})\) & \(0.67(-42 \mathrm{db})\) & \(0.62(-43 \mathrm{db})\) \\
\hline 26 or 34 & \begin{tabular}{l}
Higher \\
Order \\
Sidebands
\end{tabular} & 0.018 & 0.016 & 0.036 & 0.043 \\
\hline 24 or 36 & 0.021 & 0.054 & 0.047 & 5.0 \\
\hline
\end{tabular}
* db below the desired upper and lower sidebands

\section*{Application Notes on IC Amplifier, Control, and Special-Function Circuits}
\begin{tabular}{|c|c|c|}
\hline ICAN-5022. & "Application of the RCA-CA3004, CA3005, and CA3006 Integrated-Circuit RF Amplifiers"' & 88 \\
\hline \multirow[t]{2}{*}{ICAN-5030} & "Application of the RCA-CA3000 Integrated-Circuit & \\
\hline & DC Amplifier" & 130 \\
\hline \multirow[t]{2}{*}{ICAN-5036} & "Application of the RCA-CA3002 Integrated-Circuit & \\
\hline & IF Amplifier" & 141 \\
\hline \multirow[t]{2}{*}{ICAN-5037} & "Application of the RCA-CA3007 Integrated-Circuit & \\
\hline & Audio Amplifier" & 150 \\
\hline \multirow[t]{2}{*}{ICAN-5038} & "Application of the RCA-CA3001 Integrated-Circuit & \\
\hline & Video Amplifier" . & 153 \\
\hline \multirow[t]{2}{*}{ICAN-5337} & "Application of the RCA-CA3028A and CA3028B Integrated-Circuit RF Amplifiers in the HF and & \\
\hline & VHF Ranges" . & 163 \\
\hline \multirow[t]{2}{*}{ICAN-5338} & "Application of the RCA-CA3021, CA 3022 , and CA3023 & \\
\hline & Integrated-Circuit Wideband Amplifiers' & 173 \\
\hline ICAN-5766 & "Application of the RCA-CA3020 and CA3020A Integrate Circuit Multi-Purpose Wide-Band Power Amplifiers" & 187 \\
\hline ICAN-5977 & "Principal Features and Applications of the RCACA3040 Integrated-Circuit Wideband Amplifier" & 195 \\
\hline ICAN-6048. & "'Some Applications of a Programmable Power-Switch/ Amplifier IC' & 206 \\
\hline ICAN-6080 & \begin{tabular}{l}
"Digital-to-Analog Conversion \\
Using the RCA-CD4007A COS/MOS IC"
\end{tabular} & 218 \\
\hline ICAN-6158. & "Application of the RCA-CA3058 and RCA-CA3059 Zero Voltage Switches in Thyristor Circuits" & 224 \\
\hline ICAN-6268. & "Applications and Extended Operating Conditions for the RCA-CA3059 IC Zero-Voltage Switch" & 236 \\
\hline ICAN-6538 & "Applications of the RCA-CA3062 IC Photo-Detector and Power Amplifier in Switching Circuits" & 255 \\
\hline ICAN-5025 & "Application of RCA Integrated Circuits CD2150, CD2151, and CD2152 ECCSL Logic Gates" & 114 \\
\hline ICAN-6294 & "Features and Applications of RCA-CD2500E-Series MSI BCD-to-7-Segment Decoder-Drivers'" & 244 \\
\hline
\end{tabular}

Solid State Division

\title{
Application of the RCA CA3004, CA3005, and CA3006 Integrated-Circuit RF Amplifiers
}

\section*{BY}

\author{
M.E. MALCHON AND G.E. THERIAULT
}

The RCA CA3004; CA3005, and CA3006 rf amplifiers are silicon-epitaxial monolithic integrated circuits, supplied in 12 -terminal TO- 5 packages. These circuits are designed to operate from low or medium levels of dc supply voltage, over a range of ambient temperatures from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), at frequencies from dc to 100 MHz . They may be used with external tuned-circuit, transformer, or resistive load impedances to provide the following types of functions:
1. Wide- or narrow-band amplification
2. Mixing
3. Limiting
4. Product detection
5. Frequency generation
6. Generation of pulse or digital waveforms

The CA3004 has linear transfer characteristics, excellent circuit stability, and a wide dynamic range. These features indicate that the CA3004 is particularly useful for applications in which the ability to handle large input signals is an important consideration.

The CA3005 and CA3006 feature high gain, sharp limiting characteristics, and exceptional versatility. The versa-
tility in the operation of the CA3005 and CA3006 is made possible by the availability of internal circuit points to which external circuit elements may be connected to alter the basic circuit configuration. As a result of such external modifications, it is possible to operate these circuits as push-pull amplifiers, as cascode amplifiers, or as single amplifiers in cascade or parallel channels.

The CA3005 and CA3006 rf amplifiers are identical except for their input offset voltages. The offset voltage for the CA3006 is typically less than 1 millivolt, while the offset voltage for the CA3005 is normally in the order of 3 millivolts. The low level of input offset voltage makes the CA3006 well suited for balanced-modulator, mixer, or other pushpull applications that require a well-balanced circuit.

\section*{CIRCUIT DESCRIPTIONS AND OPERATING MODES}

Fig. 1 shows the schematic diagrams, together with the terminal arrangement on the TO-5 packages, for the CA3004, CA3005, and CA3006 integrated-circuit rf amplifiers. Each circuit consists of a balanced differential amplifier that is driven from a controlled, constant-current source.

(a)

92CS-12959R1

(b)

NOTE 1: Connect terminal 10 to most positive dc supply voltage used for circuit.
NOTE 2: Connect terminal 9 to most positive dc supply voltage used for circuit.
Fig. 1-Schematic diagrams of the integrated-circuit rf amplifiers: (a) CA3004; (b) CA3005 or CA3006. The terminal arrangement on the TO-5 package, which is the same for each type, is also shown.

In the CA3004 circuit, resistors (\(\mathbf{R}_{6}\) and \(\mathbf{R}_{7}\)) are included in the emitter leads of the differential pair of transistors, \(Q_{1}\) and \(Q_{2}\). The degeneration introduced by these unbypassed emitter resistors improves the linearity of the transfer characteristics and increases the signal-handling capabilities of the circuit. Fig. 2 shows the dynamic transfer and limiting

Fig. 2-Dynamic transfer and limiting characteristics of the CA3004 integrated-circuit rf amplifier.
characteristics of the CA3004. The characteristics show that linear operation is possible over a wide range of differential input voltage and, thus, indicate that relatively large input signals can be handled by the circuit without limiting.
In the CA3005 and CA3006 circuits, no emitter resistors are provided for the differential pair of transistors. As a result, these circuits have a smaller dynamic range and provide higher gain than the CA3004 circuit. The dynamic transfer and limiting characteristics of the CA3005 and CA3006, given in Fig. 3, show that these circuits are very good limiting amplifiers. A comparison of the curves in Fig. 3 with those given for the CA3004 in Fig. 2 emphasizes the excellent limiting characteristics of the CA3005 and CA3006.

\section*{SUPPLY-VOLTAGE CONNECTIONS}

The CA3004, CA3005, and CA3006 circuits may be operated, at various levels of supply voltage, from single or dual de power supplies. For dual-supply operation, either symmetrical or nonsymmetrical power supplies may be used.

Fig. 3-Dynamic transfer and limiting characteristics of the CA3005 or CA3006 integrated-circuit rf ampiifier operated in the differential-amplifier configuration.

Fig. 4 shows the supply-voltage connections for differ-ential- and cascode-amplifier operation of the CA3005 or CA3006 from single and dual supplies. When two supplies, one for positive voltage and one for negative voltage, are used, as shown in Figs. 4(a) and 4(c), fewer external components are required. When only one supply is used, an external resistive voltage divider and bypass capacitor must

Fig. 4-Schematic diagrams showing supply-voltage connections to the CA3005 or CA3006 for operation from either single or dual power supplies: (a) Differential-amplifier configuration operated from dual supplies; (b) Differential-amplifier configuration operated from a single supply; (c) Cascode configuration operated from dual supplies; (d) Cascode configuration operated from a single supply.
be added to the circuit, as shown in Figs. 4(b) and 4(d). Tuned amplifiers that operate from dual supplies, such as that shown in Fig. 4(a), require the least number of external components.

For either single- or dual-supply operation, the operating current of transistor \(Q_{3}\) is determined by the bias voltage, \(V_{\text {er }}\), applied between terminals 2 and 3 on the CA3004 or between terminals 8 and 12 on the CA3005 and CA3006 (refer to the circuit diagrams in Fig. 1). The more negative terminal of the bias-voltage source must be connected to terminal 3 on the CA3004 or to terminal 8 on the CA3005 and CA3006. In dual-supply systems, terminal 2 of the CA3004 and terminal 12 of the CA3005 and CA3006 are usually returned to de ground.

\section*{OPERATING MODES}

For any given bias voltage \(\mathrm{V}_{\mathrm{ke}}\), there are four possible operating modes for the integrated-circuit rf amplifiers. In general, each mode is characterized by (1) a distinct level of operating current and corresponding transconductance, (2) the degree of dependence of the operating current on temperature, and (3) the way in which the transconductance
is affected by temperature. The operating points for the various modes are established by:
1. The emitter resistance selected for the constant-cur-rent-source transistor, \(Q_{3}\);
2. Whether the base-bias network includes the diodes shown in Fig. 1.
3. The magnitude of the bias voltage, \(\mathrm{V}_{\mathrm{EE}}\), applied to the circuit.

Table I lists the required conditions for the four operating modes, designated \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D . The following paragraphs describe the characteristics of the circuits in each operating mode. The data are given for operation of the circuits from symmetrical dual power supplies at three levels of dc supply voltage (\(\pm 3\) volts, \(\pm 4.5\) volts, and \(\pm 6\) volts).

Fig. 5 shows the operating current for the various modes as a function of temperature. The current-temperature data show that, in addition to the obvious shift in the level of operating current, the dependence of the operating current on temperature varies significantly with a change in the operating mode.

When the diodes are included in the base-bias circuit

TABLE I
Required Conditions for Each Operating Mode of the CA3004, CA3005, and CA3006 Integrated-Circuit RF Amplifiers
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\underset{\text { Mode }}{\text { Operating }}
\] & \[
\begin{gathered}
\text { CA3004 } \\
\text { Terminals Shorted } \\
\text { To } \\
\text { Terminal } 3
\end{gathered}
\] & CA3005 or CA 3006 Terminals Shorted To Terminal 8 & \[
\begin{gathered}
\text { Diodes } \\
\text { In or Out } \\
\text { of of }
\end{gathered}
\] & \[
\underset{\substack{\text { Q-3 } \\ \text { Resister }(s)}}{ }
\] \\
\hline A & - & - & In & \(\mathrm{R}_{4}+\mathrm{R}_{5}\) \\
\hline B & 5 & 4 & Out & \(\mathrm{R}_{4}+\mathrm{R}_{5}\) \\
\hline C & 4 & 5 & In & \(\mathrm{R}_{5}\) \\
\hline D & 4, 5 & 4,5 & Out & \(\mathrm{R}_{6}\) \\
\hline
\end{tabular}
*For all modes, terminals 2, 6, and 12 of the CA3004 and terminals, 1, 7, and 12 of CA3005 and CA3006 are grounded.

Fig. 5-Variation in the operating currents of the CA3004, CA3005, or CA3006 as a function of temperature for each mode of operation.
(modes A and C), the operating current, which is primarily dependent on the temperature coefficient of the diffused emitter resistor, tends to decrease with an increase in temperature at a rate that is relatively independent of the bias supply voltage \(\mathrm{V}_{\text {er. }}\). When the diodes are not used, however, the shape of the current-temperature curves is dependent on the magnitude of the supply voltage \(\mathrm{V}_{\text {ee. }}\). The operating current then may remain constant or rise as the temperature is increased, depending upon the value of \(\mathrm{V}_{\text {ere }}\). The positive supply voltages, shown in Fig. 5, have no effect on the operating current, and the current-temperature curves are not changed by increases or decreases in this voltage. Some deviation in the current-temperature curves is to be expected because of normal variations in the absolute resistor values.

Fig. 6 shows the effects of different operating modes and variations in temperature on the single-ended transconductance* of the CA3004. In general, when diodes are used in
*The single-ended transconductance is the incremental output current for one collector of the differential pair of transistors divided by the incremental input voltage. The curves shown of this parameter are obtained at an operating frequency of 1 MHz .

(a)

(b)
the base-bias network, the transconductance decreases with increases in temperature. If the diodes are not used, the transconductance may decrease, increase, or remain constant as the temperature increases, depending on the value of the negative supply voltage \(\mathrm{V}_{\text {ere }}\). With the diodes out, however, the collector operating point tends to shift when resistive loads are used. In applications that require a stable collector dc operating point, therefore, operating mode A or C (diodes in) should be used.

Fig. 7 shows transconductance-temperature curves for each operating mode of the CA3005 or CA3006, operated in a differential-amplifier configuration. These transconductance curves differ from those for the CA3004 shown in Fig. 6 primarily because of the emitter resistors used in the CA3004. For each operating mode, the operating points for the differential-amplifier configuration of the CA3005 or CA3006, as well as for the CA3004, provide a current in each collector of the differential pair of transistors that is equal to one-half that shown in Fig. 5.

In a cascode configuration of the CA3005 or CA3006, the current through each part of the common emitter-common

(C)

(d)

Fig. 6-Variation in the single-ended transconductance of the CA3004 as a function of temperature for each operating mod•.

Fig. 7-Variation in the single-ended transconductance of the CA3005 or CA3006 in a differential-amplifier configuration as a function of temperature for each operating mode.
base cascode is equal to the total current shown in Fig. 5 in each mode. Fig. 8 shows the transconductance-temperature curves for each operating mode of the cascode circuit. These curves show that, in general, the transconductance is highel when the diodes are included in the base-bias network (modes A and C) than it is when the diodes are not used (modes B and D).

The power dissipation of the CA3004, CA3005, or CA3006 is highest when the circuit is operated in mode C. Table II shows power dissipation and the single-ended transconductance of the circuits for each operating mode. These data may be used to determine the operating point that provides the highest value of transconductance per milliwatt of circuit dissipation for given design conditions.

\section*{CHARACTERISTICS OF THE RF AMPLIFIER CIRCUITS \\ Y PARAMETERS}

In the design of rt and if circuits, the four-terminal blackbox short-circuit admittance parameters have become a
valuable tool. The determination of stability criteria, input and output impedances as a function of load and source admittance, power gain, and voltage gain in iterative connections are all facilitated by a knowledge of the " y " parameters.

The " \(y\) " parameter curves presented in this section have been calculated from a model and verified at several points by measurements. These curves are a valuable aid in the design of systems that use integrated circuits. The admittance curves are all generated for a quiescent operating current of 1.25 milliamperes in each of the transistors \(Q_{1}\) and \(\mathrm{Q}_{2}\) in the differential-amplifier configurations and for a current of 2.5 milliamperes in transistor \(\mathrm{Q}_{3}\) in the cascode configuration. This operating current is obtained in the operating mode D , as defined in the preceding section, with supply voltages of \(\pm 6\) volts.

The " \(y\) " parameters and their symbols are listed below:
1. Input admittance with the output voltage constant \(y_{1}=g_{1}+j b_{1}\)
where \(y_{t}\) is the complex input admittance, \(g_{1}\) is the input conductance and \(b_{i}\) is the input susceptance.

TABLE II
Relationship Between the Transconductance and the Power Dissipation of the Integrated-Circuit RF Amplifiers in Each Operating Mode*
\begin{tabular}{|c|c|c|c|c|}
\hline Operating Mode & Type of Circuit & \[
\begin{gathered}
\text { DC Supply } \\
\text { Voltages } \\
\text { (volts) }
\end{gathered}
\] & Single-Ended Transconductance (millimhos) & Power Dissipation (milliwatts) \\
\hline \multirow[t]{6}{*}{A} & CA3004 & \(\pm 3\) & 5.5 & 6.6 \\
\hline & CA3005 or CA3006 & & 8.5 & 6.6 \\
\hline & CA3004 & \(\pm 4.5\) & 6.7 & 15.0 \\
\hline & CA3005 or CA3006 & & 12.8 & 15.0 \\
\hline & CA3004 & \(\pm 6\) & 7.3 & 25.0 \\
\hline & CA3005 or CA3006 & & 15.0 & 25.0 \\
\hline \multirow[t]{6}{*}{B} & CA3004 & \(\pm 3\) & 1.6 & 2.3 \\
\hline & CA3005 or CA3006 & & 1.9 & 2.3 \\
\hline & CA3004 & \(\pm 4.5\) & 4.0 & 7.2 \\
\hline & CA3005 or CA3006 & & 4.9 & 7.2 \\
\hline & CA3004 & \(\pm 6\) & 5.3 & 15.0 \\
\hline & CA3005 or CA3006 & & 7.2 & 15.0 \\
\hline \multirow[t]{6}{*}{C} & CA3004 & \(\pm 3\) & 7.5 & 17.5 \\
\hline & CA3005 or CA3006 & & 22.0 & 17.5 \\
\hline & CA3004 & \(\pm 4.5\) & 8.5 & 40.0 \\
\hline & CA3005 or CA3006 & & 29.0 & 40.0 \\
\hline & CA3004 & \(\pm 6\) & 9.1 & 62.8 \\
\hline & CA3005 or CA3006 & & 37.0 & 62.8 \\
\hline \multirow[t]{6}{*}{D} & CA3004 & \(\pm 3\) & 3.3 & 4.2 \\
\hline & CA3005 or CA3006 & & 5.0 & 4.2 \\
\hline & CA3004 & \(\pm 4.5\) & 6.0 & 17.4 \\
\hline & CA3005 or CA3006 & & 13.0 & 17.4 \\
\hline & CA3004 & \(\pm 6\) & 7.2 & 35.9 \\
\hline & CA3005 or CA3006 & & 20.0 & 35.9 \\
\hline
\end{tabular}
*Circuits are operated in differential-amplifier configurations. The transconductances and power dissipations shown are calculated values for nominal units.
2. Output admittance with the input voltage constant \(y_{o}=g_{\circ}+j b_{0}\)
where \(y_{\circ}\) is the complex output admittance, \(g_{\circ}\) is the output conductance, and \(b_{o}\) is the output susceptance.
3. Forward-transfer admittance with the output voltage constant
\[
y_{t}=g_{t}+j b_{t}
\]
where \(y_{t}\) is the complex forward-transfer admittance, \(g_{t}\) is the forward-transfer conductance, and \(b_{r}\) is the forwardtransfer susceptance.
4. Reverse-transfer admittance with the input voltage constant
\[
y_{r}=g_{r}+j b_{r}
\]
where \(y_{r}\) is the complex reverse-transfer admittance, \(g_{r}\) is the reverse-transfer conductance, and \(b_{r}\) is the reversetransfer susceptance.

A comparison of the parameters of the various possible circuit configurations with those of the more familiar com-mon-emitter parameters requires a second subscript to indicate the type of configuration being considered. Examples of the use of the second-subscript notation are given below:

The common-emitter reverse-transfer admittance is written as
\[
y_{\mathrm{re}}=g_{\mathrm{ro}}+j b_{\mathrm{re}}
\]

The differential-amplifier reverse-transfer admittance is expressed as
\[
y_{r D A}=g_{r D A}+j b_{r d A}
\]

The cascode-amplifier reverse-transfer admittance is given as
\[
\mathrm{y}_{\mathrm{rcas}}=\mathrm{grcas}+\mathrm{jb}_{\mathrm{rcas}}
\]

These cumbersome second subscripts will not be used when the type of circuit for which the parameter is given is clearly indicated by an illustration or a descriptive phrase in the text.
In general it is valuable to understand the essential differences between the " \(y\) " parameters of a regular commonemitter stage and those of the compound stages, such as differential and cascode amplifiers.
The differential amplifier, when used at radio frequencies, consists essentially of a common-collector stage that drives a common-base stage. In comparison to the regular, com-mon-emitter " \(y\) " parameters, the input admittance \(y_{1}\) the output admittance \(y_{0}\), and the forward transfer admittance \(y_{f}\), are decreased, almost exactly, by a factor of two when the differential-amplifier configuration is used.

The reverse-transfer admittance \(\mathrm{y}_{\mathrm{r}}\) is also less for the differential amplifier than for the single transistor in the common-emitter configuration. The ratio of the imaginary term in the differential-amplifier admittance to that of the single transistor is \(1 / 140\) at low frequencies and \(1 / 10\) at 100 MHz . Fig. 9 shows the ratios of imaginary parts

Fig. 8-Variation in the transconductance of the CA3005 or CA3006 in a cascode configuration as a function of temperature for each operating mode.

Fig. 9—Ratio of the real (conductance) and the imaginary (susceptance) parts of the reverse-transfer admittance for a commonemitter stage to those for a differential-amplifier stage as a function of frequency.
\(\mathrm{b}_{\mathrm{re}} / \mathrm{b}_{\mathrm{rDA}}\) and real parts \(\mathrm{g}_{\mathrm{re}} / \mathrm{g}_{\mathrm{rDA}}\) of the reverse-transfer admittances as a function of frequency.

In the cascode configuration of the rf amplifier circuits, a common-emitter stage drives a common-base stage. The input admittance \(y_{1}\) is, therefore, that of a common-emitter stage. The forward-transfer admittance \(y_{r}\) is that of a com-mon-emitter stage times alpha. Because of the high-impedance drive source on the common-base stage, the output
admittance \(y_{o}\) is very low (\(0.06 \times 10^{-5}\) mhos) at low frequencies and is both negative and low at high frequencies. Since the output admittance is low and may be negative, a conjugate match cannot be obtained at the output. Practical amplifiers are possible however, provided that the sum \(Y_{\text {out }}+Y_{\text {load }}\) is positive.

The reverse-transfer admittance \(\mathrm{y}_{\mathrm{r}}\) for the cascode circuit is less than that for the single-stage common-emitter
circuit. The ratio of the imaginary terms of these admittances is \(1 / 1200\) at low frequencies and \(1 / 35\) at 100 MHz . The ratios of the real parts and of the imaginary parts as a function of frequency are shown in Fig. 10.

Fig. 10-Ratio of the real (conductance) and the imaginary (susceptance) parts of the reverse-transfer admittance for a common-emitter stage to those for a cascode stage as a function of frequency.

Although the \(\mathrm{y}_{\mathrm{r}}\) is low for both the differential and cascode configurations, instability can occur in high-gain amplifiers. A further consideration in high-gain circuits is that the layout can contribute more feedback than the integrated circuit. Shielding and layout therefore are of prime importance if proper advantage is to be taken of the low feedback of these circuits.

The computed y parameters for the CA3004 differential amplifier are shown in Fig. 11. The admittance parameters for differential-amplifier operation of the CA3005 or CA3006 are given in Fig. 12 and those for cascode-amplifier operation of either circuit are given in Fig. 13.

\section*{VIDEO-AMPLIFIER CAPABILITIES}

The CA3004, CA3005, and CA3006 integrated circuits may be used as video amplifiers, as shown in Figs. 14(a) and 14(b). A relatively large number of external components is required, and the availability of internal-circuit connections for these external components provides a large degree of flexibility to the user with respect to such factors as bandwidth, gain, power dissipation and peaking. In the circuit shown in Fig. 14(a), \(R_{1}\) should be equal to \(R_{2}\) to preserve the circuit balance, and \(\mathrm{C}_{2}\) should be an adequate bypass so that the noise factor and gain are not degraded. For the cascode configuration shown in Fig. 14(b), \(\mathrm{C}_{2}\) is an emitter bypass, and its reactance should be less than 1.5 ohms at the lowest video frequency to be handled.

In either cascode or single-ended differential-amplifier configurations, the feedback is low. Each configuration provides good isolation from output to input; the high frequency performance therefore can be approximated from the input and output parallel R and C for a single stage or from the total shunt \(R\) and \(C\) between stages for an iterative connection. The mid-frequency voltage gain can be computed from the familiar \(g_{m} R_{L}\) product. As an aid to such calculations, Table III gives the input and output parallel R and C and the absolute values of \(\mathrm{g}_{\mathrm{m}}\) for the various circuits and configurations for operation at 1,10 , and 40 MHz . For more precise, but more elaborate calculations, the v parameters may be used for video-amplifier design.

\section*{NOISE PERFORMANCE}

The noise figure of the CA3004, CA3005 and CA3006 integrated-circuit rf amplifiers is a function of the dc operating current and frequency, for both differential and cas-code-amplifier configurations. The noise figure increases both with an increase in current and with an increase in fre-

TABLE III
Input and Output Parallel RC Network, Transconductance, and Performance Data for the CA3004, CA3005, and CA3006 Integrated-Circuit RF Amplifiers

Data obtained for circuits operated from \(\pm 6\)-volt dc supplies in operating mode \(D\).

Fig. 11-Admittance characteristics of a CA3004 differential amplifier as a function of frequency: (a) Input admittance, \(y_{i}\); (\(b\)) Output admittance, \(y_{o}\); (c) Output susceptance, \(b_{o}\), above 10 MHz ; (d) Forward-transfer admittance, \(y_{f}\); (e) Reverse transfer admittance, \(y_{r}\).
quency. For convenience, noise data were taken in a fixed configuration as the negative supply voltage was varied. On the data plots, the operating currents that correspond to the various supply voltages are included as a separate abscissa to show that the noise figure is a direct function of operating current. Figs. 15 and 16 show representative noise-figure data for tuned amplifiers in the differential and cascode configuration, respectively. In each case, the input and out-
put are tuned and the input is conjugately matched to a 50 -ohm noise diode. Practically no change in noise figure occurs with variations of the positive supply voltage \(V_{c c}\).

The curves in Figs. 15 and 16 show that, for optimum single-stage noise performance, the operating current should be low, which results in a low gain. Thus, in system applications of the tuned amplifiers, the operating current in each stage should be adjusted to obtain the optimum overall noise

Fig. 12-Admittance characteristics of a CA3005 or CA3006 differential amplifier as a function of frequency: (a) Input admittance, \(y_{i}\); (b) Output admittance, \(y_{o}\); (c) Forward transfer admittance, \(y_{f}\); (d) Reverse transfer conductance, \(g_{r}\); (e) Reverse transfer susceptance, \(b_{r}\).
figure by considering the gain and noise figure of the first stage and the noise figure of the second stage. The operatingcurrent adjustment can be accomplished by a change in the negative-supply voltage (\(\mathrm{V}_{\mathrm{EE}}\)) or by means of the bias connections that are available.

Fig. 17 shows the noise figure as a function of the source resistance for a CA3005 or CA3006 used as a differential amplifier at an operating frequency of 12 MHz . The equa-
tion given in the figure can be used to predict noise performance as a function of source resistance for dc operating conditions. The load resistor \(\mathrm{R}_{\mathrm{L}}\) of the circuit is 2200 ohms and \(R_{N}=800\) ohms. (\(R_{N}\) is the equivalent noise resistance).

\section*{COMMON-MODE REJECTION RATIO}

The common-mode rejection ratio of a differential amplifier, defined as the ratio between the full differential gain

Fig. 13-Admittance characteristics of a CA3005 or CA3006 cascode amplifier as a function of frequency: (a) Input admittance, \(y_{i} ;\) (b) Output admittance, \(y_{o} ;(c)\) Forward transfer admittance, \(y_{f}(d)\) Reverse transfer admittance, \(y_{r}\).

(b)

Fig. 14-Schematic diagrams showing the use of the integrated-circuit rf amplifiers as video amplifiers: (a) CA3004 in a differ-ential-amplifier configuration; (b) CA3005 or CA3006 in a cascode-amplifier configuration.

Fig. 15-Representative noise performance of the CA3004, CA3005, or CA3006 operated in a differential-amplifier configuration (operating mode D).

Fig. 16-Representative noise performance of the CA3005 or CA3006 operated in a cascode-amplifier configuration (operating mode D).
and the common-mode gain, is a useful performance characteristic. The common-mode rejection is a function of the ratio of the impedance of the constant-current transistor \(Q_{3}\) to the load resistor. The common-mode rejection decreases if the signal applied is large enough to saturate the constantcurrent transistor. The maximum peak-to-peak input voltage, therefore, is a function of the supply voltages and the bias connections of the constant-current transistor. The common-mode rejection for a \(1-\mathrm{kHz}\) signal is shown in Table IV.

TABLE IV
Common-mode Rejection Ratio for the CA3004, CA3005, and CA3006 Integrated-Circuit RF Amplifiers
\begin{tabular}{cccc}
& \(\frac{A t-55^{\circ} \mathrm{C}}{}\) & & At \(25^{\circ} \mathrm{C}\) \\
& & & \(\frac{\text { At } 125^{\circ} \mathrm{C}}{98 \mathrm{~dB}}\) \\
CA3004 & & 101 dB \\
CA3005 or CA3006 & 108 dB & 101 dB & 107 dB
\end{tabular}

Operating frequency \(=1 \mathrm{kc} / \mathrm{s}\).
Load resistance, \(\mathrm{R}_{\mathrm{L}}=1000\) ohms in each collector.

Fig. 17-Noise figure of the CA3005 or CA3006 in a differential-amplifier configuration as a function of the source resistance (operating mode D).

Fig. 18 shows the single-ended common-mode gain \({ }^{*}\) for the CA3004, CA3005, and CA3006 as a function of frequency. (Fig. 19 shows the method used to determine the singleended common-mode gain.) The common-mode rejection decreases with increasing frequency when the CA3004, CA3005, and CA3006 are operated with a single-ended output.

\section*{GAIN CONTROL}

The gain of the CA3004, CA3005, and CA3006 circuits may be controlled in either of two ways: (1) The negative voltage applied to the base-bias resistor \(R_{1}\) can be adjusted to vary the current in transistor \(Q_{3}\) or (2) A differential offset voltage can be applied to transistors \(Q_{1}\) and \(Q_{2}\). In both techniques, the gain-control voltage has a ground reference in a two-supply system, and maximum gain is obtained at 0 volts. The first method provides greater gain-control range but also requires more control voltage than the second method. Figs. 20 and 21 show the typical gain control as a

\footnotetext{
*Single-ended common-mode gain: The ratio of the change in the single-ended output voltage, measured from either output terminal with respect to grodind, to the change in the input voltage applied simultaneously to both inputs of the circuit, i.e., single-ended commonmode gain \(=\Delta V_{i n} / \Delta V_{\text {out }}\), as shown in Fig. 19.
}

Fig. 18-Single-ended common-mode and differential-mode gains of the CA3004, CA3005, or CA3006 as a function of frequency.

SINGLE-ENDED COMMON-MODE GAIN \(=\Delta\) vout \(^{\prime} / \Delta v_{\text {IN }}\)

Fig. 19-Schematic of the circuit used to determine the single-ended common-mode gain.
function of voltage for the CA3005 or CA3006 for the two methods. Fig. 20 gives the gain-control characteristic for the CA3005 or CA3006 when the gain-control voltage is applied to the base-bias network of transistor \(Q_{3}\). Since the

Fig. 20-Gain-control characteristics of the CA3005 or CA3006 as a function of the dc gain-control voltage applied to the bias network of transistor \(Q\).
\(Q_{3}\) bias networks are the same, the gain characteristics for the CA3004 are nearly the same as those for the CA3005 and CA3006. Fig. 21 shows that in the offset method of gain control the gain range is dependent on the polarity of drive. For maximum gain-control range on a single-ended amplifier, the common-collector transistor should be cut off (negative voltage applied to its base). Because of the emitter resistors, \(\mathbf{R}_{6}\) and \(\mathbf{R}_{7}\), the CA3004 circuit will require more dc voltage for the same gain reduction as the CA3005 or CA3006, and the dc voltage required will be a function of the initial operating current.

Fig. 21-Gain-control characteristics of the CA3005 or CA3006 as a function of the dc offset voltage, \(V_{B B}\), applied to the differential pair of transistors \(Q_{1}\) and \(Q_{\text {. }}\).

The maximum gain-control range that can be provided by a reduction in the current of transistor \(Q_{3}\) varies with frequency as shown in Fig. 22. The maximum gain-control range that can be obtained is dependent on the full gain used, the circuit loading, and the external-circuit layout.

Fig. 22-Maximum gain control provided by variations in the current through \(Q\) : as a function of frequency.

A large part of the variation in the maximum gain control for the different circuits results from differences in the initial gain of the various circuits. Capacitive feed through appears less for the cascode than for the differential-amplifier configuration.

The following discussion of cross modulation describes variations of the two gain-control techniques.

\section*{CROSS-MODULATION AND MODULATION DISTORTION}

Cross-modulation and modulation distortion are important considerations in the selection of an amplifier for use in AM systems. Cross-modulation distortion refers to the transfer of modulation from an undesired carrier to the desired carrier by nonlinearities in the amplifier. Modulation distortion is a change in the modulation on the desired carried caused by the same amplifier nonlinearities that produce cross modulation. The two forms of distortion are related by the following equation:
\[
\frac{D_{2}}{V_{1}{ }^{2}}: \frac{K}{V_{2}{ }^{2}}=\frac{3}{8} m: 1
\]
where \(D_{2}\) is the per cent of distortion in the modulation on the desired carrier (i.e., the modulation distortion), K is the per cent of cross-modulation distortion, \(\mathrm{V}_{1}\) is the amplitude of the desired-carrier voltage at the input, \(\mathrm{V}_{2}\) is the amplitude of the undesired-carrier voltage at the input, and \(m\) is the per cent of modulation of the desired carrier.

When \(D_{2}\) and \(K\) are equal and \(m\) is 100 per cent, the ratio of \(V_{1}\) to \(V_{2}\) is 1.64 . In the following paragraphs, data are given for only the cross-modulation distortion. The modulation distortion can be predicted from these data, however, on the basis of the relationship of \(V_{1}\) to \(V_{2}\). For example, in Fig. 23, \(V_{2}\) is given as 22 millivolts for a gain of 0 dB . The value of \(\mathrm{V}_{1}\), then, is \(1.64 \times 22\), or 36 millivolts.

Figs. 23 through 27 show the cross-modulation distortion of the CA3004, CA3005, and CA3006 integrated circuits as a function of their gain-control characteristics in both dif-
ferential-amplifier and cascode-amplifier configurations. The amount of cross-modulation distortion is determined by the two-generator method with the input of the circuit under test driven from a 50 -ohm source and with its output tuned to the frequency of the desired carrier. The amplitude of the undesired-carrier input voltage is that necessary to produce 10 per cent cross-modulation distortion for each manually determined gain-control setting.

Differential-Amplifier Configurations - The availability of internal connection points make possible several methods of gain control in differential-amplifier configurations of the CA3004, CA3005, and CA3006 circuits. Only two of these methods need be considered, however, to obtain an adequate evaluation of the cross-modulation characteristics. These include (1) the variation of the current in the con-stant-current transistor, \(\mathrm{Q}_{3}\), and (2) the use of an offset voltage to produce an unbalance in the differential pair of transistors, \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\).

Fig. 23 shows the cross-modulation distortion characteristics of the CA3004, CA3005, and CA3006 with the differential pair of transistors balanced and with age applied to the constant-current transistor. Because of the increased linearity that results from the emitter resistors \(\mathrm{R}_{6}\) and \(\mathrm{R}_{7}\), the CA3004 has improved cross-modulation characteristics at high current. The interfering signal voltage required to produce 10 per cent of cross modulation distortion is practically a constant over the entire age range for the CA3005 and CA3006. The value of the interfering signal voltage (approximately 15 mv) for the CA3005 and CA3006 is twice that calculated from the logarithmic transconductance characteristic of a single transistor.

Fig. 23-Gain control as a function of the input voltage from an undesired carrier that will produce cross-modulation distortion of 10 per cent for balanced differential-amplifier operation of the CA3004, CA3005 and CA3006. The gain-control voltage is applied to bias network of the constant-current transistor.

Fig. 24 shows the cross-modulation distortion characteristic of the CA3005 and CA3006 when an offset voltage is applied to control the gain. The improved cross modulation performance at -5 dB gain is coincident with an inflection point on the curve of tranconductance as a function of input offset voltage. This point occurs at an offset voltage of approximately 50 millivolts.

Fig. 24-Gain control as a function of the undesired-carrier voltage that will produce 10 percent cross-modulation distortion for differential-amplifier operation of the CA3005 or CA3006 when gain control is provided by the application of an offset voltage to the differential pair of transistors.

The cross-modulation performance is improved by the offset of the differential pair of transistors. Fig. 25 shows the cross-modulation data when an initial offset of 50 milli-

Fig. 25-Gain control as a function of the input voltage trom an undesired carrier that will produce cross modulation distortion of 10 per cent, for a differential-umplifier configuration of the CA3005 or CA3006 having a 50-millivolt offset and with the gain control voltage applied to the bias network of the
constant-current transistor.
volts is employed and age is applied to the constant-current transistor. The introduction of the unbalance reduces the cross-modulation distortion to approximately 10 dB less than that of the balanced circuit. This reduction in crossmodulation distortion, however, is accompanied by a decrease in gain of approximately 5 dB .

Cascode Configurations - Cross-modulation data for cascode configurations of the integrated-circuit rf amplifiers are given for only the CA3005 and CA3006 circuits, because the CA3004 circuit is not designed for this type of operation. When the CA3005 or CA3006 is operated in the cascode configuration, gain control may be provided by either of two methods: (1) A negative voltage may be applied to the base of transistor \(Q_{3}\) or (2) A negative voltage may be applied to the base of transistor \(\mathrm{Q}_{1}\).

In the first method, the gain is reduced by the application of a negative-going voltage at terminal 12. As the amplitude of this voltage is increased to the value required to cut off transistor \(Q_{3}\), the gain of the circuit is decreased. The crossmodulation distortion characteristics for this type of gain control are shown in Fig. 26. The cross-modulation characteristics are comparable to those of a single transistor having a bypassed emitter resistor.

The cross-modulation distortion characteristics obtained for the second method of gain control are shown in Fig. 27. No improvement in cross-modulation characteristics over those obtained for the first gain-control method are observed, although the agc range is greater.

\section*{MIXER CAPABILITIES}

The CA3004, CA3005, and CA3006 integrated circuits may be used as mixers, modulators, and product detectors. The schematic diagrams in Figs. 28(a) and 28(b) illustrate the use of these circuits in mixer applications. The oscillator input is injected at the base of transistor \(Q_{3}\) (because there is no direct-base connection available on the CA3004, a higher oscillator drive voltage is required for this circuit); the rf input is injected single- or double-ended to the bases of transistors \(Q_{1}\) and \(Q_{2}\). The use of a center-tapped inductor for the output tuned circuit (double-ended) allows the com-mon-mode signal of the oscillator to be balanced out so that the oscillator will not overload subsequent stages, and provides carrier suppression for modulators.

The gain performance and generation of harmonics in the CA3004, CA3005, and CA3006 mixer circuits are dependent on the amplitude of the oscillator drive signal and the dc bias. The expression for product detection or frequency multiplication in the CA3005 or CA3006 (consult Fig. 29) are determined as follows:
\[
\begin{equation*}
\mathrm{e}_{\mathrm{o}}=\mathrm{e}_{1} \mathrm{~g}_{\mathrm{m}} \mathbf{Z}_{\mathrm{L}} \tag{1}
\end{equation*}
\]
where \(e_{\circ}\) is the output voltage, \(e_{1}\) is the differential input voltage, \(g_{m}\) is the transconductance of the differential pair of transistors \(\left(\mathrm{Q}_{1}\right.\) and \(\left.\mathrm{Q}_{2}\right)\), and \(\mathrm{Z}_{\mathrm{L}}\) is the load impedance (total between collectors). For a balanced circuit, the transconductance is given by
\[
\begin{equation*}
\mathbf{g}_{\mathrm{m}}=\frac{\alpha \mathbf{q}}{2 \mathrm{KT}} \mathbf{I}_{0} \tag{2}
\end{equation*}
\]

The term \(I_{o}\), is used to represent the collector current of

Fig. 26-Gain control of the CA3005 or CA3006, in a cascode configuration, as a function of the undesired-carrier voltage that will produce 10 per cent cross-modulation distortion when the gain is controlled by a negative bias voltage applied to the base of transistor \(Q_{5}\) The schematic diagram illustrates the circuit configuration.

Fig. 27-Gain control of the CA3005 or CA3006, in a cascode configuration, as a function of the undesired-carrier voltage that will produce 10 per cent cross-modulation distortion when the gain is controlled by a negative bias voltage applied to the base of transistor \(Q_{1}\). The schematic diagram illustrates the circuit configuration.

Fig. 28-Circuit diagrams for the use of the integrated-circuit rf amplifiers as mixers (operating mode D): (a) CA3004; (b) CA3005 or CA3006.

Fig 29-Circuit diagram of a CA3005 or CA3006 balanced mixer (operating mode D). The equation. derived for product detection or multiplication are based on this circuit.
transistor \(Q_{3}\) and may be expressed as
\[
\begin{equation*}
\mathbf{I}_{0}=\mathbf{g}_{\mathrm{m}_{2}} \mathbf{e}_{2} \tag{3}
\end{equation*}
\]
where \(g_{m_{2}}\) is the transconductance of transistor \(Q_{3}\) and \(e_{2}\) is input voltage applied to transistor \(Q_{3}\). The output voltage, \(e_{o}\), therefore is given by the following equation:
\[
\begin{equation*}
\mathbf{e}_{0}=\frac{\alpha q}{2 K T} \mathbf{e}_{1} \mathrm{e}_{2} \mathbf{g}_{\mathrm{m}_{2}} \mathbf{Z}_{\mathrm{L}} \tag{4}
\end{equation*}
\]

Eq. (4) is a general expression for the output voltage of the mixer having input signals \(e_{1}\) and \(e_{2}\). With emitter degeneration in the constant-current transistor \(\left(Q_{3}\right), g_{m_{2}}\) is essentially constant for a sufficiently large emitter current (\(>1 \mathrm{ma}\)); the current \(I_{n}\), therefore, follows the applied voltage \(e_{2}\).

When \(e_{1}\) and \(e_{2}\) are sinusoidal and \(g_{m}\) is a constant, the input signal voltages are given as follows:
\[
\begin{align*}
& e_{1}=E_{1} e^{j \omega_{1} t}+\stackrel{*}{E}_{1} e^{-j \omega_{1} t} \tag{5}\\
& e_{2}=E_{2} e^{j \omega_{2} t}+\stackrel{*}{E}_{2} e^{-j \omega_{2} t} \tag{6}
\end{align*}
\]
\(\left(\stackrel{*}{E}_{1}\right.\) is the conjugate of \(\mathrm{E}_{1}\), and \(\stackrel{*}{E}_{2}\) is the congugate of \(\mathrm{E}_{2}\))
With the substitution of these relationships, the equation for the output voltage the CA3005 or CA3006 now becomes
\[
\begin{align*}
\mathrm{e}_{0} & =\frac{\alpha \mathrm{q}}{2 \mathrm{KT}} \mathrm{gm}_{2} Z_{\mathrm{L}}\left[\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{e}^{\mathrm{j}\left(\omega_{1}+\omega_{2}\right) \mathrm{t}}+\stackrel{*}{\mathrm{E}}_{1} \stackrel{*}{\mathrm{E}}_{2} \mathrm{e}^{-\mathrm{j}\left(\omega_{1}+\omega_{2}\right) \mathrm{t}}\right] \\
& +\frac{\alpha \mathrm{q}}{2 \mathrm{KT}} \mathrm{gm}_{2} Z_{\mathrm{L}}\left[\mathrm{E}_{1} \stackrel{*}{\mathrm{E}}_{2} \mathrm{e}^{\mathrm{j}\left(\omega_{1}-\omega_{2}\right) \mathrm{t}}+\stackrel{*}{\mathrm{E}}_{1} \mathrm{E}_{2} \mathrm{e}^{-\mathrm{j}\left(\omega_{1}-\omega_{2}\right) \mathrm{t}}\right] \tag{7}
\end{align*}
\]

Eq. 7 gives the output voltage for a CA3005 or CA3006 used as a product detector or multiplier. (Note that only the two sideband frequencies are included in the output). The requirements for product detectors or multipliers are that the circuit should be biased in a linear region with a small signal voltage applied. Because \(\alpha \mathrm{q} \mathrm{g}_{\mathrm{m}_{2}} / 2 \mathrm{KT}\) is essentially constant, the gain of the mixer is determined from \(Z_{L}\) and
the \(e_{1} e_{2}\) product. The linearity of the CA3006 is illustrated by the curve of the conversion transconductance as a function of the oscillator voltage, shown in Fig. 30. (Although the curve is plotted on logarithmic paper because of the wide range, the relationship is linear.) The gain reaches a maximum value at approximately 2.5 volts rms. Because measurement inaccuracies prevent the use of this curve to determine harmonic generation, spurious-signal measurements were taken on CA3005 and CA3006 mixer circuits. For these measurements, the rf input was untuned and the oscillator and if frequencies were held constant. For a fixed amplitude of oscillator injection on terminal 3, the rf was varied in frequency, and the amplitude of the responses was recorded. The results are shown in Table V. The spurious signals generated are a function of oscillator drive. A low oscillator drive (0.1 volt rms) produced only three spurious signals for which the rejection was less than 70 dB down. These measurable spurious responses were third-order products that involved the second harmonic of either the oscillator or rf signal. The relative if gain increases with decreasing oscillator drive because of lower mixer gain.

Fig. 30-Conversion gain of a CA3005 or CA3006 mixer circuit as a function of the oscillator voltage.

The common-mode cancellation of the oscillator signal at the collector outputs is indicative of the carrier suppression that can be provided in modulators. The carrier suppression \({ }^{2}\) is a function of output tuned-circuit balance and the transistor offset voltage. The contribution of the offset is illustrated in Figs. 31 and 32 which show the output signal as a function of the offset voltage for the CA3004 and for CA3005 and CA3006 respectively. These data were obtained on circuits operated with a balanced output tuned to the oscillator frequency.

TABLE V
Response of a CA3005 or CA3006 Mixer to Spurious Harmonics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Frequency & \begin{tabular}{l}
Signal \\
Freq., \(f_{x}\) \\
(MHz)
\end{tabular} & \begin{tabular}{l}
\(V_{\text {ose }}\) \\
at term. 3 \\
(rms volts)
\end{tabular} & \[
\begin{aligned}
& \text { Diff.-Freq. } \\
& \text { Output (dB } \\
& \text { relative to } \\
& \left.f_{0}-f_{x}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(V_{0,0}\) \\
at term. 3 \\
(rms volts)
\end{tabular} & Diff.-Freq. Output (dB relative to \(f_{0}-f_{x}\)) & \(V_{0: c}\) at term. 3 (rms volts) & \[
\begin{gathered}
\text { Diff.-Freq. } \\
\text { Output }(d B \\
\text { relative to } \\
\left.f_{0}-f_{x}\right)
\end{gathered}
\] & \(V_{08}\) at term. 3 (rms volts) & \[
\begin{gathered}
\text { Diff }- \text { Freq. } \\
\text { Output }(d B \\
\text { relative to } \\
\left.f_{0}-f_{x}\right)
\end{gathered}
\] \\
\hline \(\mathrm{f}_{\mathrm{o}}-\mathrm{f}_{\mathrm{x}}\) & 1.0 & 1 & 0 & 0.7 & 0 & 0.3 & 0 & 0.1 & 0 \\
\hline \(\mathrm{f}_{\mathrm{if}}\) & 0.659 & 1 & 7.5 & 0.7 & 10 & 0.3 & 18 & 0.1 & 27 \\
\hline \(2 f_{x}-f_{\text {o }}\) & 1.159 & 1 & -53.1 & 0.7 & -53.1 & 0.3 & -54.9 & 0.1 & -52.3 \\
\hline \(2 f_{0}-2 f_{x}\) & 1.329 & 1 & -76.1 & 0.7 & - & 0.3 & - & 0.1 & - \\
\hline \(2 \mathrm{f}_{\mathrm{x}}-2 \mathrm{f}^{\text {。 }}\) & 1.988 & 1 & -75.5 & 0.7 & - & 0.3 & - & 0.1 & - \\
\hline \(\mathrm{f}_{\mathrm{x}}-\mathrm{f}_{\text {o }}\) & 2.318 & 1 & 0 & 0.7 & 0 & 0.3 & 0 & 0.1 & 0 \\
\hline \(2 f_{0}-f_{x}\) & 2.659 & 1 & -31.7 & 0.7 & -35 & 0.3 & -39.7 & 0.1 & -47.8 \\
\hline \(2 \mathrm{f}_{\mathrm{x}}-3 \mathrm{f}_{\text {o }}\) & 2.813 & 1 & -79.6 & 0.7 & - & 0.3 & - & 0.1 & - \\
\hline \(\mathrm{f}_{\mathrm{x}}-2 \mathrm{f}_{\text {o }}\) & 3.977 & 1 & -31.7 & 0.7 & - 35 & 0.3 & -39.7 & 0.1 & -47.8 \\
\hline \(3 \mathrm{f}_{0}-\mathrm{f}_{\mathrm{x}}\) & 4.309 & 1 & -35.8 & 0.7 & -59.3 & 0.3 & \(-74.7\) & 0.1 & - \\
\hline \(\mathrm{f}_{\mathrm{x}}-3 \mathrm{f}_{\text {。 }}\) & 5.627 & 1 & -38.5 & 0.7 & -57 & 0.3 & -74 & 0.1 & - \\
\hline \(4 f_{0}-f_{x}\) & 5.977 & 1 & -38.9 & 0.7 & -63 & 0.3 & - & 0.1 & - \\
\hline
\end{tabular}

All blank spaces indicate difference-frequency output more than 70 dB below the \(\mathrm{f}_{\mathrm{o}}-\mathrm{f}_{\mathrm{x}}\) output.

Fig. 31-Cancellation of the oscillator signal at the output of a CA3004 mixer as a function of the dc offset voltage.

\section*{LIMITER CHARACTERISTICS}

Differential-Amplifier Configuration - The differentialamplifier, driven by a constant-current transistor, is probably the optimum circuit configuration for bipolar transistor limiters. The advantage of such circuits in limiter applications is that collector saturation of either transistor \(Q_{1}\) or \(Q_{2}\) can be avoided because of the action of the constant-current

Fig. 32-Cancellation of the oscillator signal at the output of a CA3005 or CA3006 mixer as a function of the dc offset voltage.
transistor \(Q_{3}\). Figs. 2 and 3 show typical limiting characteristics for the CA3004 and for the CA3005 and CA30C6 respectively. For the CA3005 and CA3006 (no emitter degeneration), "hard" limiting is achieved for a peak-to-peak input of 300 millivolts for all values of total dc current (Icc). For the CA3004, the input voltage required for "hard" limiting is a function of \(I_{c c}\) because of the linearizing effect of the degenerative emitter resistors, \(\mathbf{R}_{6}\) and \(\mathbf{R}_{7}\). As saturation

TABLE VI
Limiter Performance of a Differential Amplifier
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { V Supply } \\
\text { (volts) }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
I_{C_{1}}+I_{C_{2}} \\
(m A)
\end{gathered}
\]} & \multirow[b]{2}{*}{Maximum Resistive Load (ohms)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Maximum \\
Tuned Load \\
(ohms)
\end{tabular}} & \multicolumn{2}{|c|}{Voltage Gain With Emitter Degeneration (dB)} & \multicolumn{2}{|l|}{Voltage Gain Without Emitter Degeneration (dB)} \\
\hline & & & & Resistive Load & Tuned Load & Resistive Load & Tuned Load \\
\hline 6 & 0.5 & 12000 & 24000 & 31 & 37 & 35 & 41 \\
\hline 6 & 1.0 & 6000 & 12000 & 28 & 34 & 35 & 41 \\
\hline 6 & 2.0 & 3000 & 6000 & 25 & 31 & 35 & 41 \\
\hline 6 & 3.0 & 2000 & 4000 & 22 & 28 & 35 & 41 \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{R}_{\mathrm{L}} & =\frac{V_{\text {supply }}}{\mathrm{IC} 1+\mathrm{I}_{\mathrm{C} 2}} \text { Resistive Load } \\
\mathrm{R}_{\mathrm{L}} & =\frac{2 \mathrm{~V}_{\text {supply }}}{\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{C} 2}} \text { Tuned Load } \\
\mathrm{gm}_{\mathrm{mL}} & =\text { voltage gain }
\end{aligned}
\]
must be prevented for good limiting, a maximum load resistor and low-level voltage gain exists for a given \(\mathrm{I}_{\mathrm{cc}}\) and positive supply voltage. Table VI shows the maximum resistor values and voltage gains usable for \(\mathrm{V}_{\mathrm{cc}}=6\) volts, for the three circuit types. The low-level transconductance can be obtained from the slope near the origin for the curves shown in Figs. 2 and 3. The maximum voltage gain is independent of Irc in the CA3005 and CA3006 and is dependent on Irc in the CA3004. Figs 5 through 8 show the Icc currents and transconductance for optional operating conditions.

When the differential amplifier is used for limiting, the emitter-to-base breakdown voltage for transistors \(Q_{1}\) and \(Q_{2}\) cannot be exceeded without degradation in performance. For the CA3004, CA3005, and CA3006, this voltage including a safety margin should not exceed 2.5 volts rms. Either of two methods may be used to prevent this value being exceeded: (1) Make sure the preceding stage limits before the input voltage reaches 2.5 volts (maximum voltage gain per stage approximately 20 dB), or (2) add one junction diode (\(\mathbf{D}_{1}\)), as shown in Fig. 33 (this allows a maximum usable voltage gain consistent with good limiting and stability).

Fig. 33-Circuit diagram of a CA3005 or CA3006 differentialamplifier limiter that uses a diode to provide input overload protection.

Cascode Amplifier - The limiting characteristics of the CA3005 or CA3006, when used as a cascode amplifier are dependent on the current limiting in transistor \(\mathrm{Q}_{3}\) or the voltage limiting of transistor \(\mathrm{Q}_{1}\) (high-impedance output
load). Limiting characteristics for both cases are shown in Figs. 34 and 35. The data in Fig. 34 are obtained with a collector load of 500 ohms. This limiting characteristic is "soft" and is acceptable over only a \(20-\mathrm{dB}\) range. The peak-to-peak voltage at the collector is never large enough to cause saturation. The limiting characteristic shown in Fig. 35 is obtained with a collector load of 5000 ohms, and saturation of transistor \(Q_{1}\) occurs. The limiting is harder and covers a broader range, but severe tuned-circuit loading occurs.

Fig. 34-Limiting characteristics and circuit diagram of a CA3005 or CA3006 cascode limiter having a 500-ohm collector load impedance.

\section*{APPLICATIONS OF THE RF AMPLIFIER CIRCUITS}

\section*{RF AMPLIFIER}

Figs. 36, 37, and 38 illustrate the use of the CA3004, the CA3005 or CA3006 differential-amplifier configurations, and the CA3005 or CA3006 cascode configurations, respectively, as single-ended rf amplifiers. Adjustable matching networks, derived from the y parameters, are included in each circuit. The values of the adjustable components as

Fig. 35—Limiting characteristics and circuit diagram of a CA3005 or CA3006 cascode limiter having a 5000-ohm collector load impedance.

\section*{CIRCUIT ELEMENTS}
\begin{tabular}{ccccc}
FREQUENCY & \(L_{1}\) & \(C_{1}\) & \(L_{2}\) & \(C_{2}\) \\
\((M H z)\) & \((\rho: H)\) & \((p F)\) & \((\mu H)\) & \((p F)\) \\
30 & \(1.8-2.7\) & \(2-10\) & \(1.8-2.7\) & \(2-10\) \\
100 & \(0.15-0.3\) & \(0.9-7\) & \(0.1-0.2\) & \(0.9-7\)
\end{tabular}
\begin{tabular}{cccc}
POWER GAIN PERFORMANCE \\
DC & \multicolumn{2}{c}{ POWER GAIN } \\
SUPPLIES & \multicolumn{2}{c}{\((d B)\)} \\
\((\) volts \()\) & 30 & MHz & 100 MHz \\
\(\pm 6\) & 24 & 12
\end{tabular}

Fig. 36-Circuit used to determine the rf performance capabilities of a CA3004 integrated-circuit rf amplifier.

Fig. 37-Circuit used to determine the rf performance capabilities of a CA3005 or CA3006 integrated-circuit rf amplifier in a differential-amplifier configuration.

\section*{CIRCUIT VALUES}
\begin{tabular}{ccccc}
FREQUENC \(Y\) & \(L_{1}\) & \(C_{1}\) & \(L_{2}\) & \(C_{2}\) \\
\((M H z)\) & \((\mu H)\) & \((p F)\) & \((\mu H)\) & \((p F)\) \\
30 & \(0.3-0.6\) & \(14-150\) & \(0.8-1.4\) & \(5-40\) \\
100 & \(0.07-0.12\) & \(5-40\) & \(0.15-.3\) & \(5-40\)
\end{tabular}
\begin{tabular}{ccc}
POWER GAIN PERFORMANCE \\
DC & \multicolumn{2}{c}{ POWER GAIN } \\
SUPPLIES & \multicolumn{2}{c}{\((d B)\)} \\
\((\) volts \()\) & 30 MHz & 100 MHz \\
\(\pm 6\) & 36 & 20 \\
\(\pm 4.5\) & 33 & 18.5 \\
\(\pm 3\) & 21.5 & 15.0
\end{tabular}

Fig. 38-Circuit used to determine the rf performance capabilities of a CA3005 or CA3006 integrated-circuit rf amplifier in a cascode configuration.
well as typical power gains are also shown in the figures. A conjugate match at the input is provided for all configurations. A conjugate match at the output is impossible for the cascode configuration (as pointed out in the discussion of y parameters). At 30 MHz , the CA3005 differential amplifier output was mismatched. At high gains, the circuit feedback \(\left(\mathrm{y}_{\mathrm{r}}\right)\) is low, but the external-circuit layout adds feedback.

Tuned IF Amplifier - Two or more CA3004, CA3005 or CA3006 integrated circuits can be connected in cascade for use as a tuned if amplifier for either AM or FM applications. The schematic diagrams of two three-stage \(12-\mathrm{MHz}\) amplifiers are shown in Figs. 39 and 40, for FM and AM use, respectively. Both if amplifiers are housed in metal boxes, and adequate shielding and supply decoupling are provided.

The amplifier shown in Fig. 39 (limiting amplifier for FM use), is designed to provide a gain per stage of 26 dB . At this gain per stage, diodes are required at the input to prevent base-to-emitter breakdown. For operation as a low-level limiter, the circuit input is matched, and the required gain fixes the unloaded Q of the tuned circuit and the collector load. Good noise performance for the first stage is obtained by the use of a high \(\mathrm{Q}(200)\) toroid inductor for input transformer \(T_{1}\). The other transformers are slug-tuned and have relatively low unloaded Q's (70 to 100) which contribute the necessary insertion loss for the required gain. A lower unloaded Q was required for transformer \(T_{2}\), so \(10,000 \mathrm{ohms}\) of resistance was added in parallel with this transformer. Little or no skew is detectable in the response characteristic for this circuit, shown in Fig. 41. The limiting characteristic of the circuit is shown in Fig. 42. Other typical over-all performance characteristics are:

Total power drain \(=48\) milliwatts
Overall power gain \(=77 \mathrm{~dB}\)
\(3-\mathrm{dB}\) bandwidth \(=300 \mathrm{kHz}\)
Input limiting level \(=30\) microvolts
Noise figure \(=4 \mathrm{~dB}\)

The AM circuit (Fig. 40) uses three CA3004 circuits and is designed to provide a stage gain of 25 dB . The source resistance to the input circuit was chosen as 800 ohms as a satisfactory compromise for gain, noise figure, and modula-tion-distortion performance. Input and output transformers, \(\mathrm{T}_{1}\) and \(\mathrm{T}_{4}\), have high unloaded Q's (200) to preserve good noise performance and to maximize the output power. The interstage transformers, \(\mathrm{T}_{2}\) and \(\mathrm{T}_{3}\), have low unloaded Q's (37) to achieve the required gain. The second detector has a \(3-\mathrm{dB}\) bandwidth of 5.0 kHz , the typical over-all performance characteristics are:
\[
\begin{aligned}
& \text { Power drain }=83 \text { milliwatts } \\
& \text { Power gain }(\text { to second-detector input })=76 \mathrm{~dB} \\
& \text { AGC range }(1 \text { st stage })=60 \mathrm{~dB} \\
& \text { Noise figure }=4.5 \mathrm{~dB} \\
& \text { 3- } \mathrm{dB} \text { bandwidth }=160 \mathrm{kHz}
\end{aligned}
\]

The signal-to-noise ratio of the circuit as a function of the input is shown in Fig. 43, and the frequency-response characteristic is shown in Fig. 44.

Mixers - The use of the CA3004 and the CA3005 or CA3006 as balanced mixers to convert 20 MHz to 1.75 MHz , is shown in Fig. 45. Because the input impedance of the two circuits differ by a factor of approximately \(2: 1\), typically 4000 ohms for the CA3004 and 2200 ohms for the CA3005 or CA3006, different input transformers (\(\mathrm{T}_{1}\)) are required; the other tuned circuits, however, are the same. The output load impedance between collectors is approximately 8000 ohms. The conversion power gain and noise figure as a function of the oscillator drive are shown in Fig. 46 and 47. Power gain increases and noise figure decreases with increases in the oscillator drive.
Suppressed-Carrier Modulator and Product DetectorThe CA3005 and CA3006 were used in a suppressed-carrier double-sideband modulator and product detector. The double-sideband modulator is a convenient vehicle to evaluate carrier suppression and product detection. With the two circuits coupled together, the relation between modulation

NOTES: 1. Transformer \(T_{1}\) is a Ferramic Q-2 Toroid Type (unloaded \(Q=200\)).
2. Transformers \(T_{2}, T_{3}\), and \(T_{4}\) are slug-tuned with Carbonyl IT- 75 material (unloaded \(Q=75\)).

Fig. 39-Schematic diagram of a three-stage, \(12-\mathrm{MHz}\) limiting if amplifier that uses CA3005 circuits in operating mode D.

NOTES: 1. Transformers \(T_{1}\) and \(T_{4}\) are Ferramic \(Q-2\) Toroid Types (unloaded \(Q=200\)).
2. Transformers \(T_{2}\) and \(T_{3}\) are slug-tuned with Carbonyl IT-71 material (unloaded \(Q=70\)).

Fig. 40-Schematic diagram of a three-stage, \(12-\mathrm{MHz}\) gain-controlled AM amplifier that uses CA3004 circuits in operating mode D.

Fig. 41-Frequency-response characteristics of the 12-MHz limiting amplifier shown in Fig. 39.

Fig. 42-Limiting characteristics of the 12-MHz limiting amplifier shown in Fig. 39.

Fig. 43-Output signal-to-noise ratio as a function of the input signal for the
12-MHz gain-controlled amplifier shown in Fig. 40 when gain control is used in only the first stage.

Fig. 44-Frequency-response characteristics of the \(12-\mathrm{MHz}\) gain-controlled amplifier shown in Fig. 40.
distortion and drive levels is readily established.
Feedback may cause oscillation or unbalance; care must, therefore, be taken in the external-circuit layout design. Shielding must also be provided for both the double-sideband modulator and product detector.

The circuit diagram of the double-sideband modulator is shown in Fig. 48. The modulating signal is applied singleended to the differential pair of transistors, \(Q_{1}\) and \(Q_{2}\), and the oscillator signal is applied to the base of transistor \(Q_{3}\). The output is taken double-ended from the balanced transformer, \(\mathrm{T}_{2}\). The carrier suppression is a function of bilateral symmetry (offset, output-transformer balance, and modulation drive circuits) and the modulation-to-carrier drive ratio. With the external-circuit bilateral symmetry carefully preserved, the carrier output is approximately 25 dB below the double-sideband output for CA3006 units (offset \(\leqq 1\) millivolt) operated with a drive \(\mathrm{v}_{1}=10\) millivolts rms and \(\mathrm{v}_{2}=\) 31.5 millivolts rms. Although the signal-to-carrier ratio of 25 dB represents an inadequate rejection for most systems (40 to 60 dB is usually required), this value relaxes the filter requirements from those necessary on more commonly used single-sideband modulators. An improvement over the \(25-\mathrm{dB}\) ratio is obtained if the modulation drive \(\mathrm{v}_{1}\) is increased and the carrier drive \(v_{2}\) is decreased, because the output is a function of the product of \(v_{1}\) and \(v_{2}\).

The circuit diagram for a product detector is shown in Fig. 49. The product detector which provides the advantage

Fig. 45-Circuit diagrams for the use of CA3004, CA3005, and CA3006 integrated circuits as balanced mixers to convert an input frequency of 20 MHz to an output frequency of 1.75 MHz .

Fig. 46-Power gain and noise figure as a function of the oscillator drive voltage for the CA3005 or CA3006 balanced mixer.

Fig. 47-Power gain and noise figure as a function of the oscillator drive voltage for the CA3004 balanced mixer.

Fig. 48-Circuit diagram for the use of the CA3005 or CA3006 as a double-sideband, suppressed-carrier modulator.
of a double-ended out-of-phase output, is driven through a 50 -ohm adjustable feed by the double-sideband signal from the modulator. The levels of \(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}\), and \(\mathrm{v}_{5}\) are altered to establish the relationship between the harmonic distortion and drive levels as well as gain values for typical operation.

The results are shown in Table VII. Overdrive by the modulation (\(\mathrm{v}_{1}\)) or the modulated signal (\(\mathrm{v}_{4}\)) results in thirdharmonic distortion of the detected signal. Note that gain is a function of either the product of \(\mathrm{v}_{1}\) and \(\mathrm{v}_{2}\), or the product of \(v_{4}\) and \(v_{5}\).

Fig. 49-Circuit diagram for the use of a CA3005 or CA3006 as a product detector.

TABLE VII
Gain and Distortion as a Function of Different Drive Levels for a Double-Sideband Modulator and Product Detector Using the CA3006
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(v_{1}\) & \(v\) & \multirow[t]{2}{*}{Terminal 3
Voltage
(Volts
rms)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \boldsymbol{\eta}_{\text {ce }} \\
& \left(\begin{array}{c}
\text { vollts } \\
\text { rms })
\end{array}\right.
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
v_{3} \\
\left(\begin{array}{c}
(m e \\
r m s)
\end{array}\right.
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
v_{4} \\
\left(\begin{array}{c}
(m v \\
r m s)
\end{array}\right.
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
v_{b 102} \\
(m v \\
(m s)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& v_{5} \\
& (m v \\
& r m s)
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
v_{6} \\
(m v \\
(m s)
\end{gathered}
\]} & \multicolumn{4}{|l|}{Harmonic Distortion (dB below fundamental)} \\
\hline Condition & \[
\stackrel{(m v}{(m s)}
\] & \[
\begin{gathered}
(m v \\
r m s)
\end{gathered}
\] & & & & & & & & \(2 n d\) & 3 rd & 4th & \(5 t h\) \\
\hline \multirow{3}{*}{\[
\stackrel{\mathbf{v}_{1}}{\text { Varied }^{2}}
\]} & 5 & 31.5 & 0.296 & 0.046 & 4.95 & 1 & 4 & 0.5 & 36 & & 54 & & \\
\hline & 10 & 31.5 & 0.296 & 0.080 & 8.9 & 1 & 4 & 0.5 & 36 & & 54 & & \\
\hline & 30 & 31.5 & 0.296 & 0.25 & 26.6 & 1 & 4 & 0.5 & 36 & & 37.5 & & \\
\hline \multirow{3}{*}{\[
\begin{gathered}
\mathbf{v}_{2} \\
\text { aried }
\end{gathered}
\]} & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 1 & 4 & 0.5 & 36 & & 54 & & \\
\hline & 10 & 100 & 0.96 & 0.262 & 28 & 1 & 4 & 0.5 & 36 & & 51 & & \\
\hline & 10 & 315 & 2.96 & 0.83 & 89 & 1 & 4 & 0.5 & 36 & & 50 & & \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\mathbf{v}_{4} \\
\text { Varied }
\end{gathered}
\]} & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 0.5 & 2 & 0.5 & 17.5 & & 54 & & \\
\hline & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 1 & 4 & 0.5 & 36 & & 52 & & \\
\hline & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 3 & 12 & 0.5 & 110 & & 47.5 & & \\
\hline & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 5 & 20 & 0.5 & 188 & 51 & 37 & & 59 \\
\hline \multirow{3}{*}{\[
\begin{gathered}
\mathbf{v a r i e d}^{2} \\
\text { Varie }
\end{gathered}
\]} & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 1 & 4 & 0.315 & 23 & 56 & 54 & & \\
\hline & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 1 & 4 & 0.5 & 36 & & 54 & & \\
\hline & 10 & 31.5 & 0.296 & 0.083 & 8.9 & 1 & 4 & 1.0 & 86 & & 50 & & \\
\hline
\end{tabular}

Notes: 1. Consult Figs. 48 and 49 for explanation of voltage designations.
2. Blank spaces indicate harmonic distortion is more than 60 dB below the fundamental.

\title{
Application of RCA Integrated Circuits CD2150, CD2151, and CD2152 ECCSL Logic Gates
}

\author{
BY \\ M. V. D 'AGOSTINO
}

This Note describes the features and typical applications of three new RCA ultra-high-speed ECCSL* monolithic integrated circuits: the CD2150 Dual Four-Input Gate, the CD2151 Dual Four-Input Gate with "Phantom-OR" Output Capability, and the CD2152 Eight-Input Gate with "Phantom-OR" Output Capability.

These circuits form a compatible group of high-speed logic building blocks that have an average delay per logic decision of approximately 4 nanoseconds. The "currentmode" configuration used in the circuits utilizes the most advanced RCA integrated-circuit fabrication techniques available. To a large extent, the parasitic effects normally encountered in diffused integrated circuits are minimized by use of the differential linear mode of operation. Each circuit is available in a 14 -terminal flat-pack and offers the following advantages which contribute directly to over-all system speed and reliability:
(1) inherent high speed as a result of nonsaturated transistor operation;

\footnotetext{
* Emitter-coupled current-steered logic (pronounced EXCEL).
}
(2) all-monolithic silicon epitaxial construction designed for operation at ambient temperatures from 10 to \(60^{\circ} \mathrm{C}\);
(3) complementary OR/NOR emitter-follower output stages which provide a low output impedance and the capability to drive large fan-outs;
(4) constant power-supply current drain which results in low power-supply noise and low ground-lead noise;
(5) small logic swing and thus lower power requirements to charge and discharge circuit capacitances;
(6) capability of the ultra-high-speed ECCSL gates to drive 100 -ohm terminated transmission lines;
(7) typical noise immunity of \(\pm 350\) millivolts over the entire temperature range of 10 to \(60^{\circ} \mathrm{C}\);
(8) built-in, tracking, reference-threshold voltage to increase system packaging density and eliminate noise pickup on an external threshold voltage line.

\section*{DESCRIPTION OF CIRCUITS}

The CD2150 dual four-input gate shown in Fig. 1 is an ECL (emitter-coupled-logic) gate designed for highspeed OR/NOR (positive logic) or AND/NAND (negative logic)

Fig. 1-Schematic diagram, logic diagrams, logic levels, and logic equations for the CD2150 dual four-input gate.
applications. Each gate has four inputs and provides both inverting and noninverting outputs. The switching-threshold reference supply is built in as part of the circuit. The stage delay for each gate is typically 4 nanoseconds, and the total power dissipation including the reference-threshold supply is typically 220 milliwatts. Each gate is capable of driving terminated 100 -ohm transmission lines.

For normal operation of the CD2150, terminal \(2\left(\mathrm{~V}_{\mathrm{cc}}\right)\) is grounded and terminal \(3\left(\mathrm{~V}_{\mathrm{v}}\right)\) is connected to a -5 -volt supply. Nominal voltage signal swings for both inputs and outputs are -0.76 to -1.60 volts. The reference-threshold voltage (\(\mathrm{V}_{\mathrm{ret}}\)) is designed to be midway between the " 1 " and " 0 " levels, at approximately -1.2 volts, and tracks these voltage levels as they shift with temperature. Because the reference-threshold voltage is internally generated, higher system packaging density can be achieved by use of less interconnecting wiring and fewer circuit types. In addition, the possibility of noise pickup on the reference line is eliminated and system noise immunity is enhanced.

Each gate of the CD2150 operates as follows: With any one of the four inputs \((5,6,7,8\) or \(11,12,13,14)\) in the high state, the NOR output (terminal 4 or 1) is in the low state and the OR output (terminal 9 or 10) is in the high state. The current in resistor \(\mathbf{R}_{1}\) or \(\mathbf{R}_{10}\) flows through either of the two sides of the differential amplifier (\(\mathrm{Q}_{3}\) or \(\mathrm{Q}_{2}, \mathrm{Q}_{3}\) \(Q_{4}, Q_{i,}\) in one gate; \(Q_{7}\) or \(Q_{10}, Q_{11}, Q_{13}, Q_{13}\) in the other). The emitter-follower output stages (\(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{8}\) or \(\mathrm{Q}_{14}\) and \(\mathrm{Q}_{15}\)) driven by the current switch provide a low output impedance which contributes to a large fan-out capability, pro-
vides the proper level shift to guarantee nonsaturating operation, and isolates the collectors of the switch from the load capacitance.

The CD2151 dual four-input gate with Phantom-OR output capability is similar to the CD2150 except that the NOR emitter-follower output resistors (\(\mathrm{R}_{1}\) and \(\mathrm{R}_{12}\) in Fig. 1) are omitted to facilitate the "Virtual-OR" or "PhantomOR" logic configuration, as shown in Fig. 2. As a result, the total dissipation of the circuit is approximately 175 milliwatts, and the logic levels are more negative than those

Fig. 2-Logic diagrams, logic levels, and logic equations for the CD2151 dual four-input gate connected in Phantom-OR configuration.
of the CD2150 by approximately 1 per cent. As many as ten CD2151 gates can be tied together with a commonemitter resistor to expand the "Virtual-OR" function.

The external emitter resistor required for use of the NOR outputs of the CD2151 may also be used as a terminating resistor for a transmission line that has a characteristic impedance \(\mathbf{Z}_{\bullet}\), as shown in Fig. 3. For example, an emitter

Fig. 3-Use of the CD2151 as a line driver.
resistor of 100 ohms returned to a -1.6 -volt supply can be used to terminate a length of printed strip line having a characteristic impedance of 100 ohms. (The -1.6 -volt supply is used rather than the -5 -volt supply to limit the current drain from the emitter-follower outputs.) In a system that uses large numbers of terminated lines, an appreciable power savings can be realized by use of the CD2151 circuit rather than the conventional CD2150. Because no appreciable speed advantage results from use of both a terminating resistor and a built-in emitter-follower resistor, the built-in resistor becomes redundant when low-resistance termination is required.

Another advantage of the CD2151 "Phantom-OR" gate is its flexibility. In system locations where very light load capacitance is encountered, a relatively large emitter resistor (in the order of 2000 ohms) can be used and compatible rise and fall times as well as compatible logic levels can still be obtained. As a result, appreciable savings in dissipation can be realized as compared to exclusive use of the conventional gate configuration. The disadvantage of the CD2151, of course, is the use of discrete components in such locations.

The OR outputs of the CD2151 gate have built-in emitter-follower output resistors, and thus are identical to the OR outputs of the CD2150.

The CD2152 eight-input gate with "Phantom-OR" output capability shown in Fig. 4 is also an ECL gate designed for high-speed OR/NOR (positive logic) or AND/NAND (negative logic) applications. This circuit provides both an inverting and a non-inverting output, together with eight inputs. A temperature-tracking reference-threshold supply is built in as part of the circuit. The stage delay of the gate is typically 4.5 nanoseconds, and the total power dissipation including the reference supply is 145 milliwatts with the emitter resistors connected. Each output is capable of driving a terminated transmission line.

This gate provides speed, driving capability, and system flexibility similar to those of the CD2150 and CD2151. Additional logic and system strength is provided by the eight inputs and by the Phantom-OR capability at the noninverting output. It can be seen that a relatively low-power high-speed logic gate can be designed by judicious use of the emitter-follower hook-up options.

Fig. 4-Schematic diagram, logic diagrams, logic levels, and logic equations for the CD2152 eight-input gate.

\section*{NOISE IMMUNITY}

From the system standpoint, evaluation of the noise tolerance of an integrated circuit is a very difficult problem. In any system, the noise susceptibility of the logic circuit itself is only part of the consideration; the other part depends on how well a particular configuration can suppress the generation of system noise. The constant power-supply drain, low drive current, and low-output-impedance characteristics of the ECCSL gate make it one of the most suitable logic circuits from the system noise aspect. However, crosstalk caused by stray capacitance, inductive coupling, power supply, and ground-plane impedances and noise caused by reflected waveforms also contribute to system noise. Therefore, the packaging method used in construction of a system using integrated circuits plays an important part in determining over-all system reliability. For a truly valid noise evaluation of a logic gate, it would be necessary to place the gate in the system environment in which it is expected to function and then to impose worst-case conditions peculiar to such a system. This approach, however, would require construction of a prototype system for circuit evaluation. For easier analysis, only the dc noise margin of the gates is discussed in this Note.

Fig. 5 shows typical noise immunity of the CD2150. CD2151, and CD2152 logic gates as a function of temperature. Noise immunity is arbitrarily defined as the voltage

Fig. 5-Typical noise immunity of CD2150, CD2151, and CD2152 gates as a function of temperature.
excursion from the nominal logic level on the input that causes an output voltage level equal to the input level. Under ideal conditions, the threshold voltage of the gate is centered with respect to the upper and lower logic levels, as shown in Fig. 6, and the output is equal to the input when the input is equal to the threshold voltage. For the values shown, the noise immunity of the " 1 " state is then \((-0.76)-(-1.18)\), or 0.42 volt, and that of the " 0 " state is \((-1.18)-(-1.60)\), or 0.42 volt.

In practice, however, an accumulation of tolerance factors can cause the reference voltage to shift, as shown by the dashed portion of the transfer curve. (The 50-per-cent point of the transfer curve indicates the position of the threshold voltage. The curve shifts to the left if the threshold becomes more negative and to the right if the threshold
becomes more positive.) When a noise level is then superimposed on the nominal " 0 " level, its positive excursion is not quite so great before the input and output levels are equal. For the example shown, a voltage of -1.242 volts on the input is required to produce a voltage of -1.242 volts on the output. Thus, the noise immunity for the " 0 " state is \((-1.242)-(-1.60)\), or 0.358 volt, i.e., 62 millivolts less than that of the ideal condition. However, the noise immunity on the " 1 " side is \((-0.76)-(-1.242)\), or 0.482 volt. The 62 millivolts lost on the " 0 " side are picked up on the " 1 " side. (If the reference voltage shifted in the positive direction, the noise immunity would increase for the " 0 " state and decrease for the " 1 " state.) The shift in noise immunity (62 millivolts) is smaller than the shift in reference voltage (75 millivolts) because of the gain in the transition region, as evidenced by the slope of the curve. In the curve of noise immunity as a function of temperature shown in Fig. 5, the smaller of the two noise immunity figures is used.

It can be seen that this technique of measuring noise immunity is a form of unity-gain concept applied to inputoutput dc levels. A noise pulse amplitude which is less than the minimum noise immunity of a gate is attenuated as it passes through successive stages of logic. This concept may be extended to incorporate any degree of safety margin desired. For example, if the worst-case logic " 1 " and " 0 " levels are known and the maximum noise amplitude is known, the specification can be established so that an input voltage equal to the sum of the worst-case logic level and the maximum noise amplitude produces an output that has a magnitude within 25 millivolts of the worst-case reference threshold. Effectively, this approach imposes a "tolerance box" around the transfer characteristic that limits the excursion of the nominal reference voltage to some desired percentage, as shown in Fig. 7.

Another advantage of this simple definition of noise immunity is that the effect of load, voltage, and temperature gradients can be determined, at least on an approximate basis, by use of the nomographs described later in this Note. For instance, if the power-supply voltage is reduced so that the logic swing is 0.7 volt rather than 0.84 volt, noise immunity on both the " 1 " and " 0 " levels is reduced by \((0.84-0.70) / 2\), or 0.07 volt. The effect of loading and temperature gradient can then be determined by subtraction of the deviation of the logic levels as a result of temperature and loading from the calculated noise immunity. This approach makes the valid assumption that the reference threshold remains essentially centered under voltage variations.

This technique can be illustrated by consideration of a hypothetical situation. Under normal conditions at room temperature, the noise immunity of a gatc is assumed to be 390 millivolts. The power-supply voltage is then reduced to -4.5 volts to reduce power dissipation. The nomographs show that the logic swing for the reduced voltage is (-0.75)-(-1.48), or 730 millivolts. The new noise immunity is then \(390-(0.84-0.73) / 2\), or 335 millivolts.

If the " 1 " output of a gate is then loaded with a curren' of 2 milliamperes and cooled \(20^{\circ} \mathrm{C}\) below the circuit it \(i\). driving, the " 1 " logic level shifts from -0.75 to -0.792 volt, and the noise immunity is reduced to 335-[(-0.75)

Fig. 6—Transfer characteristics of an ECCSL gate (NOR side).

Fig. 7-Diagram illustrating "tolerance box" around transfer characteristic as imposed by noise-immunity specification.
\(-(-0.792)]\), or 295 millivolts. The same procedure may be used with different voltage, loading, and temperaturegradient information. This technique is not "worst-case". but shows the trends of dc logic levels and dc noise immunity under varied conditions.

To this point, no mention has been made of the ac noise immunity of the gate. Because of the relative magnitude of the common-emitter capacitance of the differential current switch as compared to the total collector capacitance of the switch, the ac noise immunity is equal to or greater than the dc noise immunity. Therefore, an input noise spike of amplitude " \(A\) " causes an output spike of amplitude " \(B\) " in the same manner that a noise level of magnitude " \(A\) " causes an output level of magnitude " \(B\) ". Consequently, a dc test is used to evaluate the noise characteristics of the gates because test results can be reproduced more easily.

\section*{SYSTEM SPEED}

In a synchronous system, the speed at which a given logic operation can be accomplished may be predicted with some degree of accuracy when the gate and flip-flop delay characteristics are known. The following expression relates system speed \(f_{c}\) in megacycles per second to these delays:
\[
\mathrm{f}_{\mathrm{c}}=\frac{10^{3}}{\mathrm{t}_{\mathrm{pd}}(\mathrm{~F})+\mathrm{nt}_{\mathrm{pu}}(\mathrm{G})+\mathrm{t}}
\]
where \(t_{p \mathrm{pd}}(F)\) is the propagation delay of a flip-flop, \(\mathrm{t}_{\mathrm{pd}}(\mathrm{G})\) is the propagation delay of a gate, \(n\) is the number of logic stages specified for the system, and \(t\) is the time interval. just prior to the trigger time, during which the ac trigger level must be static. All times are expressed in nanoseconds. For two levels of logic in the simple system shown in Fig. \(8, t_{p d}(F)\) is 11 nanoseconds (as shown later in Fig. 15),

Fig. 8-Diagram of simple logic system.
\(\mathrm{t}_{\mathrm{pd}}(\mathrm{G})\) is 4.0 nanoseconds (as stated previously for the CD2150), and \(t\) is 8 nanoseconds (two gate delays for a six-gate binary configuration, as shown later in Fig. 14). The system speed \(f_{c}\) is then given by
\[
\mathrm{f}_{\mathrm{r}}=\frac{10^{3}}{[9+(2)(4.0)+8]\left[10^{-9} \mathrm{~s}\right]}=40 \mathrm{Mc}^{\prime \mathrm{s}}
\]

This expression can be extended to a worst-case equation as a function of maximum delay times which occur under various system conditions. In a system where long logic trains are used, the dominant speed limitation is presented by the worst-case gate delay, as shown in Fig. 9.

Fig. 9-System speed of a simple logic system as a function of the number, of logic levels, \(n\).

\section*{EFFECT OF POWER SUPPLY, TEMPERATURE, AND LOADING ON LOGIC LEVELS}

The nomographs in Figs. 10 and 11 relate the logic " 1 " and " 0 " levels to various combinations of power supply, temperature, and loading. These graphs illustrate the flexibility of the CD2150, CD2151, and CD2152 circuits in meeting various conditions peculiar to given systems. For example, an obvious way to reduce system power dissipation is to reduce the power-supply voltage. However, reducing the voltage also reduces the logic swing. How small a logic swing can be tolerated is a function of how "clean" the system is. Another consideration is heavy dc loading. When heavy dc loads are applied to the outputs of these gates, the " 1 " level decreases to some extent because the emitter-follower outputs have some finite output impedance. This decrease in one of the levels also results in a reduced logic swing. The power supply may then have to be increased to counteract this loading effect, the amount of increased supply voltage being determined by the system noise-immunity requirement. The nomographs also permit determination of the logic levels of a circuit at a given temperature and load used to drive another circuit located elsewhere in the system at a different temperature. The detailed discussion of noise immunity of these circuits presented earlier more fully illustrates these concepts.

The nomographs shown in Figs. 10 and 11 cover the range of typical parameter variations with temperature and operating points. They indicate the trends that typical units follow, but are not an attempt to guarantee worst-case conditions. Basically, the graphs are generated as follows: First, the dc equation is written for the particular level to be investigated. Parameter variations are then inserted into the equation as a function of temperature, current, and other conditions. Finally, either linear or logarithmic scales are constructed for the parameter limits selected, and the scales are geometrically positioned with respect to one another as a function of the moduli used in construction.

Fig. 10—Nomograph showing parameter relationships of an ECCSL gate for "I" level.

For example, the equation for the NOR output " 1 " level \(\left(e_{1}\right)\) is given by
\[
\mathrm{e}_{1}=\frac{-I \mathrm{R}_{1}-\beta_{\mathrm{s}} \mathrm{~V}_{\mathrm{Bra}}+\mathrm{V}_{\mathrm{EE}}\left(\mathrm{R}_{1} / \mathrm{R}_{4}\right)}{\beta_{3}+\left(\mathrm{R}_{1} / \mathrm{R}_{4}\right)}
\]
where \(I\) is the load current, \(R_{1}\) is the collector resistor of the current switch, \(\beta_{3}\) is the common-emitter current gain of the emitter-follower output transistor, \(\mathrm{V}_{\mathrm{BEs}}\) is the base-to-emitter voltage drop of the output transistor, \(\mathrm{V}_{\mathrm{FE}}\) is the power supply, and \(R_{1}\) is the emitter-follower resistor.

This equation can be rewritten with \(R_{1}\) as a function of temperature and \(\beta_{3}\) and \(\mathrm{V}_{\mathrm{be}, 3}\) as functions of temperature and current for the following assumptions: (1) the ratio \(R_{1} / R_{1}\) is constant with temperature; (2) \(V_{\text {Ee }}\) over the range from -4.5 to -5.5 volts has a negligible effect on the " 1 " level output of the gate. The load current I and the ambient temperature \(t\) then become the variables to be placed on the graphs to generate the corresponding logic " 1 " states. A similar procedure is used for the " 0 " state except that \(\mathrm{V}_{\text {er }}\) has a direct effect on the " 0 " level, and load current I is assumed to have a negligible effect.

The use of the nomographs is illustrated in Fig. 10. First, a desired temperature \(\left(25^{\circ} \mathrm{C}\right)\) is selected on scale " A " and a desired load-current condition (0.14 milliampere) on scale " B ". A straight line is drawn connecting these two points. A second straight line is then drawn connecting the intersection of the first line on the " \(\alpha\) " scale with the same tem-
perature point \(\left(25^{\circ} \mathrm{C}\right)\) on the " C " scale. The intersection of this line with the " 1 " scale indicates the approximate NOR output " 1 " level (750 millivolts). A similar procedure is used for the nomograph shown in Fig. 11. However, the " 0 " level is determined simply by connection of the temperature and power-supply points with a straight line.

\section*{APPLICATIONS}

The simplest binary element that can be constructed with the high-speed ECL logic gates described in this Note is a de set-reset flip-flop circuit. Essentially, two inverting gates are cross-coupled, and the inputs to the gates are used as the set-reset inputs. Fig. 12 shows the hook-up and corresponding truth table when the CD2150 dual gate is used. If CD2151 gates were used, external resistors would be required on the outputs, but a power advantage could be realized. Two CD2152 could also be used. The complement of each output is available by use of the OR outputs of the gates. This feature might be utilized to relieve the loading of any one output. The propagation delay of the configuration shown in Fig. 12 is 8 nanoseconds; the rise and fall times are 4 and 3 nanoseconds, respectively.

Fig. 13 shows the CD2150 gate used in a "one-shot" configuration. The external RC network is used to generate the time constant which determines the output pulse duration.

Fig. II-Nomograph showing parameter relationships of an ECCSL gate for " 0 " level.

Fig. 12-Simple dc set-reset flip-flop circuit using CD2I50 gate.

Fig. 13-One-shot circuit using CD2150 gate.

The delay through the circuit is 8 nanoseconds, and the output rise and fall times are typically 4 nanoseconds each. The tolerance of the output pulse is a function of the RC network tolerance, the input-impedance tolerance of the level shifter, and the logic-swing tolerance. The CD2151 and CD2152 gates could, of course, be used in similar fashion.

Fig. 14 shows a six-gate arrangement used to produce a triggerable flip-flop binary element. Although CD2150 logic circuits are shown, three CD2151 circuits with external resistors to limit power dissipation or six CD2152 circuits could be used equally well. Because this six-gate arrangement is essentially two flip-flops connected in a dual-rank combination, no capacitors or other circuit delay elements are required. The arrangement is direct-coupled throughout, and is not sensitive to the rise and fall times of logic signals. The \(\mathbf{B}_{1}, \mathrm{~B}_{2}\) flip-flop receives the input information when the clock voltage is high, and transfers it to the \(C_{1}, C_{2}\) unit when the clock voltage is low. Two dc set and reset inputs are also available. As shown in Fig. 14, the information is applied to the inputs of the steering gates \(A_{1}\) and \(A_{2}\) and then, in turn, to the inputs of the \(\mathrm{B}_{1}, \mathrm{~B}_{2}\) flip-flop. However, a high-level clock input blocks the \(\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{2}\) flip-flop. When the clock voltage decreases, the \(B_{1}, B_{2}\) flip-flop switches and transfers the information to the \(\mathrm{C}_{1}, \mathrm{C}_{2}\) flip-flop. The outputs of the \(B_{1}, B_{2}\) flip-flop are also fed back to the input steering gates to make \(A_{1}\) and \(A_{2}\) insensitive to clock pulse duration. New information reaches the \(\mathbf{B}_{1}, \mathbf{B}_{\text {: }}\) flip-flop when the clock returns to the high state.

Fig. 15 shows the effect of fan-out on the maximum clock frequency and stage delay of the circuit of Fig. 14. The rise time, fall time, and noise immunity of the triggerable flip-flop are, of course, compatible with those of the logic gate circuits.
A shift register can also be simply constructed by use of the basic binary element described above. Fig. 16 shows a block diagram of a five-stage shift register, and Fig. 17 shows the waveforms of successive stages operating at 67 megacycles per second with different register patterns. The waveforms shown were taken from a breadboard circuit that used conventional wiring techniques. No printed-circuit

Fig. 15-Maximum clock frequency and stage delay of flip-flop circuit as a function of fan-out.
wiring or strip line was used. Printed-circuit wiring placed over a ground plane would present cleaner waveshapes. The information content of the register is shifted one stage to the right for each clock pulse applied. Setting and resetting of the individual stages is accomplished when the clock input is high.

Fig. 14-Six-gate triggerable fip-flop circuit using three CD2150 gates.

Fig. 16-Block diagram of five-stage shift-register circuit.

TRIGGER PULSE

OUTPUT FROM STAGE I

VERT. SCALE \(=0.2 \mathrm{~V} /\) DIV.; HORIZ. SCALE \(=10 \mathrm{~ns} /\) DIV

OUTPUT WAVEFORMS STAGE 1

STAGE 2

STAGE 3
STAGE 4

Stage 5

VERT. SCALE \(=1.0 \mathrm{~V} /\) DIV.; HORIZ. SCALE \(=10 \mathrm{~ns} /\) DIV. SHIFTING (10000) PATTERN

OUTPUT WAVEFORMS

STAGE 1

STAGE 2

StAGE 3

STAGE 4

STAGE 5
VERT. SCALE \(=1.0\) V/DIV.; HORIZ. SCALE \(=20 \mathrm{~ns} /\) DIV
SHIFTING (10100) PATTERN

Fig. 17-Waveforms of successive stages of shift register with different register patterns; clock rate \(=67\) megacycles per second.

The block diagram of a five-stage ripple counter is shown in Fig. 18. This counter counts the input frequency down by \(2^{n}\), where n is the number of stages. The register can be set to any initial condition by use of the appropriate setreset inputs. Again, the basic six-gate triggerable flip-flop configuration is utilized. Fig. 19 shows the waveforms of
successive stages operating with a 70 -megacycle-per-second clock input. The slightly higher repetition rate obtained results from the fact that the load on the clock source is considerably lighter because the clock is applied to only the first stage. Resetting of the counter is accomplished when the clock input is high. For setting or resetting of individual stages of a ripple counter, a slightly different arrangement of gate inputs and outputs is required, as shown in Fig. 20.

Fig. 18-Block diagram of five-stage ripple counter.

VERT. SCALE \(=0.4 \mathrm{~V} /\) DIV.; HORIZ. SCALE \(=10 \mathrm{~ns} /\) DIV.

Fig. 19-Waveforms of successive stages of ripple counter with clock input of 70 megacycles per second.

Fig. 20-Ripple counter with provision for setting and resetting of individual stages.

Although the counting speed for the arrangement shown in Fig. 18 and described above is limited only by the speed of the lowest-order digit counter, the time.required for the "carry" to progress through several stages may be objectionably long. As each pulse to be counted is received, the bit counters change successively, one at a time. As a result, a time lag is required for the counter to present the indication of a new total. Fig. 21 shows a parallel-carry ripple counter that substantially eliminates this time delay. The input pulse is sent on to the next higher order each time the corresponding counter is in the proper state. Thus, any stage that is going to change states will change when the clock pulse is present. Decoding of the register can then occur approximately one stage delay after the clock pulse is present.

The requirement for extra circuitry to accomplish the OR functions shown in Fig. 21 can be eliminated by use of the CD2152 eight-input gate for the \(\mathbf{B}_{1}, \mathrm{~B}_{2}\) flip-flop. This arrangement also provides higher speed because an extra gate delay between stages is eliminated. A triggerable flip-

Fig. 21-Parallel-carry ripple counter.

Fig. 22-Triggerable flip-flop using CD2152 eight-input gate.
flop configuration using CD2152 eight-input gates is shown in Fig. 22. The counter hook-up for binary element is shown in Fig. 23. Use of the parallel-carry counter is demonstrated in the next two logic arrangements.

Fig. 23-Three-stage parallel-carry ripple counter using CD2150 and CD2152 logic gates.

Fig. 24 shows a four-stage binary decade counter which incorporates the parallel-carry technique described above. The counter is capable of registering sixteen pulses. and an output may be obtained from the highest order upon the application of the sixteenth pulse. A four-order binary counter could therefore be used as a digit counter of radix sixteen. In the decimal digit counter with four binary elements shown in Fig. 24, six of the sixteen stable states are nullified by means of feedback techniques.

For the arrangement shown in Fig. 24, a feedback gate is required. Stages A through D use CD2150 or CD2151 logic gates and CD2152 gates to facilitate the parallel-carry technique. However, any combination of binary element configurations descrihed thus far could be used. The photographs shown in Fig. 25 show the successive stages of the decade counter operated at clock rates of 55 and 25 megacycles per second. These photographs were taken from a counter which used all CD2 150 dual logic gates. Therefore, an extra gate delay between stages is introduced.

A Gray-code counter is a counter that generates a binary pattern in which only one stage changes states at any one time. This type of counter is useful when decoding is accomplished without the use of a clock signal because no ambiguous condition exists while the counter is changing states. Therefore, no spiking appears at the decoded output.

Fig. 26 shows the gate arrangement necessary to construct such a counter. Fig. 27 shows the waveforms at the outputs of the stages with clock-frequency inputs of 10,25 , and 45 megacycles per second. Although these waveforms were obtained from a counter using a CD2150 logic gate, any combination of the three gates described in this Note can be used.

A half-adder is a circuit capable of accepting two binary input signals and producing appropriate sum and carry output signals. The term half-adder is used because, except for the lowest order, two half-adders per order are required for the addition of two quantities. Fig. 28 shows the circuit arrangement for a half-adder function using two CD2150 circuits, and Fig. 29 shows how two half-adder functions can be realized with three of these integrated-circuit packages. The same type of logic functions can be generated by use of the CD2151 circuit with external components or the CD2152 eight-input gate.

A full-adder is capable of accepting three binary signals and producing both sum and carry outputs. Fig. 30 shows the logic arrangement for a full-adder using CD2150 circuits. A block diagram of a serial full-adder function is shown in Fig. 31. The one-bit delay needed in the "carry" feedback loop is provided by a shift-register stage comprised of six logic gates, as described previously.

\begin{tabular}{cccc}
\multicolumn{4}{c}{ COUNT SEQUENCE } \\
A & B & C & D \\
\hline 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\hline 1 & 0 & 0 & 0
\end{tabular}

Fig. 24-Four-stage binary decade counter incorporating parallel-carry techniques.

CLOCK INPUT
(0.5 V; 50 ns)

OUTPUT WAVEFORMS
STAGE 1

CLOCK RATE \(=25 \mathrm{Mc} / \mathrm{s}\)
HORIZ. SCALE \(=100 \mathrm{~ns} /\) DIV.)

STAGE 3

STAGE 4

FEEDBACK PULSE

CLOCK INPUT

Fig. 25-Waveforms of successive stages of decade counter at clock rates of 55 and 25 megacycles per second.

Fig. 26-Gray-code counter.

CLOCK RATE \(=10 \mathrm{mc} / \mathrm{s}\)

CLOCK INPUT
OUTPUT WAVEFORMS
STAGE 1

Stage 2

STAGE 3

VERT. SCALE \(=0.5 \mathrm{~V} / \mathrm{DIV}\).; HORIZ. SCALE \(=0.2 \mu \mathrm{~s} / \mathrm{DIV}\).

CLOCK RATE \(=25 \mathrm{Mc} / \mathrm{s}\)

CLOCK INPUT

OUTPUT WAVEFORMS
STAGE 1

STAGE 2

STAGE 3

Fig. 27-Waveforms at outputs of successive stages of Graycode counter with clock input frequencies of 10, 25, and 45 megacycles per second.

Fig. 28-Half-adder circuit using two CD2150 gates.

Fig. 29_Two half-adder functions using three CD2150 gates.

Fig. 30—Full-adder circuit using CD2150 gates.

Fig. 31-Block diagram for serial full-adder circuit.

\section*{APPENDIX - Definitions}

For an ECL gate that has an ideal transition region (i.e., infinite gain), the reference threshold voltage is defined as that voltage which causes the output voltage of the gate to change states whenever the input voltage passes through the reference value from either a positive or a negative direction.

The delay and transition times of the gate are defined by the waveforms shown below, where \(t_{1}\) is the rise time, \(t_{0}\) is the fall time, \(t_{\mathrm{al}}\) is the rise delay, and \(\boldsymbol{t}_{\mathrm{d} \circ}\) is the fall delay.

\title{
Application of the RCA-CA3000 Integrated-Circuit DC Amplifier
}

\author{
BY \\ \section*{A. J. LEIDICH and M. E. MALCHOW}
}

The RCA-CA3000 dc amplifier is a monolithic silicon integrated circuit supplied in a 10 -terminal TO- 5 package. This stabilized and compensated differential amplifier has push-pull outputs, high-impedance (\(0.1-\) megohm) inputs, and gain of approximately 30 dB at frequencies up to one MHz . Its useful frequency response can be increased to several tens of megahertz by the use of external resistors or coils.

Because full gain-control capability is inherent in the CA3000, it can be used as a signal switch (with pedestal), a squelchable audio amplifier (with suppressed switching transient), a modulator, a mixer, or a product detector. When suitable external components are added, it can also be used as an oscillator, a one-shot multivibrator, or a trigger with controllable hysteresis. Within its specified frequency range, it is an excellent limiter, and can handle input signals up to about 80 millivolts rms before significant cross-modulation or intermodulation products are generated.

\section*{CIRCUIT DESCRIPTION}

The circuit diagram and terminal connections for the CA3000 dc amplifier are shown in Fig. 1. The circuit is basically a single-stage differential amplifier (\(Q_{2}\) and \(Q_{4}\)) with input emitter-followers (\(Q_{1}\) and \(Q_{5}\)) and a constantcurrent \(\operatorname{sink}\left(Q_{3}\right)\) in the emitter-coupled leg. Push-pull input and output capabilities are inherent in the differential configuration.

The use of degenerative resistors \(R_{4}\) and \(R_{5}\) in the emittercoupled pair increases the linearity of the circuit and decreases its gain. The low-frequency output impedance between each output (terminals 8 and 10) and ground is essentially the value of the collector resistors \(R_{1}\) and \(\mathbf{R}_{2}\) in the differential stage.

\section*{OPERATION OF THE CIRCUIT}

The CA3000 is designed for operation from a wide range of supply voltages. Operation from either one or two power supplies is feasible, as illustrated by the typical biasing techniques shown in Fig. 2. However, operation from two supplies is recommended because fewer external bias networks are required and, therefore, less power is consumed.

The maximum voltage that can be applied across the circuit (positive supply voltage \(\mathrm{V}_{\mathrm{cc}}\) plus negative supply voltage \(\mathrm{V}_{\mathrm{ER}}\)) is 16 volts. The maximum voltage capability \(\left(\mathrm{V}_{\mathrm{CE}}\right)\) of the differential pair is limited to 8 volts. Extra care must be used to ensure that these values are not exceeded when the circuit is used to drive inductive loads.

The operating-current conditions of the differential pair are determined by the base-bias circuit and emitter resistance of the emitter-coupled constant-current sink \(\left(\mathrm{Q}_{3}\right)\), as well as by the voltage between terminals 2 and 3. Each possible current condition is manifested by (1) a distinct set of dc operating characteristics with differing temperature characteristics, (2) a particular value of gain having its own temperature dependence, and (3) a particular dynamic

Fig. 1 - Schematic diagram and terminal connections for the CA3000 integrated-circuit dc amplifier.
output-voltage capability. For each value of voltage between terminals 2 and 3 (\(\mathrm{V}_{\mathrm{ve}}\) when terminal 2 is grounded), there are four possible operating modes, as described in Table I.

Table I-Operating Modes for CA3000 DC Amplifier
\begin{tabular}{|c|c|c|c|}
\hline Mode & Shorted Terminals & Condition of Diodes & Q, Emitter Resistor \\
\hline A & none & in & \(\mathbf{R e}_{0}+\mathbf{R}^{1 \prime \prime}\) \\
\hline B & 5-3 & out & \(\mathbf{R e}_{6}+\mathrm{R}_{10}\) \\
\hline C & 4-3 & in & R \\
\hline D & 5-4-3 & out & R. \\
\hline
\end{tabular}

The operating characteristics for these modes of operation are summarized in Table II for various two-supply configurations with terminal 2 grounded anc with \(\mathbf{V}_{\text {er }}\) values of -3 and -6 volts dc.

Table II shows that the positive supply voltage can be adjusted for each mode of operation and for each value of negative supply so that the nominal dc output voltage is zero. (Although the \(\mathrm{V}_{\text {ir }}\) value required for mode C for a \(\mathrm{V}_{\mathrm{pe}}\) of -6 volts dc is in excess of the maximum rating, operation within ratings can be achieved with slightly negative values of output voltage.) The use of these adjusted values of positive supply provides two advantages: (1) direct interstage coupling can be effected in a single-ended configuration, and (2) negative feedback can be introduced from a single output back to the appropriate input. For low-level applications in mode D with a negative supply voltage \(\mathrm{V}_{\mathrm{kr}}\) of -3 volts dc and a positive supply voltage \(\mathrm{V}_{\mathrm{CC}}\) of 1.1 volts de, the CA3000 has a gain of 24.4 dB , a dissipation of 6.2 milliwatts, an output capability of 2.2 volts peak-to-peak, and a dc output-voltage reference level of zero.

The information in Table II can be modified for singlesupply designs by simple addition and/or subtraction of dc values. For example, the correct information for a single

Table II-Design Characteristics of CA3000 Operating Modes
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { DC Supply } \\
\text { Positive } \\
V_{\text {oe }}
\end{gathered}
\] & Volts Negative \(-V_{E E}\) & Operating mode & Single-ended midband voltage
\[
\operatorname{gain}-d B
\]
\[
\boldsymbol{G}_{v_{s}}
\] & DC output volts (Terminal 8 or 10 to ground) \(V_{\text {ode }}\) & Positive voltage swing \(V_{o_{\text {max }}}{ }^{*}\) & Negative voltage swing \(V_{o_{\text {min }}}\) * & Total power dissipation \(-m W\) \\
\hline 6 & -6 & A & 31.2 & +2.3 & \(+3.7\) & -3.8 & 40 \\
\hline 6 & -6 & B & 27.3 & +4.3 & +1.7 & -5.7 & 36 \\
\hline 6 & -6 & C & 34.6 & \[
\frac{-1.5}{\text { (saturated) }}
\] & +7.5 & 0 & 61 \\
\hline 6 & -6 & D & 32.4 & +1.0 & +5.0 & -2.4 & 47 \\
\hline 3.7 & -6 & A & 31.2 & 0 & +3.7 & -1.4 & 33 \\
\hline 1.7 & -6 & B & 27.3 & 0 & +1.7 & -1.4 & 25 \\
\hline \[
10.6
\] & -6 & C & 34.6 & 0 & +10.6 & -1.5 & 83 \\
\hline (over rating) & -6 & D & 32.4 & 0 & +10.6
+5.0 & -1.5 & 43 \\
\hline 3 & -3 & A & 27.5 & +1.2 & +1.8 & -2.6 & 8.8 \\
\hline 3 & -3 & B & 16.6 & +2.6 & +0.4 & -4.1 & 7.4 \\
\hline 3 & -3 & C & 32.6 & \[
\begin{gathered}
-1.5 \\
\text { (saturated) }
\end{gathered}
\] & +4.5 & 0 & 14 \\
\hline 3 & -3 & D & 24.4 & +1.9 & +1.1 & -3.3 & 8.5 \\
\hline 1.8 & -3 & A & 27.5 & 0 & +1.8 & -1.5 & 7.2 \\
\hline 0.4 & -3 & B & 16.6 & 0 & +0.4 & -1.5 & 8.4 \\
\hline 5.3 & -3 & C & 32.6 & 0 & +5.3 & -1.5 & 19 \\
\hline 1.1 & -3 & D & 24.4 & 0 & +1.1 & -2.6 & 6.2 \\
\hline
\end{tabular}

Fig. 2 - Typical biasing arrangements for the CA3000 for operation from (a) two separate voltage supplies, or (b) a single voltage supply.
supply of 12 volts dc for operating mode A can be obtained from the conditions shown in the table for mode \(A\) for \(V_{\mathrm{cc}}=6 \mathrm{Vdc}\) and \(\mathrm{V}_{\mathrm{re}}=-6 \mathrm{Vdc}\) by the addition of 6 volts to the values shown for \(\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{fe}}, \mathrm{Vo}_{\mathrm{dc}}, \mathrm{Vo}_{\text {max }}\), and \(\mathrm{Vo}_{\mathrm{m} \text { in }}\). (It should be noted that the required voltage levels at the-
input terminals 1 and 6 and at terminal 2 are also 6 volts higher.
As mentioned previously, the four operating modes exhibit different temperature characteristics. Fig. 3 shows theoretical curves of dc output voltage as a function of

Fig. 3 - Theoretical curves of dc output voltage as a function of temperature for negative-supply voltages of -3 and -6 volts dc (calculated for \(\beta=35\) at \(20^{\circ} \mathrm{C}\)).

Fig. 4 - Measured curves of dc output voltage as a function of temperature for negative-supply voltages of -3 and -6 volts de.

Fig. 5 - Theoretical curves of gain as a function of temperature for negative-supply voltages of -3 and -6 volts de (calculated for \(\beta=35\) at \(20^{\circ} \mathrm{C}\)).
temperature for each operating mode for negative supply voltages \(\mathrm{V}_{\text {er }}\) of -3 and -6 volts dc. The experimental curves shown in Fig. 4 are in excellent agreement with the theoretical curves except in the case of mode C. In this mode, the differential-pair transistors \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{4}\) were driven into saturation as a result of the use of symmetrical supplies (\(\mathrm{V}_{\mathrm{cC}}=\mathrm{V}_{\mathrm{fE}}\)) for the experimental data. The discrepancy could be corrected by use of somewhat higher values of positive supply voltage.

Fig. 5 shows theoretical curves of gain as a function of temperature for the four operating modes with \(\mathrm{V}_{\mathrm{EE}}\) values of -3 and -6 volts dc. With the diodes in (modes \(A\) and C), the gain decreases for both values of \(\mathrm{V}_{\mathrm{EE}}\). With the diodes out (modes B and D), on the other hand, the gain increases with temperature for a negative supply of -3 volts dc, but decreases with temperature for a negative supply of -6 volts dc. With the diodes out, there is a value of negative supply (approximately -4.5 volts dc) for which the gain is independent of temperature. Fig. 6 shows measured values of single-ended and push-pull gain for mode A with symmetrical power supplies of \(\pm 6\) volts dc. (This configuration is used in the remaining discussion because it provides the maximum sinusoidal output capability, as shown in Table II, and because of the convenience of \(\pm 6\) volt dc supplies.)

The typical single-ended voltage-gain/frequency-response curve of the CA 3000 for dc supplies of \(\pm 6\) volts in operating mode A is shown in Fig. 7, together with the test circuit used for voltage-gain measurements. The Bode responses of the CA 3000 are virtually independent of source impedance up to 10,000 ohms because of the emitter-follower inputs. The curves in Fig. 8 show that gain and bandwidth are virtually independent of temperature for operation in mode \(A\) with \(\pm 6\)-volt dc supplies.

Fig. 6 - Measured values of single-ended and push-pull gain for mode A operation with symmetrical power supplies of \(\pm 6\) volts dc.

Fig. 7 - Single-ended voltage gain of CA3000 as a function of frequency in test circuit shown.

Fig. 8 - Normalized gain-frequency curves for CA3000 at three different temperatures.

Fig. 9 shows agc characteristics for the CA3000 for an input frequency of 1 kHz , together with the agc voltagegain test circuit. When the agc voltage at terminal 2 is varied from 0 to -6 volts, the amplifier gain can be varied over a range of 90 dB .

Fig. 10 shows the test circuit used to measure commonmode rejection, together with curves of common-mode rejection as a function of frequency and temperature. Typical
rejection is 97 dB at a frequency of 1 kHz . Fig. 11 shows the test circuit used to measure the dc unbalance of the amplifier (referred to the input), together with a curve of the input offset voltage as a function of temperature. Typical input offset voltage (with an assumed push-pull differential gain of 37 dB) is 1.5 millivolts. Fig. 12 shows curves of input bias current, input impedance, and dynamic output voltage as functions of temperature.

Fig. 9 - AGC characteristics of CA3000 in test circuit shown at frequency of 1 kHz .

Fig. 10 - Common-mode rejection of CA3000 as a function of frequency and of temperature in test circuit shown.

92Cs-13595
Fig. 11 - Input offset voltage of CA3000 as a function of temperature in test circuit shown.

Fig. 12 - Input bias current, input impedance, and dynamic output voltage of CA3000 as functions of temperature.

\section*{APPLICATIONS}

Crystal Oscillator-The CA3000 can be used as a crystal oscillator at frequencies up to 1 MHz by connection of a crystal between terminals 8 and 1 and use of two external resistors, as shown in Fig. 13(a). The output is taken from the collector that is not connected to the crystal (in this case, terminal 10). If a variable-feedback ratio network is used, as shown in Fig. 13(b), the feedback may be adjusted to provide a sinusoidal oscillation. Output waveforms for both circuits are also shown. The frequency in each circuit is 455 kHz , as determined by the crystal. The range of these crystal oscillators can be extended to frequencies of 10 MHz or more by use of collector tuning.

Modulated Oscillator-If a low-frequency signal is connected to terminal 2, as shown in Fig. 14, the CA3000 can function as an oscillator and produce an amplitude-modulating signal. The waveform in Fig. 14 shows the modulated signal output produced by the modulated oscillator circuit when a \(1-\mathrm{kHz}\) signal is introduced at terminal 2 and a high-pass filter is used as the output.

Low-Frequency Mixer-In a configuration similar to that used in modulated-oscillator applications, the CA3000 amplifier may be used as a mixer by connection of a carrier signal at the base input of either differential-pair transistor (terminal 1 or 6) and connection of a modulating signal to terminal 2 or 5 .

Fig. 13 - Schematic diagrams and output waveforms of (a) crystal oscillator and (b) crystal oscillator with variable feedback.

Fig. 14 - Schematic diagram and output waveform of CA3000 modulated oscillator.

Cascaded RC-Coupled Feedback Amplifier-The twostage feedback cascade amplifier shown in Fig. 15 produces a typical open-loop midband gain of 63 dB . This circuit uses a 100 -picofarad capacitor \(C_{1}\) to shunt the differential outputs of the first stage. This capacitor staggers the highfrequency roll-offs of the amplifier and thus improves stability.
The gain-frequency characteristic of the feedback amplifier is shown in Fig. 16(a) for a feedback resistance \(\mathbf{R}_{\mathrm{t}}\) approaching infinity. The low-end roll-off of the amplifier is determined by the interstage coupling. Because agc may
be applied to the first stage, the amplifier of Fig. 15 may be used in high-gain video-agc applications under open-loop conditions. If feedback is used to control the gain, agc may still be applied successfully.

Fig. 16(b) shows the age characteristics for the two-stage amplifier under open-loop and two closed-loop conditions at a frequency of 1 kHz . As shown in Fig. 16(a), the openloop bandpass is 18 Hz to 135 kHz ; under closed-loop conditions, the bandpass is 1.3 Hz to 2 MHz for \(40-\mathrm{dB}\) gain and 0.13 Hz to 6.6 MHz for \(20-\mathrm{dB}\) gain. The negative feedback thus improves low-frequency performance suffi-

Fig. 15 - Cascaded RC-coupled feedback amplifier using two CA3000 circuits.
ciently so that the use of small coupling capacitors \(\mathrm{C}_{2}\) and \(C_{3}\) involves little sacrifice in low-frequency response. If three or more CA3000 amplifiers are cascaded, the low-frequency roll-offs must be staggered as well as those at the high end to prevent oscillation. A three-stage cascade has a midband gain of approximately 94 dB .

Narrow-Band Tuned Amplifier-Because of its high input and output impedances, the CA3000 is suitable for use in parallel tuned-input and tuned-output applications. There is comparative freedom in selection of circuit \(Q\) because the differential amplifier exhibits inherently low feedback qualities provided the following conditions are met: (1) the collector of the driven transistor is returned to ac ground and the output is taken from the non-driven side, and (2)
the input is adequately shielded from the output by a ground plane.

The CA3000 has an output capacitance of approximately 9 picofarads at a frequency of 10 MHz . This capacitance

(b)
(a)

Fig. 16 - (a) Gain-frequency and (b) agc characteristics of feedback amplifier shown in Fig. 15.
will resonate a 28 microhenry coil at this frequency and give a minimum Q of 4.55 when the collector load resistor is the only significant load. With this low Q , stagger tuning may be unnecessary for many broad-band applications.

Fig. 17 shows the CA3000 in a narrow-band, tunedinput, tuned-output configuration for operation at 10 MHz with an input \(Q\) of 26 and an output \(Q\) of 25 ; the response curve of the amplifier is also shown. The \(10-\mathrm{MHz}\) voltage gain is 29.6 dB , and the total effective circuit Q is 37 . There is very little feedback skew in the response curve. The CA3000 can be used in tuned-amplifier applications at frequencies up to the \(30-\mathrm{MHz}\) range.

Fig. 17 - Schematic diagram and response curve for \(10-\mathrm{MHz}\) tuned-input, tuned-output, narrow-band amplifier using CA3000.

Schmitt Trigger-The CA3000 can be operated as an accurate, predictable Schmitt trigger provided saturation of either side of the differential amplifier is prevented (hysteresis is less predictable if saturation occurs). Non-saturating operation is accomplished by operation in mode B

Fig. 18 - Schematic diagram for Schmitt trigger using CA3000.
(terminals 3 and 5 shorted together) in the configuration shown in Fig. 18. Large values are required for external resistors \(\mathbf{R}_{1}\) and \(\mathbf{R}_{2}\) because they receive the total collector current from terminal 10 . Because of the high impedances, resistor \(\mathbf{R}_{2}\) is actually a parallel combination of the input impedance (approximately 0.1 megohm) of the CA3000 and the 0.25 -megohm external resistor. The Schmitt-trigger design equations (for \(\alpha=1\)) are summarized below. In these equations, \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{4}\) are the differential-pair transistors, \(\mathrm{Q}_{1}\) and \(Q_{\text {: }}\) are the emitter-follower transistors, and \(Q_{3}\) is the constant-current sink.

STATE I: \(\mathrm{Q}_{2}\) off, \(\mathrm{Q}_{4}\) conducting (not saturated)
\[
V_{\mathrm{C}_{1}}=\frac{\mathrm{V}_{\mathrm{CC}}\left(\mathbf{R}_{2}\right)-\mathrm{V}_{\mathrm{ER}}\left(\mathbf{R}_{1}+8000\right)}{\mathbf{R}_{1}+R_{2}+8000}
\]
where 8000 ohms is the output impedance of \(Q_{1}\) (obtained from the published data). For \(\mathbf{R}_{1}=\) 27000 ohms and \(V_{c c}=V_{\text {ee }}=6 \mathrm{Vdc}\),
\(V_{e_{\mathrm{I}}}=\frac{6 \mathrm{~V}\left(\mathrm{R}_{2}\right)-6 \mathrm{~V}(35000)}{\mathrm{R}_{2}+35000}\)
\(R_{2}=\left(R_{1}+8000\right) \frac{V_{E E}+V_{0_{1}}}{V_{C C}-V_{\theta_{I}}}\)
\(R_{2}=(35000) \frac{6 V+V_{\theta_{\mathrm{I}}}}{6 \mathrm{~V}-V_{\mathrm{e}_{\mathrm{I}}}}\)
\(V_{\mathrm{S}_{\mathrm{I}}}=\mathrm{V}_{\mathrm{cc}}-\mathrm{I}_{\mathrm{E}}(8000)\)
where \(I_{E}=\) collector current of transistor \(\mathrm{Q}_{3}\) \(\approx 0.48\) milliampere in operating mode \(B\) with \(\mathrm{V}_{\mathrm{EE}}=-6\) volts dc.
\(\mathrm{V}_{\mathrm{B}_{\mathrm{I}}}=2.14 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{F}_{1}} \equiv\) Firing voltage for transition from state I to state II
\(\mathrm{V}_{\mathrm{F}_{\mathrm{I}}}=\mathrm{V}_{\mathrm{B}_{\mathrm{I}}}-0.053-100 \mathrm{I}_{\mathrm{E}}\) at \(25^{\circ} \mathrm{C}\)
\(\mathrm{V}_{\mathrm{F}_{\mathrm{I}}}=\mathrm{V}_{\mathrm{e}_{\mathrm{I}}}-0.101 \mathrm{~V}\) at \(25^{\circ} \mathrm{C}\)
STATE II: \(Q_{2}\) conducting (not saturated), \(Q_{4}\) off
\(\mathrm{V}_{\mathrm{B}_{\mathrm{II}}}=\mathrm{V}_{\mathrm{cc}}\)
\(\mathrm{V}_{\mathrm{s}_{\text {II }}}=6 \mathrm{~V}\)
\(V_{\mathrm{C}_{\text {II }}}=\frac{\left(\mathrm{V}_{\mathrm{cc}}-\mathrm{I}_{\mathrm{E}} 8000\right) \mathrm{R}_{2}-\mathrm{V}_{\mathrm{EE}}\left(\mathrm{R}_{1}+8000\right)}{\mathbf{R}_{1}+\mathrm{R}_{2}+8000}\)
\(V_{\theta_{\text {II }}}=\frac{2.14 \mathrm{~V}\left(\mathrm{R}_{2}\right)-6 \mathrm{~V}(35000)}{\mathrm{R}_{2}+35000}\)
\(\mathbf{V}_{\mathbf{r}_{\text {II }}} \equiv\) Firing voltage for transition from state II back to state I
\(\mathrm{V}_{\mathrm{F}_{\text {II }}}=\mathrm{V}_{\mathrm{V}_{\text {II }}}+0.053+100 \mathrm{I}_{\mathrm{E}}\) at \(25^{\circ} \mathrm{C}\)
\(\mathrm{V}_{\mathrm{r}_{\text {II }}}=\mathrm{V}_{\mathrm{e}_{\text {II }}}+0.101 \mathrm{~V}\) at \(25^{\circ} \mathrm{C}\)

\section*{HYSTERESIS VOLTAGE}
\(\mathbf{V}_{\mathbf{H Y s}}=\mathbf{V}_{\mathbf{F}_{\mathbf{I}}}-\mathbf{V}_{\mathbf{F}_{\mathbf{I I}}}\)
\[
=\frac{3.86 \mathrm{~V}\left(\mathbf{R}_{2}\right)}{\mathrm{R}_{2}+35000}-0.202 \mathrm{~V} \text { at } 25^{\circ} \mathrm{C}
\]

From the calculations for state I, it is evident that either \(\mathrm{V}_{\mathrm{t}_{\mathrm{I}}}\) or \(\mathrm{R}_{5}\) must be a known design value. Because \(\mathrm{R}_{\mathrm{E}}\) is a composite value, \(\mathrm{V}_{\mathrm{a}_{1}}\) is the more reasonable choice. The ability of these equations to predict the Schmitt-trigger performance is evidenced by the comparison of calculated and experimental data in Table III.

Table III - Comparison of Calculated and Experimental Data for Schmitt Trigger
\begin{tabular}{|c|c|c|c|}
\hline Condition & Parameter & Calculated & Experimental \\
\hline 1) \(\mathrm{V}_{\mathrm{B}_{\mathrm{I}}}=-2 \mathrm{~V}\) & \[
\begin{aligned}
& \mathbf{V}_{\mathbf{F}_{1}} \\
& \mathbf{V}_{\mathbf{F}_{\mathrm{II}}} \\
& \mathbf{V}_{\mathbf{H T}}
\end{aligned}
\] & \[
\begin{aligned}
& -2.1 \mathrm{~V} \\
& -3.19 \mathrm{~V} \\
& +1.09 \mathrm{~V}
\end{aligned}
\] & \\
\hline 2) \(\mathrm{V}_{\mathrm{HI}}=-1 \mathrm{~V}\) & \[
\begin{aligned}
& \mathbf{V}_{\mathbf{Y}_{1}} \\
& \mathbf{V}_{\mathbf{Y}_{\mathrm{II}}} \\
& \mathbf{V}_{\mathbf{H Y}}
\end{aligned}
\] & \[
\begin{aligned}
& -1.10 \mathrm{~V} \\
& -2.51 \mathrm{~V} \\
& +1.41 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& -1.0 \mathrm{~V} \\
& -2.45 \mathrm{~V} \\
& +1.4 \mathrm{~V}
\end{aligned}
\] \\
\hline 3) \(\mathrm{V}_{\mathrm{B}_{\mathrm{I}}}=0\) & \begin{tabular}{l}
\(V_{F_{1}}\) \\
\(V_{F_{\text {II }}}\) \\
\(V_{\text {Hys }}\)
\end{tabular} & \[
\begin{aligned}
& -0.101 \mathrm{~V} \\
& -1.83 \mathrm{~V} \\
& +1.73 \mathrm{~V}
\end{aligned}
\] & \[
\begin{array}{r}
0 \\
-1.8 \mathrm{~V} \\
+1.8 \mathrm{~V}
\end{array}
\] \\
\hline 4) \(\mathrm{V}_{\mathrm{e}_{\mathrm{I}}}=+1 \mathrm{~V}\) & \[
\begin{aligned}
& \mathbf{V}_{\mathbf{F}_{1}} \\
& \mathbf{V}_{\mathbf{F}_{11}} \\
& \mathbf{V}_{\mathbf{H Y N}}
\end{aligned}
\] & \[
\begin{aligned}
& +0.9 \mathrm{~V} \\
& -1.15 \mathrm{~V} \\
& +2.1 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +1.0 \mathrm{~V} \\
& -1.0 \mathrm{~V} \\
& +2.0 \mathrm{~V}
\end{aligned}
\] \\
\hline 5) \(\mathrm{V}_{\mathrm{i}_{\mathrm{I}}}=+2 \mathrm{~V}\) & \[
\begin{aligned}
& \mathbf{V}_{\mathbf{F}_{1}} \\
& \mathbf{V}_{\mathbf{F}_{1 I}} \\
& \mathbf{V}_{\mathbf{H Y S}}
\end{aligned}
\] & \[
\begin{aligned}
& +1.9 \mathrm{~V} \\
& -0.472 \mathrm{~V} \\
& +2.43 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +2.0 \mathrm{~V} \\
& -0.5 \mathrm{~V} \\
& +2.4 \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Linear Integrated Circuits \\ Application Note ICAN－5036}

\title{
Application of the RCA－CA3002 Integrated－Circuit IF Amplifier
}

\author{
BY \\ G．E．THERIAULT AND R．G．TIPPING
}

The RCA－CA3002 integrated－circuit if amplifier is a balanced differential amplifier that can be used with either a single－ended or a push－pull input and can provide either a direct－coupled or a capacitance－coupled single－ended out－ put．Its applications include RC－coupled if amplifiers that use the internal silicon output－coupling capacitor，video amplifiers that use an external coupling capacitor，envelope detectors，product detectors，and various trigger circuits．

The CA3002 features all－monolithic silicon epitaxial con－ struction designed for operation at ambient temperatures from -55 to \(125^{\circ} \mathrm{C}\) ，and contains a built－in temperature－ compensating network for stabilization of gain and dc operating point over this operating－temperature range．It is supplied in a 10 －terminal TO－5 low－silhouette package．
Because the CA3002 is a balanced differential amplifier fed from a constant－current source，it makes an excellent controlled－gain amplifier．The gain－control function may be extended to include video gating，squelching，and blank－ ing applications．Envelope detection can be achieved by suitable biasing of the emitter－base diode of the output emitter－follower transistor．Product detection can be ob－ tained by re－insertion of the carrier at the base of the constant－current－source transistor．Various trigger and wave－ form－generating circuits can also be achieved by the addi－ tion of suitable external components．

\section*{CIRCUIT DESCRIPTION AND OPERATING MODES}

Fig． 1 shows the circuit diagram and terminal connec－ tions for the CA3002 integrated circuit．The circuit is basically a single－stage differential amplifier（ \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{4}\) ） with input emitter－followers（ \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{5}\) ），a constant－current sink \(\left(Q_{3}\right)\) in the emitter－coupled leg，and an output emitter－ follower \(\left(\mathrm{Q}_{6}\right)\) ．A single－ended input is connected to terminal 10 or a push－pull input to terminals 10 and 5 ．A single－ended output is direct－coupled at erminal 8 or capacitance－coupled at terminal 6 ．Terminals ：and 10 must be provided with dc returns to ground through equal external base resistors．The emitters of the differential pair（ \(Q_{2}\) and \(Q_{4}\) ）are connected through degenerative resistors（ \(\mathbf{R}_{3}\) and \(\mathbf{R}_{4}\) ）to the transistor current source \(\left(Q_{3}\right)\) ．The use of these resistors improves the linearity of the transfer characteristic and increases the signal－handling capability．

Transistor \(Q_{1}\) provides a high input impedance for the if amplifier．Transistor \(Q_{5}\) preserves the circuit symmetry，and also partially bypasses the base of \(Q_{4}\) ．Additional bypassing can be obtained by connection of an external capacitor between terminal 5 and ground．The emitter－follower tran－ sistor \(\mathrm{Q}_{6}\) provides a direct－coupled output impedance of less than 100 ohms．

Fig. 1-Schematic diagram and terminal connections for the CA3002 integrated-circuit if amplifier.

When voltage supplies are connected to the CA3002, the most positive voltage must be connected to terminal 9 and the most negative voltage to terminal 2 (internally connected to the substrate and case). The CA3002 may be operated from various supplies and at various levels. Operation from either single or dual power supplies is feasible. When two supplies are used, they may be either symmetrical or non-symmetrical. When both positive and negative voltage supplies are used, external components can be minimized, as shown in Fig. 2(a). For single-supply applications, a resistor divider and a bypass capacitor must be added externally, as shown in Fig. 2(b). The current through \(\mathbf{R}_{2}\) and \(\mathbf{R}_{3}\) should be greater than one milliampere. Except in applications that use inductive drive, equal external base resistors must be added at terminals 5 and 10 to provide base-current returns. Terminal 7 can be connected to ground, or to the negative supply if a larger negative-going voltage swing is desired at any operating point.

For either single or dual supplies, the operating current in transistor \(\mathrm{Q}_{3}\) is determined by the bias voltage between terminals 1 and 2. The more negative point of this bias voltage must be connected to terminal 2 . For dual-supply systems, terminal 1 is usually referenced to ground.

For any given bias voltage (\(\mathrm{V}_{\mathrm{EE}}\) when terminal 1 is grounded), four operating modes are possible, as described in Table I. In general, each mode is characterized by (1) a distinct dc operating point with a characteristic temperature dependence, and (2) a particular value of gain that has a distinct temperature dependence.
When the diodes are utilized in the bias circuit (modes A and C), the current is essentially dependent on the temperature coefficient of the diffused emitter resistors \(R_{9}\) and \(R_{11}\), and has a tendency to decrease with increasing temperature at a rate independent of the negative supply voltage. The

Table I-Identification of CA3002 Operating Modes
\begin{tabular}{c}
\begin{tabular}{c}
Operating \\
Mode
\end{tabular} \\
\hline A \\
B \\
C \\
D
\end{tabular}
\begin{tabular}{c}
\begin{tabular}{c}
Shorted \\
Terminals
\end{tabular} \\
\hline none \\
\(4-2\) \\
\(3-2\) \\
\(4-3-2\)
\end{tabular}
\begin{tabular}{c}
Condition \\
of Diodes
\end{tabular}
in
out
in
out
\begin{tabular}{c}
\begin{tabular}{c}
\(Q_{0}\) Emitter \\
Resistor
\end{tabular} \\
\hline \(\mathbf{R}_{9}+\mathbf{R}_{11}\) \\
\(\mathbf{R}_{9}+\mathbf{R}_{11}\) \\
\(\mathbf{R}_{9}\) \\
\(\mathbf{R}_{9}\)
\end{tabular}
temperature coefficient of the diffused collector resistor \(\mathbf{R}_{1}\) is the same as that of the emitter resistor, and a constant collector-voltage operating point results at the collector of transistor \(Q_{\star}\). However, the operating point at output terminal 8 is modified by the base-emitter voltage drop of transistor \(\mathrm{Q}_{\mathrm{i}}\) and its temperature dependence. Typical variation of the output operating point with temperature is shown in Fig. 3 for the four operating modes for \(\mathrm{V}_{\text {se }}\) supplies of -3 and -6 volts. The voltage between terminals 8 and 9 is denoted by \(\mathrm{V}_{\mathrm{x}}\). In mode B (with the diodes out of the bias circuit), it should be noted that the output operating point is constant with temperature because the change in the collector operating point is cancelled by the change in the base-emitter voltage drop (\(\mathrm{V}_{\text {вг }}\)).
When the diodes are out of the bias circuit, the currenttemperature curves become dependent on the negative supply voltage. Therefore, the value of \(\mathrm{V}_{\mathrm{ri}}\) can be adjusted so that the transconductance decreases, increases, or remains constant with temperature. As shown in Fig. 4, the gain increases with temperature for a -3 -volt \(V_{\text {Fe }}\) supply, but decreases with increasing temperature for a -6 -volt \(V_{\text {fr }}\) supply. At some intermediate value of \(\mathrm{V}_{\text {fre }}\) (approximately -4.5 volts), the gain should be constant as a function of temperature. In any case, however, a constant ac gain with temperature is accompanied by a change in the collector operating point of transistor \(Q_{4}\).

Fig. 2-Circuit configurations for the CA3002 with (a) dual voltage supplies, and (b) a single supply.

Fig. 3-Output operating-point variation of the CA3002 (normalized to the \(25^{\circ} \mathrm{C}\) operating point) as a function of temperature with \(V_{E E}\) supply voltages of -3 and -6 volts.

Fig. 4-Voltage-gain variation of the CA3002 (normalized to the \(25^{\circ} \mathrm{C}\) voltage gain) as a function of temperature with \(V_{E E}\) supply voltages of -3 and -6 volts.

Table II lists typical design performance characteristics for the four operating modes of the CA3002. By use of the data in this table and in Figs. 3 and 4, it is possible to select the proper operating mode to provide the most transconductance per milliwatt of dissipation, the specified outputswing capability, and the desired temperature performance for a particular design requirement.

In operating mode C , a valid non-saturated operating point may be obtained by use of non-symmetrical voltage supplies. For example, when \(V_{\text {ee }}\) is -3 volts, the operating point will not be in saturation if a positive supply voltage of 4.5 volts or more is used (as indicated by Fig. 3). Resistor \(\mathrm{R}_{6}\) may then be returned to the negative supply instead of to ground to ensure the desired negative swings.

Table II-Typical Design Performance Characteristics for the Four Operating Modes of the CA3002 (Terminals 7 and 1 are grounded; temperature \(=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Mode & \[
\pm \text { Supply }
\] & Output Operating Point (Volts) at Terminal 8 to Ground & Voltage Gain (dB) at 1 MHz & \[
\begin{gathered}
+ \text { Supply } \\
\text { Current } \\
(m A) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { - Supply } \\
\text { Current } \\
(m A) \\
\hline
\end{gathered}
\] & Power Dissipation (mW) \\
\hline A & 6 & 2.6 & 26.4 & 5.0 & 4.2 & 55.2 \\
\hline B & 6 & 3.8 & 22.5 & 4.7 & 3.7 & 50.4 \\
\hline C & 6 & 0 & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{(transistor \(Q_{4}\) saturated, transistor \(Q_{6}\) cutoff) \({ }_{60}\)}} \\
\hline D & 6 & 1.8 & 25.4 & & & \\
\hline A & 4.5 & 2.0 & 24.0 & 3.6 & 3.0 & 29.7 \\
\hline B & 4.5 & 3.0 & 19.8 & 3.4 & 2.6 & 27.0 \\
\hline C & 4.5 & 0 & & \multicolumn{3}{|c|}{(\(\mathrm{Q}_{4}\) saturated, \(\mathrm{Q}_{6}\) cutoff)} \\
\hline D & 4.5 & 1.8 & 24.5 & 3.7 & 3.3 & 31.5 \\
\hline A & 3 & 1.1 & 22 & 2.3 & 2.0 & 12.9 \\
\hline B & 3 & 2.0 & 14.5 & 2.1 & 1.5 & 10.8 \\
\hline C & 3 & 0 & & (Q, satur & a cutoff) & \\
\hline D & 3 & 1.5 & 20 & 2.2 & 1.9 & 12.3 \\
\hline
\end{tabular}

\section*{CHARACTERISTICS}

Input Unbalance Current. The input unbalance current of the CA3002 is defined as the difference between the currents flowing into the base input terminals 10 and 5. Fig. 5 shows a curve of input unbalance current as a function of temperature. This unbalance current determines the maximum value of total effective external resistance that may be used in each base circuit (resistors \(\mathbf{R}_{1}\) in Fig. 2). A maximum value of 10,000 ohms is recommended for each base circuit. However, larger resistances may be accommodated if the resistors can be adjusted to maintain low input offset voltages, or if the operating points of \(Q_{1}\) and \(\mathrm{Q}_{5}\) are not in the linear region (as in trigger circuits).

Fig. 5-Input unbalance current of the CA3002 as a function of temperature.

Input Impedance. The input impedance is essentially a characteristic of the input emitter-followers, \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{5}\). Because these transistors are lightly loaded, they have parallel input impedances that are approximately 0.1 megohm at low frequencies and rise to infinity and become negative at a few megahertz. In most cases, these impedances are negligible in comparison with the impedances of external base resistors or inductors. The input capacitance is 3 to 5 picofarads.
The input impedance decreases with decreasing operating temperature. A typical low-frequency value of parallel input resistance is 55,000 ohms at \(-55^{\circ} \mathrm{C}\). If a resonant line or tuned circuit that has appreciable impedance in the vhf range is connected to either input terminal, a series parasitic resistor of 50 to 100 ohms should be placed in series with the input lead to prevent vhf oscillation.

Output Impedance. The output impedance is essentially that of the output emitter-follower \(Q_{i}\), and is a function of the current in \(\mathrm{Q}_{6}\). The current, in turn, is determined by the operating mode, the supply voltages, and the connection of resistor \(\mathrm{R}_{6}\) to ground or to terminal 2. In operating mode D with \(R_{6 i}\) returned to ground and \(\pm 6\)-volt supplies, the output resistance is approximately 80 ohms over most of the useful frequency range and rises to about 110 ohms (its highest value) at \(-55^{\circ} \mathrm{C}\).

Frequency Response. The mid-frequency voltage gain of the CA3002 if amplifier is essentially independent of absolute resistor values, but depends on the resistor ratios. Fig. 6

Fig. 6-Voltage-gain test circuit.
shows a test circuit used to measure the response characteristics of an iterative-coupled amplifier that uses an inputcoupling capacitor of 15 picofarads.

The response curves for several values of positive and negative supply voltage are shown in Fig. 7. The gain of the

Fig. 7-Effective single-stage response characteristics of iterative-coupled if amplifier. Curve D represents. operation with 0.01-microfarad capacitor connected at terminal 5 (not shown).
amplifier is reduced at low frequencies by the 15 -picofarad input-coupling capacitor and at high frequencies by the RC roll-off within the circuit. The addition of a 0.01 -microfarad bypass capacitor at terminal 5 improves both the highfrequency response and the mid-frequency gain by eliminating ac feedback from terminal 6 to terminal 5 .

If a wideband video response is desired, the 15 -picofarad internal silicon output-coupling capacitor of the CA3002 must be replaced with a larger external coupling capacitor connected to terminal 8 . The response curves for an itera-tive-coupled amplifier that uses 0.01 -microfarad inputcoupling and output-coupling capacitors are shown in Fig. 8.

Fig. 8-Effective single-stage response characteristics for if amplifier using 0.01-microfarad coupling capacitors. Curve
\(D\) represents operation with 0.01 -microfarad capacitor connected at terminal 5 (not shown).

The response of the amplifier is substantially extended at the low frequencies. If 1 -microfarad coupling capacitors are used, the low-frequ:ncy response can be extended below 100 Hz . Again, the addition of a 0.01 -microfarad capacitor at terminal 5 improves the high-frequency performance. A shield separating the external leads at terminals 5 and 6 also reduces the feedback and extends the response.

AGC. The voltage gain of the CA3002 can be controlled over a wide range by adjustment of a negative dc voltage applied at terminal 1. Fig. 9 shows the voltage gain at 1.75 MHz (measured in the test circuit of Fig. 6) as a function

Fig. 9-Voltage gain of the CA3002 as a function of negative dc supply voltage applied at terminal 1 (normalized to a gain of 26 dB).
of the dc voltage. When the gain is controlled in this manner, the CA3002 can be used as an if amplifier with a \(75-\mathrm{dB}\) agc range, or as a video gating, squelching, or blanking circuit with a similar range. The circuit function depends only on the manner in which the dc voltage applied to terminal 1 is controlled. The agc range is dependent on frequency, and decreases from 75 dB at 1 MHz to 60 dB at 25 MHz .

Third-Order Intermodulation Distortion. Fig. 10 shows the peak-to-peak input signal required to produce third-order intermodulation distortion of 3 per cent as a function of gain control for the CA3002 integrated circuit. The maximum tolerable signal input for 3-per-cent intermodulation dis-

Fig. 10-Third-order intermodulation-distortion characteristic as a function of agc.
tortion is relatively constant over the entire agc range, but increases dramatically as cutoff is attained. When the CA3002 is operated in mode A with supplies of \(\pm 6\) volts and an age of -30 dB , a peak-to-peak input signal in excess of 100 millivolts is typically required for 3-per-cent distortion.

Noise Figure. Because noise figure is an important design parameter for both video and if-amplifier applications, it was evaluated for the CA3002 over the frequency range of 1 kHz to 10 MHz . Fig. 11 shows noise performance as a function of frequency when a 1000 -ohm source is used. The noise figure is 4 dB over a large portion of the usable

Fig. 11-Noise figure of the CA3002 as a function of frequency.
range. The \(1 / \mathrm{f}\) noise corner occurs at approximately 15 kHz , and the high-frequency noise rise begins at approximately 4 MHz . Fig. 12 shows noise figure as a function of source resistance at 1.75 MHz . The typical noise figure is less than 4 dB . It is reasonably flat for source resistances from 500 to 2500 ohms, but rises rapidly at values below 500 ohms.

When external base-bias resistors are used, terminal 5 should be bypassed by an external capacitor for any stage
which low noise figure is required. If the base-bias resistors are not bypassed, the noise figure increases. In a
practical receiver, bypassing may be avoided if the input at terminal 10 is transformer driven (from a filter) and terminal 5 is grounded. In the later if stages, noise figure can usually be ignored.

Fig. 12-Noise figure of the CA3002 as a function of source resistance.

\section*{APPLICATIONS}

Four-Stage 1.75 MHz IF Amplifier. Effective if design for AM circuits requires consideration of both the signal level at the input stage (as a function of age range) and the acceptable signal-to-noise ratio at the output. The agc action must be initiated at the first stage at the proper voltage level to prevent excessive modulation distortion throughout the entire agc range. This input-signal voltage level is calculated to be approximately 25 millivolts rms for 100 -per-cent modulation at an allowable distortion of 10 per cent. Before the applied signal reaches 25 millivolts, the first stage must be gain controlled and completely cut off before gain control is applied to subsequent stages.

Fig. 13 shows a four-stage \(1.75-\mathrm{MHz}\) amplifier used to evaluate the performance of the CA3002 amplifier for AM

Fig.13-Four-stage 1.75-MHz if amplifier.
applications. A tuned circuit and a diode detector are connected to terminal 6 of the output stage to evaluate detected output and signal-to-noise ratio. The audio bandwidth of the detector output filter is 3 dB down at 4.2 kHz . The tuned circuit at the input is driven by a 50 -ohm generator and provides a \(1000-\mathrm{ohm}\) source to the circuit. The first stage is operated at reduced supply voltages (about \(\pm 3\) volts) to reduce the required age control voltage. This lower supply-voltage level ensures that a sufficient control voltage can be developed by a separate CA3002 unit used as an agc amplifier without introducing a separate supply voltage. An additional advantage of lower-voltage operation in the first stage is a reduction in noise figure.

If desired, the first-stage tuned circuit in Fig. 13 can be replaced by a crystal filter and a transformer. Because the CA3002 input impedance is high and does not vary appreciably with agc, no impedance variations are presented to the crystal filter.

The voltage gain realized from terminal 10 of the first stage to terminal 6 of the fourth stage is 85 dB , or approximately 21 dB per stage. From the 50 -ohm input, the typical voltage gain is 98 dB . Because the maximum signal-handling capability of the output stage is slightly greater than 0.7 volt rms, gain control should begin when this value is measured at terminal 6. The modulation distortion is acceptable over the entire \(60-\mathrm{dB}\) agc range. For input signals greater than 8 millivolts, modulation distortion begins to increase because of fourth-stage overload. Overloading can be prevented by application of a delayed gain control to the second stage. The signal-to-noise performance as a function of input signal is shown in Fig. 14.

Fig. 14-Output signal and noise of the amplifier shown in Fig. 13.
Envelope Detector. The CA3002 integrated circuit can be operated as an envelope detector in either of two ways, as shown in Fig. 15: (1) the emitter of the output transistor \(Q_{i}\) can be operated at zero voltage by connection of an external resistor in the bias loop of the constant-current transistor \(\mathrm{Q}_{3}\), or (2) the current in transistor \(\mathrm{Q}_{6}\) can be reduced by connection of a large resistor (12,000 to 18,000 ohms) in series with its emitter resistor.

In the circuit for method 1 , the current in the differential pair (\(Q_{2}\) and \(Q_{4}\) in Fig. 1) is increased to the point at which
the common-collector output transistor \(\mathbf{Q}_{6}\) is biased almost to cutoff. For this current increase, the constant-current transistor \(Q_{3}\) is operated with terminal 4 open, and the emitter resistor \(\mathbf{R}_{\text {, }}\) is shunt loaded by the external resistor at terminal 3. Envelope detection can be accomplished only in mode A with method 1.

Although the output transistor is nearly cut off, all the other active devices are operating in their linear regions.

Fig. 15-Envelope detectors using C A3002 integrated circuits.

For small ac signals, therefore, the circuit provides linear operation except for \(Q_{6}\), which is turned on only by a positive signal. The maximum acceptable input signal depends on the linear range of the differential amplifier. An external filter capacitor is connected between terminal 8 and ground to remove the rf signal from the detected audio output.
In the circuit diagram for method 2 shown in Fig. 15, a fixed value of resistance (15,000 ohms) is used to reduce the emitter current in the output transistor (\(\mathrm{Q}_{6}\)) to approximately 100 microamperes. This operating point provides the nonlinearity for detection in transistor \(\mathrm{Q}_{6}\). Again, the remainder of the circuit produces gain because it is operating linearly. As in the case of method 1, an external filter capacitor is connected between terminal 8 and ground to remove the rf signal from the detected audio output.

Fig. 16 shows the input-output characteristics of the envelope-detector circuits shown in Fig. 15. The usable range of input signals for distortion below 3 per cent is 10 to 100 millivolts (\(20-\mathrm{dB}\) range) for method 1 and 12 to 60 millivolts (\(14-\mathrm{dB}\) range) for method 2 . Automatic gain control of the if amplifier must maintain the input signals to the detector within this range.

Fig. 16-Input-output characteristics of the envelope detectors shown in Fig. 15.

Product Detector. A differential pair driven by a constantcurrent transistor can be used as a product detector if a suppressed-carrier signal is applied to the differential pair and the regenerated carrier is applied to the constant-current transistor. There are two requirements for linearity: (1) the circuit must be operated in a linear region, and (2) the current from the constant-current transistor must be linear with respect to the reinserted carrier voltage.
The CA3002 satisfies these requirements and can be used as a product detector in the circuit shown in Fig. 17. A double-sideband suppressed-carrier signal is applied at terminal 10 , and the \(1.7-\mathrm{MHz}\) carrier is applied to terminal 1 .

Fig. 17--Product detector circuit.

Because of the single-ended output, a high-frequency bypass capacitor (0.01 microfarad) is connected between terminal 8 and ground to provide filtering for the highfrequency components of the oscillator signal at the output.
When the amplitude of the suppressed-carrier signal and of the oscillator signal are varied, the gain and distortion characteristics shown in Table III are obtained. The conversion voltage gain is constant at input signals up to 16 millivolts and would be 6 dB less for a single-sideband signal than for the double-sideband signal. The distortion increases with increasing input signal; for distortion of less than 1 per cent, the input drive level does not exceed 8 millivolts. The gain maximizes for oscillator voltages of 1 to 2 volts, and the distortion characteristic is also best in this region. Distortion increases both at low oscillator drive levels (0.25 volt) and at high levels (3 volts).
Schmitt Trigger. Fig. 18 shows the use of the CA3002 as a Schmitt trigger. In this application, the input is applied to terminal 5 and both the output and the feedback are taken from the output emitter-follower at terminal 8. The emitterfollower output isolates the feedback loop from the differ-

Table III-Performance Data for CA3002 as Product Detector
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(v_{1}\) Double- & \(v_{2}\) Oscillator Voltage & \multirow[t]{3}{*}{\begin{tabular}{l}
\(v_{s}\) \\
Output at Terminal 8 at \(1 \mathrm{kc} / \mathrm{s}\) (\(m V\))
\end{tabular}} & \multirow[b]{3}{*}{Conversion Voltage Gain (dB)} & \multicolumn{4}{|l|}{dB down from Fundamental of Harmonics *} \\
\hline Sideband Voltage & \[
\begin{gathered}
a t \\
\text { Terminal } 1
\end{gathered}
\] & & & & & & \\
\hline (mV) & (V) & & & 2nd & 3rd & 4th & 5th \\
\hline 1 & 1.7 & 12.5 & 21.9 & 60 & & & \\
\hline 4 & 1.7 & 50 & 21.9 & 51 & 61 & & \\
\hline 8 & 1.7 & 100 & 21.9 & 46 & 56 & & \\
\hline 16 & 1.7 & 200 & 21.9 & 37 & 46 & & \\
\hline 32 & 1.7 & 310 & 19.8 & 32 & 30 & 51 & 64 \\
\hline 4 & 0.25 & 22 & 15.6 & 15 & 42 & 44 & \\
\hline 4 & 0.5 & 42 & 20.3 & 32 & 52 & & \\
\hline 4 & 1.0 & 60 & 23.5 & 45 & 60 & & \\
\hline 4 & 1.3 & 60 & 23.5 & 49 & 61 & & \\
\hline 4 & 1.7 & 50 & 21.9 & 51 & 61 & & \\
\hline 4 & 2.0 & 48 & 21.6 & 52 & 62 & & \\
\hline 4 & 2.5 & 31 & 17.8 & 49 & 60 & & \\
\hline 4 & 3.0 & 15 & 11.4 & 42 & 60 & & \\
\hline
\end{tabular}
ential pair and makes it possible for the circuit to drive low-impedance loads. An additional advantage is that neither half of the differential pair saturates as the resistance of the
feedback loop is varied. Fig. 18 also shows the output swing and associated hysteresis of the Schmitt trigger as a function of resistor R and the dc input voltage level at terminal 5 .

Fig. 18-Schmitt trigger circuit and output swing and associated hysteresis.

\title{
Application of the RCA－CA3007 Integrated－Circuit Audio Amplifier
}

\author{
by \\ R．G．TIPPING
}

The RCA－CA3007 audio driver is a balanced dif－ ferential configuration with either a single－ended or a differential input and two push－pull emitter－follower outputs．The circuit features all－monolithic silicon epitaxial construction，and is intended for use as a direct－coupled driver in a class B audio amplifier which exhibits both gain and operating－point stability over the temperature range from -55 to \(125^{\circ} \mathrm{C}\) ．Because of its circuit configuration（a balanced differential pair fed by a constant－current transistor），the CA3007 is an excel－ lent controlled－gain audio driver for systems requiring audio squelching．This circuit is also usable as a servo driver．The audio driver circuit is available in a \(12-\) terminal TO－5 low－silhouette package．

\section*{CIRCUIT DESCRIPTION}

Fig． 1 shows the schematic diagram and terminal connections for the CA3007 circuit．The input stage consists of a differential pair（ \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\) ）operating as a phase splitter with gain．The two output signals from the phase splitter，which are 180 degrees out of phase，
are direct－coupled through two emitter－followers（ \(\mathrm{Q}_{4}\) and \(Q_{5}\) ．The emitters of the differential pair are connected to the transistor constant－current sink Q \(_{3}\) ．

The diodes in the bias circuit of the transistor con－ stant－current sink make the emitter current of \(\mathrm{Q}_{3}\) essen－ tially dependent on the temperature coefficient of the diffused emitter resistor \(R_{3}\) ．Because the diffused collector resistors \(R_{15}\) and \(R_{16}\) should have identical temperature coefficients，constant collector－voltage operating points should result at the collectors of transistors \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\) ．However，the quiescent operating voltages at the output terminals 8 and 10 increase as temperature increases because the base－emitter voltage drops of transistors \(Q_{4}\) and \(Q_{5}\) decrease as temperature increases．This small variation in the output quiescent operating voltage is sufficient to cause a large variation in the standby current of a class B push－pull output stage when the audio driver and the output stage are direct－coupled．Resistors \(\mathrm{R}_{11}, \mathrm{R}_{12}, \mathrm{R}_{13}\) ，and \(\mathrm{R}_{17}\) and transistor \(Q_{6}\) form a dc feedback loop which stabilizes the quiescent operating voltage at output terminals 8

Fig. 1 . Schematic diagram and terminal connections for the CA3007 audio driver.
and 10 for both temperature and power-supply variations so that variations in the output operating points are negligible.

Resistors \(\mathrm{R}_{1}, \mathrm{R}_{7}, \mathrm{R}_{8}\), and \(\mathrm{R}_{14}\) form the input circuit; a double-ended input is applied to terminals 1 and 5 , and a single-ended input is applied to either terminal 1 or terminal 5 , with the other terminal returned
to ground. The CA3007 must be ac-coupled to the input source. In addition, any dc resistance between terminal 1 and ground should be added between terminal 5 and ground. Output power-gain stabilization for a directcoupled driver and output stage is accomplished by means of an ac feedback loop that connects terminals 7 and 11 to the proper emitters of the push-pull output stage, as shown in Fig.2.

Fig. 2 - CA3007 used as an audio driver for a direct-coupled 300-milliwatt audio amplifier.

Connection of voltage supplies to the CA3007 audio driver requires that the most positive voltage be connected to terminal 9 and the most negative voltage to terminal 3 (internally connected to the substrate and the case). The CA3007 may be operated from various supplies and at various levels. Operation from either a single supply (as shown in Fig.3) or from dual power supplies (as shown in Fig.2) is feasible. For dualsupply operation, symmetrical supplies must be used if the audio driver is to be direct-coupled to the audio output stage. For single-supply operation, the audio driver must be ac-coupled to the audio output stage, and the number of external components required increases.

The external resistor \(R\) connected between terminals 3 and 4 is used to set the class \(B\) output-stage standby current as required for a particular application. If the standby current is too low, crossover distortion will result; if it is too high, standby power drain will be excessive. Decreasing the value of resistor \(R\) reduces the standby current; for a standby current of 10 milliamperes, R is typically 10,000 ohms.

Terminal 2 must be grounded or, if an audio squelch is desired, must be connected to a positive voltage supply of 5 volts minimum. When terminal 2 is near ground, the audio amplifier functions normally. When

Fig. 3 - CA3007 used as an audio driver for a 30-milliwatt audio amplifier.

For operation from either single or dual supplies, the operating current is transistor \(Q_{3}\) is determined by the bias voltage between terminals 2 and 3 . The more negative terminal of this bias voltage must be connected to terminal 3. For dual-supply systems, terminal 2 is either grounded or connected to a trigger circuit for audio-squelching purposes.

\section*{APPLICATIONS}

Dual-Supply Audio Driver in a Direct-Coupled Audio Amplifier. Fig. 2 shows the CA3007 used as a dualsupply audio driver in a direct-coupled audio amplifier. This amplifier provides a power output of 300 milliwatts for an audio input of 0.3 volt rms \(\left(\mathrm{V}_{\mathrm{cc}}=6\right.\) volts, \(\mathrm{V}_{\mathrm{EE}}=\) -6 volts, \(V=30\) volts). For a voltage \(V\) of 6 volts, the output power is 10 milliwatts without transformer optimization; the use of a lower-impedance transformer would permit power outputs in the order of 100 milliwatts.
terminal 2 is at 5 volts, the differential pair of the audio driver saturates, and the push-pull output stage is cut off. The squelch source must be capable of supplying a current of 1.5 milliamperes in the 5 -volt condition, and 0.75 milliampere in the near-ground condition.

For a symmetrical audio driver, there is no ac signal present at the base of transistor \(Q_{6}\). However, unbalances between the two halves of the circuit may require that the base of \(Q_{6}\) be bypassed for proper operation. The base of \(Q_{6}\) may be bypassed by connection of an external capacitor (typically 50 microfarads, 6 volts) from terminal 12 to ground. Bypassing is usually not required unless high undistorted power outputs are required over the complete temperature range of -55 to \(125^{\circ} \mathrm{C}\).

Table I shows values of harmonic distortion and intermodulation distortion for the amplifier of Fig.2.

Table I-Distortion Measurements for Direct-Coupled Amplifier Shown in Fig. 2

\section*{HARMONIC DISTORTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Power Output (mW)} & \multicolumn{6}{|c|}{Output-Signal Level (mVrms)
with \(2-\mathrm{kHz}\) Input Signal} & \multirow[t]{2}{*}{Harmonic Distortion (\%)} \\
\hline & 2 kHz & 4 kHz & 6 kHz & \(\underline{8 \mathrm{kHz}}\) & \(\underline{10 \mathrm{kHz}}\) & \(\underline{12 \mathrm{kHz}}\) & \\
\hline 62.5 & 1000 & 9 & 3.0 & - & - & - & 0.95 \\
\hline 140 & 1500 & 18 & 4.0 & 2.0 & 1.4 & 1.0 & 1.24 \\
\hline 250 & 2000 & 25 & 4.2 & 5.0 & 1.0 & 1.5 & 1.30 \\
\hline 330 & 2300 & 27 & 6.0 & 9.0 & 3.0 & 2.0 & 1.27 \\
\hline
\end{tabular}

\section*{INTERMODULATION DISTORTION}
```

Output-Signal Level:
at f
at f}\mp@subsup{f}{2}{(3 kHz) ............................................... }1000\textrm{mV rms
at 2f 2-f
3rd-Order IMD ................................................ 0.07

```

Single-Supply Audio Driver in a Capacitor-Coupled Audio Amplifier. Fig. 3 shows the CA3007 used as a single-supply audio driver in a capacitor-coupled audio amplifier. This amplifier provides a power output of 30 milliwatts for an audio input of 6.5 millivolts rms (\(\mathrm{V}_{\mathrm{CC}}=9\) volts) with the transformer shown.

The connection shown in Fig. 3 still represents a differential-pair phase splitter fed from a constant-current transistor. The two output signals from the phase splitter are direct-coupled through two emitter-followers which are capacitor-coupled to the push-pull output stage. Because of the ac coupling, there is no longer
a dc dependence between the driver and the output stage, and any desired audio output design or drive source may be used. As a single stage, the CA3007 audio driver provides a voltage gain of 24 dB for a dc power dissipation of 20 milliwatts with the harmonic distortion reaching 3 per cent for outputs of 0.6 volt rms at terminals 8 and 10 (without feedback).

Both dc and ac feedback loops are eliminated in the circuit of Fig.3. Although the dc feedback loop is no longer required bacause of the ac coupling, removal of the ac feedback loop causes the output power gain to decrease about 1 dB for a \(50^{\circ} \mathrm{C}\) rise in temperature.

\title{
Application of the RCA-CA3001 Integrated-Circuit Video Amplifier
}

\section*{BY}

\author{
G. E. THERIAULT
}

The CA3001 silicon monolithic integrated circuit is designed for use in intermediate-frequency or video amplifiers at frequencies up to 20 MHz and in Schmitt-trigger applications. This integrated circuit can be gated, and gain control can be applied. The CA3001 incorporates the following primary features: (a) all-monolithic silicon epitaxial construction designed for operation at ambient temperatures from -55 to \(125^{\circ} \mathrm{C}\); (b) balanced differentialamplifier configuration with low-impedance double-ended input; (c) built-in temperature-compensating network for gain or dc operating-point stability sver the temperature range from -55 to \(125^{\circ} \mathrm{C}\). This integrated-circuit amplifier is available in a 12 -pin TO-5 low-silhouette package.

\section*{CIRCUIT DESCRIPTION}

Fig. 1 shows the schematic diagram and terminal connections for the CA3001 amplifier. The circuit consists of a differential pair \(Q_{3}\) and \(Q_{5}\), the current of which is controlled by a constant-current transistor \(\mathrm{Q}_{4}\). Transistors \(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{6}\), and \(Q_{7}\) are operated in the common-collector configuration to provide a high-impedance input and low-impedance output. Thus, the CA3001 provides double-ended input and output, and can be iteratively connected with low-value
coupling capacitors. The high-frequency response of the circuit is determined primarily by the resistance and capacitance in the collectors of the differential pair \(Q_{3}\) and \(Q_{5}\).

\section*{BIASING}

When voltage supplies are connected to the CA3001, the most positive voltage must be connected to terminal 9 and the most negative voltage to terminal 3 (internally connected to the substrate and the case). For typical operation, terminals 2 and 10 are returned to ground. If desired, however, automatic gain control can be applied to terminal 2, and terminal 10 can be connected to the negative supply to permit larger negative-going output swings in the output transistors.

The CA3001 may be operated with various supplies and at various levels. Operation from either a single supply or dual supplies is feasible, as shown in Fig. 2. When dual supplies are used, they may be either symmetrical or nonsymmetrical. The use of separate positive and negative supplies minimizes the need for external components, as shown in Fig. 2(a). For single-supply applications, a resistor divider and a bypass capacitor must be added, as shown in Fig. 2(b).

Fig. 1 - Schematic diagram and terminal connections for the CA3001 video amplifier.

When dual supplies are used, the inputs (terminals 1 and 6) are referenced to ground through equal external resistors (the maximum recommended value of \(\mathbf{R}\) is 3300 ohms for linear operation). The current through the resistor divider \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) should be greater than 1.5 milliamperes. For either single or dual supplies, the operating current in transistor \(\mathbf{Q}_{4}\) is determined by the operating mode. For any given bias voltage, four operating modes are possible, as described in Table I. Each mode is characterized by a distinct operating current and a corresponding voltage gain, both of which have a particular temperature dependence.

Table I-Four Possible Operating Modes for CA3001 Amplifier
\begin{tabular}{ccccc}
\begin{tabular}{c}
Operating \\
Mode
\end{tabular} & & \begin{tabular}{c}
Shorted \\
Terminals
\end{tabular} & & \begin{tabular}{c}
Condition \\
of Diodes
\end{tabular}
\end{tabular}

Table II shows typical design performance characteristics for the four operating modes of the CA3001 at room temperature. The output operating point and voltage gain of the circuit are reasonably independent of resistor value, but the

Fig. 2 - Circuit connections for the CA3001 for (a) separate positive and negative voltage supplies, and (b) a single supply.

Table II-Typical Design Performance Characteristics for the CA3001 Amplifier (terminals 2, 10, 6, and 1 referenced to ground)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Operating Mode & Supplies
\[
(\pm V)
\] & Output Operating Volts (Terminals 8 and 11 To Ground) & Positive Supply Current (\(m A\)) & Negative Supply Current (\(m A\)) & Power Dissipation (mW) & \begin{tabular}{l}
SingleEnded Voltage Gain at 1 MHz \\
(dB)
\end{tabular} \\
\hline A & 6 & 4.3 & 8.4 & -4.7 & 79 & 15.5 \\
\hline B & 6 & 4.8 & 7.8 & -3.9 & 70 & 12.7 \\
\hline C & 6 & 2.8 & 9.9 & -7.9 & 106 & 17.8 \\
\hline D & 6 & 4.1 & 8.7 & -5.5 & 85 & 16.4 \\
\hline A & 4.5 & 3.0 & 6.0 & -3.4 & 43.6 & 14.6 \\
\hline B & 4.5 & 3.4 & 5.6 & -2.7 & 37.6 & 10.0 \\
\hline C & 4.5 & 2.0 & 7.2 & -5.8 & 58.4 & 17.7 \\
\hline D & 4.5 & 2.9 & 6.0 & -3.7 & 43.6 & 15.5 \\
\hline A & 3 & 1.8 & 3.7 & -3.9 & 22.6 & 13.0 \\
\hline B & 3 & 2.1 & 3.3 & -1.4 & 14.3 & 3.8 \\
\hline C & 3 & 1.0 & 4.4 & -3.7 & 25.5 & 16.4 \\
\hline D & 3 & 2.0 & 2.4 & -1.9 & 13.0 & 10.8 \\
\hline
\end{tabular}
current and power dissipation may vary with resistor values. Figs. 3 and 4 show theoretical curves of output operating point and power gain, respectively, as functions of temperature for nominal resistor values with supply voltage \(\mathrm{V}_{\mathrm{fr}}\) of -3 and -6 volts dc. The voltage between terminals 8 and 9 or terminals 11 and 9 is denoted by \(V_{x}\). Because the variation of voltage gain and operating point with temperature is small for all operating modes, the choice of mode depends on application requirements. With a supply voltage \(\mathrm{V}_{\mathrm{EE}}\) of -4.5 volts, voltage-gain variation is normally less than 0.5 dB for all operating modes over the temperature range of -55 to \(125^{\circ} \mathrm{C}\).

Fig. 3 - Output operating point of the CA3001 (normalized to the \(25^{\circ} \mathrm{C}\) operating point) as a function of temperature for \(V_{E E}\) supplies of -3 and -6 volts dc.

\section*{CHARACTERISTICS}

Frequency Response. When the CA3001 video amplifier is used in cascade, its high-frequency response is determined primarily by the RC roll-off at the collectors of the differential pair \(Q_{3}\) and \(Q_{5}\). The generator source resistance may affect high-frequency bandwidth; for full bandwidth capability, the parallel combination of source resistance and base-bias resistance should not exceed 800 ohms. The lowfrequency response is determined by the coupling capacitor and the base-bias resistance value.

Fig. 4 - Voltage gain of the CA3001 (normalized to the \(25^{\circ} \mathrm{C}\) gain) as a function of temperature for VEE supplies of -3 and -6 volts dc.

Fig. 5 shows the circuit used for evaluation of frequency response of the CA3001, together with the response characteristics obtained. The circuit is operated in mode \(C\) with supplies of \(\pm 6\) volts. The 50 -ohm generator simulates the frequency and gain behavior for iterative operation. The curves of Fig. 5 show the measured response characteristics with terminal 6 bypassed and unbypassed. When terminal 6 is bypassed, the voltage gain is down 3 dB at 16 MHz ,

Fig. 5 - Frequency response of the CA3001 as a function of capacitor \(C_{1}\) in the test circuit shown with terminal 6 bypassed and unbypassed.
and is greater than 10 dB through 30 MHz . When the nondriven input (terminal 6 in the circuit shown) is not bypassed, the gain decreases more rapidly as a result of the feedback capacitance between terminals 7 and 6. This feedback can be minimized by use of short leads and inter-terminal shielding. A shielding method is to ground terminal 7.

The high-frequency roll-off of the CA3001 is a function of the values of resistors \(R_{1}\) and \(R_{2}\) in Fig. 1 and their variation with temperature. Fig. 6 shows the effect of temperature on high-frequency response. The variation in response can be accounted for by the resistance variation with temperature; capacitance variations with temperature are a secondary effect.

The internal capacitors provided at the outputs of the CA3001 (\(C_{1}\) and \(C_{2}\) in Fig. 1) can be used for coupling circuits in cascade for narrow-band applications. Because

Fig. 6 - High-frequency 3-dB bandwidth of the CA3001 as a function of temperature.
the value of these capacitors is small, the external base-bias resistors shown in Fig. 5 should be increased from 1000 to 3300 ohms to improve low-frequency response. Fig. 7 shows the response characteristics for a single stage in which the input is applied to terminal 1 from a 50 -ohm generator through a capacitor (equal in value to \(\mathrm{C}_{2}\) in Fig. 1), and the voltage gain is measured from the generator to output terminal 8. Because this arrangement simulates single-ended operation, the results can be applied directly to iterative operation.

The voltage division between the input capacitance and the coupling capacitor causes a reduction in voltage gain at all frequencies. The feedback capacitance from output to input also affects the gain performance, as shown in Fig. 7.

Fig. 7 - Response characteristics of a CA3001 amplifier with capacitor-coupled input.

Input and Output Impedance. Fig. 8 shows the parallel input resistance and capacitance of the CA3001 as a function of frequency. The input capacitance is constant until it begins to decrease at high frequencies. The input resistance decreases through the frequency range from 0.1 to 10 MHz . Because the input resistance is high in comparison with the external base-bias resistors used (3300 ohms maximum), the high-frequency response characteristic of the input is determined by the driving-source resistance, the base-bias resistors, and the parallel input capacitance.

\section*{Fig. 8 - Parallel input resistance and capacitance of the CA3001 as functions of frequency.}

The parallel output resistance of the CA3001 is low (approximately 70 ohms), and the output reactance is sufficiently high to provide little or no degradation of frequency response through the usable frequency range.

Noise Figure. Fig. 9(a) shows noise figure as a function of frequency for a 1000 -ohm source. The \(1 / \mathrm{f}\) noise corner oc-

Fig. 9 - Noise figure of the CA3001 as a function of frequency and source resistance.
curs at approximately 30 kHz ; above this frequency, the noise figure remains flat at approximately 5 dB to 6 MHz , and then begins to rise.

Fig. 9(b) shows noise figure as a function of source resistance for frequencies of 1.75 and 12 MHz . For stages in which noise performance is important, the source resistance should not be less than 500 ohms because of the rapid rise in noise figure at lower values. The noise figure of the CA3001 increases when non-driven basebias resistors are unbypassed. For stages in which noise performance is important, the external resistor on an input base that is not receiving a signal must be bypassed if minimum noise figure is to be achieved.
Gain Control. AGC can be applied to the CA3001 at terminal 2 for any of the four operating modes. Fig. 10 shows representative agc characteristics for modes \(C\) and \(D\) at a frequency of 1 MHz . The threshold voltage is higher in mode \(C\) than in mode \(D\) because of the difference in the base-bias circuit for the constant-current sink transistor \(\left(\mathrm{Q}_{4}\right)\).

Fig. 10 - AGC characteristics of the CA3001 in modes \(C\) and \(D\) at 1 megahertz.

The agc range is dependent on frequency. At high frequencies, because the feedthrough parameters are primarily capacitive, it should eventually decrease at a rate of approximately 20 dB per decade. The average measured agc range at 10 MHz is 62 dB , and is 15 dB less than that at 1 MHz .

Common-Mode Rejection. The common-mode rejection of a differential amplifier is defined as the ratio between the full differential gain and the common-mode gain. It is a useful performance characteristic, particularly at low
frequencies. Fig. 11(a) shows the common-mode rejection of the CA3001 as a function of temperature at a frequency of 1 kHz . The common-mode rejection increases with increasing temperature; a typical value at \(25^{\circ} \mathrm{C}\) is 70 dB .

Because the CA3001 can be used in many applications with a single-ended output at high frequencies, both the single-ended differential gain and the single-ended commonmode gain are of considerable interest. Fig. 11 (b) shows

both single-ended common-mode and differential-mode gain as functions of frequency. The common-mode gain is a function of the impedance ratio between the constantcurrent transistor \(\left(Q_{t}\right)\) and the load resistor in one side of the differential pair (\(\mathrm{Q}_{3}\) or \(\mathrm{Q}_{5}\)). The common-mode gain increases with increasing frequency.

The common-mode rejection is degraded if sufficient signal is applied to saturate the constant-current transistor \(\left(Q_{4}\right)\). The maximum peak-to-peak input voltage without degradation of common-mode rejection is a function of the voltage supplies and the operating mode of the constantcurrent transistor.

Harmonic Distortion and Swing Capability. When equal positive and negative supplies are used, operating mode \(\mathbf{C}\) provides the largest swing capability because the output operating point is approximately centered. With voltage supplies of \(\pm 6\) volts dc at a frequency of 1 MHz , the single-ended output is 1.3 volts rms for 3 -per-cent distortion in mode \(C\) and 0.665 volt rms in mode D .
The signal-swing capability was also evaluated as a function of temperature in mode \(C\) with voltage supplies of \(\pm 6\)
volts dc. For 3-per-cent distortion, an output swing of 1.2 volts rms can be obtained over the complete temperature range from 25 to \(125^{\circ} \mathrm{C}\).

For pulse-type signals, the total possible swing capability is important. The voltage at the collectors of the differential pair may rise to the positive supply voltage, \(\mathrm{V}_{\mathrm{cc}}\), and fall to the saturation level. If the bases of the input emitterfollowers are maintained at zero potential, the emitters of the differential pair are negative by twice the base-to-emitter

Fig.11-Common-mode rejection and voltage-gain characteristics of the CA3001 as a function of temperature and frequency.
voltage drop, \(\mathrm{V}_{\mathrm{BE}}\), or approximately -1.4 volts. If the saturation voltage is assumed to be 0.2 volt, the collectors drop to about -1.2 volts before saturation. Therefore, the total swing available at the collectors is approximately \(\mathrm{V}_{\mathrm{cc}}+1.2\) volts; for a \(\mathrm{V}_{\mathrm{cc}}\) of 6 volts, the swing is 7.2 volts. The output voltage swing is lower than this value by \(\mathrm{V}_{\mathrm{BE}}\), or from 5.3 to -2.0 volts. This total swing capability can be realized only when the resistors \(\mathbf{R}_{3}\) and \(\mathrm{R}_{8}\) (terminal 10) are returned to the negative supply voltage (terminal 10 shorted to terminal 3). Selection of the operating point to obtain most of the available total swing in one direction involves proper choice of the operating mode and the negative supply voltage.

\section*{APPLICATIONS}

Cascaded Stages. Over-all performance characteristics for three CA3001 stages operated in cascade are shown in Fig. 12. The need for supply decoupling is minimized by the symmetry of the circuit, which ensures equal and out-ofphase currents in the supply leads. Three circuits in close proximity can provide stable over-all gains of approximately 65 dB . A further advantage of the CA3001 in cascade is

Voltage Gain \(=20 \log \frac{V_{1} \text { OUT }}{V_{\text {IN }}}\)
Fig. 12 - Three-stage CA3001 cascade amplifier and frequency-response characteristics.
that a gain increase of 6 dB accrues each time a doubleended output is used.

Table III and Fig. 12 show the performance of the CA3001 in the three-stage cascade circuit for various values of supplies and coupling capacitors. The only advantage of
\(\pm 6\)-volt supplies as compared to \(\pm 4.5\)-volt supplies is a larger output-swing capability. The use of \(\pm 4.5\)-volt supplies entails no sacrifice in bandwidth and little gain loss, and provides a saving in power dissipation of almost 2 to 1 . Better signal-to-noise performance can be achieved

Table III—Performance of CA3001 Cascade Amplifier shown in Fig. 12
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Coupling Capacitor \\
Voltage Supplies
\end{tabular}} & \multicolumn{2}{|c|}{\(0.02 \mu F\)} & \multicolumn{2}{|c|}{100 pF} & \multirow[b]{2}{*}{\(V d c\)} \\
\hline & \(\pm 6\) & \(\pm 4.5\) & \(\pm 6\) & \(\pm 4.5\) & \\
\hline Power Dissipation & 276 & 146 & 276 & 146 & mW \\
\hline Single-Ended-Output Midband Gain & 64.5 & 63 & 60.5 & 57.5 & dB \\
\hline 3-dB Response \(\begin{gathered}\text { Upper } \\ \text { Lower }\end{gathered}\) & \[
\begin{array}{r}
9 \\
0.0125
\end{array}
\] & \[
\begin{array}{r}
9 \\
0.0125
\end{array}
\] & \[
\begin{array}{r}
10.5 \\
1.9
\end{array}
\] & \[
\begin{array}{r}
10.5 \\
1.9
\end{array}
\] & \[
\mathrm{MHz}
\]
\[
\mathrm{MHz}
\] \\
\hline AGC Range & 65 & 63 & 61 & 59 & dB \\
\hline Output Signal for 3-per-cent Distortion & 1.3 & 1.15 & 1.15 & 0.7 & Vrms \\
\hline Input Signal for 3-dB Signal-to-Noise Ratio & 26 & 14 & 20 & 18.5 & \(\mu \mathrm{Vrms}\) \\
\hline
\end{tabular}
with no change in bandwidth if a higher value of source resistor is used (e.g., 800 ohms, rather than the value of 50 ohms shown in Fig. 12). The age range of the cascaded circuits was 10 dB less than that for an individual circuit because no interstage shielding was provided and double-ended output was not used.

The CA3001 was also evaluated in a three-stage cascade arrangement in which the internal capacitors were used for coupling. The circuit diagram for this evaluation is shown in Fig. 13, and the measured characteristics are shown in Table IV and Fig. 13.

Schmitt Trigger. The CA3001 has an advantage in Schmitt-trigger applications because the emitter-follower outputs isolate the impedances of the feedback loop from the differential stage. These outputs are also capable of driving low-impedance loads. When symmetrical power supplies of up to \(\pm 6\) volts are used, the CA3001 operates without saturation of the basic differential pair \(\left(Q_{3}\right.\) and \(\left.Q_{5}\right)\). For each of the four operating modes, a complete offset at the input

Table IV—Performance of CA3001 Cascade Amplifier shown in Fig. 13
\begin{tabular}{lcc}
Operating Mode & C & \\
Voltage Supplies & \(\pm 6\) & Vdc \\
Power Dissipation & 276 & mW \\
\begin{tabular}{l}
Single-Ended-Output \\
Midband Gain
\end{tabular} & 51.5 & dB \\
3-dB Reponse Upper \\
\(\quad 11.3\) & MHz \\
\begin{tabular}{l}
Output Signal for 3-per-cent \\
Distortion
\end{tabular} & 1.8 & MHz \\
\begin{tabular}{l}
Input Signal for \\
3-dB Signal-to-Noise Ratio
\end{tabular} & 0.85 & Vrms \\
\end{tabular}
that causes all the sink-transistor current to pass through either \(Q_{3}\) or \(Q_{\text {, }}\) does not bring these transistors into saturation. As a result, uncertainties resulting in hysteresis prediction caused by storage time are eliminated.

Voltage Gain \(=20 \log \frac{V_{1 \text { OUT }}}{V_{\text {IN }}}\)
Fig. 13 - Three-stage CA3001 cascade amplifier using internal capacitors for coupling and frequency-response characteristics.

When the CA3001 is connected as a Schmitt trigger, as shown in Fig. 14, the firing points can be changed by adjustment of the resistor \(\mathbf{R}_{2}\). This resistor value effectively sets the voltage at the input terminal 6 and requires that the input firing voltage at terminal 1 approach this value to obtain trigger action. The hysteresis voltages obtained for various trigger levels in the circuit of Fig. 14 are shown in Table V.

Table V—Performance Data for CA3001 Used as a Schmitt Trigger
Input Firing Volts
Transition Transition
\begin{tabular}{|c|c|c|c|}
\hline Transition from State 1 to State 2 & Transition from State 2 to State 1 & Hysteresis Volts & \[
\begin{gathered}
R_{z} \\
\text { Approximate } \\
\text { Setting }
\end{gathered}
\] \\
\hline 3.0 & 1.5 & 1.5 & max. resistance \\
\hline 1.1 & 0.1 & 1.0 & \\
\hline -1.4 & -1.9 & 0.5 & \\
\hline -3.2 & -3.2 & 0 & \\
\hline
\end{tabular}

Fig. 14 - CA3001 Schmitt trigger.

\title{
Application of the RCA－CA3028A and CA3028B Integrated－Circuit RF Amplifiers in the HF and VHF Ranges
}

\author{
by
}

\author{
H．M．KLEINMAN
}

The CA3028A and CA3028B monolithic－silicon inte－ grated circuits are single－stage differential amplifiers． Each circuit also contains a constant－current transistor and suitable biasing resistors．The circuits are primarily intended for service in communications systems operating at frequencies up to 100 MHz with single power supplies． This Note provides technical data and recommended circuits for use of the CA3028A and CA3028B in the following applications：
－RF Amplifier
－Autodyne Converter
－IF Amplifier
－Limiter
In addition to the applications listed above，the CA3028A and CA3028B are suitable for use in a wide range of applications in dc，audio，and pulse ampli－ fier service；they have been used as sense amplifiers， preamplifiers for low－level transducers，and de differ－ ential amplifiers．The CA3028B，which features tight control of operating current，input offset voltage，and
input bias and offset current，is recommended for those applications in which balance and operating conditions are important．

Useful information concerning operation of the CA3028A and CA3028B in mixers，oscillators，balanced modulators，and similar circuits may be found in ICAN－ 5022，＂Application of the RCA CA3004，CA3005，and CA3006 Integrated－Circuit RF Amplifiers．＂Biasing considerations for the CA3028A and CA3028B differ from the types discussed in ICAN－5022；however，dy－ namic performance is quite similar to that of the CA3005 and CA3006．ICAN－5022 contains circuits that illus－ trate operation from dual supplies which，when available， can simplify the biasing of the CA3028A or CA3028B．

Both the CA3028A and CA3028B are supplied in an 8－terminal TO－5 package which assures minimum inter－ lead capacitance and consequently excellent stability in high－frequency circuits．The spacing of the leads on the hermetically sealed package permits installation of the integrated circuits on printed circuit boards by wave－ soldering techniques．

\section*{Circuit Description}

The circuit diagram and terminal connections for the CA3028A and CA3028B are shown in Fig.1. The circuit is basically a single-stage differential amplifier composed of transistors \(Q_{1}\) and \(Q_{2}\) driven from a con-stant-current source \(Q_{3}\). A single-ended input may be connected to terminal 1 or terminal 5 , or push-pull inputs to terminals 1 and 5 . Each of these terminals must be provided with a biasing network. Care must be taken to insure that the bias voltages on terminals 1 and 5 are nearly equal when balanced operation is desired. This can only be achieved in practice by using a single voltage divider as shown in Fig.2(a). Bias is first established on the base of one transistor, in this case \(Q_{1}\), through terminal 1 . The base of the second transistor, \(\mathrm{Q}_{2}\) in Fig.2(a), is then connected to the first through a low-valued dc impedance. In Fig.2(a), the inductive winding of the input transformer provides the

Fig. 1 - Schematic diagram and terminal connections for the CA3028A and CA3028B integrated circuits.

(d)

(f)

Fig. 2 - Connections for the CA3028A and CA3028B for use as (a) a balanced differential amplifier with a controlled constant-current-source drive and agc capability; (b) a cascode amplifier with a constant-impedance agc capability; (c) a cascode amplifier with conventional agc capability; (d) a converter; (e) a mixer; (f) an oscillator.
low-resistance path. An rf choke or low-valued resistor may be used in place of transformer coupling, but caution must be exercised because even as little as 100 ohms may cause serious unbalance in some applications. A single-ended output may be taken from terminal 6 or terminal 8 , or push-pull outputs from terminals 6 and 8 . In systems with a single power supply of up to 12 volts, terminal 7 is connected to the highest positive potential for maximum gain. Other operating points can be selected by application of a varying bias voltage (agc) to \(\mathrm{Q}_{3}\).

The circuit diagrams in Fig. 2 illustrate the flexibility of the CA3028A and CA3028B. Terminal connections are shown for a differential amplifier driven from a controlled constant-current source that has agc capability; a cascode amplifier with constant-impedance or conventional age capability; a converter; a mixer; and an oscillator. The cascode mode of operation is recommended for applications that require higher gain. The
differential mode is preferred when good limiting is required.

\section*{Operating Modes}

The CA3028A and CA3028B integrated-circuit rf amplifiers can be operated in either the differential mode or the cascode mode. Applications using the differential mode are distinguished by high input impedance, good gain-control characteristics, large input-signal-handling capability, and good limiting.

For ease of design. of systems using the CA3028A and CA.3028B, admittance or " \(y\) " parameters are shown in Fig. 3 for the differential mode and in Fig. 4 for the cascode mode. It should be noted that the y parameters of the more complex differential and cascode amplifier stages differ from those of simple common-emitter transistor stages.

Fig. 3 - \(Y\) parameters of the CA3028A and CA3028B in the differential-amplifier connection.

Fig. 4 - Y parameters of the CA3028A and CA3028B in the cascode connection.

For quick reference, values for input and output parallel RC networks and transconductance values are listed in Table I for the differential amplifier and in Table II for the cascode amplifier.

Although the reverse transfer admittance \(\mathrm{y}_{12}\) of the CA3028A or CA3028B is low for either cascode or dif-
ferential operation, circuit-layout-induced instability can occur in high-gain amplifiers. Circuit layout is of paramount importance in both modes because undesirable coupling admittances can be much greater than the CA3028A or CA3028B admittances. Attention to layout and shielding is imperative if proper advantage is to be taken of the low feedback of the CA3028A and CA3028B.

Table I Input and Output Parallel RC Network Component Values, Transconductance Values, and Performance Data for the CA3028A and CA3028B Integrated Circuits in the Differential Amplifier.
\begin{tabular}{cccccc}
\hline Frequency & \multicolumn{2}{c}{\begin{tabular}{c}
Input Parallel \\
RC Network
\end{tabular}} & \multicolumn{2}{c}{ Output Parallel } \\
RC Network
\end{tabular} \begin{tabular}{c}
Transcon- \\
ductance
\end{tabular}

Table II Input and Output Parallel RC Network Component Values, Transconductance Values, and Performance Data for the CA3028A and CA3028B Integrated Circuit Cascode Amplifier.
\begin{tabular}{cccccc}
\hline Frequency & \begin{tabular}{c}
Input Parallel \\
RC Network
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{c}
Output Parallel \\
RC Network
\end{tabular}} & \begin{tabular}{c}
Transcon- \\
ductance
\end{tabular} \\
\hline & \begin{tabular}{c}
\(\mathrm{R}_{\mathrm{in}}\) \\
(ohms)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{C}_{\text {in }}\) \\
\((\mathrm{pF})\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{R}_{\text {out }}\) \\
(ohms)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{C}_{\text {out }}\) \\
(pF)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{g}_{\mathrm{m}}\) \\
(millimhos)
\end{tabular} \\
\hline 10.7 & 900 & 22 & \(-1.67 \times 106\) & 3.1 & 100 \\
100 & 170 & 6.3 & \(-5 \times 10^{5}\) & 3.5 & 14 \\
\hline
\end{tabular}

\section*{Differential Amplifier}

The differential amplifier shown in Fig.2(a) is designed for operation at 10.7 MHz and 100 MHz . Because the amplifier consists essentially of a commoncollector stage driving a common-base stage, the input admittance \(\mathrm{y}_{11}\), the output admittance \(\mathrm{y}_{22}\), and the forward transfer admittance y21 are decreased by a factor of two. The reverse transfer admittance \(y_{12}\) is typically 140 times lower than that of a single commonemitter transistor at 10.7 MHz , and 10 times lower at 100 MHz . As a result, the CA3028A and CA3028B can be aligned easily in if strips without need for neutralization.

The transfer characteristic in Fig.5(a) shows the excellent limiting capabilities of the CA3028A and CA3028B differential amplifiers. This limiting performance is achieved because the constant-current transistor \(Q_{3}\) limits the circuit operating current so that the collectors of the differential-pair transistors \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\) do not saturate. Table III shows the maximum permissible load resistances for non-saturating operation when single supply voltages of 9 and 12 volts are used.

When linear operation over a wide input-voltage range is imperative, agc voltage may be applied to the constant-current source Q3 at terminal 7. Gain-control

Fig. 5 - Characteristics of the CA3028A and CA3028B in the differential-amplifier connection: (a) \(10.7-\mathrm{MHz}\) transfer characteristics; (b) agc capabilities; (c) power gain as a function of noise figure.

Table III Maximum Load Resistance Permissible for Non-Saturating Operation with +9 and +12 volt Single-Supply Voltages
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
V_{C C} \\
\text { (volts) }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{C}} \\
\text { (milliamperes) }
\end{gathered}
\] & Maximum Tuned Load (ohms) & Maximum Resistive Load (ohms) \\
\hline +9 & 5.0 & 3.6 K & 1.8 K \\
\hline +12 & 6.8 & 3.5 K & 1.7 K \\
\hline
\end{tabular}
\(\mathrm{R}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{C}}\) Resistive Load
\(R_{L}=2 \mathrm{~V}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{C} 2}\) Tuned Load
capabilities are -60 dB at 10.7 MHz and -46 dB at 100 MHz , as shown in Fig.5(b). Fig.5(c) shows curves of power gain and noise figure as a function of age voltage. The combination of an optimum noise figure of 5.5 dB and a power gain of 15 dB at 100 MHz makes this circuit suitable for use as an rf amplifier in the commercial FM band.

\section*{Cascode Amplifier}

When the CA3028A or CA3028B is used in the cascode configuration for rf-amplifier circuits, a commonemitter stage drives a common-base stage. The input admittance \(\mathrm{y}_{11}\) is essentially that of a common-emitter stage, and the forward transfer admittance \(y_{21}\) is that of a common-emitter stage times the common-base alpha. Because of the high-impedance drive source for the com-mon-base stage, the output admittance \(\mathrm{y}_{22}\) is quite low at low frequencies (\(0.6 \mu \mathrm{mho}\)). The reverse transfer admittance \(y_{12}\) for the cascode circuit is 900 times less than that for a single-stage common-emitter at 10.7 MHz , and 35 times les \({ }^{5}\) at 100 MHz . As in the differential amplifier, ease in tuning is obtained without need for neutralization.

The transfer characteristic in Fig. 6 shows the suitability of the cascode configuration for age take-off for FM front-end controls.

\section*{Applications}

The typical applications described below illustrate the use of the CA3028A and CA3028B integrated-circuit rf amplifiers in \(\mathrm{bo}^{+h}\) the differential and the cascode modes.
10.7-MHz Cascode IF Amplifier. Fig. 7 shows an FM if strip in which the CA3028A or CA3028B is used in a high-gain, high-performance cascode configuration in conjunction with a CA3012 integrated-circuit wideband amplifier. The CA3012 is used in the last stage because of the high gain of 74 dB input to the 400 -ohmload ratio-detector transformer \(\mathrm{T}_{4}\). An input of approximately 400 microvolts is required at the base of the

Fig.6-10.7-MHz transfer characteristics of the CA3028A and CA3028B in the cascode connection.

CA3012 for -3 dB below full limiting. An impedancetransfer device and filter must be connected between the CA3012 base (terminal 1) and the output of the CA3028A or CA3028B (terminal 6). The insertion loss of this filter should be kept near 6 dB (\(1: 2\) ratio of loaded to unloaded Q) so that all possible gain can be realized up to the CA3012 base. In addition to this insertion loss, a voltage step-down loss of 5.8 dB in the interstage filter is unavoidable. Therefore, the total voltage loss is approximately 9 to 14 dB , and an output of 1500 to 2000 microvolts must be available from the CA3028A or CA3028B to provide the required 400 -microvolt input to the CA3012.

The voltage gain of the CA3028A or CA3028B into a 3000 -ohm load is determined as follows:
\[
\mathrm{VG}=\frac{-\mathrm{y}_{21}}{\mathrm{y}_{22}+\mathrm{yL}^{2}}=\frac{100 \times 10^{-3}}{0.33 \times 10^{-3}}=300=49 \mathrm{~dB}
\]

This calculation indicated a sensitivity of 6.6 microvolts at the CA3028A or CA3028B base (terminal 2). This value cannot be realized, however, because the CA3012 limits on noise peaks so that the gain figure is reduced.

A sensitivity of 7.5 microvolts was realized in the design shown in Fig.7. The filter approach with highgain integrated-circuit chips differs from that for single, cascaded transistor stages in that lumped selectivity is required rather than distributed selectivity.

Special care must be exercised when second-channel attenuation in the order of 45 dB is required. Selectivity is then proportioned as follows:

Interstage filter: double-tuned 220 kHz at -3 dB ; coefficient of critical coupling, 0.7 ; voltage loss, 8 dB

Converter filter: triple-tuned, 220 kHz at -3 dB ; coefficient of critical coupling, 0.8 ; voltage loss, about 28 dB

Because of input limiting in the CA3012, the interstage filter exhibits a somewhat wider bandwidth than the 220 kHz indicated. Therefore, a coefficient of critical coupling near 0.8 is realized, which is optimum for minimum deviation from constant time delay. The triple-tuned converter filter alone provides secondchannel attenuation of 30 to 33 dB , while the interstage
10.7-MHz IF Strip Using Two CA3028A or CA3028B

Circuits. The \(10.7-\mathrm{MHz}\) if strip shown in Fig. 8 uses two CA3028A or CA3028B integrated circuits to provide less over-all gain than the circuit of Fig.7. The first integrated circuit is connected as a cascode amplifier and yields voltage gain of 50 dB ; the second integrated circuit is connected as a differential amplifier and yields voltage gain of 42 dB .

When a practical interstage transformer having a voltage insertion loss of 9 dB is used, over-all gain is

\(\mathrm{T}_{3}\) : Interstage transformer TRW \#22486 or equiv.
\(\mathrm{T}_{4}\) : Ratio detector TRW \#22516 or equiv.
Audio Output: 155 mV rms for \(7.5 \mu \mathrm{~V} \pm 75 \mathrm{kHz}\) input 3 dB below knee of transfer characteristic.

Fig.7-10.7-MHz if amplifier using a CA3028A or CA3028B in the cascode mode.
filter contributes 8 to 10 dB . The filters described meet requirements of both performance and economy.

The large collector swing that can be obtained in cascode operation of the CA3028A or CA3028B makes it desirable to take the agc voltage from the collector or "hot" end of the if transformer for front-end gain control. The cascode stage then operates primarily in its linear region, and excellent selectivity (40 dB) is maintained even for large signal inputs of approximately 0.4 volt. Front-end gain reduction is between 40 and 50 dB .

83 dB and the sensitivity at the base of the first integrated circuit is 140 microvolts. A less sophisticated converter filter (double-tuned) could be employed at the expense of about 26 dB of second-channel attenuation. If the voltage insertion loss of the converter filter is assumed to be 18 dB and the front-end voltage gain (antenna to mixer collector) is 50 dB , this receiver would have an IHFM* sensitivity of approximately 8 microvolts.

\footnotetext{
* Institute of High-Fidelity Manufacturers.
}

\(\mathrm{T}_{3}\) : Interstage transformer TRW \#22486 or equiv.
\(\mathrm{T}_{4}\) : Ratio detector TRW \#22516 or equiv.
Audio Output: 155 mV rms for \(140 \mu \mathrm{~V} \pm 75 \mathrm{kHz}\) input 3 dB below knee of transfer characteristic.

Fig. 8 - 10.7-MHz if strip using two CA3028A or CA3028B integrated circuits.
10.7-MHz Differential-Amplifier IF Strip. Fig. 9 shows a \(10.7-\mathrm{MHz}\) medium-gain if strip consisting of a CA3028A or CA3028B connected as a differential amplifier and a CA3012 wide-band amplifier. As in the circuit shown in Fig.7, an input of approximately 1500 microvolts is required to the interstage filter. The differential-mode voltage gain of the CA3028A or CA3028B into a 3000 -ohm load is determined as follows:
\[
\mathrm{VG}=\frac{-\mathrm{y}_{21}}{\mathrm{y}_{22}+\mathrm{y}_{\mathrm{L}}}=\frac{35 \times 10^{-3}}{0.38 \times 10^{-3}}=92.5=39.3 \mathrm{~dB}
\]

This voltage gain requires that an input of approximately 15 microvolts be available at the base of the CA3028A or CA3028B differential amplifier.

Even if a triple-tuned filter having a voltage insertion loss of 28 dB is used in a low-gain front end, a receiver having an IHFM sensitivity of 5 microvolts results. If 26 dB second-channel attenuation is per-
missible, a 3 -microvolt-sensitivity IHFM receiver can be realized.

88-MHz-to-108-MHz FM Front End. Fig. 10 illustrates the use of the CA3028A or CA3028B as an rf amplifier and a converter in an 88 -to \(-108-\mathrm{MHz}\) FM front end. For best noise performance, the differential mode is usedand the base of the constant-current source Q3 is biased for a power gain of 15 dB . The rf amplifier input circuit is adjusted for an insertion loss of 2 dB to keep the noise figure of the front end low. Because the insertion loss of the input transformer adds directly to the integrated-circuit noise figure of 5.5 dB , the noise figure for the front end alone is 7.5 dB , as compared to noise figures of about 6 dB for commercial FM tuners.

Although a single-tuned circuit is shown between the collector of the rf-amplifier stage and the base of the converter stage, a double-tuned circuit is preferred to reduce spurious response of the converter If the double-tuned circuit is critically coupled for the same \(3-\mathrm{dB}\) bandwidth as the single-tuned circuit, the insertion loss remains the same.

\(\mathrm{T}_{3}\) : Interstage transformer TRW \#22486 or equiv.
\(\mathrm{T}_{4}\) : Ratio detector TRW \#22516 or equiv.
Audio output: 155 mV rms for \(15 \mu \mathrm{~V} \pm 75 \mathrm{kHz}\) input 3 dB below knee of transfer characteristic.

Fig.9-10.7-MHz if strip using a CA3028A or CA3028B in the differential mode.

The collector of the rf stage is tapped down on the interstage coil at approximately 1500 ohms, and the base of the converter stage at 150 ohms. RF voltage gain is computed as follows:
\begin{tabular}{|c|c|}
\hline Antenna to base & 0 dB \\
\hline Base to collector & 22 dB \\
\hline Voltage insertion interstage coil & -13 dB \\
\hline et rf voltage gain. & 9 dB \\
\hline
\end{tabular}

If an if converter transformer having an impedance of 10,000 ohms is used, the calculated voltage conversion gain is
\[
\mathrm{VG}_{\mathrm{c}}=\frac{-\mathrm{y}_{21}}{\mathrm{y}_{22}+\mathrm{y}_{\mathrm{L}}}=112=41.3 \mathrm{~dB}
\]

Measured gain into the collector of the converter is 42 dB . The measured voltage gain of the rf amplifier
and converter into a 10,000 -ohm load is 52 dB ; calculated gain is 50 dB . When the converter is tuned for the commercial FM band (88 to 108 MHz), the following parameters apply:

The rf amplifier and converter shown in Fig. 10 were combined with the if amplifier shown in Fig.7, and the following performance data were measured at 100 MHz :
\(30-\mathrm{dB}(\mathrm{S}+\mathrm{N}) / \mathrm{N}\) IHFM Sensitivity . . . \(3 \mu \mathrm{~V}\)
Image Rejection. 46 dB
Receiver noise figure is the limiting factor that permits a sensitivity of only 3 microvolts to be realized.

\(\mathrm{L}_{1}\) : 3-3/4 T \#18 tinned copper wire; winding length \(5 / 16^{\prime \prime}\) on \(9 / 32^{\prime \prime}\) form; tapped at \(1-3 / 4 \mathrm{~T}\); primary -2 turns \#30 SE.
\(\mathrm{L}_{2}\) : 3-3/4 T \#18 tinned copper wire; winding length \(5 / 16^{\prime \prime}\) on \(9 / 32\) " form; tapped at \(62-1 / 4 \mathrm{~T}, \mathrm{~A} 3 / 4 \mathrm{~T}\).
\(\mathrm{C}_{\mathrm{V}_{1-2}}:\) variable \(\triangle \mathrm{C} \approx 15 \mathrm{pF}\)
\(\mathrm{T}_{1}\) : Mixer transformer TRW \#22484 or equiv.
\(\mathrm{T}_{2}\) : Input transformer TRW \#22485 or equiv.
\(\mathrm{L}_{3}\) : 3-1/2 T \#18 tinned copper wire; winding length \(5 / 16^{\prime \prime}\) on \(9 / 32^{"}\) form.
\(\mathrm{C}_{\mathrm{v}_{1-3}}\) : variable, \(\triangle \mathrm{C} \approx 15 \mathrm{pF}\).
Fig. \(10 \cdot 88-M H z-t o-108-M H z\) FM front end.

Solid State Division

\section*{Linear Integrated Circuits}

Application Note ICAN-5338

\title{
Application of the RCA CA3021, CA3022, and CA3023 Integrated-Circuit Wideband Amplifiers
}

\author{
BY
}

\author{
G.E. THERIAULT, T. H. CAMPBELL, AND A. J. LEIDICH
}

The RCA-CA3021, CA3022, and CA3023 integrated circuits are multi-purpose high-gain amplifiers designed for use in video and \(A M\) or \(F M\) if stages in single-power-supply systems. These circuits feature monolithic-silicon construction, and are usable throughout the temperature range from \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\). They are supplied in a 12 -terminal TO-5 package.

The CA3021, CA3022, and CA3023 have the same circuit configuration and the same mid-band open-loop gain. However, different resistor values are used in the three circuits toprovide different values of power dissipation and open-loop bandwidth. Typical power dissipation with a 6 -volt supply is 3 milliwatts for the CA3021, 12 milliwatts for the CA3022, and 36 milliwatts for the CA3023. Wider bandwidths can be achieved with the CA3023, intermediate bandwidths with the CA3022, and narrower bandwidths with the CA3021.

The major feature of these circuits is a flexibility that permits their use in the following applications: video amplifiers operating at frequencies through 30 MHz , AM and FM if amplifiers, and buffer amplifiers in which an isolation capability greater than 60 dB at 1 MHz is desired. Theareas of circuit flexibility are as follows:
- Operation with dc supplies of 4.5 to 12 volts.
- Automatic-gain-control capability (60-dB agc range with large input-signalhandling capability).
- Limiting capability (by connection of diodes provided on the chip).
- Gain adjustment (by addition ofexternal feedback resistor or network to obtain desired operating gain and bandwidth).

\section*{Circuit Description}

The circuit diagram for the CA3021, CA3022, and CA3023 is shown in Fig. 1 . Amplifier gain is obtained by use of transistors \(Q_{1}, Q_{3}, Q_{4}\), and \(Q_{6}\), which are connected as two dc-coupledcommon-emitter/ common-collector amplifiers having avoltage gain of approximately 60 dB . The

Fig. 1 - Circuit diagram and TO-5 terminal connections for the CA3021, CA3022, and CA3023 integrated circuits.
common-collector configuration provides the necessary impedance transformation (high-impedance input and low-impedance output) for wide bandwidth. The output transistor \(Q_{6}\) provides the low output impedance desired foriterative operation. The circuit must be capacitively coupled, and should have a low-impedance source. A source resistance of 50 ohms was used for the circuit measurements given in this Note.

Fig. 2 shows typical connections for the CA3021, CA3022, and CA3023 for wideband and bandpass applications with and without agc, and for limiter applications. An external feedback resistor \(R_{f}\) or a tuned circuit \(c\) an be added between terminals 3 and 7 for desired bandwidth and
gain performance. Linear operating conditions are maintained by the bias applied between the collector and the base of \(Q_{1}\) by the resistor-diode network \(R_{2}, R_{3}, R_{1}, D_{1}\). Because the collector of \(Q_{1}\) is held at a fixed potential that is relatively independent of supply, device characteristics, and temperature, dc coupling to the remainder of the circuit can be used.

(a)

(c)

Fig. 2 - Typical connections for the CA3021, CA3022, and CA3023 for (a) wideband and bandpass applications, (b) wideband and bandpass applications requiring agc, and (c) limiter applications.

For applications in which gain control is desired, terminals 10 and 12 are left floating and agc isapplied to terminal 2 , as shown in Fig. 2b. For maximum gain, terminal \(2 i s\) operated at a positive voltage not larger than the supplyvoltage applied to terminal 5. In the positive voltage condition, transistors \(Q_{2}\) and \(Q_{5}\) are saturated and the impedance in the emitters of \(Q_{1}\) and \(Q_{4}\) is low. When the gain-control voltage becomes negative, \(Q_{2}\) and \(Q_{5}\) come out of saturation and provide high degenerative emitter resistance which reduces the gain. Because most of the increasing signals appear across the increasing degenerative resistance, the active gain transistors \(Q_{1}, Q_{3}, Q_{4}\), and \(Q_{6}\) handle only a small part of the large signal. As a result, signal-handling capability increases with increasing agc. Further increases of gain-control voltage reduce the current in \(Q_{1}\) and \(Q_{4}\) and thus provide the additional gain control needed to achieve maximum agc range.

In limiting applications, diodes \(D_{2}\) and \(D_{3}\) are connectedin the feedback loops, as shown in Fig. 2c (terminals 4 to 3, 6 to 7, and 8 to 9). The diodes provide clamping for sufficient input-signal swing; limiting can be achieved with input-signal swings up to 2.5 volts rms.

\section*{Operating Characteristics}

DC Supply Considerations. The most positive voltage to be applied to the CA3021, CA3022, and CA3023 integrated circuits is connected to terminal 5 . The most negative voltage is connected to the substrate through terminal 11.

The circuits can be used with single power supplies of 4.5 to 12 volts. The bias technique used for transistor \(Q_{1}\), and thusfor the remainder of the circuit, makes the collector operating voltage of \(Q_{1}\) and \(Q_{4}\) relatively independent of the supply. Consequently, the current in the circuit increases almost linearly as a function of supply voltage. Fig. 3 shows typical power dissipation for the three circuits as a function of supply voltage. Because there is little change in the collector voltage of \(Q_{4}\), there is little change in output operating point as a function of supply voltage.

Fig. 3 - Power dissipation as a function of supply voltage.

DC Stability with Temperature. The output operating points of the CA3021, CA3022, and CA3023 are shown in Fig. 4 as a function of temperature and feedback resistance. As a result of the resistor values used in each circuit, the output operating point is compensated in the temperature range between \(-20^{\circ} \mathrm{C}\) and \(75^{\circ} \mathrm{C}\) when the circuit is operated under openloop conditions (terminals 3 and 7 floating). Insertion of a feedback resistor between terminals 3 and 7 is recommended to minimize degradation in performance at temperatures outside this range. The maximum value of the feedback resistor \(R_{f}\) recommended for optimum performance of each circuit is shown in the following table:
\begin{tabular}{cc}
Circuit & \(\mathrm{R}_{\mathrm{f}}-\) ohms \\
CA3021 & 18000 \\
CA3022 & 5100 \\
CA3023 & 2000
\end{tabular}

Use of a feedback resistor of the maximum value provides equal ac and dc feedback, but reduces the usable gain of the circuit to approximately 40 dB . When equal ac and dc feedback is not desired, as in the case of bandpass or tuned responses, a choke or tuned circuit can be included between the feedback terminals 3 and 7 to provide dc temperature stability and permit gains of 50 to 55 dB .

As a general rule, feedback should be included in all applications in which operation over an extended temperature range is required.

Fig. 4 -Output operating point as a function of temperature for various values of feedback resistance.

DC Considerations for Gain Control. When the agc transistors \(Q_{2}\) and \(Q_{5}\) are included in the circuit, the output operating point can be held constant only
by addition of feedback. Variation of operating point is caused by the added collector-to-emitter voltage of \(Q_{2}\) and \(Q_{5}\) in saturation in the emitters of \(Q_{1}\) and \(Q_{4}\). The effect is more pronounced in the higher-current circuits, CA3022 and CA3023. As discussed previously, full dc feedback can be used to stabilize the operating point; ac feedback can be removed by the use of tuned circuits. The maximum recommended values of \(R_{f}\) provide satisfactory stability when the circuit is connected for agc.

DC Considerations for Limiting. In limiter applications, diodes \(D_{2}\) and \(D_{3}\) are included in the feedback loops in the circuit (external connections are made as shown in Fig.2c). Under open-loop conditions, the dc operating point may be such that \(D_{2}\) and \(D_{3}\) (usually \(D_{3}\)) are turned or . The gain is then reduced and the amplifier will not operate linearly at low levels. The values of \(\mathrm{R}_{\mathrm{f}}\) recommended previously also assure correct operation for limiting amplifiers.

AC Frequency Response and Gain Performance. Open-loop frequency responses for the CA3021, CA3022, and CA3023 are given in Fig. 5. The curves also show the response characteristics to the \(3-\mathrm{dB}\) point for various values of feedback resistance. Values of feedback resistance larger than those recommended for operating-point temperature stability are included to indicate gain performance at resonance when tuned circuits or chokes are used in the feedback loop. For these measurements, the circuits were operated with a 50 -ohm source and a high impedance load.

Fig. 6 shows the variation of gain with temperature for the three circuits. Each circuit was operated with sufficient feedback to provide a closed-loop gain of approximately 40 dB . The gain variation is practically independent of feedback, and is slightly greater for the CA3023 than for the other two circuits. Fig. 7 shows typical upper-3-dB frequency shifts with temperature for the three circuits for a gain of approximately 40 dB .

Fig. 5 -Frequency-response characteristics.

Fig. 6 - Voltage-gain variation with temperature (feedback adjusted to provide gain of approximately 40 dB at \(25^{\circ} \mathrm{C}\)).

Fig. 7 -Upper-3-dB frequency shift wi th temperature.

In buffer-amplifier applications, reverse feedback or isolation capability is required. The following table shows
\begin{tabular}{ccc}
Circuit & \begin{tabular}{c}
Feedback \\
Resistor \\
R (ohms)
\end{tabular} & \begin{tabular}{c}
Voltage Injected \\
at output \\
(volts rms)
\end{tabular} \\
CA3021 & 18000 & 2 \\
CA3022 & 5000 & 2 \\
CA3023 & 2000 & 2
\end{tabular}
the isolation performance of the CA3021, CA3022, and CA3023 at three frequency levels with the input terminated in 50 ohms.

AC Signal Power Output. The maximum power-output capability of the commoncollector output transistor \(Q_{6}\) in Fig. 1 occurs for a load-resistance value higher than the output impedance. For determination of optimum load-resistor values, each circuit was operated from a 6-volt supply at a gain of approximately 40 dB with a variable resistor capacitively coupled to terminal 8. The variation of maximum linear signal output as afunction of load resistance is shown in Fig. 8 .

Fig. 8 -Maximum linear signal output as a function of load resistance.

Maximum power output was measured at a level at which output distortion was just discernible on an oscilloscope.

Tuned Circuit in the Feedback Loop. When a parallel tuned circuit is included in the feedback path between termi-
nals 3 and 7 of the CA3021, CA3022, or CA3023, thegain at resonance is a function of the equivalent resistance of the feedback loop. Gain characteristics of the three circuits as a function of feedback resistance are shown in Fig.9. For each circuit, there is a value of feedback

Fig. 9 - Voltage gain as a function of feedback resistance.
resistance \(R_{f}\) for which the gain approaches zero. This condition occurs when the small-signal transconductance \(g_{m}\) of the transistor \(Q_{4}\) is equal to the conductance of the parallel tuned circuit; signal cancellation then results at terminal 7 . In a tuned circuit designed with the correct feedback resistance \(R_{f}\), therefore, zero gain can be obtained at the resonant frequency. The resistance values required for signal cancellation are 2000 ohms for the CA3021, 400 ohms for the CA3022, and 230 ohms for the CA3023. When the tuned-circuit impedance is made equal to these cancellation resistance values at resonance, the gain increases
at frequenciesoff resonance and atrapping effect results. For zero feedback resistance, the gain of each circuit is approximately 24 dB . For values of feedback resistance in excess of the cancellation resistance, the gain increases. When the tuned circuit has a resonant impedance higher than the cancellation resistance, the response is added to the video response characteristic, as shown in Fig. 10. Then, because no

Fig. 10 - Voltage gain as a function of frequency in a bandpass amplifier when the tuned-circuit resonant impedance \(R_{p}\) is higher than the cancellation resistance \(R_{f c}\).
purely resistive value occurs that is equal to the cancellation resistance, no cancellation occurs.

The bandwidth of the response can be approximated by determining the total loading of \(R_{p}\) on the parallel tuned circuit in the feedback path, as follows:
\[
R_{p}=\frac{R_{T} R_{X}\left(R_{4}+R_{8}\right)}{\left(R_{X}+R_{T}\right)\left(R_{4}+R_{8}\right)+R_{X} R_{T}}
\]
where \(R_{T}\) is the resistance at resonance of the unloaded \(Q, R_{X}\) is the resistance added to the tuned circuit for adjustment of gain, and \(\left(R_{4}+R_{8}\right)\) is the series combination of the two common-collector load resistors. The \(3-d B\) bandwidth for the response is given by
\[
\frac{\mathrm{f}_{\mathrm{o}}}{\Delta \mathrm{f}}=\frac{\mathrm{R}_{\mathrm{P}}}{\mathrm{X}_{\mathrm{L}}}=\frac{\mathrm{R}_{\mathrm{P}}}{\mathrm{X}_{\mathrm{C}}}=\mathrm{Q}_{\mathrm{L}}
\]

Typical values for \(\left(R_{4}+R_{8}\right)\) for the three circuits are 39000 ohms for the CA3021,

10900 ohms for the CA3022, and 4800 ohms for the CA3023.

Output Tuned Circuits. The curves of Fig. 8 indicate that capacitive coupling of the common-collector output transistor \(Q_{6}\) to a matched load severely limits the transistor output-voltage-swing capability. If the required mismatch is achieved by ac coupling of a tuned circuit directly across the output, the tuned circuit will be loaded by the low output impedance of the common-collector transistor. However, comparable output power can be obtained by use of a resistor in series with the circuit output and the tuned circuit. This arrangement provides a load for the common-collector transistor forfrequencies offresonance of the tuned circuit, and prevents the possibility of reactive loads causing emitterfollower transistor instability.

Gain Control. The CA3021, CA3022, and CA3023 are connected as shown in Fig. 2b when gain-control application is desired. Transistors \(Q_{2}\) and \(Q_{5}\) are then included in the emitter-signal path of transistors \(Q_{1}\) and \(Q_{4}\), respectively. For maximum gain, a positive voltage is applied to terminal 2 which saturates transistors \(Q_{2}\) and \(Q_{5}\). If a voltage of 6 volts is applied to terminal 2 , the typical gain-control current is 0.8 milliampere. The gain-control action is provided by reduction of the voltage on terminal 2. Thedecreasing voltage causes transistors \(Q_{2}\) and \(Q_{5}\) to come out of saturation and present a high impedance in the emitter leads of transistors \(Q_{1}\) and \(Q_{4}\). It is important that good filtering and isolation be maintained at the agc terminal 2 because transistors \(Q_{2}\) and \(Q_{5}\) are in the linear active region for a portion of the agc range and can, therefore, provide gain for asignal on the agc terminal.

The minimum gain is determined by a combination of the gain of \(Q_{1}\) and feedthrough to the collector of \(Q_{1}\) along a resistance path made up of \(R_{3}\) and \(R_{2}\). Because the signals are out of phase, there is a point at which cancellation of signal results. This cancellation occurs in all three circuits when terminal 2 is 0.5 volt more negative than terminal 11 .

It is accompanied by severe distortion of signal and AM modulation. Techniques for obtaining agcwithout reaching the cancellation point are discussed later.

When the maximum recommended feedback resistance for operating-point stability is used in the connection of Fig. 2b, maximum gain is reduced because of the extra emitter resistance presented by the saturation resistance of transistors \(Q_{2}\) and \(Q_{5}\). Maximum voltage gain for each circuit is approximately 30 dB with the maximum recommended feedback resistance and a 6-volt supply. The typical agc range for each circuit is 55 dB with resistive feedback.

When a tuned circuit is used in the feedback loop, higher maximum gain can be obtained in the agc connection shown in Fig. 2b. The maximum gain obtainable is approximately 50 dB when high feedback impedance is maintained. A self-resonant choke is a convenient element to add in the feedback loop toobtain high impedance because it provides wide bandwidth; resistance loading can be added to adjust the gain to the desired value. When a combination of self-resonant choke and added resistance is used, dc feedback is complete and the operating point is temperature-stable. Wide-bandwidth tuned circuits are suggested for all three circuits, but especially for the CA3022 and CA3023 because the bandwidth shifts with gain control, as shown in Fig.ll. For a tuned frequency of 3 MHz at full gain,

Fig. 11 - Effect of gain control on response characteristics.
for example, the resonance point of the tuned response increases slightly (about

5 per cent) for gain control of -20 to -30 dB because of the combination of the low-frequency roll-off and the tuned response. In the region of gain control of -50 dB , the high-frequency roll-off affects the response and the resonant frequency decreases below 3 MHz (by about 10 per cent). At full agc the tuned circuit becomes a trap in the feedthrough path, minimum gain is achieved at the \(3-\mathrm{MHz}\) frequency, and the response is inverted, i.e., a notch occurs where a bandpass hadexisted. When tuned circuits are included in the feedback path of the gain-controlled amplifier, therefore, it is recommended that the bandwidth be chosen as wide as possible to minimize detuning effects. Desired bandwidth control should be obtained at the input, at the output, or in the feedback path of stages without gain control.

The use of emitter degeneration as a gain-control technique improves signalhandling capability. At fullgain control, signals as high as 2 volts rms can be handled without the occurrence of serious overload distortion. Typical crossmodulation characteristics for the CA3021, CA3022, and CA3023 with only feedback resistance in the feedback loop are shown in Fig. 12. Maximum gain for each circuit

Fig. 12 - Cross-modulation distortion characteristics.
was approximately 30 dB . When a tuned circuit is used in the feedback loop, more gain-control range is available as a result of the feedthrough reduction. Depending on the impedance of the tuned circuit, thegain-control range is between 60 and 80 dB . The cross-modulation characteristics when tuned circuits are
used are similar to thoseobtained with resistive feedback except for modifications caused by different feedback characteristics of interfering signals outside the tuned-circuit passband.

Limiting. For applications in which signal limiting is required, the diodes of the CA3021, CA3022, and CA3023 are connected as shown in Fig. 2c. At low signal levels, the diodes are cut off and the gain performance is similar to that described previously except for some bandwidth reduction caused by the inherent capacitance of the diodes. For large input-signal swings in the negative direction, the collector of transistor \(Q_{1}\) becomes positive and the collector of transistor \(Q_{4}\) becomes negative, and diode \(\mathrm{D}_{2}\) begins to conduct. This action clamps the collector of \(Q_{1}\) to the collector of Q4 and, because the diode is in the feedback path, reduces the gain. For positive swings at the input, the collector of transistor \(Q_{1}\) becomes negative and the output at terminal 8 becomes positive. Two effects tend to limit input signals of positive polarity: transistor \(Q_{4}\) going to cutoff, and diode \(D_{3}\) going into conduction. When the circuits are connected as shown in Fig. 2c, limiting is symmetrical at the onset. With increased signal, however, the symmetry is not perfectly preserved because of dc shift in the circuit. Typical output-signal characteristics as a function of input level are shown in Fig.13. The lack of symmetry at high input levels causes a decrease in power output, as shown in the waveforms.

Limiting characteristics for the CA3021, CA3022, and CA3023 were measured in the circuit configurations shown in Fig. 14. The output tuned circuit was designed to provide filtering for the desired outputfrequency sothat rms values of output voltage could be obtained. Limiting characteristics were measured for two types of feedback, resistive and tuned circuit; results are shown in Fig. 15. When a resonant circuit is used in the feedback loop, the gain of the circuits is higher and limiting occurs at a lower input level. The effects of multistage limiting are described later.

\section*{VERTICAL SCALE \(=0.5 \mathrm{~V} /\) DIV.} HORIZONTAL SCALE \(=0.5 \mu \mathrm{~S} / \mathrm{DIV}\). \(\mathrm{R}_{\mathrm{f}}=2000\) ohms

\(v_{\text {in }}=3 \mathrm{mV} \mathrm{ms}\)

\[
v_{\mathrm{in}}=1 \mathrm{Vrms}
\]

Fig. 13- Output waveforms obtained in a limiter application.

Noise Performance. The table below shows typicalnoise figures for the CA3021, CA3022, and CA3023 circuits for a frequency of 1 MHz , a supply voltage of 6 volts, and a source resistance of 50 ohms. The data in the first column of noise figures were measured in the connection shown in Fig. 2a; the second column shows data measured in the connection shown in Fig. 2b.

Circuit
\begin{tabular}{cc}
Term.lo, II, I2 & AGC operating, \\
connected to & noise measured \\
ground; gain & for maximum \\
\(=40 \mathrm{~dB}\) & gain of 30 dB \\
5.8 & 7.5 \\
7.1 & 8.7 \\
7.2 & 8.7
\end{tabular}

Fig. 14 -Circuits used for evaluation of limiting characteristics.

Fig. 15 -Limiting characteristics.

\section*{Applications}

Video Amplifiers. The use of single CA3021, CA3022, or CA3023 integrated circuits in video applications was discussed previously. For an evaluation of iterative video performance, two CA3022 circuits were operated in cascade. Each circuit employed \(0.01-m i c r o f a r a d ~ c o u p l i n g ~\) capacitors and feedback resistors of 2000 ohms. Performance data can be summarized as follows:

IO-MHz IF Amplifier. Fig. 16 shows a \(10-\mathrm{MHz}\) amplifier employing two CA3023 circuits. The first stage is operated in a broadband mode with a 2000 -ohm feedback resistor between terminals 3 and 7, in accordance with the design rules described previously. The second stage is a tuned if amplifier. Because the sinusoidal output capability of the

CA3023 at \(10-\mathrm{MHz}\) is in the \(200-\mathrm{millivolt}\) range, it is necessary to step up the voltage to drive the envelope detector; therefore, a tuned transformer that has a 1 -to-4 turns ratio isused at the secondstage output. The total effective circuit \(Q\) for this if configuration is 200 , and the full rf voltage gain is 86 dB from the input of the first stage to the output of the step-up transformer.

Fig. 16 - Schematic diagram and performance curves for \(10-\mathrm{MHz}\) if amplifier using two CA3023 circuits.

A CA3018 integrated-circuit transistor array isused to provide detection, audio amplification, and dc amplification. Detection is provided by transistors \(Q_{3}\) and \(Q_{4}\) of the CA3018; the detected outputis passed through a low-pass filter (\(\mathrm{C}_{1}, \mathrm{C}_{2}\), and \(R_{1}\)) and applied to the agc amplifier transistor \(Q_{2}\). Transistor \(Q_{2}\) goes from cutoff to saturation with increasing signal. The voltage drop across a 100 ohm degenerative resistor \(R_{2}\) prevents the gain-control voltage in terminal 2 of the first CA3023 amplifier from decreasing
below 0.5 volt and causing signal cancellation. Transistor \(Q_{1}\) of the CA3018 provides audio gain and is biased in a conventional manner. Fig. 16 also shows the output-signal andnoise characteristics of the circuit as functions of rf input level for an input signal that is 30 -percent modulated by a \(1-\mathrm{kHz}\) sine wave. The audio-output equivalent-noise bandwidth is 2.6 kHz .
\(455-k H z\) IF Amplifier. Fig. 17 shows a \(455-\mathrm{kHz}\) two-stage if amplifier using

Fig. 17 -Schematic diagram and performance curves for \(455-\mathrm{kHz}\) if amplifier using two CA3021 circuits.
the CA3021. The tuned-circuit approach discussed previously is used in the first stage. The rf feedback choke is selfresonant at 455 kHz and has a \(Q\) of 3.2 in the circuit. The second stage is a video amplifier. Input filtering would normally be provided to obtain the desired if response. For the particular choice of stage gain and agc loop gain, an interstage pad network is used to maintain stability and achieve an acceptable signal-to-noise ratio with gain control. The CA3018 output configuration is essentially the same as that used in the circuit of Fig. 16. The signal and noise characteristics of the \(455-\mathrm{kHz}\) amplifier are also shown in Fig. 17 for the same conditions used for the \(10-\mathrm{MHz}\) amplifier.

28-MHz Two-Stage Limiter Amplifier. Fig. 18 shows the circuit diagram of a \(28-\mathrm{MHz}\) two-stage limiter amplifier using two CA3023 integrated circuits. Terminals 3 and 7 are connected to terminals 4 and 6, respectively; terminal 8 is connected to terminal 9 to provide limiting action. A self-resonant coil in parallel with a 2000 -ohm resistor is inserted in the feedback loop of each amplifier to provide gain and stability. The bandwidth of the system before limiting is 3.8 MHz , and the effective Q is 7.35. The total gain is 61 dB (30.5 dB per stage), and the power dissipation is 66 milliwatts. Fig. 18 also shows the limiting performance of the system. Full limiting occurs at an input of 300 microvolts.

Fig. 18 -Schematic diagram and limiting performance of two-stage \(28-\mathrm{MHz}\) limiter amplifier usirg the CA3023.

500-kHz Limiting Amplifier. Fig. 19 shows the circuit diagram of a \(500-\mathrm{kHz}\) limiting amplifier using two CA3021 circuits. Two \(500-\mathrm{kHz}\) self-resonant chokes are used \(\dot{j}\) n the feedback path. A tuned circuit is included in the output to obtain a sine-wave output. The limiting characteristics of this amplifier are also shown. Although limiting occurs
for noise, a limited signal is apparent above the noise at an input signal of 1 microvolt. Because of the noise and early limiting, voltage gain can only be estimated; however, it is at least 100 dB . Good limiting performance was obtained for input signals up to 3 volts rms. Total power drain for the circuit with a 6 -volt supply was approximately 6 milliwatts.

- self-resonant at 500 khz

Fig. 19 -Schematic diagram and limiting performance of two-stage \(500-\mathrm{kHz}\) limiter amplifier using the CA3021.

\title{
APPLICATION OF THE RCA CA3020 AND CA3020A INTEGRATED－CIRCUIT MULTI－PURPOSE WIDE－BAND POWER AMPLIFIERS
}

\author{
by \\ W．M．AUSTIN AND H．M．KLEINMAN
}

\begin{abstract}
The discussions in this Note are applicable to both inte－ grated－circuit types．The CA3020A can operate in all circuits shown for the CA3020．The CA3020，on the other hand，has a lower voltage rating and must not be used in applications which require voltages on the output tran－ sistors greater than 18 volts．The integrated circuit protects the output transistor by limiting the drive to the output stages．The drive－limited current capability of the CA3020 is less than that of the CA3020A，but peak currents in excess of 150 milliamperes are an assured characteristic of the CA3020．

The RCA CA3020 and CA3020A integrated circuits are multi－purpose，multi－function power amplifiers designed for use as power－output amplifiers and driver stages in portable and fixed communications equipment and in ac servo control systems．The flexibility of these circuits and the high－frequency capabilities of the circuit components make these types suitable for a wide variety of applications such as broadband amplifiers，video amplifiers，and video line drivers．Voltage gains of 60 dB or more are available with a \(3-\mathrm{dB}\) bandwidth of 8 MHz ．

The discussions in this Note are applicable to both inte－ grated－circuit types．The CA3020A can operate in all
\end{abstract}
circuits shown for the CA3020．The CA3020，on the other hand，has more limited voltage－and current－handling capability and must not be used in applications which require voltage swings on the output transistors greater than 18 volts or peak currents in excess of 150 milli－ amperes．

The CA3020 and CA3020A are designed to operate from a single supply voltage which may be as low as +3 volts．The maximum supply voltage is dictated by the type of circuit operation．For transformer－loaded class B ampli－ fier service，the maximum supply voltages are +9 and +12 volts for the CA3020 and the CA3020A，respectively． When operated as a class B amplifier，either circuit can deliver a typical output of 150 milliwatts from a +3 －volt supply or 400 milliwatts from a +6 －volt supply．At +9 volts，the idling dissipation can be as low as 190 milliwatts， and either circuit can deliver an output of 550 milliwatts． An output of slightly more than 1 watt is available from the CA3020A when a +12 －volt supply is used．

\section*{CIRCUIT DESCRIPTION AND OPERATION}

Fig． 1 shows the schematic diagram of the CA3020 and CA3020A，and indicates the five functional blocks into

Fig. 1-Schematic diagram of CA3020 and CA3020A integrated-circuit amplifiers.
which the circuit can be divided for understanding of its operation. Fig. 2 shows the relationship of these blocks in block-diagram form.

A key to the operation of the circuit is the voltage regulator consisting of diodes \(D_{1}, D_{2}\), and \(D_{3}\) and resistors \(\mathrm{R}_{10}\) and \(\mathrm{R}_{11}\). The three diodes are designed to provide accurately controlled voltages to the differential amplifier so that the proper idling current for class B operation is established in the output stage. The characteristics of these monolithic diodes closely match those of the driver and output stages so that proper bias voltages are applied over the entire military temperature range of -55 to \(+125^{\circ} \mathrm{C}\). The close thermal coupling of the circuit assures against thermal runaway within the prescribed temperature and dissipation ratings of the devices.

The differential amplifier operates in a class A mode to supply the power gain and phase inversion required for the push-pull class B driver and output stages. In normal operation, an ac signal is capacitively coupled to terminal

Fig. 2-Functional block diagram of the CA3020 and CA3020A.

3, and terminal 2 is grounded through a suitable capacitor. When the signal becomes positive, transistor \(\mathrm{Q}_{2}\) is turned on and its collector voltage changes in a negative direction. The same current flows out of the emitter of \(Q_{2}\) and tends to flow to ground through resistor \(\mathrm{R}_{2}\). However, the impedance of \(\mathbf{R}_{2}\) is high compared to the input impedance of the emitter of \(Q_{3}\), and an alternate path is available to ground through the emitter-to-base junction of transistor \(\mathrm{Q}_{3}\) and then through the bypass capacitor from terminal 2 to ground. Because this path has a much lower impedance than \(\mathrm{R}_{2}\), most of the current takes this alternate route. The signal current flowing into the emitter of \(Q_{3}\) reduces the magnitude of that current and, because the collector current is nearly equal to the emitter current, the collector current in \(\mathrm{Q}_{3}\) drops and the collector voltage rises. Thus, a positive signal on terminal 3 causes a negative ac voltage on the collector of transistor \(\mathrm{Q}_{2}\) and a positive ac voltage on transistor \(\mathrm{Q}_{3}\), and provides the out-of-phase signals required to drive the succeeding stages. It should be noted that the differential amplifier is not balanced; resistor \(\mathrm{R}_{3}\) is ten per cent greater than \(\mathrm{R}_{1}\). This unbalance is deliberately introduced to compensate for the fact that all of the current in the emitter of \(Q_{2}\) does not flow into \(Q_{3}\). Use of a larger load resistor for transistor \(Q_{3}\) compensates for the lower current so that the voltage swings on the two collectors have nearly the same magnitude.

The driver stages (transistors \(\mathrm{Q}_{4}\) and \(\mathrm{Q}_{5}\)) are emitterfollower amplifiers which shift the voltage level between the collectors of the differential-amplifier transistors and the bases of the output transistors and provide the drive current required by the output transistors.

The power transistors (\(\mathrm{Q}_{6}\) and \(\mathrm{Q}_{7}\)) are large, highcurrent devices capable of delivering peak currents greater than 0.25 ampere. The emitters are made available to facilitate various modes of operation or to permit the inclusion of emitter resistors for more complete stabilization of the idling current of the amplifier. Inclusion of such resistors also reduces distortion by introducing negative feedback, but reduces the power-output capability by limiting the available drive.

Inclusion of emitter resistors between terminals 5 and 6 and ground also enhances the effectiveness of the internal dc feedback supplied to the bases of transistors \(Q_{2}\) and \(Q_{3}\) through resistors \(\mathrm{R}_{5}\) and \(\mathrm{R}_{7}\). Any increase in the idling current in either output transistor is reflected as an increased voltage at its base. This change is coupled to the input through the appropriate resistor to correct for the increased current.
A. later section of this Note describes how stable class A operation of the output stages may be obtained.

\section*{OPERATING CHARACTERISTICS}

Supply Voltages and Derating. The CA3020 operates with any supply voltage between +3 and +9 volts. The CA3020A can also be operated with supply voltages up to +12 volts with inductive loads or +25 volts with resistive loads. Fig. 3 shows the permissible dissipation rating of the CA3020 and CA3020A as a function of case

Fig. 3-Dissipation rating of the CA3020 and CA3020A as a function of case and ambient temperatures.
and ambient temperatures. At supply voltages from +6 to +12 volts, a heat sink may be required for maximum power-output capability. The worst-case dissipation \(\mathrm{P}_{\mathrm{d}_{\max }}\) as a function of power output can be calculated as follows:
\[
\mathbf{P}_{\mathrm{d}_{\max }}=\left(\mathrm{V}_{\mathrm{CC}_{1}} \mathrm{I}_{\mathrm{CC}_{1}}+\mathrm{V}_{\mathrm{CC}_{2}} \mathrm{I}_{\mathrm{CC}_{2}}\right)+\left(\mathrm{V}_{\mathrm{CC}_{2}}{ }^{2} /\left(\mathrm{R}_{\mathrm{CC}}\right)\right.
\]
where \(\mathrm{V}_{\mathrm{CC}_{1}}\) and \(\mathrm{V}_{\mathrm{CC}_{2}}\) are the supply voltages to the differ-ential-amplifier and output-amplifier stages, respectively; \(\mathrm{I}_{\mathrm{CC}_{1}}\) and \(\mathrm{I}_{\mathrm{CC}_{2}}\) are the corresponding idling currents; and \(\mathrm{R}_{\mathrm{CC}}\) is the collector-to-collector load resistance of the output transformer. This equation is preferred to the conventional formula for the dissipation of a class B output transistor (i.e., 0.84 times the maximum power output) because the \(\mathbf{P}_{\mathrm{d}_{\text {max }}}\) equation accounts for the device standby power and device variability.

Basic Class B Amplifier. Fig. 4 shows a typical audioamplifier circuit in which the CA3020 or CA3020A can provide a power output of 0.5 or 1 watt, respectively. Table I shows performance data for both types in this amplifier. The circuit can be used at all voltage and poweroutput levels applicable to the CA3020 and CA3020A.

* Better Coil and Transformer DF108A, Thordarson TR-192, or equivalent. see text and tables.

Fig. 4-Basic class B audio amplifier circuit using the CA3020 or CA3020A.

The emitter-follower stage at the input of the amplifier in Fig. 4 is used as a buffer amplifier to provide a high input impedance. Although many variations of biasing may

Table 1 - Typical Performance of CA3020 and CA3020A in Circuit of Fig. 4*
Characteristic CA3020 CA3020A
\begin{tabular}{|c|c|c|c|}
\hline Power Supply - \(\mathrm{V}_{\mathrm{CC}_{1}}\) & 9 & 9 & V \\
\hline \(\mathrm{V}_{\mathrm{CC}_{2}}\) & 9 & 12 & V \\
\hline Zero-Signal Idling Current - \(\mathrm{I}_{\mathrm{CC}_{1}}\) & 15 & 15 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}_{2}}\) & 24 & 24 & mA \\
\hline Maximum-Signal Current - \(\mathrm{I}_{\mathrm{CC}_{1}}\) & 16 & 16.6 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}_{2}}\) & 125 & 140 & mA \\
\hline Maximum Power Output at \(10 \%\) THD & 550 & 1000 & mW \\
\hline Sensitivity & 35 & 45 & mV \\
\hline Power Gain & 75 & 75 & dB \\
\hline Input Resistance & 55 & 55 & \(\mathrm{k} \Omega\) \\
\hline Efficiency & 45 & 55 & \% \\
\hline Signal-to-Noise Ratio & 70 & 66 & dB \\
\hline \% Total Harmonic Distortion at 150 mW & 3.1 & 3.3 & \% \\
\hline Test Signal & 1000 & \(00 \Omega \mathrm{~g}\) & \\
\hline Equivalent Collector-to-Collector Load & 130 & 200 & \(\Omega\) \\
\hline Idling-Current Adjust Resistor (\(\mathrm{R}_{11}\)) & 1000 & 1000 & \(\Omega\) \\
\hline
\end{tabular}
* Integrated circuit mounted on a heat sink, Wakefield 209 Alum. or equiv.
be applied to this stage, the method shown is efficient and economical. The output of the buffer stage is applied to terminal 3 of the differential amplifier for proper balance of the push-pull drive to the output stages. Terminals 2 and 3 must be bypassed for approximately 1000 ohms at the desired low-frequency roll-off point.

At low power levels, the cross-over distortion of the class \(\mathbf{B}\) amplifier can be high if the idling current is low. For low cross-over distortion, the idling current should be approximately 12 to 24 milliamperes, depending on the efficiency, idling dissipation, and distortion requirements of the particular application. The idling current may be increased by connection of a jumper between terminals 8 and 9. If higher levels of operating idling current are desired, a resistor (\(\mathrm{R}_{11}\)) may be used to increase the regulated voltage at terminal 11 by a slight amount with additional current injection from the power supply \(\mathrm{V}_{\mathrm{CC}_{1}}\).

In some applications, it may be desirable to use the input transistor \(Q_{1}\) of the CA3020 or CA3020A for other purposes than the basic buffer amplifier shown in Fig. 4. In such cases, the input ac signal can be applied directly to terminal 3.

The extended frequency range of the CA3020 and CA3020A requires that a high-frequency ac bypass capacitor be used at the input terminal 3. Otherwise, oscillation could occur at the stray resonant frequencies of the external components, particularly those of the transformers. Lead inductance may be sufficient to cause oscillation if long power-supply leads are not properly ac bypassed at the CA3020 or CA3020A common ground point. Even the bypassing shown may be insufficient unless good high-frequency construction practices are followed.

COLLECTOR-TO-COLLECTOR LOAD RESISTANCE (RCC)-OHMS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { CURVE } \\
\text { CA3020 CA3020A }
\end{gathered}
\]}} & \multicolumn{2}{|l|}{IDLING CURRENT (mA)} & \multicolumn{2}{|l|}{POWER.SUPPLY VOLTAGE (V)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{R}_{11} \\
\text { (OHMS) }
\end{gathered}
\]} \\
\hline & & \({ }^{1} \mathrm{CCl}\) & \({ }^{\text {I CC2 }}\) & \({ }^{V_{C C l}}\) & \({ }^{\mathrm{V}} \mathrm{CC} 2\) & \\
\hline & A & 9 & 10 & 9 & 12 & 00 \\
\hline \(B\) & B & 9 & 10 & 9 & 9 & 00 \\
\hline C & C & 7 & 6 & 6 & 6 & 00 \\
\hline & D & 8 & 8 & 3 & 3 & 220 \\
\hline
\end{tabular}

Fig. 5-Power output of the CA3020 and CA3020A as a function of collector-to-collector load resistance \(R_{O C}\).

Fig. 5 shows typical power output of the CA3020A at supply voltages of \(+3,+6,+9\), and +12 volts, and of the CA3020 at +6 and +9 volts, as measured in the basic class B amplifier circuit of Fig. 4. The CA3020A has higher power output for all voltage-supply conditions because of its higher peak-output-current capability.

Fig. 6 shows total harmonic distortion (THD) as a function of power output for each of the voltage conditions shown in Fig. 5. The values of the collector-to-collector load resistance (\(\mathrm{R}_{\mathrm{CC}}\)) and the idling-current adjust resistor (\(\mathrm{R}_{11}\)) shown in the figure are given merely as a fixed reference; they are not necessarily optimum values. Higher idling-current drain may be desired for low cross-over distortion, or a higher value of \(\mathbf{R}_{\mathrm{CC}}\) may be used for better sensitivity with less power-output capability. Because the maximum power output occurs at the same conditions of peak-current limitations, the sensitivities at maximum power output for the curves of Figs. 5 and 6 are approximately the same. Increasing the idling-current drain by reducing the value of the resistor \(\mathrm{R}_{11}\) also improves the sensitivity.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CURVE
CA3020 CA3020A} & \multicolumn{2}{|l|}{IDLING CURRENT (mA)} & \multicolumn{2}{|l|}{POWER-SUPPLY VOLTAGE (V)} & \[
\begin{gathered}
\mathrm{R}_{\mathrm{RCC}} \\
\text { (OHMS) }
\end{gathered}
\] & \[
\begin{aligned}
& R_{11} \\
& \text { (OHMS) }
\end{aligned}
\] \\
\hline & A & 15 & 24 & 9 & 12 & 200 & 1000 \\
\hline B & B & 15 & 24 & 9 & 9 & 150 & 1000 \\
\hline C & C & 12 & 14 & 6 & 6 & 100 & 1000 \\
\hline & D & 9 & 9 & 3 & 3 & 50 & 220 \\
\hline
\end{tabular}

Fig. 6-Total harmonic distortion of the CA3020 or CA3020A as a function of power output.

Fig. 7 illustrates the improvement in cross-over distortion at low power levels. Distortion at 100 milliwatts is shown as a function of idling current \(\mathrm{I}_{\mathrm{CC}_{2}}\) (output stages only). There is a small improvement in total harmonic distortion for a large increase in idling current as the current level exceeds 15 milliamperes.

\section*{APPLICATIONS}

Audio Amplifiers. The circuit shown in Fig. 4 may be used as a highly efficient class B audio power-output circuit in such applications as communications systems, AM or FM radios, tape recorders, phonographs, intercom sets, and linear mixers. Fig. 8 shows a modification of this
circuit which may be used as a transformerless audio amplifier in any of these applications or in other portable instruments. The features of this circuit are a power-output capability of 310 milliwatts for an input of 45 millivolts, and a high input impedance of 50,000 ohms. The idlingcurrent drain of the circuit is 24 milliamperes. The curves of Fig. 5 may be used to determine the value of the center-tapped resistive load required for a specified poweroutput level (the indicated load resistance is divided by two).

Fig. 7-Total harmonic distortion as a function of idling current for a supply voltage of 6 volts and an output of 100 milliwatts.

The CA3020 or CA3020A provides several advantages when used as a sound output stage or as a preamplifierdriver in communications equipment because each type is a compact and low-power-drain circuit. The squelching requirement in such applications is simple and economical.

Fig. 8-310-milliwatt audio amplifier without transformers.

Fig. 9 shows a practical method of providing squelch to the CA3020 or CA3020A. When the squelch switching transistor \(\mathrm{Q}_{\mathrm{s}}\) is in the "on" state, the CA3020 or CA3020A

Fig. 9-Method of applying squelch to the CA3020 or CA3020A to save idling dissipation.
is "off" and draws only fractional idling dissipation. The only current that flows is that of the buffer-amplifier transistor \(\mathrm{Q}_{1}\) in the integrated circuit and the saturating current drain of \(\mathrm{Q}_{\mathrm{s}}\). For a circuit similar to that of Fig. 8, the squelched condition requires an idling current of approximately 7 milliamperes, as compared to a normal idling-current drain of 24 milliamperes.

In applications requiring high gain and impedance matching, the CA3020 or CA3020A can be adapted for use without complex circuit modifications. Detectors having low signal outputs or high impedances can be easily matched to the input of the CA3020 or CA3020A buffer amplifier. The typical integrated-circuit input impedance of 55,000 ohms may be too low for crystal output devices such as phonograph pickups, but the sensitivity may be sacrificed to impedance-match at the input while still providing adequate drive to the CA3020 or CA3020A. Both types may be used in tape recorders as high-gain amplifiers, bias oscillators, or record and playback amplifiers. The availability of two input terminals permits the use of the CA3020 or CA3020A as a linear mixer, and thus adds to its flexibility in systems that require adaptation to multiple functions, such as communications equipment and tape recorders.

Fig. 10 illustrates the use of the audio amplifier shown in Fig. 4 in an intercom in which a listen-talk position switch controls two or more remote positions. Only the speakers, the switch, and the input transformer are added to the basic audio amplifier circuit. A suitable power supply for the intercom could be a 9 -volt battery used intermittently rather than continuously.

Wide-Band Amplifiers. A major general-purpose application of the CA3020 and CA3020A is to provide high gain and wide-band amplification. The CA3020 and CA3020A

\(T_{1}\) : Primary 4 ohms,
Secondary 25,000 ohms;
Stancor A4744 or equiv.
\(\mathrm{T}_{2}\) : Better Coil and Transformer DF1 084, Thordarson TR-192, or equiv.
Speakers: 4 ohms
Fig. 10-Intercom using CA3020 or CA3020A.
have typically flat gain-bandwidth response to 8 MHz . Although the circuits are normally biased for class B operation, only the output stages operate in this mode. If proper dc bias conditions are applied, the output stages may be operated as linear class A amplifiers.

Fig. 11 shows the recommended method for achieving an economical and stable class A bias. The differentialamplifier portion of the CA3020A is placed at a potential

Fig. 11-Wide-band video amplifier illustrating economical and stable class A bias of CA3020A.
above ground equal to the base-to-emitter voltage \(\mathrm{V}_{\text {be }}\) of the integrated-circuit transistors (0.5 to 0.7 volt). In this condition, the output stages have an emitter-current bias approximately equal to the base-to-emitter voltage divided
by the emitter-to-ground resistance. The circuit in Fig. 11 is a wide-band video amplifier that provides a gain of 38 dB at each of the push-pull outputs, or 44 dB in a balanced-output connection. The \(3-\mathrm{dB}\) bandwidth of the circuit is 30 Hz to 8 MHz . Higher gain-bandwidth performance can be achieved if the diode-to-ground voltage drop at terminal 12 is reduced. The lower voltage drop permits the use of a higher ratio of output-stage collector-to-emitter resistors without departure from the desired portion of the class A load line. It is important to note that the temperature coefficient of the terminal-12-toground reference element should be sufficiently low to prevent a large change in the current of the output stages.

The same method for achieving class A bias is used in the large-signal-swing output amplifier shown in Fig. 12.

Fig. 12-Large-signal-swing output amplifier using CA3020 or CA3020A.

Either the CA3020 or the CA3020A may be used in this circuit with power supplies below +18 volts; the CA3020A can also be used with B + voltages up to 25 volts with non-inductive loads. The circuit of Fig. 12 provides a gain of 60 dB and a bandwidth of 3.2 MHz if the output transistor \(Q_{7}\) has a bypassed emitter resistor. With an unbypassed output emitter resistor, the gain is 40 dB and the bandwidth is 8 MHz . The output stage can deliver a 5 -volt-rms signal when a supply of +18 volts is used. For better performance in this type of circuit, the input signal is coupled from the buffer amplifier \(Q_{1}\) to the input terminal 3 of the differential amplifier. This arrangement provides higher gain because the collector resistor of the differential-amplifier transistor \(Q_{3}\) is larger than that of \(Q_{2}\). (This difference results from a requirement of differential drive balance that is not used in this circuit.) In addition, the terminals of the unused output transistor \(\mathrm{Q}_{6}\) help to form an isolating shield between the input at terminal 3 and the output at terminal 7. This cascade of amplifiers has a single phase inversion at the output for much better stability than could be achieved if terminal 4 were used as the output and terminal 3 as the input.

Fig. 13 illustrates the use of the CA3020 or CA3020A as a class A linear amplifier. This circuit features a very
low output impedance and may be used as a line-driver amplifier for wide-band applications up to 8 MHz . The circuit requires a 0.12 -volt peak-to-peak input for a singleended output of 1 volt or a balanced peak-to-peak output of 2 volts from a 3 -ohm output impedance at each emitter. The input impedance is specified as 7800 ohms, but is primarily a function of the external 10,000 -ohm resistor that provides bias to \(\mathrm{Q}_{1}\) from the regulating terminal 11.

Fig. 13-Class A linear amplier using CA3020 or CA3020A.

Fig. 14 illustrates the practical use of the CA3020 or CA3020A as a tuned amplifier. This circuit uses dc biasing similar to that shown previously, and has a gain of 70 dB at a frequency of 160 kHz . The CA3020 or CA3020A can be used as a tuned rf amplifier or oscillator at frequencies well beyond the \(8-\mathrm{MHz}\) bandwidth of the basic circuit.

Fig. 14-160-kHz tuned amplifier using the CA3020 or CA3020A.

Driver Amplifiers. The high power-gain and power-output capabilities of the CA3020 and CA3020A make these integrated circuits highly suitable for use as drivers for higher-power stages. In most applications, the full poweroutput capability of the circuit is not required, and large emitter resistors may be used in the output stage to reduce
distortion. The CA3020 and CA3020A can drive any trans-former-coupled load within their respective ratings. Several examples of typical applications are given below.

Fig. 15 illustrates the use of the CA3020 or CA3020A to drive a germanium power-output transistor to a 2.5 watt level. Because the integrated circuit is required to deliver a maximum power output of less than 50 milliwatts, an unbypassed emitter resistor can be used in the output stage to reduce distortion. Sensitivity for an output of 2.5 watts is 3 millivolts; this figure can be improved at a slight increase in distortion by reduction of the 4.7 -ohm resistors between terminals 5 and 6 and ground.

\(T_{1}\) : primary impedance, 10,000 ohms; center-tapped at 160 ohms; primary direct current, 2 milliamperes; Thordarson TR-207 (entire secondary), or equiv.
\(\mathrm{T}_{2}\) : primary impedance, 20 ohms; primary direct current, 0.6 ampere; secondary, 4 ohms; Thordar son TR-304, Stancor TP62, or equiv.

Fig. 15-2.5-watt class A audio amplifier using the CA3020 or CA3020A as a driver amplifier.

\(T_{1}\) : primary impedance, 4,000 ohms; center-tapped; secondary impedance, 600 ohms; center-tapped, split; Thordarson TR-454 or equivalent.

Fig. 16-10-watt single-ended class B audio amplifier using the CA3020 or CA3020A as a driver amplifier.

Because so little of the power-output capability of the CA3020 or CA3020A is used, higher-power class B stages can easily be accommodated by selection of suitable output transistors and appropriate transformers.

Fig. 16 shows a medium-power class \(B\) audio amplifier in which the CA3020 or CA3020A is used as a driver. The output stage uses a pair of TO-3-type germanium
output transistors which must be mounted on a heat sink for reliable operation. Idling current for the entire system is 70 milliamperes from the 35 -volt supply. Sensitivity is 10 millivolts for an output of 10 watts.

Motor Controller and Servo Amplifier. The CA3020 or CA3020A may be used as a \(40-\mathrm{to}-400-\mathrm{Hz}\) motor controller and servo amplifier, as shown in Fig. 17.

Fig. 17-Motor controller and servo amplifier using CA3020 or CA3020A.

\title{
Principal Features and Applications of the RCA-CA3040 Integrated-Circuit Wideband Amplifier
}

\author{
by \\ W. M. Austin
}

The RCA-CA3040 is a monolithic integrated circuit designed for use in wideband video and intermediatefrequency amplifier applications to frequencies as high as 100 MHz . The device, offered in a 12-pin TO-5 package, features a balanced differential voltage gain of 37 dB with less than 1 dB of imbalance and provides a typical \(3-\mathrm{dB}\) bandwidth of 55 MHz . Useful voltage gain is well beyond the \(3-\mathrm{dB}\) frequency roll-off point which, in some applications, extends to frequencies up to 200 MHz . Additional features of the CA3040 include temperature compensation for gain and voltage over the -55 to \(125^{\circ} \mathrm{C}\) temperature range, a choice of zero or \(180-\) degree phase shift from input to output terminals, and high input and low output impedance characteristics over a broad bandwidth. This Note describes the operation of the CA3040, its electrical characteristics and ratings, and its primary application as a wideband amplifier.

\section*{CIRCUIT DESCRIPTION}

Fig. 1 shows the schematic diagram for the CA3040 circuit. The heart of this circuit consists of two differentially connected cascode amplifiers that form a so-
called "differential cascode" amplifier. The transistors \(Q_{3}\) and \(Q_{4}\) are common-emitter amplifiers which are connected at the emitters to form the differential transfer junction. The common-base transistors \(Q_{5}\) and \(Q_{6}\) are emitter-driven from the common-emitter transistors \(Q_{3}\) and \(Q_{4}\), respectively, to form two differential-cascode amplifier pairs.

Each common-emitter amplifier is buffer-isolated from the input terminals by an emitter-follower stage for high input impedance and minimum co-channel phase pulling. Each common-base amplifier of the cascode is coupled to the output terminals by use of an emitterfollower stage for low impedance at the output terminals.

When the signal flow through the device is from terminal 4 to terminal 12 and from terminal 6 to terminal 10 , there is a 180 -degree internal phase shift; when signal flow is from terminal 4 to terminal 10 and from terminal 6 to terminal 12, the phase shift is zero. Fig. 2 shows a signal-flow diagram for the former case. The dc feedback loop shown is a bias-selection and temperaturetracking network. The bias network consists of reference diodes \(D_{1}\) and \(D_{2}\), transistor \(Q_{9}\), and resistors \(R_{3}\),

ALL RESISTORS IN OHMS
Fig. 1 - Schematic diagram of the CA3040 wideband amplifier.

Fig. 2 - Signal-flow diagram of the CA3040.
\(R_{4}, R_{7}, R_{8}, R_{9}\), and \(R_{10}\). The bias network selected by proper connection of terminals \(3,7,8\), and 9 determines the "mode" of desired temperature tracking.

\section*{BIAS MODES}

The dc bias-point stability or ac gain stability of the CA3040 is maintained over the temperature range of -55 to \(125^{\circ} \mathrm{C}\) by the choice of two bias modes. These bias modes are selected by proper connection of the transistor \(Q_{9}\) biasing network. Fig. 3 shows the bias modes for (a) constant voltage and (b) constant gain.

\[
\begin{aligned}
& \text { ALL RESISTORS IN OHMS. } \\
& \text { ALL CAPACITORS IN MICROFARADS }
\end{aligned}
\]
(a)

ALL RESISTORS IN OHMS
ALL CAPACITORS IN MICROFARADS
(b)

Fig. 3 - Bias configurations for the CA3040 using a single 12-volt power supply: (a) constant-voltage bias; (b) constant-gain bias.

In the constant-voltage bias arrangement, terminals 3 and 8 are open, and terminals 7 and 9 are externally connected. This circuit yields a constant-voltage output for applications that use dc coupling to succeeding stages or that require maximum dynamic range over the specified temperature. DC voltage variation in this mode is less than 0.1 volt over the entire temperature range; ac gain variation is \(\pm 2.0 \mathrm{~dB}\).

In the constant-gain bias arrangement, terminals 3 and 9 are externally connected, terminal 7 is open, and
terminal 8 is externally connected to the substrate terminals 5 and 11. In this mode, the ac gain is extremely stable (typical variation is 0 dB); the dc variation at the output terminals is \(\pm 0.8\) volt.

For most applications, the constant-voltage bias mode is preferred. This mode provides typical ac-gain variation of less than 0.5 dB over the range from room temperature \(\left(25^{\circ} \mathrm{C}\right)\) to \(85^{\circ} \mathrm{C}\) ambient. The dynamic range in this mode remains high, and the circuit exhibits less distortion and greater common-mode range for largesignal output swings. Finally, this mode requires one less terminal connection and provides a less complex layout design than that required for the constant-gain circuit.

Both modes have identical power-supply requirements, as illustrated in Figs. 3 and 4. Fig. 3 shows the use of a single 12 -volt power supply, and Fig. 4

Fig. 4 - Bias configurations for the CA3040 using balanced dual (\(\pm 6\)-volt) power supplies; (a) constantvoltage bias; (b) constant-gain bias.
shows balanced dual positive and negative 6 -volt power supplies. In Fig. 3(a) and 3(b), the inputs are biascoupled to terminal 1, which is a reference to the center point of the power supply. Although this connection is most commonly used to maintain the common-mode range, any dc supply or "stiff"' bleeder (at one-half the powersupply voltage) may be used. It should be noted that terminal 1 should not be direct-coupled to any external
circuit except as a bias source; otherwise, the input transistors or the temperature-compensation characteristic will not remain within the limits.

\section*{CHARACTERISTICS AND RATINGS}

The high-frequency capability of the CA3040 is a characteristic of the advanced design that has been developed in the second generation of monolithic integrat-ed-circuit devices. The following are typical performance characteristics of the CA3040.

Fig. 5(a) shows gain as a function of frequency for the CA3040. The test circuit used to obtain this curve is shown in Fig. 5(b). The 3-dB bandwidth is typically 55 MHz and the minimum is 40 MHz at either differential output when terminal 4 is driven from a single-ended 50 -ohm source. At 1 MHz , using a 63 -millivolt output level, imbalance is not greater than \(\pm 1 \mathrm{~dB}\). In contrast

Fig. 5 - (a) Voltage gain as a function of frequency and (b) test circuit of CA3040.
to the more common specification of minimum gain at high frequency, the performance of the CA3040 is given in terms of flat bandwidth relative to the \(1-\mathrm{MHz}\)-gain test point.

Fig. 6(a) shows the input resistance and capacitance characteristics of the CA3040. (The input resistance \(R_{\text {IN }}\) is plotted as conductance \(G_{\text {IN }}\) because the resistance magnitude approaches infinity at approximately 22 MHz .) The test circuit used to obtain these data is shown in Fig. 6(b). These curves were obtained

(a)

(b)

Fig. 6 - (a) Input impedance characteristics and (b) test circuit of CA3040.
with the output terminals shorted and by use of the constant-voltage bias configuration. Although this form of bias has a second-order effect on the input and output capacitance, the input and output capacitance and conductance values for the circuits of Figs. 3 and 4 do not change appreciably from those shown in Fig. 6(a). The negative value of input resistance remains high over the high-gain region and has sufficient magnitude (several thousand ohms) at 150 MHz so that the amplifier remains stable for practical values of the input matching impedance. From 1 to 10 MHz , this resistance remains approximately 150 kilohms. The input capacitance \(\mathrm{C}_{\text {IN }}\) of the CA3040 is approximately 2.2 picofarads and remains relatively constant over the useful frequency range.

Fig. 7(a) shows the output resistance and output capacitance of the CA3040 amplifier as a function of frequency. The test circuit used for thesemeasurements is shown in Fig. 7(b). The output resistance of the cir-
ciut is approximately 125 ohms at low frequencies and gradually rises to 215 ohms at 100 MHz , but decreases again to 200 ohms at 150 MHz . Although a lower output impedance (50 ohms or less) is more desirable, the higher output impedance results in greater temperaturestable gain. When necessary, however, the output impedance can be reduced by addition of another emitterfollower stage. Even when this stage is directly coupled to the output, it has little effect on the dc stability for bias-current drains less than 0.1 milliampere.

Fig. 8(a) shows the \(30-\mathrm{MHz}\) noise figure as a function of source resistance in the test circuit presented in Fig. 8(b). This amplifier is similar to the con-
stant-voltage bias circuit shown in Fig. 4(a). The gain and frequency response of the amplifiers are equivalent. The 1 -kilohm resistors at the input stage of the circuit of Fig. 5(a), however, produce a \(2-\mathrm{dB}\) increase in the noise figure when the CA3040 is matched for maximum power transfer. For low-noise applications, therefore, these shunt-biasing resistors should be replaced by lowloss input matching circuits which can include rf chokes, a transformer, or inductive-capacitive input circuits. It is important that the dc resistances of the two stages remain equal. An unequal dc voltage drop across the bias network produces a large dc offset at the output.

Fig. 7 - (a) Output impedance characteristics and (b)
test circuit of CA3040.

(a)

SOURCE RESISTANCE (RS) -OHMS

Fig. 8. - (a) Typical \(30-\mathrm{MHz}\) noise figure and (b) test
circuit of CA3040.

Fig. 9(a) shows the \(1 / \mathrm{f}\) noise characteristics of the CA3040 in the test-amplifier circuit of Fig. 9(b). The curves represent different values of source resistance. The bandwidth of the test amplifier circuit is restricted to adapt the circuit to a Quan-Tech noise analyzer. The equivalent input \(1 / \mathrm{f}\) noise is expressed in nanovolts per

(a)

(b)

Fig. 9 - (a) Equivalent input noise voltage as a function of frequency and (b) test circuit of CA3040.
square root of the frequency. The limiting low-frequency l/f noise approaches 125 nanovolts per \(\sqrt{\mathrm{Hz}}\) at 10 Hz and drops to approximately 25 nanovolts per \(\sqrt{\mathrm{Hz}}\) at 100 Hz . Above 200 Hz , the noise component is primarily shot noise.

The noise figure NF is related to the noise voltage \(\mathrm{E}_{\mathrm{N}}\) as follows:
\(N F=20 \log _{10} \frac{E_{N}}{\left(4 \mathrm{KTR}_{\mathrm{S}}\right)^{1 / 2}}=20 \log _{10} \frac{\mathrm{E}_{\mathrm{N}}}{126.6 \times 10-12\left(\mathrm{R}_{\mathrm{S}}\right)^{1 / 2}}\),
where \(E_{N}\) is the noise voltage in volts per \(\sqrt{\mathrm{Hz}}, \mathrm{K}\) is Boltzmann's constant (\(1.38 \times 10^{-23}\) joule \(/{ }^{\circ} \mathrm{K}\)), T is the temperature in degrees Kelvin, and \(R_{S}\) is the external source resistance in ohms.

The CA3040 has a linear phase-shift characteristic. Fig. 10 shows the amplifier phase shift from input terminal 6 to output terminal 10 and the differential phase between outputs over the frequency range from 1 to 60 MHz . The test amplifier of Fig. 5(b) was used to obtain the data for these curves. The resistive portion of the output-impedance load in Fig. 5(b) consists primarily of the 1 -kilohm resistors. The capacitive load consists of all essential circuitry as well as BNC connectors and phase-meter input probes that represent approximately 8.5 picofarads. Any imbalance from 180 degrees of differential phase at the output terminals remains small in comparison to the reference input-to-output phase shift and is typically less than 1 degree at frequencies up to 50 MHz . Fig. 10 shows the differential output phase

Fig. 10 - Amplifier phase shift and differential output phase as a function of frequency for the CA3040 test circuit of Fig. 5(b).
with terminal 10 given as the reference phase. The imbalance exists because the feedthrough capacitance from terminal 10 to terminal 9 is greater than that from terminal 12 to terminal 9. The constant-current transistor (\(Q_{9}\) of Fig. 1) amplifies this unbalanced stray capacitance coupling. A fundamental correction for phase can be made by adjustment of the output-capacitance load. In Fig. 5(b), a variable capacitance \(C_{f}\) is used between terminals 9 and 12 for this purpose. The addition of \(\mathrm{C}_{\mathrm{f}}\) makes possible adjustment of the output signals for phase and gain balance at the high-frequency roll-off point.

Fig. 11(a) shows the frequency response of the CA3040 for various values of load resistance. The test circuit used for these measurements is shown in Fig. 11(b). This amplifier is biased from a balanced dual power supply, but is otherwise similar to the circuit of Fig. 5(b). The curves are valid for either method of biasing.

The low -frequency portion of the curves of Fig. 11(a) shows the decrease in gain with decreased load resistance which is characteristic of the 125 -ohm output resistance. The higher-frequency range shows the reduction in bandwidth as the load resistance is decreased.

Fig. 11 - (a) Frequency response curves and (b) test circuit for CA3040.

This output characteristic is typical of emitter-follower circuits and is caused by a reduction in transistor beta at higher frequencies.

\section*{WIDEBAND AMPLIFIERS}

In the basic amplifier circuit of Figs. 5(b) and 11(b), the bandwidth of the CA3040 may be increased by use of conventional RL and RC peaking, as well as feedback coritection, at the input and output stages. Fig. 12(a) shows a typical wideband amplifier configuration using the CA3040; Fig. 12(b) shows its frequency response. The circuit has a wide-band series-peaked bandwidth greater than 90 MHz at the \(3-\mathrm{dB}\) point and greater than 85 MHz to within \(\pm 1 \mathrm{~dB}\) of gain variation. In the circuit of Fig. 12(a), care is taken to avoid "over-peaking" of the input at higher signal levels so that limiting and distortion effects are minimized.

The frequency-response curves shown in Fig. 12(b),

Fig. 12 - (a) Typical CA3040 wideband-amplifier circuit with series input peaking and (b) frequency response characteristic.
as well as in Figs. 5(a) and 11(a), were obtained with conventional output circuits that contain BNC connectors coupled to the rf voltmeters and produce a total capacitive load of approximately 8 to 9 picofarads. The curve of Fig. 5(a) shows a roll-off characteristic of approximately 12 dB per octave in the 100 -to \(-200-\mathrm{MHz}\) range which is the result of capacitive loading of the cascode and emitter-follower output stages. These output stages may be peaked for partial compensation of the bandwidth loss that results from emitter-follower output loading. The remaining loss in bandwidth, however, results from internal circuit effects and is less easily corrected.

Fig. 13 (a) shows a wideband-amplifier circuit that produces \(50 \mathrm{~dB} \pm 1 \mathrm{~dB}\) of gain up to 53 MHz , as shown by the curve of Fig. 13 (b). The curve shown is for an input-drive signal of 1.0 millivolt rms although the post amplifier can provide an output of 1.0 volt rms before limiting. The post amplifier has a broadband
capability of approximately 85 MHz and uses adjustable rf coils, Miller Type 20A_RBI, or equivalent. The adjustable capacitor at the emitter or the cascode serves to "over peak" the post amplifier and compensate for the RC roll-off of the CA3040 amplifier. With this type of peaking compensation, a flat response that deviates less than 0.2 dB up to 50 MHz is obtained. Wideband capability of the post amplifier is also achieved through the use of high-performance silicon \(n-p-n\) transistors. The RCA-40235 has a high gain-bandwidth product \(f_{T}\) and a low collector-to-base feedback capacitance \(\mathrm{C}_{\mathrm{cb}}\) suitable for television rf applications. The 2N5187 is a highspeed switching transistor that has all the basic requirements for economical line-driver applications. The peaking circuit is of the series-shunt type at the collector of the RCA-40235 cascode. Because high idle current is needed in the amplifier output stage, the output level before limiting is set for the minimum requirement necessary for the desired level of peak-to-peak output signal. In this case, a peak-to-peak signal of 2 volts is easily obtained to drive a 50 ohm line that is matched at both ends.

The CA3040 amplifier in Fig. 13(a) is the same as the amplifier of Fig. 5(a), although the basic circuit can use any bias mode or power-supply configuration shown previously. In this particular case, the simple 12 -volt power supply (at approximately 60 milliamperes of current drain) satisfies the requirement for a low-cost, wideband circuit. However, when several supply voltages are available, the circuit of Fig. 13(a) can be a direct-coupled combination of the balanced dual \(\pm 6\) volt CA3040 circuit and the post amplifier. This post amplifier which uses RCA-40235 transistors in a cascode configuration, is designed for dc base voltages of 3 and 6 volts.

\section*{STABILITY}

In the classical analysis, stability is evaluated as a function of the transfer impedance parameter. The number of possible operating modes and bias options, each of which is evaluated over the useful frequency range, limits the practicality of this type of analysis for the CA3040. Such an analysis would be further comp-

Fig. 13 - (a) \(58-\mathrm{MHz}\) wideband amplifier including post amplifier and (b) frequency response characteristic.
licated by the fact that \(y\)-parameter data are applicable only at the discrete frequency at which they are taken. In view of these factors, the characteristics of the CA3040 are guaranteed to have a reasonable stability margin through evaluations in test circuits and by integrity of design. Poor circuit design or improper layout, however, can reduce the stability margin so that oscillations can possibly result.

The differential-amplifier configuration of the CA3040 offers the advantage in wideband amplifier applications of neutralizing its own feedback. For this reason the circuit layout and printed-board pattern should be designed with a high degree of symmetry.

For stability purposes, terminal 9 of the CA3040 should not be bypassed because common-base oscillations
may result in the constant-current transistor \(\mathrm{Q}_{9}\). This effect, however, may be used to advantage in oscillator and mixing applications.

For some applications, such as wideband if amplifiers, it is desirable to limit the high-frequency characteristics of the CA3040. In this case, series resistors in the base input leads of transistors \(Q_{1}\) and \(Q_{2}\) are recommended. Resistances of 10 to 100 ohms in series with terminals 4 and 6 not only limit the bandwidth but also act as parasitic suppressors.

\section*{CONSTRUCTION}

The basic construction of the CA3040 generally follows the usual recommendations for high-frequency wideband amplifiers. Figs. 14 and 15 illustrate the

Fig. 14 - Printed-circuit board for the CA3040 wideband amplifier circuit of Fig. 5(b) using constant-voltage bias configuration and a single 12 -volt power supply: (a) top view; (b) bottom view.

Fig. 15 - Printed-circuit board for the CA3040 wideband amplifier circuit of Fig. 8(b) using constant-gain bias configuration and balanced dual (\(\pm 6\)-volt) power supplies; (a) top view; (b) bottom view.
printed-board layout used for wideband applications of the CA3040. Fig. 16(a) is an exact-scale photograph of the printed board used in the circuits of Figs. 14 and 15. Figs. 16(b) and 16(c) show modifications in this board made to accommodate the different connections for the single 12 -volt and balanced dual 6 -volt power supplies. Fig. 16(c) shows an alternate mounting arrangement for the CA3040 in which lead connections are made through individual holes in the printed board. The printed board layout is intended for use with the con-stant-voltage bias connection in which terminal 7 is connected to terminal 9. Before the CA3040 is mounted, the pins for terminals 3 and 8 are cut off because they are not used in these circuits.

Fig. 16 - Printed-circuit board used for the construction of wideband amplifier circuits shown in this Note: (a) exact-scale photograph; (b) modifications required to accommodate connections for the single 12 -volt dc supply; (c) modifications required to accommodate connections for balanced dual 6 -volt supplies.

The balanced dual-power-supply circuit of Fig. 15 requires greater attention to layout because of the additional difficulty in bypassing the negative supply. The emitter circuits, as well as the substrate and case, of the CA3040 are common to the negative supply terminals 5 and 11. This arrangement permits the negative powersupply source impedance to become a common element for feedback. For wideband applications, however, this arrangement presents a problem for bypassing these circuit elements. The series lead inductance \(L\) in microhenries is given by
\[
L=0.005 \ell\left[2.3 \log _{10}\left(\frac{4 \ell}{\mathrm{~d}}-0.75\right)\right]
\]
where \(\ell\) is the lead length and d is the lead diameter, both in inches.

Because this inductance is appreciable for some values of bypass capacitance, the circuit may resonate within the bandwidth of the amplifier. This resonance always exists and, therefore, requires extensive bypassing. As a result, the use of two and sometimes three capacitors at a bypass point is necessary for adequate bypassing of all frequencies in the pass band. In addition, the use of ferrite beads, chokes, and resistors may be necessary for suppression of "ripples" or "suckout" in the pass band. Because of these problems a knowledge of the high-frequency self-resonant characteristics of passive circuit components up to frequencies near the unity-gain point of the amplifier device is essential. For the CA3040, this frequency may reach 800 MHz .

As an added precaution in minimizing inductance, the leads of the CA3040 should be trimmed to the minimum practical length. Lead trimming, forming, and soldering, however, should be performed at least \(1 / 32\) inch from the case to avoid damage to the package. Each lead of the CA3040 is inserted through a hole which has a sufficiently large diameter so that the lead just passes through without forcing. The leads are then folded out and soldered to their respective connections. Leadless disc capacitors are used with the circuit board slotted at the closest bypass point. The capacitors are soldered directly in vertical position to the printed board.

Fig. 17 shows the constructed wideband post amplifier in which most parts are easily identifiable. Because the case and collector lead of each 2N5187 transistor are connected together, direct bypassing to the case was used in this particular layout to reduce lead inductance in the collector circuit of the 2N5187. Leadless disc capacitors are used at critical bypass points. The terminal tie-points are teflon-insulated stand-offs. Input and output are shown as BNC connectors coupled by 0.1 -microfarad disc capacitors. The output cable and 50 -ohm load of Fig. 13(a) are not shown.

Fig. 17 - Photograph of constructed post amplifier of Fig. 13(a).

\title{
ル®B/
}

Linear Integrated Circuits
Solid State Division

\title{
Some Applications of A Programmable Power Switch/Amplifier
}

\author{
by L. R. Campbell and H. A. Wittlinger
}

The RCA-CA3094 unique monolithic programmable power switch/amplifier IC consists of a high-gain preamplifier driving a power-output amplifier stage. It can deliver average power of 3 watts or peak power of 10 watts to an external load, and can be operated from either a single or dual power supply. This Note briefly describes the characteristics of the CA3094, and illustrates its use in the following circuit applications:

Class A instrumentations and power amplifiers
Class A driver-amplifier for complementary power transistors
Wide-frequency-range power multivibrators
Current- or voltage-controlled oscillators
Comparators (threshold detectors)
Voltage regulators
Analog timers (long time delays)
Alarm systems
Motor-speed controllers
Thyristor-firing circuits
Battery-charger regulator circuits
Ground-fault-interrupter circuits

\section*{Circuit Description}

The CA3094 series of devices offers a unique combination of circuit flexibility and power-handling capability. Although these monolithic IC's dissipate only a few microwatts when quiescent, they have a high current-output capability (100 milliamperes average, 300 milliamperes peak) in the active state, and the premium-grade devices can operate at supply voltages up to 44 volts.

Fig. 1 shows a schematic diagram of the CA3094. The portion of the circuit preceding transistors \(\mathrm{Q}_{12}\) and \(\mathrm{Q}_{13}\) is the preamplifier section and is generically similar to that of the RCA-CA3080 Operational Transconductance Amplifier (OTA). \({ }^{1,2}\) The CA3094 circuits can be gain-programmed by either digital and/or analog signals applied to a separate

Amplifier-Bias-Current (\(\mathrm{I}_{\mathrm{ABC}}\)) terminal (No. 5 in Fig. 1) to control circuit sensitivity. Response of the amplifier is essentially linear as a function of the current at terminal 5 . This additional signal input "port" provides added flexibility in many applications. Thus, the output of the amplifier is a function of input signals applied differentially at terminals 2 and 3 and/or in a single-ended configuration at terminal 5. The output portion of the monolithic circuit in the CA3094 consists of a Darlington-connected transistor pair with access provided to both the collector and emitter terminals to provide capability to "sink" and/or "source" current.

Fig. 1-CA3094 circuit schematic diagram.
The CA3094 series of circuits consists of six types that differ only in voltage-handling capability and package options, as
shown below; other electrical characteristics are identical.

Package Options
CA3094S; CA3094T
CA3094AS; CA3094AT
CA3094BS; CA3094BT

Maximum Voltage Rating
24 V
36 V
44 V

The suffix " S " indicates circuits packaged in TO-5 enclosures with leads formed to an 8-lead dual-in-line configuration (0.1" pin spacing). The suffix " \(T\) " indicates circuits packaged in 8 lead TO-5 enclosures with straight leads. The generic CA3094 type designation is used throughout this Note.

\section*{Class A Instrumentation Amplifiers}

One of the more difficult instrumentation problems frequently encountered is the conversion of a differential input signal to a single-ended output signal. Although this conversion can be accomplished in a straightforward design through the use of classical op-amps, the stringent matching requirements of resistor ratios in feedback networks make the conversion particularly difficult from a practical standpoint. Because the gain of the preamplifier section in the CA3094 can be defined as the product of the transconductance and the load resistance \(\left(g_{m} R_{L}\right)\), feedback is not needed to obtain predictable open-loop gain performance. Fig. 2 shows the CA3094 in this basic type of circuit.

Fig.2-Open-loop instrumentation amplifier with differential input and single-ended output.

The gain of the preamplifier section (to terminal No. 1) is \(\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}=\left(\begin{array}{lll}5 & \times 10^{-3}\end{array}\right)\left(\begin{array}{ll}36 \times 10^{3}\end{array}\right)=180\). The transconductance \(g_{m}\) is a function of the current into terminal No. 5 , \(\mathrm{I}_{\mathrm{ABC}}\), the amplifier-bias-current. In this circuit an \(\mathrm{I}_{\mathrm{ABC}}\) of 260 microamperes results in a \(g_{m}\) of 5 millimhos. The operating point of the output stage is controlled by the 2 -kilohm potentiometer. With no differential input signal \(\left(\mathrm{e}_{\text {diff }}=0\right)\), this potentiometer is adjusted to obtain a quiescent output current \(\mathrm{I}_{\mathrm{O}}\) of 12 milliamperes. This output current is established by the 560 -ohm emitter resistor, \(\mathrm{R}_{\mathrm{E}}\), as follows:
\[
\mathrm{I}_{\mathrm{O}} \approx \frac{\left(\mathrm{~g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}\right)\left(\mathrm{e}_{\mathrm{diff}}\right)}{\mathrm{R}_{\mathrm{E}}}
\]

Under the conditions described, an input swing e diff of \(\pm 26\) millivolts produces a variation in the output current \(\mathrm{I}_{\mathrm{O}}\) of \(\pm 8.35\) milliamperes. The nominal quiescent output voltage is 12 milliamperes times 560 ohms or 6.7 volts. This output level drifts approximately -4 millivolts, or -0.0595 per cent, for each \({ }^{\circ} \mathrm{C}\) change in temperature. Output drift is caused by temperature-induced variations in the base-emitter voltage of the two output transistors, \(\mathrm{Q}_{12}\) and \(\mathrm{Q}_{13}\).

Fig. 3 shows the CA3094 used in conjunction with a re-sistive-bridge input network; and Fig. 4 shows a single-supply

Fig.3-Single-supply differential-bridge amplifier.
amplifier for thermocouple signals. The RC networks* connected between terminals 1 and 4 in Figs. 3 and 4 provide compensation to assure stable operation.

Fig.4-Single-supply amplifier for thermocouple signals.

\section*{Class A Power Amplifiers}

The CA3094 is attractive for power-amplifier service because the output transistor can control current up to 100 milliamperes (300 milliamperes peak), the premium devices *The components of the RC network are chosen so that \(\frac{1}{2 \pi \mathrm{RC}} \approx 2 \mathrm{MHz}\).
(CA3094B) can operate at supply voltages up to 44 volts, and the TO-5 package can dissipate power up to 1.6 watts when equipped with a suitable heat sink that limits the case temperature to \(55^{\circ} \mathrm{C}\).

Fig. 5 shows a Class A amplifier circuit using the CA3094A that is capable of delivering 280 milliwatts to a 350 -ohm resistive load. This circuit has a voltage gain of 60 dB and a

Fig.5-Class-A amplifier - 280-mW capability into a resistive load.
\(3-\mathrm{dB}\) bandwidth of about 50 kHz . Operation is stable witinout the use of a phase-compensation network. Potentiometer R is used to establish the quiescent operating point for class A operation.

The circuit of Fig. 6 illustrates the use of the CA3094 in a class A power-amplifier circuit driving a transformer-coupled load. With dual power supplies of +7.5 volts and -7.5 volts, a

Fig.6-Class-A amplifier with transformer-coupled load.
base resistor \(R_{B}\) of 30 kilohms, and an emitter resistor \(R_{E}\) of 50 ohms, CA3094 dissipation is typically 625 milliwatts. With supplies of +10 volts and -10 volts, \(\mathrm{R}_{\mathrm{B}}\) of 40 kilohms, and \(\mathrm{R}_{\mathrm{E}}\) of 45 ohms, the dissipation is 1.5 watts. Total harmonic
distortion is 0.4 per cent at a power-output level of 220 milliwatts with a reflected load resistance \(\mathrm{R}_{\mathbf{P}}\) of 310 ohms, and is 1.4 per cent for an output of 600 milliwatts with an \(\mathrm{R}_{\mathrm{P}}\) of 128 ohms. The setting of potentiometer R establishes the quiescent operating point for class A operation. The 1 -kilohm resistor connected between terminals 6 and 2 provides dc feedback to stabilize the collector current of the output transistor. The ac gain is established by the ratio of the 1 -megohm resistor connected between terminals 8 and 3 and the 1 -kilohm resistor connected to terminal 3 . Phase compensation is provided by the 680 -picofarad capacitor connected to terminal 1.

\section*{Class A Driver-Amplifier for Complementary Power Transistors}

The CA3094 configuration and characteristics are ideal for driving complementary power-output transistors; \({ }^{3}\) a typical circuit is shown in Fig. 7. This circuit can provide 12 watts of audio power output into an 8 -ohm load with intermodulation distortion (IMD) of 0.2 per cent when \(60-\mathrm{Hz}\) and \(2-\mathrm{kHz}\) signals are mixed in a \(4: 1\) ratio. Intermodulation distortion is shown as a function of power output in Fig. 8.

The large amount of loop gain and the flexibility of feedback arrangements with the CA3094 make it possible to incorporate the tone controls into a feedback network that is closed around the entire amplifier system. The tone controls in the circuit of Fig. 7 are part of the feedback network connected from the amplifier output (junction of the 330- and 47 -ohm resistors driven by the emitters of \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{3}\)) to terminal 3 of the CA3094. Fig. 9 shows voltage gain as a function of frequency with tone controls adjusted for "flat" response and for responses at the extremes of tone-control rotation. The use of tone controls incorporated in the feedback network results in excellent signal-to-noise ratio. Hum and noise are typically 700 microvolts (83 dB down) at the output.

In addition to the savings resulting from reduced parts count and circuit size, the use of the CA3094 leads to further savings in the power-supply system. Typical values of powersupply rejection and common-mode rejection are 90 dB and 100 dB , respectively. An amplifier with \(40-\mathrm{dB}\) gain and \(90-\mathrm{dB}\) power-supply rejection would require a 31 -millivolt powersupply ripple to produce one millivolt of hum at the output. Therefore, no filtering is required other than that provided by the energy-storage capacitors at the output of the rectifier system shown in Fig. 7.

For applications in which the operating temperature range is limited (e.g., consumer service) the thermal compensation network (shaded area) can be replaced by a more economical configuration consisting of a resistor-diode combination (8.2 ohms and 1N5391) as shown in Fig. 7.

\section*{Power Multivibrators (Astable and Monostable)}

The CA3094 is suitable for use in power multivibrators because its high-current output transistor can drive low-impedance circuits while the input circuitry and the frequency-determining elements are operating at micropower levels. A typical example of an astable multivibrator using the CA3094 with a

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Power Output (\(8 \Omega\) load, Tone Control set at "i \(\mathrm{at}^{\prime \prime}\) ')} \\
\hline Music (at 5\% THD, regulated supply) & 15 & w \\
\hline Continuous (at \(0.2 \% \mathrm{IMD}, 60 \mathrm{~Hz} \& 2 \mathrm{kHz}\) mixed in a \(4: 1\) ratio, unregulated supply) See Fig. 8 & 12 & W \\
\hline \multicolumn{3}{|l|}{Total Harmonic Distoration} \\
\hline At 1 W , unregulated supply & 0.05 & \% \\
\hline At 12 W , unregulated supply. & 0.57 & \% \\
\hline Voltage Gain. & 40 & dB \\
\hline Hum and Noise (Below continuous Power Output) & 83 & dB \\
\hline Input Resistance & 250 & \(k \Omega\) \\
\hline Tone Control Range & Fig. 9 & \\
\hline
\end{tabular}

Fig.7-12-watt amplifier circuit featuring true complementary-symmetry output stage with CA3094 in driver stage.

Fig.8-Intermodulation distortion vs. power output.
dual power supply is shown in Fig. 10. The output frequency fOUT is determined as follows:
\[
\mathrm{f}_{\mathrm{OUT}}=\frac{1}{2 \mathrm{RC} \ln [(2 \mathrm{R} 1 / \mathrm{R} 2)+1]}
\]

If \(R 2\) is equal to 3.08 R 1 , then fOUT is simply the reciprocal of RC.

Fig.9-Voltage gain vs. frequency.

Fig. 11 is a single-supply astable multivibrator circuit which illustrates the use of the CA3094 for flashing an incandescent lamp. With the component values shown, this circuit produces one flash per second with a 25 -per-cent "on"-time while delivering output current in excess of 100 milliamperes. During
the 75 -per-cent "off"-time it idles with micropower consumption. The flashing rate can be maintained within \(\pm 2\) per cent of the nominal value over a battery voltage range from 6 to 15 volts and a temperature excursion from 0 to \(70^{\circ} \mathrm{C}\). The CA3094 series of circuits can supply peak-power output in excess of 10 watts when used in this type of circuit. The frequency of oscillation \(\mathrm{f}_{\mathrm{OSC}}\) is determined by the resistor ratios, as follows:
\[
\mathrm{f}_{\mathrm{OSC}}=\frac{1}{2 \mathrm{RC} \ln \left[\left(2 \mathrm{R}_{1} / \mathrm{R}_{2}\right)+1\right]}
\]
where
\[
R 1=\frac{R_{A} R_{B}}{R_{A}+R_{B}}
\]

NOTE: \({ }^{\prime}\) OUT \(=\frac{1}{2 R C \ln \left(\frac{2 R_{1}}{R_{2}}+1\right)}\); If \(R_{2}=3.08 R_{1}\), \({ }^{{ }^{\prime} O U T}\) * \(\frac{1}{R C}\)
92Cs-20290
Fig. 10-Astable multivibrator using dual supply.

- FEATURES \(\quad 1\) FLASH/SEC. \({ }^{\dagger}\) OSC \(=\frac{1}{2 R C \ln \left[\left(2 R_{1} / R_{2}+1\right)\right]}\) WHERE \(R_{1}=\frac{R_{A} R_{B}}{R_{A}+R_{B}}\)
- \(25 \%\) DUTY CYCLE
- FREQUENCY INDEPENDENT OF V \({ }^{+}\)92Cs-20293

Fig.11-Astable multivibrator using single supply.
Provisions can easily be made in the circuit of Fig. 11 to vary the multivibrator pulse length while maintaining an essentially constant pulse repetition rate. The circuit shown in Fig. 12 incorporates a potentiometer \(\mathrm{R}_{\mathbf{P}}\) for varying the width of pulses generated by the astable multivibrator to drive a light-emitting diode (LED).

Fig.12-Astable power multivibrator with provisions for varying duty cycle.
Fig. 13 shows a circuit incorporating independent controls (\(\mathrm{R}_{\mathrm{ON}}\) and \(\mathrm{R}_{\mathrm{OFF}}\)) to establish the "on" and "off" periods of the current supplied to the LED. The network between points " \(A\) " and " \(B\) " is analogous in function to that of the 100 kilohm resistor R in Fig. 12.

Fig.13-Astable power multivibrator with provisions for independent control of LED "on-off" periods.

The CA3094 is also suitable for use in monostable multivibrators, as shown in Fig. 14. In essence, this circuit is a pulse counter in which the duration of the output pulses is independent of trigger-pulse duration. The meter reading is a function of the pulse repetition rate which can be monitored with the speaker.

Fig. 14-Power monostable multivibrator.

\section*{Current- or Voltage-Controlled Oscillators}

Because the transconductance of the CA3094 varies linearly as a function of the amplifier bias current (\(\mathrm{I}_{\mathrm{ABC}}\)) supplied to terminal 5 , the design of a current- or voltage-controlled oscillator is straightforward, as shown in Fig. 15. Fig. 16 and 17 show oscillator frequency as a function of \(I_{\text {ABC }}\) for a current-controlled oscillator for two different values of capacitor C in Fig. 15. The addition of an appropri-

Fig. 15-Current- or voltage-controlled oscillator.

Fig.16-Frequency as a function of \(I_{A B C}\) for \(C=1000 \mathrm{pF}\) for circuit in Fig. 15.
ate resistor (R) in series with terminal 5 in Fig. 15 converts the circuit into a voltage-controlled oscillator. Linearity with respect to either current or voltage control is within 1 per cent over the middle half of the characteristics. However, variation in the symmetry of the output pulses as a function of frequency is an inherent characteristic of the circuit in Fig. 15, and leads to distortion when this circuit is used to drive the phase detector in phase-locked-loop applications. This type of distortion can be eliminated by interposing an appropriate flip-flop between the output of the oscillator and the phaselocked discriminator circuits.

Fig. 17-Frequency as a function of \({ }^{\prime} A B C\) for \(C=100 \mathrm{pF}\) for circuit in Fig. 15.

\section*{Comparators (Threshold Detectors)}

Comparator circuits are easily implemented with the CA3094, as shown by the circuits in Fig. 18. The circuit of Fig. 18(a) is arranged for dual-supply operation; the input voltage exceeds the positive threshold, the output voltage swings essentially to the negative supply-voltage rail (it is assumed that there is negligible resistive loading on the output ter-

92Cs-20558
(b) SINGLE SUPPLY

Fig.18-Comparators (threshold detectors) - dual- and single-supply types.
minal). An input voltage that exceeds the negative threshold value results in a positive voltage output essentially equal to the positive supply voltage. The circuit in Fig. 18(b), connected for single-supply operation, functions similarly.

Fig. 19 shows a dual-limit threshold detector circuit in which the high-level limit is established by potentiometer R1

Fig.19-Dual-limit threshold detector.
and the low-level limit is set by potentiometer R2 to actuate the CA3080 low-limit detector. 1,2 A positive output signal is delivered by the CA3094 whenever the input signal exceeds either the high-limit or the low-limit values established by the appropriate potentiometer settings. This output voltage is approximately 12 volts with the circuit shown.

The high current-handling capability of the CA3094 makes it useful in Schmitt power-trigger circuits such as that shown in Fig. 20. In this circuit, a relay coil is switched whenever the

Fig.20-Precision Schmitt power-trigger circuit.
input signal traverses a prescribed upper or lower trip point, as defined by the following expressions:
\[
\begin{aligned}
& \text { Upper Trip Point }=30\left(\frac{\mathrm{R} 3}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3}\right) \\
& \text { Lower Trip Point } \cong(30-0.026 \mathrm{R} 1) \frac{\mathrm{R} 3}{\mathrm{R} 2+\mathrm{R} 3}
\end{aligned}
\]

The circuit is applicable, for example, to automatic ranging. With the values shown in Fig. 20, the relay coil is energized when the input exceeds approximately 5.9 volts and remains energized until the input signal drops below approximately 5.5 volts.

\section*{Power-Supply Regulators}

The CA3094 is an ideal companion device to the CA3085 series regulator circuits \({ }^{4}\) in dual-voltage tracking regulators that handle currents up to 100 milliamperes. In the circuit of Fig. 21, the magnitude of the regulated positive voltage provided by the CA3085A is adjusted by potentiometer R. A sample of this positive regulated voltage supplies the power for the CA3094A negative regulator and also supplies a refer-

Fig.21-Dual-voltage tracking regulator.
ence voltage to its terminal 3 to provide tracking. This circuit provides a maximum line regulation equal to 0.075 per cent per volt of input voltage change and a maximum load regulaof 0.075 per cent of the output voltage.

Fig. 22 shows a regulated high-voltage supply similar to the type used to supply power for Geiger-Mueller tubes. The CA3094, used as an oscillator, drives a step-up transformer which develops suitable high voltages for rectification in the RCA-44007 diode network. A sample of the regulated output voltage is fed to the CA3080A operational transconductance amplifier through the 198 -megohm and 910 -kilohm divider to control the pulse repetition rate of the CA3094. Adjustment of potentiometer R determines the magnitude of the regulated output voltage. Regulation of the desired output voltage is maintained within one per cent despite load-current variations of 5 to 26 microamperes. The dc-to-dc conversion efficiency is about 48 per cent.

\section*{Timers}

The programmability feature inherent in the CA3094 (and operational transconductance amplifiers in general) simplifies the design of presettable timers such as the one shown in

Fig. 23. Long timing intervals (e.g., up to 4 hours) are achieved by discharging a timing capacitor \(\mathrm{C}_{1}\) into the signal-input terminal (e.g., No. 3) of the CA3094. This discharge current is controlled precisely by the magnitude of the amplifier bias current \(\mathrm{I}_{\mathrm{ABC}}\) programmed into terminal 5 through a resistor selected by switch S2. Operation of the circuit is initiated by charging capacitor \(\mathrm{C}_{1}\) through the momentary closing of switch \(\mathrm{S}_{1}\). Capacitor \(\mathrm{C}_{1}\) starts discharging and continues discharging until voltage \(\mathrm{E}_{1}\) is less than voltage \(\mathrm{E}_{2}\). The differential input transistors in the CA3094 then change state, and terminal 2 draws sufficient current to reverse the polarity of

Fig.23-Presettable analog timer.
the output voltage (terminal 6). Thus, the CA3094 not only has provision for readily presetting the time delay, but also provides significant output current to drive control devices such as thyristors. Resistor \(\mathrm{R}_{5}\) limits the initial charging current for \(\mathrm{C}_{1}\). Resistor \(\mathrm{R}_{7}\) establishes a minimum voltage of at least 1 volt at terminal 2 to insure operation within the common-mode-input range of the device. The diode limits the maximum differential input voltage to 5 volts. Gross changes in time-range selection are made with switch \(S 2\), and vernier trimming adjustments are made with potentiometer \(\mathrm{R}_{6}\).

In some timer applications, such as that shown in Fig. 24, a meter readout of the elapsed time is desirable. This circuit uses the CA3094 and the CA3083 transistor array \({ }^{5}\) to control the meter and a load-switching triac. The timing cycle starts with the momentary closing of the start switch to charge capacitor \(\mathrm{C}_{1}\) to an initial voltage determined by the 50 -kilohm vernier timing adjustment. During the timing cycle, capacitor \(\mathrm{C}_{1}\) is discharged by the input bias current at terminal 3, which is a function of the resistor value \(\mathrm{R}_{1}\) chosen by the time-range selection switch. During the timing cycle the output of the CA3094, which is also the collector voltage of \(\mathrm{Q}_{1}\),
is "high". The base drive for \(Q_{1}\) is supplied from the positive supply through a 91 -kilohm resistor. The emitter of \(Q_{1}\), through the 75 -ohm resistor, supplies gate-trigger current to the triac. Diode-connected transistors \(\mathrm{Q}_{4}\) and \(\mathrm{Q}_{5}\) are connected so that transistor \(Q_{1}\) acts as a constant-current source to drive the triac. As capacitor \(\mathrm{C}_{1}\) discharges, the CA3094 output voltage at terminal 6 decreases until it becomes less than the \(\mathrm{V}_{\text {CEsat }}\) of \(\mathrm{Q}_{1}\). At this point the flow of drive current to the triac ceases and the timing cycle is ended. The 20 -kilohm resistor between terminals 2 and 6 of the CA3094 is a feedback resistor. Diode-connected transistors \(Q_{2}\) and \(Q_{3}\) and their associated networks serve to compensate for nonlinearities in the discharge-circuit network by bleeding corrective current into the 20 -kilohm feedback resistor. Thus, current flow in the meter is essentially linear with respect to the timing period. The time periods as a function of \(\mathrm{R}_{1}\) are indicated on the Time-Range Selection Switch in Fig. 24.

\section*{Alarm Circuit}

Fig. 25 shows an alarm circuit utilizing two "sensor" lines. In the "no-alarm" state, the potential at terminal 2 is lower than the potential at terminal 3 , and terminal \(5\left(\mathrm{I}_{\mathrm{ABC}}\right)\) is driven with sufficient current through resistor \(\mathrm{R}_{5}\) to keep the output voltage "high". If either "sensor" line is opened, shorted to ground, or shorted to the other sensor line, the output goes "low" and activates some type of alarm system.

Fig.24-Presettable timer with linear readout.

The back-to-back diodes connected between terminals 2 and 3 protect the CA3094 input terminals against excessive differential voltages.

Fig.25-Alarm system.

\section*{Motor-Speed Controller System}

Fig. 26 illustrates the use of the CA3094 in a motor-speed controller system. Circuitry associated with rectifiers \(D_{1}\) and \(D_{2}\) comprises a full-wave rectifier which develops a train of half-sinusoid voltage pulses to power the dc motor. The motor speed depends on the peak value of the half-sinusoids and the period of time (during each half-cycle) the SCR is conductive.

Fig.26-Motor-speed controller system.
The SCR conduction, in turn, is controlled by the time duration of the positive signal supplied to the SCR by the phase comparator. The magnitude of the positive dc voltage supplied to terminal 3 of the phase comparator depends on motor-speed error as detected by a circuit such as that shown in Fig. 27. This dc voltage is compared to that of a fixed-amplitude ramp wave generated synchronously with the ac-linevoltage frequency. The comparator output at terminal 6 is "high" (to trigger the SCR into conduction) during the period
when the ramp potential is less than that of the error voltage on terminal 3. The motor-current conduction period is increased as the error voltage at terminal 3 is increased in the positive direction. Motor-speed accuracy of \(\pm 1\) per cent is easily obtained with this system.

Motor-Speed Error Detector. Fig. 27(a) shows a motorspeed error detector suitable for use with the circuit of Fig. 26. A CA3080 operational transconductance amplifier is used as a voltage comparator. The reference for the comparator is established by setting the potentiometer R so that the voltage at terminal 3 is more positive than that at terminal 2 when the motor speed is too low. An error voltage \(\mathrm{E}_{1}\) is derived from a tachometer driven by the motor. When the motor speed is too low, the voltage at terminal 2 of the voltage comparator is less positive than that at terminal 3 , and the output voltage at terminal 6 goes "high". When the motor speed is too high, the opposite input conditions exist, and the output voltage at terminal 6 goes "low". Fig. 27(b) also shows these conditions graphically, with a linear transition region between the "high" and "low" output levels. This linear transition region is known as "proportional bandwidth". The slope of this region is determined by the proportional bandwidth control to establish the error-correction response time.

Synchronous Ramp Generator. Fig. 28 shows a schematic diagram and signal waveforms for a synchronous ramp generator suitable for use with the motor-controller circuit of Fig. 26. Terminal 3 is biased at approximately +2.7 volts (above the negative supply voltage). The input signal \(\mathrm{E}_{\mathrm{IN}}\) at terminal 2 is a sample of the half-sinusoids (at line frequency) used to power the motor in Fig. 26. A synchronous ramp signal is produced by using the CA3094 to charge and discharge capacitor \(C_{1}\) in response to the synchronous toggling of \(\mathrm{E}_{\mathrm{IN}}\). The charging current for \(C_{1}\) is supplied by terminal 6 . When terminal 2 swings more positive than terminal 3, transistors \(\mathrm{Q}_{12}\) and \(\mathrm{Q}_{13}\) in the CA3094 (Fig. 1) lose their base drive and become non-conductive. Under these conditions, \(\mathrm{C}_{1}\) discharges linearly through the external diode \(\mathrm{D}_{3}\) and the \(\mathrm{Q}_{10}, \mathrm{D}_{6}\) path in the CA3094 to produce the ramp wave. The \(\mathrm{E}_{\text {out }}\) signal is supplied to the phase comparator in Fig. 26.

Fig.28-Synchronous ramp generator with input and output

\section*{waveforms. \\ Thyristor Firing Circuits}

Temperature Controller. In the temperature control system shown in Fig. 29, the differential input of the CA3094 is connected across a bridge circuit comprised of a PTC (positive-temperature-coefficient) temperature sensor, two 75 -kilohm resistors, and an arm containing the temperature set control. When the temperature is "low", the resistance of the PTC-type sensor is also low; therefore, terminal 3 is more positive than terminal 2 and an output current from terminal 6 of the CA3094 drives the triac into conduction. When the temperature is "high", the input conditions are reversed and the triac is cut off. Feedback from terminal 8 provides hysteresis to the control point to prevent rapid cycling of the system. The \(1.5-\mathrm{kilohm}\) resistor between terminal 8 and the positive supply limits the triac gate current and develops the voltage for the hysteresis feedback. The excellent power-supply-rejection and common-mode-rejection ratios of the CA3094 permit accurate repeatability of control despite appreciable power-supply ripple. The circuit of Fig. 29 is equally suitable for use with NTC (negative-temperature-coefficient) sensors provided the positions of the sensor and the associated resistor R are interchanged in the circuit. The diodes connected back-to-back across the input terminals of the CA3094 protect the device against excessive differential input signals.

Thyristor Control from AC-Bridge Sensor. Fig. 30 shows a line-operated thyristor-firing circuit controlled by a CA3094 that operates from an ac-bridge sensor. This circuit is particularly suited to certain classes of sensors that cannot be operated from dc. The CA3094 is inoperative when the high side of the ac line is negative because there is no \(\mathrm{I}_{\mathrm{ABC}}\) supply to terminal 5 . When the sensor bridge is unbalanced so that terminal 2 is more positive than terminal 3, the output stage of the CA3094 is cut off when the ac line swings positive, and the output level at terminal 8 of the CA3094 goes "high". Current from the line flows through the 1 N 3193 diode to charge the 100 -microfarad reservoir capacitor, and also provides current to drive the triac into conduction. During the succeeding negative swing of the ac line, there is sufficient remanent energy in the reservoir capacitor to maintain conduction in the triac.

Fig.29-Temperature controller.
92 Cm 20270

Fig.30-Line-operated thyristor-firing circuit controlled by ac-bridge sensor.
When the bridge is unbalanced in the opposite direction so that terminal 3 is more positive than terminal 2, the output of the CA3094 at terminal 8 is driven sufficiently "low" to "sink" the current supplied through the IN3193 diode so that the triac gate cannot be triggered. Resistor \(R_{1}\) supplies the hysteresis feedback to prevent rapid cycling between turnon and \(\mathrm{L}: \mathrm{n}\)-off.

\section*{Battery-Charger Regulator Circuit}

The circuit for a battery-charger regulator circuit using the CA3094 is shown in Fig. 31. This circuit accurately limits the peak output voltage to 14 volts, as established by the zener

Fig.31-Battery-charger regulator circuit.
diode connected across terminals 3 and 4 . When the output voltage rises slightly above .14 volts, signal feedback through a 100 -kilohm resistor to terminal 2 reduces the current drive supplied to the 2 N 3054 pass transistor from terminal 6 of the CA3094. An incandescent lamp serves as the indicator of charging-current flow. Adequate limiting provisions protect the circuit against damage under load-short conditions. The advantage of this circuit over certain other types of regulator circuits is that the reference voltage supply doesn't drain the battery when the power supply is disconnected. This feature is important in portable service applications, such as in a trailer where a battery is kept "on-charge" when the trailer is parked and power is provided from an ac line.

\section*{Ground-Fault Interrupters (GFI)}

Ground-fault-interrupter systems are used to continuously monitor the balance of current between the high and neutral lines of power-distribution networks. Power is interrupted whenever the unbalance exceeds a preset value (e.g., 5 milliamperes). An unbalance of current can occur when, for example, defective insulation in the high side of the line permits leakage of current to an earth ground. GFI systems can be used to reduce the danger of electrocution from accidental contact with a "high" line because the unbalance caused by the leakage of current from the "high" line through a human body to ground results in an interruption of current flow.

The CA3094 is ideally suited for GFI applications because it can be operated from a single supply, has adequate sensitivity, and can drive a relay or thyristor directly to effect power interruption. Fig. 32 shows a typical GFI circuit. Vernier adjustment of the trip point is made by the \(\mathrm{R}_{\text {TRIP }}\) potentiometer. When the differential current sensor supplies a signal that exceeds the selected trip-point voltage level (e.g., 60 millivolts), the CA3094 is toggled "on" and terminal 8 goes "low" to energize the circuit-breaker trip coil. Under quiescent conditions, the entire circuit consumes approximately 1 milliampere. The resistor \(R\), connected to one leg of the current sensor, provides current limiting to protect the CA3094 against voltage spikes as large as 100 volts. Fig. 32 also shows the pertinent waveform for the GFI circuit.

Fig.32-Ground fault interrupter (GFI) and waveform pertinent to ground fault detector.

Because hazards of severe electrical shock are a potential danger to the individual user in the event of malfunctions in GFI apparatus, it is mandatory that the highest standards of good engineering practice be employed in designing equipment for this service. Every consideration in design and application must be given to the potentially serious consequences of component malfunction in such equipment. Use of "reliability-through-redundancy" concepts and so-called "fail-safe" features is encouraged.

\section*{Acknowledgments}

The authors thank A. Sheng and R. Baird for their assistance in designing some of the circuits described in this Note.

\section*{References}
1. RCA Published Data for CA3080 and CA3080A, File No. 475.
2. Applications of the CA3080 and CA3080A High Performance Operational Transconductance Amplifiers, RCA Application Note ICAN-6668.
3. L. Kaplan and H. A. Wittlinger, "An IC Operational-Trans-conductance-Amplifier (OTA) with Power Capability". Paper originally presented at the IEEE Chicago Spring Conference on Broadcast and TV Receivers, June 1972. Reprinted by the RCA Solid State Division as Publication No. ST-6077.
4. RCA Published Data for CA3085, File No. 491.
5. RCA Published Data for CA3083, File No. 481.

\title{
ルロB \\ Digital Integrated Circuits \\ Solid State Division
}

\title{
Digital-to-Analog Conversion Using the RCA-CD4007A COS/MOS IC
}

\author{
By O. H. Schade, Jr.
}

RCA COS/MOS integrated circuits have demonstrated outstanding performance in a wide variety of DIGITAL applications. Simplified circuitry, design flexibility, low power consumption, moderate speed, and high noise immunity of these devices can complement the high transconductance of bipolar IC's in an extension to LINEAR signal processing applications. This Note demonstrates the use of the RCA-CD4007A COS/MOS Dual Complementary Pair Plus Inverter as the Digital-to-Analog (D/A) switch and op-amp output stage for a Digital-to-Analog Converter (DAC).

\section*{General Considerations}

In combination with a p-channel input pair (two p-channels of the CD4007A), a buffer-follower COS/MOSbipolar op-amp has been designed with the capability to attain essentially the negative supply voltage at both the input and output terminals. Therefore, to consider inexpensive single-supply operation becomes possible without the sacrifice of speed and bandwidth that results with many monolithic bipolar IC op-amps. An additional advantage is the use of an MOS input stage to provide exceptionally high input resistance and low input current.

A 9-bit DAC is described in this Note to illustrate this design approach. This system combines the concepts of multiple-switch COS/MOS IC's, a low-cost ladder network of discrete metal-oxide film resistors, a COS/MOS-bipolar op-amp follower, and an inexpensive monolithic regulator in a simple single-supply system. An additional feature which complements the ever-increasing use of COS/MOS IC's for digital signal processing is the readily interfaced COS/MOSDAC input logic.

Although the accuracy of a DAC system depends on many factors, it is the ladder network which must initiate properly-proportioned current or voltage outputs. Recog. nition of various ladder types and an appreciation of the design flexibility and constraints are paramount to a well executed DAC development.

\section*{Resistance Networks for DAC's}

Ladder networks for DAC's can take many forms, although three types are most generally encountered. Among the best-known variations is the current ladder shown in Fig. 1. This network is frequently used in combination with bipolar current switches which utilize a reference potential at the transistor base terminals to establish emitter currents having binary proportions. Because current summing is accomplished at the collectors of these transistors, the extent of \(\mathrm{V}_{\mathrm{BE}}\) - and beta-matching of these transistors depends on the degree of accuracy and temperature-range requirements. The use of a \(10 / 20 / 40 / 80-\mathrm{k} \Omega\) network in conjunction with a "quad" switch, a follower amplifier, and dual power supplies is common.

Fig. 1- Current ladder-network for bipolar DAC.

Fig. 2 shows an R/2R current ladder commonly employed in monolithic DAC's. Similar resistance values can simplify the problem of meeting ratio-match accuracy requirements. This ladder must be terminated in a single potential (or at least invariable values) to maintain proper current proportions. Although the absolute resistance values of the circuit in Fig. 1 must temperature track the summing resistor (or additional compensation must be employed), the R/2R current ladder must maintain only a resistance ratio; it is the current sink which must remain stable under external influences.

Fig. 3 shows a less common voltage ladder suitable for DAC's using COS/MOS switches. Output potentials are obtained directly by terminating the ladder arms at either the positive or the negative power supply. Each COS/MOS inverter output pair functions as a double-throw switch. If the switch (channel) resistance is kept small compared to the ladder-arm resistance value, accuracy becomes a function of ladder supply voltage and resistance ratios alone. Operation of this ladder is dynamic; the current in an arm reverses as the logic state changes. Therefore, stray capacitances (or the inductance of a wirewound resistor) can limit speed as a result of typical settling times of several microseconds.

Fig. 2- R/2R current ladder-network for monolithic DAC.

However, the proper selection of parallel connection of switches for the most significant bit (MSB) to minimize channel resistance can result in COS/MOS-DAC speeds which approach those of the best bipolar systems, particularly when consideration is given to follower-amplifier speed limitations.

In the illustrative 9 -bit application, a modified voltageladder design is employed. The use of \(1 \%\)-tolerance metaloxide film resistors can result in inexpensive networks suitable to about the 10-bit level. Such networks are readily constructed for system evaluations and may also prove to be suitable for production. Practical tolerance considerations call for variations from the "pure" \(\mathrm{R} / 2 \mathrm{R}\) configuration, as discussed later.

Fig. 3- R/2R voltage ladder-network for COS/MOS DAC.

\section*{The COS/MOS Switch}

A typical COS/MOS switch (CD4007A) is shown in Fig. 4. A change in input logic level causes the output to swing to either the positive or the negative supply voltage. Power consumption is low, typically a few microwatts to a few milliwatts, depending on the ladder resistance and voltage choice. Large DAC ladder resistance values can be used to minimize the effects of switch resistance. Fig. 5 shows the minimum ladder resistance value for a given saturation resistance to produce an accuracy of \(1 / 2\) LSB (Least Significant Bit), with bit number as a parameter. For example, the CD4007A which has a channel resistance of approximately 250 -ohms (\(\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\)), requires a minimum ladder resistance of \(100 \mathrm{k} \Omega\) to maintain a 9 -bit accuracy level. Reference to the dashed "settling time" line and the rightside ordinate shows that the approximate settling time of such a network having a \(10-\mathrm{pF}\) node capacitance is \(6 \mu \mathrm{~s}\). This settling time has been based on six time constants for settling to \(1 / 2 \mathrm{LSB}\), an average value for the bit range illustrated. If a faster settling time is required, circuits employing the RCA-CD4041A can be used.

The CD4041A \({ }^{\bullet}\) can drive (in a theoretical example) a \(4-\mathrm{k} \Omega, 6\)-bit ladder network which has a settling time of approximately 250 ns . This is as fast as the best presently available monolithic bipolar switches. High-slew-rate voltagefollower amplifiers are needed to maintain these speed levels; when the CD4007A is used the slew rate is approximately \(30 \mathrm{~V} / \mu \mathrm{s}\) and the settling time is several hundred nanoseconds for a \(10-\mathrm{V}\) full-scale signal. This performance approaches the state-of-the-art for monolithic op-amps, especially in low-cost systems. In fact, high-speed op-amps capable of swinging to the negative supply have not generally been available.

\section*{A Voltage-Follower Amplifier for Single-Supply Operation}

It is practical to utilize commercially available COS/MOS and bipolar transistor-array IC's to provide a composite op-amp suitable for single-supply DAC systems. Fig. 6 shows a unity-gain follower amplifier having a COS/MOS p-channel input, an n-p-n second gain stage, and a COS/MOS inverter output. The IC building blocks are two CD4007A's and a CA3083 n-p-n transistor array. A zener-regulated leg provides bias for a \(400-\mu \mathrm{A}\) p-channel current source feeding the input stage, which is terminated in an n-p-n current mirror. Amplifier voltage-offset is nulled with the \(10-\mathrm{k} \Omega\) balance potentiometer. The second-stage current level is established by the \(20-\mathrm{k} \Omega\) load, and is selected to approximate the first-stage current level, to assure similar positive and negative slew rates. The COS/MOS inverter portion forms the final output stage and is terminated in a \(2-\mathrm{k} \Omega\) load, a typical value used with monolithic op-amps. Voltage gain is affected by the choice of load resistance value. The output stage of this amplifier is easily driven to within 1 mV of the negative supply voltage.

Fig. 4- CD4007A schematic diagram.

Fig. 5- COS/MOS-DAC voltage-network requirements.

Fig. 6- Voltage-follower amplifier for single-supply opera-
tion.

Compensation for the unity-gain non-inverting mode is provided by Miller feedback of 39 pF and a \(300-\mathrm{pF}\) by-pass capacitor shunting one-half the driving current (\(1-2 \mathrm{MHz}\)). Unity-gain bandwidth is just under 10 MHz and the open-loop gain is 75 dB . Fig. 7 shows the gain-bandwidth characteristics for this circuit. A potential latch situation at the bipolar mirror is avoided by use of resistor-capacitor network (\(\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=150 \mathrm{pF}\)), which limits the dc feedback through the p-channel gate-protective diode.

The amplifier response to \(4-\mathrm{V}\) input pulses is shown in Fig. 8. Although the slew rate is approximately \(30 \mathrm{~V} / \mu \mathrm{s}\), the settling time is significantly prolonged (approximately \(2 \mu \mathrm{~s}\)) as a result of the method of second-stage biasing when the output swings near the negative supply. For many applications, this speed loss is not significant. If a faster amplifier is desired, the load resistor can be replaced with a p-channel CD4007A current source similar to that used for the first stage. In fact, it may be desirable to change the current and resistance values to optimize the gain/speed trade-off for a particular application. For example, if higher gain is desired for less follower offset, the \(20-\mathrm{k} \Omega\) resistance value can be increased. The choice of output load resistance also affects the gain/speed compromise.

Fig. 7- Voltage-follower open-loop gain characteristics.

\section*{A 9-Bit COS/MOS DAC}

An example of a 9-bit DAC is shown in Fig. 9. Three CD4007A IC packages perform the switch function using a \(10-\mathrm{V}\) logic level. A single \(15-\mathrm{V}\) supply provides a positive bus for the follower amplifier and feeds the CA3085 voltage regulator. The "scale-adjust" function is provided by the regulator output control which is set to a nominal 10 V in this system. The line-voltage regulation (approximately \(0.2 \%\)) permits 9 -bit accuracy to be maintained with a variation of several volts in the supply. System power consumption ranges between 70 and 200 mW ; a major portion is dissipated in the load resistor and op-amp. The regulated supply provides a maximum current of \(440 \mu \mathrm{~A}\) of which \(370 \mu \mathrm{~A}\) flows through the scale-adjust leg.

The resistor ladder is composed of 1-per-cent tolerance metal-oxide film resistors available from several manufacturers at modest cost. The five arms requiring the highest accuracy are built of series and parallel combinations of \(806-\mathrm{k} \Omega\) resistors from the same manufacturing lot. The ratio match between resistance values is in the order of \(0.2 \%\), usually without need for special selection. The construction of a "standard" with eight parallel resistors assures a high probability that ratio matching will be satisfactory. If the usual assumption that tolerances can be improved with the square-root of the sample number is adopted, the loss of
tolerance is slower than the increase of resistance value toward the LSB. Once the most critical match has been attained, therefore, subsequent ratio matches should be more than adequate. An impedance-matching resistor is used between the fifth and sixth bits to permit ladder completion with individual resistors of the most desirable values where a \(1 \%\) tolerance is adequate. This resistor value is chosen as R5-1/2R6, to terminate the first five bits in a fifth-bit value (the impedance is \(1 / 2\) R6 looking left into that node).

Fig. 8- Amplifier response to 4-V input pulses.

The follower amplifier has the offset adjustment nulled at approximately a 1 -volt output level. System operating potentials are shown in Table I, where each bit is set "low" individually to observe the progression of output values. The positive ladder-supply voltage was adjusted to 10.010 V to provide a small compensation for the MSB switch resistance. A high-impedance 5 -digit multimeter, such as the DANA 5330 or equivalent, is needed for direct measurement of the ladder output, and is invaluable during system development and evaluation. Table I shows ideal potential values, system output, and ladder output and illustrates the sources of system inaccuracy. The system output maintains proportional accuracy within \(\pm 5.6 \mathrm{mV}\), or \(\pm 1 / 4 \mathrm{LSB}\).

Fig. 10 shows the system output response to a 4-V logic pulse. The ringing is caused by the voltage follower, and the more gradual transients are caused by voltage-follower and ladder time constants. Settling time to \(1 / 2\) LSB is \(5 \mu \mathrm{~s}\).

This 9-bit COS/MOS-DAC demonstrates accuracy and simplicity with economical components and modest powersupply requirements. In addition, the design flexibility afforded by the COS/MOS building blocks simplifies the generation of DAC systems tailored to individual needs. COS/MOS switches used in conjunction with COS/MOS counters also find application in Analog-to-Digital Conversion Systems. The low-power and high noise-immunity features of these devices make them attractive A/D system components.

Fig. 10-System response to most-significant-bit logic pulse.

When incorporating RCA Solid State Devices in equipment, it is recommended that the designer refer to "Operating Considerations for RCA Solid State Devices", Form No. 1CE-402, available on request from RCA Solid State Division, Box 3200, Somerville, N.J. 08876.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{6}{|c|}{VOLTAGE} \\
\hline BINARY WORD & IDEAL POTENTIAL (V) & \begin{tabular}{l}
SYSTEM OUTPUT \\
(V)
\end{tabular} & \begin{tabular}{l}
LADDER OUTPUT \\
(V)
\end{tabular} & \begin{tabular}{l}
SYSTEM \\
ERROR \\
(mV)
\end{tabular} & \[
\begin{aligned}
& \text { FOLLOWER } \\
& \text { OFFSET } \\
& (\mathrm{mV})
\end{aligned}
\] & LADDER \& SWITCH ERROR (mV) & POSITIVE SWITCH DROP (mV) \\
\hline 000000000 & 9.9802 & 9.9856 & 9.9915 & + 5.4 & - 5.9 & + 11.3 & - \\
\hline 011111111 & 5.0000 & 4.9959 & 4.9997 & -4.1 & - 3.8 & -0.3 & 14.8 \\
\hline 101111111 & 2.5000 & 2.4996 & 2.5023 & -0.4 & - 2.6 & + 2.3 & 11.0 \\
\hline 110111111 & 1.2500 & 1.2554 & 1.2565 & + 5.4 & - 1.0 & + 6.5 & 6.5 \\
\hline 111011111 & 0.6250 & 0.6233 & 0.6226 & -2.7 & + 0.7 & - 2.4 & 3.2 \\
\hline 111101111 & 0.3125 & 0.3133 & 0.3113 & + 0.8 & + 2.1 & - 1.2 & 1.7 \\
\hline 111110111 & 0.1568 & 0.1603 & 0.1571 & + 3.5 & + 3.2 & + 0.3 & 14.0 \\
\hline 111111011 & 0.0784 & 0.0826 & 0.0786 & + 4.2 & + 4.0 & + 0.2 & 11.8 \\
\hline 111111101 & 0.0397 & 0.0439 & 0.0393 & + 4.2 & + 4.6 & - 0.4 & 6.8 \\
\hline 111111110 & 0.0198 & 0.0245 & 0.0195 & + 4.7 & + 5.0 & -0.3 & 3.6 \\
\hline 111111111 & 0.0000 & 0.0056 & 0.0000 & + 5.6 & + 5.6 & 0.0 & - \\
\hline
\end{tabular}

\title{
にはル \\ Solid State Division
}

\title{
Application of the RCA－CA3058 and RCA－CA3059 Zero－Voltage Switches in Thyristor Circuits
}

\author{
by George J．Granieri
}

The RCA－CA3059 zero－voltage switch is a monolithic integrated circuit used primarily as a trigger circuit for the control of thyristors．This multistage circuit employs．a diode limiter，a threshold detector，a differential amplifier，and a Darlington output driver to provide the basic switching action．The dc supply voltage for these stages is supplied by an internal zener－diode－ regulated power supply that has sufficient current capability to drive external circuit elements，such as transistors and other integrated circuits．This built－in power supply provides unique solutions to many application problems．An important feature of the CA3059 is that the trigger pulses developed by this circuit can be applied directly to the gate of a silicon controlled rectifier （SCR）or a triac．A built－in fail－safe circuit inhibits the application of these pulses to the thyristor gate circuit in the event that the external sensor for the integrated－circuit switch should be inadvertently opened or shorted．

The RCA CA3058 is similar to the CA3059 but utilizes a dual－in－line ceramic package．For additional information on this device，see RCA data bulletin File No． 490.

The CA3059 is particularly suited for use in thyristor temperature－control applications．The integrated circuit may be employed as either an on－off type of controller or a proportional controller，depending upon the degree of temperature regulation required．The availability of numerous terminal connections to internal circuit points greatly increases the flexibility of the CA3059 and permits the circuit designer to exercise his creativity to employ the integrated switch in unique ways．This Note describes the operation of the CA3059 integrated－circuit switch and discusses its operation in thyristor power－switching and control circuits．

\section*{CIRCUIT OPERATION}

Fig． 1 shows a functional block diagram of the CA3059 integrated－circuit zero－voltage switch．Any triac that is driven directly from the output terminal of this circuit should be characterized for operation in the \(\mathrm{I}(+)\) or \(\mathrm{III}(+)\) triggering modes， i．e．，with positive gate current（current flows into the gate for both polarities of the applied ac voltage）．

\section*{＊See chart}
\begin{tabular}{|l|c|c|}
\hline \begin{tabular}{l}
AC Input \\
Voltage \\
（Volts） \\
\(50 / 60\) or \\
400 Hz
\end{tabular} & \begin{tabular}{l}
Series \\
Resistor \\
\(R_{s}\) \\
\((\mathrm{k} \Omega)\)
\end{tabular} & \begin{tabular}{l}
Power \\
Rating \\
of \(R_{s}\) \\
（Watts）
\end{tabular} \\
\hline 24 & 2 & 0.5 \\
\hline 120 & 10 & 2 \\
\hline \(208 / 230\) & 20 & 4 \\
\hline 277 & 25 & 5 \\
\hline
\end{tabular}

Fig． 1 －Functional block diagram of the integrated－circuit zero－voltage switch．

The limiter stage of the CA3059 clips the incoming ac line voltage to approximately plus and minus 8 volts. This signal is then applied to the zero-voltage-crossing detector, which generates an output pulse during each passage of the line voltage through zero. The limiter output is also applied to a rectifying diode and an external capacitor that comprise the de power supply. The power supply provides approximately 6 volts as the \(\mathrm{V}_{\mathrm{CC}}\) supply to the other stages of the CA3059. The on/off sensing amplifier is basically a differential comparator. The triac gating circuit contains a driver for direct triac triggering. The gating circuit is enabled when all the inputs are at a high voltage, i.e., the line voltage must be approximately zero volts, the sensing-amplifier output must be "high," the external voltage to terminal 1 must be a logical " 1 ," and the output of the fail-safe circuit must be "high."

Fig. 2 shows the circuit diagram of the CA3059. The zero-voltage threshold detector consists of diodes \(\mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5}\), and \(D_{6}\), and transistor \(Q_{1}\). The differential amplifier consists of transistor pairs \(Q_{2}-Q_{4}\) and \(Q_{3}-Q_{5}\). Transistors \(Q_{1}, Q_{6}, Q_{7}, Q_{8}\), and \(Q_{9}\) comprise the triac gating circuit and driver stage. Diode \(D_{12}\), zener diode \(\mathrm{D}_{15}\), and transistor \(\mathrm{Q}_{10}\) constitute the fail-safe circuit. The power supply consists of diodes \(\mathrm{D}_{7}\) and \(\mathrm{D}_{13}\), and an external resistor and capacitor connected to terminals 5 and 2, respectively, and to ground through pin 7. If the transistor pair \(Q_{2}-Q_{4}\) and transistor \(Q_{1}\) are turned off, an output appears at terminal 4.

Transistor \(\mathrm{Q}_{1}\) is in the OFF state if the incoming line voltage is less than approximately the voltage drops across three silicon diodes (2.1 volts) for either the positive or negative excursion of the line voltage. Transistor pair \(\mathrm{Q}_{2}-\mathrm{Q}_{4}\) is OFF if the voltage across the sensor, connected from terminals 13 to 7 , exceeds the reference voltage from 9 to 7 . If either of these conditions is not satisfied, pulses are not supplied to terminal 4. Fail-safe operation requires that terminal 13 be connected to 14 . The addition of hysteresis and elimination of half-cycling can be obtained by a resistive voltage divider connected from 13 to 8 and from 8 to 7 .

Fig. 3 shows the position and width of the pulses supplied to the gate of a thyristor with respect to the incoming ac line voltage. The CA3059 can supply sufficient gate voltage and current to trigger most RCA thyristors at ambient temperatures of \(25^{\circ} \mathrm{C}\). However, under worst-case conditions (i.e., at ambienttemperature extremes and maximum triggering requirements), selection of the higher-current thyristors may be necessary for particular applications. RCA bulletin File No. 406 lists Triacs suitable for use with the CA3058 or CA3059. For example, the RCA-2N5444 40-ampere triac has a maximum gate trigger voltage \(\mathrm{V}_{\mathrm{GT}}(\max)\) of 2.5 volts and a maximum gate trigger current \(\mathrm{I}_{\mathrm{GT}}(\max)\) of 80 milliamperes in the \(\mathrm{III}(+)\) quadrant

Fig. 2 - Circuit diagram for the CA3059 zero-voltage switch.

Fig.3-Timing relationship between the output pulses of of the CA3059 and the ac line voltage.
at \(25^{\circ} \mathrm{C}\). Because the CA3059 cannot guarantee a drive of 80 milliamperes for a \(\mathrm{V}_{\mathrm{GT}}\) of 2.5 volts, triac selection will be required.

\section*{EFFECT OF CA3059 ON THYRISTOR LOAD CHARACTERISTICS}

The CA3059 is designed primarily to gate a thyristor that switches a resistive load. Because the output pulse supplied by the CA3059 is of short duration, the latching current* of the triac becomes a significant factor in determining whether other types of loads can be switched. (The latching-current value determines whether the triac will remain in conduction after the gate pulse is removed.) Provisions are included in the CA3059 to accommodate inductive loads and low-power loads. For example, for loads that are less than approximately 4 amperes rms or that are slightly inductive, it is possible to retard the output pulse with respect to the zero-voltage crossing by insertion of the capacitor \(C_{x}\) from terminal 5 to terminal 7 as shown in Fig. 1. The insertion of capacitor \(\mathrm{C}_{\mathrm{x}}\) permits switching of triac loads that have a slight inductive component and that are greater than approximately 200 watts (for operation from an ac line voltage of 120 volts rms). However, for loads less than 200 watts (for example, 70 watts), it is recommended that the user employ the RCA-40526 sensitivegate triac with the CA3059 because of the low latching-current requirement of this triac.

For loads that have a low power factor, such as a solenoid valve, the user may operate the CA3059 in the dc mode. In this mode, terminal 12 is connected to terminal 7 , and the zero-crossing detector is inhibited. Whether a "high" or "low" voltage is produced at terminal 4 is then dependent only upon the state of the differential comparator within the CA3059 integrated circuit, and not upon the zero crossing of the incoming line voltage. Of course, in this mode of operation, the CA3059 no longer operates as a zero-voltage switch. However, for many applications that involve the switching of low-current inductive loads, the amount of RFI generated can frequently be tolerated.

For switching of high-current inductive loads, which must be turned on at zero line current, the triggering technique employed in the dual-output over-under temperature controller and the transient-free switch controller described later in this Note is recommended.

\footnotetext{
* The latching current is the minimum current required to sustain conduction immediately after the thyristor is switched from the OFF to the ON state and the gate signal is removed.
}

\section*{FAIL-SAFE FEATURE}

As shown in Figs. 1 and 2, when terminal 13 is connected to terminal 14, the fail-safe circuit of the CA3059 is operable. If the sensor should then be accidentally opened or shorted, power is removed from the load (i.e., the triac is turned OFF). The internal fail-safe circuit functions properly, however, only when the ratio of the sensor impedance at \(25^{\circ} \mathrm{C}\), if a thermistor is the sensor, to the impedance of the potentiometer \(R_{p}\) is less than 4 to 1 . It is readily apparent that, if the potentiometer is adjusted for 1000 ohms and the sensor is 100,000 ohms, the zener diode \(\mathrm{D}_{15}\) (shown in Fig. 2) would conduct because virtually all the de power-supply voltage (from terminal 2 to terminal 7) would appear across the sensor. The CA3059 would then detect this condition as an open sensor.

For ratios greater than 4 to 1 , for example 100 to 1 , the circuit shown in Fig. 4 may be employed to provide fail-safe operation. In this circuit, transistor \(Q_{1}\) and diode \(D_{1}\) are components external to the CA3059. Transistor \(Q_{1}\) detects the sensor current which maintains this transistor in saturation so that terminal 1 is effectively shorted to terminal 7 through the collector-to-emitter junction of the transistor. Transistor \(\mathrm{Q}_{1}\) provides sufficient current gain to permit operation with a sensor impedance greater than 1 megohm. If the sensor becomes open-circuited, transistor \(Q_{1}\) turns OFF, and current then flows into terminal 1, the inhibit terminal of the CA3059, and results in the removal of power to the load. For the shorted-sensor condition, the external diode \(D_{1}\) conducts and causes triac \(Y_{1}\) to turn OFF. Diode \(D_{2}\) compensates for variations in the base-toemitter voltage of transistor \(Q_{1}\) with temperature. Terminals 13 and 14 on the CA3059 should not be connected when the external fail-safe circuit shown in this illustration is employed.

\section*{HALF-CYCLING AND HYSTERESIS CHARACTERISTICS}

The method by which the CA3059 senses the zero crossing of the ac power results in a half-cycling phenomenon at the control

Fig. 4 - CA3059 on-off controller that uses an external
fail-safe circuit.

Fig.5 - Half-cycling phenomenon in the CA3059.
point. Fig. 5 illustrates this phenomenon. The CA3059 senses the zero-voltage crossing every half-cycle and an output, for example pulse No. 4 , is produced to indicate the zero crossing. During the remaining 8.3 milliseconds, however, the differential amplifier in the CA3059 may change state and inhibit any further output pulses. The uncertainity region of the differential amplifier, therefore, prevents pulse No. 5 from triggering the triac during the negative excursion of the ac line voltage.

Several solutions exist for elimination of the half-cycling phenomenon. If the user can tolerate some hysteresis in the control, then positive feedback can be added around the differential amplifier. Fig. 6 illustrates this technique. The tabular data in the figure lists the recommended values of \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) for different sensor impedances at the control point.

If a significant amount (greater than \(\pm 10 \%\)) of controlled hysteresis is required, then the circuit shown in Fig. 7 may be employed. In this configuration, external transistor \(Q_{1}\) provides a means for addition of positive feedback to the CA3059. It should be noted that the signal developed at the collector to \(Q_{1}\) could perhaps be used to provide an auxiliary time-delay function.

Fig.6-CA3059 on-off controller with hysteresis.

Fig. 7 - CA3059 on-off controller with controlled hysteresis.

For applications which require complete elimination of half-cycling without the addition of hysteresis, the integral-cycle temperature controller described in a later section of this Note, which senses the zero-voltage crossing only once during the ac power cycle, can be used.

\section*{TEMPERATURE CONTROLLERS}

Fig. 8 shows a triac used in an on-off temperature-controller configuration. The triac is turned on at zero voltage whenever the

Fig. 8 - CA3059 on-off temperature controller.
voltage \(\mathrm{V}_{\mathrm{s}}\) exceeds the reference voltage \(\mathrm{V}_{\mathrm{r}}\). The transfer characteristic of this system, shown in Fig. 9(a), indicates significant thermal overshoots and undershoots, a well-known characteristic of such a system. The differential or hysteresis of this
system, however, can be further increased, if desired, by the addition of positive feedback.

For precise temperature-control applications, the propor-tional-control technique with synchronous switching is employed. The transfer curve for this type of controller is shown in Fig. 9(b). In this case, the duty cycle of the power supplied to the load is varied with the demand for heat required and the thermal time constant (inertia) of the system. For example, when the temperature setting is increased in an "on-off" type of controller, full power (100 per cent duty cycle) is supplied to the system. This effect results in significant temperature excursions because there is no anticipatory circuit to reduce the power gradually before the actual set temperature is achieved. However, in a proportional control technique, less power is supplied to the load (reduced duty cycle) as the error signal is reduced (sensed temperature approaches the set temperature).

Fig. 9 - Transfer characteristics of (a) on-off and (b) proportional control systems.

Before such a system is implemented, a time base is chosen so that the ON-time of the triac is varied within this time base. The ratio of the ON-to-OFF time of the triac within this time interval depends on the thermal time constant of the system and the selected temperature setting. Fig. 10 illustrates the principle of proportional control. For this operation, power is supplied to the load until the ramp voltage reaches a value greater than the dc control signal supplied to the opposite side of the differential amplifier. The triac then remains OFF for the remainder of the time-base period. As a result, power is "proportioned" to the load in a direct relation to the heat demanded by the system.

Fig. 10 - Principles of proportional control.

For this application, a simple ramp generator can be realized with a minimum number of active and passive components. It is noted that a ramp having good linearity is not required for proportional operation because of the nonlinearity of the thermal system and the closed-loop type of control. In the circuit shown in Fig. 11, ramp voltage is generated whenthe capacitor \(C_{1}\) charges through resistors \(R_{0}\) and \(R_{1}\). The time base of the ramp is determined by resistors \(R_{2}\). and \(R_{3}\), capacitor \(C_{2}\), and the breakover voltage of the 1 N 5411 diac. When the voltage across \(C_{2}\) reaches approximately 32 volts, the diac switches and turns on the 2 N 3241 A transistor. The capacitor \(\mathrm{C}_{1}\) then discharges through the collector-to-emitter junction of the transistor. This discharge time is the retrace or flyback time of the ramp. The circuit shown can generate ramp times ranging from 0.3 to 2.0 seconds through

Fig.11-Ramp generator.
adjustment of \(\mathrm{R}_{2}\). For precise temperature regulation, the time base of the ramp should be shorter than the thermal time constant of the system, but long with the respect to the period of the \(60-\mathrm{Hz}\) line voltage. Fig. 12 shows a triac connected for the proportional mode.

Fig. 13 shows a dual-output temperature controller that drives two triacs. When the voltage \(\mathrm{V}_{\mathrm{s}}\) developed across the temperaturesensing network exceeds the reference voltage \(\mathrm{V}_{\mathrm{R} 1}\), motor \(\mathrm{M}_{1}\)

Fig.12-CA3059 proportional temperature controller.

Fig. 13 - Dual-output, over-under temperature controller using two CA3059 integrated circuits.
turns on. When the voltage across the network drops below the reference voltage \(\mathrm{V}_{\mathrm{R} 2}, \mathrm{M}_{2}\) turns on. Because the motors are inductive, the currents \(\mathrm{I}_{\mathrm{M} 1}\) and \(\mathrm{I}_{\mathrm{M} 2}\) lag the incoming line voltage. The motors, however, are switched by the triacs at zero current, as shown in Fig. 14.

The problem of driving inductive loads such as these motors by the narrow pulses generated by the CA3059 circuit is solved by use of the sensitive-gate RCA-40526 triac. The high sensitivity of this device (3 milliamperes maximum) and low latching current (approximately 9 milliamperes) permit synchronous operation of the temperature-controller circuit. In Fig. 13, it is apparent that, though the gate pulse \(\mathrm{V}_{\mathrm{g}}\) of triac \(\mathrm{Y}_{1}\) has elapsed, triac \(\mathrm{Y}_{2}\) is

Fig. 14 - Voltage and current waveforms for the dualoutput temperature controller.
switched on by the current through \(\mathrm{R}_{\mathrm{L} 1}\). The low latching current of the RCA-40526 triac results in dissipation of only 2 watts in \(\mathrm{R}_{\mathrm{L} 1}\), as opposed to 10 to 20 watts when devices that have high latching currents are used.

\section*{Electric-Heat Application}

For electric-heating applications, the RCA-2N5444 40-ampere triac and the CA3059 circuit constitute an optimum pair. Such a combination provides synchronous switching and effectively replaces the heavy-duty contactors which easily degrade as a result of pitting and wearout from the switching transients. The salient features of the 2 N 544440 -ampere triac are as follows:
(1) 300 -ampere single-surge capability (for operation at \(60-\mathrm{Hz}\)),
(2) a typical gate sensitivity of 20 milliamperes in the \(I(+)\) and III(-) modes,
(3) low ON-state voltage of 1.5 volts maximum at 40 amperes, and
(4) available \(V_{D R O M}\) equal to 600 volts.

Fig. 15 shows the circuit diagram of a synchronous-switching heat-staging controller that is used for electric heating systems. Loads

Fig. 15 - Synchronous-switching heat-staging controller using a series of CA3059 integrated circuits.
as heavy as 5 kilowatts are switched sequentially at zero voltage to eliminate RFI and prevent a dip in line voltage that would occur if the full 25 kilowatts were to be switched simultaneously.

Transistor \(Q_{1}\) is used as a constant-current source to charge capacitor \(C\) in a linear manner. Transistor \(Q_{2}\) acts as a buffer stage. When the thermostat is closed, a ramp voltage is provided at output \(\mathrm{E}_{\mathrm{o}}\). At approximately 3 -second intervals, each 5 -kilowatt heating element is switched onto the power system by its respective triac. When there is no further demand for heat, the thermostat opens, and capacitor \(C\) discharges through \(R_{1}\) and \(R_{2}\) to cause each triac to turn OFF in the reverse heating sequence. It should be noted that some half-cycling occurs before the heating element is switched fully ON . This condition can be attributed to the inherent dissymmetry of the CA3059 and is further aggravated by the slow-rising ramp voltage applied to one of the inputs. The timing diagram in Fig. 16 shows the turn-on and turn-off sequence of the heating system being controlled.

Seemingly, the basic method shown in Fig. 15 could be modified to provide proportional control in which the number of heating elements switched into the system, under any given thermal load, would be a function of the BTU's required by the system or the temperature differential between an indoor and outdoor sensor within the total system environment. That is, the closing of the thermostat would not switch in all the heating elements within a short time interval, which inevitably results in undesired temperature excursions, but would switch in only the number of heating elements required to satisfy the actual heat load.

\section*{Integral-Cycle Temperature Controller (No half-cycling)}

If a temperature controller which is completely devoid of half-cycling and hysteresis is required, then the circuit shown in

Fig. 16 - Ramp-voltage waveform for the heat-staging controller.

Fig. 17 may be used. This type of circuit is essential for applications in which half-cycling and the resultant dc component could cause overheating of a power transformer on the utility lines.

In the circuit shown in Fig. 17, the sensor is connected between terminals 7 and 9 of the CA3059. This arrangement is required because of the phase reversal introduced by SCR \(\mathrm{Y}_{1}\). With this configuration, terminal 12 is connected to terminal 7 for operation of the CA3059 in the dc mode (however, the load is switched at zero voltage). Because the position of the sensor has been changed for this configuration, the internal fail-safe circuit cannot be used (terminals 13 and 14 are not connected).

In the integral-cycle controller, when the temperature being controlled is low, the resistance of the thermistor is high and an

Fig.17. CA3059 integral-cycle temperature controller in which half-cycling effect is eliminated.
output signal at terminal 4 of zero volts is obtained. The \(\operatorname{SCR}\left(\mathrm{Y}_{1}\right)\), therefore, is turned off. The triac \(\left(\mathrm{Y}_{2}\right)\) is then triggered directly from the line on positive cycles of the ac voltage. When \(Y_{2}\) is triggered and supplies power to the load \(R_{L}\), capacitor \(C\) is charged to the peak of the input voltage. When the ac line swings negative, capacitor C discharges through the triac gate to trigger the triac on the negative half-cycle. The diode-resistor-capacitor "slaving network" triggers the triac on negative half-cycles of the ac input voltage after it is triggered on the positive half-cycle to provide only integral cycles of ac power to the load.

When the temperature being controlled reaches the desired value, as determined by the thermistor, then a positive voltage level appears at terminal 4 of the CA3059. The SCR then starts to conduct at the beginning of the positive input cycle to shunt the trigger current away from the gate of the triac. The triac is then turned OFF. The cycle repeats when the SCR is again turned OFF by the CA3059.

The circuit shown in Fig. 18 is similar to the configuration in Fig. 17 except that the fail-safe circuit incorporated in the CA3059 can be used. In this new circuit, the NTC sensor is connected between terminals 7 and 13 , and transistor \(Q_{0}\) inverts the signal output at terminal 4 to nullify the phase reversal introduced by the SCR \(\left(Y_{1}\right)\). The internal power supply of the CA3059 supplies bias current to transistor \(\mathrm{Q}_{\mathrm{o}}\).

Of course, the circuit shown in Fig. 18 can readily be converted to a true proportional integral-cycle temperature controller simply by connection of a positive-going ramp voltage to terminal 9 (with terminals 10 and 11 open), as previously discussed in this Note.

\section*{SENSOR ISOLATION}

For some applications, electrical isolation of the sensor from the incoming ac power lines may be desired. Fig. 19 shows such a
configuration. The pulse transformer \(T_{1}\) isolates the sensor from main terminal No. 1 of the triac \(\mathrm{Y}_{1}\), and transformer \(\mathrm{T}_{2}\) isolates the CA3059 from the power lines. Capacitor \(\mathrm{C}_{1}\) shifts the phase of the output pulse at terminal 4 in order to retard the gate pulse delivered to triac \(Y_{1}\) to compensate for the small phase shift introduced by transformer \(T_{1}\).

\section*{DIFFERENTIAL COMPARATOR FOR INDUSTRIAL USE}

Differential comparators have found widespread use as limit detectors which compare two analog input signals and provide a go/no-go, logic "one" or logic "zero" output, depending upon the relative magnitudes of these signals. Because the signals are often at very low voltage levels and very accurate discrimination is normally required between them, differential comparators in many cases employ differential amplifiers as a basic building block. However, in many industrial control applications, a highperformance differential comparator is not required. That is, high resolution, fast switching speed, and similar features are not essential. The CA3059 is ideally suited for use in such applications. Connection of terminal 12 to terminal 7 inhibits the zero-voltage threshold detector of the CA3059, and the circuit becomes a differential comparator.

Fig. 20 shows the circuit arrangement for use of the CA3059 as a differential comparator. In this application, no external dc supply is required, as is the case with most commercially available integrated-circuit comparators; of course, the output-current capability of the CA3059 is reduced because the circuit is operating in the dc mode. The 1000 -ohm resistor \(\mathrm{R}_{\mathrm{G}}\), connected between terminal 4 and the gate of the triac, limits the output current to approximately 3 milliamperes.

When the CA3059 is connected in the dc mode, the drive current for terminal 4 can be determined from a curve of the

* *SELECTED FOR IGT \(=6 \mathrm{~mA}\) MAXIMUM

Fig.18-CA3059 integral-cycle temperature controller that features fail-safe operation and no half-cycling effect.

Fig.19-CA3059 on-off controller with an isolated sensor.

Fig. 20 - Differential comparator using the CA3059 integrated circuit.
external load current as a function of dc voltage from terminals 2 and 7. This curve is shown in the technical bulletin for the CA3059 integrated circuit. Of course, if additional output current is required, an external dc supply may be connected between terminals 2 and 7, and resistor \(R_{X}\) (shown in Fig. 20)may be removed.

The chart below compares some of the operating characteristics of the CA3059, when used as a comparator, with a typical high-performance commercially available integrated-circuit differential comparator.

PARAMETERS
1. Sensitivity
2. Switching speed (rise time)
3. Output drive capability

CA3059
(typical values)
30 mV
\(>20 \mu \mathrm{~s}\)
*4.5V at \(\leq 4 \mathrm{~mA}\)

Typical Integrated-
Circuit Comparator (710)
2 mV
90 ns
3.2 V at \(\leq 5.0 \mathrm{~mA}\)

Refer to Figure \(20 ; \mathrm{R}_{\mathrm{X}}\) equals 5000 ohms

\section*{POWER ONE-SHOT CONTROL}

Fig. 21 shows a circuit which triggers a triac for one complete half-cycle of either the positive or negative alternation of the ac line

Fig. 21 - Block diagram of a power one-shot control using the CA30'9.
voltage. In this circuit, triggering is initiated by the push button PB-1, which produces triggering of the triac near zero voltage even though the button is randomly depressed during the ac cycle. The triac does not trigger again until the button is released and again depressed. This type of logic is required for the solenoid drive of electrically operated stapling guns, impulse hammers, and the like, where load-current flow is required for only one complete half-cycle. Such logic can also be adapted to keyboard consoles in which contact bounce produces transmission of erroneous information.
generated, but the state of \(\mathrm{Q}_{\mathrm{G}}\) determines the requirement for their supply to the triac gate. The first pulse generated serves as a "framing pulse" and does not trigger the triac but toggles FF-1. Transistor \(\mathrm{Q}_{\mathrm{G}}\) is then turned off. The second pulse triggers the triac and FF-l which, in turn, toggles the second flip-flop FF-2. The output of FF-2 turns on transistor Q7, as shown in Fig. 22, which inhibits all further output pulses. When the pushbutton is released, the circuit resets itself until the process is repeated with the button. Fig. 23 shows the timing diagram for the described operating sequence.

Fig. 22 - Circuit diagram for the power one-shot control.

In the circuit of Fig. 21, before the button is depressed, both flip-flop outputs are in the "zero" state. Transistor \(\mathrm{Q}_{\mathrm{G}}\) is biased ON by the output of flip-flop FF-1. The differential comparator which is part of the CA3059 circuit is initially biased to inhibit output pulses. When the push button is depressed, pulses are

Fig. 23 - Timing diagram for the power one-shot control.

\section*{SOLID-STATE TRAFFIC FLASHER}

Another application which illustrates the versatility of the CA3059, when used with RCA thyristors, involves switching traffic-control lamps. In this type of application, it is essential that a triac withstand a current surge of the lamp load on a continuous basis. This surge results from the difference between the cold and hot resistance of the tungsten filament. If it is assumed that triac turn-on is at 90 degrees from the zero-voltage crossing, the first current-surge peak is approximately ten times the peak steady-state value or fifteen times the steady-state rms value. The second current-surge peak is approximately four times the steady-state rms value.

When the iriac randomly switches the lamp, the rate of current rise di/dt is limited only by the source inductance. The triac di/dt rating may be exceeded in some power systems. In many cases, exceeding the rating results in excessive current concentrations in a small area of the device which may produce a hot spot and lead to device failure. Critical applications of this nature require adequate drive to the triac gate for fast turn-on. In this case, some inductance may be required in the load circuit to reduce the initial magnitude of the load current when the triac is passing through the active region. Another method may be used which involves the switching of the triac at zero line voltage. This method involves the supply of pulses to the triac gate only during the presence of zero voltage on the ac line.

Fig. 24 shows a circuit in which the lamp loads are switched at zero line voltage. This approach reduces the initial \(\mathrm{di} / \mathrm{dt}\),
decreases the required triac surge-current ratings, increases the operating lamp life, and eliminates RFI problems. This circuit consists of two triacs, a flip-flop (FF-1), the CA3059, and a diac pulse generator. The flashing rate in this circuit is controlled by potentiometer R, which provides between 10 and 120 flashes per minute. The state of FF-1 determines the triggering of triacs \(\mathrm{Y}_{1}\) or \(\mathrm{Y}_{2}\) by the output pulses at terminal 4 generated by the zero-crossing circuit. Transistors' \(Q_{1}\) and \(Q_{2}\) inhibit these pulses to the gates of the triacs until the triacs turn on by the logical " 1 " (\(\mathrm{V}_{\mathrm{CC}}\) high) state of the flip-flop.

The arrangement described can also be used for a synchronous, sequential traffic-controller system by addition of one triac, one gating transistor, a "divide-by-three" logic circuit, and modification in the design of the diac pulse generator. Such a system can control the familiar red, amber, and green traffic signals that are found at many intersections.

\section*{TRANSIENT-FREE SWITCH CONTROLLER}

The CA3059 can be used as a simple solid-state switching device that permits ac currents to be turned on or off with a minimum of electrical transients and circuit noise.

The circuit shown in Fig. 25 is connected so that, after the control terminals (14 and 7) are opened, electronic logic waits until the power-line voltage reaches a zero crossing before power is applied to the load \(Z_{L}\). Conversely, when the control terminals are shorted, the load current continues until it reaches a zero crossing. This circuit can switch a load at zero current whether it is resistive or inductive.

The circuit shown in Fig. 26 is connected to provide the opposite control logic to that of the circuit shown in Fig. 25. That is, when the switch is closed, power is supplied to the load, and when the switch is opened, power is removed from the load.

Fig.24-Synchronous-switching traffic flasher using the CA3059.

Fig. 25 - CA3059 transient-free switch controller in which power is supplied to the load when the switch is open.

In both configurations, the maximum rms load current that can be switched depends on the rating of triac \(Y_{2}\). If \(Y_{2}\) is an RCA-2N5444 triac, an rms current of 40 amperes can be switched.

Ref. 1. RCA bulletin File No. 479, "COS/MOS IC's for Low-Voltage (3-15V) Applications.

\section*{ACKNOWLEDGMENTS}

The author wishes to express his appreciation to P. Howard for his able assistance in development of many of the circuits described in this Note.

Fig. 26 - CA3059 transient-free switch controller in which power is applied to the load when the switch is closed.

\title{
Applications and Extended Operating Characteristics for the RCA－CA3059 IC Zero－ Voltage Switch
}

\author{
by H．M．Kleinman and A．Sheng
}

The RCA－CA3059 zero－voltage switch is a monolithic silicon integrated circuit designed to control a thyristor in a variety of ac power switching applications．A previous Application Note（ICAN－4158）described several useful control systems in which the CA3059 was used as a thyristor trigger．This Note briefly describes the CA3059 circuit， explains the circuit functions and basic system configura－ tions，and gives supplemental data for extending operation to \(220-\mathrm{volt}, 50-\mathrm{to}-60-\mathrm{Hz}\) lines and temperatures from \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) ．It also discusses additional applications including the switching of inductive loads，the provision of negative gate current，operation with low－impedance sensors，and syn－ chronous light flashers．

\section*{CIRCUIT DESCRIPTION}

Operation of the CA3059 can best be explained by reference to the functional block diagram shown in Fig． 1 and the schematic diagram shown in Fig．2．In the following discussion，all voltages are referred to terminal 7 ．

－NEGATIVE TEMPERATURE COEFFICIENT
Fig． 1 －Functional block diagram of CA3059 integrated－ circuit zero－voltage switch．

Power to the circuit may be derived directly from the ac line，as shown in Fig．1，or from an external dc power supply connected between terminals 2 and 7，as shown in Fig．3．In the normal mode of operation，a dropping resistor \(\mathrm{R}_{\mathrm{S}}\) of 5000 to 10,000 ohms is required to limit the current in the IC．The choice of resistor is a function of the average current drawn from the power supply，either by external circuits or by the thyristor trigger circuits，as shown in Fig． 4.

The diodes \(D_{1}\) and \(D_{2}\) in Fig． 2 form a symmetrical clamp that limits the voltages on the chip to \(\pm 8\) volts；\(D_{7}\) and \(\mathrm{D}_{13}\) form a half－wave rectifier that develops a positive voltage on the external storage capacitor．When an external power supply is used to increase the current capability of the IC，care must be used to avoid exceeding the 14 －volt breakdown voltage rating between terminals 2 and 5 ．This requirement is not a problem if the supply voltage is 6 volts or less．If higher supply voltages are required，terminal 5 must be shorted to terminal 7 and the line synchronizing voltage applied to terminal 12 through a resistor of 10,000 ohms or more，as shown in Fig． 3.

The functions of the other blocks in Fig． 1 can best be understood by consideration of the normal state of a thyristor gating circuit as its ON state，in which current is being delivered to the triac gate through terminal 4 ．The other circuit blocks inhibit the gating circuit unless certain conditions are met．In the ON state， \(\mathrm{Q}_{8}\) and \(\mathrm{Q}_{9}\) are conducting， \(\mathrm{Q}_{7}\) is off，and \(\mathrm{Q}_{6}\) is on．Any action that turns Q7 on removes the drive from Q8 and allows the thyristor to turn off．\(Q_{7}\) may be turned on directly by application of a minimum of +1.2 volts at 10 microamperes to the EXTERNAL INHIBIT terminal 1．（If a voltage of more than 2 volts is available，external resistance must be added to limit the current to 10 milliamperes．）Diode \(\mathrm{D}_{10}\) isolates the base of Q7 from other signals when an external inhibit signal is applied so that this signal is the highest priority command for normal operation．（Although grounding of terminal 6 creates a higher－priority inhibit function，this level is not compatible with normal DTL or TTL logic levels．）Q7 may

Fig. 2 - Schematic diagram of CA3059 zero-voltage switch.

Fig. 3 - Operation of the CA3059 from an external dc power supply connected between terminals 2 and 7.
also be activated by turning off \(\mathrm{Q}_{6}\) to allow current to flow from the power supply through \(\mathrm{R}_{7}\) and \(\mathrm{D}_{10}\) into the base. \(\mathrm{Q}_{6}\) is normally held on by current flowing into its base through \(\mathrm{R}_{2}, \mathrm{D}_{8}\), and \(\mathrm{D}_{9}\) when \(\mathrm{Q}_{1}\) is off.
\(\mathrm{Q}_{1}\) is a portion of the zero-crossing detector. When the voltage at terminal 5 is greater than +3 volts, current can flow through \(\mathrm{R}_{1}, \mathrm{D}_{6}\), the base-to-emitter junction of \(\mathrm{Q}_{1}\), and \(\mathrm{D}_{4}\) to terminal 7 to turn on \(\mathrm{Q}_{1}\) and inhibit the pulse. For negative voltages with magnitudes greater than 3 volts, the current flows through \(\mathrm{D}_{5}\), the emitter-to-base junction of \(\mathrm{Q}_{1}, \mathrm{D}_{3}\), and \(\mathrm{R}_{1}\), and again turns \(\mathrm{Q}_{1}\) on. \(\mathrm{Q}_{1}\) is off only when the voltage at terminal 5 is less than the threshold voltage of approximately 2 volts. When the CA3059 is connected as shown in Fig. 1, therefore, output occurs in a narrow pulse which is approximately centered about the zero-voltage time

Fig. 4 - DC supply voltage as a function of external load current for several values of dropping resistance \(R_{S}\).
in the cycle, as shown in Fig, 5. In some applications, however, particularly those using either slightly inductive or low-power loads, the thyristor load current does not reach

Fig. 5 - Waveform showing output-pulse duration of CA3059.
; holding current by the end of this pulse. Fig. 6 shows how an external capacitor between terminal 5 and 7 can be used to delay the pulse to accommodate such loads. The amount of pulse stretching and delay is shown in Figs. 7(a) and \(7(b)\).

Fig. 6 - Use of a capacitor between terminals 5 and 7 to delay the output pulse of the CA3059.

Continuous gate current can be obtained if terminal 12 is connected to terminal 7 to disable the zero-crossing detector. In this mode, \(\mathrm{Q}_{1}\) is always off. This mode of operation is useful when comparator operation is desired or when inductive loads must be switched. (If the capacitance in the load circuit is low, most RFI is eliminated.) Care must be used to avoid overloading of the internal power supply in this mode. A sensitive-gate thyristor should be used and a resistor placed between terminal 4 and the gate of the thyristor to limit the current.

\section*{THE ON-OFF SENSING AMPLIFIER}

The discussion thus far has considered only cases in which pulses are present all the time or not at all. The differential sense amplifier consisting of transistors \(\mathrm{Q}_{2}, \mathrm{Q}_{3}\), \(\mathrm{Q}_{4}\), and \(\mathrm{Q}_{5}\) makes the CA3059 a flexible power-control circuit. The transistor pairs \(\mathrm{Q}_{2} \cdot \mathrm{Q}_{4}\) and \(\mathrm{Q}_{3}-\mathrm{Q}_{5}\) form high-beta composite p-n-p transistors in which the emitters of \(\mathrm{Q}_{4}\) and Q5 act as the collectors of the composite devices. These two composite transistors are connected as a differential amplifier with \(\mathrm{R}_{3}\) acting as a constant-current source. The relative current flow in the two "collectors" is a function of the difference in voltage between the bases of \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{3}\). Therefore, when terminal 13 is more positive than terminal 9 , little or no current flows in the "collector" of \(\mathrm{Q}_{2}-\mathrm{Q}_{4}\); when terminal 13 is negative with respect to terminal 9 , most of the current flows through that path and none in terminal 8. When current flows in \(\mathrm{Q}_{2}-\mathrm{Q}_{4}\), the path is from the supply through \(\mathrm{R}_{3}\), through \(\mathrm{Q}_{2}-\mathrm{Q}_{4}\), through the base-emitter junction of \(\mathrm{Q}_{1}\), and finally through \(\mathrm{D}_{4}\) to terminal 7 . Therefore, when \(V_{13}\) is equal to or more negative than \(V_{9}\), \(Q_{1}\) is on and output is inhibited.

In the circuit shown in Fig. 1, the voltage at terminal 9 is derived from the supply by connection of terminals 10 and 11 to form a precision voltage divider. This divider forms one side of a transducer bridge, with \(\mathrm{R}_{\mathrm{p}}\) and the NTC sensor forming the other. At low temperatures, the large value of the sensor causes terminal 13 to be positive with respect to

Fig. 7-Curves showing effect of external capacitance on (a) the total output-pulse duration, and (b) the time from zero crossing to the end of the pulse.
terminal 9 so that the thyristor fires on every half-cycle and power is applied to the load. As the temperature increases, the sensor resistance decreases until a balance is reached and \(\mathrm{V}_{13}\) approaches \(\mathrm{V}_{9}\). At this point, \(\mathrm{Q}_{2}-\mathrm{Q}_{4}\) turns on and inhibits any further pulses. The controlled temperature is adjusted by variation of the value of \(R_{p}\). For cooling service, either the positions of \(R_{p}\) and the sensor may be reversed or terminals 9 and 13 may be interchanged.

The low bias current of the sensing amplifier permits operation with sensor impedances of up to 0.1 megohm at balance without introduction of substantial error (i.e., greater than 5 per cent). The error may be reduced if the internal bridge elements \(\mathrm{R}_{4}\) and \(\mathrm{R}_{5}\) are not used but are
replaced with resistors which equal the sensor impedance. The minimum value of sensor impedance is restricted by the current drain on the internal power supply; the curves shown in Fig. 4 should be consulted when low-impedance sensors are used. Operation with sensors as low as 300 ohms may be obtained with a 5000 -ohm series resistor. Slightly better sensitivity can be realized if \(R_{S}\) is reduced to 4000 ohms.

\section*{ADDING HYSTERESIS}

Because the logic circuitry of the CA3059 causes a decision concerning power delivery to be made on each half-cycle, it is possible that power may be required for an odd number of half-cycles once equilibrium is reached. In systems with relatively fast response times (less than 1 second), a substantial dc component might be placed on the power line and cause heating of any isolation or distribution transformers. This problem may be reduced by introducing hysteresis into the system, as shown in Fig. 8. A "dead zone" of 10 per cent of the sensor impedance may be achieved by

Fig. 8-CA3059 on-off controller with hysteresis.
use of a sensor resistance \(R_{a}\) of 0.1 megohm, an \(R_{1}\) value of 0.2 megohm, and an \(R_{2}\) value of 18000 ohms. A decrease in the \(\mathrm{R}_{2}\) value reduces the effect. With a 5000 -ohm sensor impedance, values of 12000 ohms for \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) yield a 5 -per-cent dead zone. A more eleborate system (described in ICAN-4158) is required if the degree of hysteresis must be accurately controlled.

\section*{PROPORTIONAL CONTROL}

The ON-OFF nature of the control shown in Fig. 1 causes some overshoot that leads to a definite steady-state error. The addition of hysteresis adds further to this error factor. However, the connections shown in Fig. 9(a) can be used to add proportional control to the system. In this circuit, the sense amplifier is connected as a free-running multivibrator. At balance, the voltage at terminal 13 is as shown in Fig. 9 (b). When this voltage is more positive than the threshold, power is applied to the load so that the duty cycle is approximately 50 per cent. With a \(0.1-\) megohm sensor and

(a)

(b)

Fig. 9 - Typical heating control with proportional control: (a) schematic diagram, and (b) waveform of voltage at terminal 13.
values of \(\mathrm{R}_{\mathrm{p}}=0.1\) megohm, \(\mathrm{R}_{2}=10,000\) ohms, and \(\mathrm{C}_{\text {ext }}=\) 10 microfarads, a period greater than 3 seconds is achieved. This period should be much shorter than the thermal time constant of the system. Changing the value of any of these elements changes the period, as shown in Fig. 10. As the resistance of the sensor changes, the voltage on terminal 13 moves relative to \(\mathrm{V}_{9}\). A cooling sensor moves \(\mathrm{V}_{13}\) in a positive direction. The triac is ON for a larger portion of the pulse cycle and increases the average power to the load.

Fig. 10 - Effect of variations in time-constant elements on period.

As in the case of the hysteresis circuitry described, some special applications may require more sophisticated systems
to achieve either very precise regions of control or very long periods (see ICAN-4158).

\section*{FAIL-SAFE OPERATION}

A special feature of the CA3059 is the inclusion of a fail-safe circuit which removes power from the load if the sensor either shorts or opens. However, use of this circuit places certain constraints upon the user. Specifically, fail-safe operation is guaranteed under the following conditions:
1. The circuit configuration of Fig. 1 is used, with an internal supply, no external load on the supply, and terminal 14 connected to terminal 13.
2. The value of \(\mathrm{R}_{\mathrm{p}}\) and of the sensor resistance must be between 2000 ohms and 0.1 megohm.
3. The ratio of sensor resistance and \(\mathrm{R}_{\mathrm{p}}\) must be greater than 0.25 and less than 4.0 for all normal conditions (if either of these ratios is not met with an unmodified sensor, a series resistor or a shunt resistor must be added to avoid undesired activation of the circuit).

Fail-safe operation may be applied to other systems when operation of the circuit is understood. The fail-safe circuit consists of \(\mathrm{D}_{12}, \mathrm{D}_{15}\), and \(\mathrm{Q}_{10} . \mathrm{D}_{12}\) activates the fail-safe circuit if the sensor shown in Fig. 1 sherts or drops too low in value, as follows: \(\mathrm{Q}_{6}\) is on during an output pulse so that the junction of \(D_{8}\) and \(D_{12}\) is 3 diode drops (approximately 2 volts) above terminal 7. As long as \(\mathrm{V}_{14}\) is more positive or only 0.15 volt negative with respect to that point, \(\mathrm{D}_{12}\) does not conduct and the circuit operates normally. If the voltage at terminal 14 drops to 1 volt, the anode of \(\mathrm{D}_{8}\) can have a potential of only 1.6 to 1.7 volts, and current does not flow through \(\mathrm{D}_{8}, \mathrm{D}_{9}\), and \(\mathrm{Q}_{6}\); the thyristor then turns off. The actual threshold is approximately 1.2 volts at room temperature, but decreases 4 millivolts per degree C at higher temperatures. As the sensor resistance increases, the voltage at terminal 14 rises toward the supply voltage. At a voltage of approximately 6 volts, the zener diode \(\mathrm{D}_{15}\) breaks down and turns on \(\mathrm{Q}_{10}\), which then turns off \(\mathrm{Q}_{6}\) and the thyristor. If the supply voltage is not at least 0.2 volt more positive than the breakdown of \(D_{15}\), activation of the fail-safe circuit is not possible. For this reason, loading the internal supply may cause this circuit to malfunction, as may selection of the wrong external supply voltage. Fig. 11 shows a guide for the proper operation of the fail-safe circuit when an external supply is used.

\section*{SUPPLEMENTAL CHARACTERISTICS DATA}

The characteristics curves shown in Fig. 12 are similar to curves shown in the published data for the CA3059 (RCA File No. 397, dated 10/69), but have been extended to cover the entire operating range from \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\). Fig. 13 presents data required for operation of the CA3059 from the \(220-\mathrm{volt}, 50-\mathrm{Hz}\) lines which are common in Europe and from the \(220-\) to- 240 -volt, \(60-\mathrm{Hz}\) lines which are commonly used for high-power applications in the United States. Although the CA3059 may be operated from any line voltage or frequency, the characteristics of the output pulse change for
different line voltages and frequencies. Figs. 13(a) and (b) show relative pulse width and location of the zero-voltage crossing when a 10,000 -ohm series dropping resistor is used. Figs. 13(c) and (d) show the same information for an increased resistor value of 20,000 ohms.

Fig. 11 - Operating regions for built-in protection circuits.

\section*{APPLICATIONS OF THE CA3059}

The early sections of this Note described the basic operation of the CA3059 in heating control systems. The circuit is adaptable to many other control functions by variation of the type of sensor used or by the use of the inputs of the differential amplifier to detect the difference between two externally developed voltages. A previous Application Note (ICAN-4158) describes the following useful CA3059 systems:
1) a controller with an external fail-safe circuit for use when the sensor does not meet the requirements for use of the internal circuit,
2) a controller with provisions for accurate setting of hysteresis,
3) a proportional control system with an external ramp generator,
4) a dual-output, over-under temperature controller,
5) a heat staging controller,
6) a circuit which eliminates half-cycling,
7) a circuit with an isolated sensor,
8) a power one-shot control,
9) a synchronously switched traffic flasher,
10) transient-free switch controllers.

Although most of these circuits illustrate a heating control circuit, they are all adaptable to other control functions by change of the control logic or sensor.

\section*{SWITCHING INDUCTIVE LOADS}

For proper driving of a thyristor in full-cycle operation, gate drive must be applied soon after the voltage across the device reverses. When resistive loads are used, this reversal

(c)

(d)

Fig. 12 - Characteristics curves of the CA3059 extended to cover the operating range from -40 to \(+85^{\circ} \mathrm{C}\).
occurs as the line voltage reverses. With loads of other power factors, however, it occurs as the current through the load becomes zero and reverses.

There are several methods for switching an inductive load at the proper time. If the power factor of the load is high (i.e., if the load is only slightly inductive), the pulse may be delayed by addition of a suitable capacitor between terminals 5 and 7, as described in the published data for the CA3059. For highly inductive loads, however, this method is not suitable and different techniques must be used.

One technique is suggested in the circuit description section of this Note. If gate current is continuous, the triac automatically commutates because drive is always present when the voltage reverses. This mode is established by connection of terminals 7 and 12. The zero-crossing detector is then disabled so that current is supplied to the triac gate whenever called for by the sensing amplifier. Although the RFI-eliminating function of the CA3059 is inhibited when the zero-crossing detector is disabled, there is no problem if the load is highly inductive because the current in the load cannot change abruptly.

The limitation to this mode of operation is that the internal power supply cannot deliver a large average current; therefore, a sensitive-gate triac is required. Because these triacs have somewhat limited load-carrying capacity, this approach cannot be used universally.

The previous Note ICAN-4158 showed circuits which used a sensitive-gate triac to shift the firing point of the power triac by approximately 90 degrees. If the primary load is inductive, this phase shift corresponds to firing at zero current in the load. However, changes in the power factor of the load or tolerances of components will cause errors in this firing time.

The circuit shown in Fig. 14 uses a CA3018 inte-grated-circuit transistor array to detect the absence of load current by sensing the voltage across the triac. The internal zero-crossing detector is disabled by connection of terminal 12 to terminal 7, and control of the output is made through the external inhibit input, terminal 1. The circuit permits an output only when the voltage at point \(A\) exceeds two \(V_{B E}\) drops or 1.3 volts. When A is positive, \(\mathrm{Q}_{3}\) and \(\mathrm{Q}_{4}\) conduct and reduce the voltage at terminal 1 below the inhibit state. When A is negative, \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\) conduct. When the voltage at point A is less than \(\pm 1.3\) volts, neither of the transistor pairs conducts; terminal 1 is then pulled positive by the current in \(\mathrm{R}_{3}\) and output is inhibited.

The circuit of Fig. 14 forms a pulse of gate current in the manner described below, and can supply high peak drive to power triacs with low average current drain on the internal supply. The gate pulse will always last just long enough to latch the thyristor so that there is no problem with delaying the pulse to an optimum time. As in other circuits of this type, RFI results if the load is not suitably inductive because the zero-crossing detector is disabled and initial turn-on occurs at random.

The gate pulse forms because the voltage at point \(A\) when the thyristor is on is less than 1.3 volts; therefore, the

Fig. 13 - Relative pulse width and location of zero-voltage crossing for 220 -volt operation.
output of the CA3059 is inhibited, as described above. The resistor divider \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) should be selected to assure this condition. When the triac is on, the voltage at point \(A\) is approximately one-third of the instantaneous on-state voltage (vT) of the thyristor. For most RCA thyristors, vT (max) is less than 2 volts and the divider shown is a conservative one. When the load current passes through zero, the triac commutates and turns off. Because the circuit is still being driven by the line voltage, the current in the load attempts to reverse, and voltage increases rapidly across the "turned-off" triac. When this voltage exceeds 4 volts, one portion of the CA3018 conducts and removes the inhibit signal to permit application of gate drive. Turning the triac on causes the voltage across it to drop and thus ends the gate pulse. If the holding current has not been attained, another gate pulse forms, but no discontinuity in the load current occurs.

\section*{PROVIDING NEGATIVE GATE CURRENT}

Triacs trigger with optimum sensitivity when the polarity of the gate voltage and the voltage at the main terminal 2 are similar (\(I^{+}\)and III-modes). Sensitivity is degraded when the polarities are opposite (\(\mathrm{I}^{-}\)and \(\mathrm{III}^{+}\)modes). Although RCA triacs are designed and specified to have the same sensitivity in both \(\mathrm{I}^{-}\)and \(\mathrm{III}^{+}\)modes, some other types have very poor sensitivity in the \(\mathrm{III}^{+}\)condition. Because the CA3059

Fig. 14 - Circuit for switching inductive loads.
supplies positive gate pulses, it may not directly drive some higher-current triacs of these other types.

The circuit shown in Fig. 15 (a) uses the negative-going voltage at terminal 3 of the CA3059 to supply a negative gate pulse through a capacitor. The curve in Fig. 15 (b) shows the approximate peak gate current as a function of gate voltage \(\mathrm{V}_{\mathrm{G}}\). Pulse width is approximately 80 microseconds.

Fig. 15 - Use of the CA3059 to provide negative gate pulses: (a) schematic diagram; (b) peak gate current lat terminal 3) as a function of gate voltage.

\section*{OPERATING WITH LOW-IMPEDANCE SENSORS}

Although the CA3059 can operate satisfactorily with a wide range of sensors, sensitivity is reduced when sensors with impedances greater than 20,000 ohms are used. Typical sensitivity is one per cent for a 5000 -ohm sensor and increases to three per cent for a \(0.1-\mathrm{megohm}\) sensor.

Low-impedance sensors present a different problem. The sensor bridge is connected across the internal power supply and causes a current drain. A 5000 -ohm sensor with its associated 5000 -ohm series resistor draws less than 1 milliampere. On the other hand, a 300 -ohm sensor draws a current
of 8 to 10 milliamperes from the power supply.
Fig. 16 shows the 600 -ohm load line of a 300 -ohm sensor on a redrawn power-supply regulation curve for the CA3059. When a 10,000 -ohm series resistor is used, the voltage across the circuit is less than 3 volts and both sensitivity and output current are significantly reduced. When a 5000 -ohm series resistor is used, the supply voltage is nearly 5 volts and operation is approximately normal. For more consistent operation, however, a 4000 -ohm series resistor is recommended.

Fig. 16 - Power-supply regulation of the CA3059 with a 300 -ohm sensor (600 -ohm load) for two values of series resistor.

\section*{SYNCHRONOUS LIGHT FLASHER}

The circuit shown in Fig. 17 is a simplified version of the system shown in the previous Note ICAN-4158. Flash rate is set by use of the curve shown in Fig. 10. If a more precise flash rate is required, the ramp generator described in the previous Note may be used. In this circuit, \(\mathrm{IC}_{1}\) is the master control unit and \(\mathrm{IC}_{2}\) is slaved to the output of \(\mathrm{IC}_{1}\) through

Fig. 17-CA3059 synchronous light flasher.
its inhibit terminal (terminal 1). When power is applied to lamp No. 1, the voltage of terminal 6 on \(\mathrm{IC}_{1}\) is high and \(\mathrm{IC}_{2}\) is inhibited by the current in \(\mathrm{R}_{\mathbf{x}}\). When lamp No. 1 is off, \(\mathrm{IC}_{2}\) is not inhibited and triac \(\mathrm{Y}_{2}\) can fire. The power supplies operate in parallel. The on-off sensing amplifier in \(\mathrm{IC}_{2}\) in not used.

\title{
Features and Applications of RCA－CD2500E－Series MSI BCD－to－7－Segment Decoder－Drivers
}

\author{
by J．Lee
}

The RCA BCD－to－7－segment decoder－drivers，types CD2500E，CD2501E，CD2502E，and CD2503E，are medium－scale－integration（MSI）monolithic circuits designed to accept four inputs in BCD 8－4－2－1 code and provide decoded outputs that represent a decimal number from 0 to 9 on a 7 －segment incandescent display device．The decoder－ drivers are supplied in 16 －terminal dual－in－line plastic packages that can be used over the operating temperature range from \(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) ．

The CD2500E and CD2501E are 30 －milliampere－per－ line drivers intended for use with 7 －segment incandescent display devices such as the RCA DR2000 and DR2010 Numitrons．The CD2502E and CD2503E are 80－ milliampere－per－line drivers intended for use with high－ current lamps and relays and may also be used for multiplex operation of RCA Numitrons．The CD2500E and CD2502E include a decimal－point driver，and the CD2501E and CD2503E have a special terminal that may be used for ripple blanking and／or intensity control．The basic features of the CD2500E－series 7 －segment decoder－drivers are as follows：
－High current－sink capability for direct display driv－ ing（no external discrete components are required）
－Provision for lamp test
－Operation from a 5 －volt dc power supply
－Clamp diodes on all inputs
－Provision for ripple blanking and／or intensity control （CD2501E and CD2503E only）
－Decimal－point output（CD2500E and CD2502E only）
－BCD inputs that are compatible with commercially available diode－transistor－logic（DTL）and transistor－ transistor－logic（TTL）devices
－Over－range detection（automatic blanking of display device when BCD inputs correspond to a number greater than 9）

\section*{LOGIC DESCRIPTION}

Table I shows the logic levels（＂ 0 ＂or＂ 1 ＂）required at each input terminal for selection of the appropriate segments on the display device to represent a specific decimal number from 0 to 9 and for the decimal－point output，the lamp test， or the ripple－blanking function．The lower－case letters over the OUTPUT columns in the table identify the segments on the display device to which each output is applied．The last column in the table indicates the type of displays obtained on the display devices for each specific combination of BCD inputs．Figs． 1 and 2 show the terminal numbers on the decoder drivers that correspond to these outputs，and Fig． 3 shows the segment arrangement and designations for two 7－segment incandescent display devices，the RCA DR2000 and DR2010 Numitrons．

\section*{Conversion of BCD Data Inputs to 7－Segment Display Outputs}

The basic BCD－to－7－segment decoder－driver logic system consists of inverters，buffers，NAND gates（positive logic）， TTL inputs，and open－collector transistor outputs，as shown in Fig．4．Four information bits in BCD 8－4－2－1 code are applied to the BCD inputs．Eight input gates，Nos． 1 through

\(D P_{\mathrm{O}}=\) DECIMAL POINT OUTPUT
\(D P_{\mathrm{I}}=\) DECIMAL POINT INPUT

D，C，B，AND A REPRESENT THE FOUR INPUTS TO THE DECODER DRIVER （IN BCD 8－4－2－1 CODE）THAT ARE REQUIRED TO PRODUCE THE APPROPRIATE DECIMAL NUMBER ON THE DISPLAY DEVICE．

Fig． 1 －Terminal diagram for the CD2500E or CD2502E decoder－driver．

TABLEI - TRUTH TABLE FOR DECODER-DRIVER CIRCUITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{INPUT
\(0=\) Low Level \(1=\) High Level} & \multicolumn{9}{|c|}{\(0=\) Filament Lit \begin{tabular}{c}
OUTPUT \\
\(1=\) Filament OUT
\end{tabular}} & DISPLAY \\
\hline D & C & B & A & \(L / T\) & \(D P_{1}\) & RB1 & a & 0 & c & \(d\) & e & 1 & \(g\) & \(\mathrm{DP}_{0}\) & \(\mathrm{RB}_{0}\) & \\
\hline X & X & X & X & 0 & - & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - & & \[
\begin{array}{r}
1 \\
1 \\
1
\end{array}
\] \\
\hline 0 & 0 & 0 & 0 & & & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & 0 & \\
\hline 0 & 0 & 0 & 0 & & - & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & - & 1 & \[
\begin{array}{|c}
1 \\
1 \\
1 \\
1
\end{array}
\] \\
\hline 0 & 0 & 0 & 1 & 1 & - & X & 1 & 0 & 0 & 1 & 1 & 1 & 1 & - & 1 & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] \\
\hline 0 & 0 & 1 & 0 & 1 & - & X & 0 & 0 & 1 & 0 & 0 & 1 & 0 & - & 1 & \[
\square
\] \\
\hline 0 & 0 & 1 & 1 & 1 & - & X & 0 & 0 & 0 & 0 & 1 & 1 & 0 & - & 1 & \[
7
\] \\
\hline 0 & 1 & 0 & 0 & 1 & - & \(x\) & 1 & 0 & 0 & 1 & 1 & 0 & 0 & - & 1 & C-1 \\
\hline 0 & 1 & 0 & 1 & 1 & - & X & 0 & 1 & 0 & 0 & 1 & 0 & 0 & - & 1 & -1 \\
\hline 0 & 1 & 1 & 0 & 1 & - & X & 0 & 1 & 0 & 0 & 0 & 0 & 0 & - & 1 & \[
\left[\begin{array}{l}
1 \\
1 \\
\hline
\end{array}\right.
\] \\
\hline 0 & 1 & 1 & 1 & 1 & - & \(x\) & 0 & 0 & 0 & 1 & 1 & 1 & 1 & - & 1 & \\
\hline 1 & 0 & 0 & 0 & 1 & - & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - & & \\
\hline 1 & 0 & 0 & 1 & 1 & - & X & 0 & 0 & 0 & 0 & 1 & 0 & 0 & - & 1 & (1) \\
\hline 1 & 0 & 1 & 0 & 1 & - & x & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & 1 & \[
C
\] \\
\hline 1 & 0 & 1 & 1 & 1 & - & X & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & 1 & \\
\hline 1 & 1 & 0 & 0 & & - & \(x\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & 1 & \\
\hline & 1 & 0 & 1 & & - & \(x\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & 1 & \\
\hline \(!\) & 1 & 1 & 0 & & & \(\times\) & & 1 & 1 & 1 & \(!\) & 1 & 1 & - & 1 & \\
\hline 1 & 1 & , & 1 & & - & \(\times\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & 1 & \\
\hline - & - & - & - & 1 & 1 & - & - & - & - & - & - & - & - & 0 & - & \\
\hline - & - & - & - & 1 & 0 & - & - & - & - & - & - & - & - & 1 & - & \\
\hline - & - & - & - & 0 & x & - & - & - & - & - & - & - & - & 0 & - & \\
\hline \multicolumn{17}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
\(X-0\) or 1 entry has no effect \\
\(D P_{I}=\) Decimal Point Input \\
L/T = Lamp Test \\
\(D P_{0}=\) Decimal Point Output \\
\(\mathrm{RB}_{\mathrm{I}}=\) Ripple Blanking Input \\
\(\mathrm{RB}_{\mathrm{O}}=\) Ripple Blanking Output
\end{tabular}}} \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

RBO \(=\) RIPPLE-BLANKING OUTPUT
AND INTENSITY CONTROL INPUT
RBI = RIPPLE-BLANKING INPUT
d, C, b, and a represent the four inputs to the decoder oriver (iN BCD 8-4-2-1 CODE) THAT ARE REQUIRED TO PRODUCE THE APPROPRIATE DECIMAL NUMBER ON THE DISPLAY DEVICE.

Fig. 2 - Terminal diagram for the CD2501E or CD2503E decoder-driver.

Fig. 3-Segment arrangement and designations for two 7 -segment incandescent display devices.

8, are connected in four pairs to provide the BCD data and the complements of these data to the input of ten NAND) gates, Nos. 10 through 19. The ten NAND gates decode the data into their mutually exclusive outputs that represent the decimal numbers from 0 through 9 only; any BCD data that

Fig. 4 - Logic diagram for the BCD-to-7-segment decoder drivers.
correspond to a number greater than 9 is inhibited. The outputs of these ten NAND gates are then eacoded into seven outputs used to control the operation of a 7 -segment incandescent display device by seven additional NAND gates, Nos. 20 through 26. The outputs of these seven NAND gates are applied through seven open-collector trarsistors that provide high current-sink capability and make possible direct-driving of the display device.

\section*{Decimal-Point Output}

In the CD2500E and CD2502E decoder-drivers, gates Nos. 29A and 29B, shown in Fig. 4, develop a decimal-point output (\(\mathrm{DP}_{\mathrm{O}}\)) in response to a decimal-point-input (\(\mathrm{DP}_{\mathrm{I}}\)) control signal supplied from an external source. Transistor Q18 provides the inverter-driver function required to energize the decimal-point filament on the display device. This unique feature eliminates the necessity for separate external decimal-point driving circuitry.

\section*{Ripple-Blanking Function}

The ripple-blanking feature of the CD2501E and CD2503E decoder-drivers allows suppression of leadingand/or trailing-edge zeroes in a multidigital display. This action does not affect the numerical value and provides easier reading of the decimal display.

The ripple-blanking function is performed by gates Nos. 9,28 , and 29A, shown in Fig. 4. The ripple-blanking input (\(\mathrm{RB}_{\mathrm{I}}\)) is inverted by gate No. 29A and applied to gate No. 9 . Gate No. 28 is used as a buffer for gate No. 9. When the ripple-blanking input is at logical " 0 ", gate No. 29A provides a logical " 1 " at the input of the ripple-blanking gate No. 9 . Gate No. 9 also receives the complements of the BCD input data. This gate provides an inhibiting function for the decimal zero. When this inhibiting function occurs, i.e., when the ripple-blanking input \(\left(\mathrm{RB}_{\mathrm{I}}\right)\) and the BCD inputs are at logical " 0 ", the ripple-blanking output (\(\mathrm{RB}_{\mathrm{O}}\)) goes to a logical " 0 ", and all seven segment outputs to a logical " 1 ". A logical " 1 " of the seven-segment output corresponds to the filament-off condition on the incandescent display device.

The ripple-blanking output terminal may also be used to provide an over-riding blanking input, regardless of other input conditions. When the ripple-blanking output is maintained at a logical " 0 ", it inhibits all seven segment outputs, i.e., the segment outputs are maintained at a logical " 1 ". For operation with a fixed lamp power supply, the rippleblanking output may be used with external resistor-pull-up output gates to control lamp intensity by control of the pulse width of the gate input signal.

\section*{Lamp-Test Function}

All four BCD-to-7-segment decoder-drivers include a lamp-test (\(\mathrm{L} / \mathrm{T}\)) input for use in testing the filaments of the display device. This input is normally maintained at a logical " 1 " by an internal resistor (no external circuit elements are required for the lamp-test function). For the lamp test, the \(\mathrm{L} / \mathrm{T}\) terminal is grounded. All segment outputs are then maintained at a logical " 0 ", so that all lamp filaments on the display device are lighted. For the CD2500E and CD2502E,
which include a decimal-point output, the \(\mathrm{L} / \mathrm{T}\) terminal can be grounded at any time to test all filaments in the display device including the filament for the decimal point. For the CD2501E and CD2503E, which include a ripple-blanking feature, care must be taken to assure that the ripple-blanking output is not grounded externally during the lamp test; otherwise, the test is performed in the same way as for the types CD2500E and CD2502E.

\section*{OPERATING CHARACTERISTICS}

All inputs (terminals 1, 2, 5, 6, and 7) of the CD2500E-series decoder-drivers are TTL types and include clamp diodes to prevent the ringing that may result when long interconnecting leads are used. Fig. 5 shows an equivalent circuit for any one of these inputs.

Each output (terminals 9 through 15 and also terminal 4 of the CD2500E and the CD2502E) of the BCD-to-7segment decoder-drivers consists of an open-collector transistor, together with its collector-to-substrate diode, as shown in Fig. 6. These outputs, in standard CD2500E-series devices, are specified to withstand up to 8 volts at a maximum collector-to-emitter leakage current of 200 microamperes over the operating temperature range. The transistor has a minimum collector-to-emitter breakdown voltage \(\mathrm{V}_{(B R)}\) CEO of 12 volts at a collector-to-emitter current \(\mathrm{I}_{\mathrm{CEO}}\) of 10 milliamperes. The output circuit, therefore, can safely withstand any load at supply voltages up to 8 volts without the occurrence of a dc-latched condition; damage to the output transistor because of excessive power dissipation is, therefore, avoided. The probability of an ac-latched condition depends upon the type

NOTE:
ONE UNIT INPUT LOAD OF A BCD-TO-7-SEGMENT DECODERDRIVER IS EQUIVALENT TO 0.94 OF THE LOAD PROVIDED BYAN RCA-CD2300E-SERIES DTL GATE.

Fig. 5 - Equivalent input circuit at terminals 1, 2, 5, 6, and 7 of the decoder-drivers.

Fig. 6 - Equivalent output circuit at terminals 9 through 15 (and terminal 4 of the CD2500E and the CD2502E) of the decoder-drivers.
of load used. The circuit may become ac-latched during operation with a large inductive load. The "rule of thumb" for minimization of this probability is to ensure that the sum of the supply voltage and the counterelectromotive force developed across the lamp filament inductance does not exceed the collector-to-emitter breakdown voltage \(V_{(B R) C E O}\) of the transistor.

For applications in which the output voltage may exceed the specified value of 8 volts, such as multiplex operation of RCA Numitrons, special selections of the CD2500E-series decoder-drivers are available.

The ac line voltage may also be used as the segmentvoltage (lamp) supply provided that it is either half-wave or full-wave rectified so that only positive alternations remain. This type of rectification is necessary because the output transistors of the decoder-drivers cannot sustain negative voltages greater than 0.5 volt. Fig. 7 shows the relationship of the output voltage to the segment and decimal-point output currents of the CD2500E-series decoder-drivers.

(a)

(b)

Fig. 7. Relationship between segment and decimal-point output current (logical " \(O\) " state) and output voltage: (a) segment output currents for the CD2500E and CD2501E and decimal-point output current for the CD2500E; (b) segment output currents for the CD2502E and CD2503E and decimal-point output current for the CD2502E.

Fig. 8 shows an equivalent circuit of the ripple-blanking output (terminal 4). When the BCD code represents decimal zero and the ripple-blanking input (terminal 5) is at a logical " 0 ", transistor Q then turns on and provides blanking of the decimal zero. When the BCD code represents a decimal number between 0 and 9 , transistor Q is open-circuited. When the BCD code represents a number greater than 9 , transistor Q and diode A are both open-circuited, and the ripple-blanking output circuit consists of only the 2 -kilohm resistor between terminal 4 and the \(\mathrm{V}_{\mathrm{CC}}\) supply.

Fig. 8 - Equivalent circuit for the ripple-blanking output (terminal 4) of the CD2501E and CD2503E decoder drivers.

Supply- and ground-line noises can be effectively removed by addition of sufficient capacitance between the \(\mathrm{V}_{\mathrm{CC}}\) and ground lines, as near as possible to the integratedcircuit terminals. Use of separate integrated-circuit and display-device dc power supplies, although not an essential requirement, is recommended. The advantage of separate supplies is that the noise generated by high transient currents that result from lamp switching would be reduced.

\section*{DISPLAY-LAMP TURN-ON CHARACTERISTICS}

The turn-on characteristics of the display lamps is an important factor in the operation of the decoder-drivers. The main consideration in these turn-on characteristics is the lamp in-rush current. For most incandescent lamps, the in-rush current may be several times greater than the normal operating current because the resistance of a cold filament is much less than that of the same filament after it has been heated to the normal operating temperature. Fig. 9 shows that the initial current of the RCA DR2000 Numitron is approximately five times greater than the normal operating current and that 2 milliseconds is required for the in-rush current to decrease to one-half the initial value. The output transistors of the decoder-drivers, therefore, must be able to handle large surge currents that are several times greater than the normal operating current of the incandescent display device. If desired, a resistor may be connected between each segment output terminal of the decoder-driver and ground so

Fig. 9-Turn-on characteristics for an RCA DR2000 Numitron.
that a small current is allowed to flow through the lamp filament during the lamp off period. This current should be sufficient to keep the filament warm, but not sufficient to illuminate the lamp. In this way, a high initial in-rush current can be avoided during the lamp turn-on period.

\section*{STATIC-DRIVE APPLICATIONS}

The zeroes that have no value at both ends of a multidigital display can be suppressed by grounding the \(\mathrm{RB}_{\mathrm{I}}\) terminal of the most significant digit of the whole number and the least significant digit of the fraction, as shown in Fig. 10. The \(R B_{O}\) of the most significant digit is connected to the \(\mathrm{RB}_{\mathrm{I}}\) of the next lower digit, and the \(\mathrm{RB}_{\mathrm{O}}\) of this latter digit is, in turn, connected to the \(\mathrm{RB}_{\mathrm{I}}\) of the following digit. The \(\mathrm{RB}_{\mathrm{O}}\) of the least significant digit of the fraction side is connected to the \(\mathrm{RB}_{\mathrm{I}}\) of the next higher digit, and so on. Therefore, for the whole number, the ripple signal flow originates from the most significant digit, and for the fraction, the ripple signal flow starts from the least

\begin{tabular}{|c|c|c|}
\hline DISPLAY DEVICE TYPE & TYPE OF DISPLAY & CHARACTERISTICS \\
\hline DR2000 & E & REOUIRED DRIVING CURRENT: \(24 \pm 2 \mathrm{~mA}\) per segment \\
\hline OR2010 & \(\times\) & Letter height-0.6 ineh \\
\hline
\end{tabular}

Fig. 10 - Typical ripple-blanking and intensity-control application using the CD2501E decoder driver with a 7-segment incandescent display device, such as the RCA DR2000 or DR2010.
significant digit. As soon as the \(B C D\) data inputs for a non-zero digit is encountered, the corresponding \(\mathrm{RB}_{\mathrm{O}}\) output assumes a logical " 1 " state, and any further signal rippling is inhibited. For example, the number 0102,0110 would be displayed as 102.011. The \(\mathrm{RB}_{\mathrm{I}}\) of the least significant digit of the whole number and the \(\mathrm{RB}_{\mathrm{I}}\) of the most significant digit of the fractional portion should be left open, because the suppression of zeroes in these two digits is not desirable in practice, e.g., 000.200 would be displayed as 0.2 , and 000.000 would be 0.0 .

The ripple-blanking arrangement described above is employed in the standard multiple-digit display. For other applications, however, ripple blanking may be used to blank out zeroes serially in time, as shown in Fig. 11. For this type of blanking, the ripple-blanking input \(\mathrm{RB}_{\mathrm{I}}\) and the rippleblanking output \(\mathrm{RB}_{\mathrm{O}}\) are connected together. Fig. 11 shows that the zeroes that occur at time frames \(t_{1}\) and \(t_{2}\) are blanked out, and those that occur at time frames \(t_{4}\) and \(t_{6}\) are not. A ground-level strobe pulse must be injected at the

Fig. 11 - Timing diagram for ripple blanking that occurs serially in time.
connection of the \(\mathrm{RB}_{\mathrm{I}}\) and \(\mathrm{RB}_{\mathrm{O}}\) terminals to cause these terminals to be latched at the logical " 0 " level. This strobe pulse initiates the blanking operation. The \(\mathrm{RB}_{\mathrm{I}}\) and \(\mathrm{RB}_{\mathrm{O}}\) terminals are maintained at the " 0 " level until the BCD input data for a non-zero digit is applied. The \(R B_{I}\) and \(R B_{O}\) terminals are then shifted to a logical " 1 " level, and further zero blanking is inhibited.

The ripple-blanking output can also be used simultaneously as an intensity-control input when the lamp power-supply voltage is fixed. For this intensity-control effect, external gates are required, and an RCA CD2310E DTL type is chosen for this purpose, as shown in Fig. 10. The intensity control is achieved by variation of the pulse width of the signal at the intensity-control input \(\left(\mathrm{RB}_{\mathrm{O}}\right.\) terminal). Pulse-width-controlled flip-flops can be used as the source for the intensity-control input. The logical " 0 " state of the external gates at the point of connection to the intensity control terminal should not be greater than 0.35 volt. For the CD2500E and CD2502E decoder-drivers, intensity control can be provided by variation of the segment power-supply voltage. Fig. 12 shows the relative light output of an RCA DR2000 Numitron at 50 Hz as a function of pulse duty cycles for operation with a supply voltage of +5 volts.

The CD2500E decoder-driver is frequently used in counting applications, as shown in Fig 13. A display-hold circuit is included to hold counts for the display device while

Fig. 12-Relative light output of a DR2000 Numitron at 50 Hz as a function of pulse duty cycle for operation from a lamp-supply voltage of 5 volts.
the input count continues. The display-hold signal is usually synchronized with the count input signal. The hold circuit, which can be formed by use of latching flip-flops, is used because no data storage is provided in the decoder-driver. The decoder-driver simply operates as a slave circuit for the input data; the outputs of the decoder-driver, therefore, follow directly any change in the data applied to its inputs.

Fig. 14 illustrates the use of six CD2301E stages in a floating-decimal-point application. The selection of a decimal point requires that the corresponding decimal-point-select

Fig. 13 - Counting circuit using the CD2500E decoderdriver.

Fig. 14 - Floating-decimal-point application using six CD2501E decoder-drivers.
input be held at logical " 1 " with the other decimal-pointselect inputs at logical " 0 ". The operation is similar to the ripple-blanking application shown in Fig. 10, in which the flow of the ripple signals always starts from the extreme ends and move toward the chosen decimal point. The ripple input of the immediately adjacent stages on either side of the decimal point is made a logical " 1 " by the external gates, so that the ripple signal flow is terminated at these points and, therefore, cannot suppress zeroes in the two digits adjacent to the chosen decimal point.

The RCA CD2307E gate is used to energize the decimal-point filament in the display device, and CD2302E and CD2310E gates are used to enable the ripple-blanking circuits to blank out the no-value zeroes.

\section*{MULTIPLEX MODE OF OPERATION}

In the standard static-drive application, a given number of display devices requires an equal number of decoder drivers for simultaneous display of the BCD data. In the time-multiplex system, however, one decoder-driver can be operated to drive a number of display devices sequentially with no noticeable flicker when the multiplexing repetition rate is greater than 50 Hz . Fig. 15 shows a typical application of the CD2502E decoder-driver in the multiplexing mode of operation.

The complementary BCD data information is fed to the multiplexing NAND gate inputs and multiplexed in sequence by the trains of pulses, shown in Fig. 16, obtained from a ring counter. The complementary BCD data available at the input of a given set of multiplexing NAND gates during the pulse duration is inverted to BCD data and applied to the decoder driver. This decoder data, in turn, causes the proper decoder-driver output transistor to turn on. At the same time, the pulse complement is fed to the corresponding digit control gate, as shown in Fig. 15, so that the associated transistor \(Q_{m}\) is caused to conduct and provide segment current to the appropriate filaments of the display device.

Isolation diodes are required in series with each segment coil of the display devices, to prevent "sneak paths" which would simultaneously light segment coils of adjacent devices. In this circuit, one CD2502E 7 -segment decoder-driver,
which is specially selected for an output voltage rating \(\mathrm{V}_{\text {oh }}\) of 12 volts, can be used to drive up to a maximum of six DR2010 Numitrons with a 16.7 per cent duty cycle. When the specially selected CD2503E is used, a blanking circuit may be incorporated at the ripple-blanking input terminal to blank out the no-value zeroes, if desired. Care must be taken to ascertain that, during multiplexing operation, the breakdown-voltage rating and the maximum output current rating of the decoder-driver are not exceeded, and transistor \(\mathrm{Q}_{\mathrm{m}}\), shown in Fig. 15, must be carefully chosen to handle the maximum current required.

From the standpoint of packaging, troubleshooting, and system reliability, the static-drive mode of operation is generally preferable to the multiplexing mode. However, on the basis of the present costs of a decade that includes a decade counter and a readout device, an economic advantage can result for a display that employs more than six readout devices when the readout devices are multiplexed so that only one decoder driver is required. With the advances being made in integrated-circuit technology and as the demand for readout devices increases, it is anticipated that, during the next few years, the cost of decade devices will decrease to less than one-half the present cost. The multiplexing mode of operation then will no longer offer a significant economic advantage and will become even less desirable.

\section*{FAIL-SAFE CIRCUIT}

Fig. 17 shows the diagram of a circuit designed to monitor the currents through filaments \(\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{f}\), and g (refer to Fig. 3) of a display device. If any one of these five filaments should fail (open), the complete digit being displayed will be blanked out to avoid incorrect readings. Filaments \(c\) and \(d\) are not monitored, because failure of either of these filaments is readily indicated by incomplete or distorted digit displays.

With this circuit included in the display system, the standard lamp test can still be performed at any time. Moreover the over-range blanking provided by all four decoderdriver circuits and the ripple-blanking feature of the CD2501E and CD2503E circuits are not affected by the fail-safe circuit.

Fig. 15-Typical multiplexing system using the CD2502E decoder-driver.

Fig. 16 - Timing relationship of the pulse trains supplied by the ring counter in the multiplexing system shown in Fig. 15.

Fig. 17 - Fail-safe circuit designed to monitor filaments of the display devices.

\title{
Applications of the RCA－CA3062 IC Photo－Detector and Power Amplifier in Switching Circuits
}

\author{
by J．D．Mazgy
}

The RCA CA3062 is a monolithic silicon integrated circuit consisting of a photosensitive detector and a switching amplifier with a pair of high current output transistors．This note describes how the CA3062 with only 3 resistors can provide a light activated switch which will drive a variety of practical loads；such as solenoids，relays，triacs，SCR＇s，etc． ＂Normally ON＂and＂Normally OFF＂outputs are available simultaneously．

\section*{Circuit Description}

The circuit diagram and terminal connections for the CA3062 are shown in Fig．1．The circuit consists of a photo－Darlington pair and a differential amplifier which is emitter－follower coupled to a pair of high－current output transistors， \(\mathrm{Q}_{6}\) and \(\mathrm{Q}_{7}\) ．

\section*{Circuit Operation}

The CA3062 is designed for operation from power supply voltages of 5 to 15 volts between terminal Nos． 4 and 8 ，and voltages as high as 30 volts \(\mathrm{V}+\) on the output tran－ sistors．

The photo－detector system consists of four silicon tran－ sistors \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{9}\) ，with \(\mathrm{Q}_{10}\) and \(\mathrm{Q}_{11}\) in a parallel－connected Darlington circuit．The Darlington configuration is used to provide maximum photo current from the available detector area．The area of each photo－transistor is \(1.3 \times 10^{-4} \mathrm{~cm}^{2}\) ． However，the effective photo－sensitive area is \(2.6 \times 10^{-4} \mathrm{~cm}^{2}\) because transistors \(Q_{1}\) and \(Q_{11}\) of each Darlington con－ tribute a relatively small percentage of the total photo－ current．

Fig． 1 －Schematic diagram of CA3062．

Fig. 2 shows a typical curve of photo-current in the collector and base as a function of light intensity. Fig. 3a \& b shows the test set up used to obtain the data for Fig. 2. A typical spectral response curve of the photo sensitive Darlington is shown in Fig. 4. Fig. 5 shows typical rise and fall times for the photo detector output.

Fig. 2 - Typical \(I^{\prime}{ }^{\prime}{ }^{\prime} B\) as a function of light intensity at \(25^{\circ} C\).

Fig. 3a - Base current test set-up.

Fig. \(3 b\) - Collector current test set-up.
Fig. 3 - Test circuits.

The photo Darlington pair can be either emitter-coupled or collector-coupled to the differential amplifier consisting of \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{3}\) and constant current sink \(\mathrm{Q}_{8}\), operating with a total current of 0.7 mA as shown in Figs. 6a and 6 b ,

Fig. 4 - Typical spectral response of photosensitive Darlington unit.

Fig. 5 - Typical photo-Darlington response.
respectively. The emitter-coupled mode is generally recommended. However, there are applications in which the collector-coupled mode is advantageous. Examples of the collector-coupled mode are shown in Figs. 8, 12 \& 13.

In a balanced condition \(Q_{2}\) and \(Q_{3}\) are conducting 0.35 mA each, which sets the dc voltage of each of the collectors of \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{3}\) at 0.7 volt below the three diode drops of \(D_{1}, D_{2}\) and \(D_{3}\).

With the dc potential on collectors \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{3}\) determined to be +1.4 volts above reference terminal No. 8, the voltage on the emitters of \(\mathrm{Q}_{4}\) and \(\mathrm{Q}_{5}\) then is 0.7 volt below the respective base, and, therefore, +0.7 volt above the reference point. Thus, the base potentials of \(Q_{2}\) and \(Q_{3}\) are set to +1.05 volts and +0.7 volt for \(Q_{6}\) and \(Q_{7}\), respectively. The emitter currents of \(\mathrm{Q}_{4}\) and \(\mathrm{Q}_{5}\) are set to approximately 2.33 mA each under the balanced condition.

The input resistance at terminal No. 1 is approximately \(1.4 \mathrm{k} \Omega\) in the balanced mode with signals less than \(\pm 25 \mathrm{mV}\).

Fig. 6a - Emitter Coupled.

Fig. 6b-Collector Coupled.

Fig. 6 - Methods of coupling photo-detector to amplifier portion of CA3062.

\section*{Recommended Operating Circuit:}

To assure positive transistion between the "ON" and "OFF" states, Schmitt trigger operation is recommended.

Schmitt trigger operation can be achieved by connecting the CA3062 as shown in the circuit of Fig. 7. Rf provides the positive feedback which causes Q3 to conduct and holds Q7 in cut-off. A positive going voltage applied to terminal No. 1 will result in a change of output state. Resistor \(\mathrm{R}_{\mathrm{S}}\) limits the drive to the differential amplifier when high light levels are encountered. \(\mathrm{R}_{\mathrm{S}}\) is chosen to insure that the voltage at terminal No. 1 does not exceed 1.9 volts. If this voltage is exceeded, \(\mathrm{Q}_{6}\) will turn on. This overdrive condition causes both output transistors to be "ON". (\(\mathrm{Q}_{6}\) is supposed to be cutoff when the voltage at terminal No. 1 is more positive than the voltage at terminal No. 7). If the "Normally ON" output at terminal No. 2 is not being used, resistor \(R_{s}\) is not required, and terminal Nos. 2 and 3 should be left unconnected. (See Fig. 7.) The magnitude of the threshold voltage and the amount of hysteresis provided are determined by the value of the feedback resistor \(\mathrm{R}_{\mathrm{f}}\). (See appendix for calculations.)

Fig. 7 - Schmitt-circuit.

\section*{Typical Applications}

\section*{Latched Memory Circuit}

A latched memory system can be used to stop clocks, record an intrusion, or activate light-actuated dark-room controls.

\section*{Circuit Operation of Latched Memory}

The initial conditions are: terminal No. 2 at "high"-output-voltage and terminal No. 6 at "low"-output-voltage. This condition is assured by the \(30 \mathrm{k} \Omega\) Resistor (\(\mathrm{R}_{3}\)), which biases \(\mathrm{Q}_{2}\) on, \(\mathrm{Q}_{6}\) off and \(\mathrm{Q}_{7}\) on. When a light pulse is received, \(\mathrm{Q}_{1}\) turns on and takes base drive away from \(\mathrm{Q}_{2}\), turning on \(\mathrm{Q}_{6}\) thereby reversing the initial conditions. \(\mathrm{Q}_{6}\) remains on because terminal No. 1 is now more negative than terminal No. 7. Momentary interrupting of \(\mathrm{V}+\) will reset the circuit.

The photo current required to trigger a typical circuit is:
\[
\mathrm{I}_{\mathrm{R}_{3}} \cong \frac{\mathrm{~V}^{+}-\mathrm{V}_{\mathrm{B} 21}}{\mathrm{R}_{3}}=\frac{9}{(30)\left(10^{-3}\right)}=(300)\left(10^{-6}\right) \text { ampere }
\]

More exactly:

Fig. 9 - Circuit for slow speed counting level control, position sensor and end-of-tape control.
or an \(\mathrm{I}_{\mathrm{C}}\) produced by approximately 50 lumen \(/ \mathrm{ft}^{2}\) at the photo-detector input. (See Fig. 3.)

Fig. 9 shows a circuit for a Photo-Detector Counting Control, Position Sensor or End-of-Tape Control.

Fig. 10 - Isolator circuit.

\section*{TRIAC CONTROL SYSTEMS}

\section*{A. Light Activated Triac Control}

Fig. 11 - Light activated triac control.

An Optically Coupled Isolator Circuit, used to transfer signals that are at substantially different voltage levels, is shown in Fig. 10. Both polarity outputs are available. Current transfer ratios of as high as \(10: 1\) can be achieved with this circuit. The design equations for this system are the same as those presented in the appendix.
B. Triac Control With Safety Feature Providing Automatic Shut Off And Alarm.

Fig. 12 - Triac automatic shut off and alarm.

In this system ac is supplied to the load as long as the light source is "on". If the light path to the CA3062 is broken, then the ac to the load and light source is opened, thereby activating the alarm circuit. The system can be reset with the push-button shown.

\section*{C. Triac Intrusion Alarm System.}

If the light path is broken or the ac is interrupted, the alarm system will be activated, provided the battery is adequately charged.

The \(\mathrm{V}+\) acts as a charging circuit for the battery while the circuit is operating from the ac supply.

Fig. 13 - Triac intrusion alarm system.

\section*{APPENDIX}

In general, Schmitt circuits have three voltages of interest.
\(\mathrm{V}_{\mathrm{I}}\) trigger: the voltage required to trigger the Schmitt from state I to state II.
\(\mathrm{V}_{\text {II }}\) trigger: the voltage required to trigger the Schmitt from state II back to state I.

V hysteresis: the difference between the \(\mathrm{V}_{1}\) trigger and \(\mathrm{V}_{2}\) trigger. The hysteresis voltage for the configuration described is altered by the internal feedback of the CA3062 circuit which modifies the hysteresis expression.

Fig. a shows a typical configuration for operation as a Schmitt-Circuit.

Fig. a - Schmitt-circuit
The trigger potential \(\left(\mathrm{V}_{\mathrm{I}}\right)\) to go from state I to state II is:
\[
\mathrm{V}_{\mathrm{I}} \text { trigger }=\frac{\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{B} 31}\right) \mathrm{R}_{\mathrm{B} 3}}{\mathrm{R}_{\mathrm{B} 3}+\mathrm{R}_{\mathrm{f}}+\mathrm{R}_{\mathrm{L}}}+\frac{\mathrm{V}_{\mathrm{B} 31}}{1}:
\]

Where state \(I\) is defined as the case with pin 6 at a "high" output voltage, with no light into the Darlington photodetector. State II is defined as the case with pin 6 at a "low" output voltage, with no light into the Darlington photodetector.
\[
\text { and: } \begin{aligned}
\mathrm{V}_{\mathrm{B} 21} & =1.050 \mathrm{~V} & \mathrm{R}_{\mathrm{B} 2}=\mathrm{R}_{4} / / \mathrm{R}_{5} \\
\mathrm{~V}_{\mathrm{B} 31} & =0.700 \mathrm{~V} & \mathrm{R}_{\mathrm{B} 3}=\mathrm{R}_{6} / / \mathrm{R}_{7} \\
\mathrm{~V}_{\mathrm{B} 22} & =0.700 \mathrm{~V} & \\
\mathrm{~V}_{\mathrm{B} 32} & =1.050 \mathrm{~V} &
\end{aligned}
\]

The trigger potential (\(\mathrm{V}_{\text {II }}\)) to go from state II back to state I is--
\[
\mathrm{V}_{\mathrm{II}} \text { trigger }=\frac{\mathrm{V}_{\mathrm{B} 32}}{1}-\frac{\left(\mathrm{V}_{\mathrm{B} 32}-\mathrm{V}_{\mathrm{SAT}}\right) \mathrm{R}_{\mathrm{B} 3}}{\mathrm{R}_{\mathrm{B} 3}+\mathrm{R}_{\mathrm{f}}}
\]

The hysteresis voltage of the CA3062 Schmitt system is:
\(\mathrm{V}_{\text {hysteresis }}=\left[\frac{\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{B} 31}\right) \mathrm{R}_{\mathrm{B} 3}}{\mathrm{R}_{\mathrm{B} 3}+\mathrm{R}_{\mathrm{f}}+\mathrm{R}_{\mathrm{L}}}+\frac{\mathrm{V}_{\mathrm{B} 31}}{1}+\frac{\mathrm{V}_{\mathrm{B} 22}}{1}-\frac{\mathrm{V}_{\mathrm{B} 21}}{1}\right]\)
\[
-\left[\frac{\mathrm{v}_{\mathrm{B} 32}}{1}-\frac{\left(\mathrm{v}_{\mathrm{B} 32}-\mathrm{v}_{\mathrm{SAT}}\right) \mathrm{R}_{\mathrm{B} 3}}{\mathrm{R}_{\mathrm{B} 3}+\mathrm{R}_{\mathrm{f}}}\right]
\]

The light intensity required to switch from state I to state II is determined from Fig. 2, which shows the number of lumens \(/ \mathrm{ft}^{2}\) necessary to generate \(\mathrm{I}_{\mathrm{CI}}\).
\[
\mathrm{I}_{\mathrm{CI}}=\frac{\mathrm{V}_{\mathrm{SIG} \mathrm{I}}}{\mathrm{R}_{\mathrm{B} 2}}=\frac{\mathrm{V}_{\mathrm{SIG} \mathrm{I}}}{5 \times 10^{3}}
\]
where:
\[
\mathrm{V}_{\mathrm{SIG} I}=\frac{\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{B} 31}\right) \mathrm{R}_{\mathrm{B} 3}}{\mathrm{R}_{\mathrm{B} 3}+\mathrm{R}_{\mathrm{f}}+\mathrm{R}_{\mathrm{L}}}+\frac{\mathrm{V}_{\mathrm{B} 31}}{1}-\frac{\mathrm{V}_{\mathrm{B} 21}}{1}
\]

To determine the lumens/ \(\mathrm{ft}{ }^{2}\) required to go from state II back to state I, it is necessary to calculate V SIG II \(+V_{\text {B22 }}\), (the voltage required to cause the Schmitt circuit to switch).
\[
v_{S I G ~ I I}+v_{B 22}=\frac{v_{B 32}}{1}-\frac{\left(v_{B 32}-v_{S A T}\right) R_{B 3}}{R_{B 3}+R_{f}}
\]

Thus:
\[
\mathrm{V}_{\mathrm{SIG}}^{\mathrm{II}} .
\]
and:
\[
\mathrm{I}_{\mathrm{CII}}=\frac{\mathrm{V}_{\text {SIG II }}}{\mathrm{R}_{\mathrm{B} 2}}=\frac{\mathrm{V}_{\text {SIG II }}}{5 \mathrm{k}}
\]

The rate at which \(\mathrm{V}_{\text {SIG }}\) rises is governed by the response of the photo Darlington pair.
\(\mathrm{V}_{\text {SIG }}\) during the rise time assumes a value:
\[
V_{S I G}=V_{m}\left(1-e \frac{-t}{R C}\right)
\]
where \(\mathrm{V}_{\mathrm{m}}\) is the maximum signal voltage developed across terminal No. 1 and reference terminal No. 8 for any given light intensity. [See Fig. 4.].

The rise time of a typical photo Darlington of the CA3062 is:
\(\left.\mathrm{t}_{\mathrm{r}}=\frac{\mathrm{RC} \log \left[1-\frac{1}{\mathrm{~V}_{\mathrm{c}}}\right.}{\mathrm{V}_{\mathrm{m}}}\right]\)
where \(\mathrm{R}=40 \times 10^{6}\) and \(\mathrm{C}=8 \times 10^{-12}\) and \(\mathrm{V}_{\mathrm{C}}\) any part of \(V_{m}\).

\section*{APPENDIX (cont'd.)}

By setting \(\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {SIG }}\) the delay time, \(\mathrm{t}_{\mathrm{d}}\), of the pulse output of the Schmitt circuit can be determined for any given light intensity.

The rate at which the photo Darlington output decreases is:
\[
\mathrm{v}_{\mathrm{SIG}}=\mathrm{v}_{\mathrm{m}} \mathrm{e}^{\frac{-\mathrm{t}}{\mathrm{RC}}}
\]

Thus the fall time is
\[
\mathrm{t}_{\mathrm{f}}=\frac{\mathrm{RC} \log \frac{\mathrm{~V}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{c}}^{\prime}}}{\log \mathrm{e}}
\]

Setting \(\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {SIG II }}\), then \(\mathrm{t}_{\mathrm{f}}\) becomes \(\mathrm{t}_{\mathrm{d}}\) which is turn off delay time, or the time the Schmitt circuit turns off with respect to the time the light input to the photo Darlington has been turned off. See Fig. b.

Fig. b - Waveforms for rise and fall response.

\title{
Application Notes on IC Operational Amplifiers
}
ICAN-5015 "Application of the RCA-CA3008 and CA3010 Integrated- Circuit Operational Amplifiers' 262
ICAN-5213 "Application of the RCA-CA3015 and CA3016 Integrated- Circuit Operational Amplifiers" 277
ICAN-5290 "Integrated-Circuit Operational Amplifiers" 283
ICAN-5641 "Application of RCA-CA3033 and CA3033A High-Perfor- mance Integrated-Circuit Operational Amplifiers". 303
ICAN-6668 "Applications of the CA3080 and CA3080A High- Performance Operational Transconductance Amplifiers" 311
ICAN-6732 "Measurement of Burst ("Popcorn") Noise in Linear Integrated Circuits" 327

\title{
Application of the RCA CA3008 and CA3010 Integrated-Circuit Operational Amplifiers
}

\author{
BY
}

\section*{A. J. LEIDICH}

The RCA CA3008 and CA3010 Operational Amplifiers are silicon monolithic integrated circuits designed to operate from two symmetrical low- or medium-level dc power supplies (at supply voltages in the range from \(\pm 3\) volts to \(\pm 6\) volts). The power dissipation in the amplifiers ranges from 7.0 milliwatts to 92 milliwatts depending upon the supply-voltage level and the desired output-power level. The amplifiers are primarily intended to operate with externally applied negative feedback; however, they may also be operated successfully under open-loop conditions. The main features of the CA3008 and CA3010 Operational Amplifiers are listed below:
- All-monolithic construction designed to operate at ambient temperatures from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
- Built-in temperature compensation which assures that the gain and dc operating point are stable over the temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
- Capability of operating at extremely low dissipation and supply-voltage levels, as well as at medium levels.
- Balanced differential-amplifier input configuration and a single-ended output configuration.
- No shift in the dc level between the differential inputs and the output.
- Little effect on the input offset voltage from variations in the power-supply voltages.

The CA3008 Operational Amplifier is supplied in a 14terminal flat-pack; the CA3010 Operational Amplifier is supplied in a conventional 12 -terminal TO-5 package. With the exception of the differences in their package construction, the two operational amplifiers are identical. This note describes the circuit arrangement, lists the performance characteristics, explains the major design considerations, and discusses typical applications of the operational amplifiers.

\section*{CIRCUIT DESCRIPTION}

Fig. 1 shows the schematic diagram of the CA3008 or the CA3010 Operational Amplifier. The numerals shown alongside the circuit terminals indicate the terminal designations for the CA3008 14-terminal flat-pack and CA3010 12-terminal TO-5 package. The numerals enclosed in squares are the designations for the CA3010 package. The diagram in the upper right corner of the figure shows the orientation of the terminals on the CA3008 flat-pack; the diagram at the lower right corner shows the orientation on the CA3010 TO-5 package. (The number designations used to refer to specific terminals in the following discussion, or elsewhere in this note, are those for the CA3008 14terminal flat-pack. The corresponding terminals on the

CA3010 12-terminal TO-5 package can be determined from the schematic in Fig. 1.)

As shown in the schematic diagram, each operational amplifier consists basically of two differential amplifiers

the second differential amplifier is provided by current-sink transistor \(\mathrm{Q}_{7}\). Compensating diode \(\mathrm{D}_{2}\) provides the thermal stabilization for the second differential amplifier and also for the current-sink transistor, \(\mathrm{Q}_{i}\), in the output stage.

12-TERMINAL TO-5 PACKAGE

Fig. 1-Schematic diagram of the CA3008 or CA3010 Integrated-Circuit Operational Amplifier.
and a single-ended output circuit in cascade. Circuit elements are also included to provide thermal stabilization and to compensate for shifts in the dc operating point. In addition, negative feedback loops are employed to cancel common-mode signals (i.e., error signals developed when the two inputs to the operational amplifier are in phase and of equal amplitude).

\section*{CASCADED GAIN STAGES}

The pair of cascaded differential amplifiers are responsible for virtually all the gain provided by the operationalamplifier circuit. The inputs to the operational amplifier are applied to the bases of the pair of emitter-coupled transistors, \(Q_{1}\) and \(Q_{2}\), in the first differential amplifier. The inverting input (at terminal 3) is applied to the base of transistor \(Q_{2}\), and the noninverting input (at terminal 4) is applied to the base of transistor \(\mathrm{Q}_{1}\). These transistors develop the driving signals for the second differential amplier. A dc constant-current-sink transistor, \(\mathrm{Q}_{\mathrm{B}}\), is also included in the first stage to provide bias stabilization for transistors \(Q_{1}\) and \(Q_{2}\). Diode \(D_{1}\) provides thermal compensation for the first differential stage.
The emitter-coupled transistors, \(Q_{3}\) and \(Q_{4}\), in the second differential amplifier are driven push-pull by the outputs from the first differential amplifier. Bias stabilization for

\section*{COMMON-MODE-REJECTION FEEDBACK LOOPS}

Transistor \(Q_{\pi}\) develops the negative feedback to reduce common-mode error signals that are developed when the same input is applied to both input terminals of the operational amplifier. Transistor \(Q_{s}\) samples the signal that is developed at the emitters of transistors \(Q_{3}\) and \(Q_{4}\). Because the second differential stage is driven push-pull, the signal at this point will be zero when the first differential stage and the base-emitter circuits of the second stage are matched and there is no common-mode input. A portion of any common-mode, or error, signal that appears at the emitters of transistors \(Q_{3}\) and \(Q_{1}\) is developed by transistor \(Q_{i s}\) across resistor \(R_{z}\) (the common collector resistor for transistors \(Q_{1}, Q_{s}\), and \(Q_{n}\)) in the proper phase to reduce the error. The emitter circuit of transistor \(Q_{5}\) also reflects a portion of the same error signal into current-sink transistor \(\mathrm{Q}_{7}\) in the second differential stage so that the activating error signal is further reduced.

Transistor \(Q_{5}\) also develops feedback signals to compensate for dc common-mode effects produced by variations in the supply voltages. For example, a decrease in the dc voltage from the positive supply results in a decrease in the voltage at the emitters of transistors \(Q_{3}\) and \(Q_{4}\). This nega-tive-going change in voltage is reflected by the emitter circuit of transistor \(Q_{i}\) to the bases of current-sink transistors \(\mathrm{Q}_{7}\) and \(\mathrm{Q}_{0}\). Less current then flows through these transistors. The decrease in the collector current of transistor \(Q_{i}\) results in a reduction of the current through transistors \(Q_{3}\)
and \(Q_{1}\), and the collector voltages of these transistors tend to increase. This tendency to increase on the part of the collector voltages partially cancels the decrease that occurs with the reduction in the positive supply voltage. The partially cancelled decrease in the collector voltage of transistor \(Q_{\Delta}\) is coupled directly to the base of transistor \(Q_{8}\) and is transmitted by the emitter circuit of this transistor to the base of output transistor \(\mathrm{Q}_{10}\). At this point, the decrease in voltage is further cancelled by the increase in the collector voltage of current-sink transistor \(Q_{0}\) that results from the decrease in current mentioned above.

In a similar manner, transistor \(Q_{5}\) develops the compensating feedback to cancel the effects of an increase in the positive supply voltage or of variations in the negative supply voltage. Because of the feedback stabilization provided by transistor \(Q_{5}\), the CA3008 and CA3010 Operational Amplifiers provide high common-mode rejection, have excellent open-loop stability, and have a low sensitivity to power-supply variations.

\section*{OUTPUT STAGES}

In addition to their function in the cancellation of supply-voltage variations, transistors \(Q_{8}, Q_{0}\), and \(Q_{10}\) are used in an emitter-follower type of single-ended output circuit. The output of the second differential amplifier is directly coupled to the base of transistor \(Q_{x}\), and the emitter circuit of transistor \(Q_{\text {s }}\) supplies the base-drive input for output transistor \(\mathrm{Q}_{10}\). A small amount of signal gain in the output circuit is made possible by the bootstrap connection from the emitter of output transistor \(\mathrm{Q}_{10}\) to the emitter circuit of transistor \(Q_{0}\). If this bootstrap connection were neglected, transistor \(Q_{\text {, }}\) could be considered as merely a dc constant-current sink for drive transistor \(Q_{\text {.. }}\) Because of the bootstrap arrangement, however, the output circuit can provide a signal gain of 1.5 from the collector of differential-amplifier transistor \(Q\), to the output (terminal 12). Although this small amount of gain may seem insignificant, it does increase the output-swing capabilities of in . operational amplifiers.

The output from the operational-amplifier circuit is taken from the emitter of output transistor \(\mathrm{Q}_{10}\) so that the dc level of the output signal is substantially lower than that of the differential-amplifier output at the collector of transistor \(Q_{4}\). In this way, the output circuit shifts the dc level at the output so that it is effectively the same as that at the input when no signal is applied.

Resistor \(R_{15}\) in series with terminal 8 (refer to Fig. 1) increases the ac short-circuit load capability of the operational amplifier when this terminal is shorted to terminal 12 so that the resistor is connected between the output and the negative supply.

\section*{OPERATING CHARACTERISTICS}

The operating characteristics of the CA3008 and CA3010 Integrated-Circuit Operational Amplifiers are identical. The characteristics data given in the following paragraphs, therefore, apply equally to each type. A proper evaluation of the capabilities of the operational amplifiers requires a thorough understanding of the parameters in terms of which the operating characteristics are expressed.

For this reason, the special parameters for which additional clarification may be necessary are defined in an appendix at the end of this note.

\section*{DC CHARACTERISTICS}

The operational amplifiers are designed to operate from two symmetrical dc power supplies at supply voltages in the range from \(\pm 3\) volts to \(\pm 6\) volts. For operation with \(\pm 3\)-volt supplies, the power dissipation in the amplifiers is less than 7.0 milliwatts with terminal 8 open or 23 milliwatts with terminal 8 shorted to terminal 12 . When \(\pm 6\)-volt supplies are used, the dissipation level increases to either 30 milliwatts or 92 milliwatts, depending upon whether terminal 8 is open or shorted to terminal 12 .

The input offset voltage for the operational amplifiers is typically 1.1 millivolts for all symmetrical supply voltages. This parameter is relatively insensitive to variations in the supply voltages. When \(\pm 6\)-volt supplies are used, the variation in the input offset voltage with fluctuations in supply voltage is typically less than 300 microvolts per volt for either supply. For \(\pm 3\)-volt supplies, the variation is typically 700 microvolts per volt. The offset voltage varies slightly with temperature as shown in Fig. 2. (Fig. 3

92cs-13632
Fig. 2-Input offset voltage as a function of temperature.
 power dissipation measurement ONLY!

Fig. 3-Test circuit used to measure the input offset voltage.
shows the schematic diagram of the special test circuit used for the offset-voltage measurements.)

The input bias current and the input offset current of the amplifiers are typically 5.3 microamperes and 0.54 microampere, respectively, when \(\pm 6\)-volt supplies are used. Figs. 4 and 5 show the variations in these parameters with temperature.

Fig. 4-Input bias current as a function of temperature.

Fig. 5-Input offset current as a function of temperature.

\section*{AC CHARACTERISTICS}

Gain-Frequency Response: The operational amplifiers provide a gain of 60 dB at low frequencies and have a unity-gain bandwidth of 18 MHz when operated from \(\pm 6\)-volt supplies. The typical gain-frequency response is shown in Fig. 6 for operation of the amplifier at \(-55^{\circ} \mathrm{C}\), at \(+25^{\circ} \mathrm{C}\), and at \(+125^{\circ} \mathrm{C}\). The response of the amplifier exhibits little change over the temperature range. A typical gain-frequency characteristic for amplifiers operated from \(\pm 3\)-volt supplies at \(25^{\circ} \mathrm{C}\) is shown in Fig. 7.

Fig. 6-Open-Loop gain as a function of frequency.

Fig. 7-Voltage gain as a function of frequency.

Fig. 8-Output voltage as a function of input voltage for an open-loop operational amplifier.

Transfer Characteristic: The transfer characteristic of the operational amplifiers is shown in Fig. 8. This characteristic shows that the amplifiers do not exhibit any hysteresis effect.

Common-Mode Rejection: The common-mode rejection provided by the operational amplifiers is typically 94 dB for operation with \(\pm 6\)-volt. supplies. Fig. 9 shows the differential-gain and common-mode-gain frequency plots for the amplifiers. Fig. 10 shows the common-mode rejection as a function of frequency.

Fig. 9-Differential and common-mode gain as a function of frequency at different temperatures.

Fig. 10-Common-mode rejection as a function of frequency.
Output Swing: The operational amplifiers exhibit a maximum dynamic-swing capability of \(\pm 3.5\) volts with terminal 8 open and of \(\pm 3.0\) volts with terminal 8 shorted to terminal 12. The output-swing capability varies only slightly with temperature, as shown in Fig. 11. Fig. 12 shows the variation in the output-swing capability with frequency.

Input and Output Impedances: When the CA3008 or CA3010 Operational Amplifier is operated from \(\pm 6\)-volt supplies, it has an input impedance of 14,000 ohms at 1

Fig. 11-Output-swing capabilities as a function of temperature.

Fig. 12-Output-swing capabilities as a function of frequency.

Fig. 13-Input impedance as a function of temperature.
kHz and an output impedance of 200 ohms (terminal 8 open) or 75 ohms (terminal 8 shorted to terminal 12). The input impedance and output impedance of the amplifier are affected by temperature as shown in Figs. 13 and 14, respectively.

92Cs-13540
Fig. 14-Output impedance as a function of temperature.

\section*{CIRCUIT DESIGN CONSIDERATIONS}

The basic design equations for the CA3008 or CA3010 Operational Amplifier in closed-loop circuits are summarized in Figs. 15 and 16. Fig. 15 shows the basic schematic diagram and gives the design equations for the

Fig. 15-Inverting-feedback configuration for an operational amplifier.
generalized inverting feedback configuration, and Fig. 16 provides the diagram and the equations for the noninverting configuration. In both configurations, the inputs are returned to ground through dc paths that are effectively identical. This condition is necessary for minimum offset voltage (dc error).

Because the open-loop input capacitance of the operational amplifier is less than 10 picofarads, the frequency response is virtually independent of the drive source impedance. The input-impedance equations given in Figs. 15 and 16 indicate that this lack of dependence is even more pronounced when the amplifiers are operated with negative feedback.

Fig. 16-Noninverting-feedback configuration for an operational amplifier.

\section*{PHASE COMPENSATION}

Basically, phase compensation is used to alter the response of an amplifier so that a phase shift of 180 degrees cannot occur at a frequency for which the loop gain is unity or greater. A rule of thumb that will guarantee an ac-stable amplifier is that at the intersection of the closedloop response with the open-loop response, the respective slopes must have a difference less than 12 dB per octave.

With few exceptions (some of which will be covered in the section on applications), phase compensation must be accomplished.by altering the open-loop response of the operational amplifier itself. One of the advantageous features of the CA3008 and CA3010 Operational Amplifiers is that small values of capacitance properly added to the amplifier circuit will provide the required phase compensation. When \(\pm 6\)-volt supplies are used, two phasecompensating networks, each of which consists of a \(27-\) picofarad capacitor in series with a 2000 -ohm resistor,
connected between terminals 1 and 14 and between terminals 9 and 10, cause the amplifier to roll-off at a slope of one (6 dB per octave) all the way to unity gain (where it then breaks into a slope of two). This value of compensation is sufficient to stabilize the amplifier for all resistive-feedback applications including unity gain. The response for this value of phase compensation is compared to the original open-loop response in Fig. 17. Although the two compensating networks are sufficient to ac stabilize the amplifier, they are not sufficient to produce a flat response (within \(\pm 1 \mathrm{~dB}\)) for closed-loop gains below 15 dB . Fig. 18 shows a plot of the capacitance required to produce

Fig. 17-Open-loop gain as a function of frequency for both phase-compensated and uncompensated operational amplifiers.

Fig. 18-Amount of phase-compensating capacitarice required to obtain a flat (\(\pm 1-d B\)) gain response as a function of frequency.
a flat (\(\pm 1-\mathrm{dB}\)) gain response as a function of closed-loop gain. The capacitors must have a resistor in series with them so that \(\frac{1}{2 \pi R C}=3 \mathrm{MHz}\).

Phase compensation may also be effected conventionally by adding a capacitor in series with a resistor between terminal 11 and ground. A 0.02 -microfarad capacitor in series with a 22 -ohm resistor is sufficient to ac stabilize the CA3008 or CA3010 Operational Amplifier at resistive closed-loop gains down to unity.

The required phase compensation depends upon the feedback configuration and not upon the location of the drive source. Hence, phase-compensating networks that provide sufficient compensation for a \(10-\mathrm{dB}\) noninverting configuration also provide sufficient compensation for a \(6-\mathrm{dB}\) inverting configuration because the two feedback configurations are identical.

\section*{OUTPUT-POWER MODIFICATIONS}

A choice of two output-power capabilities is provided in the CA3008 and CA3010 Operational Amplifiers. The output can be tailored to the specific load requirements by leaving terminal 8 open and placing an appropriate resistor between terminals 6 and 12 . The minimum safe value of load resistance (including the aforementioned resistor) is 200 ohms when \(\pm 6\)-volt supplies are used. In determining the output capability, it should be kept in mind that the feedback network can contribute to the output loading especially in the lower-gain configurations.

\section*{APPLICATIONS OF THE OPERATIONAL AMPLIFIERS}

The CA3008 and CA3010 Integrated-Circuit Operational Amplifiers can be adapted for use in a variety of diverse applications. For example, the amplifiers may be operated to provide the broad, flat gain-frequency response required for video amplifiers or the peaked responses required for various types of shaping amplifiers. Other applications of these amplifiers include comparators, integrators, differentiators, and summing amplifiers. The following paragraphs describe the circuit arrangements and the performance characteristics of the operational amplifiers in such applications:

\section*{VIDEO AMPLIFIERS}

When the feedback is applied through a purely resistive network and suitable phase compensation is employed, flat gains are attainable from the operational amplifiers. Fig. 19 shows a \(30-\mathrm{dB}\) noninverting configuration of a video amplifier, together with the closed-loop response of the circuit. The phase compensation is provided by a 5 -picofarad capacitor in series with a \(10,000-\mathrm{ohm}\) resistor. This arrangement provides the required amount of compensation, as predicted in Fig. 18. (For purposes of comparison, the uncompensated response of the \(30-\mathrm{dB}\) configuration is shown in Fig. 20. Observe the \(13-\mathrm{dB}\) peaking effect at 4.5 MHz .) An alternate method of phase compensation may be used when the intersection of the closed-loop characteristic and the open-loop response occurs in a twoslope region. The technique is to cause the feedback ratio

Fig. 19-Noninverting configuration and closed-loop response of an operational-amplifier type of video amplifier that provides a gain of 30-dB.

Fig. 20-Circuit diagram and gain-frequency response of the \(30-d B\) noninverting video amplifier operated without phase compensation.

Fig. 21-Circuit diagram and gain-frequency response of the 30-dB video amplifier when the phase compensation is accomplished by the addition of a capacitor in parallel with the feedback resistor.

Fig. 22-Circuit diagram and response of an inverting type of operational amplifier used as a 6-dB video amplifier.

Fig. 23-Effect of a decrease in the phase-compensating capacitance from 56 picofarads to 33 picofarads on the response of the \(6-d B\) video amplifier.
\(\left(Z_{r} / Z_{r}\right)\) to roll off at a one slope. Fig. 21 illustrates this alternate technique for the \(30-\mathrm{dB}\) gain circuit.

The low-frequency input impedance of the \(30-\mathrm{dB}\) noninverting configuration is 480,000 ohms, as calculated from the appropriate equation in Fig. 16 (\(Z_{1}=14,000\) ohms).

Fig. 22 shows the configuration and the response of a \(6-\mathrm{dB}\) inverting type of video amplifier. The intersection of the closed-loop characteristic with the compensated openloop response predicts the \(3-\mathrm{dB}\) bandwidth of the video amplifier provided the transfer phase shift of the open-loop amplifier is approximately -90 degrees. This relationship suggests a way to extend the bandwidth without peaking. In the \(6-\mathrm{dB}\) video amplifier shown in Fig. 23, the \(3-\mathrm{dB}\) bandwidth has been increased from 5.6 MHz to 11 MHz by a decrease in the value of the phase-compensating capacitors from 56 picofarads to 33 picofarads.

Because a broadband amplifier should be capable of handling digital signals, data were taken to determine this capability. Figs. 24(a) and 24(b) illustrate the pulsehandling capabilities of the \(30-\mathrm{dB}\) noninverting circuit shown in Fig. 19. Fig. 24(a) shows the low-level (nonsaturating) pulse response. The input is a 38 -millivolt, 960 -nanosecond pulse; the output is a 1.1 -volt pulse having a 40 -nanosecond delay time, a zero storage time, and 125 -nanosecond rise and fall times. Fig. 24(b) shows the response of the amplifier for a 960 -nanosecond input pulse under \(20-\mathrm{dB}\) overdrive conditions. The output pulse has an amplitude of 3.2 volts, a delay time of 32 nanoseconds, a storage time of 160 nanoseconds, a rise time of 500 nanoseconds, and a fall time of 160 nanoseconds.

(b)

OVERDRIVEN PULSE
\(V_{I N}=1.27 \mathrm{~V}\)
\(V_{\text {OUT }}=3.2 \mathrm{~V}\)
\(\mathrm{t}_{\mathrm{d}}=32 \mathrm{~ns}\)
\(t_{s}=160 \mathrm{~ns}\)
\(t_{\mathrm{r}}=500 \mathrm{~ns}\)
\(\mathrm{tf}_{\mathrm{f}}=160 \mathrm{~ns}\)

NOTE:
\(t_{d}=\) DELAY TIME \(t_{s}=\) STORAGE TIME
\(t_{r}=\) RISE TIME \(H_{f}=\) FALL TIME

Fig. 24-Pulse-handling characteristics of the noninverting 30-dB video amplifier: (a) Low-level pulse response; (b) Pulse response under overdrive conditions.

\section*{FREQUENCY-SHAPING AMPLIFIERS}

The operational amplifiers may be used to create simple frequency-shaped characteristics, such as those associated with band-pass, notched-response, and single-tuned narrow-band amplifiers.

Fig. 25 shows a noninverting amplifier that may be used to synthesize the following peaked-response transfer function:
\[
\frac{V_{\text {out }}}{V_{\text {tn }}}=+10 \frac{\left(1+j \frac{f}{f_{1}}\right)\left(1+j \frac{f}{f_{4}}\right)}{\left(1+j \frac{f}{f_{2}}\right)\left(1+j \frac{f}{f_{3}}\right)}
\]
where \(f_{1}=10 \mathrm{kc} / \mathrm{s}, f_{2}=40 \mathrm{kc} / \mathrm{s}, f_{3}=200 \mathrm{kc} / \mathrm{s}\), and \(f_{1}\) \(=800 \mathrm{kc} / \mathrm{s}\).

In terms of the notations employed in Fig. 25, the breakfrequency equations for the amplifier may be expressed as follows:
\[
\begin{aligned}
\frac{10}{2 \pi C_{r}\left(R_{r}+10 R_{r}\right)} & =10 \mathrm{kHz} \\
\frac{1}{2 \pi C_{r} R_{r}} & =40 \mathrm{kHz} \\
\frac{1}{2 \pi C_{n}\left(R_{n}+R_{r}\right)} & =200 \mathrm{kHz} \\
\frac{40}{2 \pi C_{n}\left(40 R_{n}+R_{r}\right)} & =800 \mathrm{kHz}
\end{aligned}
\]

These break-frequency equations are the precise equations derived from the gain equation in Fig. 16. The amount of phase compensation required is that shown in Fig. 18 for a noninverting gain of 20 dB .

Fig. 26 shows the circuit configuration and the frequency response of a narrow-band, \(100-\mathrm{kHz}\) tuned amplifier. The circuit Q is 33.3. A true single-tuned response can be obtained from only an inverting circuit configuration, as shown by the gain equation for the two types of configurations given in Figs. 15 and 16 and repeated below:
1. For the inverting configuration, the gain equation is given as:
\[
\frac{\mathbf{V}_{\text {out }}}{\mathbf{V}_{\mathrm{t} n}}=-\mathbf{Z}_{\mathrm{t}} / \mathbf{Z}_{\mathrm{r}}
\]
2. For the noninverting configuration, the following gain equation is used:
\[
\frac{\mathbf{V}_{\text {wut }}}{\mathbf{V}_{\mathrm{t} 1 \mathrm{t}}}=1+\mathbf{Z}_{\mathrm{f}} / \mathbf{Z}_{\mathrm{r}}
\]

The " \(1+\) " term in the gain expression for the noninverting configuration indicates that the gain of this type of circuit will never decrease to zero as required for a true single-tuned response. The amount of phase compensation required for the narrow-band \(100-\mathrm{kHz}\) amplifier is the value given in Fig. 18 for an inverting gain of 0.0 (infinite attenuation).

Fig. 25-Circuit diagram and response of a noninverting type of operational amplifier used to synthesize peaked-response transfer functions.

Phase Compensation not shown. It is 62 pF in series with \(820 \Omega\) between terminals 1 and 14 and between terminals 9 and 10 .
Fig. 26-Circuit diagram and response of an inverting type operational amplifier used as a narrow-band \(100-\mathrm{kc} / \mathrm{s}\) tuned amplifier.

\section*{COMPARATOR CIRCUITS}

The CA3008 and CA3010 Operational Amplifiers have excellent transfer characteristics for comparator applications. As shown in Fig. 8, the amplifiers have no observable hysteresis effect; the trace (minus to plus) and retrace (plus to minus) excursions coincide.

\section*{INTEGRATORS}

The important design consideration when an operational amplifier is to be used as an integrator is that dc feedback be provided. This feedback is necessary so that an offset (error) voltage cannot continuously charge the feedback capacitor until the amplifier limits. The required dc feedback is normally provided by shunting the integrating capacitor with a resistor so that the resulting time constant is considerably longer than the periods for the frequencies of interest. Fig. 27 shows the circuit configuration for the use of the CA3008 or CA3010 Operational Amplifier as an integrator and the responses of the circuit for \(1-\mathrm{kHz}\) squarewave inputs. The dc gain of the circuit is limited to 20 dB by the \(39,000-\mathrm{ohm}\) feedback resistor. The effect of this resistor on the gain, however, becomes negligible for ac signals at frequencies above 13 Hz because of the 0.03microfarad capacitor in parallel with it. The weighting factor of integration for the circuit is about 1 millisecond (\(\mathrm{R}=39,000\) ohms; \(\mathrm{C}=0.03\) microfarad).

Phase compensation must also be provided in an integrating amplifier circuit to assure ac stability. In general, the amount of compensation required is the maximum value given by Fig. 18, because the closed-loop characteristic of the integrator has rolled off completely at the frequency where the intersection of the open-loop response and the closed-loop characteristic occurs.

\section*{DIFFERENTIATORS}

The main problem in the design of differentiating amplifiers is that the gain of such amplifiers increases with frequency; hence, they are susceptible to high-frequency noise. The classical remedy for this effect is to connect a small resistor in series with the input capacitor so that the high-frequency gain is decreased. Actually, the addition of the resistor results in a more realistic model of a differentiator because a resistance is always added in series with the input capacitor by the source impedance. The schematic diagram of a CA3008 or CA3010 Operational Amplifier used as a differentiating circuit and the response of the circuit for \(1-\mathrm{kHz}\) square waves are shown in Fig. 28. A value of 51 ohms is selected for the gain-limiting resistor to illustrate that the effect of the source impedance is not necessarily negligible in differentiator applications. This 51 -ohm resistor limits the high-frequency numerical gain factor of the amplifier to 433 .

If the closed-loop gain of a differentiator rises to the open-loop value before the open-loop response has started to roll off, no phase compensation of the circuit is required. In order to assure that the intersection of the closed-loop characteristic with the open-loop response occurs at a slope less than two, the RC time constant of the phase-compensating network must be adjusted so that the open-loop response does not roll off in the region of the intersection.

\section*{SCALING ADDERS}

The inverting feedback configuration of the CA3008 and CA3010 Operational Amplifiers lends itself not only to summing several different signals, but also to weighting

Fig. 27-Circuit diagram and the input and output waveforms for an operational amplifier used as an integrator.

Fig. 28-Circuit diagram and the input and output waveforms for an operational amplifier used as a differentiator.
each signal to be summed. The weighting operation is possible because the virtual ground that exists at the junction of the feedback resistor and the inverting input (terminal 3) isolates each signal channel from the others. The weighting operation requires that each input signal enters the virtual-ground node through an impedance of such value that its ratio to the feedback impedance is equal to the desired weighting factor.

Fig. 29 illustrates the use of the CA3008 or CA3010 Operational Amplifier as a scaling adder (weighting amplifier). This figure also shows a photograph of the output waveform. The minimum phase compensation needed for this circuit is that required for the gain obtained when a single signal drives all the input channels in parallel.

VERTICAL \(=0.5 \mathrm{~V} /\) DIY

Fig. 29-Circuit diagram and output waveform obtained when an operational amplifier is used as a scaling adder.

\section*{EXTERNAL MODIFICATIONS OF THE OPERATIONAL AMPLIFIERS}

Although the CA3008 and CA3010 units meet all the requirements of an operational amplifier, there are special applications for which certain modifications are desirable.

The two most common examples are applications in which the operational amplifier is required to supply high levels of output power and those for which the amplifier is operated with low de input bias current.

\section*{ADDITION OF A POWER-OUTPUT STAGE}

The output-power capability of the operational amplifiers can be increased by the addition of an external emitter-follower output stage or a class B push-pull output stage. The emitter-follower approach is highly inefficient from a dissipation standpoint. A class B push-pull output stage, added as shown in Fig. 30, works well in a closedloop circuit, but is subject to thermal runaway under open-

DRIVING SOURCE
(NON-INVERTING CONFIGURATION)
OR GROUND

(INVERTING CONFIGURATION)
OR GROUND
(NON-INVERTING CONFIGURATION)

Fig. 30-Schematic diagram showing the addition of an external push-pull output stage to increase the output capability of an operational amplifier.
loop conditions. The thermal-runaway effect may be controlled by the introduction of a small amount of emitter degeneration in each of the push-pull transistors. The load requirements, however, are sometimes severe enough to preclude the use of emitter degeneration. Moreover, depending on the choice of complementary transistors, the addition of the push-pull amplifier may limit the over-all bandwidth.

\section*{ADDITION OF INPUT EMITTER FOLLOWERS}

The dc input bias current of the operational amplifiers is required to be low when the amplifiers are driven either from a high-impedance source, such as a vidicon tube, or from a drive source that cannot accommodate high levels of dc current. The input bias current required is substantially decreased when emitter followers are added to the input terminals of the operational amplifiers. An emitter-
follower modification to the operational amplifiers is illustrated in Fig. 31. The use of the emitter followers reduces the input-bias-current requirements from 5 microamperes per input to 0.14 microampere per input. This modification, however, also results in a decrease in the bandwidth, as indicated by the response curve for the modified circuit (see Fig. 31). The bandwidth is decreased because the emitter followers operate at very low levels of collector current and are driven from a high-impedance source (1 megohm for the circuit shown in Fig. 31).

Fig. 31-Schematic diagram showing the addition of input emitter followers to reduce the input-bias-current requirements of an operational amplifier.

\title{
Application of the RCA CA3015 and CA3016 Integrated-Circuit Operational Amplifiers
}

\section*{BY}
T. C. CAMPBELL

The RCA integrated-circuit operational amplifiers CA3015 and CA3016 are identical in circuit configuration to the previously announced types CA3008 and CA3010, but have an improved device breakdown voltage that permits operation from \(\pm 12\)-volt supplies. Operation of the CA3015 and CA3016 from power supplies of \(\pm 6\) volts or \(\pm 3\) volts is the same as for the earlier types. \({ }^{1}\) This Note describes the operating characteristics of the CA3015 and CA3016 at \(\pm 12\) volts, and discusses applications that take advantage of the higher gain-bandwidth product and increased output signal swing obtained at the higher voltages.

\section*{OPERATING CHARACTERISTICS}

Fig. 1 shows the schematic diagrams and terminal numbers for the CA3015 and CA3016. As in the case of the CA3008 and CA3010, each operational amplifier consists basically of two differential amplifiers and a single-ended output circuit in cascade. The CA3015 is supplied in a 12 -lead TO-5 package, and the CA30 16 in a 14-lead flat package. Throughout this Note,
terminal numbers for the CA3015 are shown in the illustrations; however, the discussion applies to both packages.

\section*{DC Characteristics}

When operated from \(\pm 12\)-volt power supplies, these operational amplifiers have a typical dissipation of 175 milliwatts with terminal 5 of the CA3015 or terminal 8 of the CA3016 open. If terminals 5 and 9 of the CA3015 or terminals 8 and 12 of the CA3016 are shorted, higher output-current capability can be achieved, but the dissipation increases to a typical value of 500 milliwatts. The input offset voltage is typically 1.4 millivolts, and the variation in input offset voltage is typically less than 200 microvolts per volt for fluctuations of either supply voltage. At \(25^{\circ} \mathrm{C}\), the input bias current and input offset current are typically 9.6 and 1 microamperes, respectively. (Curves of input offset voltage, input bias current, and input offset current as functions of temperature are given in the technical bulletin for the CA3015 and CA3016.)

Fig. 1 - Schematic diagrams and terminal connections for the (a) CA3015 and (b) CA3016 integrated-circuit operational amplifiers.

Derating. When these operational amplifiers are operated from \(\pm 12\)-volt supplies with terminals 5 and 9 of the CA3015 or terminals 8 and 12 of the CA3016 shorted for greater output capability, the power dissipation is high enough so that temperature derating is necessary. The maximum junction-temperature rating is \(150^{\circ} \mathrm{C}\), and the thermal resistance is \(100^{\circ} \mathrm{C}\) per watt. The maximum power-dissipation rating is 600 milliwatts at \(25^{\circ} \mathrm{C}\) (with terminals shorted as described above). In this higher-output mode, the circuits can operate safely at ambient temperatures up to \(90^{\circ} \mathrm{C}\).

\section*{AC Characteristics}

Transfer Characteristic. The open-loop transfer characteristic is shown in Fig.2. As in the case of

Fig. 2 - Open-loop transfer characteristic.
the CA3008 and CA3010, there is no hysteresis effect. The CA3015 and CA3016 technical bulletin includes curves of maximum peak-to-peak voltages as functions of load resistance with terminal 5 of the CA3015 or terminal 8 of the CA3016 open and with terminals 5 and 9 of the CA3015 or terminals 8 and 12 of the CA3016 shorted. The CA3015 and CA3016 can drive a lowerresistance load when these terminals are shorted.

Gain vs Frequency Response. The open-loop low-frequency gain of the CA3015 and CA3016 with \(\pm 12\)-volt supplies is typically 70 dB with a \(3-\mathrm{dB}\) bandwidth of 320 kHz . The unity-gain crossover occurs at a frequency of 58 MHz .

Common-Mode Rejection. The common-mode rejection ratio of the CA3015 and CA3016 is typically 104 dB for operation with \(\pm 12\)-volt supplies. A curve of common-mode rejection ratio as a function of frequency is included in the bulletin.

Input and Output Impedances. The technical bulletin for the CA3015 and CA3016 includes curves of input and output impedances as functions of temperature. At \(25^{\circ} \mathrm{C}\), the typical input impedance is 7800 ohms. The typical output impedance is 92 ohms with terminal 5 of the CA3015 or terminal 8 of the CA3016 open, and 76 ohms with these terminals connected to the output.

\section*{PHASE COMPENSATION}

The following section describes phase-lag and phase-lead compensation techniques for these operational amplifiers. Fig. 3 shows the various phasecompensation connections for the CA3015.

Fig. 3 - Terminal connections for phase-lag and phase-lead compensation of the CA3015.

\section*{Phase-Lag Compensation}

When the CA3015 and CA3016 are operated from \(\pm 6\)-volt supplies, the phase-compensation techniques described previously for the CA3008 and CA3010 are applicable. 1 When the CA3015 and CA3016 are operated from \(\pm 12\)-volt supplies, corrections must be made in the phase-lag compensation to allow for the shift in frequency at which the second break in the openloop Bode plot occurs. At \(\pm 12\) volts, this second break occurs at a frequency of 10 MHz . For Millereffect and conventional phase-lag compensation, the series RC combinations must be adjusted so that \(1 /(2 \pi \mathrm{RC})=10 \mathrm{MHz}\) to correct for the shift in frequency. In addition, the Miller technique requires a larger value of phase-lag capacitance for a non-peaking (\(\pm 1 \mathrm{~dB}\)) response to allow for the higher gain.

Fig. 4 shows a curve of the required phase-lag capacitance as a function of gain, together with the corresponding response curves. (The required capacitance values shown in this figure are applicable not only for \(\pm 12\)-volt power supplies, but also for all lower-voltage symmetrical supplies; however, smaller capacitors could be used at lower voltages.)

Fig. 5 shows curves of open-loop compensated and uncompensated frequency response with \(\pm 12\)-volt supplies. Although the phase-lag compensation capacitance of 18 picofarads shown in curve (B) of this figure is sufficient to provide stability in resistivefeedback amplifiers down to unity gain, it is not sufficient to provide flat closed-loop response (\(\pm 1 \mathrm{~dB}\)) below 20 dB .

\section*{Phase-Lead Compensation}

In addition to the standard phase-lag compensation discussed above, the CA3015 and CA3016 have a

Fig. 4 - Amount of phase-lag capacitance required to obtain a flat (\(\pm 1 \mathrm{~dB}\)) response, and typical response characteristics.

Fig. 5 - Open-loop gain as a function of frequency for compensated and uncompensated amplifiers.
phase-lead compensation capability. For this phaselead compensation, a capacitor is connected between terminals 7 and 8 of the CA3015, as shown in Fig.3, or between terminals 10 and 11 of the CA3016. The effect of this capacito is to eliminate the break at 10 MHz in the Bode plot and thus extend the 6 -dB-peroctave roll-off. The second break in the Bode plot then occurs at approximately 35 MHz , and the unitygain crossover occurs at 150 MHz . The phase-lead compensated open-loop response is shown in curves (C) and (D) of Fig. 5 for various values of capacitance. For optimum performance, a minimum phase-lead capacitance of 47 picofarads is recommended.

For flat (\(\pm 1 \mathrm{~dB}\)) responses at closed-loop gains below 30 dB , a small amount of phase-lag compensation is required in addition to the phase-lead compensation. The required phase-lag capacitance for flat (\(\pm 1 \mathrm{~dB}\)) responses and the corresponding response curves are shown in Fig.6. When phase-lead compen-

Fig. 6 - Amount of phase-lag capacitance required to obtain a flat \((\pm 1 \mathrm{~dB})\) response when phaselead compensation is used, and typical. response characteristics.
sation is used, the series RC combinations should be adjusted so that \(1 /(2 \pi \mathrm{RC})=35 \mathrm{MHz}\).

The phase-lead compensation is also applicable when \(\pm 6\)-volt power supplies are used, and provides a unity-gain crossover improvement of about one octave as compared to the uncompensated connection. As mentioned earlier, the phase-lag capacitance requirement for \(\pm 12\)-volt supplies shown in Fig. 4 is satisfactory for \(\pm 6\)-volt supplies, although smaller capacitors could be used with the lower voltages.

\section*{APPLICATIONS}

For all applications, ac and dc balance at the input must be preserved, i.e., the two inputs must be returned to ground through equal impedances.

\section*{50.dB Amplifier}

Fig. 7 shows the circuit configuration and frequency response for a non-inverting, \(50-\mathrm{dB}\) amplifier employing phase-lead compensation. This amplifier

Fig. 7 - Circuit diagram and response curve for a \(50-d B\), non-inverting amplifier with phase-lead compensation.
has a \(3-\mathrm{dB}\) bandwidth of 3.5 MHz , and a unity-gain. crossover at 150 MHz .

\section*{10-dB, 42-MHz Amplifier}

Fig. 8 shows the circuit diagram and frequency response for a \(10-\mathrm{dB}\), non-inverting amplifier employing both phase-lead and phase-lag compensation. Slight peaking (2 dB) occurs for the phase compensation shown. Flat response with bandwidth reduction to 25 MHz may be obtained by use of a phase-lag capacitance of 15 picofarads.

Fig. 8 - Circuit diagram and response curve for a 10-dB, non-inverting amplifier with phase-lead and phase-lag compensation.

\section*{Twin-T Bandpass Amplifier}

Fig. 9 shows the circuit diagram and frequency response of a bandpass amplifier using a twin-T network in the feedback loop. The difference in resonant frequency between the bandpass-amplifier response and the twin-T network response is caused by device capacitances and loading effects. The unloaded Q (\(\mathrm{Q}_{\mathrm{O}}\)) of the twin-T network is 14.4 ; the \(\mathrm{Q}_{\mathrm{O}}\) of the bandpass amplifier is 12.8 .

Fig. 9 - Circuit diagram and response curves for a bandpass amplifier using a twin-T network.

The symmetrical twin-T network can be designed by use of the following equations:
\[
\begin{aligned}
\mathrm{R}_{1} & =2 \mathrm{R}_{2} \\
\mathrm{C}_{1} & =1 / 2 \mathrm{C}_{2} \\
\mathrm{f}_{\mathrm{O}} & =1 /\left(2 \pi \mathrm{R}_{1} \mathrm{C}_{1}\right)
\end{aligned}
\]

It is important in the design of this type of bandpass amplifier that the two inputs be returned to ground through equal resistances; in this case a value of 2000 ohms is used.

\section*{20-dB, 10-MHz Bandpass Amplifier}

Fig. 10 shows the circuit diagram and frequency response of an RLC bandpass amplifier. This amplifier is designed to have a \(Q_{0}\) of about \(10\left(\mathrm{R}_{\mathrm{p}}=\mathrm{X}_{\mathrm{C}} \mathrm{Q}_{\mathrm{o}}\right.\) \(=2200\) ohms) and a gain of about 20 dB at resonance \((2200 / 200=11\), or 20.9 dB\()\). In this application, the inputs are effectively grounded.

\section*{Voltage Follower}

A voltage follower is a non-inverting, unity-gain amplifier used primarily to transform from a high impedance to a low impedance. Because low voltages
are usually associated with high-impedance sources, the voltage follower need not have a great voltage capability.

Fig. 10 - Circuit diagram and response curve for a 10-MHz RLC bandpass amplifier.

Fig. 11 shows the circuit diagram for a voltage follower using the CA3015, together with a curve of maximum undistorted output voltage as a function of
load resistance. When terminals 5 and 9 are shorted (or terminals 8 and 12 of the CA3016), the voltage follower is capable of transforming a 3.4 -volt peak-topeak voltage from a 100,000 -ohm source to a 470 -ohm load.

Fig. 11 - Circuit diagram for a voltage follower driven from a 100,000-ohm source, and curve showing maximum undistorted output voltage as a function of load resistance.

If higher voltage-swing capability is desired, the positive supply voltage (\(\mathrm{V}_{\mathrm{CC}}\)) may be increased. Temperature derating may be necessary, depending on the magnitude of VCC and whether the high- or lowcurrent mode is used.

\section*{REFERENCE}
1. "Application of the RCA CA3008 and CA3010 Inte-grated-Circuit Operational Amplifiers", RCA Integrated Circuits Application Note ICAN-5015, November 1965 .

\section*{Integrated-Circuit Operational Amplifiers}

An operational amplifier is basically a very-highgain direct-coupled amplifier which uses feedback for control of response characteristics. This circuit can be used to synthesize a broad variety of intricate transfer functions and thus can be adapted for use in many widely diverse applications. The operational amplifier is principally used to perform various mathematical functions, such as differentiation, integration, analog comparisons, and summation. This versatile circuit, however, may also be used for numerous other applications that have significantly different transfer and response requirements. For example, the same operational amplifier may be adapted to provide either the broad, flat frequency-gain response required of video amplifiers or the peaked responses required of various types of shaping amplifiers.

\section*{GENERAL CONSIDERATIONS}

The configuration most commonly used for operational amplifiers is a cascade of two differential-amplifier circuits together with an appropriate output stage. The cascaded differential-amplifier stages not only fulfill the operational-amplifier requirement for a highgain direct-coupled amplifier circuit, but also provide significant advantages with respect to application.

From an applications standpoint, an operational amplifier that has a differential input is much more versatile than a single-input type. This increased versatility results from greater flexibility in selection of the feedback configuration. With a single-input operational amplifier, only an inverting feedback configuration can be employed. When differential inputs are used, the feedback configuration may be either an inverting type or a noninverting type, which depends on the common-mode rejection for its negative feedback. The type of feedback affects the characteristics of an operational amplifier, and the two types tend to complement each other. Because the characteristics of each type are required equally often, the differential-input operational amplifier is twice as versatile as the single-input type.

The differential-input operational amplifier is readily adapted to integrated-circuit construction techniques because the stable dc-amplifier configuration lends itself well to the monolithic diffusion process used in the fabrication of silicon integrated circuits. In addition, symmetrical differential-amplifier stages can be dc-cascaded readily, provided that each stage is driven pushpull by the preceding stage. The common-mode effects that result from this arrangement make possible stable, direct-coupled cascaded.

The capabilities and limitations of operational amplifiers are firmly defined by a few very simple equations and rules, which are based on a certain set of criteria that an operational amplifier must meet. Effective use of these simple relationships, however, requires knowledge of the conditions under which each is applicable so that errors that may result from various approximations are held to a minimum. This Note explores the theory of the design and use of operational amplifiers, and develops each pertinent design equation in a general way. Evaluations are then made to determine the assumptions that must be made (or the criteria the operational amplifier must meot) to reduce these general equations to classical operational-amplifier design equations.

Frequency instabilities in the operational amplifier and the methods used to prevent them are also discussed. A thorough understanding of the principles of frequency stability is imperative to the successful application of operational amplifiers. The basic concepts and techniques involved in phase compensation (frequency stabilization) are explained in terms of (1) basic frequencystability requirements, (2) the problems that may result from an uncontrolled frequency response, and (3) the techniques that may be used to correct these undesirable effects.

Finally, the basic criteria for an operational amplifier are given. This discussion is placed last because a basic insight to the theory of application is required before the effects of many of the operational-amplifier requirements can be fully appreciated.

\section*{BASIC THĖORY OF OPERATIONAL AMPLIFIERS}

In the development of the basic equations and concepts associated with the use of operational amplifiers, the precise formulations for the transfer functions, the input impedances, the output impedances, and the loop gains are presented for both the inverting and the noninverting feedback configurations, and classical design equations are then derived from these precise formulations. The effects of the load impedance and of common-mode gain (or common-mode rejection) on the inverting and noninverting feedback configurations are considered separately.

\section*{Inverting Feedback Configuration}

An operational amplifier operated with an inverting feedback configuration is shown in Fig.1. The load resistor \(\mathrm{R}_{\mathrm{L}}\) is assumed to be large enough so that its effect on the transfer characteristic is negligible, i.e., \(I_{\text {OUT }}=0\). (The effects of a finite \(R_{L}\) are investigated and evaluated subsequently in the discussion of the equivalent-circuit model of an operational amplifier.)

Certain differential-input operational amplifiers require a significant flow of bias current at each input. For this condition, the dc paths to ground for each input
must be equal so that a minimum dc offset voltage (error) is developed at the output. Thus, for the terminology employed in Fig.1, \(R_{r}\) must equal the parallel combination of \(Z_{r}(\omega=0)\) with the series combination of \(Z_{f}(\omega=0)\) and \(Z_{\mathrm{o}_{i}}(\omega=0)\).

In the circuit of Fig.1, the drive-source impedance affects the feedback in the inverting configuration and, therefore, must be considered part of the \(Z_{r}\) term. For

Fig. 1 - Inverting-feedback operational-amplifier configuration.
brevity, the symbol \(Z_{r}\) is defined to include the source impedance as well as certain feedback design elements. The impedances \(\mathrm{Z}_{\mathrm{i}}\) and \(\mathrm{Z}_{\mathrm{oi}_{\mathrm{i}}}\) are the open-loop intrinsic input and output impedances of the operational amplifier. Ordinarily, these impedances are assumed in the amplifier symbol. In Fig.1, however, they are identified to emphasize their importance in the ensuing equations. The term \(A_{o}(\omega)\) is the open-loop differential voltage gain of the operational amplifier; this parameter is frequencydependent. The terminals on the operational-amplifier symbol labled minus (-) and plus (+) refer to the inverting and noninverting input, respectively.

Inverting-Configuration Transfer Function - The transfer function or closed-loop gain of an operational amplifier is generally considered to express the relationship between the input and output voltages. (It is relatively simple to convert the voltage transfer function to another desired transfer relationship.) In the derivation of the transfer function for the schematic in Fig.1, the following differential-amplifier relationship is used as the starting point:
\[
\begin{equation*}
V_{o_{1}}=-A_{o}(\omega)\left(V_{e}-V_{i}\right) \tag{1}
\end{equation*}
\]
where \(V_{e}\) and \(V_{i}\) are defined as follows:
\[
\begin{gather*}
V_{e}=\frac{V_{I N}\left(Z_{f}+Z_{o_{i}}\right) / /\left(Z_{i}+R_{r}\right)}{Z_{r}+\left(Z_{f}+Z_{o_{i}}\right) / /\left(Z_{i}+R_{r}\right)}+ \\
\frac{V_{o_{1}} Z_{r} / /\left(Z_{i}+R_{r}\right)}{Z_{f}+Z_{o_{i}}+Z_{r} / /\left(Z_{i}+R_{r}\right)} \tag{2}
\end{gather*}
\]
and
\[
\begin{equation*}
V_{i}=V_{e} R_{r} /\left(Z_{i}+R_{r}\right) \tag{3}
\end{equation*}
\]
(In these and subsequent equations, the load resistor \(\mathrm{R}_{\mathrm{L}}\) is assumed to approach infinity.)

If the expressions for \(\mathrm{V}_{\mathrm{e}}\) and \(\mathrm{V}_{\mathrm{i}}\) given by Eqs. (2) and (3) are substituted in Eq. (1), the resulting expression can be simplified as follows:
\[
\begin{align*}
& V_{o_{1}}= \\
& \frac{-A_{o}(\omega) Z_{i}\left(Z_{f}+Z_{o_{i}}\right) V_{I N}}{\left(Z_{f}+Z_{o_{i}}\right)\left(Z_{i}+R_{r}\right)+Z_{r}\left(Z_{f}+Z_{o_{i}}+Z_{i}+R_{r}\right)+A_{o}(\omega) Z_{i} Z_{r}} \tag{4}
\end{align*}
\]

The output voltage \(\mathrm{V}_{\text {OUT }}\) is expressed in terms of \(\mathrm{V}_{\mathrm{o}_{1}}\) and \(\mathrm{V}_{\mathrm{IN}}\) by the following equation:
\[
\begin{align*}
V_{\text {OUT }}= & \frac{V_{o i}\left[Z_{f}+Z_{r} / /\left(Z_{i}+R_{r}\right)\right]}{Z_{o_{i}}+Z_{f}+Z_{r} / /\left(Z_{i}+R_{r}\right)} \\
& +\frac{V_{I N} Z_{o_{i}}\left(Z_{f}+Z_{o_{i}}\right) / /\left(Z_{i}+R_{r}\right)}{\left(Z_{f}+Z_{o_{i}}\right)\left[Z_{r}+\left(Z_{f}+Z_{o_{i}}\right) / /\left(Z_{i}+R_{r}\right)\right]} \tag{5}
\end{align*}
\]

With \(\mathrm{V}_{\mathrm{o}_{1}}\) defined as indicated by Eq. (4), the accurate equation for the transfer response (for \(\mathrm{R}_{\mathrm{L}} \rightarrow \infty\)) becomes
\[
\begin{align*}
& \frac{V_{\text {OUT }}}{V_{\text {IN }}}= \\
& \frac{Z_{o_{i}}\left(Z_{i}+R_{r}\right)-A_{o}(\omega) Z_{i} Z_{f}}{\left(Z_{f}+Z_{o_{i}}\right)\left(Z_{i}+R_{r}\right)+Z_{r}\left(Z_{f}+Z_{o_{i}}+Z_{i}+R_{r}\right)+A_{o}(\omega) Z_{i} Z_{r}} \tag{6}
\end{align*}
\]

If \(Z_{i}\) is assumed to be much greater than the combination of \(Z_{r}\) in parallel with \(Z_{f}+Z_{o i}\), and if \(Z_{o i}\) is assumed to be much smaller than \(\mathrm{Z}_{\mathrm{f}}\), then the closed-loop gain (or transfer function) may be expressed as follows:
\[
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}} \doteq \frac{-A_{o}(\omega) Z_{f}}{Z_{f}+Z_{r}+A_{o}(\omega) Z_{r}} \tag{7}
\end{equation*}
\]

In addition, if the open-loop gain \(A_{o}(\omega)\) is the dominant term in either Eq. (6) or (7), the transfer-function equation for the inverting configuration simplifies to the following familiar expression:
\[
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}} \xlongequal{A_{0}(\omega) \rightarrow \infty}-\frac{Z_{f}}{Z_{r}} \tag{8}
\end{equation*}
\]

Eq. (8) is considered to be the classical or ideal expression for the closed-loop gain (transfer function) for an operational amplifier that uses the inverting type of feedback configuration.

The difference between the open-loop gain and the closed-loop gain is in itself an important design parameter. This "gain throwaway", which is known as the loop gain L.G., is defined by the following equation:
\[
\begin{equation*}
\text { L. G. }=\frac{\text { open-loop gain, } A_{o}(\omega)}{\text { closed-loop gain, } \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}} \tag{9}
\end{equation*}
\]

When the transfer function is given by Eq. (7), the loop-gain equation may be written as follows:
\[
\begin{equation*}
\text { L. G. }=-\frac{Z_{f}+Z_{r}}{Z_{f}}-\frac{A_{o}(\omega)}{\frac{Z_{f}}{Z_{r}}} \tag{10}
\end{equation*}
\]

Moreover, when the open-loop gain is very large, the inverting loop gain can be considered to be the open-loop gain divided by the ideal inverting closed-loop gain. The equation for L.G. then becomes
\[
\begin{equation*}
\text { L. } \mathrm{G} . \doteq \frac{-\mathrm{A}_{\mathrm{o}}(\omega)}{\frac{\mathrm{Z}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{r}}}} \tag{11}
\end{equation*}
\]

The loop-gain parameter can be used to predict the accuracy of the approximate operational-amplifier relationships. In general, the higher the loop gain, the more accurate the results provided by the approximate (or classical) relationships. This correlation is demonstrated in Table \(I\), which compares values of \(\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}\) obtained from the precise transfer expression, Eq. (6),

Table I - Comparison of Precise and Approximate Formulas for Closed-Loop Gain (Inverting Configuration)
Conditions: \(A_{0}(\omega)=1000 / 0^{\circ}, Z_{1}=15,000 / 0^{\circ}, Z_{0_{1}}=200 / 0^{\circ}, Z_{r}=1000 / 0^{\circ}\).
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathbf{z}_{r} / 0^{\circ} \\
\text { (0hmis) } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Vout/Vin \\
(dB)
\end{tabular} & \[
\begin{gathered}
\operatorname{VOUTX}^{\prime} V_{I N} \\
\text { from Eq. (} 6 \text {) } \\
\text { (dB) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Error } \\
& (\mathbb{O B}) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { L.G. } \\
& \text { (dB) } \\
& \hline
\end{aligned}
\] \\
\hline 200,000 & 46.0 & 44.3 & 1.70 & 14.0 \\
\hline 100,000 & 40.0 & 39.1 & 0.90 & 20.0 \\
\hline 30,000 & 29.6 & 29.3 & 0.30 & 30.4 \\
\hline 10,000 & 20.0 & 19.9 & 0.10 & 40.0 \\
\hline 2,000 & 6.03 & 6.0 & 0.03 & 54.0 \\
\hline
\end{tabular}
with values obtained from the classical approximation, Eq. (8), for various gain settings. The tabular data show that the classical equation is accurate to within 1 dB provided the loop gain is at least 20 dB . Eq. (11) was used to calculate all of the loop-gain values given in the table.

Inverting-Configuration Input Impedance, \(\mathbf{Z}_{\text {IN }}\) - The input impedance \(\mathrm{Z}_{\text {IN }}\) for the inverting-feedback configuration of an operational amplifier, shown in Fig.1, can be expressed as follows:
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{IN}}=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{I}_{\mathrm{IN}}} \tag{12}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathrm{I}_{\mathrm{IN}}=\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{e}}}{\mathrm{Z}_{\mathrm{r}}} \tag{13}
\end{equation*}
\]

Therefore,
\[
\begin{equation*}
Z_{\mathrm{IN}}=\frac{Z_{r}}{1-\frac{\dddot{V}_{e}}{\mathrm{~V}_{\mathrm{IN}}}} \tag{14}
\end{equation*}
\]

The ratio \(\mathrm{V}_{\mathrm{e}} / \mathrm{V}_{\text {IN }}\) may be determined by substituting the expression for \(\mathrm{V}_{\mathrm{o}_{1}}\) given by Eq. (4) into Eq. (2) and dividing through by \(\mathrm{V}_{\text {IN }}\) (with \(\mathrm{R}_{\mathrm{L}} \rightarrow \infty\).) The resultant equation is then simplified to obtain the following relationship:
\[
\begin{align*}
& \frac{V_{e}}{V_{I N}}= \\
& \frac{\left(Z_{f}+Z_{o_{i}}\right)\left(Z_{i}+R_{r}\right)}{Z_{r}\left(Z_{f}+Z_{o i}+Z_{i}+R_{r}\right)+\left(Z_{f}+Z_{o_{i}}\right)\left(Z_{i}+R_{r}\right)+A_{o}(\omega) Z_{i} Z_{r}} \tag{15}
\end{align*}
\]

If this expression for \(\mathrm{V}_{\mathrm{e}} / \mathrm{V}_{\text {IN }}\) is substituted into Eq.(14), the result can be simplified to obtain the following precise expression for the closed-loop input impedance:
\[
\begin{align*}
Z_{I N}= & Z_{r}+ \\
& \frac{Z_{i r}\left(Z_{o_{i}} Z_{i}+Z_{o_{i}} R_{r}+Z_{f} R_{r}+Z_{i} Z_{i}\right)}{Z_{r}\left(Z_{f}+Z_{o_{i}}+Z_{i}\right)+R_{r}\left(Z_{r}+Z_{o_{i}}\right)+A_{o}(\omega) Z_{i} Z_{r}} \tag{16}
\end{align*}
\]

If \(A_{o}(\omega)\) is dominant and \(Z_{o_{i}}\) is small, Eq. (16) reduces to
\[
\begin{equation*}
Z_{I N} \doteq Z_{r}+\frac{Z_{f}\left(Z_{i}+R_{r}\right)}{A_{o}(\omega) Z_{i}} \tag{17}
\end{equation*}
\]

A further simplification is possible when \(R_{r}\) is much smaller than \(\mathrm{Z}_{\mathrm{i}}\), which is a common condition. In this case, the equation for the input impedance becomes
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{IN}} \doteq \mathrm{Z}_{\mathrm{r}}+\frac{\mathrm{Z}_{\mathrm{f}}}{\mathrm{~A}_{\mathrm{o}}(\omega)} \tag{18}
\end{equation*}
\]

Eqs. (17) and (18), which are important in voltagesumming or scaling-adder* applications, can be used to predict the degree of interaction among multiple inputs.

When \(A_{o}(\omega)\) is large enough, Eqs. (17) and (18) may be rewritten as follows:
\[
\begin{equation*}
Z_{\mathrm{IN}} \stackrel{\mathrm{~A}_{0}(\omega) \rightarrow \infty}{=} \mathrm{Z}_{\mathrm{r}} \tag{19}
\end{equation*}
\]

Eq. (19) is the "classical" equation for the input impedance of an operational amplifier when an invertingfeedback configuration is used. This equation, together with Eq. (16), implies the existence of a condition known as a virtual ground at the node-assigned voltage \(\mathrm{V}_{\mathrm{e}}\) (shown in Fig.1). That is, the node is at ground potential even though there is no electrical connection between this point and ground. [This statement can be verified either intuitively by the use of Eq. (19) or directly if \(A_{o}(\omega)\) is assumed to be infinite in Eq.(15).] Moreover, no current flows into the negative terminal of the amplifier when the open-loop gain is infinite because the voltage \(V_{e}\) is zero while the impedance at

\footnotetext{
*A scaling adder is an inverting operational-amplifier configuration which weights and sums multiple voltages.
}
the negative terminal (i.e., \(Z_{i}+R_{r}\)) is not zero. The concept of a virtual ground leads to an extremely simple three-step analysis procedure for an inverting opera-tional-amplifier configuration.
1. Because of the virtual ground \(\left(V_{e}=0\right)\), the input current \(I_{I N}\) and feedback current \(I_{f}\) can be defined as follows:
\[
\begin{gather*}
I_{\mathrm{IN}}=\frac{\mathrm{V}_{\mathrm{IN}}}{Z_{\mathrm{r}}} \tag{20}\\
\mathrm{I}_{\mathrm{f}}=\frac{-\mathrm{V}_{\mathrm{OUT}}}{Z_{\mathrm{f}}} \tag{21}
\end{gather*}
\]
2. Zero current flow into the inverting terminal \(\left(\mathrm{V}_{\mathrm{e}}=0\right)\) indicates the following relationships:
\[
\begin{gather*}
\mathrm{I}_{\mathrm{IN}}=\mathrm{I}_{\mathrm{f}} \tag{22}\\
\frac{\mathrm{~V}_{\mathrm{IN}}}{Z_{t}}=\frac{-\mathrm{V}_{\mathrm{OUT}}}{\mathrm{Z}_{\mathrm{f}}} \tag{23}
\end{gather*}
\]
3. Eq. (23) can then be rewritten to obtain the classical gain equation, as follows:
\[
\begin{equation*}
\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{IN}}}=-\frac{\mathrm{Z}_{f}}{\mathrm{Z}_{\mathrm{r}}} \tag{24}
\end{equation*}
\]

Although the foregoing analysis is certainly an idealized one, it is nevertheless practical because the required approximations are usually valid. Eq. (15) serves as a measure of the deviation from a true virtual ground.

Inverting-Configuration Output Impedance, \(Z_{\text {OUT }}\) The closed-loop output impedance is the ratio of the unloaded output voltage \(\mathrm{V}_{\text {OUT }}\) to the short-circuit output current IOUT as follows:
\[
\begin{equation*}
Z_{\text {OUT }}=\frac{V_{\text {OUT }}\left(R_{\mathrm{L}} \rightarrow \infty\right)}{I_{\text {OUT }}\left(R_{\mathrm{L}} \rightarrow 0\right)} \tag{25}
\end{equation*}
\]

It is apparent from Fig. 1 then that the output current \(\mathrm{I}_{\text {OUT }}\) is given by
\[
\begin{equation*}
\mathrm{I}_{\text {OUT }}\left(\mathrm{R}_{\mathrm{L}} \rightarrow 0\right)=\frac{-\mathrm{A}_{\mathrm{o}}(\omega)\left(\mathrm{V}_{\mathrm{e}}-\mathrm{V}_{\mathrm{i}}\right)}{\mathrm{Z}_{\mathrm{oi}}} \tag{26}
\end{equation*}
\]

If the expression given by Eq. (3) is substituted for \(\mathrm{V}_{\mathrm{i}}\), Eq. (26) can be rewritten as follows:
\[
\begin{equation*}
\mathrm{I}_{\text {OUT }}\left(\mathrm{R}_{\mathrm{L}} \rightarrow 0\right)=\frac{-\mathrm{A}_{\mathrm{o}}(\omega) \mathrm{Z}_{\mathrm{i}} \mathrm{~V}_{\mathrm{c}}}{\mathrm{Z}_{\mathrm{oi}}\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}\right)} \tag{27}
\end{equation*}
\]

Under short-circuit conditions (\(\mathrm{R}_{\mathrm{L}}=0\)), the voltage \(\mathrm{V}_{\mathrm{e}}\) in terms of \(\mathrm{V}_{\mathrm{IN}}\) is given by
\(\mathrm{V}_{\mathrm{e}}=\)
\(\frac{V_{I N} Z_{f} / /\left(Z_{i}+R_{r}\right)}{Z_{r}+Z_{f} / /\left(Z_{i}+R_{r}\right)}=\frac{V_{I N} Z_{f}\left(Z_{i}+R_{r}\right)}{Z_{r}\left(Z_{f}+Z_{i}+R_{r}\right)+Z_{f}\left(Z_{i}+R_{r}\right)}\)

Therefore, \(\mathrm{I}_{\mathrm{OUT}}\) (at \(\mathrm{R}_{\mathrm{L}}=0\)) can be expressed in terms of \(\mathrm{V}_{\mathrm{IN}}\) as follows:
\[
\begin{equation*}
I_{\text {OUT }}=\frac{-A_{o}(\omega) Z_{i} Z_{f} V_{I N}}{Z_{o_{i}}\left[Z_{r}\left(Z_{f}+Z_{i}+R_{r}\right)+Z_{f}\left(Z_{i}+R_{r}\right)\right]} \tag{29}
\end{equation*}
\]

If this expression for IOUT is substituted in Eq. (25) and consideration is given to the intransience of \(\mathrm{V}_{\text {IN }}\) in going from an unloaded to a fully loaded condition, the equation for \(\mathrm{Z}_{\text {OUT }}\) becomes
\[
\begin{equation*}
Z_{\text {OUT }}=\frac{Z_{o_{i}}\left[Z_{r}\left(Z_{f}+Z_{i}+R_{r}\right)+Z_{f}\left(Z_{i}+R_{r}\right)\right]}{-A_{o}(\omega) Z_{i} Z_{f}}\left(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right) \tag{30}
\end{equation*}
\]

Finally, the desired equation for the closed-loop output impedance is obtained if the expression for \(\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}\) given by Eq. (6) is substituted into Eq. (30), as follows: \(\mathrm{Z}_{\text {OUT }}=\)
\[
\begin{array}{r}
\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}\left[\mathrm{Z}_{\mathrm{r}}\left(\mathrm{Z}_{\mathrm{f}}+\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}\right)+\mathrm{Z}_{\mathrm{f}}\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}\right)\right]}^{\left[\mathrm{A}_{\mathrm{o}}(\omega) \mathrm{Z}_{\mathrm{i}} \mathrm{Z}_{\mathrm{f}}-\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}}\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}\right)\right]} . \\
\hline
\end{array}
\]
\[
\begin{align*}
A_{o}(\omega) Z_{i} Z_{f}\left[Z _ { r } \left(Z_{f}+Z_{v_{i}}+\right.\right. & Z_{i}+ \\
\quad & \left.R_{r}\right)+ \tag{31}\\
& \left.\left(Z_{f}+Z_{o i}\right)\left(Z_{i}+R_{r}\right)+A_{o}(\omega) Z_{i} Z_{r}\right]
\end{align*}
\]

If the open-loop gain term \(\mathrm{A}_{\mathrm{o}}(\omega)\) is dominant, Eq. (31) simplifies to
\[
\begin{equation*}
Z_{\mathrm{OUT}} \doteq \frac{\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}}\left[\mathrm{Z}_{\mathrm{r}}\left(\mathrm{Z}_{\mathrm{f}}+\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}\right)+\mathrm{Z}_{\mathrm{f}}\left(\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}\right)\right]}{\mathrm{A}_{\mathrm{o}}(\omega) \mathrm{Z}_{\mathrm{i}} \mathrm{Z}_{\mathrm{r}}} \tag{32}
\end{equation*}
\]

This expression for \(\mathrm{Z}_{\text {OUT }}\) does not simplify to its "classical" equation unless \(\mathrm{Z}_{\mathrm{i}}\) is dominant also; in this case, Eq. (32) becomes
\[
\begin{equation*}
Z_{\text {OUT }} \doteq Z_{o_{i}} \frac{1+\frac{Z_{f}}{Z_{r}}}{A_{o}(\omega)} \tag{33}
\end{equation*}
\]

The assumption that \(\mathrm{Z}_{\mathrm{i}}\) is a dominant term is not always valid, especially if bipolar transistor inputs are employed. Eq. (32), therefore, may be considered to take precedence over Eq. (33).

\section*{Noninverting Feedback Configuration}

Fig. 2 shows the general circuit for an operational amplifier operated with a noninverting feedback configuration. In this section, the equations for the transfer function and the closed-loop input impedance for this type of operational-amplifier circuit are derived. These derivations, as did those for the inverting circuit, assume that the load resistor \(\mathrm{R}_{\mathrm{L}}\) is large enough so that its effect is negligible, i.e., \(\mathrm{R}_{\mathrm{L}} \rightarrow \infty\) and \(\mathrm{I}_{\text {OUT }}=0\). (The effects of a finite load resistance on the noninverting operational amplifier are evaluated in the discussion of the equivalent-circuit model of an operational amplifier.)

A noninverting operational amplifier, unlike the inverting type, requires a differential-input arrangement because it uses the common-mode effect in its feedback

Fig. 2 - Noninverting-feedback operational-amplifier configuration.
scheme. The following basic requirements and definitions that apply to the inverting circuit shown in Fig. 1 are also valid for the general noninverting circuit of Fig.2:
1. The de return paths to ground for the two inputs must be equal and finite for amplifiers that require a significant amount of input bias current.
2. The input and output impedances, \(\mathrm{Z}_{\mathrm{i}}\) and \(\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}}\), are inherent in the basic amplifier unit and are shown on the diagram to emphasize their importance in the relationships to be derived.
3. The open-loop gain is frequency-dependent and is represented by the symbol \(\mathrm{A}_{0}(\omega)\).
4. The plus and minus labels on the input terminals designate the noninverting and inverting terminals, respectively.

In the noninverting circuit, however, the source impedance is included in the passive element \(R_{r}\) rather than the frequency-dependent parameter \(Z_{r}\), as in the inverting circuit.

Noninverting-Configuration Transfer Function As with the inverting circuit, the transfer function developed for the noninverting operational amplifier shows the relationship between the input and output voltages. It is relatively simple to convert this relationship to another type of transfer function.

When the load resistor \(\mathrm{R}_{\mathrm{L}}\) approaches infinity, the
output voltage VOUT for the general circuit shown in Fig. 2 can be expressed as follows:
\[
\begin{align*}
V_{\text {OUT }}= & \frac{V_{o_{1}}\left[Z_{\mathrm{f}}+Z_{\mathrm{r}} / /\left(Z_{\mathrm{i}}+R_{\mathrm{r}}\right)\right]}{Z_{\mathrm{o}_{\mathrm{i}}}+Z_{\mathrm{f}}+Z_{\mathrm{r}} / /\left(Z_{i}+R_{\mathrm{r}}\right)} \\
& +\frac{V_{\mathrm{IN}} Z_{\mathrm{o}_{\mathrm{i}}}\left[Z_{\mathrm{r}} / /\left(Z_{\mathrm{f}}+Z_{\mathrm{o}_{\mathrm{i}}}\right)\right]}{\left(Z_{\mathrm{f}}+Z_{\mathrm{o}_{\mathrm{i}}}\right)\left[Z_{\mathrm{i}}+R_{\mathrm{r}}+Z_{\mathrm{r}} / /\left(Z_{\mathrm{f}}+Z_{\mathrm{o}_{\mathrm{i}}}\right)\right.} \tag{34}
\end{align*}
\]

Eq. (34) may be rewritten in the following form:
\(\mathrm{V}_{\text {out }}=\)
\[
\begin{equation*}
\frac{V_{o_{1}}\left[Z_{f}\left(Z_{r}+Z_{i}+R_{r}\right)+Z_{r}\left(Z_{i}+R_{r}\right)\right]+Z_{r} Z_{o_{i}} V_{I N}}{\left(Z_{i}+R_{r}\right)\left(Z_{r}+Z_{f}+Z_{o_{i}}\right)+Z_{r}\left(Z_{f}+Z_{o_{i}}\right)} \tag{35}
\end{equation*}
\]

The voltage \(\mathrm{V}_{\mathrm{o}_{1}}\) is defined by the differential-gain expression, as follows:
\[
\begin{equation*}
\mathbf{V}_{\mathrm{o}_{\mathbf{1}}}=\mathrm{A}_{\mathrm{o}}(\omega)\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{e}}\right) \tag{36}
\end{equation*}
\]
where \(\mathrm{V}_{\mathrm{i}}\) is the source voltage \(\mathrm{V}_{\text {IN }}\) less the voltage drop across \(R_{r}\), as given by
\[
\begin{equation*}
V_{i}=V_{I N}-I_{I N} R_{r} \tag{37}
\end{equation*}
\]
where
\[
\begin{equation*}
I_{I N}=\frac{V_{i}-V_{e}}{Z_{i}} \tag{38}
\end{equation*}
\]

The voltage \(V_{i}\), given by Eq. (37), can now be expressed in terms of the voltages \(\mathrm{V}_{\text {IN }}\) and \(\mathrm{V}_{\mathrm{e}}\), as follows:
\[
\begin{equation*}
V_{i}=\frac{Z_{i} V_{I N}+R_{r} V_{e}}{Z_{i}+R_{r}} \tag{39}
\end{equation*}
\]

It can be determined from Fig. 2 that, when \(\mathrm{R}_{\mathrm{L}}\) approaches infinity, the voltage \(\mathrm{V}_{\mathrm{e}}\) is given by the following equation:
\[
\begin{align*}
& V_{e}= \\
& V_{o_{i}} Z_{r} / /\left(Z_{i}+R_{r}\right) \tag{40}\\
& Z_{o_{i}}+Z_{f}+Z_{r} / /\left(Z_{i}+R_{r}\right)
\end{align*}+\frac{V_{I N} Z_{r} / /\left(Z_{f}+Z_{o_{i}}\right)}{Z_{i}+R_{r}+Z_{r} / /\left(Z_{f}+Z_{o_{i}}\right)}
\]

If the relationships for \(\mathrm{V}_{\mathrm{o}_{1}}\) and \(\mathrm{V}_{\mathrm{i}}\) given by Eqs. (36) and (39), respectively, are used, \(\mathrm{V}_{\mathrm{e}}\) can be expressed solely in terms of \(\mathrm{V}_{\text {IN }}\), as shown by the following equation:
\[
\begin{align*}
& \mathrm{V}_{\mathrm{e}}= \\
& \quad \frac{\left(Z_{r} Z_{f}+Z_{r} Z_{o_{i}}+A_{o}(\omega) Z_{i} Z_{r}\right) V_{i N}}{\left(Z_{i}+R_{r}\right)\left(Z_{r}+Z_{f}+Z_{o_{i}}\right)+Z_{r}\left(Z_{f}+Z_{o_{i}}\right)+A_{o}(\omega) Z_{i} Z_{r}} \tag{41}
\end{align*}
\]

Eqs. (36), (39), and (41) are now used to express \(\mathrm{V}_{\mathrm{o}_{1}}\) in terms of \(\mathrm{V}_{\mathrm{IN}}\), as follows:
\(\mathrm{V}_{\mathrm{o}_{1}}=\)
\(\frac{A_{o}(\omega) Z_{i}\left(Z_{r}+Z_{f}+Z_{o_{i}}\right) V_{i N}}{\left(Z_{i}+R_{r}\right)\left(Z_{r}+Z_{f}+Z_{o i}\right)+Z_{r}\left(Z_{f}+Z_{o_{i}}\right)+A_{o}(\omega) Z_{i} Z_{r}}\)

If this expression for \(\mathrm{V}_{\mathrm{o}_{1}}\) is substituted into Eq. (35), the new equation that results can be simplified and divided through by \(\mathrm{V}_{\text {IN }}\) to obtain the desired transfer function, as follows:
\(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}=\)
\[
\begin{equation*}
\frac{Z_{r} Z_{o_{i}}+A_{o}(\omega) Z_{i}\left(Z_{r}+Z_{f}\right)}{\left(Z_{i}+R_{r}\right)\left(Z_{r}+Z_{f}+Z_{o i}\right)+Z_{r}\left(Z_{f}+Z_{o_{i}}\right)+A_{o}(\omega) Z_{i} Z_{r}} \tag{43}
\end{equation*}
\]

The transfer function that is usually associated with the noninverting feedback configuration of an operational amplifier can be derived from Eq. (43) if the impedance \(\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}}\) is assumed to be zero and the impedance \(\mathrm{Z}_{\mathrm{i}}\) is assumed to be very high. When these assumptions are made, Eq. (43) becomes
\[
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}} \doteq \frac{\left(Z_{r}+Z_{f}\right) A_{o}(\omega)}{\left(Z_{r}+Z_{f}\right)+Z_{r} A_{o}(\omega)} \tag{44}
\end{equation*}
\]

Eq. (44) may be rewritten as follows:
\[
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}=\frac{\mathrm{A}_{\mathrm{o}}(\omega)}{1+\frac{A_{0}(\omega)}{1+Z_{\mathrm{f}} / Z_{\mathrm{r}}}} \tag{45}
\end{equation*}
\]

If the term \(\mathrm{A}_{\mathrm{o}}(\omega)\) is dominant in Eq. (45), the following "classical" expression for the noninverting transfer response results:
\[
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {IN }}} \xlongequal{\mathrm{A}_{0}(\omega) \rightarrow \infty} 1+\frac{\mathrm{Z}_{i}}{Z_{r}} \tag{46}
\end{equation*}
\]

The term \(1+Z_{f} / Z_{r}\) represents the closed-loop gain for the ideal noninverting configuration. This term, which is referred to as the ideal feedback characteristic, is basic to operational-amplifier frequency-stabilization theory.

As might be expected, the loop gain of an operational amplifier is defined in the same way [by Eq. (9)] regardless of the type of feedback configuration. Under the conditions for which Eq. (45) is a valid expression for the transfer response, the loop gain for the noninverting configuration is given by
\[
\begin{equation*}
\text { L. G. }=1+\frac{\mathrm{A}_{\mathrm{o}}(\omega)}{1+\frac{\mathrm{Z}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{r}}}} \tag{47}
\end{equation*}
\]

If the second term of Eq. (47) is very large, this equation reduces to
\[
\begin{equation*}
\text { L. G. } \doteq \frac{\mathrm{A}_{0}(\omega)}{1+\frac{\mathrm{Z}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{r}}}} \tag{48}
\end{equation*}
\]

Table II compares the values calculated from the precise and the approximate expressions [Eqs. (43) and (46), respectively] for the closed-loop gain of the noninverting operational-amplifier configuration. The approximate formula is accurate to within 1 dB provided

\section*{Table II - Comparison of Precise and Approximate Formulas for Closed-Loop Gain \\ (Noninverting Configuration)}
conditions: \(\mathrm{A}_{0}(\omega)=1000 / \underline{0^{\circ}}, \mathrm{Z}_{1}=15,000 / \underline{0^{\circ}}, \mathrm{Z}_{\mathrm{o}_{1}}=200 / \underline{0^{\circ}}, \mathrm{Z}_{\mathrm{r}}=1000 / 0^{\circ}\)
\begin{tabular}{|c|c|c|c|c|}
\hline & & & \[
\begin{aligned}
& \text { Error } \\
& \text { (dB) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { L. G. from } \\
\text { Eq (} 48 \text { (} \\
(\mathbb{B}) \\
\hline
\end{gathered}
\] \\
\hline 199,000 & 46.0 & 44.3 & 1.70 & 14.0 \\
\hline 99,000 & 40.0 & 39.1 & 0.90 & 20.0 \\
\hline 29,000 & 29.6 & 29.3 & 0.30 & 30.4 \\
\hline 9,000 & 20.0 & 19.9 & 0.10 & 40.0 \\
\hline 1,000 & 6.03 & 6.0 & 0.03 & 54.0 \\
\hline
\end{tabular}
the loop gain is 20 dB or more. A comparison of Tables I and II shows that the error introduced by the use of the classical gain formula for the noninverting configuration [Eq. (46)] is identical to that introduced by the use of the classical gain formula for the inverting configuration [Eq. (8)].

Noninverting-Configuration Input Impedance, \(\mathbf{Z}_{\text {IN }}\) The following equation gives the basic definition of the input impedance \(\mathrm{Z}_{\mathrm{IN}}\) :
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{IN}}=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{I}_{\mathrm{IN}}} \tag{49}
\end{equation*}
\]

It can be readily determined from Fig. 2 that the input current \(I_{\text {IN }}\) is given by
\[
\begin{equation*}
\mathrm{I}_{\mathrm{IN}}=\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{e}}}{\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}} \tag{50}
\end{equation*}
\]

When this relationship is applied in Eq. (49), the expression for the noninverting input impedance becomes
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{IN}}=\frac{\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}}{1-\frac{\mathrm{V}_{\mathrm{e}}}{\mathrm{~V}_{\mathrm{IN}}}} \tag{51}
\end{equation*}
\]

If the expression for the ratio of \(\mathrm{V}_{\mathrm{e}} / \mathrm{V}_{\mathrm{IN}}\), given previously by Eq. (41), is substituted into Eq. (51), the result can be simplified to obtain the following precise expression for the input impedance (for \(\mathrm{R}_{\mathrm{L}} \rightarrow \infty\)):
\[
\begin{equation*}
Z_{I N}=Z_{i}+R_{r}+Z_{r} \frac{Z_{f}+Z_{o_{i}}+A_{o}(\omega) Z_{i}}{Z_{r}+Z_{f}+Z_{o_{i}}} \tag{52}
\end{equation*}
\]

For the case where \(\mathrm{Z}_{\mathrm{i}}\) is dominant and \(\mathrm{Z}_{\mathrm{oi}}\) is small, Eq. (52) reduces to
\[
\begin{equation*}
Z_{I N} \doteq Z_{i}+\frac{A_{o}(\omega) Z_{i}}{1+\frac{Z_{f}}{Z_{r}}} \tag{53}
\end{equation*}
\]

The following expression for the input impedance results if \(\mathrm{A}_{\mathrm{o}}(\omega)\) is also considered dominant:
\[
\begin{equation*}
Z_{I N} \doteq \frac{\mathbf{A}_{0}(\omega) Z_{i}}{1+\frac{Z_{f}}{Z_{r}}} \tag{54}
\end{equation*}
\]

Eq. (54) states that the noninverting input impedance is equal to the intrinsic input impedance \(Z_{i}\) multiplied by the loop gain.

Noninverting-Configuration Output Impedance, \(Z_{\text {OUT }}{ }^{-}\) As in the inverting configuration, the closed-loop output impedance for the noninverting configuration is defined as the ratio of the open-circuit output voltage, \(\mathrm{V}_{\text {OUT }}\), to the short-circuit output current, IOUT, as follows:
\[
\begin{equation*}
Z_{\text {OUT }}=\frac{\operatorname{V}_{\text {OUT }}\left(\mathrm{R}_{\mathrm{L}} \rightarrow \infty\right)}{\mathrm{I}_{\text {OUT }}\left(\mathrm{R}_{\mathrm{L}} \rightarrow 0\right)} \tag{55}
\end{equation*}
\]
where
\[
\begin{equation*}
I_{\text {OUT }}\left(\mathrm{R}_{\mathrm{L}} \rightarrow 0\right)=\frac{\mathrm{A}_{\mathrm{o}}(\omega)\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{e}}\right)}{\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}}} \tag{56}
\end{equation*}
\]

For the general noninverting operational-amplifier configuration, the voltages \(\mathrm{V}_{\mathrm{i}}\) and \(\mathrm{V}_{\mathrm{e}}\) are given by the following equations for the conditions indicated:
\[
\begin{equation*}
V_{i}\left(R_{L} \rightarrow 0\right)=\frac{V_{I N}\left(Z_{i}+Z_{\mathrm{r}} / / Z_{\mathrm{f}}\right)}{R_{\mathrm{r}}+Z_{i}+Z_{\mathrm{r}} / / Z_{\mathrm{f}}} \tag{57}
\end{equation*}
\]
and
\[
\begin{equation*}
\mathrm{V}_{\mathrm{e}}\left(\mathrm{R}_{\mathrm{L}} \rightarrow 0\right)=\frac{\mathrm{V}_{\mathrm{IN}} \mathrm{Z}_{\mathrm{r}} / / \mathrm{Z}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{r}}+\mathrm{Z}_{\mathrm{i}}+\mathrm{Z}_{\mathrm{r}} / / \mathrm{Z}_{\mathrm{f}}} \tag{58}
\end{equation*}
\]

On the basis of the relationships expressed by Eqs. (57) and (58), Eq. (56) may be rewritten as follows:-
\[
\begin{equation*}
I_{\text {OUT }}\left(R_{L} \rightarrow 0\right)=\frac{A_{o}(\omega) V_{\text {IN }} Z_{i}\left(Z_{r}+Z_{f}\right)}{Z_{o_{i}}\left[\left(Z_{r}+Z_{f}\right)\left(R_{r}+Z_{i}\right)+Z_{r} Z_{i}\right]} \tag{59}
\end{equation*}
\]

The output impedance \(\mathrm{Z}_{\text {OUT }}\) then becomes
\(Z_{\text {OUT }}=Z_{o_{i}}\left[\frac{Z_{r} Z_{f}+\left(Z_{r}+Z_{i}\right)\left(R_{r}+Z_{i}\right)}{A_{o}(\omega) Z_{i}\left(Z_{r}+Z_{i}\right)}\right]\left(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)\)

Finally, the following precise equation for the output impedance \(\mathrm{Z}_{\text {OUT }}\) is obtained when the ratio for \(\mathrm{V}_{\text {OUT }}\) / \(\mathrm{V}_{\text {IN }}\) is replaced by its impedance equivalent, as given by Eq. (43):
\[
\begin{align*}
& Z_{\text {OUT }}=\frac{Z_{o_{i}}\left[\left(Z_{r}+Z_{f}\right)\left(R_{r}+Z_{i}\right)+Z_{r} Z_{f}\right]}{A_{o}(\omega) Z_{i}\left(Z_{r}+Z_{f}\right)} \\
& \quad \times \frac{Z_{r} Z_{o_{i}}+A_{o}(\omega) Z_{i}\left(Z_{r}+Z_{f}\right)}{\left(Z_{i}+R_{r}\right)\left(Z_{r}+Z_{f}+Z_{o_{i}}\right)+Z_{r}\left(Z_{f}+Z_{o_{i}}\right)+A_{o}(\omega) Z_{i} Z_{r i}} \tag{61}
\end{align*}
\]

If \(\mathrm{A}_{\mathrm{o}}(\omega)\) is dominant, then Eq (61) becomes
\[
\begin{equation*}
Z_{\mathrm{OUT}} \doteq Z_{\mathrm{o}_{\mathrm{i}}}\left[\frac{\mathrm{Z}_{\mathrm{r}} \mathrm{Z}_{\mathrm{f}}+\left(\mathrm{Z}_{\mathrm{r}}+Z_{\mathrm{f}}\right)\left(\mathrm{R}_{\mathrm{r}}+\mathrm{Z}_{\mathrm{i}}\right)}{\mathbf{A}_{\mathrm{o}}(\omega) \mathrm{Z}_{\mathrm{i}} Z_{\mathrm{r}}}\right] \tag{62}
\end{equation*}
\]

The expression for the closed-loop output impedance does not revert to its classical form unless both the intrinsic input impedance \(\mathrm{Z}_{\mathrm{i}}\) and the open-loop gain \(A_{o}(\omega)\) are very large. Under such conditions, the equation for the output impedance reduces to
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{OUT}} \rightleftharpoons \mathrm{Z}_{\mathrm{o}_{\mathrm{i}}} \frac{1+\frac{\mathrm{Z}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{r}}}}{\mathrm{~A}_{\mathrm{o}}(\omega)} \tag{63}
\end{equation*}
\]

This classical expression indicates that the output impedance of the noninverting configuration is equal to the intrinsic output impedance \(\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}}\) divided by the loop gain. It should be noted that the classical expressions for the closed-loop output impedances for the inverting and noninverting configurations [Eq. (33) and (63), respectively] are identical.

\section*{Equivalent-Circuit Model of a Closed-Loop Operational Amplifier}

Fig. 3 shows the equivalent circuit of a closed-loop operational amplifier. This equivalent circuit is valid for either the inverting or the noninverting configuration. In the inverting configuration, \(\mathrm{Z}_{\mathrm{r}}\) is used to represent

Fig. 3 - Equivalent-circuit model of a closed-loop operational amplifier.
the impedance in series with the closed-loop input impedance \(\mathrm{Z}_{\mathrm{IN}}\). In the noninverting configuration, term
\(Z_{r}\) is replaced by \(R_{r}\) to show that the components thus represented are independent of frequency. The closedloop input and output impedances \(\left(\mathrm{Z}_{\mathrm{IN}}\right.\) and \(\mathrm{Z}_{\mathrm{OUT}}\), respectively) and the transfer function \(\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}\) were defined previously.

Effect of a Finite Load Impedance on OperationalAmplifier Characteristics - One of the important features of the equivalent-circuit model is that it accurately accounts for the effects of a finite load impedance, \(\mathrm{R}_{\mathrm{L}}\). For example, if a 2000 -ohm load impedance is used on the \(46-\mathrm{dB}\) (approximate) inverting amplifier for which data are given in Table I, the equation for the transfer response must be modified as follows:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}}=\frac{\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right) \mathrm{V}_{\mathrm{IN}} \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{OUT}}} \tag{64}
\end{equation*}
\]

If Eq. (6) is used to determine the value of \(\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}\) and Eq. (30) is used to determine the value of \(\mathrm{Z}_{\text {OUT }}\), the transfer-function ratio for an \(\mathrm{R}_{\mathrm{L}}\) of 2000 ohms can be calculated from Eq. (64) as follows:
\[
\begin{equation*}
\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}=164\left(\frac{2000 \text { ohms }}{37.4 \text { ohms }+2000 \text { ohms }}\right)=162 \tag{65}
\end{equation*}
\]

Thus, a ratio of 44.15 dB is obtained, as compared to 44.3 dB for an open-circuit load. Similarly, if a \(2000-\) ohm load is used for the \(6-\mathrm{dB}\) amplifier, the gain becomes 5.98 dB , as compared to 6 dB indicated in Table I for an open-circuit load. The error in neglecting a 2000 -ohm load, therefore, is 0.15 dB for the \(46-\mathrm{dB}\) amplifier and only 0.02 dB for the \(6-\mathrm{dB}\) amplifier (for the conditions given in Table I).

Effect of the Common Mode Gain (CMG) on Opera-tional-Amplifier Characteristics - In the developments of the basic equations for the inverting and noninverting feedback configurations of the operational amplifier, it was tacitly assumed that the common-mode gain was essentially zero (infinite attenuation). The commonmode gain is defined as the ratio of the output voltage, \(\mathrm{V}_{\text {OUT }}\), to the input voltages, \(\mathrm{V}_{\mathrm{i}}\) and \(\mathrm{V}_{\mathrm{e}}\), when \(\mathrm{V}_{\mathrm{i}}\) and \(\mathrm{V}_{\mathrm{e}}\) are identical in amplitude and phase. The validity of this assumption is considered separately in this section because the basic feedback equations become burdensome when common-mode effects are included. As a result, the salient features of these equations become obscured.

An examination of Figs. 1 and 2 shows that, in either the inverting or noninverting configuration, the differential gain acts on the difference between the voltages \(\mathrm{V}_{\mathrm{i}}\) and \(\mathrm{V}_{\mathrm{e}}\). On the other hand, the commonmode gain acts on those portions of \(\mathrm{V}_{\mathrm{i}}\) and \(\mathrm{V}_{\mathrm{e}}\) that are in phase and identical in magnitude. That is, the com-
mon-mode gain acts on the smaller of the two in-phase signals (\(\mathrm{V}_{\mathrm{i}}\) or \(\mathrm{V}_{\mathrm{e}}\)). In the inverting configuration \(\mathrm{V}_{\mathrm{i}}\) is less than \(\mathrm{V}_{\mathrm{e}}\), but in the noninverting configuration \(\mathrm{V}_{\mathrm{i}}\) is greater than \(\mathrm{V}_{\mathrm{e}}\). These conditions are reflected by the output-voltage equations when the effects of the common-mode gain (CMG) are considered, as follows:
1. For the inverting configuration,
\[
\begin{equation*}
\mathrm{V}_{\mathrm{o}_{1}}=\mathrm{A}_{\mathrm{o}}(\omega)\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{e}}\right)-(\mathrm{CMG})\left(\mathrm{V}_{\mathrm{i}}\right) \tag{66}
\end{equation*}
\]
2. For the noninverting configuration,
\[
\begin{equation*}
V_{o_{1}}=A_{o}(\omega)\left(V_{i}-V_{e}\right)-(C M G)\left(V_{e}\right) \tag{67}
\end{equation*}
\]

If these two equations are developed further, the following gain expressions are obtained for \(\mathrm{Z}_{\mathrm{o}_{\mathrm{i}}}=0\) (i.e., \(\mathrm{V}_{\mathrm{oi}}=\mathrm{V}_{\mathrm{OUT}}\)):
1. For the inverting configuration,
\[
\begin{align*}
& \frac{V_{\text {OUT }}}{V_{\text {IN }}}= \\
& \frac{-A_{o}(\omega) Z_{i} Z_{f}-(C M G) R_{r} Z_{f}}{Z_{r}\left(Z_{f}+Z_{i}+R_{r}\right)+Z_{f}\left(Z_{i}+R_{r}\right)} \\
& \quad+Z_{i} Z_{r} A_{o}(\omega)+R_{r} Z_{r}(C M G) \tag{68}
\end{align*}
\]
2. For the noninverting configuration,
\(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}=\)
\[
\frac{A_{o}(\omega) Z_{i}\left(Z_{r}+Z_{f}\right)-(C M G) Z_{r} Z_{f}}{\left(Z_{r}+Z_{f}\right)\left(R_{r}+Z_{i}\right)+Z_{r} Z_{f}}+
\]

In each case, the criteria for the common-mode gain, CMG, to be negligible compared to the open-loop gain, \(\mathrm{A}_{\mathrm{o}}(\omega)\), are as follows:
1. For the inverting configuration,
\[
\begin{equation*}
\mathrm{CMG} \ll \frac{\mathbf{A}_{0}(\omega) Z_{i}}{R_{r}} \tag{70}
\end{equation*}
\]
2. For the noninverting configuration,
\[
\begin{equation*}
\mathrm{CMG} \ll \frac{\mathrm{~A}_{0}(\omega) Z_{i}}{Z_{i}+R_{r}} \tag{71}
\end{equation*}
\]

Eq. (68) or inequality (70) shows that the gain of an inverting configuration is not affected by the commonmode gain when the input impedance \(\mathrm{V}_{\mathrm{i}}\) is assumed to be infinite. However, when this same assumption is made for a noninverting configuration, the gain is dependent upon the common-mode gain provided the openloop gain is finite.

Inequalities (70) and (71) may be given in terms of the common-mode rejection, CMR, which is the open-
loop gain, \(\mathrm{A}_{\mathrm{o}}(\omega)\), divided by the common-mode gain, CMG. The following inequalities are then obtained:
1. For the inverting configuration,
\[
\begin{equation*}
\mathrm{CMR} \gg \frac{\mathrm{R}_{\mathrm{r}}}{\mathrm{Z}_{\mathrm{i}}} \tag{72}
\end{equation*}
\]
2. For the noninverting configuration,
\[
\begin{equation*}
\mathrm{CMR} \gg \frac{\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{r}}}{Z_{\mathrm{i}}} \tag{73}
\end{equation*}
\]

Neither of these inequalities places a stringent restriction on common-mode rejection.

\section*{FEEDBACK PHASE SHIFTS IN OPERATIONAL \\ AMPLIFIERS}

In an operational amplifier, as in any other feedback amplifier, the phase of the feedback must be controlled to assure that the design is stable with frequency and that the desired gain-frequency response is obtained. Fig. 4 shows the gain and phase characteristics as functions of frequency for a typical \(60-\mathrm{dB}\) operational amplifier in which no phase-compensation techniques are employed. Over the frequency range shown, the change in the phase of the feedback is substantially greater than 180 degrees. This phase response indicates that a low-frequency negative feedback can become positive and cause the amplifier to be unstable at high frequencies unless phase-compensation methods are employed to stabilize and control the response of the amplifier.

\section*{Effect of Excessive Phase Shift on Frequency Stability}

The transfer equation for the inverting configuration, Eq. (7), can be rearranged so that it reflects the same classical feedback form as that for the noninverting configuration, given by Eq. (45). These equations, which are based on the assumptions that \(\mathrm{Z}_{\mathrm{i}}\) approaches infinity and \(\mathrm{Z}_{\mathrm{oi}}\) is zero, are repeated below for convenience:
1. For the inverting configuration,
\[
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\left(\frac{Z_{f}}{Z_{f}+R_{r}}\right)\left[\frac{-A_{o}(\omega)}{1+\frac{A_{0}(\omega)}{1+\frac{Z_{f}}{Z_{r}}}}\right]
\]
2. For the noninverting configuration,
\[
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{A_{o}(\omega)}{1+\frac{A_{0}(\omega)}{1+\frac{Z_{f}}{Z_{r}}}}
\]

Fig. 4 - Gain and phase response of an open-loop operational amplifier operated without phase compensation.

If the phase angle of the feedback term, \(\mathrm{A}_{\mathrm{o}}(\omega)\) / (\(1+Z_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\)), reaches 180 degrees (not asymptotically) while the magnitude of the term is still unity or greater, oscillations will occur. [If the term is greater than unity, the oscillations will build until limiting occurs. This limiting decreases \(\mathrm{A}_{0}(\omega)\), and thus the entire feedback term, until unity magnitude at a phase angle of 180 degrees is achieved.] These unstable conditions can be predicted readily. Fig. 5 shows a superposition of the gain-frequency curve shown in Fig. 4 on several

Fig. 5 - Open-loop response and stability characteristics of an operational amplifier.
sample plots of the ideal feedback characteristic, as given by \(1+Z_{f} / Z_{r}\) when \(Z_{f}\) and \(Z_{r}\) are purely resistive. Because the crucial frequency for a purely resistive feedback network is that at which \(\mathrm{A}_{0}(\omega)\) has a phase angle of 180 degrees, the magnitude of \(\mathrm{A}_{\mathrm{o}}(\omega) /\left(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\right)\) at this frequency (\(f_{180}\)) determines whether the configuration is stable. If \(A_{o}\left(f_{180}\right) /\left(1+Z_{f} / Z_{r}\right)\) is equal to or greater than unity, the configuration is unstable.

On the other hand, if this term is less than unity, then the configuration is stable. This stability-determination technique is applied to the various values of \(1+\) \(\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\) shown in Fig.5; in each case, the gain of the amplifier at the frequency for which the phase angle is 180 degrees is assumed to be 10 [i.e., \(\mathrm{A}_{\mathrm{o}}\left(\mathrm{f}_{180}\right)=10\)].

When \(1+Z_{f} / Z_{r}=100 / 0^{\circ}\), the stability ratio is calculated as follows:
\[
\frac{\mathrm{A}_{o}\left(\mathrm{f}_{180}\right)}{1+\frac{Z_{\mathrm{i}}}{\mathrm{Z}_{\mathrm{r}}}}=\frac{10 / 180^{\circ}}{100 / 0^{\circ}}=0.10 / 180^{\circ}
\]

Because the value of 0.10 obtained for the stability ratio is less than unity, the configuration is stable.

When \(1+Z_{f} / Z_{r}=10.0 / 0^{0}\), the stability ratio becomes
\[
\frac{\mathrm{A}_{0}\left(\mathrm{f}_{188}\right)}{1+\frac{\mathrm{Z}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{r}}}}=\frac{10 / 180^{\circ}}{10 / 0^{\circ}}=1.0 / 180^{\circ}
\]

For this case, the stability ratio is unity, and the configuration therefore, is unstable. As a check, an examination of the transfer expressions for both the inverting and the noninverting configuration [Eqs. (7) and (45)] reveals that for the condition specified, each contains the following term:
\[
\frac{1}{1+1 / 180^{\circ}}
\]
which is not finite and, therefore, indicates an oscillating condition.

When \(1+Z_{f} / Z_{r}=4.0 / 0^{\circ}\),
\[
\frac{\mathrm{A}_{0}\left(\mathrm{f}_{180}\right)}{1+\frac{Z_{i}}{\mathrm{Z}_{\mathrm{r}}}}=\frac{10 / 180^{\circ}}{4 / \underline{0^{\circ}}}=2.50 / 180^{\circ}
\]

The value obtained is greater than unity, and the circuit, therefore, is unstable.

When \(Z_{f}\) and \(Z_{r}\) are not restricted to purely resistive values, a more general situation exists because the phase of \(A_{o}(\omega) /\left(1+Z_{f} / Z_{r}\right)\) is no longer dependent solely upon \(A_{o}(\omega)\). Two examples which essentially cover the field are given below.

Example No. 1 - A characteristic of differentiating or peaking circuits is that the feedback term \(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\) is in the form \(\mathrm{K}\left(1+\mathrm{jf} / \mathrm{f}_{1}\right)\), where K and \(\mathrm{f}_{1}\) are constants. Fig. 6 shows a curve of this term as a function of fre-

\(\mathrm{A}_{\mathrm{o}}(\omega)=\)
\[
\frac{1000}{\left(1+j \frac{\mathrm{f}}{0.2 \mathrm{MHz}}\right)\left(1+\mathrm{j} \frac{\mathrm{f}}{2 \mathrm{MHz}}\right)\left(1+\mathrm{j} \frac{\mathrm{f}}{20 \mathrm{MHz}}\right)}
\]
\[
1+\frac{Z_{f}}{Z_{\mathrm{r}}}=10\left(1+\mathrm{j} \frac{\mathrm{f}}{0.1 \mathrm{MHz}}\right)
\]

Fig. 6 - Basic peaking response characteristics of an operational amplifier.
quency, for \(K=10\) and \(f_{1}=0.1 \mathrm{MHz}\), superimposed upon an operational-amplifier open-loop transfer curve. The equation for the open-loop characteristic can be derived from Fig.5, as follows:
\(\mathrm{A}_{\mathrm{o}}(\omega)=\)
1000
\[
\begin{equation*}
\overline{\left(1+j \frac{f}{0.2 \mathrm{MHz}}\right)\left(1+j \frac{\mathrm{f}}{2 \mathrm{MHz}}\right)\left(1+\mathrm{j} \frac{\mathrm{f}}{20 \mathrm{MHz}}\right)} \tag{74}
\end{equation*}
\]

The frequency at which the stability ratio \(\mathrm{A}_{0}(\omega) / 1+\) \(\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\) has a phase angle of 180 degrees and the magnitude of the ratio for this frequency can then be calculated. The computation reveals that the phase angle is 180 degrees at a frequency (\(f_{180}\)) of 0.746 MHz , and the magnitude of the ratio is 3.22 at that frequency. The
stability ratio is greater than one; therefore, the configuration is unstable. The point of instability (\(\mathrm{f}_{180}\)) is marked in Fig.6.

The stability of an operational amplifier may be determined more easily from an estimate of the phase angle of the ratio \(\mathrm{A}_{\mathrm{o}}(\omega) /\left(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\right)\) at the frequency of intersection (where the magnitude of the ratio is unity). If the estimate shows that the phase angle is less than 180 degrees, the configuration is stable. On the other hand, if the estimate indicates a phase angle in excess of 180 degrees, the circuit is unstable. When the estimate shows that the phase angle is near 180 degrees, an accurate calculation is required to determine whether the operational amplifier is stable. This border-line type of configuration, however, is generally undesirable from the standpoint of frequency response, as discussed later.

In the application of the estimation technique to the problem presented in Fig.6, the following conditions should be noted: The feedback characteristic \(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\) increases at the rate of 6 dB per octave (20 dB per decade) for a full decade before it intersects the openloop response, \(A_{o}(\omega)\). The intersection occurs near the second corner of the open-loop response, which decreases at the rate of 6 dB per octave for almost a full decade. The classical phase relationships associated with these observations are used to obtain the following phase estimates:
\[
\begin{aligned}
& \text { Phase of }\left(1+Z_{\mathrm{f}} / Z_{\mathrm{r}}\right)=+90^{\circ} \\
& -135^{\circ}<\text { Phase of } \mathrm{A}_{0}(\omega)<-90^{\circ}
\end{aligned}
\]

Therefore, the following phase estimate is obtained at the frequency of the intersection:
\[
-225^{\circ}<\text { Phase of } A_{o}(\omega) /\left(1+Z_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\right)<-180^{\circ}
\]

Thus, the configuration is unstable.
Example No. 2 - An inherent characteristic of integrating or band-limiting configurations is that the feedback term \(1+Z_{f} / Z_{r}\) has the following form:
\[
\frac{\mathrm{K}}{1+\mathrm{jf} / \mathrm{f}_{1}}
\]

An example of this type of feedback characteristic is shown in Fig. 7 for \(\mathrm{K}=10\) and \(\mathrm{f}_{1}=4 \mathrm{MHz}\). The application of the phase-estimation technique to this problem results in the following estimates:
\[
\begin{aligned}
& -45^{\circ}>\text { Phase of } 1+Z_{f} / Z_{\mathrm{r}}>-90^{\circ} \\
& -135^{\circ}>\text { Phase of } A_{o}(\omega)>-225^{\circ}
\end{aligned}
\]

At the frequency of intersection, therefore, the phase estimate is given by
\[
-45^{\circ}>\text { Phase of } A_{o}(\omega) /\left(1+Z_{f} / Z_{r}\right)>-180^{\circ}
\]

Thus, the configuration is stable.
If the three basic types of feedback characteristics shown in Figs.5, 6, and 7 are compared, it becomes evident that the differentiating or frequency-peaking

Fig.7-Basic integrating response characteristics of an operational amplifier.
configuration is the most unstable and that the integrating or low-pass configuration is the most stable. In fact, the techniques used to devise this latter configuration may be considered a form of phase compensation for certain situations, as discussed later.

\section*{Effects of Excessive Phase-Shift on Frequency Response}

The criterion evolved for frequency stability neither precludes uncontrolled frequency peaking nor provides for a \(3-\mathrm{dB}\) closed-loop bandwidth prediction. The conditions that are required to develop a stable, controlledresponse feedback amplifier are evolved in this section.

Criteria for a Peaked Response - Frequently peaking results when the magnitude of the true closed-loop gain, as given by Eq. (7) for the inverting configuration and by Eq. (45) for the noninverting configuration, is greater than the magnitude of the ideal closed-loop gain (\(\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\) for an inverting circuit and \(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\) for a noninverting circuit). The criteria for frequency peaking can be expressed for both configurations by the following expressions:
\[
\begin{equation*}
\left|\frac{A_{0}(\omega)}{1+\frac{A_{0}(\omega)}{1+\frac{Z_{f}}{Z_{r}}}}\right|>\left|1+\frac{Z_{f}}{Z_{r}}\right| \tag{75}
\end{equation*}
\]

Inequality (75) may be used to develop a set of criteria that predict frequency peaking (or preclude the occurrence of frequency peaking).

The following substitution is first made in inequality (75):
\[
\begin{equation*}
\frac{\mathrm{A}_{\mathrm{o}}(\omega)}{1+\frac{Z_{f}}{Z_{r}}} \equiv \mathrm{~B} / \theta \tag{76}
\end{equation*}
\]

If both sides of inequality (75) are then divided by the left-hand term, the following result is obtained:
\[
\begin{equation*}
1>\left|1+\frac{1}{\mathrm{~B}} /-\theta\right| \tag{77}
\end{equation*}
\]

Inequality (77) may be rewritten in either of the following forms:
\[
\begin{equation*}
1>\left[\left(1+\frac{1}{\mathrm{~B}} \cos \theta\right)^{2}+\left(-\frac{1}{\mathrm{~B}} \sin \theta\right)^{2}\right]^{\frac{1}{2}} \tag{78}
\end{equation*}
\]
or
\[
\begin{equation*}
1>\left[1+\frac{2}{\mathrm{~B}} \cos \theta+\left(\frac{1}{\mathrm{~B}}\right)^{2}\right]^{\frac{1}{2}} \tag{79}
\end{equation*}
\]

The real and imaginary parts of inequality (78) must also be less than unity, so that
\[
\begin{equation*}
1>\left|1+\frac{1}{\mathrm{~B}} \cos \theta\right| \tag{80}
\end{equation*}
\]
and
\[
\begin{equation*}
1>\frac{1}{\mathrm{~B}}|-\sin \theta| \tag{81}
\end{equation*}
\]

It is apparent from inequality (80) that
\[
\begin{equation*}
\mathrm{B}>\frac{1}{2} \tag{82}
\end{equation*}
\]
and from inequality (79) that
\[
\begin{equation*}
\cos \theta<-\frac{1}{2 \mathrm{~B}} \tag{83}
\end{equation*}
\]

The substitution indicated by the identity (76) is again made, and both sides of inequality (75) are then divided by the right-hand term to obtain the following expressions:
or
\[
\begin{equation*}
\left|\frac{\mathrm{B} / \theta}{1+\mathrm{B} / \theta}\right|>1 \tag{84}
\end{equation*}
\]
\[
\begin{equation*}
\mathrm{B} / \theta|>|1+\mathrm{B} / \theta| \tag{85}
\end{equation*}
\]

For peaking to occur, the following relationships must be in effect:
\[
\begin{gathered}
0.5<|\mathrm{B} / \theta|<2.62 \\
\cos \theta<-\frac{1}{2 \mathrm{~B}}
\end{gathered}
\]

3-dB Bandwidth Prediction - The 3-dB bandwidth of an operational amplifier is defined by the following condition:
\[
\begin{equation*}
\left|\frac{A_{0}(\omega)}{1+\frac{A_{0}(\omega)}{1+\frac{Z_{f}}{Z_{r}}}}\right|=\frac{\left|1+\frac{Z_{f}}{Z_{r}}\right|}{\sqrt{2}} \tag{86}
\end{equation*}
\]

The terms of Eq. (86) are rearranged and the definition for \(B / \theta\) given by the identity (76) is used to obtain the following relationships:
\[
\begin{gather*}
\left|1+\frac{1}{\mathrm{~B}} /-\theta\right|=\sqrt{2} \\
\left(1+\frac{1}{\mathrm{~B}} \cos \theta\right)^{2}+\left(-\frac{1}{\mathrm{~B}} \sin \theta\right)^{2}=2 \\
1+\frac{2}{\mathrm{~B}} \cos \theta+\left(\frac{1}{\mathrm{~B}}\right)^{2}=2 \tag{87}
\end{gather*}
\]

Eq. (87) yields the following criteria for the \(3-\mathrm{dB}\) point:
\[
\begin{gather*}
1 \geq \mathrm{B}>\frac{1}{1+\sqrt{2}}=0.414 \tag{88}\\
\cos \theta=\frac{B^{2}-1}{2 B} \tag{89}
\end{gather*}
\]

Inequality (88) predicts the possibility of a \(3-\mathrm{dB}\) bandwidth greater than that indicated by the intersection of \(A_{o}(\omega)\) and \(1+Z_{f} / Z_{r}(B=1\) point). However, it should be realized that this "bandwidth extension" is actually caused by a slight peaking effect. Special care should be exercised in any attempt to use this effect to advantage.

Inequality (89) stipulates that the phase angle must be 90 degrees to obtain the \(3-\mathrm{dB}\) bandwidth where \(\mathrm{B}=1\). This stipulation essentially coincides with a "rule of thumb" that has become a standard in the industry. This rule may be stated as follows: For an unconditionally stable configuration, the ideal feedback characteristic,
\(1+Z_{f} / Z_{r}\), must intersect the open-loop response, \(A_{o}(\omega)\), at a slope less than 12 dB per octave. An examination of this "rule of thumb" in terms of the phase relationship indicates that the phase angle asymptotically approaches 180 degrees when the change in amplifier response with frequency occurs at a rate of 12 dB per octave. Therefore, the amplifier is on the threshold of instability. Frequency dependence of less than 12 dB per octave indicates that the amplifier is stable; a dependence of greater than 12 dB per octave indicates that the amplifier is unstable.

\section*{PHASE-COMPENSATION TECHNIQUES FOR OPERATIONAL AMPLIFIERS}

The design problems (i.e., ac instability and uncontrolled frequency response) created by excessive phase shift in the feedback can be solved by use of compensating techniques that alter the feedback response so that excessive phase shifts no longer occur. The frequency response can be controlled by limiting the slope of the intersection of the ideal feedback characteristic, \(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\), with the open-loop gain response, \(\mathrm{A}_{\mathrm{o}}(\omega)\), to a safe value. Theoretically, this slope can have a maximum value of 12 dB per octave under certain conditions. In general, however, the maximum slope allowed for practical lumped-parameter systems is 6 dB per octave. In an operational amplifier, effective phase compensation can be accomplished only by a modification in one or more of the following parameters:
1. the ideal closed-loop gain (feedback characteristic), \(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\);
2. the open-loop input impedance, \(\mathrm{Z}_{\mathrm{i}}\);
3. the open-loop gain, \(A_{o}(\omega)\).

\section*{Closed-Loop Compensation Method}

Phase compensation can be accomplished by modification of the closed-loop gain characteristic (i.e., the \(1+Z_{f} / Z_{r}\) term) for only those applications in which the intersection of the \(1+Z_{f} / Z_{r}\) characteristic with the open-loop response occurs in a region where the open-loop response rolls off at a slope of 12 dB per octave or 18 dB per octave. When the intersection occurs in a \(12-\mathrm{dB}\)-per-octave region of the \(\mathrm{A}_{o}(\omega)\) response, compensation techniques are used that cause the slope of the \(1+Z_{f} / Z_{r}\) response to roll off at 6 dB per octave near the intersection. As a result of these techniques, the slope of the intersection becomes 6 dB per octave. (An example of this method of phase compensation was discussed earlier, in the section on "Criteria for a Peaked Response", and the response curves for this example were shown in Fig.7.)

For applications in which the use of an inductor is permissible, phase compensation in the \(18-\mathrm{dB}\)-per-
octave region of the open-loop response can be accomplished by techniques that cause the \(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\) response to roll off at 12 dB per octave near the intersection. An example of this method of phase compensation, together with the appropriate response curves, is shown in Fig.8.
In this example, the \(\mathrm{Z}_{\mathrm{f}}\) term is altered by a shunt capacitor and the \(Z_{r}\) term is altered by a series inductor so that the \(1+Z_{f} / Z_{r}\) response has the required 12-dB-peroctave roll-off. The location of these frequency-dependent components in the feedback configuration is unique for this type of phase compensation.

\[
\begin{aligned}
\frac{V_{\text {OUT }}}{V_{\text {IN }}} & =\frac{-\frac{R_{2}}{1+j \omega C R_{2}}}{R_{1}+j \omega L} \\
& =-\frac{R_{2}}{R_{1}}\left[\frac{1}{\left(1+j \frac{\omega L}{R_{1}}\right)\left(1+j \omega C R_{2}\right)}\right]
\end{aligned}
\]

Fig. 8 - Phase compensation of operational amplifier permissible in the "three-slope region".

\section*{Open-Loop Compensation Methods}

Phase-compensation techniques that alter either the open-loop input impedance or the open-loop gain permit the introduction of a zero, in addition to the lowfrequency pole, into the open-loop gain characteristic. This zero can be designed to cancel one of the poles in the open-loop gain characteristic and thus to increase substantially the bandwidth of the operational amplifier. Alternatively, the operational-amplifier bandwidth can be increased by the introduction of a pole at a frequency low enough so that all the other corner points will occur at frequencies below that at which the openloop response, \(\mathrm{A}_{0}(\omega)\), intersects the closed-loop response, \(1+\mathrm{Z}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{r}}\). The two methods are compared in Fig.9. It is apparent that the pole-cancellation method of phase compensation is superior to the method in

I-Compensated open-loop response using simple depression of higher corner frequencies.
II-Compensated open-loop response using pole cancellation.

Fig. 9 - Phase compensation of operational amplifier by use of pole cancellation.
which the other corner frequencies are depressed. In the phase-compensation techniques discussed below, therefore, the pole-cancellation method is employed.

Modification of the Open-Loop Input Impedance The following analysis shows the limitations imposed on alterations in the open-loop input impedance of an operational amplifier in order to provide phase compensation. In this phase-compensation technique, an appropriate network is connected between the input terminals so that it appears in parallel with the intrinsic input impedance, \(\mathrm{Z}_{\mathrm{i}}\). Eqs. (7) and (45), which define the closed-loop inverting and noninverting responses, respectively, are used as the basis for establishing the conditions and the mechanisms involved in this kind of compensation.

If \(Z_{i}{ }^{\prime}\) is used to represent the modified open-loop input impedance and the open-loop output impedance,
\(\mathrm{Z}_{\mathrm{oi}}\), is assumed to be zero, the following equations for the closed-loop response are obtained:
1. For the inverting configuration,
\[
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{-A_{o}(\omega) Z_{i}^{\prime} Z_{f}}{Z_{f}\left(Z_{i}^{\prime}+R_{r}\right)+Z_{r}\left(Z_{f}+Z_{i}^{\prime}+R_{r}\right)+A_{o}(\omega) Z_{i}^{\prime} Z_{r}} \tag{90}
\end{equation*}
\]
2. For the noninverting configuration,
\[
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{A_{o}(\omega) Z_{i}^{\prime}\left(Z_{r}+Z_{f}\right)}{\left(Z_{i}^{\prime}+R_{r}\right)\left(Z_{r}+Z_{f}\right)+Z_{r} Z_{f}+A_{o}(\omega) Z_{i}^{\prime} Z_{r}} \tag{91}
\end{equation*}
\]

A judicious rearrangement of terms in Eqs. (90) and (91) reveals the effect that the altered oper-loop input impedance has on the open-loop response. With this rearrangement, the equation for the inverting configuration becomes
\(\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{-\left[\frac{A_{o}(\omega) Z_{i}^{\prime}}{R_{r}+Z_{r}+Z_{i}^{\prime}}\right] Z_{t}}{Z_{f}+\frac{Z_{r}\left(Z_{i}^{\prime}+R_{r}\right)}{R_{r}+Z_{r}+Z_{i}{ }^{\prime}}+\left[\frac{A_{0}(\omega) Z_{i}^{\prime}}{R_{r}+Z_{r}+Z_{i}^{\prime}}\right] Z_{r}}\)

The equation for the noninverting configuration is then written as follows:
\(\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{\left[\frac{A_{0}(\omega) Z_{i}{ }^{\prime}}{R_{r}+Z_{r}+Z_{i}{ }^{\prime}}\right]\left(Z_{r}+Z_{f}\right)}{Z_{f}+\frac{Z_{r}\left(Z_{i}{ }^{\prime}+R_{r}\right)}{R_{r}+Z_{r}+Z_{i}{ }^{\prime}}+\left[\frac{A_{0}(\omega) Z_{i}{ }^{\prime}}{R_{r}+Z_{r}+Z_{i}{ }^{\prime}}\right] Z_{r}}\)
For each configuration, the modified open-loop response is defined as follows:
\[
\begin{equation*}
A_{o}^{\prime}(\omega) \equiv \frac{A_{o}(\omega) Z_{i}^{\prime}}{R_{r}+Z_{r}+Z_{i}^{\prime}} \tag{94}
\end{equation*}
\]

It is apparent from Eq. (94) that the alteration of the open-loop input impedance has no effect on the openloop response unless \(Z_{i}{ }^{\prime}\), is at most, of the same order of magnitude as the \(R_{r}+Z_{r}\) term. If \(Z_{i}{ }^{\prime}\) is made much less than \(R_{r}+Z_{r}\), Eq. (94) becomes
\[
\begin{equation*}
\mathrm{A}_{\mathrm{o}}^{\prime}(\omega) \doteq \frac{\mathrm{A}_{\mathrm{o}}(\omega) \mathrm{Z}_{\mathrm{i}}^{\prime}}{\mathrm{R}_{\mathrm{r}}+\mathrm{Z}_{\mathrm{r}}} \tag{95}
\end{equation*}
\]

As predicted by Eqs. (94) and (95), three limitations are imposed in the use of the input-impedance modification technique to provide phase compensation: (1) the feedback impedance term \(\mathrm{Z}_{\mathrm{r}}\) is restricted in value and configuration by the phase-compensation requirements; (2) the effective open-loop input impedance must be smaller in magnitude than and different in configuration from the intrinsic input impedance, \(\mathrm{Z}_{\mathrm{i}}\) (thus the closedloop input impedance, \(\mathrm{Z}_{\mathrm{IN}}\), also is smaller and different);
and (3) the dc open-loop gain is less for some inputimpedance configurations.

Two examples of the input-impedance phase-compensation technique are shown in Figs. 10 and 11. In the method shown in Fig.10, the required modification of the open-loop response is achieved by proper choice of the frequency characteristics for the network connected in shunt with the input terminals of the operational amplifier. Fig. 11 shows that the required modification of the response can be achieved by the appropriate choice of the frequency characteristics of \(R_{r}\) and \(Z_{r}\). Both techniques employ pole-zero cancellation to extend the 6 dB -per-octave roll-off region depicted. The technique illustrated in Fig. 10 causes an early roll-off, while the one shown in Fig. 11 results in a reduction in the dc open-loop gain. Eqs. (94) and (95) indicate that phase-compensation can also be effected by an increase in the magnitude of \(R_{r}+Z_{r}\), provided that the frequency characteristics of this parameter are controlled. However, this technique relies on the accuracy of the value of \(\mathrm{Z}_{\mathrm{i}}\) and therefore is unsatisfactory. (The intrinsic input impedance of an operational amplifier may vary significantly from unit to unit.)

Modification of Open-Loop Gain Characteristics Phase compensation that is effected by internal modification of the open-loop gain response is the most widely accepted technique for integrated-circuit operational amplifiers. This method offers two distinct advantages over other types of phase compensation. First, the internal-modification technique affords complete isolation of the phase-compensation networks from the feedback parameters. This isolation is not possible with the compensation methods discussed previously. Second, the point at which the phase compensation is applied canbe selected so that the open-loop response is altered in such a way that one of the existing \(3-\mathrm{dB}\) corner frequencies becomes the early roll-off corner in the compensated response. The advantage stems from the fact that no new corner frequencies are introduced, and an improved compensated response is thus obtained.

Internal phase compensation can be accomplished by either of two basic methods. In one method, referred to as the straight roll-off, an appropriate RC network is connected across a suitable internal resistor of the operational amplifier. With this method, the early rolloff starts at the corner frequency produced by the phasecompensating capacitor and the internal resistor. The other method is the Miller-effect roll-off. In this method, the phase-compensating network still appears electrically to be placed across an appropriate internal resistance of the amplifier, but is actually connected between the input and the output of an inverting-gain stage in the operational amplifier. The impedance of the compen-

\(\mathbf{A}_{0}(\omega)=\) uncompensated open-loop gain
\(\mathrm{A}_{\mathrm{o}}{ }^{\prime}(\omega)=\) compensated open-loop gain
\(\mathbf{R}_{\mathbf{i}}=\) low-frequency intrinsic input impedance
\(A_{o}{ }^{\prime}(\omega)=\frac{ \pm A_{o}(\omega) R_{i}\left(R_{2}+\frac{1}{j \omega C_{2}}\right)}{\left(R_{i}+R_{2}+\frac{1}{j \omega C_{2}}\right) 2 R_{1}+R_{i}\left(R_{2}+\frac{1}{j \omega C_{2}}\right)}\)
\(A_{o}{ }^{\prime}(\omega)=\left[\frac{ \pm A_{o}(\omega) R_{i}}{2 R_{1}+R_{i}}\right]\left[\frac{1+j \omega R_{2} C_{2}}{1+j \omega C_{2}\left(R_{2}+\frac{2 R_{i} R_{1}}{2 R_{1}+R_{i}}\right)}\right]\)

Because \(R_{i}\) is normally large, the equation for \(\mathrm{A}_{\mathrm{o}}{ }^{\prime}(\omega)\) may be rewritten as follows:
\[
A_{0}^{\prime}(\omega)= \pm A_{0}(\omega) \frac{1+j \omega R_{2} C_{2}}{1+j \omega C_{2}\left(R_{2}+2 R_{1}\right)}
\]

For
\[
A_{0}(\omega)=\frac{K}{\left(1+j \frac{\omega}{\omega_{1}}\right)\left(1+j \frac{\omega}{\omega_{2}}\right)\left(1+j \frac{\omega}{\omega_{3}}\right)}
\]
and if
\[
\mathrm{R}_{2} \mathrm{C}_{2}=\frac{1}{\omega_{1}}
\]
the equation for \(\mathrm{A}_{0}{ }^{\prime}(\omega)\) becomes
\[
A_{o}{ }^{\prime}(\omega)=\frac{K}{\left[1+j \omega C_{2}\left(R_{2}+2 R_{1}\right)\right]\left(1+j \frac{\omega}{\omega_{2}}\right)\left(1+\frac{\omega}{\omega_{3}}\right)}
\]

Fig. 10 - Phase compensation of operational amplifier in which open-loop response is modified by connection of a compensating network that provides the required frequency characteristics in shunt with input terminals.
sating network then appears to be divided by the gain of that stage.

The Miller-effect roll-off technique requires a much smaller phase-compensating capacitor than that which must be used with the straight roll-off method. Moreover, the reduction in swing capability which is inherent in the straight roll-off is delayed significantly when the Miller-effect roll-off is used. Fig. 12 illustrates the solution to the problem of phase compensation of an operational amplifier in which a straight roll-off is used to cause the second \(3-\mathrm{dB}\) corner frequency to occur at unity gain. Fig. 13 illustrates the use of a Miller-effect roll-off to solve the same problem. For the same early corner frequency, the compensating capacitance required in the Miller-effect method is less than that required in the straight roll-off method by a factor of \(1+\mathrm{gmII}_{\mathrm{m}} \mathrm{R}_{2}\) (\(\mathrm{g}_{\mathrm{m}}\) II and \(\mathrm{R}_{\mathrm{c}_{2}}\) are defined in Fig.13).

\section*{DESIGN CRITERIA FOR OPERATIONAL AMPLIFIERS}

It is apparent from the previous discussions that a completely universal design of an operational amplifier would have to satisfy an impossible set of criteria. As a result, the design of operational amplifiers is a somewhat specialized process in that a particular amplifier is usually designed for specific applications. For example, certain operational amplifiers are designed to provide high-frequency gain at the expense of other performance characteristics, while other operational amplifiers provide very high gain or high input impedance in low-frequency applications. Integrated-circuit operational amplifiers, which are fabricated by the diffusion process, can be made suitable for comparator applications or can be processed to provide high gain at low dissipation levels. For these reasons, any discussion of the criteria for operational amplifiers must be of a general nature unless a specific application is being considered.

\section*{Input and Output DC Levels}

In general, an operational amplifier should be designed so that the dc bias levels at the input and the output are equal. This condition is desirable to assure that the resistive feedback network can be connected between the input and the output without upsetting either the differential or the common-mode dc bias. Moreover, for applications in which two (positive and negative) power supplies are used, the operational amplifier should be designed so that it is possible to establish a set of standard supply values for which the equal input and output bias levels are at zero potential with respect to circuit ground. This latter condition is particularly important in direct-coupled cascade and comparator applications.

\(\mathrm{A}_{v}(\omega)=\) uncompensated open-loop gain
\(\mathbf{A}_{0}{ }^{\prime}(\omega)=\) compensated open-loop gain
\[
\begin{aligned}
A_{o}^{\prime}(\omega) & =\frac{ \pm A_{0}(\omega) R_{2} R_{i}}{\left(R_{2}+R_{i}\right)\left(\frac{2 R_{1}}{1+j \omega_{1} R_{1} C_{1}}\right)+R_{2} R_{i}} \\
& =\left[\frac{ \pm A_{0}(\omega) R_{2} R_{i}}{2 R_{1}\left(R_{2}+R_{i}\right)+R_{2} R_{i}}\right]
\end{aligned}
\]
\[
\left[\frac{1+j \omega R_{1} C_{1}}{1+j \omega \frac{R_{1} R_{2} R_{i} C_{1}}{2 R_{1}\left(R_{2}+R_{i}\right)+R_{2} R_{i}}}\right]
\]

Because \(R_{i}\) is normally large, the equation for \(\mathrm{A}_{\mathrm{o}}{ }^{\prime}(\omega)\) may be rewritten as follows:

FREQUENCY
\[
A_{o}^{\prime}(\omega)=\left(\frac{ \pm A_{o}(\omega) R_{2}}{2 R_{1}+R_{2}}\right)\left(\frac{1+j \omega R_{1} C_{1}}{1+j \omega \frac{C_{1} R_{1} R_{2}}{2 R_{1}+R_{2}}}\right)
\]

If \(\mathbf{R}_{\mathbf{2}} \ll \mathbf{R}_{\mathbf{1}}\), the equation for \(\mathbf{A}_{0}{ }^{\prime}(\omega)\) becomes
\[
A_{o}^{\prime}(\omega) \doteq\left(\frac{ \pm A_{0}(\omega) R_{2}}{2 R_{1}}\right)\left(\frac{1+j \omega R_{1} C_{1}}{1+j \omega C_{1} \frac{R_{2}}{2}}\right)
\]

For
\[
\begin{gathered}
A_{0}(\omega)=\frac{K}{\left(1+j \frac{\omega}{\omega_{1}}\right)\left(1+j \frac{\omega}{\omega_{2}}\right)\left(1+j \frac{\omega}{\omega_{3}}\right)} \\
R_{1} C_{1} \equiv \frac{1}{\omega_{1}}
\end{gathered}
\]
the compensated open-loop gain \(\mathbf{A}_{0}{ }^{\prime}(\omega)\) is given by
\[
A_{o}{ }^{\prime}(\omega)=\frac{ \pm K}{2 \frac{R_{1}}{R_{2}}\left(1+j \omega C_{1} \frac{R_{2}}{2}\right)\left(1+\frac{\omega}{\omega_{2}}\right)\left(1+\frac{\omega}{\omega_{3}}\right)}
\]

and

Fig. 11 - Phase compensation of operational-amplifier in which open-loop response is modified by alteration of the \(R_{r}+Z_{r}\) term to provide the required frequency characteristics.

\section*{Output-Power Capability}

As with any amplifier circuit, the output-power requirements for an operational amplifier depend almost entirely on the application. A few general conclusions can be drawn concerning the design of the output stage. First, this stage should provide a voltage swing essentially equal to the sum of the power-supply voltages. It should have sufficient gain so that it is the first stage to limit when the amplifier is overdriven. Finally, because of the design trade-off that is always required between output-power capability and dissipation, the output stage should be sufficiently versatile so that the output capability and dissipation can be tailored to the power needs of the particular application in which the operational amplifier is used.

\section*{Gain and Frequency-Response Characteristics}

The numerical values of the open-loop gain and the \(3-\mathrm{dB}\) bandwidth of an operational amplifier are of relatively little importance in themselves. The important requirement is that the open-loop gain must be much
greater than the closed-loop gain of the transfer response over the frequency range of interest if an accurate transfer function is to be maintained. (This requirement is explained in detail in the discussions of transfer functions for both the inverting and noninverting configurations.) For example, if a \(40-\mathrm{dB}\) amplifier and a \(60-\mathrm{dB}\) amplifier are used in a \(20-\mathrm{dB}\) gain configuration and the open-loop gain is decreased 50 per cent in each case, the closed-loop gain of the \(40-\mathrm{dB}\) amplifier varies only 9 per cent and that of the \(60-\mathrm{dB}\) amplifier varies only 1 per cent.

The frequency roll-off characteristics are the prime determinants of the frequency response of an operational amplifier. The greater the rate of roll-off prior to the intersection of the feedback-ratio frequency characteristic with the open-loop response (in the active region), the more difficult phase compensation of the operational amplifier becomes. An \(18-\mathrm{dB}\)-per-octave roll-off is generally considered the maximum slope that can occur in the active region before proper phase compensation becomes extremely difficult or impossible to achieve
(as indicated in the discussion on the effects of feedback phase shifts). In addition, because operational amplifiers have useful applications down to and including unity gain, the active region of the amplifier may be
considered as the entire portion of the frequency characteristic above its \(0-\mathrm{dB}\) bandwidth. Therefore, a well-designed amplifier should roll off at no greater than 18 dB per octave until well below unity gain.

\(A_{0}(\omega)=\) uncompensated open-loop gain \(\mathbf{A}_{0}{ }^{\prime}(\omega)=\) compensated open-loop gain
\(A_{o}{ }^{\prime}(\omega)=A_{o}(\omega)\left(1+j \frac{\omega}{\omega_{1}}\right) \frac{1+j \omega R_{\phi} C_{\phi}}{1+j \omega R_{c} C_{\phi}}\)
The \(1+\mathrm{j} \omega / \omega_{1}\) term in the equation above accounts for the modification of the \(\omega_{1} 3-\mathrm{dB}\) corner.

For
\[
\begin{gathered}
R_{\phi} C_{\phi}=\frac{1}{\omega_{2}} \\
A_{\circ}(\omega)=\frac{K}{\left(1+\mathrm{j} \frac{\omega}{\omega_{1}}\right)\left(1+\mathrm{j} \frac{\omega}{\omega_{2}}\right)\left(1+\mathrm{j} \frac{\omega}{\omega_{3}}\right)}
\end{gathered}
\]
and

the equation for \(\mathrm{A}_{\mathrm{o}}{ }^{\prime}(\omega)\) becomes
\[
\mathbf{A}_{o}{ }^{\prime}(\omega) \doteq \frac{K}{\left(1+j \omega R_{c} C_{\phi}\right)\left(1+j \frac{\omega}{\omega_{3}}\right)}
\]

A third corner-frequency term, which occurs because of the time constant of \(\mathrm{R}_{\phi}\) and the input capacitance of the succeeding stage, should also be included in the equation above; the effects of this corner frequency, however, is appreciable only at very high frequencies (and usually at a gain less than unity). Because the corner frequency normally occurs well out of the active region, it is omitted in the expression for \(\mathrm{A}_{\mathrm{o}}{ }^{\prime}(\omega)\).

Fig. 12 - Phase compensation of operational amplifier by use of straight-rolloff method to modify open-loop response.

\section*{Intrinsic Input and Output Impedances}

The ideal values for the input and output impedances of an operational amplifier are infinity and zero, respectively (as mentioned in the discussions on input and output impedances for both inverting and noninverting configurations). The degree to which a practical amplifier approximates these values depends, for the most part, upon the application. A 5000 -ohm open-loop input impedance may be quite sufficient for one application, while a 0.1 -megohm intrinsic input impedance may not be sufficient for another. In most applications, however, the restrictions on the intrinsic input impedance are not severe. The closed-loop input impedance, which is equal to the product of the intrinsic input impedance and the gain "throwaway" or loop gain, is a more critical parameter. This parameter effectively increases the input impedance (decreases input capaci-
tance) and is the reason that many operational amplifiers that have an input roll-off in the active region have no input roll-off in this region after negative feedback is applied.

Because the closed-loop output impedance is also affected by the loop gain (the proportionality is inverse), the same conclusions might be drawn about the importance of the intrinsic output impedance. Another factor, however, affects the restrictions placed upon the openloop output impedance. A limiting situation in an inverting-configuration application affords an alternate path to the signal when the intrinsic output impedance is sufficiently high. The loop gain decreases to zero as the open-loop gain decreases when overdrive occurs. Therefore, the closed-loop output impedance increases until it equals the intrinsic value at full limiting. Thus, the intrinsic output must be much less than the lowest
practical value of feedback impedance or an alternate signal path that effectively bypasses the limiting amplifier will exist through the feedback network.

\[
\begin{aligned}
& \mathbf{A}_{o}(\omega)=\text { uncompensated open-loop gain } \\
& \mathbf{A}_{0}^{\prime}(\omega)=\text { compensated open-loop gain }
\end{aligned}
\]
\(A_{o}{ }^{\prime}(\omega)=A_{o}(\omega)\left(1+j \frac{\omega}{\omega_{1}}\right) \frac{1+j \omega R_{\phi} C_{\phi}}{1+j \omega R_{c}\left(1+g_{m_{I I}} R_{c 2}\right)} C^{\phi}\)
The \(1+\mathrm{j} \omega / \omega_{1}\) term in the expression for \(\mathrm{A}_{\mathrm{o}}{ }^{\prime}(\omega)\) accounts for the modification of the \(\omega_{1} 3-\mathrm{dB}\) corner.

For
\[
\mathrm{R}_{\phi} \mathrm{C}_{\phi}=\frac{1}{\omega_{2}}
\]
and
\[
A_{o}(\omega)=\frac{K}{\left(1+j \frac{\omega}{\omega_{1}}\right)\left(1+j \frac{\omega}{\omega_{2}}\right)\left(1+j \frac{\omega}{\omega_{3}}\right)}
\]

The expression for \(\mathbf{A}_{\mathbf{o}}{ }^{\prime}(\omega)\) becomes
\[
A_{o}^{\prime}(\omega) \doteq \frac{\mathrm{K}}{\left[1+j \omega\left(1+g_{m_{I I}} R_{c 2}\right) C_{\phi} R_{c}\right]\left(1+j \frac{\omega}{\omega_{3}}\right)}
\]

A third corner frequency, which results from the time constant of \(\mathrm{R}_{\phi}\) and the feedback capacitance \(\mathrm{C}_{\mathrm{bc}}{ }^{\prime}\), is neglected in the expression for \(A_{o}^{\prime}(\omega)\), because this corner frequency occurs well out of the active region.

Fig. 13 - Phase compensation of operational amplifier by use of Miller effect to modify open-loop response.

\section*{Common-Mode Rejection}

Under differential drive conditions, the commonmode rejection has no drastic effects on the performance of the operational amplifier unless the rejection ratio is extremely low (as discussed in respect to the effects of common-mode gain). However, in a common-mode drive situation, such as in a comparator type of application, high common-mode rejection is imperative. For example, if a \(60-\mathrm{dB}\) differential amplifier having a \(50-\mathrm{dB}\) common-mode rejection is used to compare a 1 -volt signal against a 1 -volt reference, the output will be 3.2 volts when it should be zero. Such results would be disastrous for almost any application of this type. In general, the common-mode rejection should be a minimum of 20 dB greater than the differential gain.

\section*{Input Bias Current}

Although an amplifier may have a high intrinsic input ac impedance, it can still require a significant amount of de input bias current. This condition is undesirable in applications in which the drive source cannot accommodate a significant dc current. Examples of such applications are those that require very high impedance sources or sources of a magnetic nature that can be severely unbalanced by a flow of dc current. Unfortunately, the bipolar transistor remedies for this effect add so much capacitance that the frequency response of the amplifier is impaired. Therefore, either field-effect devices should be used in the differential input stage or a scheme should be available to assure that a very low bias current is obtained when it is absolutely necessary. The latter technique requires that sufficient leads be provided so that two external transistors can be added to form a Darlington or a modified Darlington input configuration.

\section*{Offset Voltage and Current}

The offset voltage of an operational amplifier is the deviation of the output dc level from the arbitrary inputoutput level usually taken as ground reference when both inputs are shorted together. The offset current is the deviation when the inputs are driven by two identical de input bias-current constant-current sources. These two offset parameters are usually referred to the input. because their output values are dependent on feedback. Under normal operating conditions, the offset in the amplifier results from a combination of the two factors. For example, if an operational amplifier has a 1-millivolt input offset voltage and a 1-microampere input offset current with the inputs returned to ground through 1000 -ohm resistors, the total input offset is either zero or 2 millivolts depending upon the phase relationship between the two offset parameters. The offset of an operational amplifier is a dc error and should be minimized for numerous reasons, including the following:
(1) The use of an operational amplifier as a true dc amplifier is limited to signal levels much greater than the offset. (2) Comparator applications require that the output voltage be zero (within limits) when the two input signals are equal and in phase. (3) In a direct-coupled cascade, such as a video amplifier chain, the input offset of the first stage determines the offset characteristics of the entire system. Hence, the gain of the system must be limited to a value that is insufficient to cause limiting at rated output voltage. This value is reduced when the offset is significant.

\section*{Power-Supply Stability}

The power-supply stability is a measure of the sensitivity that the offset has to power-supply variations. Because the value of the offset at the output is dependent on feedback, this sensitivity is normally referred to the input and expressed in microvolts per volt. In a fixed-installation application that employs heavily regulated power supplies, this parameter is of little importance. In battery-operated applications of the operational amplifier, however, the sensitivity of the offset to power-supply variations is of the utmost importance. In a single-supply system, this sensitivity should be an absolute minimum. In a two-supply system, the difference in the sensitivities to each supply can be minimized because the supplies in many dual systems
tend to track. This tracking results in a cancellation, or at least a partial cancellation, of the two sensitivities.

\section*{Temperature-Stability Requirements}

Temperature stability of an operational amplifier requires stable thermal characteristics for most of the parameters discussed in this Note. The stability demands imposed on the temperature characteristics of an operational amplifier are determined to a large extent by the application in which the circuit is used. In certain applications, stable temperature characteristics are of utmost importance; in other applications, the ability of the operational amplifier to perform the required functions is not appreciably affected by variations in circuit parameters with temperature.

In general, the dependence of the open-loop gain on temperature is of less importance than the thermal behavior of the amplifier frequency response. Variations in the intrinsic input and output impedances with temperature are of little consequence provided that the input impedance remains large enough and the output impedance remains small enough to satisfy the requirements of the application. If the value of the input bias current is important for the application in which the operational amplifier is used, stable temperature behavior is just as important. Variations in the offset voltage and current with temperature should always be small because they directly affect the internal biases, and thus the operation, of the operational amplifier.

Linear Integrated Circuits
Solid State Division

\title{
Application of RCA CA3033 and CA3033A High-Performance Integrated-Circuit Operational Amplifiers
}

\author{
by \\ H. A. Wittlinger
}

The new RCA CA3033 and CA3033A high-performance operational amplifiers represent a significant step forward in monolithic integrated circuits in many respects. They are capable of delivering power outputs in excess of 250 milliwatts into a 500 -ohm load resistance with harmonic distortion of less than 0.2 per cent, and have a typical input impedance of one megohm with voltage gain of at least 90 dB . Offset voltage is less than 5 millivolts, and offset current is typically 9 nanoamperes. Input bias current is typically 100 nanoamperes. These features make these amplifiers especially suitable for systems in which an operational amplifier and power amplifier or driver were formerly required.

\section*{Circuit Description}

The RCA CA3033 and CA3033A consist of two dif-ferential-amplifier stages followed by a class B output stage, as shown in the schematic diagram of Fig.1. (The two circuits are designed to permit operation from dual 12 - and 18 -volt dc power supplies, respectively.) Emitter-follower inputs provide the exceptionally high input impedance and low bias current. An additional advantage of the emitter-follower inputs is that the Miller
capacitance of the differential amplifier is substantially reduced and the input capacitance of the amplifier is lower than if a similar single-transistor configuration were used.

The output of the first differential-amplifier stage (Q3 and Q4) is buffered from the input of the next dif-ferential-amplifier stage (Q6 and Q7) by emitter followers Q19 and Q20. This arrangement reduces the input-loading effects on the first stage and therefore maintains the first-stage gain.

A circuit is incorporated in this design to sense any change in the operating point of the first differential amplifier caused by variations in either the positive or the negative supply voltage. Any changes in the supply voltages are reflected to the base of transistor Q 5 , which detects changes in the collector voltage of the first differential amplifier and compensates for them. For example, a rise in the voltage at the emitters of Q6 and Q7 increases the bias voltage to \(\mathrm{Q}_{5}\) and thus increases the collector current, countering the apparent rise in the collector voltage of either \(\mathrm{Q}_{3}\) or \(\mathrm{Q}_{4}\). At the same time, the emitter current of Q5 also increases, and increases the voltage drop across the diode-connected

Fig. 1 - Schematic diagram of a CA3033 or CA3033A operational amplifier.
transistor Q9 and resistor R10 to increase the collector current of Q8. Thus, any apparent increase in the collector voltage of the first differential stage causes a correction both at the constant-current source \(\mathrm{Q}_{8}\) and at the collector supply voltage through \(\mathrm{R}_{1}\), the common load resistor for \(\mathrm{Q}_{3}, \mathrm{Q}_{4}\), and \(\mathrm{Q}_{5}\).

An emitter-follower \(Q_{11}\) buffers the output of the second differential-amplifier stage and drives the divider and summing network to the output stage. Resistor R13 may be considered the input resistance of an amplifier to the summing point, the junction of \(R_{13}, R_{14}\), and \(R_{15}\). Resistor \(R_{14}\) shifts to the operating point of the output stage with little attenuation of the signal as a result of the high collector impedance of the constant-current source \(\mathrm{Q}_{12}\).

Diode-connected transistors Q13A and Q13 provide further dc shifting of the signal to the base of emitterfollower \(\mathrm{Q}_{14}\). This emitter-follower provides further level shifting and a low driving impedance to transistors \(\mathrm{Q}_{15}\) and \(\mathrm{Q}_{18}\).

The excellent matching of the base-to-emitter voltage of the integrated-circuit transistors makes it possible to establish the idling current of the output stage accurately. Because the collector-current characteristics of \(Q_{15}\) and \(\mathrm{Q}_{18}\) as a function of base-to-emitter voltage are matched, the collector current in Q15 determines the idling current in Q18. For example, if the operating current of \(\mathrm{Q}_{15}\) is set at 1 milliampere for a given base-to-emitter voltage, the operating current of Q 18 is also 1 milliampere because the base-to-emitter voltages of both tran-
sistors are the same. This type of design results from the excellent transistor matching that is possible with monolithic processing.

\section*{Noise Figure}

Fig. 2 shows noise figure as a function of source resistance for the CA3033A. The curve shows that the optimum noise match occurs for input impedances between 100,000 ohms and 1 megohm. An improvement

Fig. 2 - Noise-figure curve for CA3033A.
in noise figure of approximately 14 dB at a frequency of 1 kHz and an input impedance of 1000 ohms may be obtained by addition of two 0.3 -megohm resistors from the emitters to the VEE supply to increase the operating current of the input transistors.

Fig. 3 - Phase-compensation characteristics for CA3033 or CA3033A.

\section*{Compensation}

Basic phase compensation of the CA3033 and CA3033A amplifiers is quite simple. Fig. 3 shows typical phase-compensation characteristics for the CA3033; dat a for the CA3033A are similar. The two compensating capacitors \(C_{x}\) and \(C_{y}\) are connected from the collectors of the first differential amplifier (terminals 8 and 13) to ground. When capacitance values greater than 0.1 microfarad are used, however, a lower-voltage capacitor that has a value equal to half that given on the curves may be connected between terminals 8 and 13 , and a 0.001 microfarad capacitor connected from either terminal 8 or 13 to ground. This arrangement provides the same gain-phase roll-off shown on the curves and permits the use of lower-voltage ceramic disc capacitors now available. For linear operation, the maximum expected difference voltage between the two collectors is less than 1 volt.

The dashed lines in Fig. 3 illustrate the use of the curves for design of a \(60-\mathrm{dB}\) amplifier. First, the intersection of the various gain-frequency curves is followed out to the curve for a capacitor value of 0.001 microfarad. At this point, the expected \(3-\mathrm{dB}\) amplifier response is approximately 230 kHz and the phase angle \(\phi\) is 118 degrees; the phase margin (\(180^{\circ}-\phi\)) is thus 62 degrees. For a capacitance value of 300 picofarads, the expected \(3-\mathrm{dB}\) response is 580 kHz , but the phase angle is 175 de grees; the resulting phase margin of only 5 degrees is a most undesirable situation. In the other direction, the use of 0.003 -microfarad compensating capacitors provides a \(3-\mathrm{dB}\) response of 90 kHz and a phase angle of
approximately 90 degrees, with a phase margin of 90 degrees.

\section*{Slewing Rate}

One of the most important considerations in using a high-power operational amplifier such as the CA3033 or CA3033A is the maximum full power output swing in terms of frequency that can be expected from the unit. This characteristic is important both in low-frequency applications and in pulse applications in which the rise times of a given design must be known. Fig. 4 shows the maximum rate of change, or slewing rate, of a sine wave in volts per microsecond for various peak-to-peak output voltages. \({ }^{1}\) For example, a 30 -volt peak-to-peak sine wave at a frequency of 10 kHz has a maximum rate of change of 1 volt per microsecond. Besides being able to swing the value of 30 volts peak to peak at dc, therefore, an amplifier must also be able to swing this amplitude at a minimum rate of 1 volt per microsecond.

Fig. 4 - Slewing-rate curve.

Slewing rate is a function of the phase-compensation circuit, the operational-amplifier design in terms of the gain after phase compensation, and the output-stage design. The phase-compensation circuit is usually placed around the input stages of an operational amplifier. This approach offers two advantages. First, it reduces the amplitude of any higher-frequency components that may overload the following stages. (For example, the residual rf carrier remaining on the output of a video detector with a single RC roll-off could cause serious overload and a distorted output if it were allowed to continue through the amplifier.) Second, because of the relatively high gain that follows the compensating circuit in the input stage, the compensating capacitors charge and discharge on a smaller and faster portion of the RC time constant associated with the collector load resistors and compensation capacitors.

Another consideration that influences the slewing rate is the signal-handling capability of the output stage. It is evident that, regardless of how fast the first portion of an amplifier responds to a step input, the output stage can limit the rate of rise and fall.

Fig. 5 shows a curve of the maximum full-power-output frequency of the CA3033 and CA3033A as a function of the phase-compensation capacitance. This curve may be used with the curve of Fig. 4 to determine the amplifier slewing rate. In the case of the \(60-\mathrm{dB}\) amplifier shown in Fig.6, for example, two 0.002-microfarad capacitors are used for phase compensation. The curves of Fig. 3 indicate that the \(3-\mathrm{dB}\) bandwidth is 120 kHz .

Fig. 5 - Frequency for full power output as a function of phase-compensating capacitance.

Fig. 5 shows that full output swing with no load may be expected up to a frequency of 280 kHz . Therefore, the design is capable of full power output up to the \(3-\mathrm{dB}\) point.

A similar approach may be used for a pulse amplifier. Two 0.01-microfarad phase-compensating capaci-
tors are used to yield a \(3-\mathrm{dB}\) response of 30 kHz . The expected rise time in microseconds is equal to 0.35 divided by the \(3-\mathrm{dB}\) frequency in MHz , or 11.7 microseconds. \({ }^{2}\) The power-output curve of Fig. 5 shows that the maximum frequency for full power output is 155 kHz ; thus the slewing rate is 10.6 volts per microsecond. For the 20 -volt input-signal swing specified for the CA3033, the rise time based on this slewing rate would be (1 microsecond/ 10.6 volts) x 20 volts, or 1.9 microseconds. Because this value is greater than the rise time estimated from the \(3-\mathrm{dB}\) point, the design is not slewing-rate limited, and the \(3-\mathrm{dB}\) rise time will be met. Thus, for maximum high-frequency output, the lowest value of phase-compensation capacitors must be used; therefore, high closed-loop gains are implicit.

Fig.6-60-dB test amplifier for CA3033.
Waveforms for the \(60-\mathrm{dB}\) amplifier are shown in Fig.7.

Fig. 7 - Waveforms for the 60-dB amplifier shown in Fig. 6.

\section*{Applications}

Fig. 8 illustrates the use of the CA3033A in a \(20-\mathrm{dB}\), 255-milliwatt power amplifier operating from a single

Fig.8-20-dB, 255-milliwatt power amplifier using a CA3033A operating from a 36 -volt supply.

36-volt supply. Fig. 9 shows the pulse response of this amplifier under no-load conditions and with a resistive load of 500 ohms; also shown are curves of distortion as a function of frequency. The waveforms show that the pulse response of the amplifier is limited by slewing rate rather than frequency response. Some crossover distortion is evident in the response for the 500 -ohm load.

Fig. 9 - Pulse-response waveforms and distortion curves for the amplifier shown in Fig.8.

The impedance of the feedback network can have a significant effect on the pulse response of a given amplifier design, particularly when higher-frequency performance is required. The response is influenced by the stray capacitance of the associated wiring, the shunt capacitance of the feedback resistors, and the input impedance of the operational amplifier. Because the CA3033 and CA3033A have higher input impedance as a result of the emitter-follower inputs, the input capacitive loading is reduced considerably and higher-impe:dance feedback networks can be used.

A simple system was fabricated to demonstrate the ease with which the CA3033 and CA3033A operational amplifiers may be applied. The basis of the system was
the rudiments of a digital voltmeter, using the linear staircase approach, without the associated totalizing circuitry.

Fig. 10 shows a block diagram of the system, together with the waveforms of all interfaces. A squelchable integrated-circuit multivibrator is used as the clock. As described later, the clock frequency is independent of supply voltage. Although this independence is not a necessary condition for circuit operation, it is inherent in this type of operational-amplifier multivibrator circuit and may be considered an integrated-circuit bonus.

The output from the clock drives a linear staircase generator. Input voltage to this circuit is applied directly from the multivibrator to minimize the effects of diode temperature coefficients. The output from the staircase generator is applied to a comparator that compares the staircase with the voltage to be measured.

The comparator output fires a monostable multivibrator that controls the display time, which is variable from about 100 milliseconds to one second. An inverter following the multivibrator supplies drive of the correct polarity to the integrator capacitor-discharge switch and the multivibrator squelch circuit.

Circuit operation begins with the staircase generator ramp running down until its voltage is equal to the unknown voltage on the input of the comparator. When the two voltages are equal, the monostable multivibrator is triggered by the output from the comparator. The output of the monostable multivibrator squelches the astable multivibrator and discharges the integrating capacitor through the bistable multivibrator. The wait, or display time, set by the monostable multivibrator allows sufficient time for full discharge of the integration capacitor and appears as a steady reading on the display device.

Astable Multivibrator - A schematic diagram of a squelchable multivibrator is shown in Fig.11. The only requirement that must be met by the squelch circuit is that the amplitude of the output pulse not change as a result of the squelch operation; otherwise, the amplitude of the final steps would be different from that of the initial steps and staircase linearity would suffer.

Freedom of the circuit from supply-voltage variations results from the excellent saturation characteristics of the integrated circuit at both positive and negative output swings. The positive and negative thresholds of the circuit are given by
\[
\begin{aligned}
& \text { Positive threshold }=\left(V_{C C}-V_{C E+\text { sat }}\right) \frac{R_{1}}{R_{1}+R_{2}} \\
& \text { Negative threshold }=\left(V_{E E}+V_{C_{- \text {sat }}}\right) \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
\]
where \(V_{C C}\) and \(V_{E E}\) are the positive and negative supply voltages and \(\mathrm{V}_{\mathrm{CE}}^{+ \text {sat }}\) and \(\mathrm{V}_{\mathrm{CE}}\)-sat are the positive and negative saturation voltages of the amplifier. Be-

Fig. 10 - Block diagram and waveforms of digital voltmeter system using five CA3033 integrated circuits.

Fig. 11 - CA3033 squelchable astable multivibrator.
cause these saturation voltages are low and have temperature coefficients less than 5 millivolts per degree \(C\), they can be neglected for ease of computation. If the charging current is considerably greater than the base current, the frequency \(f\) may be expressed as follows: \({ }^{3}\)
\[
\mathrm{f} \approx \frac{1}{2 \mathrm{RC} \ln \left(\frac{2 \mathrm{R}_{1}}{\mathrm{R}_{2}}+1\right)}
\]

Linear Staircase Generator - The design of a linear staircase generator is nearly identical to that of a linear ramp or sawtooth generator. Fig.12(a) shows a linear ramp generator in which the non-inverting input of an operational amplifier is grounded and a switch \(\mathrm{S}_{1}\) returns the output to the inverting input. When \(S_{1}\) is closed, the amplifier is in the unity-gain configuration and the output is at ground less the input offset voltage. When \(S_{1}\) is opened, the output moves in the positive direction when the reference voltage \(V_{\text {ref }}\) is negative, or in the negative direction when \(\mathrm{V}_{\text {ref }}\) is positive. Because the output under closed-loop conditions tries to maintain the input terminal at zero voltage, the charging current to the capacitor is constant at a rate of \(\mathrm{dV} / \mathrm{dt}=\mathrm{i} / \mathrm{C}\),
where \(i=V_{r e f} / R\). It is apparent that this analysis is valid as long as the input current to the first stage is considerably less than the charging current.

Fig.12(b) shows the circuit for a linear staircase generator. In this circuit, a pulse of amplitude e couples a charge \(Q\) to the amplifier input. The charge \(Q\) is equal to \(C_{1}\left(e-2 V_{a k}\right)\), where \(2 \mathrm{~V}_{\mathrm{ak}}\) is the forward voltage drop across the two diodes. Again, if the amplifier input current is small compared to the effective charging current, capacitor \(\mathrm{C}_{2}\) is incrementally charged in steps of (e \(-2 \mathrm{~V}_{\mathrm{ak}}\)) \(\mathrm{C}_{1} / \mathrm{C}_{2}\). If the pulse height is made sufficiently large compared to the expected temperature variations of the diodes, a reasonable degree of temperature independence results.

Fig. 12 - Diagrams of (a) linear ramp generator and (b) linear staircase generator.

Comparator - Regeneration is added around the comparator circuit in this system to accelerate the transition time when the two input voltages are equal. Fig. 13 shows a complete schematic diagram of the entire system. Waveforms at critical points are shown in Fig.14. The 470 -picofarad capacitor and 1000 -ohm resistor between terminals 3 and 10 of the CA3033 in the comparator circuit provide the regeneration. Two 0.001 -microfarad capacitors on each input filter any externally generated noise.

Monostable Multivibrator - The monostable multivibrator circuit shown in Fig. 13 makes use of the extremely low input bias currents of the CA3033 by using small timing capacitors and large timing resistors to obtain the long (one-second) display time. The small
timing capacitor in conjunction with the diode \(\mathrm{D}_{3}\) permits the fast recycling time necessary for the one-step case. Triggering of the circuit is accomplished by the 470picofarad capacitor to the non-inverting input (terminal 10).

An RC timing network is incorporated at the output of the monostable multivibrator to add an additional 150 -millisecond delay tha, performs two functions. First, the added delay allows more time to complete the timing-capacitor recycling mentioned above. The second and more important function of this network is the generation of a reset pulse at the trailing edge of the monostable multivibrator. Diode \(\mathrm{D}_{4}\) couples the negative output of the multivibrator to the next stage and rapidly charges the 0.22 -microfarad network timing capacitor through the 470 -ohm resistor. After the monostable multivibrator completes the cycle, diode \(\mathrm{D}_{4}\) disconnects, and the 0.22 -microfarad capacitor charges to the 1.1 -volt switching threshold of the next stage through the two one-megohm resistors. This cycle is approximately 150 milliseconds.

Bistable Multivibrator - The output from the monostable multivibrator is coupled to the next stage, a bistable multivibrator or inverter. The switching thresholds are determined by the 100,000 - and 10,000 -ohm resistors in the positive feedback loop. The primary function of this stage is to invert the signals from both the comparator and the monostable multivibrator to drive the clock-astable-multivibrator squelch circuit and the staircase capacitor-discharge switch, an RCA-3N141 dual-gate MOS field-effect transistor. Diode D6 protects the gates of the MOS transistor; the 47-picofarad capacitor reduces the rise time of the negative-going output of the bistable multivibrator and prevents it from coupling into the beginning of staircase and obscuring the first few steps by this negative transition.

\section*{Acknowledgment}

The author thanks A. J. Leidich for his work on the design of the CA3033 and CA3033A and for supplying the noise-figure curve, and J. Klinger for breadboarding and evaluating the many circuits used in the paper.

\section*{References}
1. R. Stata, 'Operational Amplifiers,' Electromechanical Design, page 51, September 1965.
2. Valley, G. E., Jr., and Wallman, H., "Vacuum-Tube Amplifiers," page 80, Massachusetts Institute of Technology Radiation Laboratory Series, Volume 18, McGraw-Hill Book Co., New York 1948.
3. Engineering Staff of Philbrick Researches, "Philbrick Applications Manual,' page 72, Second Edition, June 1966.

Fig. 13 - Schematic diagram of a digital voltmeter using CA3033 integrated circuits.

Fig. 14 - Waveforms for the digital voltmeter shown in Fig. 13.

\title{
Applications of the CA3080 and CA3080A High-Performance Operational Transconductance Amplifiers
}

\author{
by H. A. Wittlinger
}

The CA3080 and CA3080A are similar in generic form to conventional operational amplifiers, but differ sufficiently to justify an explanation of their unique characteristics. This new class of operational amplifier not only includes the usual differential input terminals, but also contains an additional control terminal which enhances the device's flexibility for use in a broad spectrum of applications. The amplifier incorporated in these devices is referred to as an Operational Transconductance Amplifier (OTA), because its output signal is best described in terms of the output-current that it can supply. (Transconductance \(g_{m}=\frac{\Delta \mathrm{i}_{\text {out }}}{\Delta \mathrm{e}_{\text {in }}}\). The amplifier's output-current is proportional to the voltage difference at its differential input terminals.

This Note describes the operation of the OTA and features various circuits using the OTA. For example, communications and industrial applications including modulators, multiplexers, sample-and-hold-circuits, gain control circuits and micropower comparators are shown and discussed. In addition, circuits have been included to show the operation of the OTA being used in conjunction with RCA COS/MOS devices as post-amplifiers.

Fig. 1- Basic equivalent circuit of the OTA.

Fig. 1 shows the equivalent circuit for the OTA. The output signal is a "current" which is proportional to the transconductance (gm) of the OTA established by the amplifier bias current (\(\mathrm{I}_{\mathrm{ABC}}\)) and the differential input voltage. The OTA can either source or sink current at the output terminals, depending on the polarity of the input signal.

The availability of the amplifier bias current (\(\mathrm{I}_{\mathrm{ABC}}\)) terminal significantly increases the flexibility of the OTA and permits the circuit designer to exercise his creativity in the utilization of this device in many unique applications not possible with the conventional operational amplifier.

\section*{Circuit Description}

A simplified block diagram of the OTA is shown in Fig. 2. Transistors Q1 and Q2 comprise the differential input amplifier found in most operational amplifiers, while the lettered-circles (with arrows leading either into or out of the circles) denote "current-mirrors". Fig. 3a shows the basic type of current-mirror which is comprised of two transistors, one of which is diode-connected. In a "current-mirror", with similar geometries for \(\mathrm{Q}_{\mathrm{A}}\) and \(\mathrm{Q}_{\mathrm{B}}\), the current I ' establishes a second current I whose value is essentially equal to that of \(I\) '.

Fig. 2- Simplified diagram of OTA.

This basic current-mirror configuration is sensitive to the transistor beta (\(\beta\)). The addition of another active transistor, shown in Fig. 3b, greatly diminishes the circuit sensitivity to transistor beta (\(\beta\)) and increases the current-source output impedance in direct proportion to the transistor beta \((\beta)\). Current-mirror W (Fig. 2) uses the configuration shown in Fig. 3a, while mirrors X, Y, and Z are basically the version shown in Fig. 3b. Mirrors Y and Z employ p-n-p transistors, as depicted by the arrows pointing outward from the mirrors. Appendix 1 describes "current-mirrors" in more detail.

Fig. 3- Basic types of current mirrors; al diode-connected transistor paired with transistor; b) improved version: employs an extra transistor.

Fig. 4 is the complete schematic diagram of the OTA. The OTA employs only active devices (transistors and diodes). Current applied to the amplifier-bias-current terminal, \(\mathrm{I}_{\mathrm{ABC}}\), establishes the emitter current of the input differential amplifier Q1 and Q2. Hence, effective control of the differential transconductance \(\left(\mathrm{g}_{\mathrm{m}}\right)\) is achieved.

Fig. 4- Schematic diagram of OTA types CA3080 and CA3080A.

The \(g_{m}\) of a differential amplifier is equal to
\[
\frac{\mathrm{q}^{a} \mathrm{I}_{\mathrm{C}}}{2 \mathrm{KT}}
\]
(see Ref. 2 for derivation) where q is the charge on an electron, \(a\) is the ratio of collector current to emitter current of the differential amplifier transistors, (assumed to be 0.99 in this case), \(\mathrm{I}_{\mathrm{C}}\) is the collector current of the constant-current source (\(\mathrm{I}_{\mathrm{ABC}}\) in this case), K is Boltzman's constant, and T is the ambient temperature in degrees Kelvin. At room temperature, \(\mathrm{g}_{\mathrm{m}}=19.2 \times \mathrm{I}_{\mathrm{ABC}}\), where gm is in mmho and \(\mathrm{I}_{\mathrm{ABC}}\) is in milliamperes. The temperature coefficient of \(\mathrm{g}_{\mathrm{m}}\) is approximately \(-0.33 \% /{ }^{\circ} \mathrm{C}\) (at room temperature).

Transistor Q3 and diode D1 (shown in Fig. 4) comprise the current mirror "W" of Fig. 2. Similarly, transistors Q7, Q8 and Q9 and diode D5 of Fig. 4 comprise the generic current mirror " \(Z\) " of Fig. 2. Darlington-connected transistors are employed in mirrors " \(Y\) " and " \(Z\) " to reduce the voltage sensitivity of the mirror, by the increase of the mirror output impedance. Transistors Q10, Q11, and diode D6 of Fig. 2 comprise the current-mirror "X" of Fig. 2. Diodes D2 and D4 are connected across the base-emitter junctions of Q5 and Q 8 , respectively, to improve the circuit speed. The amplifier output signal is derived from the collectors of the

Fig. 5- Schematic diagram of OTAs in a two-channel linear time-shared multiplex circuit.
"Z" and "X" current-mirror of Fig. 2, providing a push-pull Class A output stage that produces full differential \(g_{m}\). This circuit description applies to both the CA3080 and CA3080A. The CA3080A offers tighter control of \(g_{m}\) and input offset voltage, less variation of input offset voltage with variation of \(\mathrm{I}_{\mathrm{ABC}}\) and controlled cut-off leakage current. In the CA3080A, both the output and the input cut-off leakage resistances are greater than \(1,000 \mathrm{M} \Omega\).

\section*{APPLICATIONS}

\section*{Multiplexing}

The availability of the bias current terminal, \(I_{A B C}\), allows the device to be gated for multiplex applications. Fig. 5 shows a simple two-channel multiplex system using two CA3080 OTA devices. The maximum level-shift from input to output is low (approximately 2 mV for the CA3080A and 5 mV for the CA3080). This shift is determined by the amplifier input offset voltage of the particular device used, because the open-loop gain of the system is typically 1.00 dB when the loading on the output of the CA3080A is low. To further increase the gain and reduce the effects of loading, an additional buffer and/or gain-stage may be added. Methods will be shown to successfully perform these functions.

In this example positive and negative \(5-\mathrm{V}\) power-supplies were used, with the IC flip-flop powered by the positive supply. The negative supply-voltage may be increased to -15 V , with the positive-supply at 5 V to satisfy the logic

Fig. 6- Schematic diagram of a two-channel linear multiplex system using a COS/MOS flip-flop to gate two OTAs.
supply voltage requirements. Outputs from the clocked flipflop are applied through p-n-p transistors to gate the CA3080 amplifier-bias-current terminals. The grounded-base configuration is used to minimize capacitive feed-through coupling via the base-collector junction of the p-n-p transistor.

Another multiplex system using the OTA's clocked by a COS/MOS flip-flop is shown in Fig. 6. The high output voltage capability of the COS/MOS flip-flop permits the circuit to be driven directly without the need for p-n-p level-shifting transistors.

A simple RC phase-compensation network is used on the output of the OTA in the circuits shown in Figs. \(5 \& 6\). The values of the RC-network are chosen so that \(\frac{1}{2 \pi R C} \simeq 2 \mathrm{MHz}\). This RC-network is connected to the point shown because the lowest-frequency pole for the system is usually found at this point. Fig. 7 shows an oscilloscope photograph of the multiplex circuit functioning with two input signals. Fig. 8 shows an oscilloscope photograph of the output of the multiplexer with a \(6-\mathrm{V}\) p-p, sine wave signal (22 kHz) applied to one amplifier and the input to the other amplifier grounded. This photograph demonstrates an isolation of at least 80 dB between channels.

TOP TRACE: MULTIPLEXED OUTPUT IV/DIV \& \(100 \mu \mathrm{sec} / \mathrm{DIV}\)
BOTTOM TRACE: TIME EXPANSION OF SWITCHING BETWEEN INPUTS 2V/DIV a \(5 \mu \mathrm{sec} / \mathrm{DIV}\)
Fig. 7- Voltage waveforms for circuit of Fig. 6; top trace: multiplexed output; lower trace: time expansion of switching between inputs.

TOP TRACE: IV/DIV \& \(100 \mu \mathrm{sec} / \mathrm{DIV}\) - OUTPUT BOTTOM TRACE: VOLTAGE EXPANSION OF OUTPUT ImV/DIV \& \(100 \mu \mathrm{sec} / \mathrm{DIV}\) ISOLATION IS IN EXCESS OF 80 db
Fig. 8- Voltage waveforms for circuit of Fig. 6; top trace: output; lower trace: voltage expansion of output; isolation in excess of 80 dB .

\section*{Sample-and-Hold Circuits}

An extension of the multiplex system application is a sample-and-hold circuit (Fig. 9), using the strobing characteristics of the OTA amplifier bias-current (ABC) terminal as a means of control. Fig. 9 shows the basic system using the CA3080A as an OTA in a simple voltage-follower configuration with the phase-compensation capacitor serving the additional function of sampled-signal storage. The major consideration for the use of this method to "hold" charge is that neither the charging amplifier nor the signal readout device significantly alter the charge stored on the capacitor. The CA3080A is a particularly suitable capacitor-charging amplifier because its output resistance is more than \(1000 \mathrm{M} \Omega\) under cut-off conditions, and the loading on the storage capacitor during the hold-mode is minimized. An effective solution to the read-out requirement involves the use of an RCA 3N138 insulated-gate field-effect transistor (MOS/FET) in the feedback loop. This transistor has a maximum gate-leakage current of 10 picoamperes; its loading on the charge "holding" capacitor is negligible. The open-loop voltage-gain of the system (Fig. 9) is approximately 100 dB if the MOS/FET is used in the source-follower mode to the CA3080A as the input amplifier. The open-loop output impedance \(\left(\frac{1}{\mathrm{~g}_{\mathrm{m}}}\right)\) of the 3 N 138 is approximately \(220 \Omega\) because its transconductance is about \(4,600 \mu \mathrm{mho}\) at an operating current of 5 mA . When the CA3080A drives the 3N138 (Fig. 9), the closed loop operational-amplifier output impedance characteristic

Fig. 9- Schematic diagram of OTA in a sample-and-hold circuit.

Fig. 10 shows a "sampled" triangular signal. The lower trace in the photograph is the sampling signal. When this signal goes negative, the CA3080A is cutoff and the signal is "held" on the storage capacitor, as shown by the plateaus on the triangular wave-form. The center trace is a time expansion of the top-most transition (in the upper trace) with a time scale of \(2 \mu \mathrm{sec} / \mathrm{div}\).

Once the signal is acquired, variation in the stored-signal level during the hold-period is of concern. This variation is primarily a function of the cutoff leakage current of the CA3080A (a maximum limit of \(5 \eta \mathrm{~A}\)), the leakage of the storage element, and other extraneous paths. These leakage currents may be either "positive" or "negative" and, consequently, the stored-signal may rise or fall during the "hold" interval. The term "tilt" is used to describe this condition. Fig. 11 shows the expected pulse "tilt" in microvolts as a function of time for various values of the compensation/storage capacitor. The horizontal axis shows three scales representing leakage currents of \(50 \eta \mathrm{~A}, 5 \eta \mathrm{~A}\), 500 pA .

Fig. 12 shows a dual-trace photograph of a triangular signal being "sampled-and-held" for approximately 14 ms with a 300 pF storage capacitor. The center trace (expanded to \(20 \mathrm{mV} / \mathrm{div}\)) shows the worst-case "tilt" for all the steps shown in the upper trace. The total equivalent leakage current in this case is only \(170 \mathrm{pA}\left(\mathrm{I}=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}\right)\).

TOP TRACE:SAMPLED SIGNAL IV/DIV a \(20 \mu s e c / D I V\) CENTER TRACE:TOP PORTION OF UPPER SIGNAL

IV/DIV a \(2 \mu \mathrm{sec} /\) DIV
BOTTOM TRACE:SAMPLING SIGNAL 2OV/DIV a \(20 \mu \mathrm{sec} / \mathrm{DIV}\)

Fig. 10- Waveforms for circuit of Fig. 9; top trace: sampled signal; center trace: top portion of upper signal; lower trace: sampling signal.

Fig. 11- Chart showing "tilt" in sample-and-hold potentials as a function of hold time with load capacitance as a parameter.

Fig. 13 is an oscilloscope photograph of a ramp voltage being sampled by the "sample-and-hold" circuit of Fig. 9. The input signal and sampled-output signal are superimposed. The lower trace shows the sampling signal. Data shown in Fig. 13 were recorded with supply voltages of \(\pm 10 \mathrm{~V}\) and the series input resistor at terminal 5 was \(22 \mathrm{k} \Omega\).

TOP TRACE:SAMPLED SIGNAL IV/DIV 8 20 mces/DIV CENTER TRACE:WORSE CASE TILT \(20 \mathrm{mV} /\) DIV 8 \(20 \mathrm{msec} / \mathrm{DIV}\)

Fig. 12- Oscilloscope photo of "triangular-voltage" being sampled by circuit of Fig. 9.

TOP TRACE:INPUT AND OUTPUT SUPERIMPOSED IV/DIV \& \(2 \mu \mathrm{sec} / \mathrm{DIV}\)
BOTTOM TRACE: SAMPLING SIGNAL 2OV/DIV 8 \(2 \mu \mathrm{sec} / \mathrm{DIV}\)

Fig. 13- Oscilloscope photo of "ramp-voltage" being sampled by circuit of Fig. 9.

TOP TRACE: INPUT AND SAMPLED OUTPUT SUPER-
IMPOSED \(100 \mathrm{mV} /\) DIV a \(100 \mu \mathrm{sec} / \mathrm{DIV}\)
BOTTOM TRACE:SAMPLING SIGNAL \(20 \mathrm{~V} /\) DIV \(\&\) \(100_{\mu} \mathrm{sec} /\) DIV

Fig. 14- Oscilloscope photo showing response of sample-and-hold circuit (Fig. 9).

In Fig. 14, the trace of Fig. 13 has been expanded (100 \(\mathrm{mV} / \mathrm{div}\) and \(100 \eta \mathrm{sec} / \mathrm{div}\)) to show the response of the sample-and-hold circuit with respect to the sampling signal. After the sampling interval, the amplifier overshoots the signal level and settles (within the amplifier offset voltage) in approximately \(1 \mu \mathrm{~s}\). The resistor in series with the 300 pF phase-compensation capacitor was adjusted to 68 ohms for minimum recovery time.

Fig. 15 shows the basic circuit of Fig. 9 implemented with an RCA 2N4037 p-n-p transistor to minimize capacitive feedthrough. Fig. 16 shows oscilloscope photographs taken with the circuit of Fig. 15 operating in the sampling mode at supply-voltage of \(\pm 15 \mathrm{~V}\). The \(9.1 \mathrm{k} \Omega\) resistor in series with the p-n-p transistor emitter establishes amplifier-bias-current (\(\mathrm{I}_{\mathrm{ABC}}\)) conditions similar to those used in the circuit of Fig. 9.

Fig. 15- Schematic diagram of the OTA in a sample-andhold configuration (DTL/TTL control logic).

Considerations of circuit stability and signal retention require the use of the largest possible phase-compensation capacitor, compatible with the required slew rate. In most systems the capacitor is chosen for the maximum allowable "tilt" in the storage mode and the resistor is chosen so that \(\frac{1}{2 \pi \mathrm{RC}} \simeq 2 \mathrm{MHz}\), corresponding to the first pole in the

TOP TRACE:INPUT AND SAMPLED OUTPUT SUPER IMPOSED \(100 \mathrm{mV} /\) DIV a \(100 \mu \mathrm{sec} / \mathrm{DIV}\) BOTTOM TRACE:SAMPLING SIGNAL \(5 \mathrm{~V} / \mathrm{DIV}\) a \(100 \mu \mathrm{sec} / \mathrm{DIV}\)

Fig. 16- Oscilloscope photo for circuit of Fig. 15 operating in sampling mode.
amplifier at an output current level of \(500 \mu \mathrm{~A}\). It is frequently desirable to optimize the system response by the placement of a small variable resistor in series with the capacitor, as is shown in Figs. 9 and 15. The 120 pF capacitor shunting the \(2 \mathrm{k} \Omega\) resistor improves the amplifier transient response.

Fig. 17 shows a multi-trace oscilloscope photograph of input and output signals for the circuit of Fig. 9, operating in the linear mode. The lower portion of the photograph shows the input signal, and the upper portion shows the output signal. The amplifier slew-rate is determined by the output current and the capacitive loading: in this case the slew rate \((\mathrm{dV} / \mathrm{dt})=1.8 \mathrm{~V} / \mu \mathrm{s}\).

The center trace in Fig. 17 shows the difference between the input and output signals as displayed on a Tektronix 7A13 differential amplifier at \(2 \mathrm{mV} / \mathrm{div}\). The output of the amplifier system settles to within 2 mV (the offset voltage specification for the CA3080A) of the input level in \(1 \mu \mathrm{~s}\) after slewing.

Fig. 17- Oscilloscope photo showing circuit of Fig. 9 operating in the linear sample-mode.

Fig. 18 is a curve of slew-rate as a function of amplifier-bias-current (\(\mathrm{I}_{\mathrm{ABC}}\)) with various storage/ compensation capacitors. The magnitude of the current being supplied to the storage/compensation capacitor is equal to the amplifier-bias-current (\(\mathrm{I}_{\mathrm{ABC}}\)) when the OTA is supplying its maximum output current.

\section*{Gain Control - Amplitude Modulation}

Effective gain control of a signal may be obtained by controlled variation of the amplifier-bias-current (\(\mathrm{I}_{\mathrm{ABC}}\)) in the OTA because its \(\mathrm{g}_{\mathrm{m}}\) is directly proportional to the amplifier-bias-current (\(\mathrm{I}_{\mathrm{ABC}}\)). For a specified value of amplifier-bias-current, the output current (\(I_{O}\)) is equal to the product of \(g_{m}\) and the input signal magnitude. The output voltage swing is the product of output current \(\left(\mathrm{I}_{\mathrm{O}}\right)\) and the load resistance (\(\mathrm{R}_{\mathrm{L}}\)).

Fig. 19 shows the configuration for this form of basic gain control (a modulation system). The output signal current \(\left(I_{O}\right)\) is equal to \(-g_{m} V_{x}\); the sign of the output signal is negative because the input signal is applied to the inverting input terminal of the OTA. The transconductance of the OTA is controlled by adjustment of the amplifier bias current, \(\mathrm{I}_{\mathrm{ABC}}\). In this circuit the level of the unmodulated carrier output is established by a particular amplifier-biascurrent (\(\mathrm{I}_{\mathrm{ABC}}\)) through resistor Rm . Amplitude modulation of the carrier frequency occurs because variation of the voltage Vm forces a change in the amplifier-bias-current (\(\mathrm{I}_{\mathrm{ABC}}\)) supplied via resistor Rm . When Vm goes positive the bias current increases which causes a corresponding increase in the \(\mathrm{g}_{\mathrm{m}}\) of the OTA. When the Vm goes in the negative direction (toward the amplifier-bias-current terminal potential), the amplifier-bias-current decreases, and reduces the \(\mathrm{g}_{\mathrm{m}}\) of the OTA.

Fig. 18-Slew rate as a function of amplifier-bias-current (\({ }^{\prime} A B C\)) with phase-compensation capacitance as a parameter.

As discussed earlier, \(\mathrm{g}_{\mathrm{m}}=19.2 \times \mathrm{I}_{\mathrm{ABC}}\), where \(\mathrm{g}_{\mathrm{m}}\) is in millimhos when \(I_{A B C}\) is in milliamperes. In this case, \(I_{A B C}\) is approximately equal to:
\(\frac{\mathrm{Vm}-\left(\mathrm{V}^{-}\right)}{\mathrm{Rm}}=\mathrm{I}_{\mathrm{ABC}}\)
\(\left(I_{0}\right)=-g_{m} V x\)
\(g_{m} V x=(19.2)\left(\mathrm{I}_{\mathrm{ABC}}\right)(\mathrm{Vx})\)
\(\mathrm{I}_{\mathrm{O}}=\frac{-19.2\left[\mathrm{Vm}^{2}-\left(\mathrm{V}^{-}\right)\right] \mathrm{Vx}}{\mathrm{Rm}}\)
\(\mathrm{I}_{\mathrm{O}}=\frac{19.2(\mathrm{Vx})\left(\mathrm{V}^{-}\right)}{\mathrm{Rm}}-\frac{19.2(\mathrm{Vx})(\mathrm{Vm})}{\mathrm{Rm}}\) (Modulation Equation).

Fig. 19- Amplitude modulator circuit using the OTA.

Fig. 20- Amplitude modulator using OTA controlled by p-n-p transistor.

Fig. 21- Amplitude modulator using OTA controlled by \(p-n-p\) and n-p-n transistors.

There are two terms in the modulation equation: the first term represents the fixed carrier input, independent of Vm, and the second term represents the modulation, which either adds to or subtracts from the first term. When Vm is equal to the V - term, the output is reduced to zero.

In the preceding modulation equations the term
\[
(19.2)(\mathrm{Vx}) \frac{\mathrm{V}_{\mathrm{ABC}}}{\mathrm{Rm}}
\]
involving the amplifier-bias-current terminal voltage (\(\mathrm{V}_{\mathrm{ABC}}\)) (see Fig. 4 for \(\mathrm{V}_{\mathrm{ABC}}\)) was neglected. This term was assumed to be small because \(\mathrm{V}_{.} \mathrm{ABC}\) is small compared with V - in the equation. If the amplifier-bias-current terminal is driven by a current-source (such as from the collector of a p-n-p transistor), the effect of \(\mathrm{V}_{\mathrm{ABC}}\) variation is eliminated and transferred to the involvement of the p-n-p transistor base-emitter junction characteristics. Fig. 20 shows a method of driving the amplifier-bias-current terminal to effectively remove this latter variation. If an n-p-n transistor is added to the circuit of Fig. 20 as an emitter-follower to drive the p-n-p transistor, variations due to base-emitter characteristics are considerably reduced due to the complementary nature of the \(n\)-p-n base-emitter junctions. Moreover, the temperature coefficients of the two base-emitter junctions tend to cancel one another. Fig. 21 shows a configuration using one transistor in the RCA type CA3018A n-p-n transistor-array as an input emitter-follower, with the three remaining transistors of the transistor-array connected as a current-source for the emitter - followers. The \(100-\mathrm{k} \Omega\) potentiometer shown in these schematics is used to null the effects of amplifier input offset voltage. This potentiometer is adjusted to set the output voltage symmetrically about zero. Figs. 22a and 22 b show oscilloscope photographs of the output voltages obtained when the circuit of Fig. 19 is used as a modulator for both sinusoidal and triangular modulating signals. This method of modulation permits a range exceeding \(1000: 1\) in the gain, and thus provides modulation of the carrier input in excess of \(99 \%\). The photo in Fig. 22c shows the excellent isolation achieved in this modulator during the "gated-off" condition.

\section*{Four-Quadrant Multipliers}

A single CA3080A is especially suited for many low-frequency, low-power four-quadrant multiplier applications. The basic multiplier circuit of Fig. 23 is particularly useful for waveform generation, doubly balanced modulation, and other signal processing applications, in portable equipment, where low-power consumption is essential and accuracy requirements are moderate. The multiplier configuration is basically an extension of the previously discussed gain-controlled configuration (Fig. 19).

To obtain a four-quadrant multiplier, the first term of the modulation equation (which represents the fixed carrier) must be reduced to zero. This term is reduced to zero by the placement of a feedback resistor (R) between the output and the inverting input terminal of the CA3080A, with the value of the feedback resistor (R) equal to \(1 / \mathrm{g}_{\mathrm{m}}\). The output current is \(I_{O}=g_{m}(-V x)\) because the input is applied to the

TOP TRACE:MODULATION FREQUENCY INPUT \(\approx 20\) VOLTS P-P \& \(50 \mu \mathrm{sec} / \mathrm{DIV}\)
CENTER TRACE: AMPLITUDE MODULATE OUTPUT \(500 \mathrm{mV} /\) DIV a \(50 \mu \mathrm{sec} / \mathrm{DIV}\)
BOTTOM TRACE:EXPANDED OUTPUT TO SHOW DEPTH OF MODULATION 20 mV /DIV a. \(50 \mu \mathrm{sec} / \mathrm{DIV}\)

TOP TRACE: MODULATION FREQUENCY INPUT 20 VOLTS \& \(50 \mu \mathrm{sec} /\) DIV
BOTTOM TRACE: AMPLITUDE MODULATED OUTPUT \(500 \mathrm{mV} /\) DIV \& \(50 \mu \mathrm{sec} /\) DIV

TOP TRACE : GATED OUTPUT IV/DIV AND \(50 \mu \mathrm{sec} /\) DIV BOTTOM TRACE: VOLTAGE EXPANSION OF ABOVE SIGNAL-SHOWING NO RESIDUAL \(1 \mathrm{mV} / \mathrm{DIV}\) AND \(50 \mu \mathrm{sec} / \mathrm{DIV}\) - AT LEAST 80 db OF ISOLATION \(\mathrm{fq}=100 \mathrm{kHz}\)

Fig. 22- a) Oscilloscope photo of amplitude modulator circuit of Fig. 19 with \(R_{m}=40 \mathrm{k} \Omega, v^{+}=10 \mathrm{v}\) and \(V-=-10 \mathrm{~V}\). Top trace: modulation frequency input \(\simeq 20-\mathrm{V} p-p\); center trace: amplitude modulated output \(500-\mathrm{mV} /\) div.; lower trace: expanded output to show depth of modulation, \(20 \mathrm{mV} / \mathrm{div}\).; b) triangular modulation; top trace: modulation frequency input \(\simeq 20 \mathrm{~V}\); lower trace: amplitude modulated output \(500 \mathrm{mV} / \mathrm{div} . ;\) c) square wave modulation, top trace: gated output \(1 \mathrm{~V} / \mathrm{div}\).; lower trace: expanded scale, showing no residual 11 \(\mathrm{mV} / \mathrm{div}\)) and at least 80 dB of isolation at \(f q=100\) kHz .
inverting terminal of the OTA. The output current due to the resistor (R) is \(\frac{\mathrm{Vx}}{\mathrm{R}}\). Hence, the two signals cancel when \(\mathrm{R}=\) \(1 / \mathrm{g}_{\mathrm{m}}\). The current for this configuration is:
\[
\mathrm{I}_{\mathrm{O}}=\frac{-19.2 \mathrm{Vx} \mathrm{Vm},}{\mathrm{Rm}} \text { and } \mathrm{Vm}=\mathrm{Vy}
\]

The output signal for these configurations is a "current" which is best terminated by a short-circuit. This condition can be satisfied by making the load resistance for the multiplier output very small. Alternatively, the output can be applied to a current-to-voltage converter shown in Fig. 24.

In Fig. 23, the current "cancellation" in the resistor R is a direct function of the OTA differential amplifier linearity. In the following example, the signal excursion is limited to \(\pm 10 \mathrm{mV}\) to preserve this linearity. Greater signal-excursions on the input terminal will result in a significant departure from linear operation (which may be entirely satisfactory in many applications).

Fig. 23-Basic four quadrant analog multiplier using an OTA.

Fig. 24-OTA analog multiplier driving an op-amp that operates as a current-to-voltage converter.

Fig. 25 shows a schematic diagram of the basic multiplier with the adjustments set-up to give the multiplier an accuracy of approximately \(\pm 7\) percent "full-scale". There are only three adjustments: 1) one is on the output, to
compensate for slight variations in the current-transfer ratio of the current-mirrors (which would otherwise result in a symmetrical output about some current level other than zero); 2) the adjustment of the \(20-\mathrm{k} \Omega\) potentiometer establishes the \(\mathrm{g}_{\mathrm{m}}\) of the system equal to the value of the fixed resistor shunting the system when the Y-input is zero; 3) compensates for error due to input offset voltage.

Procedure for adjustment of the circuit:
1. a) Set the \(1 \mathrm{M} \Omega\) output-current balancing potentiometer to the center of its range
b) Ground the X - and Y -inputs
c) Adjust the \(100 \mathrm{k} \Omega\) potentiometer until a zero-V reading is obtained at the output.

Fig. 25- Schematic diagram of analog multiplier using OTA.

Fig. 26- Schematic diagram of analog multiplier using OTA controlled by a p-n-p transistor.

Fig. 27- a) Waveforms observed with OTA analog multiplier used as a suppressed carrier generator; b) waveforms observed with OTA analog multiplier used in signalsquaring circuits.

Fig. 28- Two-channel multiplexer and decoder using OTAs.
2. a) Ground the Y-input and apply a signal to the X input through a low source-impedance generator. (It is essential that a low impedance source be used; this minimizes any change in the \(\mathrm{g}_{\mathrm{m}}\) balance or zero-point due to the \(50-\mu \mathrm{A}\) Y-input bias current).
b) Adjust the \(20-\mathrm{k} \Omega\) potentiometer in series with Y-input until a reading of zero-V is obtained at the output. This adjustment establishes the \(g_{m}\) of the CA3080A at the proper level to cancel the output signal. The output current is diverted through the \(510-\mathrm{k} \Omega\) resistor.
3. a) Ground the X -input and apply a signal to the Y-input through a low source-impedance generator.
b) Adjust the \(1-\mathrm{M} \Omega\) resistor for an output voltage of zero-V.
There will be some interaction among the adjustments and the procedure should be repeated to optimize the circuit performance.

Fig. 26 shows the schematic of an alog multiplier circuit with a \(2 \mathrm{~N} 4037 \mathrm{p}-\mathrm{n}-\mathrm{p}\) transistor replacing the Y-input "current" resistor. The advantage of this system is the higher input resistance resulting from the current-gain of the p-n-p transistor. The addition of another emitter-follower preceding the p-n-p transistor (shown in Fig. 21) will further increase the current gain while markedly reducing the effect of the \(\mathrm{V}_{\mathrm{be}}\) temperature-dependent characteristic and the offset voltage of the two base-emitter junctions.

Figs. 27a and 27 b show oscilloscope photographs of the output signals delivered by the circuit of Fig. 26 which is connected as a suppressed-carrier generator. Figs. 27c and 27d contain photos of the outputs obtained in signal "squaring" circuits, i.e. "squaring" sine-wave and triangularwave inputs.

If \(\pm 15-\mathrm{V}\) power supplies are used (shown in Fig. 26), both inputs can accept \(\pm 10-\mathrm{V}\) input signals. Adjustment of this multiplier circuit is similar to that already described above.

The accuracy and stability of these multipliers are a direct function of the power supply-voltage stability because the \(Y\)-input is referred to the negative supply-voltage. Tracking of the positive and negative supply is also important because the balance adjustments for both the offset voltage and output current are also referenced to these supplies.

Other forms of four-quadrant multipliers using operational transconductance amplifiers have been published. (See Ref. 2.) the circuit shown in Ref. 2 tends to reduce the effects of the previously discussed \(\mathrm{g}_{\mathrm{m}}\) temperature dependency.

\section*{Linear Multiplexer - Decoder}

A simple, but effective system for multiplexing and decoding can be assembled with the CA3080 shown in Fig. 28. Only two channels are shown in this schematic, but the number of channels may be extended as desired. Fig. 29 shows oscilloscope photos taken during operation of the multiplexer and decoder. A CA3080 is used as a \(10 \mu \mathrm{sec}\) delay- "one-shot" multivibrator in the decoder to insure that the sample-and-hold circuit can sample only after the input signal has settled. Thus, the trailing edge of the "one-shot" output-signal is used to sample the input at the sample-and-

TOP TRACE:INPUT SIGNAL (I VOLT/DIV) CENTER TRACE: RECOVERED OUTPUT (IVOLT/DIV) BOTTOM TRACE: MULTIPLEXED SIGNALS (2VOLTS/DIV)

\(20 \mathrm{msec} / \mathrm{DIV}\)
TOP TRACE: INPUT SIGNAL (IVOLT/DIV) CENTER TRACE:RECOVERED OUTPUT (IVOLT/DIV) BOTTOM TRACE:MULTIPLEXED SIGINALS (IVOLT/DIV)

Fig. 29- Waveforms showing operation of linear multiplexer/sample-and-hold decode circuitry ('Fig. 28).

\(20 \mu \mathrm{sec} / \mathrm{DIV}\)
TOP TRACE: FLIP-FLOP OUTPUT (5 VOLTS/DIV) CENTER TRACE: ONE-SHOT" OUTPUT (5 VOLTS/DIV) BOTTOM TRACE: PULSE AT THE COLLECTOR OF THE 2N4O37 TRANSISTOR (O.1 VOLTS / DIV)

TOP TRACE: COLLECTOR OF PNP TRANSISTOR (\(0.5 \mathrm{~V} /\) DIV)
CENTER TRACE:MULTIPLEXED OUTPUT WITH ONE CHANNEL INPUT GROUND (0.5V/DIV) LOWER TRACE: DECODED OUTPUT (\(0.5 \mathrm{~V} / \mathrm{DIV}\)) TIME ALL SCALES: \(5 \mathrm{msec} /\) DIV

TIME EXPANSION TO \(500 \mu \mathrm{sec} /\) DIV

Fig. 30- (a) Waveforms showing timing of flip-flop, delay-"one-shot" and the strobing pulse to the sample-and-hold circuit (Fig. 28): top trace: flip-flop output (\(5 \mathrm{~V} / \mathrm{div}\)); center trace: "one-shot" output (\(5 \mathrm{~V} /\) div); lower trace: pulse at collector of 2N4037 transistor (\(0.1 \mathrm{~V} /\) div); b) Waveforms showing the decoding operation from the decoder keying pulse (top traces) to the recovered "decoded" sampled output (lower traces). 1) top trace: collector of 2N4037; center trace: multiplexed output with one channel input grounded; lower trace: decoded output; 2) Expanded scale of (1).
hold circuit for approximately \(1 \mu \mathrm{~s}\). Fig. 30 shows oscilloscope photos of various waveforms observed during operation of the multiplexer/decoder circuit. Either the Q or \(\overline{\mathrm{Q}}\) output from the flip-flop may be used to trigger the \(10 \mu \mathrm{sec}\) "one-shot" to decode a signal.

\section*{High-Gain, High-Current Output Stages}

In the previously discussed examples, the OTA has been buffered by a single insulated-gate field-effect-transistor (MOS/FET) shown in Fig. 9. This configuration yields a voltage gain equal to the \(\left(g_{m}\right)\left(R_{0}\right)\) product of the CA3080, which is typically \(142,000(103 \mathrm{~dB})\). The output voltage and current-swing of the operational amplifier formed by this configuration (Fig. 9) are limited by the 3N138 MOS/FET performance and its source-terminal load. In the positive direction, the MOS/FET may be driven into saturation; the source-load resistance and the MOS/FET characteristics become the factors limiting the output-voltage swing in the negative direction. The available negative-going load current may be kept constant by the return of the source-terminal to a constant-current transistor. Phase compensation is applied at the interface of the CA3080 and the 3N138 MOS/FET shown in Fig. 9.

Another variation of this generic form of amplifier utilizes the RCA CD4007A (COS/MOS) "inverter" as an amplifier driven by the CA3080. Each of the three "inverter"/amplifiers in the CD4007A has a typical voltage gain of 30 dB . The gain of a single COS/MOS "inverter"/ amplifier coupled with the 100 dB gain of the CA3080 yields a total forward-gain of about 130 dB . Use of a two-stage

Fig. 31- Schematic diagram showing OTA driving COS/MOS Inverter/Amplifier (open-loop mode). For greater current output the two remaining amplifiers of the CD4007A may be connected in parallel with the single stage shown. Open-loop gain \(\simeq 130 \mathrm{~dB}\).

COS/MOS amplifier configuration will increase the total open-loop gain of the system to about 160 dB (\(100,000,000\)). Figs. 31 through 34 show examples of these configurations. Each COS/MOS "inverter"/amplifier can sink or source a current of 6 mA (typ.). In Figs. 33 and 34, two COS/MOS "inverter"/amplifiers have been connected in parallel to provide additional output current.

The open-loop slew-rate of the circuit in Fig. 31 is approximately \(65 \mathrm{~V} / \mu \mathrm{sec}\). When compensated for the unitygain voltage-follower mode, the slew-rate is about \(1 \mathrm{~V} / \mu \mathrm{sec}\) (shown in Fig. 32). Even when the three "inverter"/

Fig. 32- Schematic diagram showing OTA driving COS/MOS Inverter/Amplifier (unity-gain closed-loop mode). For greater current output, the two remaining amplifiers of the CD4007A may be connected in parallel with the single stage shown.
amplifiers in the CD4007A are connected as shown in Fig. 33 , the open-loop slew-rate remains at \(65 \mathrm{~V} / \mu \mathrm{sec}\). A slew-rate of about \(1 \mathrm{~V} / \mu \mathrm{sec}\) is maintained with this circuit connected in the unity-gain voltage-follower mode, as shown in Fig. 34. Fig. 35 contains oscilloscope photos of input-output waveforms under small-signal and large-signal conditions for the circuits of Figs. 32 and 34. These photos illustrate the inherent stability of the OTA and COS/MOS circuits operating in concert.

\section*{Precision Multistable Circuits}

The micropower capabilities of the CA3080, when combined with the characteristics of the CD4007A COS/ MOS "inverter"/amplifiers, are ideally suited for use in connection with precision multistable circuits. In the circuits of Figs. 31, 32, 33, and 34, for example, power-supply current drawn by the COS/MOS "inverter"/amplifier approaches zero as the output voltage swings either positive or negative, while the CA3080 current-drain remains constant.

Fig. 33- Schematic diagram showing OTA driving two-stage COS/MOS Inverter/Amplifier (open-loop mode). gain \(\simeq 160 d B\).
(a)

TOP TRACE: INPUT-5 V/DIV \(-100 \mu \mathrm{sec} /\) DIV BOTTOM TRACE : OUTPUT SAME SCALE
(c)

TOP TRACE:INPUT- \(5 \mathrm{~V} / \mathrm{DIV}-100 \mu \mathrm{sec} / \mathrm{DIV}\) BOTTOM TRACE: OUTPUT - SAME SCALE

Fig. 35- a) Waveforms for circuit of Fig. 32 with large signal input; b) Waveforms for circuit of Fig. 32 with

Fig. 34- Schematic diagram showing OTA driving two-stage COS/MOS Inverter/Amplifier (unity gain closedloop mode).

(b)

TOP TRACE:INPUT- \(50 \mathrm{mV} / \mathrm{DIV}-1 \mu \mathrm{sec} / \mathrm{DIV}\) BOTTOM TRACE: OUTPUT-SAME SCALE

(d)

TOP TRACE:INPUT \(-50 \mathrm{mV} / D I V-1 \mu \mathrm{sec} / D I V\) BOTTOM TRACE: OUTPUT - SAME SCALE
small signal input; c) Waveforms for circuit of Fig. 34 with large signal input; d) Waveforms for circuit of Fig. 34 with small signal input.

Fig. 36- Multistable circuits using the OTA and COS/MOS Inverter/Amplifiers: a) astable multivibrator; b) monostable multivibrator; c) threshold detector (plus or minus). For greater current output, the remaining amplifiers in the CD4007A may be connected in parallel with the single stage shown.

Fig. 36 shows a variety of circuits that can be assembled using the CA3080 to drive one "inverter"/amplifier in the CD4007A. Precise timing and thresholds are assured by the stable characteristics of the input differential amplifier in the CA3080. Moreover, speed vs. power consumption tradeoffs may be made by adjustment of the \(\mathrm{I}_{\mathrm{ABC}}\) current to the CA3080. The quiescent power consumption of the circuits shown in Fig. 36 is typically 6 mW , but can be made to operate in the micropower region by suitable circuit modifications.

\section*{Micropower Comparator}

The schematic diagram of a micropower comparator is shown in Fig. 37. Quiescent power consumption of this circuit is about \(10 \mu \mathrm{~W}\) (typ). When the comparator is strobed "ON", the CA3080A becomes active and consumes \(420 \mu \mathrm{~W}\). Under these conditions, the circuit responds to a differential input signal in about \(8 \mu \mathrm{sec}\). By suitably biasing the CA3080A, the circuit response time can be decreased to about 150 nsec., but the power consumption rises to 21 mW .

The differential amplifier input common-mode range for the circuit of Fig. 37 is -1 V to +10.5 V . Voltage of the micropower comparator is typically 130 dB . For example, a \(5 \mu \mathrm{~V}\) input signal will toggle the output.

Fig. 37-Schematic diagram of micropower comparator using the CA3080A and COS/MOS CD4007A.

\section*{APPENDIX I CURRENT MIRRORS}

The basic current-mirror, described in the beginning of this note, in its rudimentary form, is a transistor with a second transistor connected as a diode. Fig. A shows this basic configuration of the current-mirror. Q2 is a diode connected transistor. Because this diode-connected transistor is not in saturation and is "active", the "diode" formed by this connection may be considered as a transistor with \(100 \%\) feedback. Therefore, the base current still controls the collector current as is the case in normal transistor action, i.e., \(I_{C}=\beta I_{b}\). If a current \(I_{1}\) is forced into the diode-connected transistor, the base-to-emitter voltage will rise until equilibrium is reached and the total current being supplied is divided between the collector and base regions. Thus, a base-to-emitter voltage is established in Q2 such that Q2 "sinks" the applied current \(\mathrm{I}_{1}\).

Fig. A- Diode - transistor current source.

If the base of a second transistor (Q1) is connected to the base-to-collector junction of Q2, shown in Fig. A, Q1 will also be able to "sink" a current approximately equal to that flowing in the collector lead of the diode-connected transistor Q2. This assumes that both transistors have identical characteristics, a prerequisite established by the IC fabrication technique. The difference in current between the input current (\(\mathrm{I}_{1}\)) and the collector current (\(\mathrm{I}_{2}\)) of transistor Q , is due to the fact that the base-current for both transistors is supplied from \(I_{1}\). Fig. B shows this current division, using a unit of base current (1) to each transistor base. This base

Fig. B- Diode - transistor current source. Analysis of current flow.
current causes a collector current to flow in direct proportion to the \(\beta\) of each transistor. The ratio of the "sinking" current \(I_{2}\) to the input current \(I_{1}\) is therefore equal to \(\frac{I_{2}}{I_{1}}=\beta /(\beta+2)\). Thus, as \(\beta\) increases, the output "sinking" current \(\left(\mathrm{I}_{2}\right)\) level approaches that of the input current (\(I_{1}\)). The curves in Fig. \(C\) show this ratio as a function of the transistor \(\beta\). When the transistor \(\beta\) is equal to 100 , for example, the difference between the two currents is only two percent.

Fig. C- Current transfer ratio \(I_{2} / I_{1}\) as a function of transistor beta.

Fig. D shows a curve-tracer photograph of characteristics for the circuit of Figs. A and B. No consideration in this discussion is given to the variation of the transistor (Q1) collector current as a function of its collector-to-emitter voltage. The output resistance characteristic of Q1 retains its similarity to that of a single transistor operating under similar conditions. An improvement in its output resistance characteristic can be made by the insertion of a diode-connected transistor in series with the emitter of Q1.

SCALE : HORIZONTAL \(=2 \mathrm{~V} / D I V\)
VERTICAL \(=1 \mathrm{~mA} / \mathrm{DIV}\) STEPS = ImA/STEP

Fig. D- Photo showing results of Figs. A \& B.

This diode-connected transistor (Q3 in Fig. E) may be considered as a current-sampling diode that senses the emitter-current of Q1 and adjusts the base current Q1 (via Q2) to maintain a constant-current in \(1_{2}\). Because all controlling transistors are operated at relatively fixed voltages, the previously discussed effects due to voltage coefficients do not exist. The curve-tracer photograph of Fig. \(F\) shows the improved output resistance characteristics of the circuit of Fig. E. (Compare Fig. D and F).

Fig. G shows the current-division within the "mirror" assuming a "unit" (1) of current in transistors (Q2 and Q3.

The resulting current-transfer ratio \(\mathrm{I}_{2} / \mathrm{I}_{1}=\frac{\beta^{2+2} \beta}{\beta^{2}+2 \beta+2}\). Fig. C shows this equation plotted as a function of beta. It is significant that the current transfer ratio \(\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)\) is improved by the \(\beta^{2}\) term, and reduces the significance of the \(2 \beta+2\) term in the denominator.

Fig. G- Current flow analysis of Fig. E.

\section*{Conclusions}

The Operational Transconductance Amplifier (OTA) is a unique device with characteristics particularly suited to applications in multiplexing, amplitude modulation, analog multiplications, gain control, switching circuitry, multivibrators, comparators, and a broad spectrum of micropower circuitry. The CA3080 is ideal for use in conjunction with COS/MOS (Complementary-Symmetry MOS) IC's being operated in the linear mode.

\section*{Acknowledgements}

The author is indebted to C. F. Wheatly for many helpful discussions. Valued contributions in circuit evaluation were made by A. J. Visioli Jr. and J. H. Klinger.

\section*{References}

1 RCA's Linear Integrated Circuits Manual, Basic Circuits Section.
2 RCA published data for CA3060 File No. 404

Solid State Division

\author{
by T. J. Robe
}

The advent in recent years of very high-gain operational amplifiers operating in the \(1 / \mathrm{f}\) noise-frequency spectrum has placed emphasis on the need for very low-noise devices. This need is particularly true for operational amplifiers which have either low-offset characteristics and/or offset-null capability.

The traditional methods used to select such devices involve the measurement of either spot or wideband (\(\approx 10\) kHz) noise figures in the \(1 / \mathrm{f}\) frequency range (10 Hz to 10 kHz) at various source resistances. This type of measurement, however, only provides an indication of the average noise power at the measurement frequency and does not reveal the burst ("popcorn") noise characteristics of the Device Under Test (DUT). The metering circuits cannot respond fast enough to measure the effects of burst-noise. Fig. la shows a photograph of typical burst-noise as a function of time for an operational amplifier having poor burst-noise characteristics. This photo illustrates burst-noise which is characterized by random abrupt output voltage-level changes that persist for periods from approximately \(1 / 2\) millisecond to several seconds. Additionally, the random rate at which the bursts occur ranges from approximately several hundred per second to less than one per minute. Furthermore, these rates are not necessarily repetitive and predictable. Consequently, the nature of burst-noise prevents its measurement by means of the standard averaging techniques. Instead, a technique to detect individual bursts must be used and a DUT must be under observation for a period in the order of 10 seconds to one minute. Fig. 1b shows a photo of the output of a virtually burst noise-free operational amplifier, the RCA-CA6741T.

\section*{Test Configuration}

Some of the major questions relevant to the type of test required are:
1. What characteristics of the burst-noise should be detected?
2. What test-circuit configuration is most suitable to detect these characteristics?

\section*{Measurement of Burst ("Popcorn") Noise in Linear Integrated Circuits}
be considered as a variable of prime importance in the selection process. For instance, a burst-rate of 100 per second is clearly objectionable in almost any low-level low-frequency application, whereas the occurrence of only one low-amplitude burst in a one-minute period might be quite acceptable. Consequently, it is desirable to include flexibility in the testing system so that "Pass-Fail" criteria can be established on the basis of burst-noise count in some prescribed period of time. The test equipment described herein detects total noise (\(1 / \mathrm{f}\) noise plus burst noise) bursts with amplitudes above a preset threshold level during a given test period and allows acceptance or rejection on the basis of the number of noise voltage excursions beyond the threshold level, in the selected test period.

Another factor to be considered is the bandwidth of the test system. Excessive bandwidth allows the normal "white" noise of the terminating resistors and the DUT to obscure burst-noise occurrences and does not realistically simulate the low-frequency applications in which burst-noise is particularly objectionable. On the other hand, a test circuit having excessively narrow bandwidth prevents detection of
the shorter-duration bursts (\(\approx 1 / 2 \mathrm{~ms}\)) even if their amplitude is relatively high. A suitable compromise is chosen in which the system rise time permits a burst of "minimum" duration to reach essentially its full amplitude. Because the rise time and bandwidth of an amplifier are related by the equation:
\[
\mathrm{BW} \approx \frac{0.4}{\mathrm{t}_{\mathrm{r}}}
\]
the minimum bandwidth to detect a 0.5 ms burst is approximately:
\[
\mathrm{BW}_{\min }=\frac{0.4}{(0.5)\left(10^{-3}\right)}=0.8 \mathrm{kHz} \quad \text { 人) }
\]

Consequently, a 1 kHz bandwidth has been selected as a reasonable one for a burst-noise test system and, therefore, prescribes the need for a low-pass filter in the system.

The test requirements outlined above can be implemented with the following circuit elements shown in the block diagram of Fig. 2a. Fig. 2b shows the complete system schematic:

Fig. 2a-Block diagram of burst-noise test set-up.

Fig. 2b-Complete schematic diagram for burst noise test-set.
1. A fixed high-gain amplifier incorporating the DUT as the first stage to amplify the microvolt-level burst to an easily detectable level (this should be a burst noise-free unit);
2. A low-pass filter to limit the test bandwidth to approximately 1 kHz ,
3. A comparator to produce a fast-rise high-level singlepolarity output pulse whenever an input burst-noise pulse (of either polarity) exceeds a preset (but adjustable) threshold level;
4. A counter to tally the number of pulses emanating from the comparator during the test period: a single decade counter is adequate.
5. A latch circuit which trips to the "latched" state when the count exceeds a preselected number (e.g. 1.to n). The latch circuit, if tripped, energizes an indicator lamp.
6. A timer to control the period over which the counter is enabled. It should incorporate the capability to reset both the counter and the latch circuit at the beginning of each test period.
7. Power supplies for the DUT and other auxiliary circuits.

\section*{Test Conditions}

Some of the conditions which affect the burst-noise performance of the DUT include bias-level, source resistance (Rs), and ambient temperature (\(\mathrm{T}_{\mathrm{A}}\)).

The quiescent operating conditions in operational amplifiers are normally set by the magnitude of the positive and negative supplies. Many of the newer Op-Amp types, however, have bias-terminals into which fixed currents can be injected to set their performance characteristics. The RCA-CA3060, CA3080, and CA3080A Operational Transconductance Amplifiers (OTA's) and; the RCA-CA3078 and CA3078A Micropower Op-Amps are examples of such devices. For best low-frequency and burst-noise performance, these amplifiers should be operated at the lowest bias currents consistent with the gain-bandwidth requirements of the particular application.

In the test for burst noise, the source resistance (Rs) seen by the input terminals of the DUT, is a key test parameter. Burst noise causes effects which are equivalent to a spurious current-source at the device input and, therefore, burst-noise current generates an equivalent input noise-voltage in proportion to the magnitude of the source resistance through which it flows. Accordingly, to increase the sensitivity of the test system, it is desirable to use the highest source resistance consistent with the input offset-current of the DUT. For example, an Op -Amp which has \(0.1 \mu \mathrm{~A}\) input offset current could realistically be tested with source-resistance in the order of \(100 \mathrm{~K} \Omega(10 \mathrm{mV}\) input offset), whereas a \(1 \mathrm{M} \Omega\) source-resistance (100 mV input offset) could cause excessive offset in the output. For 741 type Op-Amps a \(100 \mathrm{k} \Omega\) resistance is recommended.

Burst-noise generation in amplifiers is usually more pronounced at lower temperatures (particularly below \(0^{\circ} \mathrm{C}\)). Consequently, consideration must be given to the temperature of the DUT in relation to the temperature range under
which the device is expected to perform in a particular operation.

A test parameter of importance is the time duration of observation. Because the frequency of burst-noise occurrence is frequently less than once every few seconds, the minimum test period should be in the range of from 15 to 30 seconds.

\section*{Pass-Fail Criteria}
-A test system built to accommodate the test philosophy outlined above has the ability to reject or pass a DUT on the basis of two variables: burst-amplitude and the frequency of burst occurrence. The burst-amplitude which will trip the counter can be no lower than the background l/f noise peaks of burst-free units, otherwise normal background noise will fail the DUT.

The background noise peaks depend on the source termination Rs, the wide band \(1 / \mathrm{f}\) noise figure of the DUT, and the test system bandwidth. A good estimate of the normal background noise-peak levels can be computed from the definition of noise factor and an empirically determined noise-crest factor of approximately \(6: 1\). The crest-factor is the ratio of the maximum peak-noise voltage to the RMS noise voltage. The noise factor is defined as the ratio of the total noise power at the amplifier output to the output-noise power due to the source resistors alone. In terms of the RMS noise voltages at the input terminals of the amplifier this is equivalent to:
\[
\begin{equation*}
\text { Noise Factor }(F)=\frac{E^{2} \text { input noise total }}{E^{2} \text { noise source resist }}=\frac{\left(E_{N T i}\right)^{2}}{\left(E_{N R S}\right)^{2}} \tag{1}
\end{equation*}
\]
\(\mathrm{E}_{\mathrm{NTi}}\) is the total input noise-voltage, i.e., the sum of noise generated in the source termination resistance and noise generated by the DUT.
\(\mathrm{E}_{\mathrm{NRs}}\) is that part of \(\mathrm{E}_{\mathrm{NTi}}\) due to Rs alone.
\[
\begin{equation*}
\text { Therefore, } \quad E_{N T i}=(\sqrt{F})\left(E_{N R s}\right) \tag{2}
\end{equation*}
\]
\(\mathrm{E}_{\mathrm{NRs}}\) can be computed by using the well known expression for "white-noise" generated across the terminals of a resistor (R):
\[
\begin{equation*}
\mathrm{E}_{\mathrm{NR}}(\mathrm{RMS})=\sqrt{4 \mathrm{kTBR}} \tag{3}
\end{equation*}
\]
where \(\mathrm{k}=\) Boltzmans Constant \(=1.372 \times 10^{-23} \mathrm{j} /{ }^{\circ} \mathrm{K}\)
\(\mathrm{T}=\) Absolute Temperature in \({ }^{\circ} \mathrm{K}\)
\(B=\) Noise Bandwidth in Hz
\(\mathrm{R}=\) Value of the resistor in ohms.
Thus, at a room temperature of \(290^{\circ} \mathrm{K}\)
\[
\mathrm{E}_{\mathrm{NR}}(\mathrm{RMS})=1.28 \times 10^{-10} \sqrt{\mathrm{BR}}
\]

For example, a \(100 \mathrm{k} \Omega\) resistor preceding a system with a bandwidth of 1 kHz will generate a noise-voltage of
\[
\left(1.28 \times 10^{-10}\right) \quad\left(\sqrt{10^{3} \cdot 10^{5}}\right)=1.28 \mu \mathrm{~V}_{\mathrm{RMS}}
\]

Both inputs of an Op-Amp are usually terminated in Rs, hence it is necessary to combine the effects of both resistors to determine the effective \(\mathrm{E}_{\mathrm{NRs}}\) at the input of the DUT. Because the noise voltages from these two resistors are uncorrelated their voltages must be added vectorally rather than algebraically.
\[
\begin{equation*}
\left.\mathrm{E}_{\mathrm{NRs}}(\text { effective })=\sqrt{\left(\mathrm{E}_{\mathrm{NR}_{\mathrm{s} 1}}\right)^{2}+\left(\mathrm{E}_{\mathrm{NR}}^{\mathrm{s} 2}\right.}\right)^{2} \tag{4}
\end{equation*}
\]
because \(\mathrm{E}_{\mathrm{NR}_{\mathrm{s} 1}}=\mathrm{E}_{\mathrm{NR}_{\mathrm{s} 2}}\), when \(\mathrm{R}_{\mathrm{s} 1}=\mathrm{R}_{\mathrm{s} 2}\)
\[
\mathrm{E}_{\mathrm{NRs}}\left(\text { effective }=(\sqrt{2})\left(\mathrm{E}_{\mathrm{NRs}}\right)\right.
\]
and for 1 kHz bandwidth at \(290^{\circ} \mathrm{K}\)
\[
\mathrm{E}_{\mathrm{NRS}}(\text { effective })=(\sqrt{2})(1.28 \mu \mathrm{~V})=1.81 \mu \mathrm{~V}_{\mathrm{RMS}}
\]

If in this example, the DUT has a wideband \(1 / \mathrm{f}\) noise figure of 4 dB (2.5:1 power ratio) the total RMS background noise-voltage at the input will be
\[
\begin{aligned}
\mathrm{E}_{\mathrm{NTi}} & =(\sqrt{\mathrm{F}})\left(\mathrm{E}_{\mathrm{NRs}}\right)(\text { from eq. }(2)) \\
& =(\sqrt{2.5})(1.81)=2.9 \mu \mathrm{~V}_{\mathrm{RMS}}
\end{aligned}
\]

If a crest factor of \(6: 1\) is assumed, the peaks of the background noise will be approximately (6) (2.9) \(=17 \mu \mathrm{~V}\) peak. This voltage is the lower limit of the burst-amplitude rejection level. A reasonable threshold for burst detection and rejection might be \(50-100 \%\) greater than this minimum value.

An alternate method used to set the burst-threshold limit involves a direct measurement (at the output of the high gain amplifier-filter combination) using a storage oscilloscope or a "true RMS" voltmeter. By this method the noise peak or RMS noise voltage of burst-free units is determined. This measurement provides a good practical check on the accuracy of the computation outlined above. Selection of the acceptable number of burst counts in the test period is arbitrary, but dependent on the type of application intended for the DUT. To be acceptable in some critical applications, the DUT may not generate even a single burst-pulse in a relatively long period of time.

\section*{Burst-Noise Test System Circuits}

\section*{1. High gain Amplifier - Filter}

Fig. 3 shows the schematic diagram of the high-gain amplifier-filter which provides a fixed gain of 80 dB with a 12 dB octave roll-off above 1 kHz . The gain-function is somewhat arbitrarily distributed between the DUT and

Fig. 3- Schematic diagram of high-gain amplifier/filter.
post-amplifier: 30 dB and 50 dB respectively. This distribution is based on the need for sufficient gain in the DUT portion to eliminate significant noise-signal contributions from the second stage while simultaneously allowing adequate loop-gain in each stage to provide accurate gain-setting with precise external resistors. The first stage is shown as a plug-in module so that any type of DUT configuration having 30 dB gain can be tested.

The capacitive coupling employed provides a low frequency cutoff of about 1 Hz and eliminates the need for dc-offset zero-adjustments. The dc offset-voltage at the filter output is less than 5 mV which corresponds to less than \(0.5 \mu \mathrm{~V}\) error when referred to the noise input (an 80 dB gain is assumed.) Several seconds must be allowed, however, for the DC operating point to stabilize after the power is applied to the DUT.

\section*{2. Bi-Polarity Comparator}

Fig. 4 shows the schematic diagram for the thresholddetecting comparator. Because bursts of either polarity must be detected and converted to positive output pulses, two comparators are required: one having a positive-threshold reference and the other having a negative-threshold reference of equal magnitude. The RCA CA3060 triple OTA is convenient to use because a single package provides circuits
for both comparators plus a reference inverter for the negative threshold reference. The positive feedback provided by the \(\mathrm{R}_{\mathrm{f}}\) and \(\mathrm{R}_{\mathrm{i}}\) connections produces a hysteresis effect with reference to the input switching threshold, (i.e., the comparator does not return to its quiescent state until the input noise signal drops well below the initial threshold trip-level). This feature is necessary to prevent multiple triggering by the background noise signals superimposed on top of the burst-noise pulse. By this means, multiple counting of a single burst-noise pulse is avoided.

The magnitude of the threshold reference voltage \(\mathrm{E}_{\mathrm{R}}\) determines the burst-level which trips the comparator. If a voltage gain of 80 dB is provided by the amplifiers, a 200 mV reference voltage will enable the circuit to be triggered when a burst-noise pulse (whose amplitude is equivalent to the level of \(20 \mu \mathrm{~V}\) referred to the DUT input) is present.

\section*{3. Counter-Latch-Timer Control Circuits}

The remaining circuits of the go-no-go burst-noise tester are shown in Fig. 5. The decade-counter is incorporated in a single COS/MOS IC (RCA CD4017AE) which has clock, reset, and enable inputs, and an output terminal for each of ten count-positions (0 to 9). A carry-out signal is available if the use of more than a single decade is desired. The clock input-signal must be positive-going and have a magnitude of

Fig. 4- Schematic diagram of threshold-detecting comparator.

Fig. 5- Counter-latch-timer-control circuit schematic.
at least \(70 \%\) of the supply-voltage and rise-time equal to or less than \(15 \mu \mathrm{~s}\). The comparator shown in Fig. 4 provides an output signal which meets these requirements.

Selection of the reject count is made by a pin-jack connection of the latch-circuit input-lead to the appropriate output terminal of the counter. Whenever the selected count-position voltage goes "high" the latch-circuit is switched to the latched-state, and the fail-indicator lamp "on". The latch and lamp will remain "on" until the reset button of the electronic timer is switched to the "Timer On" position. This action provides a momentary reset signal (\(\approx\) 20 ms) to both the latch and counter circuits and places a continuous enable voltage on the counter for the duration of the test period.

\section*{Spurious Noise Sources and Their Suppression}

The very low voltage levels and the high source impedances normally used for burst testing render the system highly susceptable to external spurious noise sources. This problem is particularly serious if a test unit is going to be rejected for as little as one or two input burst-noise pulses exceeding \(20-30 \mu \mathrm{~V}\). The major sources of spurious noise encountered in the development of this test system were:
1. \(60-\mathrm{Hz}\) hum pickup,
2. power supply transients, 3. electromagnetic pick up of switching transients.
\(60-\mathrm{Hz}\) hum is introduced by capacitive or inductive coupling or as power-supply ripple. Power-supply ripple is not normally a problem when testing operational amplifiers with regulated supplies, because the Op Amps generally have good power-supply rejection. This source of noise must be considered, however, when testing devices that do not have good inherent power-supply rejection. Capacitive or inductive coupling of hum can occur when \(60-\mathrm{Hz}\) line cord leads are within a few inches of the input terminals of the DUT. Precautions, such as proper lead dress and twisting of the \(60-\mathrm{Hz}\) leads, eliminate this problem.

Power-supply transients, as distinguished from powersupply ripple, can be of sufficient amplitude to introduce detectable noise pulses at the operational amplifier input. Such transients are produced when other equipment on the same ac line is switched on or off. A typical power-supply rejection ratio for an operational amplifier is \(50 \mu \mathrm{~V} / \mathrm{V}\) (i.e. a 1 volt transient on the power-supply is equivalent to a \(50 \mu \mathrm{~V}\) noise pulse at the DUT input). This example demonstrates that the test system cannot tolerate power-supply transients greater than approximately 100 mV even when testing units with good power-supply rejection. Unless the power-supply is
known to be free of such transients, a battery-operated system is recommended. Even when this system is batteryoperated, "On-Off" switching of nearby equipment introduces detectable transients into the system. These problems are eliminated by placing the test circuitry in a completely shielded enclosure with a hinged top for easy access to the test unit. The external noise problem is best solved by use of a shielded enclosure and by use of a battery-operated power-supply contained within the enclosure. Fig. 6 shows a photo of the circuit board layouts of the test unit.

Fig. 6- Photo of circuit-board layout.

\section*{Application Notes on MOS/FET Devices}
AN-3193 "Application Considerations for the RCA-3N128 VHF MOS Field-Effect Transistor" 336
AN-3341 "VHF Mixer Design Using the RCA-3N128 MOS Transistor" 344
AN-3452 "Chopper Circuits Using RCA MOS Field-Effect Transistors' 347
AN-3453 "An FM Tuner Using an RCA-40468 MOS-Transistor RF Amplifier' 354
AN-3535 "An FM Tuner Using Single-Gate MOS Field-Effect
Transistors as RF Amplifier and Mixer" 360
AN-4018 "Design of Gate-Protected MOS Field-Effect Transistors" 366
AN-4431 "RF Applications of the Dual-Gate MOS FET up to \(500 \mathrm{MHz}^{\prime \prime}\) 371

\title{
Application Considerations for the RCA 3N128 VHF MOS Field-Effect Transistor
}

\author{
by \\ F. M. Carlson
}

Early MOS field-effect transistors were intended primarily for low-frequency applications in which their extremely high input impedance is advantageous,* and were not designed to be useful in the vhf range (30 to 300 MHz). Recently, however, RCA has developed high-frequency MOS transistors that exhibit high gain and low noise at vhf, together with very low feedback capacitance and cross-modulation distortion that approaches the low levels of electron tubes. The low level of cross-modulation distortion is a particularly important characteristic in view of the increasing congestion of the communications frequency bands.

This note describes applications and vhf circuit considerations for a new high-frequency n-channel MOS field-effect transistor, the RCA 3N128. Biasing requirements and basic circuit configurations are discussed, and selection of the optimum operating point and methods of automatic gain control are explained. The crossmodulation and intermodulation distortion characteristics of the 3 N 128 MOS transistor are compared to those of bipolar transistors, and procedures are given for the design of a practical vhf amplifier that uses the 3 N 128 .

\section*{Biasing Requirements and Circuit Configurations}

The biasing requirements and operating characteristics of an n-channel MOS transistor such as the

\footnotetext{
* The basic theory of MOS transistors and equivalent circuits for these devices are discussed in RCA Application Note AN-201, "Application Considerations for RCA 3N98 and 3N99 Silicon MOS Transistors," by D. M. Griswold.
}

3N128 are similar to those of an electron tube. For example, the 3 N 128 uses positive drain voltages and usually negative gate voltages which are analogous to the plate and grid voltages, respectively, of electron tubes. In addition, the current-voltage characteristics of the 3N128, shown in Fig.1, are similar to those of a pentode tube. An electron-tube analogy, therefore, can be useful in the analysis of the n-channel 3N128 MOS transistor. \({ }^{\dagger}\)

Fig. 1 - Transfer characteristics for the RCA 3N128 vhf MOS transistor.

Although their characteristics are similar, MOS transistors have several important advantages over electron tubes. They can be operated at the low voltages typical of bipolar transistors. The de gate current of MOS transistors is substantially less than the

\footnotetext{
\(\dagger\) The electron-tube analogy does not apply to p-channel MOS transistors or to enhancement types.
}
grid current of most electron tubes. In addition, the MOS transistor requires no heat-generating filament.

MOS transistors are most often used in the commonsource type of circuit configuration. Fig. 2 shows three basic methods of dc-biasing an MOS transistor in a common-source circuit. MOS transistors may also be used in common-gate or common-drain (source-follower) configurations. \({ }^{2}\) These circuits are not widely used in vhf applications, however, because their gain is low at high frequencies.

Fig. 2 - Bias methods for common-source MOS transistor stages: (a) fixed bias; (b) source-resistor bias; (c) constant-current bias.

Fig. 3 shows a \(200-\mathrm{MHz}\) common-source amplifier used to measure the rf power gain of the MOS transistor. This amplifier uses a modified form of the constantcurrent biasing arrangement shown in Fig.2(c). With this modified biasing arrangement, both the insulated gate and the case of the MOS transistor are operated at dc ground potential. The insulated gate should always have a dc path to ground even if the path is through a multimegohm resistor. If the gate is allowed to float, the resultant dc bias conditions may be unpredictable and possibly harmful.

Fig. 3 - 200-MHz common-source amplifier.
Fig. 4 illustrates the effect of the leakage resistances \(\mathrm{R}_{\mathrm{L}_{1}}\) and \(\mathrm{R}_{\mathrm{L}_{2}}\) when the insulated gate is floating. When these resistances (\(\approx 10^{14}\) ohms) are approximately equal, they form a voltage divider which biases the insulated gate at \(+\mathrm{V}_{\mathrm{DD}} / 2\). This value of bias voltage may exceed the maximum rating for positive gate voltage and, in addition, may cause an excessive flow of drain current.

Fig. 4 - Bias conditions for an MOS transistor when the insulated gate is floating.

The cascode configuration represents a useful variation of common-source circuit. In this configuration, a common-source-connected MOS transistor is used in the lower section of the cascode, and a common-gate-connected MOStransistor is used in the upper section. Fig. 5 shows the use of MOS transistors in a \(200-\) MHz cascode amplifier. This circuit normally requires a negative voltage on the gate of \(\mathrm{Q}_{1}\), a positive voltage on the gate of \(\mathrm{Q}_{2}\), and approximately equal drain-tosource voltages for each transistor. Although the gate of \(\mathrm{Q}_{2}\) may require a positive voltage of 5 to 10 volts, the net gate-to-source voltage for this transistor should be approximately 0 to -1 volt.

Fig.5-200-MHz cascode amplifier.

\section*{Selection of Operating Point}

The operating point selected determines the power gain, noise figure, power dissipation, and, where applicable, battery life. In many applications, a compromise between gain and available supply voltages or battery lifetime is necessary. Knowledge of the variation in gain and noise figure as functions of voltage and current is essential, therefore, before an operating point can be selected.

The 3 N 128 provides maximum rf power gain at a drain-to-source voltage \(\mathrm{V}_{\mathrm{DS}}\) of approximately 20 volts and a drain current \(I_{D}\) of about 5 milliamperes. The transistor also exhibits a minimum noise figure at a \(\mathrm{V}_{\mathrm{DS}}\) of 20 volts for a drain current of about 2 milliamperes. The difference in the noise figures obtained at 2 milliamperes and at 5 milliamperes, however, is very small (usually between 0 and 0.2 dB) and generally is not a significant factor in the selection of the operating point. Although a \(V_{\mathrm{DS}}\) of 20 volts represents the optimum value for the 3 N 128 in terms of both rf power gain and noise figure, this value is also the maximum \(\mathrm{V}_{\mathrm{DS}}\) rating for the transistor. Greater long-term reliability is achieved, therefore, by operation of the 3 N 128 at a \(V_{\mathrm{DS}}\) of 12 to 15 volts rather than at 20 volts.

For a \(V_{D S}\) of 15 volts and an \(I_{D}\) of 5 milliamperes, the 3 N 128 typically provides a power gain of 18 dB and a noise figure of 4 dB at 200 MHz . Operation of the 3N128 at considerably lower drain currents, such as those normally employed in battery-powered equipment, does not seriously affect system performance. For example, when the transistor is operated at a \(\mathrm{V}_{\mathrm{DS}}\) of 15 volts and an \(I_{D}\) of only 1 milliampere, the power gain and noise figure at 200 MHz are typically 15.5 dB and 4.5 dB , respectively. Because the MOS transistor is a voltage-controlled device, its performance for a given power dissipation can often be improved by operation at high voltage and low current levels. At a power
dissipation of 30 milliwatts, for example, the 3 N 128 typically provides a power gain of 17.3 dB and a noise figure of 3.9 dB when operated at 15 volts and 2 milliamperes. At the same dissipation level, however, the power gain is reduced to 14.6 dB and the noise figure is increased to 4.7 dB when the 3 N 128 is operated at 6 volts and 5 milliamperes. Fig. 6 shows the variations in power gain and noise figure of the 3 N 128 as functions of the drain current and voltage.

Fig. 6 - Power gain and noise figure of the RCA 3N128 at 200 MHz as functions of drain current and voltage.

A gate voltage \(\mathrm{V}_{\mathrm{G}}\) of between -0.5 and -2 volts is normally required to bias a 3 N 128 for operation at a drain voltage \(V_{D}\) of 15 volts and a drain current \(I_{D}\) of 5 milliamperes. If a fixed-bias circuit, as shown in Fig.2(a), is used, the value of the gate voltage must be adjustable to compensate for variations among individual transistors. For the source-resistance bias circuit shown in Fig.2(b) the value of the biasing resistor should be 200 ohms (\(5 \mathrm{~mA} \times 200\) ohms \(=1\) volt). The source-resistance circuit will limit the variations in current among the different transistors to approximately

50 per cent. With the constant-current bias circuit shown in Fig.2(c), variations in current from one transistor to another can easily be limited to less than 10 per cent. Regardless of the bias circuit or the bias point selected, there is no danger of thermal runaway with the 3 N 128 because this transistor has a negative temperature coefficient at the zero-gate-bias point. In the selection of the bias circuit for an MOS transistor stage in which automatic gain control is employed, consideration should be given to the following principle: The more restrictive the tolerance imposed on quiescent operating-point current, the more difficult automatic gain control of the stage becomes because the selfcompensating action of the constant-current bias circuit also resists current changes that result from the agc action.

\section*{AGC Methods}

When it is necessary to employ agc in an MOS transistor stage, either of two methods may be used to reduce transistor gain. In one method, referred to as reverse agc, the reduction in gain is accomplished by an increase in negative gate bias. In the other method, the gain is decreased by reduction of the drain-tosource voltage.

In the reverse agc method, the application of higher negative voltage to the gate reduces the drain current and the transconductance of the transistor. The low feedthrough capacitance of the 3N128 (typically about 0.13 picofarad) usually permits more than 30 dB of gain reduction at frequencies up to 200 MHz . Substantially greater gain reduction can be achieved at lower frequencies or in neutralized amplifier circuits.

Gain reduction achieved by the decrease of drain-to-source voltage is usually controlled by a variable impedance in series, or in shunt, with the MOS transistor. The variable impedance may be another MOS transistor or a bipol ar transistor. A major disadvantage of this method is that the MOS feedback capacitance rises by a factor of 4 or 6 times as \(V_{D}\) approaches zero. This increase in capacitance reduces the age range obtainable and decreases the effectiveness of a fixed neutralization network. In addition, the output impedance of the 3 N 128 decreases with a reduction in the drain voltage.

In the cascode circuit, age is accomplished most effectively by application of a negative voltage to the gate of the upper (common-gate) section. A wide age range can be obtained in this circuit. Gain reductions greater than 45 dB at 200 MHz or 65 dB at 60 MHz are realizable in an unneutralized cascode circuit.

\section*{RF Considerations}

One of the prime advantages of the 3N128 MOS transistor over bipolar transistors is its superior cross-
modulation, intermodulation, and modulation distortion performance. The 3 N 128 has considerably lower feedback capacitance than junction-gate field-effect transistors. In addition, the 3 N 128 maintains a high input resistance at frequencies well into the vhf range (the real part of the input admittance, \(\operatorname{Re}\left(y_{11}\right)=0.15\) mmho at 100 MHz).

At maximum gain, the cross-modulation distortion of the 3 N 128 is approximately one-tenth that of most bipolar transistors, or roughly comparable to the crossmodulation performance of vacuum tubes (at 200 MHz , an interfering signal of approximately 80 millivolts is required to produce cross-modulation distortion of 1 per cent). However, cross-modul ation susceptibility changes as the gain of the stage is changed. For a single 3N128, the cross-modulation distortion increases when reverse agc is applied; the distortion is also increased, but to a lesser extent, if agc action is achieved by reduction of the drain-to-source voltage. A deterioration in cross-modulation performance at high attenuation results from the fact that the MOS triode is a sharpcutoff device; as a result, large non-linearities occur near "pinch-off." Beyond 'pinch-off," the transadmittance depends primarily upon the capacitive feedthrough, which does not have large third-order nonlinearities. Cross-modulation performance at the extreme limits of attenuation, therefore, is very good. \({ }^{1}\) In cascode stages, the effect of reverse age on crossmodulation distortion is reduced when the agc is applied to the gate of the common-gate stage; application of reverse bias to the gate of the common-source stage results in cross-modulation performance similar to that of a single triode-connected stage. Figs. 7 and 8 show the variation in cross-modulation susceptibility as a function of agc. The test circuits used to measure cross-modulation distortion of MOS transistors are shown in Fig.9.

Fig. 7 - Cross-modulation distortion as a function of the attenuation produced by reverse agc.

Fig. 8 - Cross-modulation distortion as a function - f the attenuation produced when age is accomplished by a reduction of drain-to-source voltage.

The test circuit shown in Fig. 10 is used to measure the intermodulation distortion of MOS transistors. In such measurements, the receiver is tuned to 150 MHz . The MOS is then inserted, and bias voltages are applied. When no signals are applied (i.e., the amplitudes of the signials \(f_{1}\) and \(f_{2}\) are both 0 volts), the rf indicator of the receiver indicates an equivalent input noise level of approximately 2.4 microvolts. The signals \(f_{1}\) and \(f_{2}\) are gradually increased in amplitude until the reading on the rf indicator is 1 microvolt above the noise level (3.4 microvolts total). This reading indicates that 2.4 microvolts of \(150-\mathrm{MHz}\) signal is being produced by the interaction of \(f_{1}\) and \(f_{2}\) (i.e., \(2 f_{1}-f_{2}=150\) MHz). Table I lists the dc bias levels used for the 3N128 MOS transistor and the amplitude of the \(\mathrm{f}_{1}\) and \(\mathrm{f}_{2}\) signals required to produce an output, at 150 MHz , of 2.4 microvolts, which corresponds to 1 microvolt above the input noise level. The amplitudes of \(f_{1}\) and \(f_{2}\) were measured by an rf vacuum-tube voltmeter; the \(f_{1}\) generator was turned down for measurement of \(f_{2}\), and vice versa.

Table I
INTERMODULATION DISTORTION DATA FOR THE 3 N 128 MOS TRANSISTOR

Interfering Voltages Required to Produce
2.4 microvolts at 150 MHz
\begin{tabular}{crcc}
\begin{tabular}{c}
VD \\
volts
\end{tabular} & \begin{tabular}{c}
ID \\
mA
\end{tabular} & \(f_{1}\left(\begin{array}{c}(175 \\
\mathbf{m V} \\
\mathrm{MHz})\end{array}\right.\) & \(f_{2}(200 \mathrm{MHz})\) \\
16.5 & 10 & 18 & \(\mathbf{m V}\) \\
16.5 & 10 & 7 & 18 \\
16.5 & 5 & 15 & 150 \\
16.5 & 5 & 3.5 & 15 \\
16.5 & 5 & 30 & 150 \\
16.5 & 2.5 & 19 & 3.5 \\
& & & 21
\end{tabular}

When the same test methods were used to measure the intermodulation distortion of bipolar transistors, distortion levels were found to be two to five times greater than those of the 3 N 128 MOS transistor.

Fig. 9 - Test circuits used to measure cross-modulation distortion in MOS transistors: (a) block diagram;
(b) unneutralized-stage test circuit;
(c) neutralized-stage test circuit;
(d) cascode-stage test circuit.

\section*{Designing VHF MOS Amplifier Circuits}

A complete set of graphs of typical y parameters, both as a function of frequency at constant bias and as as a function of bias at constant frequency, are given in the published data for the 3 N 128 MOS transistor. The application of these y parameters in the design of the \(200-\mathrm{MHz}\) amplifier shown in Fig. 3 is discussed in following paragraphs.

For operation at a frequency of 200 MHz , an \(\mathrm{I}_{\mathrm{D}}\) of

Fig. 10 - Test circuit used to measure intermodulation distortion in MOS transistors.

5 milliamperes, and a \(\mathrm{V}_{\mathrm{D}}\) of 15 volts, the y parameters of the 3N128 are typically as follows:
\(y_{11}\) (input admittance with output short-circuited) \(=0.45+\mathrm{j} 7.2 \mathrm{mmhos}\)
\(\mathrm{y}_{22}\) (output admittance with input short-circuited) \(=0.28+\mathrm{j} 1.75 \mathrm{mmhos}\)
\(\mathrm{y}_{21}\) (forward transfer admittance with output shortcircuited) \(=7.0-\mathrm{j} 1.9 \mathrm{mmhos}\)
\(\mathrm{y}_{12}\) (reverse transfer admittance with input shortcircuited) \(=0-\mathrm{j} 0.16 \mathrm{mmhos}\)
If \(\mathrm{y}_{12}\) is assumed to be zero, the maximum available power gain (MAG) under conjugately matched conditions,* may be computed. MAG serves as a useful figure of merit for comparison of the vhf power gain of various MOS transistors. The MAG for the 3N128 is determined as follows:
MAG \(=\frac{\left|y_{21}\right|^{2}}{4 \operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right)}=\frac{|7.0-\mathrm{j} 1.9|^{2}}{4(0.45)(0.28)}=104=20.2 \mathrm{~dB}\)
where Re means "the real part of."
All MOS transistors have a small, but measurable, feedback component (\(\mathrm{y}_{12}\)); it is possible, therefore, that some of them will oscillate under certain circuit conditions. This possibility may be checked by use of methods given by Linvill \({ }^{2,4}\) and by Stern. \({ }^{3,4}\) If the transistor is unconditionally stable for any combination of passive source and load admittances, then Linvill's critical stability factor C , as determined from the following equation, is less than \(|1|\) :
\[
\begin{equation*}
\mathrm{C}=\frac{\left|\mathrm{y}_{21} \mathrm{y}_{12}\right|}{2 \operatorname{Re}\left(\mathrm{y}_{11}\right) \operatorname{Re}\left(\mathrm{y}_{22}\right)-\operatorname{Re}\left(\mathrm{y}_{21} \mathrm{y}_{12}\right)} \tag{2}
\end{equation*}
\]

\footnotetext{
* Conjugate match means that the transistor input and the generator and the transistor output and load are matched resistively and that all reactance is tuned out.
}

The critical stability factor for the 3 N 128 is calculated as follows:
\[
\mathrm{C}=\frac{|(7.0-\mathrm{j} 1.9)(0-\mathrm{j} 0.16)|}{2(0.45)(0.28)-\operatorname{Re}(7.0-\mathrm{j} 1.9)(-\mathrm{j} 0.16)}=2.08
\]

Stern has derived a similar expression for stability \(\mathrm{C}_{\mathrm{S}}\) that includes the effect of the generator and load conductances, \(y_{g}\) and \(y_{L}\), respectively, as follows:
\(C_{S}=\frac{\left|y_{21} y_{12}\right|}{2 \operatorname{Re}\left(y_{11}+y_{g}\right) \operatorname{Re}\left(y_{22}+y_{L}\right)-\operatorname{Re}\left(y_{21} y_{12}\right)}<|1|\)
If a conjugate match is assumed at both the input and the output, then \(\operatorname{Re}\left(y_{g}\right)=\operatorname{Re}\left(y_{11}\right)\), and \(\operatorname{Re}\left(y_{L}\right)=\operatorname{Re}\left(y_{22}\right)\). For this condition, the stability factor is calculated as follows:
\(\mathrm{C}_{\mathrm{S}}=\frac{|(7.0-\mathrm{j} 1.9)(-\mathrm{j} 0.16)|}{2(0.45+0.45)(0.28+0.28)-\operatorname{Re}(7.0-\mathrm{j} 1.9)(-\mathrm{j} 0.16)}=\frac{1.16}{1.31}=0.885\)
These calculations show that the transistor itself is not unconditionally stable, but that it is stable when placed in a conjugately matched circuit. Therefore, neutralization is not required, although it may be used if a more symmetrical pass-band characteristic is desired. All unneutralized amplifiers have a certain amount of skew in the selectivity characteristic; if this skewness becomes objectionable for the required application, then neutralization (or mis-matching) is necessary.

When neutralization is desired, there are two common methods of obtaining the required feedback. The first, and more common method, is the capacitancebridge technique shown in Fig.11(a). The capacitance bridge becomes more apparent when the circuit is redrawn as shown in Fig. 11(b). The condition for neutral-

Fig.11-Capacitance-bridge neutralization circuit: (a) actual circuit configuration; (b) circuit redrawn to emphasize capacitance-bridge network.
ization is that \(i_{f}=i_{n}\). This condition implies the following relationship:
\[
\begin{equation*}
\frac{v_{d}}{j X_{f}}=\frac{-v_{n}}{j X_{n}} \text {, or } C_{f} v_{d}=-C_{n} v_{n} \tag{4}
\end{equation*}
\]

The voltage \(\mathrm{v}_{\mathrm{n}}\) is defined by the following equation:
\(\mathrm{v}_{\mathrm{n}}=\left(\frac{\mathrm{v}_{\mathrm{d}}}{\mathrm{jX} \mathrm{X}_{\mathrm{L}}+\mathrm{jX}}\right) \mathrm{jX} \mathrm{X}_{1}=\left(\frac{\mathrm{v}_{\mathrm{d}}}{\left.-\frac{\omega^{2} \mathrm{LC}_{1}+1}{\mathrm{j} \omega \mathrm{C}_{1}}\right) \frac{1}{\mathrm{j} \omega \mathrm{C}_{1}}-=\frac{\mathrm{v}_{\mathrm{d}}}{-\omega^{2} \mathrm{LC}_{1}+1}}\right.\)
If this relationship for \(v_{n}\) is substituted in Eq. (4), the following result is obtained:
\[
\begin{equation*}
\mathrm{C}_{\mathrm{f}_{\mathrm{d}}}=-\mathrm{C}_{\mathrm{n}}\left(\frac{\mathrm{v}_{\mathrm{d}}}{-\omega^{2} \mathrm{LC}_{1}+1}\right) \text {, or } \mathrm{C}_{\mathrm{n}}=-\mathrm{C}_{\mathrm{f}}\left(-\omega^{2} \mathrm{LC}_{1}+1\right) \tag{6}
\end{equation*}
\]

At resonance, the equation for the neutralization capacitance \(C_{n}\) may be rewritten as follows:
\[
\begin{equation*}
C_{n}=-C_{f}\left[\left(\frac{-1}{\omega C_{2}}\right) \omega C_{1}+1\right]=C_{f}\left(\frac{C_{1}}{C_{2}}-1\right) \tag{7}
\end{equation*}
\]

If \(\mathrm{C}_{1} \gg \mathrm{C}_{2}\), Eq.(7) may be rewritten as follows:
\[
\begin{equation*}
\mathrm{C}_{\mathrm{n}} \approx \mathrm{C}_{\mathrm{f}}\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \tag{8}
\end{equation*}
\]

The other common method of neutralization is the transformer-coupled method shown in Fig.12. Again, the condition for neutralization is that \(i_{f}=i_{n}\). The requirements for this condition are expressed by the following equation:
\[
\begin{equation*}
\frac{\mathrm{v}_{\mathrm{d}}}{\mathrm{X}_{\mathrm{f}}}=\frac{-\mathrm{v}_{\mathrm{n}}}{\mathrm{X}_{\mathrm{n}}}, \text { or } \mathrm{C}_{\mathrm{f}} \mathrm{v}_{\mathrm{d}}=-\mathrm{C}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}} \tag{9}
\end{equation*}
\]

Fig. 12 - Transformer-coupled neutralization circuit.

Eq.(9) may be rewritten in the following form:
\[
\begin{equation*}
\left|\frac{v_{\mathrm{d}}}{\mathrm{v}_{\mathrm{n}}}\right|=\frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{f}}} \tag{10}
\end{equation*}
\]

The required turns ratio for the coupling transformer can be determined from Eq. (10).

The generator and load impedances must be matched to the transistor input and output impedances, respectively, to obtain maximum gain. For the \(200-\mathrm{MHz}\) amplifier shown in Fig.3, the generator resistance at the input is 50 ohms. For a conjugately matched input,
the generator admittance \(\mathrm{y}_{\mathrm{g}}\) and the real part of the transistor input admittance must appear to be equal. Because the generator admittance \(\mathrm{y}_{\mathrm{g}}\) is 20 mmhos and the real part of the input admittance \(\operatorname{Re}\left(y_{11}\right)\) is 0.45 mmho, the coupling transformer must provide a transformation ratio of 44 to obtain the desired impedance match. The turns ratio required is determined as follows:
\[
\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\sqrt{44}=6.6
\]

Experimentally, a turns ratio of 4 was found to be approximately the optimum value. This difference results, in part, from the fact that the parallel resistance of the tank coil was not considered in the calculation. At the output of the \(200-\mathrm{MHz}\) amplifier, the load is also 50 ohms. Because the dc drain voltage must be blocked from the load, a series matching capacitor was selected which performs both dc blocking and resistive matching simultaneously.

In the actual load-circuit network shown in Fig. 13(a), the value of capacitor \(\mathrm{C}_{\mathbf{s}}\) must be chosen so that the load admittance, \(\mathrm{y}_{\mathrm{L}}=20\) millimhos, is apparently equal to the real part of the transistor output admittance, \(\operatorname{Re}\left(y_{22}\right)=0.28\) millimhos. Fig.13(b) shows the equivalent circuit of the load-circuit network for this condition.

Fig.13-Output network in which series coupling capacitance is used for dc-voltage blocking and resistive matching: (a) actual network; (b) electrical equivalent.

The following equation gives the input impedance \(\mathrm{Z}_{\mathrm{IN}}\) for the network shown in Fig. 13:
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{IN}}=\mathrm{R}_{\mathrm{S}}+\frac{1}{\mathrm{j} \omega \mathrm{C}_{\mathrm{S}}} \tag{11}
\end{equation*}
\]

The input admittance \(y_{\text {IN }}\), therefore, may be expressed as follows:
\[
\begin{equation*}
y_{I N}=\frac{1}{R_{p}}+j \omega C_{p}=\frac{1}{Z_{I N}}=\frac{1}{R_{S}+\frac{1}{j \omega C_{S}}} \tag{12}
\end{equation*}
\]

The terms in Eq. (12) are rearranged to obtain the following result:
\[
\begin{equation*}
\frac{R_{S}}{R_{p}}+j \omega C_{p} R_{S}+\frac{1}{j \omega C_{S} R_{p}}+\frac{j \omega C_{p}}{j \omega C_{S}}=1 \tag{13}
\end{equation*}
\]

The real and imaginary terms in Eq.(13) are equated to obtain the following relationships:
\[
\begin{gather*}
\frac{R_{S}}{R_{p}}+\frac{C_{p}}{C_{s}}=1 \tag{14}\\
\omega C_{p} R_{S}-\frac{1}{\omega C_{S} R_{p}}=0 \tag{15}\\
C_{p}=\frac{1}{\left(\omega C_{S} R_{p}\right)\left(\omega R_{s}\right)} \tag{16}
\end{gather*}
\]

Eq. (16) is substituted into Eq.(14) to obtain the following equation for the matching capacitance \(\mathrm{C}_{\mathrm{S}}\) :
\[
\begin{equation*}
\mathrm{C}_{\mathrm{s}}=\frac{1}{\omega} \sqrt{\frac{1}{\left(\mathrm{R}_{\mathrm{p}}-\mathrm{R}_{\mathrm{s}}\right) \mathrm{R}_{\mathrm{S}}}} \tag{17}
\end{equation*}
\]

Substitution of numerical values for the parameters in Eq.(17) yields the following value for \(\mathrm{C}_{\mathrm{s}}\) :
\[
\mathrm{C}_{\mathrm{s}}=\frac{1}{2 \pi\left(2 \times 10^{8}\right)} \sqrt{\frac{1}{(3600-50) 50}}=1.9 \mathrm{pF}
\]

Experimentally, a 3-picofarad capacitor was found to perform very satisfactorily in the amplifier. If \(R_{p} \gg\) \(\mathrm{R}_{\mathrm{S}}\), then \(\mathrm{C}_{\mathrm{p}} \approx \mathrm{C}_{\mathrm{s}}\). Therefore, a 3-picofarad capacitance appears in parallel with the 1.4 -picofarad capacitance of the MOS transistor. A small 1-to-9-picofarad variable air capacitor was selected for the tank tuning capacitor to compensate for variations among transistors. For a nominal value of 2 picofarads for the air capacitor, the total output capacitance is 6.4 picofarads. The inductance required to resonate with 6.4 picofarads at 200 MHz is 0.1 microhenry. When the total output capacitance is known, the required neutralization capacitor can be calculated. If \(\mathrm{C}_{1}\) is arbitrarily selected as 33 picofarads, the neutralization is determined from Eq.(8),
as follows:
\[
\mathrm{C}_{\mathrm{n}} \approx \mathrm{C}_{\mathrm{f}}\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right)=0.2\left(\frac{33}{6.4}\right)=1.0 \mathrm{pF}
\]

The optimum value for the neutralization capacitor was determined experimentally by use of a small (0.5-to-3-picofarad) variable capacitor. This capacitor was adjusted to the optimum value for a typical unit \(\left(\mathrm{C}_{\mathrm{rss}}=0.13 \mathrm{pF}\right)\) and then fixed. The required input inductance was found to be 0.06 microhenry. The completed amplifier is shown schematically in Fig.3. The bandwidth of the amplifier is typically 8 MHz and shows negligible skew.

The y parameters may also be used to design a cascode vhf amplifier such as the one shown in Fig.5. This circuit had typical power gain and noise figure of 17 dB and 4.2 dB , respectively. The amplifier has a bandwidth of 10 MHz with negligible skew. The capacitance of the source \({ }_{2}\)-drain \({ }_{1}\) interconnection must be tuned out to achieve a good vhf noise figure. The noise figure of the cascode amplifier is 2 to 3 dB higher if this capacitance is not tuned out.

\section*{References}

1 Gerald Theriault, "Cross-Modulation and Modulation Distortion of RF Transistors," IRE Trans. on Broadcast and Television Receivers, July 1962.
2 J. G. Linvill and J. F. Gibbons, Transistors and Active Circuits, McGraw-Hill Book Co., Inc., New York, 1961.
3 A. P. Stern, "Stability and Power Gain of Tuned Transistor Amplifiers," Proceedings of the IRE, March 1957.

4 George D. Johnson, 'High-Frequency Amplifier Design using Admittance Parameters," Electro-Technology, November 1963.

\title{
VHF Mixer Design Using the RCA-3N128 MOS Transistor
}

\author{
by \\ F. M. Carlson
}

The 3 N 128 is a vhf MOS field-effect transistor suitable for use throughout the vhf band (30 to 300 MHz) as an amplifier, mixer, or oscillator. This Note discusses some of the design criteria pertinent to the construction of MOS mixers, and presents an example of a complete vhf MOS converter.

\section*{Mixer Design Considerations}

The conversion gain obtained from a mixer is the ratio of intermediate-frequency (if) power output divided by the radio-frequency (rf) power input. This conversion gain CG is usually expressed in dB , as follows:
\[
\mathrm{CG}=10 \log \frac{\text { if } \mathrm{P}_{\text {out }}}{\text { rf } \mathrm{P}_{\text {in }}}
\]

The value of CG approximates the gain of the active device operated as an amplifier (unneutralized) at the intermediate frequency, minus the rf losses at the input of the device. Practical mixers normally have a conversion gain of 3 to 5 dB less than their if-amplifier gain.

The 3N128 transistor has good gain and noise figure throughout the vhf band. Because it also has a nonlinear region of operation, it may be used as a vhf mixer to provide good conversion gain. The transfer function of the 3N128, shown in Fig.1, indicates that the maximum nonlinearities occur at a drain current of about 1.5 milliampere. At drain currents above approximately 5 milliamperes, the transfer function starts to become linear. No mixing action can occur if the transfer function is perfectly linear. Because the ampli-
fier gain of the 3 N 128 is higher at 5 milliamperes than at 1.5 milliamperes, the best bias point for an MOS mixer is a compromise between the region where best mixing occurs and the region where optimum if power gain occurs. For the 3 N 128 , this point is empirically determined to be between 3.5 and 4.5 milliamperes.

Fig. 1 - Drain current as a function of gate-to-source voltage for the 3N128 vhf MOS transistor.

The local-oscillator signal may be introduced into a 3N128 mixer at the insulated gate, the source, or the junction gate (substrate). Application of the oscillator signal to the junction gate can be very effective, but is not recommended because the junction gate of the

3N128 is tied to the case; placing the transistor case at local-oscillator signal potential can pose possible radiation problems.

Injection of the oscillator signal at the source is not desirable because the source should always be at rf/if ground for optimum gain, but could not be at ground at the oscillator frequency. Designing a network to meet these criteria is difficult and adds to the cost of the mixer.

Injection of the oscillator signal at the insulated gate is the least troublesome of the three methods. The local oscillator may be coupled to the insulated gate by means of an inductive loop or a small coupling capacitor.

The input circuit is normally designed for a conjugate match with the input impedance of the MOS transistor at the radio frequency. The output circuit is normally designed for a conjugate match with the output impedance of the 3 N 128 at the intermediate frequency, unless electrical instabilities (oscillations) occur, in which case the output circuit must be mismatched. Oscillations are not normally a problem in a 3N128 mixer, provided the if and rf signals are relatively far apart in frequency. Under these conditions, the output circuit presents a low impedance to the rf signal, and the input circuit presents a low impedance to the if signal; consequently, oscillations at either frequency are unlikely to occur.

Neutralization is not generally used in mixers because of the different frequencies at the output and the input.

\section*{Design Example}

A vhf receiver "front end" has been designed and built to demonstrate the preceding design considerations and to illustrate the use of the 3 N 128 vhf MOS transistor in all four stages: rf, mixer, if, and local oscillator. The complete converter, shown in Fig.2, uses an rf input frequency of 200 MHz and an if output frequency of 30 MHz .

The input stage is a straight-through \(200-\mathrm{MHz}\) amplifier* employing a source resistor for gate bias. This configuration permits the gate to be at dc ground, and greatly reduces the possibility of damage to the MOS gate from input transients. The 240 -ohm resistor allows a current of approximately 5 milliamperes to flow through the device so that maximum vhf power gain is obtained. A variable inductor resonates with the output capacitance of the 3 N 128 to provide a bandwidth of approximately 12 MHz for the rf stage alone. (Narrower bandwidth could have been obtained by use of more capacitance in the tuned circuits and different loading on the output circuit; however, no particular effort was made to achieve very narrow bandwidth because a wide bandwidth is desirable in some applications.) Capacitive bridge neutralization is used to achieve the maximum allowable stage gain of 20 dB for the particular 3N128 used.

The input coil of the mixer stage is designed to permit a conjugate match with the transistor input admittance. The input admittance \(\mathrm{y}_{11}\) of the 3 N 128 at 200 MHz is approximately \(0.45+\mathrm{j} 7.2\) millimhos. Therefore, an admittance of \(\mathrm{y}_{11}{ }^{*}(=0.45-\mathrm{j} 7.2\) milli-

Fig. 2 - VHF receiver "front end" using the 3 N128 in all stages.

\footnotetext{
* Design information for vhf MOS amplifiers is given in RCA Application Note AN-3193;
"Application Considerations for the RCA-3N128 VHF MOS Field-Effect Transistor," by F.M. Carlson, August 1966.
}
mhos) should be presented to the mixer input. A conjugate match is not used at the output because it is desirable to load the input of the following (if) stage for stability. Therefore, a step-down transformer is used. (A conjugate match would require use of a stepup transformer because \(\mathbf{g}_{11}>\mathrm{g}_{22}\) at 30 MHz .)

The local oscillator is coupled into the insulated gate of the mixer by means of an ungrounded 340-degree loop placed around the input tank coil at its highimpedance end. A small coupling capacitor could also be used for this purpose. Local-oscillator amplitude is approximately 1.4 volts rms into the coupling loop. Power gain of the mixer stage is 16 dB . Fig. 3 shows the conversion gain of the mixer as a function of localoscillator amplitude. A lower oscillator level than 1.1 volts would probably be desirable if spurious output frequencies were found to be troublesome.

Fig. 3 - Conversion gain of the mixer stage in Fig. 2 as a function of local-oscillator amplitude.

A 510 -ohm source resistor is used in the mixer stage to provide a drain current of 4 milliamperes. (This value is larger than would normally be expected for a drain current of this level because the gate is subjected to large signal excursions by the local oscill ator.)

The maximum available gain (MAG) of the 3 N 128 at 30 MHz in a conjugately matched circuit (with y12
assumed to be approximately zero) may be computed from the \(y\)-parameters for the device, as follows:
\[
\text { MAG }=\frac{|\mathrm{y} 21|^{2}}{4 \mathrm{~g}_{11} \mathrm{~g}_{22}}=\frac{|7.2|^{2}}{4(0.03)(0.12)}=3610=35.6 \mathrm{~dB}
\]

The maximum usable gain (MUG) of the 3N128 in an unneutralized \(30-\mathrm{MHz}\) amplifier is computed as follows:
\[
\text { MUG }=\frac{0.4 \mathrm{gm}}{\omega \mathrm{Crss}}=\frac{(0.4)(7.2)\left(10^{-3}\right)}{(2 \pi)(30) 10^{6}(0.13) 10^{-12}}=118=20.7 \mathrm{~dB}
\]

If the \(30-\mathrm{MHz}\) stage is operated at a gain significantly above the MUG value; the possibility of circuit oscillation exists. Therefore, the input of the if stage is mismatched to reduce the stage gain from the MAG level to about 20 dB . (In some cases, it may be easier to mismatch at the output than at the input.) The output of the if stage is transformer-coupled to a 50 -ohm load.

The local-oscillator stage is a Colpitts circuit in which frequency is adjusted by means of a slug-tuned inductor.

The complete converter has a power gain of 56 dB , a noise figure of 3 dB , and a bandwidth of 1.5 MHz . Spurious responses (referred to a level of 0 dB at the \(200-\mathrm{MHz}\) input frequency) are -51 dB at \(100 \mathrm{MHz},-36 \mathrm{~dB}\) at 215 MHz , and -35 dB at 260 MHz . These spurious responses could be greatly improved by use of a narrower bandwidth in the rf stage; the present bandwidth is 12 MHz at the \(3-\mathrm{dB}\) points.

Table I shows measurements of cross-modulation of the converter as a function of frequency.
\begin{tabular}{cc}
\begin{tabular}{c}
Interfering \\
Frequency
\end{tabular} & \begin{tabular}{c}
Interfering Signal Voltage Necessary \\
for \(1 \%\) Cross-Modulation
\end{tabular} \\
(MHz) & \((\mathrm{mV}\))
\end{tabular}

Table I-Cross-modulation of MOS mixer.

\title{
Chopper Circuits \\ Using RCA MOS Field－Effect Transistors
}

\author{
by \\ F．M．Corlson
}

Although electromechanical relays have long been used to convert low－level dc signals into ac signals or for multiplex purposes，relays are seriously limited with respect to life，speed，and size．Conventional （bipolar）transistors overcome the inherent limitations ol relays，but introduce new problems of offset voltage and leakage currents．This Note describes the use of MOS field－effect transistors in solid－state chopper and multiplex designs that have the long life，fast speed， and small size of bipolar－transistor choppers，but elimi－ nate their inherent offset－voltage and leakage－current problems．

\section*{Basic Chopper Circuits}

Chopper circuits are basically of either the shunt type or the series type，as shown in Fig．1，or a combina－ tion of the two．

The shunt chopper circuit，shown in Fig．1（a）， operates as follows：When the switch \(S\) is opened，a voltage that is directly proportional to the input signal appears across the load．When the switch is closed， all of the input signal is shorted to ground．Therefore， if the switch is opened and closed periodically，the voltage across the load appears as a square wave that has an amplitude directly porportional to the input signal．This square wave may be highly amplified by a relatively drift－free，stable－gain ac amplifier．This procedure is generally used in low－level dc amplifiers， i．e．，a small dc input is chopped，the resulting ac signal is amplified，and the output of the ac amplifier is recti－ fied to produce a dc output directly proportional to the input．

The series chopper circuit，shown in Fig．1（b），can also be used to chop de signals．This type of circuit is
particularly useful in telemetry or other systems in which a signal source such as a transducer is to be connected periodically to a load such as a transmitter．

An ideal chopper is simply an on－off switch that has certain desirable characteristics．Table I lists

Fig． 1 －Basic chopper circuits．

Table I－Comparison of available chopper devices with an ideal．
some of these characteristics, and shows the relative merits of relays, bipolar transistors, and MOS transistors in each area.

\section*{Use of MOS Transistors as Choppers}

Fig. 2 shows voltage-current characteristics of an n-channel depletion-type MOS field-effect transistor such as the RCA-40460. Fig. 3 shows an expanded view of the curves in Fig.2(a) in the region about the origin.

DRAIN-TO-SOURCE VOLTAGE \(\left(V_{D S}\right)-2 V / D I V\).
(a,b,c:-I VOLT PER STEP;ORIGIN.AT CENTER)
Fig. 2 - Voltage-current characteristics of an n-channel depletion-type MOS transistor: (a) with substrate connected to source; (b) with substrate floating; (c) with substrate connected to drain.

Because each curve passes through the origin, the MOS transistor is said to have zero offset voltage. In an MOS shunt chopper circuit, therefore, the output is zero when the input voltage is zero. This result is not obtained with bipolar transistors. Even for zero input voltage, a bipolar transistor has an offset voltage equivalent to the collector-to-emitter saturation voltage VCE(sat) between its collector and emitter terminals. MOS transistors have no parameter comparable to \(\mathrm{V}_{\mathrm{CE}}\) (sat).

When the gate-to-source voltage \(\mathrm{V}_{\mathrm{GS}}\) is zero, an MOS transistor such as the 40460 has an effective resistance of 200 to 300 ohms between its drain and source terminals. If the gate-to-source voltage is made positive, this resistance decreases to about 100 ohms (typically to 90 ohms for the 40460). No significant
increase in gate current occurs when \(\mathrm{V}_{\mathrm{GS}}\) is made positive because the gate of an MOS transistor is insulated from the source-to-drain channel by an oxide layer. (In a junction-gate field-effect transistor, the gate and the channel form a p-n junction, and low gate current can be obtained only when this junction is reverse-biased.) When the resistance between the drain and source terminals is low (100 to 300 ohms), an MOS transistor is said to be ON; the drain-to-source channel resistance is then designated as \(\mathrm{r}_{\mathrm{ds}}(\mathrm{ON})\). This ON condition corresponds to the closed-switch condition in the circuits of Fig.1.

Fig. 3 - Low-level drain current as a function of drain-tosource voltage in an n-channel depletion-type MOS transistor with substrate connected to source.

When a negative voltage of about -6 volts or more is applied between the gate and the source of the MOS transistor, the channel resistance between drain and source becomes extremely high (typically thousands of megohms). In this condition, which is known as "cutoff" or "pinchoff", it is impractical to measure the channel resistance directly; instead, the leakage current that flows from drain to source at cutoff is normally specified. This current \(\mathrm{ID}_{\mathrm{D}}(\mathrm{OFF})\), is typically 0.1 nanoampere for the 40460. Because \(I_{D}(U F F)\) is measured at a drain-to-source voltage of 1 volt, the equivalent channel resistance is 10,000 megohms. This OFF condition corresponds to the open-switch condition in the circuits of Fig.1.

Fig. 4 shows three basic chopper circuits using the MOS field-effect transistor. The gating signal for the 40460 should swing from zero to at least -6 volts, and may cover a range as large as \(\pm 10\) volts. The substrate (and thus the case) of the 40460 transistor is usually connected to the source. However, if the incoming
signal to be chopped exceeds -0.3 volt, the substrate must be "floated", connected to the drain, or biased negatively so that the source-to-substrate and drain-to-substrate voltages never exceed -0.3 volt. If this

(b) SERIES CHOPPER

(c) SERIES - SHUNT CHOPPER

Fig. 4 - Basic MOS chopper circuits.
value is exceeded, the substrate, which forms two p-n junctions with the drain and the source, becomes for-ward-biased and the resulting flow of diode current shunts the incoming signal to ground.

\section*{Steady-State Conditions}

Ideally, when an MOS transistor in a shunt chopper circuit is ON, the output voltage of the circuit should be zero. Because the drain-to-source resistance \(\mathrm{r}_{\mathrm{d}}\) is some finite value, however, the output cannot reach true zero. Fig. 5 shows an equivalent circuit for steady-
state conditions in an MOS shunt chopper. For the ON condition, the output voltage \(\mathrm{EO}_{\mathrm{O}}\) is given by
\[
\begin{equation*}
E_{\mathrm{O}}=\mathrm{E}_{\mathrm{S}}\left[\frac{\frac{r_{d s} \mathrm{R}_{\mathrm{L}}}{r_{\mathrm{ds}}+R_{\mathrm{L}}}}{\mathrm{R}_{\mathrm{S}}+\frac{r_{d s} \mathrm{R}_{\mathrm{L}}}{r_{d s}+R_{\mathrm{L}}}}\right] \tag{1}
\end{equation*}
\]

In Eq.(1), it is assumed that the gate leakage resistance \(\mathrm{R}_{\mathrm{G}}\) is much larger than the drain-to-source resistance \(r_{d s}\). If the load resistance \(R_{L}\) is also much larger than \(r_{d s}\); Eq.(1) can be simplified as follows:
\[
\begin{equation*}
\mathrm{E}_{\mathrm{O}}=\mathrm{E}_{\mathrm{S}}\left[\frac{\mathrm{r}_{\mathrm{ds}}}{\mathrm{R}_{\mathrm{S}}+\mathrm{r}_{\mathrm{ds}}}\right] \tag{2}
\end{equation*}
\]

NOTE: ALTHOUGH RESISTANCE \(R_{G}\) IS ACTUALLY
DISTRIBUTED ALONG THE LENGTH OF rds,
DISTRIBUTED ALONG THE LENGTH OF rds,
CONNECTION SHOWN ASSURES A WORST-
CONNECTION SHOW
CASE ANALYSIS.
Fig. 5 - Steady-state equivalent circuit of MOS shunt chopper.

For \(E_{O}\) to approach zero, it is necessary that the source resistance \(\mathrm{R}_{\mathrm{S}}\) be much greater than \(\mathrm{r}_{\mathrm{ds}}\). The value of \(\mathrm{E}_{\mathrm{O}}\) is then given by
\[
\begin{equation*}
E_{O}=E_{S}\left(r_{d s} / R_{S}\right) \tag{3}
\end{equation*}
\]

A typical value for \(R_{S}\) and \(R_{L}\) in an MOS shunt chopper is 0.1 megohm. A typical value of \(\mathrm{r}_{\mathrm{ds}}(\mathrm{ON})\) for the 40460 transistor is 90 ohms. If these values are substituted in Eq.(3) and the signal voltage \(\mathrm{E}_{\mathrm{S}}\) is assumed to be 1 millivolt, \(\mathrm{E}_{\mathrm{O}}\) is calculated as follows:
\[
\mathrm{E}_{\mathrm{O}}=10^{-3}\left(90 / 10^{5}\right)=0.9 \text { microvolt }
\]

In the ON condition, therefore, the dc error voltage is less than 0.1 per cent for the values used, and is directly proportional to the input signal.

For the OFF condition, the steady-state output voltage \(E_{O}\) is given by
\[
\begin{equation*}
E_{O}=E_{S}\left[\frac{\frac{r_{d s} R_{L}}{r_{d s}+R_{L}}}{R_{S}+\frac{r_{d s} R_{L}}{r_{d s}+R_{L}}}\right]+V_{G S}\left[\frac{\frac{r_{d s} R_{L}}{r_{d s}+R_{L}}}{R_{G}+\frac{r_{d s} R_{L}}{r_{d s}+R_{L}}}\right](4 \tag{4}
\end{equation*}
\]

In most MOS transistors, both \(\mathrm{r}_{\mathrm{ds}}(\mathrm{OFF})\) and \(\mathrm{R}_{\mathrm{G}}\) are much greater than RL. Therefore, Eq.(4) may be simplified as follows:
\[
\begin{equation*}
\mathrm{E}_{\mathrm{O}}=\mathrm{E}_{\mathrm{S}} \frac{\mathrm{R}_{\mathrm{L}}}{R_{\mathrm{S}}+R_{\mathrm{L}}}+\mathrm{V}_{\mathrm{GS}} \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{G}}} \tag{5}
\end{equation*}
\]

If \(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{L}}\), and ES are assumed to have the values used previously, the gate-to-source voltage \(\mathrm{V}_{\mathrm{GS}}\) is assumed to be -10 volts, and the gate resistance \(\mathrm{R}_{\mathrm{G}}\) is assumed to be \(10^{12}\) ohms (minimum permissible gate resistance for the 40460), the value of \(\mathrm{E}_{\mathrm{O}}\) is calculated as follows:
\[
\begin{aligned}
& \mathrm{E}_{\mathrm{O}}=10^{-3}\left[\frac{10^{5}}{2 \times 10^{5}}\right]-10\left[\frac{10^{5}}{10^{12}}\right] \\
& \quad=\frac{10^{-3}}{2}-10^{-6} \approx 0.5 \text { millivolt }
\end{aligned}
\]

The second term in Eq.(5) is the error term for the OFF condition; it is not proportional to the input signal ES. For the numbers used, the output error in the OFF condition is only 0.2 per cent. If a typical value of 1014 ohms is used for the 40460 gate resistance instead of the minimum value of \(10^{12}\) ohms, the error voltage is reduced to only 0.002 per cent. The output error remains small for any value of signal voltage ES that does not approach the error voltage in magnitude.

Because the error voltage is inversely proportional to the gate leakage resistance \(\mathrm{R}_{\mathrm{G}}\), most junction gate field-effect transistors produce larger error voltages than MOS transistors (the minimum \(\mathrm{R}_{\mathrm{G}}\) of most junctiongate devices is only 1 to 10 per cent that of MOS transistors).

A similar procedure may be used for analysis of series chopper and series-shunt chopper circuits.

The operation of all MOS chopper circuits is greatly affected by the magnitude of the source and load resistances. Table II lists the output voltages of the three basic chopper circuits for various combinations of source and load resistances. It is assumed that the input voltage ES is 1 millivolt, and that the drain-tosource resistance rds is 100 ohms in the ON condition and 1000 megohms in the OFF position. The gate leakage resistance \(\mathrm{R}_{\mathrm{G}}\) (1012 ohms or more) is neglected. The following conclusions can be drawn from the data shown:
1. Only the series or the series-shunt circuit should be used when \(\mathrm{R}_{\mathrm{S}}<\mathrm{r}_{\mathrm{d}}(\mathrm{ON})\).
2. In general, \(\mathrm{R}_{\mathrm{L}}\) should be high. (\(\mathrm{R}_{\mathrm{L}} \gg \mathrm{r}_{\mathrm{ds}}(\mathrm{ON})\)
3. The load resistance should be higher than the source resistance. (\(\mathrm{R}_{\mathrm{L}} \geq \mathrm{R}_{\mathrm{S}}\))
4. The performance of the series-shunt circuit is equal to or better than that of either the series or the shunt chopper alone for any combination of \(\mathrm{R}_{\mathrm{S}}\) and \(\mathrm{R}_{\mathrm{L}}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{6}{|l|}{\begin{tabular}{l}
Approximate Output Voltage \(\mathbf{E}_{0} \sim \mu \mathbf{V}\) \\
(Max. Output \(=1 \mathrm{mV}\))
\end{tabular}} \\
\hline Source Resistance & Load Resistance & \multicolumn{2}{|l|}{Shunt Chopper} & \multicolumn{2}{|l|}{Series Chopper} & \multicolumn{2}{|l|}{Series-Shunt Chopper} \\
\hline \[
\underset{(\mathrm{ohms})}{\mathbf{R}_{\mathbf{S}}}
\] & \[
\underset{\text { (ohms) }}{\mathbf{R}_{\mathbf{L}}}
\] & (ON) & (OFF) & (ON) & (OFF) & (ON) & (OFF) \\
\hline 1 M & 1 M & 0.1 & 500 & 500 & 1 & 500 & 0.0001 \\
\hline 100 K & 1 M & 1 & 900 & 900 & 1 & 900 & 0.0001 \\
\hline 100 & 1 M & 500 & 1000 & 1000 & 1 & 1000 & 0.0001 \\
\hline 0 & 1 M & 1000 & 1000 & 1000 & 1 & 1000 & 0.0001 \\
\hline 1 M & 100 K & 0.1 & 90 & 90 & 0.1 & 90 & 0.0001 \\
\hline 1 M & 100 & 0.05 & 0.1 & 0.1 & 0.0001 & 0.1 & 0.00005 \\
\hline 100 K & 100 K & 1 & 500 & 500 & 0.1 & 500 & 0.0001 \\
\hline 100 & 100 & 333 & 500 & 333 & 0.0001 & 333 & 0.00005 \\
\hline
\end{tabular}

\section*{Table II - Steady-state chopper output voltage for various source and load resistances.}

\section*{Transient Conditions}

Fig. 6 shows the ac equivalent circuit of an MOS shunt chopper. The interelectrode capacitances of the MOS transistor affect operation of the circuit at high frequencies. The input capacitance \(\mathrm{C}_{\mathrm{gs}}\) increases the rise time of the gate driving signal and thus increases the switching time of the chopper. This effect is not usually a serious limitation, however, because the

Fig. 6 - AC equivalent circuit of MOS shunt chopper.
switching time of the MOS transistor depends primarily on the input and output time constants. Switching times as short as 10 nanoseconds can be achieved when an MOS transistor is driven from a low-impedance generator and the load resistance is less than about 2000 ohms.

The output capacitance \(\mathrm{C}_{\mathrm{ds}}\) also tends to limit the maximum frequency that can be chopped. When the reactance of this capacitance becomes much lower than the load resistance \(\mathrm{R}_{\mathrm{L}}\), the chopper becomes ineffective because \(\mathrm{X}_{\mathrm{Cds}}\) is essentially in parallel with \(\mathrm{R}_{\mathrm{L}}\) and \(\mathrm{r}_{\mathrm{d}}\) (OFF).

The feedthrough capacitance \(\mathrm{Cgd}_{\mathrm{gd}}\) is the most important of the three interelectrode capacitances because it couples a portion of the gate drive signal into the load circuit and causes a voltage spike to appear across \(\mathrm{R}_{\mathrm{L}}\) each time the gate drive signal changes state. \(\mathrm{C}_{\mathrm{gd}}\) and \(R_{L}\) form a differentiating network which allows the leading edge of the gate drive signal to pass through. The output capacitance \(C_{d s}\) is beneficial to the extent that it helps reduce the amplitude of the feedthrough spike.

The effect of the feedthrough spikes can be reduced by several methods. Typical approaches include the following:
(a) use of a clipping network on the output when the input signal to be chopped is fixed in amplitude,
(b) use of a low chopping frequency,
(c) use of an MOS transistor that has a low feedthrough capacitance Cgd (some RCA MOS transistors have typical \(\mathrm{Cgd}_{\mathrm{g}}\) values as low as 0.13 picofarad),
(d) use of a gate drive signal that has poor rise and fall times,
(e) use of a source and load resistance as low as feasible,
(f) use of a shield between the gate and drain leads,
(g) use of a series-shunt chopper circuit.

\section*{Temperature Variations}

The variation of MOS transistor parameters with temperature can affect the operation of a chopper circuit unless allowance is made for such variations in the circuit design. It is important, therefore, to determine the approximate degree to which each parameter can be expected to change with temperature. Fig. 7 shows curves of channel resistance \(r_{d s}\), gate leakage current

Fig. 7 - Variation of 40460 parameters with ambient temperature: (a) channel resistance \(r_{d s}\); (b) gate leakage current \(I_{\text {gss }} ;\left(\right.\) (c) drain-to-source leakage current \(I_{D}(O F F)\).
\(\mathrm{I}_{\mathrm{gss}}\), and drain-to-source leakage current \(\mathrm{ID}_{\mathrm{D}}(\mathrm{OFF})\) as a function of temperature for the 40460. \(\mathrm{I}_{\mathrm{gss}}\) and \(\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})\) were not measured at temperatures below \(25^{\circ} \mathrm{C}\) because condensation and frost that form on the test chassis result in erroneous and/or erratic readings of picoampere currents. Test circuits used to measure these parameters are shown in the Appendix.

\section*{Typical Circuits}

Fig. 8 shows three chopper circuits that were constructed for demonstration purposes: (a) a shunt chopper, (b) a series chopper, and (c) an ac chopper. The \(0.005-\) microfarad capacitor across the gate drive generator in

Fig. 8 - Typical MOS chopper circuits: (a) shunt chopper; (b) series chopper; (c) rf chopper.
circuits (a) and (b) increases the rise time of the gate drive signal. A resistor is used in each circuit to simulate the impedance of the signal source. The actual input voltage was set at zero so that spike feedthrough and offset voltages could be measured. The dc offset voltage, which is caused primarily by the average value of the spikes over the whole cycle, was too small to be measured on the equipment available. Fig. 9 shows the actual spike feedthrough for the 40460 and 3N128 MOS transistors in the shunt and series circuits of Figs.8(a) and \(8(\mathrm{~b})\); the rise time of the gate drive signal was 1 microsecond.

It is recommended that MOS choppers be driven from a square-wave source. Fig. 10 shows the feedthrough that results when the circuits of Figs.8(a) and 8(b) are driven from a sine-wave generator instead of a square wave.

Fig. 11 shows how the circuit of Fig.8(c) can be used to chop an rf signal at either a slow or a fast chopping frequency. The 40460 transistor can be used to chop rf signals extending up to the low vhf region. The frequency of the gate drive signal can be as high as several hundred kilohertz before excessive degradation of the square wave occurs. The rise time of the

Fig. 9 - Actual spike feedthrough in shunt and series chopper circuits employing the 40460 and 3N128 MOS transistors.

VERTICAL SCALE: UPPER TRACE = IOV/DIV. LOWER TRACE \(=2 \mathrm{mV} / D I V\).

VERTICAL SCALE: UPPER TRACE = IOV/DIV. LOWER TRACE \(=10 \mathrm{mV} /\) DIV.

HORIZONTAL SCALE: \(100 \mu\) S/DIV.
Fig. 10 - Comparison of sine- and square-wave gate drive for an MOS shunt chopper employing the 40460.
gate drive signal for the circuit of Fig. 8(c) was 15 nanoseconds.

In field-effect-transistor choppers using a version of the series-shunt circuit shown in Fig.8(c), noise and

CHOPPING FREQUENCY:
25 kHz

CHOPPING FREQUENCY:
100 Hz

VERTICAL SCALE:
UPPER TRACE \(=5 \mathrm{~V} / \mathrm{DIV}\).
LOWER TRACE = IV/DIV.
Fig. 11 - Results of using MOS rf chopper at a fast and a slow chopping frequency.
offset voltages as low as 10 microvolts or less have been obtained. \({ }^{1}\) Balanced MOS chopper circuits using special compensating networks have also been developed to chop 0.1-microvolt signals at impedance levels up to 40,000 ohms and chopping frequencies up to \(250 \mathrm{~Hz} .^{2}\)

\section*{APPENDIX}

\section*{Test Circuits}

Fig.A-1-Channel resistance (\(r_{d s}(\mathrm{ON})\)) measurement circuit.

Fig.A-3 - Input capacitance (\(\mathrm{C}_{\text {iss }}\)) measurement circuit.

Fig.A-2 - Cutoff current (ID(OFF)) measurement circuit.

Fig.A-4-Reverse transfer (Feedback) capacitance (\(\mathrm{C}_{\text {rss }}\)) measurement circuit.

\title{
An FM Tuner Using an RCA-40468 MOS-Transistor RF Amplifier
}

\author{
by \\ H. M. Kleinman and C. H. Lee
}

Previous work with field-effect transistors in general, and MOS field-effect transistors in particular, has demonstrated the superior signal-handling capability of this type of device. \({ }^{1-3}\) This Note describes an FM tuner that incorporates an MOS field-effect transistor as the rf amplifier, and shows how the MOS transistor is instrumental in minimizing the spurious responses normally found in FM receivers.

Spurious responses result when harmonics of an unwanted incoming signal mix with harmonics of the local-oscillator signal to produce a difference frequency which falls within the if passband of the receiver.* When these harmonics of unwanted signals are created in the rf amplifier, they may be removed by improved filtering between the rf amplifier and the mixer. When used as an rf amplifier, the MOS transistor produces an output signal that contains low levels of the harmonics of unwanted signals. As a result, the need for a doubletuned rf interstage transformer is reduced and acceptable performance can generally be achieved with singletuned circuits in both the antenna and rf interstage sections.

The FM tuner described in this Note utilizes an RCA-40468 MOS rf amplifier, an RCA-40478 bipolar mixer, and an RCA-40244 bipolar oscillator. The rfstage gain of 12.7 dB and mixer gain of 21.8 dB yield

\footnotetext{
* In a receiver tuned to 100 MHz , the local oscillator is tuned to 110.7 MHz . The second harmonic of the local oscillator occurs at 221.4 MHz . A signal at a frequency of 210.7 MHz can beat with the \(221.4-\mathrm{MHz}\) signal to form the \(10.7-\mathrm{MHz}\) intermediate frequency. This \(210.7-\mathrm{MHz}\) frequency is the second harmonic of 105.35 MHz , which is above the desired channel by half the intermediate frequency.
}
a total tuner gain of 34.5 dB . A three-stage if-amplifier strip that uses RCA-40482 bipolar transistors and exhibits 94 dB of gain completes the FM tuner.

Table I summarizes the performance of the system. The figure shown for if rejection was achieved when the tuner section was tested with a fully shielded, remotely located if-amplifier strip. When the final tuner was assembled, only partial shielding was used around the if amplifier. This partial shielding, coupled with the close proximity of tuner and if amplifier, reduced the if rejection to 77 dB .
\begin{tabular}{|c|c|c|}
\hline Carrier Frequency & 100 & M Hz \\
\hline Modulation \(400 \mathrm{~Hz}, 22.5 \mathrm{kHz}\) deviation & \multicolumn{2}{|l|}{\(400 \mathrm{~Hz}, 22.5 \mathrm{kHz}\) deviation} \\
\hline \multicolumn{3}{|l|}{Sensitivity:*} \\
\hline For 20-dB signal-to-noise ratio & 1.4 & \(\mu \mathbf{V}\) \\
\hline For 30-dB signal-to-noise ratio & 2.2 & \(\mu \mathrm{V}\) \\
\hline For \(-3-\mathrm{dB}\) limiting point (with 94-dB if strip). . & 1.6 & \(\mu \mathrm{V}\) \\
\hline Image Rejection* & 72 & dB \\
\hline IF Rejection* & 91 & dB \\
\hline Half-IF Rejection* & 96 & dB \\
\hline Rejection of Other Spurious Responses (with 0.2 volt at antenna terminals). & \(>100\) & dB \\
\hline
\end{tabular}
* Measured at antenna terminals (300 -ohm nominal impedance).
- Relative to \(2 \mu \mathrm{~V}\).

Table I-Over-all Tuner Performance

\section*{Circuit Considerations}

The rf section of the tuner is shown in Fig.1, and the if strip in Fig.2. The if strip, which is described more fully elsewhere, \({ }^{4}\) utilizes three 40482 bipolar transistors that operate at collector currents of 3.5

\[
\begin{array}{lll}
R_{1}=100 \mathrm{~K} \Omega & \mathrm{C}_{1}, C_{8}, C_{16}=16 \mathrm{pF} \\
R_{2}=220 \mathrm{~K} \Omega & \mathrm{C}_{2}, C_{7}=2-12 \mathrm{pF}, \text { Trimmer } \\
R_{3,}, R_{4}=47 \mathrm{~K} \Omega & \mathrm{C}_{3}, C_{6}=0.002 \mu \mathrm{~F} \\
R_{5}=4.7 \mathrm{~K} \Omega & \mathrm{C}_{4}, C_{5}, C_{18}=5.5-22.5 \mathrm{pF}, \text { ganged tuning capacitor } \\
R_{6}=8.2 \mathrm{~K} \Omega & \mathrm{C}_{9}=5000 \mathrm{pF} \\
R_{7}=120 \mathrm{~K} \Omega & \mathrm{C}_{10}=2.7 \mathrm{pF} \\
R_{8}=22 \mathrm{~K} \Omega & \mathrm{C}_{11}=0.01 \mu \mathrm{~F} \\
& C_{12}, C_{14}, C_{15}=1000 \mathrm{pF} \\
& C_{13}=1000 \mathrm{pF} \text { feedthrough type } \\
& C_{17}=2-10 \mathrm{pF}, \text { Trimmer }
\end{array}
\]
\(L_{1}=\# 18\) bare copper wire, 4 turns, \(1 / 4^{\prime \prime}\) I.D., \(7 / 16^{\prime \prime}\) winding length, \(Q_{0}\) at \(100 \mathrm{MHz}=130\).
Tunes with 34 pF capacitance at 100 MHz .
Antenna Link approximately 1 turn from ground end.
Gate Tap approximately 1-1/2 turns from ground end.
\(L_{2}=\# 18\) bare copper wire, 4 turns, \(1 / 4^{\prime \prime}\) I.D., \(7 / 16^{\prime \prime}\) winding length, \(Q_{0}\) at \(100 \mathrm{MHz}=120\).
Tunes with 34 pF capacitance of 100 MHz .
Base Tap approximately 3/4-turn.
\(L_{3}=\# 18\) bare copper wire, 4 turns, \(7 / 32^{\prime \prime}\) I.D., \(7 / 16^{\prime \prime}\) winding length, \(Q_{0}\) af \(100 \mathrm{MHz}=120\).
Tunes with 34 pF capacitance at 100 MHz .
Emitter Tap approximately 1-1/2 turns from ground end.
Base Tap approximately 2 turns from ground end.

Fig. 1 - Typical FM receiver front end using RCA-40468 MOS field-effect transistor.
milliamperes in neutralized configurations and provide an over-all if gain of 94 dB .

The rf section provides a total gain of 34.5 dB , which includes 12.7 dB in the rf stage and 21.8 dB in the mixer. The mixer and oscillator were designed according to principles established previously, \({ }^{5,6}\) and
details of their design are not discussed. The commoncollector oscillator provides an extremely clean oscillator waveform. In addition, the low injection level at the mixer base, 25 to 30 millivolts, coupled with the design of the preceding circuits, limits the maximum possible signal at the mixer base and minimizes the generation of spurious responses in that stage.

Fig. 2 - Typical if-amplifier strip.

\section*{RF-Stage Design}

The 40468 rf stage is designed to achieve the published maximum usable stable gain of 14 dE it a nominal operating point of 5 milliamperes. Additional losses of 1.3 dB reduce the actual gain in the tuner to 12.7 dB . Details of the rf-stage design are given in the Appendix.

Selection of the appropriate source and load impedances for the rf stage is based on the fact that a low spurious response requires the gate of the 40468 to be tapped as far down on the antenna coil as gain and noise considerations permit. This arrangement applies the smallest possible voltage swing to the gate and makes optimum use of the available dynamic range. (In a bipolar tuner designed to optimize the rejection of spurious responses, the tap point on the antenna coil was approximately 25 ohms.)

For low spurious response, therefore, the entire rf coil is used as the load for the 40468. The interstage coil presents a load impedance to the rf stage of 3800 ohms, which nearly matches the 4200 -ohm output impedance of the 40468 . Although this arrangement loads the interstage coil and causes a degradation of selectivity of the front end, it is an acceptable compromise in this case because the antenna coil is not loaded by the gate of the MOS transistor.

As indicated by the calculations in the Appendix, this approach yields a source impedance of approximately 200 ohms for the 4500 -ohm input impedance of the gate of the 40468.

\section*{Tuner Performance}

Performance of the tuner with respect to sensitivity limiting, if rejection, and image rejection compares favorably with that of tuners using high-performance
bipolar transistors. Figs.3, 4, and 5 show typical performance characteristics of the receiver. Receiver performance, particularly as regards spurious-responserejection figures, is highly dependent on such factors as physical layout, power-supply decoupling, and care in construction. The use of a negative supply voltage facilitates the grounding of tuned circuits and the decoupling of the supply.

Fig. 3 - Sensitivity curves for FM receiver using circuits of Figs. 1 and 2.

The elimination of spurious response was the primary goal in this design. Generally, a circuit that has a low spurious response is difficult to reproduce. In some systems, the performance of such a circuit depends on the exact operating points of the transistors used; when the rf-amplifier transistor in Fig. 1 was repeatedly changed, performance of the tuner remained essentially the same. The best correlation was found with the operating current of the transistor in the circuit. Fig. 6 shows the change in the rejection of the "half-if" spurious response as a function of drain current for a

Fig.4-Relative response as a function of signal voltage measured at antenna terminals.

Fig. 5 - Spurious-response rejection as a function of frequency.

Fig. 6 - Half-if rejection as a function of operating point.
typical 40468. For the normal spread of operating current in this circuit of 3.5 to 7 milliamperes, the variation in rejection is shown to be about \(\pm 1 \mathrm{~dB}\).

Fig. 7 shows the variation of \(20-\mathrm{dB}\) quieting sensitivity as a function of drain current, and indicates why the 5 -milliampere nominal operating point was chosen. Below 3 milliamperes, the sensitivity of the receiver degrades very rapidly. However, at 5 milliamperes the actụal spread of 3.5 to 7 milliamperes causes a negligible change in performance.

Fig.7-20-dB quieting rensitivity as a function of operating point.

\section*{Conclusions}

The 40468 MOS field-effect transistor has been incorporated into an FM tuner in which all other stages are high-performance, low-capacitance bipolar types. The wider dynamic range of the MOS transistor provides significant improvements in the rejection of spurious responses over results previously achieved with bipolar rf amplifiers.

Most significantly, the performance with respect to spurious-response rejection has been repeated when devices with wide parameter variations have been used. Furthermore, the system has been duplicated with comparable results. These two factors strongly indicate that the performance advantages are real and are attributable to the characteristics of the MOS rf amplifier used rather than the result of cancellation or peculiar trapping in a single tuner.

\section*{Appendix - Design of 40468 RF.Amplifier Stage}

The following parameters are important in the design of the rf-amplifier stage:

40468 parameters \(\left(a t V_{D D}=15 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}\right)\) :
input resistance \(\mathrm{R}_{\text {in }}\). 4500 ohms
output resistance \(\mathrm{R}_{\text {out }} 4200\) ohms
forward transmittance \(y_{f s}\). . . . \(7500 \mu\) mhos
feedback capacitance \(\mathrm{Crss}_{\mathrm{rss}}\) (max). 0.2 pF
mixer-stage parameters:
input resistance \(\mathrm{R}_{\text {in }}\) (mix) 550 ohms
input stability IS(mix)
(from previous design) 4
coil data:
mounted unloaded Q. 120
tuning capacitance \(\mathrm{C}_{\mathrm{T}}\)
at 100 MHz 34
pF
antenna impedance 300 ohms
Fig. 8 shows the ac equivalent circuit for the rf stage. At resonance, this circuit reduces to the form

Fig. 8 - AC equivalent circuit of the 40468 rf stage.
shown in Fig.9, where all impedances are referred to the gate and drain terminals of the 40468. The maximum available gain (MAG) is the gain in a conjugately matched, unilateralized circuit and is defined as follows:
\[
\begin{equation*}
\mathrm{MAG}=\frac{\left|\mathrm{y}_{\mathrm{fs}}\right|^{2} \mathrm{R}_{\text {in }} \mathrm{R}_{\mathrm{out}}}{4} \tag{1}
\end{equation*}
\]

For the values given above, \(\mathrm{MAG}=266=24.2 \mathrm{~dB}\).

Fig. 9 - Equivalent input \(\left(R_{1}\right)\) and output \(\left(R_{2}\right)\) circuit of the rf stage during resonance.

The maximum usable gain MUG is the stable gain which may be realized in a practical neutralized or unneutralized circuit. It is defined by the relationship for the unneutralized case as follows:
\[
\begin{equation*}
\text { MUG }=\frac{2\left|\mathrm{y}_{\mathrm{fs}}\right|}{\omega \mathrm{C}_{\mathrm{rss}}} \mathrm{x} \frac{\mathrm{a}}{\mathrm{~b}} \tag{2}
\end{equation*}
\]
where a is a skew factor smaller than unity which is used to maintain bandwidth, and \(b\) is a number equal to or greater than unity related to the number of stages (inserted to maintain bandwidth in multistage amplifiers). A skew factor of 0.2 is generally used. Because only one stage of \(100-\mathrm{MHz}\) gain is used in the amplifier shown in Fig. 1, b = 1. For the values given, therefore, MUG is given by
\[
\begin{equation*}
\text { MUG }=\frac{0.4 \mathrm{yfs}}{\omega \mathrm{C}_{\mathrm{rss}}}=23.5=13.7 \mathrm{~dB} \tag{3}
\end{equation*}
\]

The total mismatch loss is called the stability factor S , and is equal to the difference (in dB) between MAG and MUG, as follows:
\[
\begin{equation*}
\mathrm{S}=\mathrm{MAG}-\mathrm{MUG}=10.5 \mathrm{~dB}, \text { or } 11.3 \text { times } \tag{4}
\end{equation*}
\]

This value is arbitrarily divided between the input and output circuits by use of an input stability IS and an output stability OS, as follows:
\[
\begin{align*}
\mathrm{IS} & =\mathrm{R}_{\mathrm{in}} / 2 \mathrm{R}_{1} \tag{5}\\
\mathrm{OS} & =\mathrm{R}_{\text {out }} / 2 \mathrm{R}_{2} \tag{6}
\end{align*}
\]
where \(R_{1}\) and \(R_{2}\) are the total parallel impedances at the input terminal (gate) and the output terminal (drain), respectively. These stability terms are related to the stability factor \(S\) as follows:
\[
\begin{equation*}
S=I S \times O S \tag{7}
\end{equation*}
\]

The division between IS and OS is made by means of some arbitrary choices. As mentioned previously, it was decided to maximize IS so that the signal level at the gate would be minimized. This choice necessitates matching or nearly matching \(\mathrm{R}_{\text {out }}\) to its load. Therefore, the entire rf coil is used as the output load.

As indicated in Eq. (6), the value of \(\mathrm{R}_{2}\) must be determined to define OS; the value of IS can then be determined and the input circuit defined. \(\mathrm{R}_{2}\) consists of the parallel combination of \(R_{\text {out }}, R_{T}\), and \(\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right)^{2} \mathrm{x}\) \(\mathrm{R}_{\mathrm{in}}(\operatorname{mix})\), where \(\mathrm{RT}_{2}\) is the tuned impedance of the rf coil and is given by
\[
\begin{equation*}
\mathrm{R}_{\mathrm{T}_{2}}=\mathrm{Q}_{\mathrm{o}} / \omega_{\mathrm{o}} \mathrm{C}_{\mathrm{t}} \tag{8}
\end{equation*}
\]

The value of \(R_{\text {out }}\) is given above as 4200 ohms. The value of RT 2 as calculated from Eq. (8) is 5600 ohms. The value of the input impedance of the mixer \(\mathrm{R}_{\mathrm{in}}\) (mix), obtained from the published data for the 40479 , is 550 ohms. The only remaining component of \(\mathrm{R}_{2}\) to be determined is the turns ratio \(\mathrm{N}_{1} / \mathrm{N}_{2}\).

In Fig.8, the rf coil \(\mathrm{L}_{2}\) represents both the input circuit of the mixer and the output circuit of the rf stage. Therefore, the stability of the mixer stage must also be considered. Because stability factors are equal to resistance ratios, the input stability of the
mixer can be considered at the top of the rf coil, as follows:
\[
\begin{equation*}
\mathrm{IS}(\operatorname{mix})=\frac{\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right)^{2} \mathrm{R}_{\mathrm{in}}(\operatorname{mix})}{2 \mathrm{R}_{2}} \tag{9}
\end{equation*}
\]

The value of IS(mix) was specified above as 4 (from a previous design). Because \(\mathrm{R}_{2}\) is a linear function of \(\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right)^{2} \mathrm{R}_{\mathrm{in}}(\mathrm{mix})\), manipulation of the data through several steps provides a value of 5.5 for \(\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right)\) and a reflected value of 16,800 ohms for \(\mathrm{R}_{\text {in }}\) (mix).

The output stability of the rf stage can then be determined. \(\mathrm{R}_{2}\) is computed as the parallel combination of \(R_{\text {out }}, R_{T 2}\), and (\(\left.\mathrm{N}_{1} / \mathrm{N}_{2}\right)^{2} \mathrm{R}_{\mathrm{in}}(\mathrm{mix})\), and is found to be 2100 ohms. The output stability OS is determined from Eq.(6), as follows:
\[
\mathrm{OS}=\mathrm{R}_{\text {out }} / 2 \mathrm{R}_{2}=4200 /(2 \times 2100)=1
\]

The value of unity indicates an impedance match between \(\mathrm{R}_{\text {out }}\) and the load.

The input stability of the rf amplifier can then be determined from Eq.(7), as follows:
\[
\mathrm{IS}=\mathrm{S} / \mathrm{OS}=11.3
\]

By use of this stability term, the input-circuit constants can be calculated. \(\mathrm{R}_{1}\) is determined from Eq. (5), as follows:
\[
\mathrm{R}_{1}=\mathrm{R}_{\mathrm{in}} / 2 \mathrm{IS}=191 \mathrm{ohms}
\]

This value is so much lower than \(\mathrm{R}_{\text {in }}\) that it is apparent the MOS transistor does not load the antenna coil at all.

Because it is desired to match the antenna with the input circuit, the value of \(R_{1}\) should be one-half the reflected antenna impedance. Therefore, the value of
\(\left(\mathrm{N}_{3} / \mathrm{N}_{2}\right)^{2} \mathrm{R}_{\text {ANT }}\) is 382 ohms, which is a very slight step up. Because two of the three component terms of \(R_{1}\) are then known, the remaining term \(\left(\mathrm{N}_{3} / \mathrm{N}_{1}\right)^{2} \mathrm{R}_{\mathrm{T} 1}\) can be determined as 456 ohms. The turns ratios are then given by
\[
\begin{aligned}
& \mathrm{N}_{1} / \mathrm{N}_{2}=4.3 \\
& \mathrm{~N}_{1} / \mathrm{N}_{3}=3.7
\end{aligned}
\]

The values of circuit components obtained by means of this design method are given in the parts list for Fig. 1.

\section*{References}
1. F. M. Carlson and E. F. McKeon, 'Small Signal RF Amplification of MOS Devices," Proceedings of the 1966 National Electronics Conference.
2. F. M. Carlson, "Application Considerations for the RCA-3N128 VHF MOS Field-Effect Transistor," RCA Application Note AN-3193, August 1966.
3. D. L. Leonard, "Improve FM Performance with FETS," Electronic Design, Vol. 15 No.5, March 1967.
4. R.T. Peterson, 'High-Quality FM and AM/FM Tuners Using New Silicon Transistors," RCA Application Note AN-3466, June 1967.
5. R. V. Fournier, C. H. Lee, and R. T. Peterson, 'Performance Analysis of 3- and 4-Coil FM Tuners Using RCA High-Frequency Transistors," IEEE Transactions on Broadcast and TV Receivers, November 1965.
6. R. V. Fournier, C. H. Lee, and J. A. Kuklis, "A Goal: Spurious-Signal Immunity of Solid-State AM/FM Tuners," IEEE Transactions on Broadcast and TV Receivers, April 1966.

\section*{An FM Tuner Using}

\title{
Single-Gate MOS Field-Effect Transistors as RF Amplifier and Mixer
}
by

\author{
C.H. Lee and S. Reich
}

Selection of the transistors for use in FM-tuner stages involves consideration of such device characteristics as spurious response \({ }^{1}\), dynamic range, noise immunity, gain, and feedthrough capacitance. MOS field-effect transistors are especially suitable for use in FM rf-amplifier and mixer stages because of their inherent superiority for spurious-response rejection and signal-handling capability. This Note describes an FM tuner that uses an RCA- 40468 MOS transistor as the rf amplifier and an RCA-40559 MOS transistor as the mixer. A conversion gain of 17.5 dB was obtained, to provide an over-all tuner gain of approximately 30 dB . RF and mixer circuit considerations pertinent to the design are discussed.

\section*{Performance Features of MOS Transistors}

Spurious response in an FM tuner is caused by the mixture of unwanted signals with the desired carrier in either the rf stage or the mixer. This effect can be expressed mathematically by use of the Taylor series expansion of the simple transfer function of output current as a function of input voltage at the operating point, as follows:
\[
\begin{equation*}
i_{o}=I_{o}+\alpha e_{s}+\beta e_{s}^{2}+\theta e_{s}^{3}+\ldots \tag{1}
\end{equation*}
\]
where \(i_{o}\) is the instantaneous value of output current of the device; \(\mathrm{I}_{\mathrm{O}}\) is the dc component of output current; \(\mathrm{e}_{\mathrm{S}}\) is the rf signal voltage present at the input terminal of
the transistor; and \(\alpha, \beta\), and \(\theta\) are the coefficients of a Taylor series expansion. These coefficients are related to the first-, second-, and third-order derivatives of the transfer characteristic as determined by the bias point. It can be shown \({ }^{2,3}\) that mixing action within the device is attributable to the second-order term (\(\beta e_{s}{ }^{2}\)), and that cross-modulation and intermodulation result from thirdand higher-order terms. Therefore, when a device has an inherent square-law transfer characteristic, i.e., the drain current varies as the square of the applied gateto source voltage, third- and higher-order terms are zero and spurious response is eliminated. The transfer characteristic of MOS field-effect transistors more nearly approaches this ideal square-law relationship than the very steep exponential transfer characteristic of bipolar trans istors.

The dynamic-range capability of MOS field-effect transistors is about 25 times greater than that of bipolar transistors. In an actual tuner circuit, this large intrinsic dynamic range is reduced by a factor proportional to the square of the circuit source impedances. \({ }^{4}\) The net result is a practical dynamic range for MOS tuner circuits about five times that for bipolar types.

With MOS field-effect transistors, as contrasted with either bipolar transistors or junction-gate field-effect transistors, there is no loading of the input signal, nor drastic change of input capacitance even under extreme overdrive conditions.

In junction-gate field-effect transistors, a large incoming signal can have sufficiently high positive swing to drive the gate into conduction by a momentary forward bias; power is then drawn from the input signal in the same way as if a resistance were placed across the input circuit. In bipolar transistors, there is a gradual change of both input impedance and input capacitance as a function of large signal excursions. These changes are undesirable because they can result in detuning of tuned circuits and widening of the input selectivity curve.

\section*{FM Tuner Design}

The FM tuner shown in Fig. 1 uses single-gate MOS field-effect transistors in the rf-amplifier and mixer stages and a bipolar transistor as the local oscillator. The rf-amplifier transistor RCA-40468 operates in the common-source configuration with a stage gain of
12.7 dB . The mixer transistor RCA-40559 also operates in the common-source configuration, with both the rf and local-oscillator signals applied to the gate terminal. The bipolar oscillator transistor RCA-40244 operates in the common-collector mode. The conversion power gain from the mixer stage is 17.5 dB ; the total gain of the tuner is 30.2 dB .

Performance of the FM tuner was evaluated by use of the bipolar-transistor if amplifier shown in Fig.2. The \(10.7-\mathrm{MHz}\) if output from the tuner is coupled to the first if-amplifier stage by means of a double-tuned transformer \(\mathrm{T}_{1}\). The if amplifier employs two 40245 and one 40246 bipolar transistors, each operating in a neutralized common-emitter configuration at a collector current of 3.5 milliamperes. The over-all gain of the if amplifier is 88 dB . A detailed analysis of a similar if amplifier is covered in an earlier publication. 5

\(C_{1 a}, C_{1 b}, C_{1 c}-3\)-gang tuning capacitor, TRW 5 -plate Model \(\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}\) - Arco 402 trimmer, maximum value 10 pF
\(\mathrm{L}_{1}\) - No. 18 bare copper wire, 5 turns on 19/64" form, coil length \(1 / 2^{\prime \prime}\), with IRN \(.250 " \times .250^{\prime \prime}\) Arnold slug. \(\mathrm{Q}_{0}=164\). Antenna tap at 0.8 of a turn, output tap at 1.4 turns.
\(L_{2}\) - No. 18 bare copper wire, 5 turns on \(15 / 64^{\prime \prime}\) form, coil length \(3 / 8^{\prime \prime}\), with \(0.181^{\prime \times} \times 0.375^{\prime \prime}\) Arnold slug. \(Q_{0}=104\).
\(\mathrm{L}_{3}\) - No. 18 bare copper wire, 5 turns, air core with 3/8" O.D. coil length \(1 / 2^{\prime \prime}\). Emitter tap on 1-1/2 turns. Feedback tap on 2 turns. \(\mathrm{Q}=164\).
\(\mathrm{T}_{1}\) - Double tuned, 90 per cent of critical coupling. Primary unloaded uncoupled \(\mathrm{Q}=137\) with \(68-\mathrm{pF}\) tuning capacitance secondary unloaded uncoupled \(\mathrm{Q}=76\) with \(47-\mathrm{pF}\) tuning capacitance. Secondary has a turns ratio of 26.2 to 1.0 . Primary, No. 32 enamel wire, 15 turns, space wound at 60 TPI, \(0.250^{\prime \prime} \times 0.500^{\prime \prime}\) TH slug. Secondary, No. 36 enamel wire, 18 turns, close wound, \(0.250 " \times 0.250\) " TH slug. Both coils on \(9 / 32^{\prime \prime}\) form without shield.

Fig.1-Circuit diagram of FM tuner using MOS transistors for the rf amplifier and mixer stages.

Fig.2-Three-stage if amplifier using bipolar transistors.

Table I summarizes the performance of the MOS tuner. Spurious response was evaluated with a generator output of 350 millivolts.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{OVER-ALL TUNER PERFORMANCE} \\
\hline Carrier Frequency & 100 & MHz \\
\hline Modulation Frequency & 400 & Hz \\
\hline Deviation (except IHFM) & 22.5 & kHz \\
\hline \multicolumn{3}{|l|}{Sensitivity:} \\
\hline IHFM . & 1.75 & \(\mu \mathrm{V}\) \\
\hline \(20-\mathrm{dB}\) Quieting. & 1.5 & \(\mu \mathrm{V}\) \\
\hline \(30-\mathrm{dB}\) Quieting. & 1.75 & \(\mu \mathrm{V}\) \\
\hline 3 -dB Limiting & 2.5 & \(\mu \mathrm{V}\) \\
\hline Image Rejection & 62 & dB \\
\hline IF Rejection & 96 & dB \\
\hline Half-IF Rejection & 92 & dB \\
\hline \multicolumn{3}{|l|}{Spurious Response across} \\
\hline VHF band with egen. \(=0.35 \mathrm{volt}\) & & \\
\hline Table I-Over-all performance of FM tuner. & & \\
\hline
\end{tabular}

\section*{RF-Circuit Considerations}

The RCA-40468 MOS transistor used in the rf amplifier stage has a maximum available gain of 24 dB . Because the design criteria required a total mismatch plus insertion loss of 11.3 dB , the net gain for the stage is 12.7 dB . Although the design procedure used for these calculations has been discussed previously, 1,6 some of the considerations for optimizing performance warrant additional comment.

In the design of an rf stage for FM performance, the stage gain should be a compromise between optimum receiver sensitivity and spurious response rejection. In other words, the rf. gain capability should be large to minimize the effects of noise from the mixer, and yet be limited to prevent a very large undesired incoming signal located on the skirt of the selectivity curve from driving the mixer beyond its dynamic range. Good FM tuner performance is achieved by selection of the proper rfstage gain and step-down to the mixer input.

The rf input coil \(L_{1}\) is tapped down to provide the smallest practical input swing to the gate of the rfamplifier transistor for increased dynamic range. This tap-down is a compromise between optimizing for dynamic range and noise. When the degree of mismatch has been established, the drain-circuit load \(L_{2}\) is determined from stage-gain and bandwidth requirements. Table II shows the device parameters used forthe design of the rf stage.

The 40468 MOS transistor has a typical feedback capacitance of 0.12 picofarad, with a maximum value of 0.2 picofarad. This small value of \(C_{r s s}\) minimizes oscillator radiation feedback through the device, and
also makes it unnecessary to add neutralization components to the rf stage to achieve adequate gain.

\section*{Mixer-Circuit Considerations}

The mixer circuit shown in Fig. 1 is designed for operation into an 8000 -ohm-load. A load up to 12,000 ohms is permissible and provides a gain increase of about 1 dB from the mixer. The input circuit is tapped down by a 2.7 -picofarad capacitor in series with the device input capacitance to improve dynamic range. These mismatch losses result in a stage gain of 17.5 dB , as compared to the maximum available gain of 21.5 dB shown in the published data for the 40559 transistor.

The trap consisting of a 1 -microhenry inductor and 270-picofarad capacitor is designed to bypass any 10.7MHz component that may appear at the input to the mixer. A 1.5-picofarad capacitor couples the oscillator signal to the mixer gate. Because the capacitor is small, interaction with the oscillator tuned circuit is minimized and good oscillator stability is maintained. The injection level at the gate of the mixer is 700 millivolts rms.

The biasing arrangement for the mixer stage is particularly important: substrate bias is used to provide the optimum combination of mixing and spuriousresponse rejection. Fig. 3 shows the shift of the transfer characteristic as a function of negative substrate bias \(\mathrm{E}_{\mathrm{bs}}\) for the RCA-40559 mixer transistor.

\section*{Fig. 3 - Transfer characteristics of the RCA-40559 MOS field-effect transistor for several values of substrate bias.}

The transconductance, which is the first derivative of the transfer characteristic, also varies as a function of substrate bias, as shown in Fig.4. As stated previously, mixing is accomplished by means of the quadratic term of Eq.(1); higher-order terms contribute only to undesired responses. For ideal mixing, therefore, the
transconductance curve should approach a straight line. As the transconductance curve becomes linear, higherorder derivatives (i.e., above the second) reduce to zero and the conversion transconductance increases. Fig. 4 shows that the transconductance curve is most linear at

Fig. 4 - Transconductance of the RCA-40559 as a function of gate bias with the substrate voltage as the parameter.
a substrate bias of -3 volts. Fig. 5 shows the relative conversion gain of the RCA-40559 mixer stage as a function of the oscillator injection level at substrate bias of zero and -3 volts. It can be seen that the conversion transconductance also increases with the oscillator injection level.

Fig. 5 - Conversion transconductance as a function of oscillator injection level.

Table II shows the MOS device characteristics measured under circuit conditions. Reasonable verification of the measured conversion transconductance was obtained by calculation of the conversion transconduc-
tance for gate voltages ranging from zero to -2.1 volts. Details of these measurements are given in the Appendix.
\begin{tabular}{lrcl}
& \multicolumn{2}{c}{ RF Amplifier } & \multicolumn{1}{c}{ Mixer } \\
\multicolumn{1}{c}{ Parameter } & Units & RCA-40468 & RCA-40559
\end{tabular}

Table II - Device parameters for RCA-40468 and 40559 MOS field-effect transistors.

On the basis of these results, the optimum operating conditions for the mixer circuit were empirically established at an effective gate bias of -1 volt and an effective substrate bias of -3 volts to provide a typical drain current of 3 milliamperes.

\section*{Oscillator-Circuit Considerations}

The common-collector oscillator circuit shown in Fig. 1 generates an extremely clean output waveform? The absence of harmonics in the oscillator signal is an important factor in good tuner design. The oscillator signal is coupled to the mixer gate by means of a \(1.5-\) picofarad capacitor which isolates the tuned circuit of the oscillator from the input circuit of the mixer and thus minimizes the possibility of oscillator instabilities as a result of "pulling".

\section*{Over-all Tuner Performance}

The performance of the single-gate MOS tuner with respect to sensitivity, limiting, and particularly spurious response exceeds that obtained with the best bipolar transistors. In general, spurious-response performance can be degraded by inadequate circuit layout and wiring practices. For this reason, care should be exercised in arranging the physical layout of the tuner, and powersupply decoupling should be used.

Figs. 6 and 7 show the measured sensitivity of the tuner of Fig.1. The quieting sensitivity, shown in Fig.6, is practically flat across the entire FM band. IHFM sensitivity and \(3-\mathrm{dB}\) limiting, shown in Fig.7, show the same excellent performance. The IHFM sensitivity test input voltage, as defined by the Institute of High Fidelity Manufacturers, is the minimum 100 -per-centmodulated signal input which, when applied to a receiver through the standard 300 -ohm dummy antenna and an audio voltmeter connected through a \(400-\mathrm{Hz}\) filter, re-
duces a total internal receiver noise and distortion to the point where the output rises 30 dB when the \(400-\mathrm{Hz}\) null filter is removed from the audio voltmeter circuit. This value is expressed in microvolts.

Fig. 6 - Signal level for 20 - and \(30-\mathrm{dB}\) quieting as a function of signal frequency.

Fig. 7 - Signal level for 3-dB limiting and IHFM sensitivity as a function of signal frequency.

Figs. 8 and 9 provide additional performance characteristics. Fig. 8 shows the gain and noise characteristics; Fig. 9 shows the image and half-if rejection of the tuner. The spurious responses shown in Fig. 9 were measured with a generator drive capability of 350 -millivolts from 10.7 to 216 MHz .

Fig. 8 - Relative gain of signal and noise as a function of the signal voltage level.

Fig. 9 - Signal rejection as a function of input frequency, measured with a generator voltage of 350 millivolts.

MOS transistors covering a wide range of drain current were tested in the rf-amplifier and mixer sockets. Performance variations for image rejection and half-if rejection were within \(\pm 1 \mathrm{~dB}\) of the values shown in Table I. Variations in sensitivity were less than 0.25 microvolt.

\section*{Conclusions}

The RCA-40468 and 40559 MOS field-effect transistors were designed into an FM tuner. Evaluation of this tuner was made in conjunction with an FM-if amplifier that used 40245 and 40246 bipolar transistors. Over-all performance of the combination showed that the capability of MOS devices for dynamic range, sensitivity, and spurious response rejection exceeds that obtained with similar FM tuners that used bipolar transistors. Experimental work indicated that performance variations as a function of product distribution were insignificant.

\section*{APPENDIX \\ Calculation of Conversion Transconductance from the Operating Characteristic}

The following procedure is used to calculate the conversion transconductance of the mixer stage based on the degree of linearity of the transconductance curves of Fig. 4 and the magnitude of the oscillator injection voltage. The results show that the conversion transconductance is greatest for the curve that is most linear. For the mixer circuit described in this Note, this condition occurs at a substrate bias of -3 volts.

For the curves of Fig.4, the transconductance \(g_{m}\) is given by the following general relation:
\[
\begin{equation*}
g_{m}=f\left(E_{g}\right) \tag{2}
\end{equation*}
\]
where \(\mathrm{E}_{\mathrm{g}}\) is the gate bias. For a substrate bias of -3 volts, and a gate bias between zero and -2.1 volts,
the corresponding curve of transconductance is expressed as follows:
\[
\begin{equation*}
\mathrm{g}_{\mathrm{m}}=12.5-2.14 \epsilon^{-0.937 \mathrm{E}_{\mathrm{g}}} \tag{3}
\end{equation*}
\]

For optimum mixer performance with a minimum of spurious responses, a gate voltage of -1 volt was selected as the quiescent operating point. The Taylor series expansion for Eq.(3) for a center-point operating bias \(\mathrm{E}_{\mathrm{g}}\) of -1 volt is given by
\[
g_{m}=10.3+2.584 e_{g}-0.148 e_{g}^{2}+0.75 e_{g}^{3}+\ldots(4)
\]
where \(\mathrm{e}_{\mathrm{g}}\) is the instantaneous voltage on the gate. This instantaneous gate voltage \(\mathrm{e}_{\mathrm{g}}\) can be expressed in terms of the peak oscillator signal voltage \(e_{0}\), as follows:
\[
\begin{equation*}
e_{g}=-1+e_{o} \sin \omega_{0} t \tag{5}
\end{equation*}
\]

Substitution of Eq.(5) into Eq.(4) yields the following expression for transconductance:
\[
\begin{gather*}
g_{m}=6.82+5.13 e_{o} \sin \omega_{o} t-2.39 e_{o}^{2} \sin ^{2} \omega_{o} t+ \\
0.75 e_{o}^{3} \sin ^{3} \omega_{o} t \tag{6}
\end{gather*}
\]

An expression for instantaneous drain current \(i_{d}\) in terms of Eq.(6) and the incoming signal \(e_{s}\) can then be written, as follows:
\[
\begin{equation*}
i_{d}=g_{m} e_{s} \sin \omega_{s} t \tag{7}
\end{equation*}
\]

Expansion of Eq.(7) in terms of \(e_{o} \sin \omega_{o} t\) and \(e_{s} \sin \omega_{s} t\) and selection of those components which are effective at 10.7 MHz [i.e., \(\sin \left(\omega_{0}-\omega_{\mathrm{s}}\right) \mathrm{t}\) components] provides the following expression for drain current at the intermediate frequency:
\[
\begin{equation*}
{ }^{\mathrm{i}_{\mathrm{IF}}}=\left(2.57 \mathrm{e}_{\mathrm{o}}+0.28 \mathrm{e}_{\mathrm{o}}\right) \mathrm{e}_{\mathrm{s}} \tag{8}
\end{equation*}
\]

By definition, the conversion transconductance \(g_{c}\) is equal to the if current divided by the signal voltage, as follows:
\[
\begin{equation*}
g_{C}=i_{I F} / e_{S} \tag{9}
\end{equation*}
\]

Therefore, \(g_{c}\) can be expressed in terms of the oscillator injection voltage \(e_{o}\) as follows:
\[
\begin{equation*}
\mathrm{g}_{\mathrm{c}}=(2.57+0.28) \mathrm{e}_{\mathrm{o}} \tag{10}
\end{equation*}
\]

Because the magnitude of oscillator injection voltage \(e_{o}\) for the MOS FM tuner was selected to be 1 volt peak, the conversion transconductance is calculated to be
\[
\mathrm{g}_{\mathrm{c}}=(2.57)+(0.28)=2.85 \mathrm{mmhos}
\]

By use of the same procedure, the conversion transconductance at a substrate bias of zero volts is calculated to be 2.29 millimhos. It is apparent that the application of a substrate bias provides an increase in conversion transconductance of more than 25 per cent.

\section*{REFERENCES}
1. Kleinman, H. M., and Lee, C. H., "An FM Tuner Using an RCA-40468 MOS-Transistor RF Amplifier." RCA Application Note AN-3453, June 1967.
2. McKeon, E. F., "Cross-Modulation Effects in SingleGate and Dual-Gate MOS Field Effect Transistors.'" RCA Application Note AN-3435, August 1967.
3. Fournier, R. V., Lee, C. H., and Peterson, R. T., 'Performance Analysis of 3 and 4 Coil FM Tuners Using RCA High Frequency Transistors.' IEEE TRANSACTIONS on Broadcast and TV Receivers, November 1965. RCA Reprint No.ST-3295.
4. Baar, L. S., Reich, S., "A Comparison of Solid-State and Electron Tube Devices for TV Receiver and IF

Stages," IEEE TRANSACTIONS on Broadcast and TV Receivers, April 1967. RCA Reprint No.ST-3295.
5. Peterson, R. T., 'High Quality FM and AM/FM Tuners Using New N-P-N Silicon Transistors," RCA Application Note AN-3466, June 1967.
6. Holmes, D. D., and Stanley, T. O., 'Stability Considerations. in Transistor IF Amplifiers," TRANSISTORS I, RCA Laboratories, Princeton, N.J., 1956.
7. Fournier, R. V., Lee, C. H., and Kuklis, J. A., "A Goal: Spurious Signal Immunity of Solid State AM/FM Tuners." IEEE TRANSACTIONS on Broadcast and TV Receivers, April 1966. RCA Reprint No.ST-3295.

\title{
几®/ \\ MOS Field-Effect Transistors \\ Solid State Division
}

\title{
Design of Gate-Protected MOS Field-Effect Transistors
}

\author{
by L.A. Jacobus and S. Reich
}

MOS (metal-oxide-semiconductor) field-effect transistors are in demand for rf-amplifier applications because their transfer characteristics make possible significantly better performance than that experienced with other solid-state devices. 1,2 Unless equipped with gate protection, however, MOS transistors require careful handling to prevent static discharges from rupturing the dielectric material that separates the gate from the channel. This Note describes the design of dual-gate MOS field-effect transistors that use a built-in signallimiting diode structure to provide an effective short circuit to static discharge and limit high potential buildup across the gate insulation.

\section*{Breakdown Mechanism}

Before the techniques of gate protection can be applied, the breakdown mechanism associated with gate destruction must be understood. For the sake of simplicity in exploring the breakdown mechanism, a single-gate structure is used. Fig. 1 shows this singlegate structure (a), its electrical symbol (b), and a much simplified equivalent circuit (c) that explains the possible static discharge paths within the device. The substrate diode is formed by the p-n junction integrated over the entire junction area, i.e., the source and drain diffusions connected by the inversion layer or n-type channel. Fig. 1 (c) lumps the diffuse diode into one equivalent diode terminating at the center of the channel.
\(\mathrm{C}_{\text {IN }}\) in Fig. 1 (c) represents the gate-to-channel capacitance, and \(R_{1}\) and \(R_{2}\) represent the channel resistance. \(R_{3}\) is the leakage resistance associated with the substrate-to-channel equivalent diode \(\mathrm{D}_{1}\). Leakage resistance across CIN was intentionally deleted because it is more than a thousand orders of magnitude higher than \(R_{3}\). In a typical RCA MOS field-effect transistor (e.g., 3 N 128), \(\mathrm{C}_{\mathrm{IN}}\) is less than 5 picofarads. The channel resistance \(R_{1}+R_{2}\), which is a function of the applied bias, can range from \(10^{2}\) to \(10^{10}\) ohms. \(R_{3}\) is also subject to variations determined by operating conditions, but can be assumed to be in the order of \(10^{9}\) ohms. Thus, the application of a dc potential between the gate and any other element results in practically all of this potential being applied across \(\mathrm{C}_{\text {IN }}\).

In a dual-gate MOS field-effect transistor, the oxide thickness of the CIN dielectric is about 600 angstroms. The dielectric material is \(\mathrm{SiO}_{2}\), which has a breakdown constant of \(5 \times 10^{6}\) volts per centimeter. The gate volt-age-handling capability is therefore 30 volts. A cross-

(b)

Fig. 1 - Single-gate MOS field-effect transistor: (a) structure; (b)electrical symbol; (c) simplified equivalent circuit.
section of a typical RCA dual-gate device is shown in Fig. 2 (a), and its schematic symbol in Fig. 2 (b). The substrate in this structure is internally tied to the source; this connection is also shown schematically by the dotted line in Fig. 1 (c).

Fig. 2-Dual-gate MOS field-effect fransistor:(a) structure; (b) electrical symbol.

\section*{Static Discharge}

If the potential applied to an MOS transistor were entirely within the control of the circuit designer, there would be no need for gate protection. Unfortunately, designers do not have complete control of the MOS field-effect transistor environment and static potentials do accumulate. These high potentials can inadvertently be discharged through the device when it is handled
during the equipment manufacturing cycle or by a receiving antenna associated with the end product in which the transistor is used. The more severe of these conditions, in terms of percentage of units that suffer damage, is probably the initial handling phase.

Fig. 3 shows a simple equivalent circuit of a static discharge generator as it appears at the input of an MOS transistor. \(\mathrm{E}_{\mathrm{S}}\) represents the static potential stored in the static generator capacitor \(C_{D}\). This voltage must be discharged through internal generator resistance \(\mathrm{R}_{\mathrm{S}}\). Laboratory experiments have determined that a human body acts as a static (storage) generator with a capacitance \(C_{D}\) ranging from 100 to 200 picofarads and a resistance \(\mathrm{R}_{\mathrm{S}}\) greater than 1000 ohms. Although there is

Fig. 3.Equivalent circuit of a static discharge generator.
virtually no upper limit to the amount of static voltage that can be accumulated, repeated measurements suggest that the amount of potential stored is usually less than 1000 volts. Experience has also indicated that the potential from a static discharge is more severe during transistor handling than when the device is installed in a typical application. In an rf application, for example, a static potential picked up by the antenna would traverse an input circuit that normally provides a large degree of attenuation to the static surge before it appears at the input of the rf amplifier. For this reason, the development of gate-protected MOS transistors concentrated on the requirement that the devices be capable of withstanding the static discharges likely to occur during handling operations.

\section*{Gate-Protection Methods}

It has been established above that in terms of a static discharge potential it is reasonable to represent the MOS transistor as a capacitor, such as CIN in Fig. 4. The ideal situation in gate protection is to provide a signal-limiting configuration that allows for a signal such as that shown in Fig. 4(a) to be handled without clipping or distortion. The signal-limiting devices should limit all transient responses that exceed the gate breakdown voltage, as shown in Fig. 4(b). One possible means of securing proper limiting is to place a diode in parallel with CIN, as shown in Fig. 4(c). Unfortunately, this arrangement causes several undesirable consequences. In terms of signal handling, the single diode clips the positive peaks of a sine wave such as that in Fig. 3(a) when the transistor is operated in the vicinity of zero bias. The 3N140 dual-gate MOS transistor, for example, is frequently operated with the rf signal superimposed on a slightly|positive "bias" potential on gate No. 1. Furthermore, gate No. 2 of the 3 N140 is designed to handle large positive and negative dc voltage swings from the agc loop. A singlediode arrangement would render this device useless for this type of circuit. It is important, therefore, that the limiting device be an effective open circuit to any incoming signals through the amplitude range of such signals. The best available method for accom-

Fig. 4-Gate-protection requirements and two solutions.
plishing this effective open circuit is the back-to-back diode arrangement pioneered by RCA and shown in Fig.3(d).

Ideally, the transfer characteristic of the protective signal-limiting diodes has an infinite slope at limiting, as shown in Fig. 5(a). Under these conditions, the static potential generator in Fig. 5(b) discharges through its internal impedance \(\mathrm{R}_{\mathrm{s}}\) into the load represented by the signal-limiting diodes. The ideal signal-limiting diodes, with an infinite transfer slope (\(\mathrm{R}_{\mathrm{S}}=0\)), would then limit the voltage presented to the gates to its knee value, \(e_{d}\). The difference voltage \(\mathrm{E}-\mathrm{e}_{\mathrm{d}}=\mathrm{e}_{\mathrm{S}}\) (where E is the static potential in the static generator, \(e_{d}\) is the diode voltage drop, and \(e_{s}\) is the voltage drop across the generator internal resistance) appears as an IR drop across \(R_{S}\), the internal impedance of the generator. The instantaneous value of the diode current is then equal to \(\mathrm{e}_{\mathrm{s}} / \mathrm{R}_{\mathrm{s}}\). During handling, the practical range of this discharge varies from several milliamperes to several hundred milliamperes.

(a)

(b)

Fig. 5- Transfer characteristic of protective diodes (a), and resulting waveforms in equivalent circuit (b).

\section*{Electrical Requirements}

The previous discussion points out that optimum protection is afforded to the gate with a signal-limiting diode that exhibits zero resistance (i.e., an infinite transfer slope and fast turn-on time) to all high-level transients. In addition, the diode ideally adds no capacitance or loading to the rf input circuit.

The first phase in the development of gate-protected MOS field-effect transistors was, quite naturally, their construction in hybrid form. This form was used for initial measurements because it effectively enabled the physical separation of the diodes from the MOS pellet. This separation made it possible to measure the performance of the active device apart from the combined structure and thus obtain a more precise assessment of the loading effect of the diodes. The hybrid phase has now been followed by the development of monolithic gate-protected MOS field-effect transistors such as the RCA-40673. In this transistor, the diodes are an integral part of the MOS device and are internally connected as shown in Fig. 6.

Fig.6-Connection of integral protective diodes in dual-gate MOS transistor.

\section*{Monolithic Gate-Protected MOS Transistors}

In the design of a monolithic diode-protected MOS transistor, several factors must be taken into account. (1) The high-frequency performance of the device must be comparable to that of available unprotected units. (2) The device must be designed so that no additional assembly cost is incurred. (3) The silicon area must be used efficiently to provide the maximum number of devices per semiconductor wafer. (4) The diodes must provide adequate protection against the transients experienced primarily in handling but also when the transistor is finally installed in some piece of equipment.

One approach to integrating protective diodes into an MOS transistor structure on one chip is shown in Fig. 7. In this approach, the silicon substrate required for an n-channel depletion-type MOS device is the
starting material. The n-type wells are diffused into the silicon to provide pockets for the protective devices. The surface concentration and depth of these wells are carefully controlled because both of these factors are important in determining diode characteristics.

The \(\mathrm{p}^{+}\)-type regions are diffused into the n -type wells to form the diodes and around the periphery to isolate the diode structure from the surface of the MOS device and to provide a region into which the channels may be terminated. The size of the diodes is determined by the desired current-handling capability and the amount of capacitance that can be tolerated across the gate of the MOS transistor. The spacing of the diodes is determined by the area available and the desired amount of control of transistor action from diode to diode. After the diode structures are formed, they are covered by a protective oxide. The MOS device is then fabricated by conventional means.

Fig. 8 shows a photograph of a completed monolithic diode-protected dual-gate MOS transistor. In this structure,

Fig. 8-Completed monolithic diode-protected dual-gate MOS transistor.
one of the diodes of each pair has been located under the gate bonding pads. The small triangular metal pads

Fig. 7. Structure of MOS transistor chip including protective diodes.
make contact with the second diode of each pair and connect it to the source metalization. In assembly, the source is shorted to the substrate so that a low-resistance path to ground is provided for the diodes. To ground the diodes under the second gate properly, it is necessary to break the metal of the first gate and terminate the first channel on the \(p^{+}\)type guard band surrounding the diode structure of the second gate. This technique prevents spurious source-to-drain current which could result from the open nature of the structure.

\section*{Current-Handling Capability}

Fig. 9 shows a typical diode transfer characteristic measured with a one-microsecond pulse width at a \(4 \times 10^{-3}\) duty cycle. The purpose of the protective diode is to limit the amplitude of the transient to a value that is below the gate breakdown voltage. Typically, a dual-gate transistor has a gate-to-source breakdown voltage rating of 20 volts. The curves in Fig. 9 show that the transfer characteristic of the signal-limiting diodes will constrain a transient impulse to potential values well below this 20 -volt limit even when the input surge is capable of delivering hundreds of milliamperes.

Fig. 9- Typical diode transfer characteristic measured with 1-microsecond pulse width at \(4 \times 10^{-3}\) duty cycle.

The protection offered by the MOS signal-limiting diodes is more dramatically demonstrated when a gateprotected MOS transistor is compared to a high-frequency bipolar device. A laboratory experiment in which a static charge was accumulated in a capacitor and discharged through a circuit configuration like the one shown in Fig. 3 demonstrated that the special signallimiting diodes made the protected-gate MOS fieldeffect transistor less vulnerable to static discharge damage than the bipolar transistor by a factor greater than two.

\section*{Input Capacitance and Resistance}

The curves of input capacitance and input resistance as a function of drain current in Fig. 10 represent average readings taken from ten hybrid devices with diodes first connected and then disconnected (the readings for all ten devices were remarkably close to the averages). The curves indicate that the diodes increase input capacitance by about 2.5 picofarads and decrease input resistance by about 200 ohms.

Fig. 10-Input resistance and capacitances as a function of drain current for hybrid structures with and without diodes.

\section*{Power Gain and Noise Factor}

In the final analysis, the question that must be answered is how the addition of the protective signallimiting diodes affects circuit power gain and noise factor. Performance data taken on the ten units described above in the typical rf test circuit shown in Fig. 11 are given in Table 1. Noise-factor values show an average degradation of 0.25 dB when the diodes are connected. The power-gain values show that the change in this characteristic is insignificant.

Table I-Power Gain and Noise Factor at 200 MHz.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
HYBRID \\
UNIT
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c}
POWER GAIN \\
(dB)
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c}
NOISE FACTOR \\
(dB)
\end{tabular}} \\
\hline & \begin{tabular}{c}
DIODES \\
IN
\end{tabular} & \begin{tabular}{c}
DIODES \\
REMOVED
\end{tabular} & \begin{tabular}{c}
DIODES \\
IN
\end{tabular} & \begin{tabular}{c}
DIODES \\
REMOVED
\end{tabular} \\
\hline 1 & 16.3 & 16.4 & 3.7 & 3.4 \\
2 & 18.8 & 18.5 & 2.4 & 2.2 \\
3 & 16.5 & 16.2 & 3.3 & 3.0 \\
4 & 16.3 & 15.7 & 3.9 & 3.4 \\
5 & 17.7 & 17.8 & 2.6 & 2.4 \\
6 & 17.2 & 17.5 & 2.8 & 2.5 \\
7 & 17.1 & 17.0 & 3.3 & 3.2 \\
8 & 17.9 & 18.0 & 2.9 & 2.6 \\
9 & 18.5 & 18.5 & 2.4 & 2.3 \\
10 & 17.3 & 17.3 & 3.2 & 3.0 \\
\hline
\end{tabular}

\(\mathrm{C}_{1}: 100\) picofarads, ceramic disc
\(\mathrm{C}_{2} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}: 1000\) picofarads, feed-through type
\(\mathrm{C}_{3}\) : 1 to 10 picofarads, variable air (piston);
JFD VAM-010, Johnson Co. No. 4335,' or equivalent
\(\mathrm{C}_{4}\) : 1.8 to 8.7 picofarads, variable air;
Johnson Co. No. 160-104 or equivalent
\(\mathrm{C}_{5}\) : 3 picofarads, tubular ceramic
\(\mathrm{C}_{6}\) : 22 picofarads, ceramic disc
\(\mathrm{C}_{11}\) : 1.5 to 5 picofarads, variable air;
Johnson Co. No. 160-102 or equivalent
\(\mathrm{C}_{12}\) : 100 picofarads, ceramic disc
\(\mathrm{C}_{13}\) : 1.5 picofarads, tubular ceramic
\(\mathrm{C}_{14}\) : 0.8 to 4.5 picofarads, variable air (piston); Erie \(560-013\) or equivalent

Ferrite 4 beads on No. 24 wire between \(\mathrm{L}_{1}\) and socket; beads beads: are Pyroferrio Co. "Carbonyl J" or equivalent: 0.093 -inch OD, 0.03 -inch ID, 0.063 inch thick
\(\mathrm{L}_{1}: 4\) turns 0.020 -inch copper ribbon, silver-plated, 0.075 to 0.085 inch wide, 0.25 -inch inside diameter, coil approximately 0.80 inch long
\(\mathrm{L}_{2}: 4.5\) turns 0.020 -inch copper ribbon, silver-plated, 0.085 to 0.095 inch wide, 0.3125 -inch inside diameter, coil approximately 0.90 inch long
\(\mathrm{Q}_{1}\) : MOS transistor under test
RFC: Ohmite part No. Z235 or equivalent
\(\mathrm{R}_{1}: 27,000\) ohms
\(R_{2}: 47,000\) ohms
\(R_{3}: 36,000\) ohms
\(\mathrm{R}_{4}: 1800\) ohms
\(\mathrm{R}_{5}\) : 275 ohms, \(1 / 2\) watt, 1
\(\mathrm{R}_{6}: 120,000\) ohms
\(\mathrm{R}_{7}: 1000\) ohms

Fig. 11 -RF test circuit for dual-gate MOS trans is tors.

\section*{Conclusions}

Gate-protected dual-gate MOS field-effect transistors such as the RCA-40673 make available to the circuit designer a device capable of good rf performance without the hazards previously associated with the handling and installation of MOS devices. Moreover, the gate protection is provided by signal-limiting diodes that do not significantly compromise dynamic range, noise factor, or power gain.

\section*{Acknowledgment}

The authors thank L. Baar for collecting data and providing general support for the work described, and C. Tollin for fabricating the devices tested.

\section*{References}
1. H.M. Kleinman, "Application of Dual-Gate MO Field-Effect Transistors in Practical Radio Re ceivers", IEEE TRANSACTIONS ON BROADCAS? AND TV RECEIVERS, July 1967.
2. E.F. McKeon, "Cross-Modulation Effects in Single Gate and Dual-Gate MOS Field-Effect Transistors" RCA Application Note AN-3435, August 1967.

\title{
RF Applications of the Dual-Gate MOS FET up to \(500 \mathbf{M H z}\)
}

\author{
by L. S. Baar
}

The RCA dual-gate protected, metal-oxide silicon, field-effect transistor (MOS FET) is especially useful for high-frequency applications in RF amplifier circuits. The dual-gate feature permits the design of simple AGC circuitry requiring very low power. The integrated diodes protect the gates against damage due to static discharge that may develop during handling and usage. This Note describes the use of the RCA-3N200 dual-gate MOS FET in RF applications. The 3N200 has good power gain and a low noise factor at frequencies up to 500 MHz , offers especially good crossmodulation performance, and has a wide dynamic range; its low-feedback capacitance provides stable performance without neutralization.

\section*{Gate-Protection Diodes}

Fig. 1 shows the terminal diagram for the 3N200. Gate No. 1 is the input signal electrode and Gate No. 2 is normally used to obtain gain control. The back-to-back diodes are connected from each of the gates to the source terminal, lead No. 4. If short duration pulses greater than \(\pm 10\) volts, generated for example by static discharge, are inadvertently applied to either gate, the protective diodes limit these voltages and shunt the current to the source terminal. Thus the gates, under normal operating conditions, are protected against the effects of overload voltages. \({ }^{1}\)

\section*{Operating Conditions}

Typical two-port characteristics at 400 MHz including both " \(y\) " and " \(s\) " parameters, are given for the 3N200 in the RCA technical bulletin, File No. 437. This note makes use of the " \(y\) " parameters; however, designers who prefer the alternate method can, by parallel analysis, make use of the "s" parameters.

A recommended operating drain current (ID) for the 3N200 is approximately 10 milliamperes with Gate No. 2 sufficiently forward biased such that a change in the bias voltage does not greatly affect the drain current. An adequate Gate No. 2-to-source voltage (\(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}\)) is approximately +4 volts. The forward transadmittance (\(\mathrm{y}_{\mathrm{fs}}\)) increases with drain current, but saturates at higher current levels. The increase in RF performance at drain currents above 10 milliamperes is achieved only with less efficient use of input power.

To establish the optimum operating conditions for a type, consideration must be given to the range of variations in characteristics values encountered in production quantities of the type. \({ }^{2}\) One important measure of type variation is the range of zero bias drain current (IDS). The current range given in the 3 N 200 technical bulletin for IDS is from 0.5 mA to 12 mA . A fixed bias condition intended to center the range of drain current at the desired level, still will produce an operating drain current range of 11.5 milliamperes with a resultant wide range of forward transconductance (gfs). The drain current can be regulated by applying dc feedback with a bypassed source resistor (RS). A good approximation of \(\mathrm{RS}_{S}\) (where IDQ \(\geq \mathrm{IDS} / 2\)) can be calculated by the use of the following formula*, assuming that \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}\) vs. IDS is linear over the current range under consideration:
\[
\mathrm{R}_{\mathrm{S}} \approx\left(\frac{1}{\mathrm{~g}_{\mathrm{fs}}(\min .)}\right)\left(\frac{\Delta \mathrm{I}_{\mathrm{DS}}}{\Delta \mathrm{I}_{\mathrm{DQ}}}-1\right)
\]

Eq. 1

\footnotetext{
*See Appendix
}

Fig. 1 - Terminal diagram for the 3N200.
where:
\(\Delta I_{\text {DS }}\) is the current range given in the 3 N 200 technical bulletin
\(\Delta I_{D Q}\) is the desired range of operating current \(\mathrm{g}_{\mathrm{fs}}\) (min.) is the minimum forward transconductance at 1000 Hz

With the value of \(\mathrm{R}_{\mathrm{S}}\) established, then the Gate-No. 1 Voltage (\(\mathrm{V}_{\mathrm{G} 1}\)) can be calculated from the equation
\[
\begin{equation*}
\mathrm{V}_{\mathrm{G} 1}=\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}+\mathrm{I}_{\mathrm{DQ}} \mathrm{R}_{\mathrm{S}} \tag{Eq. 2}
\end{equation*}
\]
where \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}\) is estimated by:
\[
\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}} \approx \frac{\mathrm{I}_{\mathrm{DQ}}-\mathrm{I}_{\mathrm{DS}}}{\mathrm{~g}_{\mathrm{fs}}(\text { avg. })}
\]
where:
\(\mathrm{g}_{\mathrm{fs}}(\) avg. \()\) is the average forward transconductance

To establish the Gate-No. 2 Voltage \(\left(\mathrm{V}_{\mathrm{G} 2}\right)\), follow the same procedure described for calculating the Gate-No. 1 Voltage, except that a fixed \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}\) of approximately 4 volts is adequate.

If gain control is desired, apply a negative-going voltage to Gate No. 2. Because Gate No. 2 has little control in the
voltage range of +2 to +5 volts, this characteristic may bt used to effect AGC delay of the device in order to maintair the low noise figure until the RF signal is out of the noise-leve range.

\section*{Stability Considerations}

Typical " \(y\) " parameter data as a function of frequency are given in Table 1. Maximum available gain (MAG) calculated from these data are also included to indicate ideal gain performance (i.e., \(\mathrm{y}_{\mathrm{rs}}=0\)). The ability of the MOS FET to approach these gain levels depends on the device maintaining stable performance at the required operating frequency.

There are several methods which may be used to test for gain vs. stability. One of these methods, the Linvill Criteria (C), is defined by the equation:
\[
\begin{equation*}
\mathrm{C}=\frac{\mathrm{y}_{\mathrm{rs}} \mathrm{y}_{\mathrm{fs}}}{2 \mathrm{~g}_{\mathrm{is}} \mathrm{~g}_{\mathrm{os}}-R_{\mathrm{e}}\left(\mathrm{y}_{\mathrm{rs}} \mathrm{y}_{\mathrm{fs}}\right)} \tag{Eq. 4}
\end{equation*}
\]

A value for C which is less than 1 indicates unconditional stability. Applying the \(400-\mathrm{MHz}\) values taken from Table 1 to the Linvill Criteria yields a value of \(\mathrm{C}=0.615\); substantially less than the value indicating unconditional stability.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{5}{|c|}{FREQUENCY (MHz)} & \multirow[t]{2}{*}{UNITS} \\
\hline & & 100 & 200 & 300 & 400 & 500 & \\
\hline y Parameters & & & & & & & \\
\hline Input Conductance & \(\mathrm{gis}_{\text {is }}\) & 0.25 & 0.8 & 2.0 & 3.6 & 6.2 & mmho \\
\hline Input Susceptance & \(\mathrm{b}_{\text {is }}\) & 3.4 & 5.8 & 8.5 & 11.2 & 15.5 & mmho \\
\hline Magnitude of Forward Transadmittance & \(y_{f s} \mid\) & 15.3 & 15.3 & 15.4 & 15.5 & 16.3 & mmho \\
\hline Angle of Forward Transadmittance & \(\underline{y}_{\text {fs }}\) & -15.0 & -25.0 & -35.0 & -47.0 & -60.0 & degrees \\
\hline Output Conductance & gos & 0.15 & 0.3 & 0.5 & 0.8 & 1.1 & mmho \\
\hline Output Susceptance & \(\mathrm{b}_{\text {Os }}\) & 1.5 & 2.7 & 3.6 & 4.25 & 5.4 & mmho \\
\hline Magnitude of Reverse Transadmittance & \(\mathrm{y}_{\mathrm{rs}}\) & 0.012 & 0.025 & 0.06 & 0.14 & 0.26 & mmho \\
\hline Angle of Reverse Transadmittance & \(\underline{y s}_{\text {rs }}\) & -60.0 & -25.0 & 0 & 14.0 & 20.0 & degrees \\
\hline Maximum Available Gain & MAG & 32.0 & 24.0 & 17.5 & 13 & 10.0 & dB \\
\hline
\end{tabular}

Table 1 - " \(\mathbf{y}\) " Parameters from 100 to \(\mathbf{5 0 0} \mathbf{~ M H z}\)

The following equation for Maximum Usable Gain (MUG) \({ }^{3}\) is:

Eq. 5
where:
\[
\begin{aligned}
& \theta=\angle \mathrm{y}_{\mathrm{fs}}+\angle \mathrm{y}_{\mathrm{rs}} \\
& \mathrm{~K}=\text { skew factor } \\
& \angle \mathrm{y}_{\mathrm{rs}}=\text { angle of reverse transadmittance } \\
& \angle \mathrm{y}_{\mathrm{fs}}=\text { angle of forward transadmittance }
\end{aligned}
\]

The skew factor, introduced in this equation, is a safety measure that establishes an arbitrary degree of skewing in the frequency response which may be introduced by regeneration. A value of 0.2 for \(K\) has been established on the basis of past experience. The value of MUG calculated at 400 MHz is 13.8 dB . This value of MUG is greater than the value of MAG, again indicating unconditional stability, since MAG, ignoring inherent feedback, is the conjugately matched gain. Therefore, neutralization or circuit loading is not required to insure stable performance, and the gain can approach MAG, limited only by circuit losses.

Reverse transadmittance (\(\mathrm{y}_{\mathrm{rs}}\)) is composed of several components, but the major ones are feedback capacitance (\(\mathrm{C}_{\text {rss }}\)) and source-lead inductance (LS). Therefore, care must be exercised in the application of the \(y_{r s}\) values, shown in Table 1, at the upper end of the usable frequency range. The 3N200 utilizes a JEDEC TO-72 package that has 4 leads. The data in Table 1 was compiled with the use of a socket which contacts the leads of the 3 N 200 as close as possible to the bottom of the package as specified by the JEDEC Standard Proposal SP-1028 "Measurement of VHF-UHF " \(y\) " Parameters". The leads are shielded from each other to eliminate stray capacitance between the leads, but some lead inductance is inevitable. If the device is soldered directly to the circuit components using commercial production techniques rather than by precise laboratory methods, then additional source lead inductance can be expected. Also, some additional capacitive coupling may result if the input and output circuits are not completely isolated from each other.

Because the published \(y_{r s}\) value for the 3 N 200 is very small, the circuit \(y_{\text {rs }}\) values may differ significantly from the \(Y_{\text {rs }}\) values shown in Table 1 and hence, may result in an unstable operating condition. It is impossible to provide data for all possible mounting combinations, therefore, a recommended mounting arrangement is shown in Fig. 2. The source and substrate in the T0-72 package of the 3 N 200 are internally connected to lead No. 4 and the case. The source-lead inductance can be reduced, if the case is used as the source connection. Fig. 2 illustrates a partial component layout in which the case is held by a clamp or other fingered
device. The clamp is soldered to a feedthrough capacitor to provide an effective, very-low inductance bypass to RF signals. This mounting arrangement still permits the use of a source resistor for DC stability, and enables the case to provide isolation between the input and output circuit in addition to the isolation afforded by the shield.

SIDE VIEW
Fig. 2 - Partial component layout of \(400-\mathrm{MHz}\) amplifier circuit

The reduction of source-lead inductance provides in addition to greater stability, a lower input and output conductance. Table 2 shows the differences in " \(y\) " parameter values at 400 MHz when measured with the source connection made to lead No. 4 (in accordance with the published data for the 3 N 200) and when measured with the case connected directly to the ground plane of the test jig. The magnitude of reverse transadmittance is halved with a significant change in its phase angle. The input conductance is reduced by \(30 \%\), and the output conductance is reduced by \(13 \%\). A recalculation of the expressions for MAG, MUG, and Linvill Criteria (C) shows a significant improvement in gain and circuit stability.

While it is difficult to provide accurate information on the effects of shielding between the input and output circuits, its effect can be demonstrated when all other feedback components have been reduced to negligible values. The circuit, shown in Fig. 3 (for component layout see Fig. 2), was measured both with and without a shield. The maximum gain, without the shield, averaged 0.8 dB lower than with the use of the shield.

When receiver sensitivity is an important consideration in the design of an RF amplifier, a compromise must be made in the circuit power gain to achieve a lower noise
\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS & SYMBOL & \multicolumn{2}{|l|}{FREQUENCY (f) \(=400 \mathrm{MHz}\)} & UNITS \\
\hline & & \begin{tabular}{l}
Normal \\
Connection
\end{tabular} & \begin{tabular}{l}
Case \\
Grounded
\end{tabular} & \\
\hline Maximum Available Power Gain & MAG & 13.0 & 15.7 & dB \\
\hline Maximum Usable Power Gain (unneutralized) & MUG & 13.8 & 19.4 & dB \\
\hline Linvill Stability Factor, C & C & 0.615 & 0.335 & mmho \\
\hline " y " Parameters & & & & \\
\hline Input Conductance & \(\mathrm{gis}_{\text {is }}\) & 3.6 & 2.5 & mmho \\
\hline Input Susceptance & \(\mathrm{b}_{\text {is }}\) & 11.2 & 11.7 & mmho \\
\hline Magnitude of Forward Transadmittance & \(\mathrm{y}_{\mathrm{fs}}\) & 15.5 & 15.5 & mmho \\
\hline Angle of Forward Transadmittance & \(\mathrm{y}_{\mathrm{fs}}\) & -47.0 & -40.0 & degrees \\
\hline Output Conductance & \(\mathrm{g}_{\text {OS }}\) & 0.8 & 0.65 & mmho \\
\hline Output Susceptance & \(\mathrm{b}_{\text {os }}\) & 4.25 & 4.25 & mmho \\
\hline Magnitude of Reverse Transadmittance & \(y_{\text {rs }}\) | & 0.14 & 0.07 & mmho \\
\hline Angle of Reverse Transadmittance & \(\underline{4} \mathrm{rs}\) & 14.0 & 49.0 & degrees \\
\hline
\end{tabular}

Table 2 - " \(y\) " Parameters at 400 MHz with source connection to lead No. 4 and with case connected to ground plane of test jig
factor. A contour plot of noise figure as a function of generator source admittance is shown in Fig. 4. Each contour is a plot of noise figure as a function of the generator source conductance and susceptance. Data for the noise figure were obtained from a test amplifier designed with very low feedback. Even though the area of very low-noise figure in the curves in Fig. 4 cover a broad range of source admittance, impedance-matching for maximum power gain could result in

Fig. \(3-400-\mathrm{MHz}\) amplifier circuit
a relatively poor noise figure. As shown in Table 2, the input conductance (gis) with the case grounded is 2.5 mmho . With the reactive portion tuned out, the noise factor at power matched conditions is almost 1 dB higher than the optimum noise figure. However, matching to 5.0 mmho results in a near optimum noise factor with a loss of only 0.5 dB in gain. In addition, impedance matching to high conductance

Fig. 4 - Noise factor vs. generator source (input) admittanct (Yis)
also benefits crossmodulation performance, as will be discussed in a later section.

\section*{Gate Protection Diodes}

The diodes incorporated into RCA dual-gate MOS FETs, for gate protection, have been designed to minimize RF loading on the input circuits. The small amount of RF loading results in only a fraction of a dB loss in power gain and a negligible increase in the noise figure. The advantages of diode protection, greatly outweigh the slight loss in power gain, especially in an RF amplifier intended for the input stage of a receiver.

In addition to the protection afforded in normal handling, the diodes also provide in-circuit protection against events such as: static discharge due to contact with the antenna, delay in transmit-receive switching, or connection of an antenna with an accumulated charge to the receiver.

\section*{Crossmodulation}

Crossmodulation is an important consideration because it is an inherent device characteristic where circuit considerations are secondary. Crossmodulation is the transfer of modulation from an undesired signal on a desired signal caused by the non-linear characteristics of a device.

Crossmodulation is proportional to the third-order term of the expansion of the \(I_{D}-V_{G S}\) curve. It is normally specified as the undesired signal voltage required to produce a crossmodulation factor of 0.01 . The crossmodulation factor is defined as the percent modulation on a desired carrier by the modulated undesired signal divided by the percent modulation of the undesired signal. \({ }^{4}\)

Inspection of the \(I_{D}-V_{G 1 S}\) curve of Fig. 5 offers an insight to the possible crossmodulation as a function of gain-reduction performance. When both channels of the 3 N 200 are fully conducting current, as shown by the \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=\) 4 -volt curve, the device approximately follows a square-law characteristic. If the \(\mathrm{I}_{\square}-\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}\) curve was ideal, the third-order term would be zero; but in practical cases, the

Fig. 5 - Drain current (ID) vs. gate No. 1-to-source voltage (VG1S)
third-order term and crossmodulation have some low values. When the gain is reduced, by the application of bias to Gate No. 2, the square-law characteristic changes to a curve with a knee. Sharp curvatures usually result in larger high-order terms and poorer crossmodulation performance can be expected at lower gain conditions. If in Fig. 6, Circuit A, we assume a fixed bias (\(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}\)) of approximately +0.4 volt, then the expected variation in crossmodulation is determined at the points where the ordinate at \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=+0.4\) volt crosses the curves. Crossmodulation performance at values of \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}\) \(=+4\) volts to cutoff is as follows: good (low crossmodulation) at +4 volts, poorer at +2 volts, poorest at +1 volt, and again improves from zero volts to cutoff.

Fig. 6 - Biasing circuits using the 3N200
Curve A, Fig. 7 shows a curve of the undesired signal with a crossmodulation factor of 0.01 as a function of gain reduction. The curve indicates performance is poorest when gain reduction is in the \(3-\) to \(15-\mathrm{dB}\) region; this region represents a Gate No. 2-voltage range of approximately 0.5 volt to 2 volts. The exception to the poor crossmodulation perform-

Fig. 7 - Crossmodulation vs. gain reduction using biasing circuits shown in Fig. 6
ance in this range is the sharp peak which occurs at the \(5-\mathrm{dB}\) level and is due to a curve inversion that takes place just prior to the knee. Beyond the \(15-\mathrm{dB}\) level, crossmodulation generally shows an improvement.

If Gate No. 1 is also reverse biased in conjunction with Gate No. 2 in the manner shown in Fig. 6, Circuit B, then the overall performance is poorer because the Gate No. 1 voltage will tend to follow the knee of each curve. This occurrence is evident in Fig. 7, Curve B. If Gate No. 1 is biased as shown in Fig. 6, Circuit C, the Gate No. 1-to-Source voltage intercepts the Gate No. 2 curves where the curvature is less severe, indicating as shown by Fig. 7, Curve C an improvement in crossmodulation performance. A further slight improvement is possible by the use of a higher initial operating drain current, which effectively moves the intercepts to the right on each curve. This improvement is indicated in Fig. 7, Curve D.

The curves in Fig. 7 establish that the biasing arrangement which provides optimum crossmodulation performance is the one in which Gate No. 1 forward bias increases as Gate No. 2 controls the gain. This biasing arrangement is easily accomplished by the use of a fixed Gate No. 1 voltage and a source resistor. As the Gate No. 2 bias voltage reduces the drain current, there is also a decrease in source voltage and an increase in the Gate No. 1-to-Source voltage. The gate-to-source voltage ratings must not be exceeded under any circumstances.

\section*{Summary}

An RF amplifier, ideally, should provide high gain, a low-noise figure, and low crossmodulation. The 3N200 offers a good compromise in providing these three features. As indicated in the section on "Stability Considerations" a mismatch at the circuit input to a higher conductance level, provides an improved noise figure. The same mismatch condition also improves crossmodulation performance. The input signal at the gate of the device, when mismatched as indicated above, is lower than if it is power matched. The same ratio applies to any undesired signal and, thus, reduces the possibility of crossmodulation interference.

\section*{Appendix}

The drain current of a device is established by the relationship
\[
\mathrm{I}_{\mathrm{D}}=\mathrm{g}_{\mathrm{fs}} \mathrm{~V}_{\mathrm{Gl} 1 \mathrm{~S}}+\mathrm{I}_{\mathrm{DS}}
\]
where:
IDS = drain current
at:
\[
\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=0, \quad \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \text { volts } .
\]

If a source resistor is used, as shown in Fig. A1, the ga No. 1-to-source voltage is

Fig. A1 - Bias circuit using the 3N200

The typical curves in Fig. A2 show drain current \(\mathbf{v}\) Gate No. 1-to-Source Voltage as a function of IDS leve These curves are almost linear when the typical operatir drain current is in the 10 -milliampere region. For \(t t\) remainder of the analysis a linear relationship will \(t\) assumed for the required range of quiescent current. Tr assumption of linearity dictates that \(\mathrm{gfs}_{\mathrm{s}}\) is a constant.

The required range of drain current is ID2 - ID1
where:
\[
\begin{aligned}
& I_{D 2}=\frac{g_{f s} V_{G 1}}{1+g_{f s} R_{S}}+\frac{I_{D S}(\max .)}{1+g_{f s} R_{S}} \\
& I_{D 1}=\frac{g_{f s} V_{G 1}}{1+g_{f s} R_{S}}+\frac{I_{D S}(\min .)}{1+g_{f s} R_{S}} \\
& \Delta I_{D}=I_{D 2}-I_{D 1}=\frac{I_{D S}(\max .)-I_{D S}(\min .)}{1+g_{f s} R_{S}}=\frac{\Delta I_{D S}}{1+g_{f s} R}
\end{aligned}
\]

Solving the above equation for \(\mathrm{R}_{\mathrm{S}}\) gives
\[
\mathrm{R}_{\mathrm{S}}=\frac{\left(\Delta \mathrm{I}_{\mathrm{DS}} / \Delta \mathrm{I}_{\mathrm{D}}\right)}{\mathrm{g}_{\mathrm{fs}}}-1
\]
where:
\(\mathrm{gfs}_{\mathrm{s}}\) is equal to the expected minimum value at tr required ID

Fig. A2 - Drain current vs. gate No. 1-to-source voltage

\section*{References:}
1. L. A. Jacobus and S. Reich, "Design of Gate-Protected MOS Field-Effect Transistors", RCA Application Note AN-4018
2. S. Reich, "Field-Effect Transistor Biasing Techniques", EEE, Sept. 1970
3. R. A. Santilli, "RF and IF Amplifier Design Considerations", IEEE Transactions on Broadcast and TV Receivers, Nov. 1967
4. H. Thanos, "Crossmodulation on Transistorized TV Tuners", IEEE Transactions on Broadcast and TV Receivers, Vol. 9 No. 3, Nov. 1963

Developmental-Number-to-Commercial-Number Cross-Reference Index
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dev. No. & Product Line & Comm. No. & File No. & DATABOOK Vol. No. & Page & Dev. No. & Product Line & Comm. No. & File No. & DATABOOK Vol. No. & Page \\
\hline TA144 & RECT & 1N536 & 3 & SSD-206A & 265 & TA1216 & RECT & 1N1189A & 38 & SSD-206A & 332 \\
\hline TA145 & RECT & 1 N537 & 3 & SSD-206A & 265 & TA1217 & RECT & 1N1190A & 38 & SSD-206A & 332 \\
\hline TA146 & RECT & 1N538 & 3 & SSD-206A & 265 & TA1222 & SCR & 2N3228 & 114 & SSD-206A & 161 \\
\hline TA147 & RECT & 1N539 & 3 & SSD-206A & 265 & TA1225 & SCR & 2N3525 & 114 & SSD-206A & 161 \\
\hline TA148 & RECT & 1N540 & 3 & SSD-206A & 265 & TA1614 & PWR & 2N301 & 14 & SSD-204A & 572 \\
\hline TA149 & RECT & 1N1095 & 3 & SSD-106A & 265 & TA1614A & PWR & 2N301A & 14 & SSD-204A & 572 \\
\hline TA1000 & RECT & 1 N547 & 3 & SSD-206A & 265 & TA1680G & PWR & 40050 & 14 & SSD-204A & 572 \\
\hline TA1003 & RECT & 1N440B & 5 & SSD-206A & 262 & TA1680G & PWR & 40051 & 14 & SSD-204A & 572 \\
\hline TA1004 & RECT & 1N441B & 5 & SSD-206A & 262 & TA1863 & RF & 2N1491 & 10 & SSD-205A & 22 \\
\hline TA1005 & RECT & 1N442B & 5 & SSD-206A & 262 & TA1883 & RF & 2N1492 & 10 & SSD-205A & 22 \\
\hline TA1006 & RECT & 1N443B & 5 & SSD-206A & 262 & TA1884 & PWR & 2N2015 & 12 & SSD-204A & 500 \\
\hline TA1007 & RECT & 1N444B & 5 & SSD-206A & 262 & TA1844A & PWR & 2N2016 & 12 & SSD-204A & 500 \\
\hline TA1008 & RECT & 1 N 445 B & 5 & SSD-206A & 262 & TA1910A & PWR & 2N697 & 16 & SSD-204A & 472 \\
\hline TA1011 & RECT & 1N2859A & 91 & SSD-206A & 280 & TA1928A & PWR & 2N3731 & 14 & SSD-204A & 572 \\
\hline TA1012 & RECT & 1N2860A & 91 & SSD-206A & 280 & TA1931 & PWR & 2N1183 & 14 & SSD-204A & 572 \\
\hline TA1013 & RECT & 1N2861A & 91 & SSD-206A & 280 & TA1931A & PWR & 2N1183A & 14 & SSD-204A & 572 \\
\hline TA1014 & RECT & 1N2862A & 91 & SSD-206A & 280 & TA1931B & PWR & 2N1183B & 14 & SSD-204A & 572 \\
\hline TA1015 & RECT & 1N2863A & 91 & SSD-206A & 280 & TA1932 & PWR & 2N1184 & 14 & SSD-204A & 572 \\
\hline TA1016 & RECT & 1N2864A & 91 & SSD-206A & 280 & TA1932A & PWR & 2N1184A & 14 & SSD-204A & 572 \\
\hline TA1049 & RECT & 1N248C & 6 & SSD-206A & 326 & TA1932B & PWR & 2N1184B & 14 & SSD-204A & 572 \\
\hline TA1050 & RECT & 1N249C & 6 & SSD-206A & 326 & TA1936 & PWR & 2N1066 & 14 & SSD-204A & 572 \\
\hline TA1051 & RECT & 1N250C & 6 & SSD-206A & 326 & TA1936A & PWR & 2N1397 & 14 & SSD-204A & 572 \\
\hline TA1052 & RECT & 1N1195A & 6 & SSD-206A & 326 & TA1945 & PWR & 2N1479 & 135 & SSD-204A & 474 \\
\hline TA1053 & RECT & 1N1196A & 6 & SSD-206A & 326 & TA1945A & PWR & 2N1480 & 135 & SSD-204A & 474 \\
\hline TA1054 & RECT & 1N1197A & 6 & SSD-206A & 326 & TA1946 & PWR & 2N1481 & 135 & SSD-204A & 474 \\
\hline TA1055 & RECT & 1N1198A & 6 & SSD-206A & 326 & TA1946A & PWR & 2N1482 & 135 & SSD-204A & 474 \\
\hline TA1066 & RECT & 1N2858A & 91 & SSD-206A & 280 & TA1947 & PWR & 2N1483 & 137 & SSD-204A & 479 \\
\hline TA1076 & RECT & 1N1199A & 20 & SSD-206A & 320 & TA1947A & PWR & 2N1484 & 137 & SSD-204A & 479 \\
\hline TA1077 & RECT & 1N1200A & 20 & SSD-206A & 320 & TA1948 & PWR & 2N1485 & 137 & SSD-204A & 479 \\
\hline TA1078 & RECT & 1N1202A & 20 & SSD-206A & 320 & TA1948A & PWR & 2N1486 & 137 & SSD-204A & 479 \\
\hline TA1079 & RECT & 1N1203A & 20 & SSD-206A & 320 & TA1949 & PWR & 2N1487 & 139 & SSD-204A & 484 \\
\hline TA1080 & RECT & 1N1204A & 20 & SSD-206A & 320 & TA1949A & PWR & 2N1488 & 139 & SSD-204A & 484 \\
\hline TA1081 & RECT & 1N1205A & 20 & SSD-206A & 320 & TA1950 & PWR & 2N1489 & 139 & SSD-204A & 484 \\
\hline TA1082 & RECT & 1N1206A & 20 & SSD-206A & 320 & TA1950A & PWR & 2N1490 & 139 & SSD-204A & 484 \\
\hline TA1085 & RECT & 1N1183A & 38 & SSD-206A & 332 & TA1951 & RF & 2N1493 & 10 & SSD-205A & 22 \\
\hline TA1086 & RECT & 1N1184A & 38 & SSD-206A & 332 & TA1986 & PWR & 2N699 & 22 & SSD-204A & 320 \\
\hline TA1087 & RECT & 1N1186A & 38 & SSD-206A & 332 & TA2045 & PWR & 2N1906 & 14 & SSD-204A & 572 \\
\hline TA1095 & RECT & 1N1197A & 6 & SSD-206A & 326 & TA2046 & PWR & 2N1905 & 14 & SSD-204A & 572 \\
\hline TA1096 & RECT & 1N3194 & 41 & SSD-206A & 268 & TA2047 & PWR & 2N2147 & 14 & SSD-204A & 572 \\
\hline TA1111 & RECT & 1N3193 & 41 & SSD-206A & 268 & TA2048 & PWR & 2N2148 & 14 & SSD-204A & 572 \\
\hline TA1112 & RECT & 1N3195 & 41 & SSD-206A & 268 & TA2049 & PWR & 2N1700 & 141 & SSD-204A & 489 \\
\hline TA1113 & RECT & 1N3196 & 41 & SSD-206A & 268 & TA2050 & PWR & 2N1701 & 141 & SSD-204A & 489 \\
\hline TA1120 & RECT & 1N3253 & 41 & SSD-206A & 268 & TA2051 & PWR & 2N1702 & 141 & SSD-204A & 489 \\
\hline TA1121 & RECT & 1N3254 & 41 & SSD-206A & 268 & TA2053 & PWR & 2N1613 & 106 & SSD-204A & 323 \\
\hline TA1122 & RECT & 1N3255 & 41 & SSD-206A & 268 & TA2053A & PWR & 2N1711 & 26 & SSD-204A & 328 \\
\hline TA1123 & RECT & 1N3256 & 41 & SSD-206 & 268 & TA2053B & PWR & 2N2102 & 106 & SSD-204A & 323 \\
\hline TA1133 & RECT & 1N1612 & 18 & SSD-206A & 315 & TA2083 & PWR & 2N3730 & 14 & SSD-204A & 572 \\
\hline TA1134 & RECT & 1N1613 & 18 & SSD-206A & 315 & TA2188 & PWR & 2N3732 & 14 & SSD-204A & 572 \\
\hline TA1135 & RECT & 1N1614 & 18 & SSD-206A & 315 & TA2192A & PWR & 2N2270 & 24 & SSD-204A & 338 \\
\hline TA1136 & RECT & 1N1615 & 18 & SSD-206A & 315 & TA2199 & PWR & 2N2338 & 141 & SSD-204A & 489 \\
\hline TA1137 & RECT & 1N1616 & 18 & SSD-206A & 315 & TA2235 & PWR & 2N1893 & 34 & SSD-204A & 332 \\
\hline TA1171 & SCR & 2N681 & 96 & SSD-206A & 233 & TA2235A & PWR & 2N2405 & 34 & SSD-204A & 332 \\
\hline TA1172 & SCR & 2N682 & 96 & SSD-206A & 233 & TA2267 & RF & 2N2631 & 32 & SSD-205A & 26 \\
\hline TA1173 & SCR & 2N683 & 96 & SSD-206A & 233 & TA2275 & PWR & 2N2895 & 143 & SSD-204A & 342 \\
\hline TA1174 & SCR & 2N684 & 96 & SSD-206A & 233 & TA2276 & PWR & 2N2896 & 143 & SSD-204A & 342 \\
\hline TA1175 & SCR & 2N685 & 96 & SSD-206A & 233 & TA2277 & PWR & \(2 N 2897\) & 143 & SSD-204A & 342 \\
\hline TA1176 & SCR & 2N686 & 96 & SSD-206A & 233 & TA2302 & PWR & 2N718A & 14 & SSD-204A & 572 \\
\hline TA1177 & SCR & 2N687 & 96 & SSD-206A & 233 & TA2303 & PWR & 2N720A & 14 & SSD-204A & 572 \\
\hline TA1178 & SCR & 2N688 & 96 & SSD-206A & 233 & TA2307 & RF & 2N3375 & 386 & SSD-205A & 50 \\
\hline TA1179 & SCR & 2N689 & 96 & SSD-206A & 233 & TA2311 & RF & 2N2876 & 32 & SSD-205A & 26 \\
\hline TA1182 & RECT & 1N3563 & 41 & SSD-206A & 268 & TA2333 & RF & 2N2857 & 61 & SSD-205A & 31 \\
\hline TA1195 & RECT & 1N3756 & 39 & SSD-206A & 258 & TA2358 & RF & 2N918 & 83 & SSD-205A & 18 \\
\hline TA1197 & RECT & 1N3754 & 39 & SSD-206A & 258 & TA2358A & RF & 2N3600 & 83 & SSD-205A & 18 \\
\hline TA1198 & RECT & 1N3755 & 39 & SSD-206A & 258 & TA2363 & RF & 2N3839 & 229 & SSD-205A & 67 \\
\hline TA1204 & SCR & 2N1842A & 28 & SSD-206A & 221 & TA2388 & RF & 2N3229 & 50 & SSD-205A & 43 \\
\hline TA1205 & SCR & 2N1843A & 28 & SSD-206A & 221 & TA2402A & PWR & 2N3054 & 527 & SSD-204A & 20 \\
\hline TA1206 & SCR & 2N1844A & 28 & SSD-206A & 221 & TA2403A & PWR & 2N3055 & 524 & SSD-204A & 28 \\
\hline TA1207 & SCR & 2N1845A & 28 & SSD-206A & 221 & TA2412 & PWR & 2N2869 & 14 & SSD-204A & 572 \\
\hline TA1208 & SCR & 2N1846A & 28 & SSD-206A & 221 & TA2412A & PWR & 2N2870 & 14 & SSD-204A & 572 \\
\hline TA1209 & SCR & 2N1847A & 28 & SSD-206A & 221 & TA2442 & SCR & 2N3870 & 578 & SSD-206A & 243 \\
\hline TA1210 & SCR & 2N1848A & 28 & SSD-206A & 221 & TA2444 & SCR & 2N3871 & 578 & SSD-206A & 243 \\
\hline TA1211 & SCR & 2N1849A & 28 & SSD-206A & 221 & TA2447 & SCR & 2N3872 & 578 & SSD-206A & 243 \\
\hline TA1212 & SCR & 2N1850A & 28 & SSD-206A & 221 & TA2458 & PWR & 2N3439 & 64 & SSD-204A & 222 \\
\hline TA1214 & RECT & 1N1187A & 38 & SSD-206A & 332 & TA2462 & RF & 2N3118 & 42 & SSD-205A & 35 \\
\hline TA1215 & RECT & 1N1188A & 38 & SSD-206A & 332 & TA2463 & RF & 2N3119 & 44 & SSD-205A & 39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dev. No. & Product Line & Comm. No. & File No. & DATA BOOK Vol. No. & Page & Dev. No. & Product Line & Comm. No. & File
No. & DATABOOK Vol. No. & Page \\
\hline TA2468A & PWR & 2N3442 & 528 & SSD-204A & 44 & TA2774 & SCR & 2N4102 & 114 & SSD-206A & 161 \\
\hline TA2469A & PWR & 2N3441 & 529 & SSD-204A & 36 & TA2775 & SCR & 2N4103 & 116 & SSD-206A & 214 \\
\hline TA2470 & PWR & 2N3440 & 64 & SSD-204A & 222 & TA2791 & RF & 2N5102 & 279 & SSD-205A & 111 \\
\hline TA2492 & PWR & 2N3263 & 54 & SSD-204A & 354 & TA2792 & RF & 2N4933 & 249 & SSD-205A & 90 \\
\hline TA2493 & PWR & 2N3264 & 54 & SSD-204A & 354 & TA2793 & RF & 2N5070 & 268 & SSD-205A & 98 \\
\hline TA2494 & PWR & 2N3265 & 54 & SSD-204A & 354 & TA2800 & RF & 2N5109 & 281 & SSD-205A & 120 \\
\hline TA2495 & PWR & 2N3266 & 54 & SSD-204A & 354 & TA2808 & PWR & 2N4348 & 526 & SSD-204A & 60 \\
\hline TA2501 & RF & 2N3262 & 56 & SSD-205A & 46 & TA2809 & PWR & 2N4347 & 528 & SSD-204A & 44 \\
\hline TA2509 & PWR & 2N3878 & 299 & SSD-204A & 360 & TA2819 & PWR & 2N5415 & 336 & SSD-204A & 437 \\
\hline TA2509A & PWR & 2N3879 & 299 & SSD-204A & 360 & TA2819A & PWR & 2N5416 & 336 & SSD-204A & 437 \\
\hline TA2510 & PWR & 2N3583 & 138 & SSD-204A & 229 & TA2827 & RF & 2N5071 & 269 & SSD-205A & 103 \\
\hline TA2511 & PWR & 2N3584 & 138 & SSD-204A & 229 & TA2828 & RF & 2N4932 & 249 & SSD-205A & 90 \\
\hline TA2512 & PWR & 2N3585 & 138 & SSD-204A & 229 & TA2834 & TRI & 40575 & 300 & SSD-206A & 105 \\
\hline TA2515 & SCR & 2N690 & 96 & SSD-206A & 233 & TA2835 & TRI & 40576 & 300 & SSD-206A & 105 \\
\hline TA2544 & PWR & 2N3772 & 525 & SSD-204A & 52 & TA2836 & TRI & 2N5441 & 593 & SSD-206A & 127 \\
\hline TA2551 & RF & 2N3553 & 386 & SSD-205A & 50 & TA2837 & TRI & 2N5442 & 593 & SSD-206A & 127 \\
\hline TA2579 & RECT & 1N1341B & 58 & SSD-206A & 317 & TA2838 & TRI & 2N5444 & 593 & SSD-206A & 127 \\
\hline TA2580 & RECT & 1N1342B & 58 & SSD-206A & 317 & TA2839 & TRI & 2N5445 & 593 & SSD-206A & 127 \\
\hline TA2581 & RECT & 1N1344B & 58 & SSD-206A & 317 & TA2840 & MOS/FET & 3N128 & 309 & SSD-201A & 568 \\
\hline TA2582 & RECT & 1N1345B & 58 & SSD-206A & 317 & TA2845 & RECT & 1N5214 & 245 & SSD-206A & 286 \\
\hline TA2583 & RECT & 1N1346B & 58 & SSD-206A & 317 & TA2845A & RECT & 1N5213 & 245 & SSD-206A & 286 \\
\hline TA2584 & RECT & 1N1347B & 58 & SSD-206A & 317 & TA2845B & RECT & 1 N5212 & 245 & SSD-206A & 286 \\
\hline TA2585 & RECT & 1N1348B & 58 & SSD-206A & 317 & TA2845C & RECT & 1N5211 & 245 & SSD-206A & 286 \\
\hline TA2586 & RECT & 1N1341RB & 58 & SSD-206A & 317 & TA2862 & PWR & 40421 & 14 & SSD-204A & 572 \\
\hline TA2587 & RECT & 1N1342RB & 58 & SSD-206A & 317 & TA2871 & PWR & 2N4240 & 138 & SSD-204A & 229 \\
\hline TA2588 & RECT & 1N1344RB & 58 & SSD-206A & 317 & TA2875 & RF & 2N4440 & 217 & SSD-205A & 85 \\
\hline TA2589 & RECT & 1N1345RB & 58 & SSD-206A & 317 & TA2892 & TRI & 40525 & 470 & SSD-206A & 27 \\
\hline TA2590 & RECT & 1N1346RB & 58 & SSD-206A & 317 & TA2829A & TRI & 40528 & 470 & SSD-206A & 27 \\
\hline TA2591 & RECT & 1N1347RB & 58 & SSD-206A & 317 & TA2893 & TRI & 40526 & 470 & SSD-206A & 27 \\
\hline TA2592 & RECT & 1N1348RB & 58 & SSD-206A & 317 & TA2893A & TRI & 40529 & 470 & SSD-206A & 27 \\
\hline TA2597 & SCR & 2N3528 & 114 & SSD-206A & 161 & TA2894 & TRI & 40527 & 470 & SSD-206A & 27 \\
\hline TA2598 & SCR & 2N3669 & 116 & SSD-206A & 214 & TA2894A & TRI & 40530 & 470 & SSD-206A & 27 \\
\hline TA2600 & RF & 40282 & 68 & SSD-205A & 268 & TA2911 & PWR & 2N5294 & 332 & SSD-204A & 76 \\
\hline TA2606 & RF & 2N3478 & 77 & SSD-205A & 58 & TA2918 & TRI & 40485 & 352 & SSD-206A & 54 \\
\hline TA2616 & RF & 2N3632 & 386 & SSD-205A & 50 & TA2919 & TRI & 40486 & 352 & SSD-206A & 54 \\
\hline TA2617 & SCR & 2N3529 & 114 & SSD-206A & 161 & TA2920 & PWR & 2N4346 & 14 & SSD-204A & 572 \\
\hline TA2618 & SCR & 2N3670 & 116 & SSD-206A & 214 & TA2921 & PWR & 40440 & 14 & SSD-204A & 572 \\
\hline TA2620 & RF & 40281 & 68 & SSD-205A & 268 & TA2928 & PWR & 40439 & 14 & SSD-204A & 572 \\
\hline TA2621 & SCR & 2N3668 & 116 & SSD-206A & 214 & TA5032 & LIC & CA3000 & 121 & SSD-201A & 290 \\
\hline TA2644 & MOS/FET & 3N140 & 285 & SSD-201A & 610 & TA5033 & LIC & CA3001 & 122 & SSD-201A & 304 \\
\hline TA2645A & PWR & 2N3773 & 526 & SSD-204A & 60 & TA5035 & LIC & CA3002 & 123 & SSD-201A & 258 \\
\hline TA2650 & PWR & 2N3771 & 525 & SSD-204A & 52 & TA5037 & LIC & CA3004 & 124 & SSD-201A & 318 \\
\hline TA2651 & PWR & 2N4036 & 216 & SSD-204A & 428 & TA5112 & LIC & CA3005 & 125 & SSD-201A & 324 \\
\hline TA2653 & SCR & 40553 & 306 & SSD-206A & 175 & TA5112A & LIC & CA3006 & 125 & SSD-201A & 324 \\
\hline TA2654 & SCR & 40554 & 306 & SSD-206A & 175 & TA5115B & LIC & CA3007 & 126 & SSD-201A & 331 \\
\hline TA2655 & SCR & 40555 & 306 & SSD-206A & 175 & TA5124 & LIC & CA3008 & 316 & SSD-201A & 507 \\
\hline TA2657 & RF & 40341 & 74 & SSD-205A & 295 & TA5158 & LIC & CA3015 & 316 & SSD-201A & 507 \\
\hline TA2657A & RF & 40340 & 74 & SSD-205A & 295 & TA5164 & LIC & CD2150 & 308 & SSD-201A & 443 \\
\hline TA2658 & RF & 2N3866 & 80 & SSD-205A & 71 & TA5165 & LIC & CD2151 & 308 & SSD-201A & 443 \\
\hline TA2669 & PWR & 2N5039 & 367 & SSD-204A & 371 & TA5166 & LIC & CD2152 & 308 & SSD-201A & 443 \\
\hline TA2669A & PWR & 2N5038 & 367 & SSD-204A & 371 & TA5180 & LIC & CA3010 & 316 & SSD-201A & 507 \\
\hline TA2670 & PWR & 2N4037 & 216 & SSD-204A & 428 & TA5183 & LIC & CA3033 & 360 & SSD-201A & 488 \\
\hline TA2670A & PWR & 2N4314 & 216 & SSD-204A & 428 & TA5183A & LIC & CA3033A & 360 & SSD-201A & 488 \\
\hline TA2672 & PWR & 40462 & 14 & SSD-204A & 572 & TA5213 & LIC & CA3011 & 128 & SSD-201A & 264 \\
\hline TA2675 & RF & 2N5016 & 255 & SSD-205A & 94 & TA5214 & LIC & CA3012 & 128 & SSD-201A & 264 \\
\hline TA2676 & TRI & 40429 & 351 & SSD-206A & 41 & TA5218 & LIC & CA3023 & 243 & SSD-201A & 278 \\
\hline TA2685 & TRI & 40430 & 351 & SSD-206A & 41 & TA5219 & LIC & CA3021 & 243 & SSD-201A & 278 \\
\hline TA2692 & RF & 2N3733 & 72 & SSD-205A & 62 & TA5220 & LIC & CA3020 & 339 & SSD-201A & 270 \\
\hline TA2694 & SCR & 2N3896 & 578 & SSD-206A & 243 & TA5222 & LIC & CA3018 & 338 & SSD-201A & 204 \\
\hline TA2695 & SCR & 2N3897 & 578 & SSD-206A & 243 & TA5222A & LIC & CA3018A & 338 & SSD-201A & 204 \\
\hline TA2696 & SCR & 2N3898 & 578 & SSD-206A & 243 & TA5225 & LIC & CA3019 & 236 & SSD-201A & 162 \\
\hline TA2703A & PWR & 40349 & 88 & SSD-204A & 129 & TA5234 & LIC & CA3013 & 129 & SSD-201A & 62 \\
\hline TA2705 & SCR & 2N3873 & 578 & SSD-206A & 243 & TA5235 & LIC & CA3014 & 129 & SSD-201A & 62 \\
\hline TA2707 & SCR & 2N3899 & 578 & SSD-206A & 243 & TA5236 & LIC & CA3022 & 243 & SSD-201A & 278 \\
\hline TA2710 & RF & 2N5108 & 280 & SSD-205A & 116 & TA5253 & LIC & CA3016 & 316 & SSD-201A & 507 \\
\hline TA2714 & RF. & 2N4012 & 90 & SSD-205A & 75 & TA5254 & LIC & CA3030 & 316 & SSD-201A & 507 \\
\hline TA2728 & TRI & 40431 & 477 & SSD-206A & 48 & TA5261 & LIC & CD2153 & 308 & SSD-201A & 443 \\
\hline TA2729 & TRI & 40432 & 477 & SSD-206A & 48 & TA5277 & LIC & CA3001 & 122 & SSD-201A & 304 \\
\hline TA2733 & PWR & 40319 & 78 & SSD-204A & 510 & TA5278 & LIC & CA3029 & 316 & SSD-201A & 507 \\
\hline TA2733A & PWR & 40362 & 78 & SSD-204A & 510 & TA5282 & LIC & CA3004 & 124 & SSD-201A & 318 \\
\hline TA2758 & RF & 2N6093 & 484 & SSD-205A & 219 & TA5315 & LIC & CA3043 & 331 & SSD-201A & 57 \\
\hline TA2761 & RF & 40608 & 356 & SSD-205A & 332 & TA5316 & LIC & CA3041 & 318 & SSD-201A & 90 \\
\hline TA2765 & PWR & 2N5239 & 321 & SSD-204A & 241 & TA5317A & LIC & CA3042 & 319 & SSD-201A & 98 \\
\hline TA2765A & PWR & 2N5240 & 321 & SSD-204A & 241 & TA5327C & LIC & CA3040 & 363 & SSD-201A & 284 \\
\hline TA2773 & SCR & 2N4101 & 114 & SSD-206A & 161 & TA5333 & LIC & CA3036 & 275 & SSD-201A & 202 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dev. No. & Product Line & Comm. No. & \[
\begin{aligned}
& \text { File } \\
& \text { No. }
\end{aligned}
\] & DATABOOK Vol. No. & Page & Dev. No. & Product Line & Comm. No. & File & DATA BOOK Vol. No. & Page \\
\hline TA5334 & LIC & CA3035 & 274 & SSD-201A & 74 & TA5842 & LIC & CA3088E & 560 & SSD-201A & 42 \\
\hline TA5334 & LIC & CA3035V1 & 274 & SSD-201A & 74 & TA5855A & LIC & CA3091D & 534 & SSD-201A & 417 \\
\hline TA5345 & LIC & CA3028A & 382 & SSD-201A & 344 & TA5858 & LIC & СА 3081 & 480 & SSD-201A & 170 \\
\hline TA5345A & LIC & CA3028B & 382 & SSD-201A & 344 & TA5866 & LIC & CA3075 & 429 & SSD-201A & 53 \\
\hline TA5346 & LIC & CA3015A & 310 & SSD-201A & 516 & TA5867V & cos/mos & CD4023AK & 479 & SSD-203A & 55 \\
\hline TA5347 & LIC & CA3010A & 310 & SSD-201A & 516 & TA5867W & cos/mos & CD4023AD & 479 & SSD-203A & 55 \\
\hline TA5348 & LIC & CA3030A & 310 & SSD-201A & 516 & TA5867X & cos/mos & CD4023AE & 479 & SSD-203A & 55 \\
\hline TA5349 & LIC & CA3029A & 310 & SSD-201A & 516 & TA5872V & cos/mos & CD4027AK & 503 & SSD-203A & 129 \\
\hline TA5350 & LIC & CA3016A & 310 & SSD-201A & 516 & TA5873V & cos/mos & CD4028AK & 503 & SSD-203A & 135 \\
\hline TA5351 & LIC & CA3008A & 310 & SSD-201A & 516 & TA5876W & cos/mos & CD4035AD & 568 & SSD-203A & 173 \\
\hline TA5360 & LIC & CA3044 & 340 & SSD-201A & 78 & TA5878W & cos/mos & CD4034AD & 575 & SSD-203A & 164 \\
\hline TA5369 & LIC & CA3040 & 363 & SSD-201A & 284 & TA5884AV & cos/mos & CD4022AK & 479 & SSD-203A & 109 \\
\hline TA5371B & LIC & CA3062 & 421 & SSD-201A & 401 & TA5884W & cos/mos & CD4022AD & 479 & SSD-203A & 109 \\
\hline TA5385CV & cos/mos & CD4024AK & 503 & SSD-203A & 114 & TA5884AX & cos/mos & CD4022AE & 479 & SSD-203A & 109 \\
\hline TA5401 & LIC & CA3038 & 316 & SSD-301A & 507 & TA5897X & LIC & CD2501E & 392 & SSD-201A & 437 \\
\hline TA5401 & LIC & CA3038A & 310 & SSD-201A & 516 & TA5898X & LIC & CD2503E & 392 & SSD-201A & 437 \\
\hline TA5402 & LIC & CA3037 & 316 & SSD-201A & 507 & TA5899x & LIC & CD2500E & 392 & SSD-201A & 437 \\
\hline TA5402 & LIC & CA3037A & 310 & SSD-201A & 516 & TA5900X & LIC & CD2502E & 392 & SSD-201A & 437 \\
\hline TA5457 & LIC & CA3045 & 341 & SSD-201A & 221 & TA5912B & LIC & CA3072 & 468 & SSD-201A & 143 \\
\hline TA5458 & LIC & CA3046 & 341 & SSD-201A & 221 & TA5914C & LIC & CA3068 & 467 & SSD-201A & 117 \\
\hline TA5460AV & cos/mos & CD4016AK & 479 & SSD-203A & 78 & TA5920V & cos/mos & CD4025AK & 479 & SSD-203A & 24 \\
\hline TA5507 & LIC & CA3050 & 361 & SSD-201A & 372 & TA5920W & cos/mos & CD4025AD & 479 & SSD-203A & 24 \\
\hline TA5513 & LIC & CA3026 & 388 & SSD-201A & 336 & TA5920X & cos/mos & CD4025AE & 479 & SSD-203A & 24 \\
\hline TA5516 & LIC & СА3039 & 343 & SSD-201A & 166 & TA5925V & cos/mos & CD4029AK & 503 & SSD-203A & 140 \\
\hline TA5517C & LIC & CA3064 & 396 & SSD-201A & 84 & TA5925W & cos/mos & CD4029AD & 503 & SSD-203A & 140 \\
\hline TA5519V & cos/mos & CD4008AK & 479 & SSD-203A & 43 & TA5925X & COS/MOS & CD4029AE & 503 & SSD-203A & 140 \\
\hline TA5523A & LIC & CA3048 & 377 & SSD-201A & 250 & TA5926V & cos/mos & CD4036AK & 613 & SSD-203A & 181 \\
\hline TA5537 & LIC & CA3049T & 611 & SSD-201A & 363 & TA5926W & cos/mOS & CD4036AD & 613 & SSD-203A & 181 \\
\hline TA5551 & cos/mos & CD4000AK & 479 & SSD-203A & 24 & TA5932 & LIC & CA30900 & 502 & SSD-201A & 36 \\
\hline TA5553 & cos/mos & CD4007AK & 479 & SSD-203A & 24 & TA5940V & cos/mOS & CD4030AK & 503 & SSD-203A & 147 \\
\hline TA5554 & cos/mos & CD4001AK & 479 & SSD-203A & 24 & TA5940W & cos/mos & CD4030AD & 503 & SSD-203A & 147 \\
\hline TA5555 & cos/mos & CD4002AK & 479 & SSD-203A & 24 & TA5940X & COS/MOS & CD4030AE & 503 & SSD-203A & 147 \\
\hline TA5556B & cos/mos & CD4006AK & 479 & SSD-203A & 31 & TA5951V & cos/mos & CD4038AK & 503 & SSD-203A & 159 \\
\hline TA5561 & LIC & CA3047A & 360 & SSD-201A & 488 & TA5951W & cos/mOS & CD4038AD & 503 & SSD-203A & 159 \\
\hline TA5562 & LIC & CA3047 & 360 & SSD-201A & 488 & TA5951X & cos/mos & CD4038AE & 503 & SSD-203A & 159 \\
\hline TA5578V & cos/mos & CD4014AK & 479 & SSD-203A & 68 & TA5957 & LIC & CA3018L & 515 & SSD-201A & 545 \\
\hline TA5579V & cos/mos & CD4015AK & 479 & SSD-203A & 73 & TA5958 & LIC & CA3039L & 515 & SSD-201A & 545 \\
\hline TA5580V & cos/mos & CD4018AK & 479 & SSD-203A & 89 & TA5959 & LIC & CA3045L & 515 & SSD-201A & 545 \\
\hline TA5615A & LIC & CA3059 & 490 & SSD-201A & 380 & TA5960 & LIC & CA3054L & 515 & SSD-201A & 545 \\
\hline TA5625A & LIC & CA3066 & 466 & SSD-201A & 125 & TA5963V & cos/mos & CD4032AK & 503 & SSD-203A & 159 \\
\hline TA5628C & LIC & CA3089E & 561 & SSD-201A & 46 & TA5963W & cos/mos & CD4032AD & 503 & SSD-203A & 159 \\
\hline TA5634 & LIC & CD2154 & 402 & SSD-201A & 455 & TA5963X & cos/mos & CD4032AE & 503 & SSD-203A & 159 \\
\hline TA5645 & LIC & CA3060E & 537 & SSD-201A & 466 & TA5964 & LIC & CA3015L & 515 & SSD-201A & 545 \\
\hline TA5649A & LIC & CA3070 & 468 & SSD-201A & 143 & TA5975 & LIC & CA3028AL & 515 & SSD-201A & 545 \\
\hline TA5652V & cos/mos & CD4019AK & 479 & SSD-203A & 94 & TA5978 & LIC & CA3084L & 515 & SSD-201A & 545 \\
\hline TA5655 & LIC & CA3051 & 361 & SSD-201A & 372 & TA5979 & LIC & CA3741L & 515 & SSD-201A & 545 \\
\hline TA5660V & cos/mos & CD4009AK & 479 & SSD-203A & 48 & TA5998 & LIC & CA3083 & 481 & SSD-201A & 174 \\
\hline TA5668V & cos/mos & CD4010AK & 479 & SSD-203A & 48 & TA5999W & cos/mos & CD4037AD & 576 & SSD-203A & 188 \\
\hline TA5672 & LIC & CA3052 & 387 & SSD-201A & 28 & TA6007W & cos/mos & CD4051AD & Prel. & SSD-203A & 245 \\
\hline TA5675V & cos/mos & CD4013AK & 479 & SSD-203A & 62 & TA6010V & cos/mos & CD4047AK & Prel. & SSD-203A & 228 \\
\hline TA5677V & cos/mos & CD4044AK & 590 & SSD-203A & 214 & TA6010W & cos/mos & CD4047AD & Prel. & SSD-203A & 228 \\
\hline TA5681V & cos/mos & CD4011AK & 479 & SSD-203A & 55 & TA6010X & cos/mos & CD4047AE & Prel. & SSD-203A & 228 \\
\hline TA5682V & cos/mos & CD4012AK & 479 & SSD-203A & 55 & TA6014 & LIC & CA3068 & 467 & SSD-201A & 117 \\
\hline TA5683V & cos/mos & CD4021AK & 479 & SSD-203A & 104 & TA6018V & cos/mos & CD4026AK & 503 & SSD-203A & 120 \\
\hline TA5684V & cos/mos & CD4017AK & 479 & SSD-203A & 84 & TA6018W & cos/mos & CD4026AD & 503 & SSD-203A & 120 \\
\hline TA5690X & LIC & CD2501E & 392 & SSD-201A & 437 & TA6018X & cos/mos & CD4026AE & 503 & SSD-203A & 120 \\
\hline TA5702B & LIC & CA3071 & 468 & SSD-201A & 143 & TA6029 & LIC & CA3741CT & 531 & SSD-201A & 501 \\
\hline TA5716W & cos/mos & CD4057AD & Prel. & SSD-203A & 254 & TA6031V & cos/mos & CD4041AK & 572 & SSD-203A & 199 \\
\hline TA5718 & LIC & CA3054 & 388 & SSD-201A & 336 & TA6031W & cos/mos & CD4041AD & 572 & SSD-203A & 199 \\
\hline TA5721X & LIC & CD2500E & 392 & SSD-201A & 43 & TA6031X & cos/mos & CD4041AE & 57 & SSD-203A & 199 \\
\hline TA5733 & LIC & CA3053 & 382 & SSD-201A & 344 & TA6033 & LIC & CA3082 & 480 & SSD-201A & 170 \\
\hline TA5752 & LIC & CA3067 & 466 & SSD-201A & 125 & TA6037 & LIC & СА 3748 CT & 531 & SSD-201A & 501 \\
\hline TA5757 & LIC & CA3076 & 430 & SSD-201A & 70 & TA5037A & LIC & CA3748T & 531 & SSD-201A & 501 \\
\hline TA5758B & LIC & CA3085 & 491 & SSD-201A & 409 & TA6044 & LIC & CA3086 & 483 & SSD-201A & 234 \\
\hline TA5776V & cos/mOS & CD4020AK & 479 & SSD-203A & 99 & TA6051 & LIC & CA3079 & 490 & SSD-201A & 380 \\
\hline TA5785X & LIC & CD2503E & 392 & SSD-201A & 437 & TA6062W & cos/mos & CD4045AD & Prel. & SSD-203A & 222 \\
\hline TA5786X & LIC & CD2502E & 392 & SSD-201A & 437 & TA6062X & COS/MOS & CD4045AE & Prel. & SSD-203A & 222 \\
\hline TA5790 & LIC & CA3060D & 537 & SSD-201A & 466 & TA6065V & cos/mos & CD4040AK & Prel. & SSD-203A & 195 \\
\hline TA5795 & LIC & CA3058 & 490 & SSD-201A & 380 & TA6065W & cos/mos & CD4040AD & Prel. & SSD-203A & 195 \\
\hline TA5797 & LIC & CA3741T & 531 & SSD-201A & 501 & TA6065X & cos/mOS & CD4040AE & Prel. & SSD-203A & 195 \\
\hline TA5799A & LIC & CA3084 & 482 & SSD-201A & 178 & TA6080V & cos/mos & CD4043AK & 590 & SSD-203A & 214 \\
\hline TA5807 & LIC & CA3078T & 535 & SSD-201A & 479 & TA6080W & COS/MOS & CD4043AD & 590 & SSD-203A & 214 \\
\hline TA5814 & LIC & CA3065 & 412 & SSD-201A & 106 & TA6080X & cos/mos & CD4043AE & 590 & SSD-203A & 214 \\
\hline TA5816 & LIC & CA3080 & 475 & SSD-201A & 458 & TA6081V & COS/MOS & CD4044AK & 590 & SSD-203A & 214 \\
\hline TA5820 & LIC & CA3541D & 536 & SSD-201A & 429 & TA6081W & cos/mos & CD4044AD & 590 & SSD-203A & 214 \\
\hline
\end{tabular}

Developmental-Number-to-Commercial-Number Cross-Reference Index
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dev. No. & \begin{tabular}{l}
Product \\
Line
\end{tabular} & Comm. No. & File No. & DATABOOK Vol. No. & Page & Dev. No. & Product Line & Comm. No. & \begin{tabular}{l}
File \\
No.
\end{tabular} & DATABOOK Vol. No. & Page \\
\hline TA6081X & cos/mos & CD4044AE & 590 & SSD-203A & 214 & TA7149 & MOS/FET & 40600 & 333 & SSD-201A & 624 \\
\hline TA6084 & LIC & CA3146AE & 532 & SSD-201A & 210 & TA7150 & MOS/FET & 40603 & 334 & SSD-201A & 632 \\
\hline TA6091 & LIC & CA3118AT & 532 & SSD-201A & 210 & TA7151 & MOS/FET & 40604 & 334 & SSD-201A & 632 \\
\hline TA6094 & LIC & CA3183AE & 532 & SSD-201A & 210 & TA7155 & PWR & 2N5293 & 332 & SSD-204A & 76 \\
\hline TA6111 & LIC & CA3458T & 531 & SSD-201A & 501 & TA7156 & PWR & 2N5295 & 332 & SSD-204A & 76 \\
\hline TA6111A & LIC & CA3558T & 531 & SSD-201A & 501 & TA7189 & MOS/FET & 40602 & 333 & SSD-201A & 624 \\
\hline TA6116V & cos/mos & CD4046AK & Prel. & SSD-203A & 224 & TA7199 & PWR & 2N5036 & 244 & SSD-204A & 68 \\
\hline TA6116W & COS/MOS & CD4046AD & Prel. & SSD-203A & 224 & TA7200 & PWR & 2N5037 & 244 & SSD-204A & 68 \\
\hline TA6116X & COS/MOS & CD4046AE & Prel. & SSD-203A & 224 & TA7201 & PWR & 2N5034 & 244 & SSD-204A & 68 \\
\hline TA6119 & LIC & CA3093E & 533 & SSD-201A & 196 & TA7202 & PWR & 2N5035 & 244 & SSD-204A & 68 \\
\hline TA6145V & cos/mOS & CD4039AK & 613 & SSD-203A & 181 & TA7205 & RF & 2N5921 & 427 & SSD-205A & 184 \\
\hline TA6145W & COS/MOS & CD4039AD & 613 & SSD-203A & 181 & TA7238 & PWR & 2N5262 & 313 & SSD-204A & 383 \\
\hline TA6145X & COS/MOS & CD4039AE & 613 & SSD-203A & 181 & TA7244 & MOS/FET & 3N139 & 284 & SSD-201A & 577 \\
\hline TA6153W & cos/MOS & CD4052AD & Prel. & SSD-203A & 245 & TA7262 & MOS/FET & 40601 & 333 & SSD-201A & 624 \\
\hline TA6154W & cos/MOS & CD4053AD & Prel. & SSD-203A & 245 & TA7264 & PWR & 2N5954 & 435 & SSD-204A & 138 \\
\hline TA6157 & LIC & CA3747CE & 531 & SSD-201A & 501 & TA7265 & PWR & 2N5955 & 435 & SSD-204A & 138 \\
\hline TA6157A & LIC & CA3747E & 531 & SSD-201A & 501 & TA7266 & PWR & 2N5956 & 435 & SSD-204A & 138 \\
\hline TA6164 & LIC & CA3094T & 598 & SSD-201A & 388 & TA7270 & PWR & 2N5781 & 413 & SSD-204A & 100 \\
\hline TA6165A & LIC & CA3094AT & 598 & SSD-201A & 388 & TA7271 & PWR & 2N5782 & 413 & SSD-204A & 100 \\
\hline TA6181 & LIC & CA3146E & 532 & SSD-201A & 210 & TA7272 & PWR & 2N5783 & 413 & SSD-204A & 100 \\
\hline TA6182 & LIC & CA3118T & 532 & SSD-201A & 210 & TA7274 & MOS/FET & 3N141 & 285 & SSD-201A & 610 \\
\hline TA6183 & LIC & CA3183E & 532 & SSD-201A & 210 & TA7275 & MOS/FET & 3N143 & 309 & SSD-201A & 568 \\
\hline TA6220 & LIC & CA2111AE & 612 & SSD-201A & 112 & TA7279 & PWR & 2N6248 & 541 & SSD-204A & 153 \\
\hline TA6237V & cos/mos & CD4054AK & Prel. & SSD-203A & 249 & TA7280 & PWR & 2N6247 & 541 & SSD-204A & 153 \\
\hline TA6237W & COS/MOS & CD4054AD & Prel. & SSD-203A & 249 & TA7281 & PWR & 2N6246 & 541 & SSD-204A & 153 \\
\hline TA6237X & COS/MOS & CD4054AE & Prel. & SSD-203A & 249 & TA7285 & PWR & 2N5202 & 299 & SSD-204A & 360 \\
\hline TA6238V & COS/MOS & CD4055AK & Prel. & SSD-203A & 249 & TA7289 & PWR & 2N5784 & 413 & SSD-204A & 100 \\
\hline TA6238W & COS/MOS & CD4055AD & Prel. & SSD-203A & 249 & TA7290 & PWR & 2N5785 & 413 & SSD-204A & 100 \\
\hline TA6238X & COS/MOS & CD4055AE & Prel. & SSD-203A & 249 & TA7291 & PWR & 2N5786 & 413 & SSD-204A & 100 \\
\hline TA6245V & cos/mos & CD4058AK & Prel. & SSD-203A & 262 & TA7303 & RF & 2N5180 & 289 & SSD-205A & 132 \\
\hline TA6245W & COS/MOS & CD4058AD & Prel. & SSD-203A & 262 & TA7306 & MOS/FET & 3N142 & 286 & SSD-201A & 582 \\
\hline TA6246V & COS/MOS & CD4049AK & 599 & SSD-203A & 237 & TA7311 & PWR & 2N5496 & 353 & SSD-204A & 85 \\
\hline TA6246W & COS/MOS & CD4049AD & 599 & SSD-203A & 237 & TA7312 & PWR & 2N5497 & 353 & SSD-204A & 85 \\
\hline TA6246X & COS/MOS & CD4049AE & 599 & SSD-203A & 237 & TA7313 & PWR & 2N5494 & 353 & SSD-204A & 85 \\
\hline TA6250V & COS/MOS & CD4048AK & Prel. & SSD-203A & 233 & TA7314 & PWR & 2N5495 & 353 & SSD-204A & 85 \\
\hline TA6250W & COS/MOS & CD4048AD & Prel. & SSD-203A & 233 & TA7315 & PWR & 2N5492 & 353 & SSD-204A & 85 \\
\hline TA6250X & COS/MOS & CD4048AE & Prel. & SSD-203A & 233 & TA7316 & PWR & 2N5493 & 353 & SSD-204A & 85 \\
\hline TA6251V & COS/MOS & CD4056AK & Prel. & SSD-203A & 249 & TA7317 & PWR & 2N5490 & 353 & SSD-204A & 85 \\
\hline TA6251W & cos/mos & CD4056AD & Prel. & SSD-203A & 249 & TA7318 & PWR & 2N5491 & 353 & SSD-204A & 85 \\
\hline TA6251X & COS/MOS & CD4056AE & Prel. & SSD-203A & 249 & TA7319 & RF & 2N5179 & 288 & SSD-205A & 126 \\
\hline TA6265V & COS/MOS & CD4050AK & 599 & SSD-203A & 237 & TA7322 & PWR & 2N5189 & 296 & SSD-204A & 378 \\
\hline TA6265W & COS/MOS & CD4050AD & 599 & SSD-203A & 237 & TA7323 & PWR & 2N5671 & 383 & SSD-204A & 395 \\
\hline TA6265X & cos/mOS & CD4050AE & 599 & SSD-203A & 237 & TA7323A & PWR & 2N5672 & 383 & SSD-204A & 395 \\
\hline TA6269X & LIC & CA3095E & 591 & SSD-201A & 240 & TA7327 & RF & JANTX-2 & 866 & & - \\
\hline TA6270X & LIC & CA3096E & 595 & SSD-201A & 185 & TA7328 & RF & JANTX-2 & 553 & - & - \\
\hline TA6270AX & LIC & CA3096AE & 595 & SSD-201A & 185 & TA7329 & RF & JANTX-2 & 375 & - & \\
\hline TA6289X & LIC & CA3747CE & 531 & SSD-201A & 501 & TA7337 & PWR & 2N6032 & 462 & SSD-204A & 401 \\
\hline TA6289AX & LIC & CA3747E & 531 & SSD-201A & 501 & TA7337A & PWR & 2N6033 & 462 & SSD-204A & 401 \\
\hline TA6309 & LIC & CA3049L & 515 & SSD-201A & 545 & TA7344 & RF & 2N5919 & 426 & SSD-205A & 165 \\
\hline TA6330T & LIC & CA3094AT & 598 & SSD-201A & 388 & TA7352 & MOS/FET & 3N153 & 320 & SSD-201A & 593 \\
\hline TA7003 & RF & 2N5470 & 350 & SSD-205A & 136 & TA7353 & MOS/FET & 3N152 & 314 & SSD-201A & 588 \\
\hline TA7005 & PWR & 2N6249 & 523 & SSD-204A & 276 & TA7354 & RF & JAN-2N4 & & - & - \\
\hline TA7006 & PWR & 2N6250 & 523 & SSD-204A & 276 & TA7355 & RF & JANTX-2 & 440 & - & - \\
\hline TA7007 & PWR & 2N6251 & 523 & SSD-204A & 276 & TA7358 & RF & JANTX-2 & 071 & - & - \\
\hline TA7016 & PWR & 2N5575 & 359 & SSD-204A & 92 & TA7360 & RF & JAN-2N5 & & - & \\
\hline TA7017 & PWR & 2N5578 & 359 & SSD-204A & 92 & TA7361 & RF & 40605 & 389 & SSD-205A & 318 \\
\hline TA7032 & MOS/FET & 3N138 & 283 & SSD-201A & 573 & TA7362 & PWR & 2N5297 & 332 & SSD-204A & 76 \\
\hline TA7047 & RF & 2N4427 & 228 & SSD-205A & 79 & TA7363 & PWR & 2N5298 & 332 & SSD-204A & 76 \\
\hline TA7048 & RECT & 1N5218 & 245 & SSD-206A & 286 & TA7364 & TRI & 40668 & 364 & SSD-206A & 73 \\
\hline TA7048A & RECT & 1N5217 & 245 & SSD-206A & 286 & TA7365 & TRI & 40669 & 364 & SSD-206A & 73 \\
\hline TA7048B & RECT & 1N5216 & 245 & SSD-206A & 286 & TA7367 & RF & 2N5918 & 448 & SSD-205A & 160 \\
\hline TA7048C & RECT & 1N5215 & 245 & SSD-206A & 286 & TA7374 & MOS/FET & 3N159 & 326 & SSD-201A & 618 \\
\hline TA7078 & RF & 40606 & 600 & SSD-205A & 325 & TA7375 & MOS/FET & 3N154 & 335 & SSD-201A & 596 \\
\hline TA7079 & RF & 40577 & 297 & SSD-205A & 305 & TA7381 & PWR & 2N6098 & 485 & SSD-204A & 111 \\
\hline TA7080 & RF & 40578 & 298 & SSD-205A & 312 & TA7382 & PWR & 2N6099 & 485 & SSD-204A & 111 \\
\hline TA7090 & RF & JAN-2N3866 & - & - & - & TA7383 & PWR & 2N6100 & 485 & SSD-204A & 111 \\
\hline TA7121 & PWR & 2N5320 & 325 & SSD-204A & 389 & TA7384 & PWR & 2N6101 & 485 & SSD-204A & 111 \\
\hline TA7122 & PWR & 2N5321 & 325 & SSD-204A & 389 & TA8385 & PWR & 2N6102 & 485 & SSD-204A & 111 \\
\hline TA7124 & PWR & 2N5322 & 325 & SSD-204A & 389 & TA7386 & PWR & 2N6103 & 485 & SSD-204A & 111 \\
\hline TA7125 & PWR & 2N5323 & 325 & SSD-204A & 389 & TA7399 & MOS/FET & 40673 & 381 & SSD-201A & 679 \\
\hline TA7130 & PWR & 2N5804 & 407 & SSD-204A & 247 & TA7401 & DIAC & 45412 & 577 & SSD-206A & 353 \\
\hline TA7130A & PWR & 2N5805 & 407 & SSD-204A & 247 & TA7403 & RF & 40836 & 497 & SSD-205A & 336 \\
\hline TA7134 & PWR & 2N6177 & 508 & SSD-204A & 268 & TA7404 & SCR & 40868 & 501 & SSD-206A & 200 \\
\hline TA7137 & PWR & 2N5296 & 332 & SSD-204A. & 76 & TA7405 & SCR & 40869 & 501 & SSD-206A & 200 \\
\hline TA7146 & RF & 2N5090 & 270 & SSD-205A & 107 & TA7408 & RF & 2N5914 & 424 & SSD-205A & 148 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dev. No. & \begin{tabular}{l}
Product \\
Line
\end{tabular} & Comm. No. & File No. & DATA. BOOK Vol. No. & Page & Dev, No. & Product Line & Comm. No. & File No. & DATABOOK Vol. No. & Page \\
\hline TA7409 & RF & 2N5915 & 424 & SSD-205A & 148 & TA7571 & SCR & 40755 & 418 & SSD-206A & 225 \\
\hline TA7410 & PWR & 2N6212 & 507 & SSD-204A & 443 & TA7579 & TRI & 40684 & 414 & SSD-206A & 22 \\
\hline TA7411 & RF & 2N5916 & 425 & SSD-205A & 154 & TA7580 & TRI & 40685 & 414 & SSD-206A & 22 \\
\hline TA7420 & PWR & 2N5840 & 410 & SSD-204A & 253 & TA7581 & TRI & 40686 & 414 & SSD-206A & 22 \\
\hline TA7426 & TRI & 2N5443 & 593 & SSD-206A & 127 & TA7583 & TRI & 40671 & 459 & SSD-206A & 112 \\
\hline TA7427 & TRI & 2N5446 & 593 & SSD-206A & 127 & TA7584 & TRI & 40672 & 459 & SSD-206A & 112 \\
\hline TA7428 & TRI & 2N5567 & 457 & SSD-206A & 83 & TA7589 & RF & 2N5994 & 453 & SSD-205A & 202 \\
\hline TA7429 & TRI & 2N5568 & 457 & SSD-206A & 83 & TA7590 & SCR & 2N3650 & 408 & SSD-206A & 236 \\
\hline TA7430 & TRI & 2N5571 & 458 & SSD-206A & 98 & TA7591 & SCR & 2N3651 & 408 & SSD-206A & 236 \\
\hline TA7431 & TRI & 2N5572 & 458 & SSD-206A & 98 & TA7592 & SCR & 2N3652 & 408 & SSD-206A & 236 \\
\hline TA7434 & SCR & 40654 & 496 & SSD-206A & 191 & TA7593 & SCR & 2N3653 & 408 & SSD-206A & 236 \\
\hline TA7435 & SCR & 40655 & 496 & SSD-206A & 191 & TA7596 & SCR & 40746 & 417 & SSD-206A & 206 \\
\hline TA7441 & TRI & 40660 & 459 & SSD-206A & 112 & TA7597 & SCR & 40747 & 417 & SSD-206A & 206 \\
\hline TA7442 & TRI & 40661 & 459 & SSD-206A & 112 & TA7598 & SCR & 40748 & 417 & SSD-206A & 206 \\
\hline TA7443 & RECT & 40808 & 449 & SSD-206A & 311 & TA7599 & SCR & 40758 & 418 & SSD-206A & 225 \\
\hline TA7444 & RECT & 40809 & 449 & SSD-206A & 311 & TA7600 & SCR & 40759 & 418 & SSD-206A & 225 \\
\hline TA7452 & SCR & 40640 & 354 & SSD-206A & 179 & TA7601 & SCR & 40760 & 418 & SSD-206A & 225 \\
\hline TA7453 & SCR & 40641 & 354 & SSD-206A & 179 & TA7602 & TRI & 40805 & 459 & SSD-206A & 112 \\
\hline TA7454 & RECT & 40642 & 354 & SSD-206A & 290 & TA7603 & TRI & 40806 & 459 & SSD-206A & 112 \\
\hline TA7455 & RECT & 40643 & 354 & SSD-206A & 290 & TA7604 & TRI & 40807 & 459 & SSD-206A & 112 \\
\hline TA7456 & RECT & 40644 & 354 & SSD-206A & 290 & TA7614 & TRI & 40779 & 443 & SSD-206A & 90 \\
\hline TA7461 & TRI & 40662 & 459 & SSD-206A & 112 & TA7615 & TRI & 40780 & 443 & SSD-206A & 90 \\
\hline TA7462 & TRI & 40663 & 459 & SSD-206A & 112 & TA7616 & TRI & 40781 & 443 & SSD-206A & 90 \\
\hline TA7463 & SCR & 40656 & 496 & SSD-206A & 191 & TA7617 & TRI & 40782 & 443 & SSD-206A & 90 \\
\hline TA7464 & SCR & 40657 & 496 & SSD-206A & 191 & TA7618 & TRI & 40783 & 443 & SSD-206A & 90 \\
\hline TA7465 & SCR & 40658 & 496 & SSD-206A & 191 & TA7619 & TRI & 40784 & 443 & SSD-206A & 90 \\
\hline TA7466 & SCR & 40659 & 496 & SSD-206A & 191 & TA7620 & TRI & 40785 & 443 & SSD-206A & 90 \\
\hline TA7467 & TRI & 40795 & 457 & SSD-206A & 83 & TA7621 & TRI & 40786 & 443 & SSD-206A & 90 \\
\hline TA7468 & TRI & 40797 & 458 & SSD-206A & 98 & TA7625 & HYB & HC1000 & 565 & SSD-204A & 550 \\
\hline TA7477 & RF & 2N5913 & 423 & SSD-205A & 142 & TA7625A & HYB & HC2000 & 566 & SSD-204A & 555 \\
\hline TA7479 & TRI & 2N5569 & 457 & SSD-206A & 83 & TA7626 & HYB & HC1000H & 565 & SSD-204A & 550 \\
\hline TA7480 & TRI & 2N5570 & 457 & SSD-206A & 83 & TA7626A & HYB & HC2000H & 566 & SSD-204A & 555 \\
\hline TA7481 & TRI & 40796 & 457 & SSD-206A & 83 & TA7642 & TRI & 40775 & 443 & SSD-206A & 90 \\
\hline TA7482 & TRI & 2N5573 & 458 & SSD-206A & 98 & TA7643 & TRI & 40776 & 443 & SSD-206A & 90 \\
\hline TA7483 & TRI & 2N5574 & 458 & SSD-206A & 98 & TA7644 & TRI & 40777 & 443 & SSD-206A & 90 \\
\hline TA7484 & TRI & 40798 & 458 & SSD-206A & 98 & TA7645 & TRI & 40778 & 443 & SSD-206A & 90 \\
\hline TA7487 & RF & 2N5920 & 440 & SSD-205A & 178 & TA7646 & TRI & 40787 & 487 & SSD-206A & 119 \\
\hline TA7500 & TRI & 2N5754 & 414 & SSD-206A & 22 & TA7647 & TRI & 40788 & 487 & SSD-206A & 119 \\
\hline TA7501 & TRI & 2N5755 & 414 & SSD-206A & 22 & TA7648 & TRI & 40790 & 487 & SSD-206A & 119 \\
\hline TA7502 & TRI & 2N5756 & 414 & SSD-206A & 22 & TA7649 & TRI & 40790 & 487 & SSD-206A & 119 \\
\hline TA7503 & TRI & 2N5757 & 414 & SSD-206A & 22 & TA7650 & TRI & 40791 & 487 & SSD-206A & 119 \\
\hline TA7504 & TRI & 40688 & 593 & SSD-206A & 127 & TA7651 & TRI & 40792 & 487 & SSD-206A & 119 \\
\hline TA7505 & TRI & 40689 & 593 & SSD-206A & 127 & TA7652 & TRI & 40793 & 487 & SSD-206A & 119 \\
\hline TA7506 & TRI & 40690 & 593 & SSD-206A & 127 & TA7653 & TRI & 40794 & 487 & SSD-206A & 119 \\
\hline TA7507 & SCR & 40681 & 578 & SSD-206A & 242 & TA7654 & TRI & 40769 & 441 & SSD-206A & 35 \\
\hline TA7508 & SCR & 40682 & 578 & SSD-206A & 242 & TA7655 & TRI & 40770 & 441 & SSD-206A & 35 \\
\hline TA7509 & SCR & 40683 & 578 & SSD-206A & 242 & TA7656 & TRI & 40772 & 441 & SSD-206A & 35 \\
\hline TA7513 & PWR & 2N5838 & 410 & SSD-204A & 253 & TA7657 & TRI & 40772 & 441 & SSD-206A & 35 \\
\hline TA7530 & PWR & 2N5839 & 410 & SSD-204A & 253 & TA7669 & MOS/FET & 3N187 & 436 & SSD-201A & 636 \\
\hline TA7532 & RF & 2N5919A & 505 & SSD-205A & 172 & TA7670 & SCR & 40680 & 578 & SSD-206A & 242 \\
\hline TA7534 & PWR & 2N6354 & 582 & SSD-204A & 415 & TA7671 & TRI & 40773 & 442 & SSD-206A & 67 \\
\hline TA7543 & SCR & RCA 1060 & 555 & SSD-206A & 150 & TA7672 & TRI & 40774 & 442 & SSD-206A & 67 \\
\hline TA7545 & SCR & RCA106Y & 555 & SSD-206A & 150 & TA7673 & PWR & 2N6078 & 492 & SSD-204A & 260 \\
\hline TA7546 & SCR & RCA106F & 555 & SSD-206A & 150 & TA7679 & RF & 40837 & 497 & SSD-205A & 336 \\
\hline TA7547 & TRI & 40799 & 457 & SSD-206A & 83 & TA7680 & RF & 40941 & 554 & SSD-205A & 380 \\
\hline TA7548 & TRI & 40800 & 457 & SSD-206A & 83 & TA7684 & MOS/FET & 3N200 & 437 & SSD-201A & 644 \\
\hline TA7549 & TRI & 40801 & 457 & SSD-206A & 98 & TA7686 & RF & 40893 & 514 & SSD-205A & 342 \\
\hline TA7550 & TRI & 40802 & 458 & SSD-206A & 98 & TA7706 & RF & 2N6105 & 504 & SSD-205A & 224 \\
\hline TA7551 & TRI & 40803 & 458 & SSD-206A & 98 & TA7707 & RF & 2N6104 & 504 & SSD-205A & 224 \\
\hline TA7552 & TRI & 40804 & 458 & SSD-206A & 98 & TA7719 & PWR & 2N6211 & 507 & SSD-204A & 443 \\
\hline TA7553 & SCR & 40735 & 408 & SSD-206A & 236 & TA7739 & PWR & 2N6175 & 508 & SSD-204A & 268 \\
\hline TA7554 & PWR & 2N6178 & 562 & SSD-204A & 407 & TA7740 & PWR & 2N6176 & 508 & SSD-204A & 268 \\
\hline TA7555 & PWR & 2N6179 & 562 & SSD-204A & 407 & TA7741 & PWR & 2N6107 & 488 & SSD-204A & 145 \\
\hline TA7556 & PWR & 2N6180 & 562 & SSD-204A & 407 & TA7742 & PWR & 2N6109 & 488 & SSD-204A & 145 \\
\hline TA7557 & PWR & 2N6181 & 562 & SSD-204A & 407 & TA7743 & PWR & 2N6111 & 488 & SSD-204A & 145 \\
\hline TA7560 & SCR & 40738 & 417 & SSD-206A & 206 & TA7752 & TRI & 40916 & 549 & SSD-206A & 134 \\
\hline TA7561 & SCR & 40739 & 417 & SSD-206A & 206 & TA7753 & TRI & 40917 & 549 & SSD-206A & 134 \\
\hline TA7562 & SCR & 40740 & 417 & SSD-206A & 206 & TA7754 & TRI & 40918 & 549 & SSD-206A & 134 \\
\hline TA7563 & SCR & 40750 & 418 & SSD-206A & 225 & TA7755 & TRI & 40919 & 459 & SSD-206A & 134 \\
\hline TA7564 & SCR & 40751 & 418 & SSD-206A & 225 & TA7756 & TRI & 40920 & 549 & SSD-206A & 134 \\
\hline TA7565 & SCR & 40752 & 418 & SSD-206A & 225 & TA7757 & TRI & 40921 & 549 & SSD-206A & 134 \\
\hline TA7567 & SCR & 40742 & 417 & SSD-206A & 206 & TA7782 & PWR & 2N6292 & 542 & SSD-204A & 161 \\
\hline TA7568 & SCR & 40743 & 417 & SSD-206A & 206 & TA7783 & PWR & 2N6290 & 542 & SSD-204A & 161 \\
\hline TA7569 & SCR & 40744 & 417 & SSD-206A & 206 & TA7784 & PWR & 2N6288 & 542 & SSD-204A & 161 \\
\hline TA7570 & SCR & 40754 & 418 & SSD-206A & 225 & TA7802 & RECT & 44003 & 495 & SSD-206A & 296 \\
\hline
\end{tabular}

Developmental-Number-to-Commercial-Number Cross-Reference Index
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dev. No. & Product Line & Comm. No. & File No. & DATABOOK Vol. No. & Page & Dev. No. & Product Line & Comm. No. & File No. & DATABOOK Vol. No. & Page \\
\hline TA7803 & RECT & 44004 & 495 & SSD-206A & 296 & TA8202 & PWR & 2N6386 & 610 & SSD-204A & 461 \\
\hline TA7804 & RECT & 44005 & 495 & SSD-206A & 296 & TA8210 & PWR & 2N6106 & 488 & SSD-204A & 145 \\
\hline TA7805 & RECT & 44006 & 495 & SSD-206A & 296 & TA8211 & PWR & 2N6108 & 488 & SSD-204A & 145 \\
\hline TA7806 & RECT & 44007 & 495 & SSD-206A & 296 & TA8212 & PWR & 2N6110 & 488 & SSD-204A & 145 \\
\hline TA7821 & SCR & 40937 & 578 & SSD-206A & 243 & TA8231 & PWR & 2N6293 & 542 & SSD-204A & 161 \\
\hline TA7823 & SCR & 40938 & 578 & SSD-206A & 243 & TA8232 & PWR & 2N6291 & 542 & SSD-204A & 161 \\
\hline TA7825 & SCR & 40951 & 578 & SSD-206A & 243 & TA8236 & RF & 40936 & 551 & SSD-205A & 371 \\
\hline TA7852 & RF & 2N5917 & 425 & SSD-205A & 154 & TA8241 & HYB & HC3100 & 564 & SSD-204A & 563 \\
\hline TA7920 & RF & 2N5992 & 451 & SSD-205A & 192 & TA8242 & MOS/FET & 40841 & 489 & SSD-201A & 673 \\
\hline TA7921 & RF & 2N5993 & 452 & SSD-205A & 197 & TA8247 & PWR & 40887 & 508 & SSD-204A & 268 \\
\hline TA7922 & RF & 2N5995 & 454 & SSD-205A & 208 & TA8248 & PWR & 40885 & 508 & SSD-204A & 268 \\
\hline TA7923 & RF & 2N5996 & 454 & SSD-205A & 213 & TA8249 & PWR & 40886 & 508 & SSD-204A & 268 \\
\hline TA7936 & MOS/FET & 40819 & 463 & SSD-201A & 650 & TA8330 & PWR & 2N6213 & 507 & SSD-204A & 443 \\
\hline TA7937 & TRI & 40922 & 549 & SSD-206A & 134 & TA8344 & RF & 40895 & 548 & SSD-205A & 347 \\
\hline TA7938 & TRI & 40923 & 549 & SSD-206A & 134 & TA8345 & RF & 40895 & 548 & SSD-205A & 347 \\
\hline TA7939 & TRI & 40924 & 549 & SSD-206A & 134 & TA8346 & RF & 40896 & 548 & SSD-205A & 347 \\
\hline TA7941 & RF & 40934 & 550 & SSD-205A & 367 & TA8347 & RF & 40897 & 548 & SSD-205A & 347 \\
\hline TA7943 & RF & 40909 & 547 & SSD-205A & 359 & TA8348 & PWR & 2N6385 & 609 & SSD-204A & 455 \\
\hline TA7955 & HYB & HC4005A & 571 & SSD-204A & 566 & TA8349 & PWR & 2N6383 & 609 & SSD-204A & 455 \\
\hline TA7957 & HYB & HC4012A & 571 & SSD-204A & 566 & TA8352 & PWR & 2N6372 & 608 & SSD-204A & 169 \\
\hline TA7982 & RF & 40940 & 553 & SSD-205A & 375 & TA8353 & PWR & 2N6373 & 608 & SSD-204A & 169 \\
\hline TA7985 & RECT & 40958R & 580 & SSD-206A & 333 & TA8354 & PWR & 2N6374 & 608 & SSD-204A & 169 \\
\hline TA7986 & RECT & 40959R & 580 & SSD-206A & 333 & TA8357 & TRI & 40901 & 540 & SSD-206A & 143 \\
\hline TA7987 & RECT & 40960R & 580 & SSD-206A & 333 & TA8358 & TRI & 40902 & 540 & SSD-206A & 143 \\
\hline TA7988 & SCR & 106A & 555 & SSD-206A & 150 & TA8397 & PWR & HC4015A & 571 & SSD-204A & 566 \\
\hline TA7989 & SCR & 106B & 555 & SSD-206A & 150 & TA8407 & RF & 2N6268 & 546 & SSD-205A & 249 \\
\hline TA7990 & SCR & 106C & 555 & SSD-206A & 150 & TA8425 & RF & R47M15 & 605 & SSD-205A & 410 \\
\hline TA7991 & SCR & 106D & 555 & SSD-206A & 150 & TA8428 & PWR & 2N6254 & 524 & SSD-204A & 28 \\
\hline TA7993 & RF & 2N6265 & 543 & SSD-205A & 231 & TA8429 & PWR & 2N6253 & 524 & SSD-204A & 28 \\
\hline TA7994 & RF & 2N6266 & 544 & SSD-205A & 237 & TA8430 & PWR & 2N6258 & 525 & SSD-204A & 52 \\
\hline TA7995 & RF & \(2 N 6267\) & 545 & SSD-205A & 243 & TA8431 & PWR & 2N6257 & 525 & SSD-204A & 52 \\
\hline TA7995A & RF & 2N6269 & 546 & SSD-205A & 249 & TA8432 & PWR & 2N6259 & 526 & SSD-204A & 60 \\
\hline TA7996 & RECT & 44001 & 495 & SSD-206A & 296 & TA8433 & PWR & 2N6261 & 527 & SSD-204A & 20 \\
\hline TA7999 & MOS/FET & 40820 & 464 & SSD-201A & 658 & TA8434 & PWR & 2N6260 & 527 & SSD-204A & 20 \\
\hline TA8000 & MOS/FET & 40821 & 464 & SSD-201A & 658 & TA8435 & PWR & 2N6262 & 528 & SSD-204A & 44 \\
\hline TA8001 & MOS/FET & 40822 & 465 & SSD-201A & 666 & TA8436 & PWR & 2N6264 & 529 & SSD-204A & 36 \\
\hline TA8002 & MOS/FET & 40823 & 465 & SSD-201A & 666 & TA8437 & PWR & 2N6263 & 529 & SSD-204A & 36 \\
\hline TA8004 & PWR & 2N6077 & 492 & SSD-204A & 260 & TA8439 & RF & 40898 & 538 & SSD-205A & 351 \\
\hline TA8005 & PWR & 2N6079 & 492 & SSD-204A & 260 & TA8440 & RF & 40899 & 538 & SSD-205A & 351 \\
\hline TA8104 & RF & 40915 & 574 & SSD-205A & 363 & TA8485 & PWR & 2N6387 & 610 & SSD-204A & 461 \\
\hline TA8141 & HYB & HC3000 & 539 & SSD-204A & 560 & TA8486 & PWR & 2N6384 & 609 & SSD-204A & 455 \\
\hline TA8158 & SCR & 40888 & 522 & SSD-206A & 187 & TA8559 & RF & 40954 & 579 & SSD-205A & 384 \\
\hline TA8159 & SCR & 40889 & 522 & SSD-206A & 187 & TA8561 & RF & 40955 & 579 & SSD-205A & 384 \\
\hline TA8160 & RECT & 40890 & 522 & SSD-206A & 304 & TA8562 & RF & 40967 & 596 & SSD-205A & 393 \\
\hline TA8161 & RECT & 40891 & 522 & SSD-206A & 304 & TA8563 & RF & 40968 & 596 & SSD-205A & 393 \\
\hline TA8162 & RECT & 40892 & 522 & SSD-206A & 304 & TA8591 & PWR & HC4005 & 571 & SSD-204A & 566 \\
\hline TA8197 & TRI & 40925 & 593 & SSD-206A & 127 & TA8595 & PWR & HC4012 & 571 & SSD-204A & 566 \\
\hline TA8198 & TRI & 40926 & 593 & SSD-206A & 127 & TA8599 & PWR & HC4015 & 571 & SSD-204A & 566 \\
\hline TA8199 & TRI & 40927 & 593 & SSD-206A & 127 & & & & & & \\
\hline TA8201 & PWR & 2N6388 & 6 & SSD-20 & 461 & & & & & & \\
\hline
\end{tabular}

\section*{Military-Specification (JAN and JANTX) Types}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type No.} & \multirow[b]{2}{*}{MIL-Spec 19500/} & \multirow[b]{2}{*}{Product Line} & \multicolumn{3}{|l|}{For data on basic type, see} \\
\hline & & & File No. & DATABOOK Vol. No. & Page \\
\hline JAN-2N918 & 301 & RF & 83 & SSD-205A & 18 \\
\hline JAN-2N1184 & 143 & PWR & 14 & SSD-204A & 572 \\
\hline JAN-2N1184A & 143 & PWR & 14 & SSD-204A & 572 \\
\hline JAN-2N1184B & 143 & PWR & 14 & SSD-204A & 572 \\
\hline JAN-2N 1224 & 189 & PWR & 14 & SSD-204A & 572 \\
\hline JAN-2N1479 & 207 & PWR & 135 & SSD-204A & 474 \\
\hline JAN-2N1480 & 207 & PWR & 135 & SSD-204A & 474 \\
\hline JAN-2N1481 & 207 & PWR & 135 & SSD-204A & 474 \\
\hline JAN-2N1482 & 207 & PWR & 135 & SSD-204A & 474 \\
\hline JAN-2N1483 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JANTX-2N1483 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JAN-2N1484 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JANTX-2N1484 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JAN-2N1485 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JANTX-2N1485 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JAN-2N1486 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JANTX-2N1486 & 180 & PWR & 137 & SSD-204A & 479 \\
\hline JAN-2N1487 & 208 & PWR & 139 & SSD-204A & 484 \\
\hline JAN-2N1488 & 208 & PWR & 139 & SSD-204A & 484 \\
\hline JAN-2N1489 & 208 & PWR & 139 & SSD-204A & 484 \\
\hline JAN-2N1490 & 208 & PWR & 139 & SSD-204A & 484 \\
\hline JAN-2N1493 & 247 & RF & 10 & SSD-205A & 22 \\
\hline JAN-2N2015 & 248 & PWR & 12 & SSD-204A & 500 \\
\hline JAN-2N2016 & 248 & PWR & 12 & SSD-204A & 500 \\
\hline JAN-2N2857 & 343 & RF & 61 & SSD-205A & 31 \\
\hline JANTX-2N2857 & 343 & RF & 61 & SSD-205A & 31 \\
\hline JAN-2N3055 & 407 & PWR & 524 & SSD-204A & 28 \\
\hline JANTX-2N3055 & 407 & PWR & 524 & SSD-204A & 28 \\
\hline JAN-2N3375 & 341 & RF & 386 & SSD-205A & 50 \\
\hline JANTX-2N3375 & 341 & RF & 386 & SSD-205A & 50 \\
\hline JAN-2N3439 & 368 & PWR & 64 & SSD-204A & 222 \\
\hline JANTX-2N3439 & 368 & PWR & 64 & SSD-204A & 222 \\
\hline JAN-2N3440 & 368 & PWR & 64 & SSD-204A & 222 \\
\hline JANTX-2N3440 & 368 & PWR & 64 & SSD-204A & 222 \\
\hline JAN-2N3441 & 369 & PWR & 529 & SSD-204A & 36 \\
\hline JAN-2N3442 & 370 & PWR & 528 & SSD-204A & 44 \\
\hline JAN-2N3553 & 341 & RF & 386 & SSD-205A & 50 \\
\hline JANTX-2N3553 & 341 & RF & 386 & SSD-205A & 50 \\
\hline JAN-2N3584 & 384 & PWR & 138 & SSD-204A & 229 \\
\hline JANTX-2N3584 & 384 & PWR & 138 & SSD-204A & 229 \\
\hline JAN-2N3585 & 384 & PWR & 138 & SSD-204A & 229 \\
\hline JANTX-2N3585 & 384 & PWR & 138 & SSD-204A & 229 \\
\hline JAN-2N3771 & 413 & PWR & 525 & SSD-204A & 52 \\
\hline JANTX-2N3771 & 413 & PWR & 525 & SSD-204A & 52 \\
\hline JAN-2N3772 & 413 & PWR & 525 & SSD-204A & 52 \\
\hline JANTX-2N3772 & 413 & PWR & 525 & SSD-204A & 52 \\
\hline JAN-2N3866 & 398 & RF & 80 & SSD-205A & 71 \\
\hline JANTX-2N3866 & 398 & RF & 80 & SSD-205A & 71 \\
\hline JAN-2N4440 & 341 & RF & 217 & SSD-205A & 85 \\
\hline JANTX-2N4440 & 341 & RF & 217 & SSD-205A & 85 \\
\hline JAN-2N5038 & 439 & PWR & 367 & SSD-204A & 371 \\
\hline JANTX-2N5038 & 439 & PWR & 367 & SSD-204A & 371 \\
\hline JAN-2N5039 & 439 & PWR & 367 & SSD-204A & 371 \\
\hline JANTX-2N5039 & 439 & PWR & 367 & SSD-204A & 371 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline AC-DC isolation & 206A & 453 \\
\hline Active filter, integrated-circuit & 201A & 475 \\
\hline AC voltage regulators, thyristors & 206A & \\
\hline Adders, scaling & 202A & 273 \\
\hline Admittance parameters, short-circuit & 202A & 93 \\
\hline AGC & 202A & 46,47 \\
\hline Alarm system, intrusion & 202A & 247 \\
\hline AM broadcast receivers & 202A & 43 \\
\hline AM modulator, integrated-circuit & 201A & 476 \\
\hline AM radio, integrated circuit for & 202A & 42 \\
\hline Applications & 202A & 43 \\
\hline Circuit description & 202A & 42 \\
\hline AND-OR bi-phase pairs, COS/MOS triple (technical data) & 203A & 188 \\
\hline Amplification, sound-carrier & 202A & 46 \\
\hline Amplifier array, general-purpose, integrated-circuit (technical data) & 201A & 42 \\
\hline Amplifier array, integrated-circuit, & 202A & 68 \\
\hline Circuit applications & 202A & 72 \\
\hline Circuit description & 202A & 68 \\
\hline Gain-frequency response & 202A & 70 \\
\hline Noise voltage and current & 202A & 72 \\
\hline Output swing vs. supply voltage & 202A & 72 \\
\hline Quick selection chart & 201A & 10 \\
\hline Stability requirements & 202A & 70 \\
\hline Amplifier array, integrated-circuit, ac (technical data) & 201A & 28,250 \\
\hline Amplifier array, ultra-high-gain, wide-band, integrated-circuit (technical data) & 201A & 74 \\
\hline Amplifier, broadband (118-to-136-MHz), & & \\
\hline 4-watt (PEP) : & & \\
\hline Design considerations & 205A & 419 \\
\hline Load-mismatch test & 205A & 417 \\
\hline Output power and modulation & 205A & 417 \\
\hline Performance and adjustment & 205A & 421 \\
\hline Amplifier, broadband, rf, linear, push-pull, 150-watt PEP & 205A & 467 \\
\hline Amplifier circuit, broadband, uhf & 205A & 473 \\
\hline Amplifier, class B, circuit description & 204A & 599 \\
\hline Amplifier, class B, integrated-circuit & 202A & 79,189 \\
\hline Amplifier, control, and special-function integrated circuits: & & \\
\hline Application notes on & 202A & 88-260 \\
\hline Quick selection chart & 201A & 12 \\
\hline Technical data & 201A & 257.456 \\
\hline Amplifier, dc, integrated-circuit & 202A & 130 \\
\hline Applications & 201A & 136 \\
\hline Circuit description & 201A & 130 \\
\hline Operation & 201A & 130 \\
\hline Technical data & 201A & 290 \\
\hline Amplifier, differential detector, dc amplifier, and voltage regulator, integrated-circuit (technical data) & 201A & 84 \\
\hline Amplifier-discriminators, omtegratedcircuit (technical data) & 201A & 62 \\
\hline Amplifier economics & 204A & 596 \\
\hline Amplifier, feedback & 202A & 137 \\
\hline Amplifier fidelity & 204A & 596 \\
\hline Amplifier-filter, high-gain & 202A & 259 \\
\hline Amplifier, FM detector, af preamplifier integrated-circuit (technical data) & 201A & 90,98 \\
\hline Amplifier, gain-controlled, integrated-circuit & 202A & 75 \\
\hline Amplifier, if, integrated-circuit & 202A & 141 \\
\hline Applications & 202A & 146 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Databook & Page \\
\hline Characteristics & 202A & 144 \\
\hline Circuit description & 202A & 141 \\
\hline Operating modes & 202A & 141 \\
\hline Technical data & 201A & 258 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Amplifier, narrow-band, tuned, integrated- \\
circuit 202A 138
\end{tabular}} \\
\hline Amplifier, rf, integrated-circuit & 202A & 78,80 \\
\hline Amplifier, servo, integrated-circuit & 202A & 194 \\
\hline \multicolumn{3}{|l|}{Amplifiers, integrated-circuit:} \\
\hline Audio & 202A & 150,190 \\
\hline Driver & 202A & 193 \\
\hline Frequency-shaping & 202A & 272 \\
\hline Operational & 202A & 261-334 \\
\hline Output & 202A & 58 \\
\hline Power & 202A & 187 \\
\hline RF & 202A & 163 \\
\hline Video & 202A & 268 \\
\hline Wide-band & 202A & \[
\begin{aligned}
& 173,191 \\
& 195,201
\end{aligned}
\] \\
\hline Amplifier, tint-control, integratedcircuit & 202A & 62 \\
\hline Amplifier, twin-T, bandpass & 202A & 281 \\
\hline Amplifier, video, integrated-circuit & 202A & \[
\begin{array}{r}
153,182 \\
268
\end{array}
\] \\
\hline Amplitude modulation & 205A & 451 \\
\hline AM receiver subsystem, integrated-circuit (technical data) & 201 A & 42,46 \\
\hline Analog or digital signals, transmission and multiplexing of & 203A & 379 \\
\hline AND-OR gates, COS/MOS, triple bi-phase pairs (technical data) & 203A & 188 \\
\hline AND-OR select gate COS/MOS quad & 203A & 373 \\
\hline AND-OR select gate, COS/MOS quad (technical data) & 203A & 94 \\
\hline Arcing & 206A & 460 \\
\hline Arithmetic unit, COS/MOS & 203A & 373 \\
\hline Circuit description & 203A & 373 \\
\hline Operation & 203A & 374 \\
\hline Performance data & 203A & 378 \\
\hline Arithmetic arrays, COS/MOS & 203A & 373 \\
\hline \multicolumn{3}{|l|}{Arrays, integrated-circuit} \\
\hline Application notes on & 202A & 67-86 \\
\hline Technical data & 201A & 161-256 \\
\hline Astable multivibrator, integrated-circuit & 202A & 73,307 \\
\hline Astable multivibrator, COS/MOS & 203A & 353 \\
\hline Audio amplifier, hybrid-circuit & 204A & 670 \\
\hline Audio amplifier, integrated-circuit & 202A & 150 \\
\hline Capacitor-coupled cascaded circuits & 202A & 153 \\
\hline Circuit description & 202A & 150 \\
\hline Direct-coupled cascaded circuits & 202A & 151 \\
\hline Technical data & 201A & 331 \\
\hline Audio amplifiers, integrated-circuit & 202A & 190 \\
\hline Audio amplifier, line-operated & 204A & 588 \\
\hline Audio amplifier, transformer-coupled & 204A & 671 \\
\hline \multicolumn{3}{|l|}{Audio driver, integrated-circuit:} \\
\hline Dual-supply circuit & 202A & 152 \\
\hline Single-supply circuit & 202A & 153 \\
\hline Autodyne converter, integrated-circuit & 202A & 163 \\
\hline Automatic-fine-tuning systems, integrated-circuit & 202A & 33 \\
\hline Automatic shut-off and alarm system & 202A & 258 \\
\hline \multicolumn{3}{|l|}{Axial-lead silicon rectifiers} \\
\hline & & 280-289, \\
\hline Audio power transistors, special (technical data) & 204A & \[
\begin{aligned}
& 296-299 \\
& 509-542
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Balanced detector, integrated-circuit & 202A & 33 & \multicolumn{3}{|l|}{Chroma signal processor, integrated-} \\
\hline Balanced modulator, integrated-circuit & 202A & 82 & circuit (technical data) & 201A & 126,144 \\
\hline Ballasting circuits, solid-state & 204A & 504 & Chopper circuits, MOS-transistor & 202A & 347 \\
\hline Ballast resistors & 204A & 684 & Basic chopper circuits & 202A & 347 \\
\hline Bandpass amplifiers & 202A & 281 & Basic MOS chopper circuits & 202A & 448 \\
\hline Bandpass shaping & 202A & 46 & Equivalent circuit of MOS chopper & 202A & 350 \\
\hline Bass roll-off & 202A & 39 & Ideal chopper characteristics & 202A & 347 \\
\hline BCD data, conversion of & 202A & 244 & Relative merits of available devices & 202A & 347 \\
\hline Beam-lead (sealed-junction) IC's & & & Typical circuits & 202A & 352 \\
\hline (technical data) & 201A & 545-566 & Use of MOS transistors in choppers & 202A & 348 \\
\hline Bidirectional thyristors, gated (technical data) & 206A & 105 & \multicolumn{3}{|l|}{Circuit factor charts for thyristors} \\
\hline Bilateral switch, COS/MOS quad & 203A & 379 & Current-Ratio curves & 206A & 379 \\
\hline Digital control of signal gain, & & & Full-wave ac triac circuit & 206A & 380 \\
\hline frequency, and impedance & 203A & 384 & Full-wave dc SCR or Triac circuit & 206A & 381 \\
\hline Features & 203A & 379 & Full-wave SCR circuit & 206A & 379 \\
\hline Logic functions & 203A & 383 & Per cent ripple in load & 206A & 383 \\
\hline Multiplexing/demultiplexing & 203A & 384 & Three-phase half-wave SCR circuit & 206A & 382 \\
\hline Operation & 203A & 379 & Class B transistor amplifier & 204A & 594 \\
\hline Sample-hold applications & 203A & 388 & Circuit description & 204A & 599 \\
\hline Switch and logic applications & 203A & 383 & Complementar-symmetry type & 204A & 595 \\
\hline Technical data & 203A & 78 & Economics of & 204A & 596 \\
\hline Binary counter & 203A & 328 & \multicolumn{3}{|l|}{Effective power-supply series} \\
\hline Bi-phase pairs, AND-OR, COS/MOS & & & resistance & 204A & 596,600 \\
\hline (technical data) & 203A & 188 & Fidelity of & 204A & 596 \\
\hline Bi-polarity comparator & 202A & 332 & Music-power rating & 204A & 596,600 \\
\hline Bistable multivibrator & 202A & 309 & Power dissipation, ideal & 204A & 597 \\
\hline Bridge circuits, SCR & 206A & 442 & Power-output & 204A & 595 \\
\hline Bridge rectifier & 204A & 652 & Power-supply regulation & 204A & 594 \\
\hline Broadband rf circuit design & 205A & 453 & Practical circuit & 204A & 595 \\
\hline Broadband rf operation & 205A & 470 & Transistor dissipation & 204A & 595 \\
\hline Broadband rf power amplifier & 205A & 427 & \multicolumn{3}{|l|}{Clocked D latch, COS/MOS quad} \\
\hline Broadband transistor rf amplifier & 205A & 417 & (technical data) & 203A & 208 \\
\hline Broadband uhf amplifier & 205A & 477,481 & \multicolumn{3}{|l|}{Clock/timer, battery-operated,} \\
\hline Broadband uhf circuit, design approach & 205A & 475 & \multicolumn{3}{|l|}{Digital-display, COS/MOS:} \\
\hline Broadcast receivers, AM & 202A & 42 & Applications & 203A & 444 \\
\hline Buffer, converter-circuit & 204A & 666 & Circuit operation & 203A & 434 \\
\hline Buffer, COS/MOS quad, true/complement (technical data) & 203A & 199 & Display-driver circuits
Performance characteristics & 203A & 436
434 \\
\hline \multirow[t]{5}{*}{Buffers/converters, COS/MOS hex (technical data)} & \multirow{5}{*}{203A} & \multirow{5}{*}{48} & Coaxial-line rf power amplifier & 205A & 437 \\
\hline & & & Coaxial-package transistors & 205A & 443 \\
\hline & & & Color demodulator, integrated-circuit & 202A & 58 \\
\hline & & & Application of & 202A & 65 \\
\hline & & & Demodulation and matrix & 202A & 59 \\
\hline Burst (popcorn) noise, meansurement of & 202A & 327 & Demodulator preamplifier & 202A & 61 \\
\hline Pass-fail criteria & 202A & 330 & Filtering capactiors & 202A & 61 \\
\hline Test conditions & 202A & 330 & Output amplifiers & 202A & 58 \\
\hline Test configuration & 202A & 327 & Tint-control amplifier & 202A & 62 \\
\hline Test-system circuits & 202A & 331 & Color matrix, integrated-circuit & 202A & 59 \\
\hline \multirow[t]{2}{*}{Bus register, COS/MOS MSI, 8-stage (technical data)} & & & Color system, RGB & 202A & 65 \\
\hline & 203A & 164 & \multicolumn{3}{|l|}{Color TV receivers, if system for, integrated-circuit} \\
\hline Capacitor-input circuits, design of & 206A & 384 & Colpitts oscillator, integrated-circuit & 202A & 73 \\
\hline Capture ratio & 202A & 25 & Common-base rf power amplifiers & 205A & 432 \\
\hline Case-temperature effects & 205A & 471 & Common-mode gain & 202A & 266 \\
\hline Characteristics of COS/MOS & & & Common-mode rejection & 202A & 157 \\
\hline integrated circuits (chart) & 203A & 8 & \multirow[t]{2}{*}{Common-mode rejection ratio} & \multirow[t]{2}{*}{202A} & 98.157, \\
\hline Charge transport during irradiation & 203A & 410 & & & 266 \\
\hline Chips (technical data): & & & Commutating dv/dt (of thyristors) & 206A & 455 \\
\hline COS/MOS integrated-circuit & 203A & 268-276 & \multicolumn{3}{|l|}{Comparator:} \\
\hline Linear integrated-circuit & 201A & 534-544 & Bi-polarity & 202A & 332 \\
\hline Power-transistor & 204A & 543-547 & DC & 202A & 309 \\
\hline Chroma amplifier, integrated-circuit & & & Differential & 202A & 231 \\
\hline (technical data) & 201A & 148 & Micropower & 202A & 324 \\
\hline Chroma demodulator, integrated-circuit & & & Phase & 203A & 427 \\
\hline (technical data) & 201A & 129,151 & Tri-level & 203A & 409 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Controlled-avalanche rectifiers (technical data)} \\
\hline & ontrol systems, triac \\
\hline \multicolumn{2}{|l|}{Conversion, digital-to-analog} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Converter-circuit driver stage Converter-circuit oscillator Converter-circuit output stage}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Converter, off-line, driven, 1-kilowatt
Characteristics}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{Circuit description} \\
\hline \multicolumn{2}{|r|}{Efficiency/cost considerations} \\
\hline \multicolumn{2}{|r|}{Performance characteristics} \\
\hline & Transformer design considerations \\
\hline \multicolumn{2}{|l|}{Converter, ringing-choke} \\
\hline \multicolumn{2}{|l|}{COS/MOS chips (technical data)} \\
\hline \multicolumn{2}{|l|}{COS/MOS digital integrated circuits} \\
\hline \multicolumn{2}{|r|}{Applications information} \\
\hline \multicolumn{2}{|r|}{Functional diagrams} \\
\hline \multicolumn{2}{|r|}{General features} \\
\hline \multicolumn{2}{|r|}{Technical data} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{COS/MOS IC's for low-voltage
Applications (technical data)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{COS/MOS integrated circuits, functional diagrams} \\
\hline \multicolumn{2}{|l|}{cOS/MOS integrated circuits, general features} \\
\hline \multicolumn{2}{|l|}{COS/MOS integrated circuits, typical characteristics chart} \\
\hline \multicolumn{2}{|l|}{COS/MOS logic gates, noise immunity of COS/MOS power-supply considerations} \\
\hline \multicolumn{2}{|l|}{COS/MOS switch} \\
\hline \multicolumn{2}{|l|}{Counter, COS/MOS binary/ripple, 12-stage (technical data)} \\
\hline \multicolumn{2}{|l|}{Counter, COS/MOS, 21-stage} \\
\hline \multicolumn{2}{|l|}{Counters, COS/MOS, applications of:} \\
\hline \multicolumn{2}{|r|}{Decade, 7-segment-output} \\
\hline \multicolumn{2}{|r|}{Divide-by-N} \\
\hline \multicolumn{2}{|r|}{Divide-by-R} \\
\hline \multicolumn{2}{|r|}{Divide-by-12} \\
\hline \multicolumn{2}{|r|}{Divide-by-60} \\
\hline \multicolumn{2}{|r|}{Fixed, single-stage, divide-by-N} \\
\hline \multicolumn{2}{|r|}{Programmable, multidecade,} \\
\hline \multicolumn{2}{|l|}{Divide-by-N} \\
\hline \multicolumn{2}{|l|}{Counter, COS/MOS, fixed and programmable, Design of} \\
\hline \multicolumn{2}{|l|}{Counters, COS/MOS MSI, design and applications of} \\
\hline \multicolumn{2}{|l|}{Counters, COS/MOS (technical data) :} \\
\hline \multicolumn{2}{|r|}{Binary, 7-stage} \\
\hline \multicolumn{2}{|r|}{Decade} \\
\hline \multicolumn{2}{|r|}{Divide-by-N} \\
\hline \multicolumn{2}{|r|}{Up/down, presettable} \\
\hline \multicolumn{2}{|l|}{Counting circuit, COS/MOS, digital-display} \\
\hline \multicolumn{2}{|l|}{Counter/dividers, COS/MOS, applications of Decade} \\
\hline \multicolumn{2}{|r|}{Divide-by-8} \\
\hline \multicolumn{2}{|l|}{Counter-latch-timer control circuit} \\
\hline \multirow[t]{3}{*}{} & unter/timers, digital \\
\hline & oss-modulation distortion \\
\hline & osstalk \\
\hline & owbar trigger circuits. \\
\hline \multirow[t]{2}{*}{} & ystal oscillators: \\
\hline & Bipolar integrated-circuit \\
\hline & COS/MOS integrated-circuit \\
\hline & urrent-amplifier pair, hybrid-circuit technical data) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Databook & Page & & Databook & Page \\
\hline & & Current limiting, foldback & 204A & 633,684 \\
\hline 206A & 311 & Current mirrors & 202A & 325 \\
\hline 202A & 247 & Current-ratio curves (SCR's and triacs) & 206A & \\
\hline 203A & 296 & Current source, diode-transistor & 202A & 325 \\
\hline 202A & 218 & Curves, rf power-transistor power- & & 379 \\
\hline 204A & 666 & frequency & 205 & 8-10 \\
\hline 204A & 665 & & & \\
\hline 204A & 666 & & & \\
\hline 204A & 664 & & & \\
\hline 204A & 664 & & & \\
\hline 204A & 665 & DC amplifier, integrated-circuit & 202A & 130 \\
\hline 204A & 668 & Applications & 202A & 136 \\
\hline 204A & 667 & Circuit description & 202A & 130 \\
\hline 204A & 667 & Operation & 202A & 130 \\
\hline 204A & 605 & Technical data & 201A & 290 \\
\hline 203A & 268-276 & DC power supply, ac voltage-regulated & 206A & 423 \\
\hline 203A & 1 & DC safe area (power transistors) & 205A & 469 \\
\hline 203A & 289-449 & Decade counters, COS/MOS, 7 -segment output & 203A & 435 \\
\hline 203A & 10 & Decoder, COS/MOS, BCD-to-decimal & & \\
\hline 203A & 23 & (technical data) & 203A & 135 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{24-276} & Decoder-Drivers, MSI, BCD-to-7-segment & 202A & 244 \\
\hline & & Fail-safe circuit & 202A & 252 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{24,114} & Logic description & 202A & 244 \\
\hline & & Logic diagram & 202A & 246 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{10-19} & Multiplex operation & 202A & 252 \\
\hline & & Operating characteristics & 202A & 247 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{23} & Static-drive applications & 202A & 249 \\
\hline & & Technical data & 201A & 437 \\
\hline 203A & 8 & Decoder stero multiplex, integrated- & & \\
\hline 203A & 344 & circuit (technical data) & 201A & 36 \\
\hline 203A & 368 & Deflection circuit, magnetic & 204A & 586 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{302} & Delayed agc & 202A & 46,47 \\
\hline & & Demodulation, color-signal & 202A & 59 \\
\hline 203A & 195 & Demodulator, color, integrated-circuit & 202A & 58 \\
\hline 203A & 222 & Demodulator preamplifier, integratedcircuit & 202A & 61 \\
\hline 203A & 434 & Detection, sound-carrier & 202A & 46 \\
\hline 203A & 422 & Diacs, silicon bidirectional: & & \\
\hline 203A & 427 & Technical data & 206A & 353-355 \\
\hline 203A & 445 & Use of for thyristor triggering & 206A & 441 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{445} & Voltage-current characteristics & 206A & 442 \\
\hline & & Differential-amplifier array, dual independent, integrated-circuit (technical data) & 201A & 336,363 \\
\hline 203A & 363 & Differential amplifiers, integratedcircuit, Basic configuration for & 202A & 21 \\
\hline 203A & 327 & Differential amplifiers, integratedcircuit high-reliability types (technical data) & 201A & 299,310 \\
\hline 203A & 114 & Differential/cascode amplifiers, & & \\
\hline 203A & 120 & integrated-circuit (technical data) & 201A & 348,355 \\
\hline 203A & 89 & Differential comparator, integrated- & & \\
\hline 203A & 140 & circuit & 202A & 231 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{416} & & 206A & 483 \\
\hline & & Differentiators, integrated-circuit & 202A & 273 \\
\hline 203A & 333 & Diffused-junction n-p-n power transistors & & \\
\hline 203A & 334 & (technical data) & 204A & 471-542 \\
\hline 202A & 332 & Digital-clock prototypes, COS/MOS & 203A & 446 \\
\hline 203A & & Digital-display clock, COS/MOS & 203A & 434 \\
\hline 202A & 102 & Digital-display clock/watch & & \\
\hline 203A & 343 & configuration, COS/MOS & 203A & 445 \\
\hline \multirow[t]{2}{*}{204A} & \multirow[t]{2}{*}{685} & Digital-display devices & 203A & 438 \\
\hline & & Digital-display metering application, & 203A & 434 \\
\hline \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{431} & Digital-display timer, COS/MOS & 203A & 434 \\
\hline & & Digital frequency synthesizer, COS/MOS & 203A & 419 \\
\hline 204A & 560,563 & Digital meter applications, COS/MOS & 203A & 449 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Databook & Page \\
\hline Digital signals, transmission and multiplexing of & 203A & 379 \\
\hline Digital timer/clock/watch applications, COS/MOS & 203A & 439 \\
\hline Digital-to-analog conversion, general considerations & 203A & 297 \\
\hline Digital-to-analog converter, COS/MOS & 203A & 301 \\
\hline Digital-to-analog switch, COS/MOS & 203A & 297 \\
\hline Diode Array, integrated-circuit & 202A & 81 \\
\hline Applications & 202A & 82 \\
\hline Circuit configuration & 202A & 81 \\
\hline Operating characteristics & 202A & 81 \\
\hline Technical data & 201A & 162,169 \\
\hline Diodes, light-emitting & 203A & 438 \\
\hline Display-lamp turn-on characteristics & 202A & 248 \\
\hline Double-tuned interstage filter & 202A & 23 \\
\hline Down-conversion, heterodyne & 203A & 421,431 \\
\hline Down-converter, heterodyne, COS/MOS & 203A & 421 \\
\hline Driver amplifiers, integrated-circuit & 202A & 193 \\
\hline Driver, audio, integrated circuit & 202A & 152,153 \\
\hline Drivers circuits for digital displays, types of & 203A & 436 \\
\hline Driver for 600-ohm balanced-line & 202A & 75 \\
\hline Driver stage, converter-circuit & 204A & 666 \\
\hline D-type latch, clocked, COS/MOS quad (technical data) & 203A & 208 \\
\hline Dv/dt suppression (in thyristor circuits) & 206A & 462 \\
\hline Dual Darlington array, integratedcircuit (technical data) & 201A & 202 \\
\hline Dual differntial amplifiers (technical data) & 201 A & 372 \\
\hline Dynamic performance of AFT system & 202A & 35 \\
\hline Economics, amplifier & 204A & 586 \\
\hline Electric-heat application & 206A & 492 \\
\hline Electron radiation & 203A & 405 \\
\hline Emitter ballasting & 205A & 470 \\
\hline Emitter ballast resistance & 205A & 461 \\
\hline Envelope detector & 202A & 147 \\
\hline Epitaxial-base power transistors (selection chart) & 204A & 18 \\
\hline Epitaxial-base power transistors, (technical data) & 204A & 137-220 \\
\hline Epitaxial-base, high-power, p-n-p transistors (technical data) & 204A & 153 \\
\hline External noise & 203A & 343 \\
\hline False turn-on (of thyristors) & 206A & 462 \\
\hline False turn-on (of thyristors) & 206A & 462 \\
\hline Fast-recovery silicon rectifiers & 206A & 333 \\
\hline Fast-turn-off silicon controlled rectifiers (technical data) & 206A & 236 \\
\hline Feedback amplifier, integrated-circuit, cascaded, RC-coupled & 202A & 137 \\
\hline Feedback factor & 202A & 38 \\
\hline Feedback-type volume-control circuit & 202A & 38 \\
\hline Ferrite cores & 205A & 464 \\
\hline Filament pre-heating circuit & 206A & 451 \\
\hline Filter, active, integrated-circuit & 201A & 475 \\
\hline Filters, interstage & 202A & 23 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Frequency synthesizer, COS/MOS low-power digital & 203A & 419 & High-voltage p-n-p power transistors (technical data) & 204A & 437 \\
\hline Full adder, COS/MOS four-bit: & & & High-voltage power transistors & & \\
\hline Technical data & 203A & 43 & selection chart & 204A & 12 \\
\hline Use in arithmetic unit & 203A & 373 & High-voltage rectifiers & & \\
\hline Full-wave motor controls & 206A & 373 & (technical data) & 206A & 337-351 \\
\hline Regulated & 206A & 374 & With R-C voltage-equalizing networks & 206A & 337 \\
\hline Unregulated & 206A & 373 & With matched cells for voltage equalization & 206A & 341 \\
\hline & & & Plug-in types for direct tube replacements & 206A & 350 \\
\hline Gain controlled amplifier, & & & Fin-mounted types & 206A & 344 \\
\hline integrated-circuit & 202A & 75 & High-voltage regulation & 206A & 411,458 \\
\hline Gain control, rf-amplifier & 202A & 100 & Hometaxial-base n-p-n power transistors & & \\
\hline Gain equalizer (for uhf amplifier) & 205A & 479 & (selection chart) & 204A & 10 \\
\hline Garage-door electronic control system & 206A & 395 & Hometaxial-base n-p-n power transistors & & \\
\hline Gate characteristics (of thyristors) & 206A & 436 & (technical data) & 204A & 19-136 \\
\hline Gate, COS/MOS dual complementary pair plus inverter (technical data) & 203A & 37 & Hometaxial-base power transistors, molded-silicone-plastic types & & \\
\hline Gate, COS/MOS quad AND-OR select & 203A & 344 & (technical data) & 204A & 68 \\
\hline Gate, COS/MOS quad exclusive-OR (technical data) & 203A & 147 & Horizontal-deflection SCR's and rectifiers (technical data) & 206A & 290,304 \\
\hline Gate-oxide field analysis & 203A & 409 & Horizontal deflection system: & & \\
\hline Gate-oxide protection circuit & 203A & 351 & For color TV receivers & 206A & 404,455 \\
\hline Gates, COS/MOS quad, 2-input NAND & 203A & 374 & For monochrome TV receivers & 206A & 473 \\
\hline Gates, COS/MOS quad 2 -input NOR & 203A & 374 & Hot-spot thermal resistance & 205A & 470,473 \\
\hline Gates, COS/MOS triple AND-OR & & & Hotspotting & 205A & 469 \\
\hline bi-phase pairs (technical data) & 203A & 188 & Hybrid-circuit current-amplifier & & \\
\hline Gates, high-speed & 202A & 77 & pair (technical data) & 204A & 563 \\
\hline Series & 202A & 78 & Hybrid-circuit operational amplifiers & & \\
\hline Shunt & 202A & 79 & (technical data) & 204A & 555 \\
\hline Series-shunt & 202A & 79 & Hybrid circuits, power (technical data) & 204A & 549-570 \\
\hline Ground-line noise & 203A & 419 & Hybrid combiners & 205A & 431 \\
\hline Gyrator, integrated-circuit & 201A & 475 & Hybrid combiner/dividers & 205A & 465 \\
\hline & & & Hybrid linear power amplifier: & & \\
\hline & & & Audio applications of & 204A & 669 \\
\hline & & & General application considerations & 204A & 673 \\
\hline Half-wave motor controls & 206A & 368 & Hysteresis effect, lamp-dimmer & 206A & 399 \\
\hline Unregulated & 206A & 369 & & & \\
\hline Regulated & 206A & 370 & & & \\
\hline Half-wave SCR circuit & 206A & 379 & & & \\
\hline Harmonic distortion & 202A & 152,158 & IF-amplifier circuits, integrated & 202A & 77,109, \\
\hline Hartley oscillator, integrated-circuit & 202A & 73 & types & & 146,163, \\
\hline Heat control & 206A & 397 & & & 168,183 \\
\hline Heat controllers & 202A & 227 & IF amplifier-limiter, FM detector, & & \\
\hline Heater control, three-phase & 206A & 469 & electronic attenuator, audio driver, & & \\
\hline Heater regulation & 206A & 421 & integrated-circuit (technical data) & 201A & 106 \\
\hline Heterodyne down-conversion & 203A & 421,431 & IF amplifier, integrated-circuit & 202A & 141 \\
\hline Heterodyne down-converter & 203A & 292 & Applications & 202A & 146 \\
\hline High-current transistors & & & Characteristics & 202A & 144 \\
\hline (technical data) & 204A & 60 & Circuit description & 202A & 141 \\
\hline High-frequency power transistors & & & Operating modes & 202A & 141 \\
\hline (technical data) & 205A & 347 & IF amplifier-limiter, integrated-circuit & & \\
\hline High-gain selective building blocks, & & & high-gain, wide-band (technical data) & 201A & 70 \\
\hline evolution of & 202A & 22 & IF strips, FM, integrated-circuit & 202A & 22,169, \\
\hline High-power generation & 205A & 429 & & & 170 \\
\hline High-reliability transistor & & & IF system, FM, Integrated-circuit & & \\
\hline (technical data) & 205A & 305-317 & (technical data) & 201 A & 46 \\
\hline High-speed gates & 202A & 77 & IF system, integrated-circuit, & & \\
\hline High-speed switching power & & & black-and-white TV receiver & 202A & 54 \\
\hline transistors (technical data) & 204A & 319-426 & IF system integrated-circuit, for & & \\
\hline High-voltage application of & & & for color TV receiver & 202A & 49 \\
\hline silicon transistors & 204A & 591 & IHFM (Institute of High-Fidelity & & \\
\hline High-voltage generation & 206A & 410,458 & Manufacturers) & 202A & 169 \\
\hline High-voltage n-p-n power transistors & & & Incandescents readouts & 203A & 442 \\
\hline (technical data) & 204A & 221-318 & Induction motor controls & 206A & 394 \\
\hline
\end{tabular}

\section*{Subject Index}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Inrush current & 206A & 449 & Light dimmers, triac & 206A & 398 \\
\hline Insertion loss & 202A & 25 & Circuits & 206A & 401 \\
\hline Institute of High-Fidelity Manufacturers & & & Circuit description & 206A & 398 \\
\hline (IHFM) & 202A & 169 & Hysteresis effect & 206A & 399 \\
\hline Integral-cycle heater control, & & & Range control & 206A & 400 \\
\hline proportional & 206A & 397 & RFI suppression & 206A & 401 \\
\hline Integrated-circuit arrays: & & & Trouble shooting & 206A & 401 \\
\hline Application notes on & 202A & 67.86 & Light-emitting diodes & 203A & 438 \\
\hline Technical data & 201A & 161-256 & Light flasher, synchronous & 202A & 243 \\
\hline Integrated-circuit chips, linear (technical data) & 201A & 534-544 & Lighting systems, relative merits & 206A & 496 \\
\hline Integrated-circuit FM, IF amplifiers, & & & of various types & 204A & 602 \\
\hline design approaches for & 202A & 22 & Limiter, integrated-circuit & 202A & 163 \\
\hline Integrated circuits, COS/MOS digital & 203A & 1 & Limited-amplifier, integrated-circuit & 202A & 33,185 \\
\hline Integrated circuits, linear (bipolar) & 201A & 1 & Limiter characteristics (of IC rf & & \\
\hline Integrators & 202A & 273 & amplifiers) & 202A & 106 \\
\hline Interfacing of COS/MOS devices & 203A & 391 & Limiting amplifier, integrated-circuit & 202A & 186 \\
\hline Active pull-ups & 203A & 393 & Linear amplifier, push-pull 150 -watt, & & \\
\hline Bipolar driving COS/MOS & 203A & 393 & 2-to-30-MHz & 205A & 467 \\
\hline COS/MOS-bipolar HTL interface & 203A & 396 & Linear applications of rf power & & \\
\hline COS/MOS driving bipolar & 203A & 394 & transistors & 205A & 429 \\
\hline COS/MOS-ECL/ECCSL interface & 203A & 400 & Linear IC arrays (technical data) & 201A & 161-256 \\
\hline COS/MOS-to-N-MOS interface & 203A & 402 & Linear IC chips (technical data) & 201A & 534-544 \\
\hline COS/MOS-to-P-MOS interface & 203A & 401 & Linear integrater circuits and & 201A & \\
\hline COS/MOS-TTL/DTL interface & 203A & 391 & MOS devices & 202A & \\
\hline Current sinking & 203A & 392,395 & Index to & 201A & \\
\hline Current sourcing & 203A & 392,395 & Packages and ordering information & 201A & 20 \\
\hline Level shifters & 203A & 400 & Linearity & 206A & 405 \\
\hline Resistor, pull-up & 203A & 392 & Linearity circuit & 206A & 459 \\
\hline Intermodulation distortion & 202A & 152 & Linear mixer, four-channel, & & \\
\hline Interstage filters & 202A & 23 & integrated-circuit & 202A & 73 \\
\hline Intrinsic transistor structure & 205A & 427 & Losser-type volume-control circuit & 202A & 38 \\
\hline Intrusion alarm system, triac & 202A & 247 & Loudness contouring & 202A & 39 \\
\hline Inverters & 204A & 584,591 & Lumped-constant rf power amplifiers & 205A & 442 \\
\hline Push-pull types & 204A & 605 & Lumped-constant rf power oscillator & 205A & 441 \\
\hline Three-phase bridge types & 204A & 652 & & & \\
\hline Isolation, ac-dc & 206A & 453 & & & \\
\hline & & & Magnetic deflection circuit & 204A & 586 \\
\hline & & & Matched diodes, ultra-fast, low-capacitance (technical data) & 201A & 166 \\
\hline Keyed AGC & 202A & 46,47 & Matrix: & & \\
\hline & & & Rectifier products & 206A & 17 \\
\hline & & & SCR products & 206A & 11 \\
\hline & & & Triac products & 206A & 13 \\
\hline Ladder networks, resistance & 203A & 297 & Maximum usable gain & 202A & 51 \\
\hline Lamp-dimmer circuits & 206A & 401 & Medium-power p-n-p transistors & & \\
\hline Double-time constant types & 206A & 402 & (technical data) & 204A & 428 \\
\hline Single-time-constant types & 206A & 401 & Medium-power transistors, & & \\
\hline With over-voltage clamp & 206A & 422 & hometaxial II types (technical data) & 204A & 20,36 \\
\hline Latch, COS/MOS quad, clocked D & & & Mercury-arc lamps: & & \\
\hline (technical data) & 203A & 208 & Advantages of & 204A & 603 \\
\hline Latch COS/MOS quad, 3-state NAND & & & Ballasting of & 204A & 602 \\
\hline R/S (technical data & 203A & 214 & Characteristics of & 204A & 602 \\
\hline Latch, COS/MOS quad 3-state, NOR & & & Conventional ballasting methods & 204A & 604 \\
\hline R/S (technical data) & 203A & 214 & Starting current for & 204A & 611 \\
\hline Latched memory circuit & 202A & 257 & Solid-state ballasting circuits & 204A & 604 \\
\hline Level converters, COS/MOS & 203A & 436 & Memory, COS/MOS, preset-channel & 203A & 432 \\
\hline Level detector, COS/MOS & 203A & 390 & Memory, integrated-circuit, latched & 202A & 257 \\
\hline Light-activated control & 202A & 258 & Memory sense amplifier, integrated- & & \\
\hline & 206A & 393 & circuit, dual-input (technical data) & 201A & 429 \\
\hline Light control & 206A & 391 & Microstripline circuits & 205A & 443 \\
\hline Light-control circuits & 206A & 398,445 & Design of & 205A & 444 \\
\hline Basic triac-diac type & 206A & 399 & Mounting arrangement & 205A & 443 \\
\hline Double-time-constant types & 206A & 400 & Performance of & 205A & 447 \\
\hline Single-time-constant types & 206A & 399 & Microstripline oscillator & 205A & 440 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Microwave power amplifiers & 205A & 436 & RF applications & 202A & 371 \\
\hline Biasing arrangements & 205A & 441 & Stability considerations & 202A & 375 \\
\hline Coaxial-line types & 205A & 437 & Static discharge, effect of & 202A & 366 \\
\hline Device and package construction & 205A & 434 & MOS field-effect transistor, vhf & & \\
\hline Design of & 205A & 436 & applications: & & \\
\hline Large-signal amplifier operation & 205A & 436 & Biasing requirements & 202A & 336 \\
\hline Lumped-constant, common-base types & 205A & 442 & Circuit configurations & 202A & 336 \\
\hline Performance of practical circuits & 205A & 447 & Operating-point selection & 202A & 338 \\
\hline Power gain & 205A & 441 & AGC methods & 202A & 339 \\
\hline Pulse operation & 205A & 438 & RF considerations & 202A & 339 \\
\hline Reliability & 205A & 436 & Use of in vhf circuit design & 202A & 340 \\
\hline Stripline type & 205A & 438 & MOS-transistor vhf mixer, design of & 202A & 344 \\
\hline Microwave power oscillators & 205A & 434 & Motor controller, integrated-circuit & 202A & 194 \\
\hline Basic configuration & 205A & 439 & Motor controls & 206A & 368,395 \\
\hline Design of & 205A & 439 & Circuit components & 206A & 370-377 \\
\hline Device and package construction & 205A & 434 & Full-wave types & 206A & 373 \\
\hline Lumped-constant type & 205A & 440 & Half-wave types & 206A & 367 \\
\hline Microstripline type & 205A & 440 & Ratings and limitations & 206A & 374 \\
\hline Reliability & 205A & 436 & Regulated & 206A & 371,374 \\
\hline Wide-band type & 205A & 440 & Three-phase & 206A & 471 \\
\hline Mixer capabilities (of integratedcircuit rf amplifiers) & 202A & 103 & \begin{tabular}{l}
Unregulated \\
Multiplex decoder, integrated-circuit,
\end{tabular} & 206A & 370,373 \\
\hline Mixers, integrated-circuit: & & & siereo (technical data) & 201A & 36 \\
\hline Balanced & 202A & 103,109 & Multiplexer-decoder integrated- & & \\
\hline Four-channel iinear & 202A & 73 & circuit, linear & 202A & 321 \\
\hline Low-frequency & 202A & 120 & Multiplexer, integrated-circuit, & & \\
\hline Mixers, MOS-transistor: & & & three-channel & 201A & 476 \\
\hline FM-receiver & 202A & 360,362 & Multiplexing of analog and digital & & \\
\hline VHF-receiver & 202A & 344 & signals & 203A & 379 \\
\hline Molded-Plastic transistors and thyristors & & & Multiplex system, integrated-circuit, two-channel linear & 202A & 313 \\
\hline Lead forming techniques & 206A & 427 & Multiplier, integrated-circuit, & 201A & 477 \\
\hline Mounting & 206A & 430 & four-quadrant, analysis of & 202A & 317 \\
\hline Thermal-resistance considerations & 206A & 427 & Multiplier, integrated-circuit, & & \\
\hline Types of packages & 206A & 426 & four-quadrant (technical data) & 201A & 417 \\
\hline Monochrome TV receivers, thyristor horizontal deflection system for & 206A & 473 & Multiplier, integrated-circuit, two-quadrant & 201A & 467 \\
\hline Monostable multivibrators, COS/MOS: & & & Multistable circuits, precision & 202A & 322 \\
\hline Basic configuration & 203A & 356 & Multivibrators, COS/MOS & & \\
\hline Compensated circuit & 203A & 357 & Astable & 203A & 353 \\
\hline Low-power circuit & 203A & 358 & Monostable & 203A & 353,356 \\
\hline Monolithic n-p-n Darlington power transistors (technical data) & 204A & 449-470 & One-shot, basic circuit
One-shot, compensated circuit & 203A & 356
357 \\
\hline Monostable multivibrator, integrated- & & & Multivibrators, integrated-circuit: & & \\
\hline circuit & 202A & 309 & Astable & 202A & 73,307 \\
\hline MOS chopper circuits & 202A & 352 & Bistable & 202A & 309 \\
\hline MOS/FET's (see MOS field-effect transistors) & & & Monostable & 202A & 309 \\
\hline MOS field-effect devices (see MOS field-effect transistors) & & & Music power output & 204A & 600 \\
\hline MOS field-effect transistors: & & & & & \\
\hline Application notes on & 202A & 261-377 & NAND gates, COS/MOS quad & & \\
\hline Technical data & 201A & 567-686 & 2-input & 203A & 316 \\
\hline MOS field-effect transistors, dual-gate-protected types: & & & NAND gates, (positive logic) COS/MOS (technical data) & 203A & 55 \\
\hline Breakdown mechanism & 202A & 366 & NAND R/S latch, 3-state COS/MOS & & \\
\hline Cross-modulation considerations & 202A & 375 & quad (technical data) & 203A & 214 \\
\hline Current-handling capability & 202A & 369 & Noise immunity (of COS/MOS logic gates) : & 203A & 343 \\
\hline Electrical requirements & 202A & 368 & Crosstalk noise immunity & 203A & 347 \\
\hline Gate-protection diodes & 202A & 368,371, & External noise immunity, signal-line & 203A & 344 \\
\hline & & 375 & Ground-line noise immunity & 203A & 347 \\
\hline Gate-protection methods & 202A & 367 & Power-supply noise immunity & 203A & 345 \\
\hline Input capacitance and resistance & 202A & 369 & Types of noise & 203A & 343 \\
\hline Noise factor & 202A & 369 & Noise performance (of integrated-circuit & & \\
\hline Operating conditions & 202A & 371 & rf amplifiers) & 202A & 96 \\
\hline Power gain & 202A & 369 & Noise-limited amplification & 202A & 46,49 \\
\hline
\end{tabular}

\section*{Subject Index}
\begin{tabular}{|c|c|c|}
\hline & Databook & Page \\
\hline NOR gates, COS/MOS quad 2-input & 203A & 374 \\
\hline NOR gates (positive logic), COS/MOS (technical data) & 203A & 26 \\
\hline NOR R/S latch, COS/MOS quad, 3-state (technical data) & 203A & 214 \\
\hline \multirow[t]{2}{*}{Numitron devices} & 202A & 248 \\
\hline & 203A & 442 \\
\hline Oscillator, converter-circuit & 204A & 665 \\
\hline \multicolumn{3}{|l|}{Oscillators, COS/MOS astable and monstable:} \\
\hline Astable multivibrator circuits & 203A & 353 \\
\hline Applications & 203A & 359 \\
\hline Compensation for 50-per-cent duty duty cycle & 203A & 357 \\
\hline Monostable multivibrator circuits & 203A & 356 \\
\hline Oscillator, COS/MOS crystal-controlled & 203A & 430 \\
\hline Oscillator, COS/MOS phase-locked, voltage-controlled & 203A & 359 \\
\hline Oscillator, COS/MOS voltage-controlled & 203A & 359 \\
\hline Oscillators, integrated-circuit & 202A & 73 \\
\hline Crystal-controlled & 202A & 136 \\
\hline Modulated & 202A & 136 \\
\hline Oscillator, microstripline & 205A & 440 \\
\hline On-off switching circuits & 206A & 451 \\
\hline Operational amplifier & 204A & 590 \\
\hline Operational amplifiers, high-performance, integrated-circuit & 202A & 303 \\
\hline Circuit description & 202A & 303 \\
\hline Noise figure & 202A & 304 \\
\hline Phase compensation & 202A & 305 \\
\hline Slewing rate & 202A & 305 \\
\hline Applications & 202A & 306 \\
\hline Technical data & 201A & 448 \\
\hline Operational amplifiers, high-reliability integrated-circuit types (technical data) & 201A & 525 \\
\hline \multirow[t]{2}{*}{Operational amplifiers, integrated-circuit} & 202A & 262,277, \\
\hline & & 283 \\
\hline Applications & 202A & \\
\hline Basic theory & 202A & 275 \\
\hline Bias current, input & 202A & 301 \\
\hline Characteristics and features chart & 201A & 16 \\
\hline Circuit description & 202A & 262 \\
\hline Common-mode gain & 202A & 289 \\
\hline \multirow[t]{2}{*}{Common-mode rejection} & 202A & 266,278, \\
\hline & & 301 \\
\hline DC levels, input and output & 202A & 298 \\
\hline Design criteria & 202A & 298 \\
\hline Equivalent-circuit model & 202A & 290 \\
\hline External modifications & 202A & 275 \\
\hline \multirow[t]{2}{*}{Gain-frequency response} & 202A & 265,278, \\
\hline & & 299 \\
\hline General considerations & 202A & 283 \\
\hline \multirow[t]{3}{*}{Input and output impedances} & 202A & 266,278, \\
\hline & & 285,289, \\
\hline & & 300 \\
\hline Inverting configuration & 202A & 284 \\
\hline Load impedance, effect of finite & 202A & 290 \\
\hline Noninverting configuration & 202A & 287 \\
\hline Offset voltage and current & 202A & 301 \\
\hline Operating characteristics & 202A & 262,277 \\
\hline Output-power capability & 202A & 199 \\
\hline Output-power modifications & 202A & 268 \\
\hline Output swing & 202A & 266 \\
\hline Phase compensation & 202A & 267,278, \\
\hline & & 298 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Databook & Page \\
\hline Phase shifts, feedback & 202A & 291 \\
\hline Power-supply stability & 202A & 302 \\
\hline Quick-selection chart & 201A & 14 \\
\hline Technical daxa & 201A & 457-532 \\
\hline Transfer characteristics & 202A & 266,278 \\
\hline Transfer function & 202A & 284,287 \\
\hline Operational amplifiers, integrated-circuit, application notes on & 202A & 261-334 \\
\hline Operational amplifiers, integrated-circuit, characteristics and features chart & 201A & 16 \\
\hline Operational amplifiers, integrated-circuit high-output-current (technical data) & 201A & 488 \\
\hline Operational amplifiers, integrated-circuit quick selection chart & 201A & 14 \\
\hline Operational amplifier, micropower integrated-circuit (technical data) & 201A & 479 \\
\hline Operational amplifiers, power-hybrid-circ & & \\
\hline Applications & 204A & 682 \\
\hline Circuit description & 204A & 678 \\
\hline Constant-source amplifier & 204A & 681 \\
\hline Electrical characteristics & 204A & 679 \\
\hline Power-supply considerations & 204A & 681 \\
\hline Technical data & 204A & 555 \\
\hline Use with monolithic integratedcircuits & 204A & 680 \\
\hline Operational transconductance amplifiers, integrated-circuit, high-performance: & 202A & 311 \\
\hline Amplitude modulation & 202A & 316 \\
\hline Applications & 202A & 313 \\
\hline Circuit description & 202A & 311 \\
\hline Gain control & 202A & 316 \\
\hline Multiplexing & 202A & 313 \\
\hline Technical data & 201 A & 458,466 \\
\hline Output amplifiers, integrated-circuit & 202A & 58 \\
\hline Output stage, converter-circuit & 204.A & 666 \\
\hline Output stages, integrated-circuit & 202A & 322 \\
\hline Overlay transistors (see rf power transisto & & \\
\hline Pass elements, external & 204A & 689 \\
\hline Peak-envelope-power rating & 205A & 460 \\
\hline Phase comparator, COS/MOS & 203A & 327 \\
\hline Phase-locked loop, fundamentals of & 203A & 319 \\
\hline Phase-locked loops, practical digital types & 203A & 320 \\
\hline Phase-shift transformer, discriminator & 202A & 18 \\
\hline Photo-coupled isolators & 206A & 470 \\
\hline Photo detector and power amplifier (technical data) & 201A & 401 \\
\hline Photo-detector and power amplifier, integrated-circuit & 202A & 255 \\
\hline Circuit description & 202A & 255 \\
\hline Technical data & 201A & 401 \\
\hline Typical applications & 202A & 258 \\
\hline Pinlite & 203A & 413 \\
\hline Lumped-constant & 205A & 440 \\
\hline Microstripline & 205A & 440 \\
\hline Wideband & 205A & 440 \\
\hline Power output, noise & 204A & 595,600 \\
\hline \multicolumn{3}{|l|}{Power hybrid circuits:} \\
\hline Application notes on & 204A & 669-694 \\
\hline Technical data & 204A & 549-570 \\
\hline Power hybrid operational amplifier & 204A & 678 \\
\hline \multicolumn{3}{|l|}{Power-hybrid-circuit series voltage regulators:} \\
\hline Basic structure & 204A & 686 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Circuit description & 204A & 684 & Power amplifiers, broadband, uhf/microwave & 205A & 449 \\
\hline Operating considerations & 204A & 689 & Amplitude modulation & 205A & 451 \\
\hline Power dissipation & 204A & 688 & Cascade and parallel connections & 205A & 456 \\
\hline Power supplies, auxiliary & 206A & 459 & Circuit impedances & 205A & 453 \\
\hline Power supplies, compact, high-current & & & Circuit performance & 205A & 456 \\
\hline 5-volt, regulated & & & Evaluation circuit & 205A & 449 \\
\hline Basic design concept & 204A & 623 & Gain and VSWR control & 205A & 450 \\
\hline Design example & 204A & 629 & Hybrid combiners & 205A & 451 \\
\hline Major elements & 204A & 623 & Input-circuit design & 205A & 453 \\
\hline Power supply, bridge-rectifier & 204A & 652 & Output-circuit design & 205A & 451 \\
\hline Power supply considerations for COS/MOS & & & Package design & 205A & 449 \\
\hline devices: & & & Practical circuits & 205A & 456 \\
\hline AC dissipation characteristics & 203A & 367 & Reduction of VSWR & 205A & 449 \\
\hline AC performance characteristics & 203A & 369 & Power amplifier, hybrid-circuit multipurpose, & & \\
\hline Filtering requirements & 203A & 371 & 7-ampere (technical data) & 204A & 550 \\
\hline High dc source & 203A & 372 & Power amplifiers, integrated-circuit & & \\
\hline Quiescent dissipation & 203A & 367 & multipurpose wideband & 202A & 187 \\
\hline Regulation requirements & 203A & 371 & Applications & 202A & 190 \\
\hline System power calculation of & 203A & 370 & Circuit description & 202A & 187 \\
\hline Switching characteristics & 203A & 370 & Operating characteristics & 202A & 190 \\
\hline Power-supply consideration for integrated- & & & Operation & 202A & 187 \\
\hline circuit FM sound section subsystems: & & & Technical data & 201A & 270 \\
\hline Dissipation derating curve & 202A & 30 & Power amplifiers, linear, hybrid circuit & & \\
\hline General considerations & 202A & 28 & types: & & \\
\hline Series dropping resistor, & & & AC operation & 204A & 672 \\
\hline calculation of & 202A & 30 & Assembly & 204A & 677 \\
\hline Voltage-current curves & 202A & 31 & Audio-amplifier applications & 204A & 670 \\
\hline Power supply, regulated 60-watt & & & Basic structure & 204A & 669 \\
\hline 20-volt & 204A & 631 & Circuit description & 204A & 669,673 \\
\hline Circuit description & 204A & 631 & Frequency and efficiency & 204A & 672 \\
\hline Construction & 204A & 638 & Heat removal & 204A & 676 \\
\hline Design considerations & 204A & 635 & Power dissipation & 204A & 673 \\
\hline Foldback current limiting & 204A & 633 & Protection circuit & 204A & 675 \\
\hline Performance & 204A & 637 & Reactive Loads & 204A & 672 \\
\hline Voltage regulation & 204A & 631 & Power control & 206A & 443 \\
\hline Power supply, with hybrid-circuit regulator & 204A & 692 & Power control, proportional & 206A & 492 \\
\hline Power-transistor chips (technical data) & 204A & 544-547 & Power controls, triac, for three-phase systems & 206A & 467 \\
\hline Power transistors and power hybrid circuits & 204A & 1 & Basic design rules & 206A & 467 \\
\hline Power transistors, selection charts & 204A & 10-19 & Circuits & 206A & 471,473 \\
\hline Power transistors (technical data): & & & DC logic circuitry isolation of & 206A & 469 \\
\hline Audio types, special & 204A & 509,542 & Inductive-load systems & 206A & 471 \\
\hline Epitaxial-base \(n-p-n\) and \(p-n-p\) types & 204A & 137-220 & Resistive-load systems & 206A & 469 \\
\hline High-speed switching n-p-n types & 204A & 319-426 & Trigger circuit & 206A & 467 \\
\hline High-voltage n-p-n types & 204A & 221-318 & Power dissipation, ideal (for class B & & \\
\hline Hometaxial-base n-p-n types & 204A & 19-136 & amplifier) & 204A & 597 \\
\hline Monolithic n-p-n Darlington types & 204A & 449-470 & Power-frequency curves for rf power & & \\
\hline Other p-n-p types & 204A & 427-448 & transistors & 205A & 8-10 \\
\hline Power transistors, thermal-cycling ratings & & & Power-line noise & 203A & 343 \\
\hline for & 204A & 649,657 & Power one-shot control & 202A & 232 \\
\hline Power transistors, thermal-cycling requirements & 204A & 650,658 & Power oscillators, microwave: & 206A & 485 \\
\hline Power transistor, vhf/uhf, broadband power-amplifier applications of & 205A & 473 & Design of
Preamplifier, demodulator, integrated- & 205A & 439 \\
\hline Pix-if system, integrated-circuit & 202A & 46 & circuit & 202A & 62 \\
\hline Planar transistor, rf power (technical data) & 205A & 39 & Prescaler, COS/MOS & 203A & 420 \\
\hline Plastic-package transistor and thyristors & 204A & 615 & Prescaling & 203A & 420 \\
\hline Lead-forming techniques & 204A & 617 & Preset-channel memory COS/MOS & 203A & 432 \\
\hline Mounting & 204A & 619 & Product detector, integrated-circuit & 202A & 111,148 \\
\hline Thermal-resistance considerations & 204A & 619 & Program-switch ("N'-select) options & 203A & 366 \\
\hline Types of packages & 204A & 607 & Proportional power control & 206A & 492 \\
\hline Plastic-package transistors and thyristors, & & & Protection circuit COS/MOS gate-oxide & 203A & 351 \\
\hline types of & 206A & 477 & Pull-up resistor & 203A & 392 \\
\hline Plug-in type high-voltage rectifiers & & & Pulse applications, high-current & 206A & 363 \\
\hline (technical data) & 206A & 350 & Pulse-width circuit, COS/MOS voltage- & & \\
\hline P-N-P power transistors, selection chart & 204A & 16 & controlled & 203A & 359 \\
\hline Popcorn noise & 202A & 327 & Push-pull irverter & 204A & 605 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Quadruple-tuned initerstage filter & 202A & 25 & Characteristics & 202A & 88 \\
\hline \multirow[t]{4}{*}{Quiescent dissipation (of COS/MOS devices)} & \multirow[t]{4}{*}{203A} & \multirow[t]{4}{*}{367} & Circuits & 202A & 78,80, \\
\hline & & & & & 107 \\
\hline & & & Circuit description & 202A & 88,151 \\
\hline & & & Differential-amplifier type & 202A & 154 \\
\hline Radio frequency interference (RFI) & 206A & 393 & Operating modes & 202A & 88,152 \\
\hline Suppression network & 206A & 447 & Supply-voltage connections & 202A & 89 \\
\hline \multirow[t]{2}{*}{Suppression of} & \multirow[t]{2}{*}{206A} & 401,446, & Technical data & 201A & 318,324 \\
\hline & & 453 & \multirow[t]{2}{*}{RF amplifier, MOS-transistor} & \multirow[t]{2}{*}{202A} & 354,356, \\
\hline Radiation effects (on COS/MOS devices) & 203A & 403,404 & & & 360,362 \\
\hline Radiation, electron & 203A & 405 & RFI (see radio frequency interference) & & \\
\hline Radiation hardening, methods of & 203A & 415 & RF operation & 205A & 470 \\
\hline Radiation-induced failure, types of & 203A & 413 & \multirow[t]{2}{*}{RF power amplifiers} & \multirow[t]{2}{*}{205A} & \multirow[t]{2}{*}{427,442
456,457} \\
\hline Radiation, long-term effects of & 203A & 409 & & & \\
\hline Radiation resistance & 203A & 404 & RF power devices & 205A & 1 \\
\hline Radiation tests & \multirow[t]{2}{*}{203A} & 408,417 & Application notes for & 205A & 411-509 \\
\hline \multirow[t]{2}{*}{RAM, COS/MOS, binary, 4-word, 8-bit (technical data)} & & & Power-frequency curves & 205A & 8-10 \\
\hline & 203A & 181 & Selection charts & 205A & 11-16 \\
\hline \multirow[t]{2}{*}{Ramp generator} & 202A & 228 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{RF power transistors, power-frequency 205A 17-410}} \\
\hline & 206A & 481 & & & \\
\hline Raster correction circuit & 206A & 458 & curves & 205A & 8-10 \\
\hline Rating chart, thermal-cycling & 204A & 649,657 & \multicolumn{3}{|l|}{RF power transistors, selection charts for:} \\
\hline Rating curves, rectifier & 206A & 389 & Aircraft and marine-radio applications & 205A & 14 \\
\hline RCB color system & 202A & 65 & Microwave applications & 205A & 11 \\
\hline Reactor element, switching-regulator & 204A & 611 & Military applications & \multirow[t]{2}{*}{205A} & \multirow[t]{2}{*}{12} \\
\hline Read-only-memory, COS/MOS (technical data) & 203A & 181 & Military communications and CATV/MATV and small-signal applications & & \\
\hline Readouts, incandescent & \multirow[t]{2}{*}{203A} & \multirow[t]{2}{*}{442} & and small-signal applications & 205A & 16 \\
\hline Receiver circuits, integrated & & & Mobile-radio applications & 205A & 13 \\
\hline Quick selection chart & 201A & 8 & Single-sideband applications & 205A & 15 \\
\hline Technical data & \multirow[t]{2}{*}{201A} & \multirow[t]{2}{*}{27-160} & RF power transistors in linear applications & 205A & 459 \\
\hline Receiver subsystem, AM, integrated- & & & RF power transistors, pulsed operation of & 205A & 425 \\
\hline circuit (technical data) & 201A & 42 & RF power transistors, safe-area curves for & 205A & 425 \\
\hline Receiver synthesizer, COS/MOS FM & 203A & 422 & \multicolumn{3}{|l|}{RF power transistor, for single-sideband} \\
\hline Receiver turn-on transient & 206A & 461 & linear amplifier & 205A & 459 \\
\hline Recovered audio & 202A & 18 & Ringing-choke converter & 204A & 605 \\
\hline Rectifier current, calculation of & 206A & 386 & Ring modulator, integrated-circuit & 202A & 85 \\
\hline Rectifier product matrix & 206A & 17 & Ripple blanking & 202A & 247 \\
\hline Rectifier rating curves & 206A & 389 & \multicolumn{3}{|l|}{R/S latches, COS/MOS quad 3-state} \\
\hline Rectifiers controlled-avalanche types (technical data) & 206A & 311 & (technical data) & 203A & 214 \\
\hline Rectifiers, fast-recovery & 206A & 333 & & & \\
\hline Rectifiers, high-voltage (technical data) & 206A & 337-351 & Sample-and-hold circuits & 202A & 314 \\
\hline Rectifiers, silicon & & & Sample-hold applications of COS/MOS & & \\
\hline Product matrix & 206A & 17 & bilateral switch & 203A & 388 \\
\hline Technical data & 206A & 257-351 & Scaling adders & 202A & 263 \\
\hline Rectifiers, stud-mounted types & & & Scan regulation & 206A & 405 \\
\hline (technical data) & 206A & 315-332 & Schmitt circuit & 202A & 259 \\
\hline Rectifier surge-protection resistance, & & & Schmitt trigger & 202A & 170 \\
\hline calculation of & 206A & 385 & Schmitt trigger & 202A & 148 \\
\hline Reed-relay thyristor gate control & 206A & 453 & Schmitt trigger & 202A & 139 \\
\hline Registers, COS/MOS MSI, design and application & 203A & 327 & SCR's and rectifiers, horizontaldeflection (technical data) & 206A & 290,304 \\
\hline Remote sensing & 204A & 690 & SCR applications, circuit factor charts & 206A & 379 \\
\hline Remote-sensing circuit & 204A & 692 & SCR bridge circuits & 206A & 442 \\
\hline Resistance ladder networks & 203A & 297 & SCR circuit, full-wave dc & 206A & 381 \\
\hline Resistance networks for DAC's & 203A & 297 & SCR circuit, half-wave & 206A & 379 \\
\hline Resistance, rectifier surge-protection & & & SCR control circuit, full-wave & 206A & 442 \\
\hline calculation of & 206A & 385 & SCR control circuit, half-wave & 206A & 442 \\
\hline Resistor, pull-up & 203A & 392 & SCR horizontal deflection system & 206A & 404 \\
\hline Reversawatt transistors, epitaxial base & & & Advantages of & 206A & 413 \\
\hline siticon n-p-n and p-n-p (technical data) & 204A & 205-220 & Arc protection & 206A & 412 \\
\hline Reversing motor control & 206A & 395 & Basic operation & 206A & 406 \\
\hline RF amplifiers, integrated circuit & 202A & 88,150 & High-voltage generation & 206A & 410 \\
\hline Applications & 202A & 93,155 & High-voltage regulation & 206A & 411 \\
\hline Cascode type & 202A & 155 & Linearity correction & 206A & 412 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Performance requirements & 206A & 404 & Silicon rectifiers, fast-recovery & & \\
\hline Switching-device requirements & 206A & 405 & (technical data) & 206A & 236 \\
\hline SCR product matrix & 206A & 11 & Silicon rectifiers, fast-recovery & & \\
\hline SCR's (technical data) & 206A & 149-256 & (technical data) & 206A & 333 \\
\hline SCR turn-on time & 206A & 363 & Silicon rectifiers, capacitive-load & & \\
\hline SCR, two-transistor analogy of & 206A & 434 & applications of & 206A & 384 \\
\hline SCR, two-transistor model of & 206A & 463 & Capacitor-input circuits & 206A & 384 \\
\hline Second breakdown, forward-bias & 204A & 643 & Limiting resistance & 206A & 385 \\
\hline Causes of & 204A & 643 & Rating curves & 206A & 389 \\
\hline Test facility for & 204A & 644 & Rectifier current & 206A & 386 \\
\hline Test circuits & 204A & 644 & Silicon transistors for high-voltage & & \\
\hline Transistor characterization for & 204A & 644 & application & 204A & 581 \\
\hline Second detector & 202A & 79 & Silicon transistors, high-current, n-p-n, & & \\
\hline Selectivity curve: & & & hometaxial II (technical data) & 204A & 60 \\
\hline Double-tuned filter & 202A & 23 & Silicon transistors, high-voltage, & & \\
\hline Quadruple-tuned filter & 202A & 24 & n-p-n, hometaxial II (technical data) & 204A & 44 \\
\hline Six double-tuned filters & 202A & 27 & Silicon transistors, medium-power & 204A & 20,36 \\
\hline Triple-tuned filter & 202A & 24 & Silicon triacs (technical data) & 206A & 21-148 \\
\hline Sensitive-gate silicon controlled & & & Single-sideband communications systems & 205A & 459 \\
\hline rectifiers (technical data) & 206A & 150 & Single-sideband rf power transistor & & \\
\hline Sensitive-gate triacs (technical data) & 206A & 27-40 & (technical data) & 205A & 98,371 \\
\hline Sensor isolation & 206A & 484 & Slewing rate & 202A & 305 \\
\hline Sensor, low impedance & 206A & 496 & Snubber networks & 206A & 462 \\
\hline Serial adder, COS/MOS triple & & & Basic circuit analysis & 206A & 464 \\
\hline (technical data) & 203A & 159 & Design procedure & 206A & 465 \\
\hline Serial adder, COS/MOS triple & & & Solid-state ballasting circuits & 204A & 604 \\
\hline (technical data) & 203A & 164 & Solid-state traffic flasher & 206A & 486 \\
\hline Series dropping resistor & 202A & 30 & Sound carrier amplification & 202A & 46 \\
\hline Series resistance, class B-amplifier & 204A & 597,600 & Special-function sub-system, integrated- & & \\
\hline Series voltage regulators, hybrid & 204A & 684 & circuit (technical data) & 201A & 57,78 \\
\hline Servo amplifier & 202A & 184 & Speed controls, universal motors & 206A & 396 \\
\hline Shift register, COS/MOS dual 4-stage & & & Spurious noise sources & 202A & 333 \\
\hline static (technical data) & 203A & 73 & Spurious noise, suppression of & 202A & 333 \\
\hline Shift register, static, COS/MOS & & & Squelch control, COS/MOS & 203A & 391 \\
\hline MSI (technical data) & 203A & 164 & Stability, conditions for & 202A & 70 \\
\hline Shift register, COS/MOS, parallel-in, parallel-out, 4 -stage (technical data) & 203A & 208 & Staircase generator, linear & 202A & 308 \\
\hline Shift register, COS/MOS 4-stage serial-input/parallel-output, static & 203A & 338 & Static shift register, COS/MOS MSI, 8 -stage (technical data) & 203A & 164 \\
\hline Shift register, COS/MOS 8-stage, asynchronous, parallel-input/serial & & & Static shift register, COS/MOS, 64 -stage (technical data) & 203A & 152 \\
\hline output static & 203A & 341 & Stereo multiplex decoder, integrated- & & \\
\hline Shift register, COS/MOS 8-stage static (technical data) & 203A & 68,104 & circuit (technical data)
Stereo preamplifier, integrated- & 201A & 36 \\
\hline Shift register, COS/MOS, 18-stage static (technical data) & 203A & 338 & \begin{tabular}{l}
circuit (technical data) \\
Stripline-package microwave power
\end{tabular} & 201A & 28,250 \\
\hline Shift register, COS/MOS 18-stage (technical data) & 203A & 31 & transistors (technical data) & 205A & \[
\begin{array}{r}
332,338 \\
344
\end{array}
\] \\
\hline Shift register, static COS/MOS 64-stage & & & Stripline power amplifier & 205A & 438 \\
\hline (technical data) & 203A & 152,159 & Stud-mounted rectifiers (technical data) & 206A & 315-332 \\
\hline Silicon bidirectional diacs (technical data) & 206A & 353-355 & Surge-protection resistance (rectifier), calculation of & 206A & 385 \\
\hline Silicon controlled rectifiers and silicon & & & Switch controller, transient-free & 202A & 234 \\
\hline rectifier complement (technical data) & 206A & 290,304 & & 206A & 487 \\
\hline Silicon controlled rectifiers, high- & & & Switching capability (SCR) & 206A & 364 \\
\hline current pulsed applications of & 206A & 363 & Switching characteristics (of thyristors) & 206A & 438 \\
\hline Characteristics and ratings & 206A & 365 & Switching circuits, on-off & 206A & 451 \\
\hline Circuits & 206A & 363 & Switch, COS/MOS & 203A & 299 \\
\hline Design considerations for & 206A & 363 & Switching regulator & 204A & 583,605 \\
\hline Switching capability & 206A & 364 & Switching-regulator ballasts & 204A & 586,608 \\
\hline Turn-on time & 206A & 363 & Switching-regulator circuit components & 204A & 612 \\
\hline Silicon controlled rectifiers, product & & & Switching-regulator reactor element & 204A & 611 \\
\hline matrix & 206A & 11 & Switching-regulator transistor & 204A & 612 \\
\hline Silicon controlled rectifiers & & & Switching SCR's and diodes & 206A & 405 \\
\hline (technical data) & 206A & 149-256 & Switching transistor, silicon n-p-n & & \\
\hline Silicon rectifiers (technical data) & 206A & 257-351 & (technical data) & 204A & 415 \\
\hline
\end{tabular}

\section*{Subject Index}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Switching transistor, rf power, & & & Regulator section & 206A & 458 \\
\hline planar (technical data) & 205A & 39 & Transient conditions & 206A & 460 \\
\hline Switches, zero-voltage, integrated-circuit & 202A & 224 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Thyristor horizontal deflection system for monochrome TV receivers:}} \\
\hline Symmetrical limiting, load impedance for & 202A & 22 & & & \\
\hline Synchronous light flasher & 206A & 496 & Auxiliary power supplies & 206A & 473 \\
\hline Synchronous switching, zero-voltage & 206A & 469 & Circuit description & 206A & 473 \\
\hline Synthesizer system, FM & 203A & 431 & Design considerations & 206A & 473 \\
\hline System gain & 202A & 39 & Thyristor power control & 206A & 453 \\
\hline & & & Thyristors, characteristics and applications & 206A & 434 \\
\hline & & & Thyristors, gated, bidirectional (technical data) & 206A & 105 \\
\hline Tapers, -volume-control & 202A & 40 & Thyristors, rectifiers, and other diodes & 206A & 1 \\
\hline Temperature controllers & 202A & 227 & Thyristors, types of & 206A & 434 \\
\hline Electric-heat application & 202A & 229 & Thyristor switching characteristics & 206A & 438 \\
\hline Transfer characteristics & 202A & 228 & Thyristor voltage and temperature ratings & 206A & 435 \\
\hline Integral-cycle & 202A & 230 & Thyristor voltage regulators, ac & 206A & 420 \\
\hline On-off & 202A & 227 & \multirow[t]{2}{*}{Timer, COS/MOS, battery-operated, digital-display} & & \\
\hline Temperature controllers & 206A & 490 & & 203A & 434 \\
\hline Integral-cycle type & 206A & 493 & Tint-control amplifier, integrated-circuit & 202A & 62 \\
\hline On-off type & 206A & 490 & Traffic flasher, solid-state & 202A & 233 \\
\hline Proportional type & 206A & 491 & & 206A & 486 \\
\hline Temperature-sensing diode & 205A & 291 & \multicolumn{3}{|l|}{Traffic-signal lamp control, traic:} \\
\hline Television video if system, integrated- & & & Circuits & 206A & 450 \\
\hline circuit (technical data) & 201A & 117 & Surge current effects & 206A & 448 \\
\hline Television chroma system integratedcircuit (technical data) & 201A & 125,143 & Triac operation Transfer characteristic, differential & 206A & 448 \\
\hline Thermal considerations in thyristor & & & amplifier & 202A & 22 \\
\hline mounting & 206A & 414 & Transformers, transmission-line & 205A & 463 \\
\hline Chassis mounted heat sinks & 206A & 417 & Transient-free switch controller & 206A & 448 \\
\hline Heat sink configurations & 206A & 416 & Transient radiation tests & 203A & 417 \\
\hline Heat-sink mounting & 206A & 416 & Transistor amplifiers, class B & 204A & 594 \\
\hline Power dissipation and heat-sink area & 206A & 414 & Economics & 204A & 594 \\
\hline Thermal-cycling rating system & 204A & 649,657 & Fidelity & 204A & 596 \\
\hline Rating chart & 204A & 449,657 & Ideal power dissipation & 204A & 597 \\
\hline Test program & 204A & 657 & Music power output & 204A & 600 \\
\hline Thermal-fatigue background & 204A & 657 & & & \\
\hline Thermal fatigue, power-transistor, & & & Power output and dissipation & 204A & 595 \\
\hline analysis of & 204A & 649 & Power-supply regulation & 204A & 594 \\
\hline Thermal resistance, hot-spot & 205A & 470,473 & Series resistance & 204A & 596 \\
\hline Three-phase heater control & 206A & 469 & \multicolumn{3}{|l|}{Transistor array, integrated-circuit: 77} \\
\hline Three-phase motor control & 206A & 472 & Circuit applications & 202A & 77 \\
\hline Three-phase system, triac power control & & & Circuit description & 202A & 76 \\
\hline for: & & & Operating characteristics & 202A & 77 \\
\hline Basic design rules & 206A & 467 & Technical data & 201A & 204 \\
\hline Circuits & 206A & 473 & \multicolumn{3}{|l|}{Transistor array, integrated-circuit highcurrent, n-p-n, display-driver} \\
\hline Inductive-load systems & 206A & 471 & current, n-p-n, display-driver applications of & 203A & 438 \\
\hline Isolation of dc logic circuitry & 206A & 470 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Transistor arrays, integrated-circuit,}} \\
\hline Resistive-load systems & 206A & 470 & & & 10 \\
\hline Trigger circuit & 206A & 467 & \multicolumn{3}{|l|}{Transistor arrays, integrated-circuit} \\
\hline Threshold voltage, COS/MOS, effect of electron radiation on & 203A & 405 & (technical data) & 201 A & 161-256 \\
\hline Thyristor applications, circuit factors charts & 206A & 379 & Transistor power supplies, compact, 5-volt
Basic concept & 204A & 623
623 \\
\hline Thyristor circuits, snabber networks for & 206A & 462 & Circuit elements & 204A & 623 \\
\hline Thyristor flasher & 206A & 452 & Design example & 204A & 628 \\
\hline Thyristor gate characteristics & 206A & 436 & \multicolumn{3}{|l|}{Transistors, high-voltage, medium-power} \\
\hline Thyristor horizontal deflection system for color TV receivers: & & & silicon n-p-n (technical data) Transistors, high-voltage, high-power, & 204A & 268 \\
\hline Auxiliary power supplies & 206A & 459 & Transistors, high-voltage, high-power, silicon n-p-n (technical data) & 204A & 260, \\
\hline Circuit descriptions & 206A & 456 & & & 284-313 \\
\hline Commutation and energy-transfer circuit & 206A & 456 & Transistor, rf power single-sideband (technical data) & 205A & 98,371 \\
\hline General design considerations & 206A & 455 & \multicolumn{3}{|l|}{Transistors, high-power, silicon n-p-n} \\
\hline High-voltage section & 206A & 458 & types (technical data) & 204A & 28 \\
\hline Linearity circuit & 206A & 459 & \multicolumn{3}{|l|}{Transistors, hometaxial-base, molded-} \\
\hline Raster correction circuit & 206A & 458 & silicon-plastic (technical data) & 204A & 68 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Transistors, medium-power, silicon n-p-n types (technical data) & 204A & 20,36 & Versawatt transistors, high-current, silicon n-p-n (technical data) & 204A & 111 \\
\hline Transistor structure, intrinsic & 205A & 427 & Versawatt transistors, hometaxial-base & & \\
\hline Transistors, versawatt, silicon n-p-n (technical data) & 204A & \[
\begin{gathered}
76,111 \\
145,161
\end{gathered}
\] & silicon n-p-n (technical data)
Versawatt transistors, silicon p-n-p, & 204A & 76 \\
\hline Transistor-zener diode-diode array (technical data) & 201A & 196 & (technical data)
VHF mixer MOS-transistor & 204A & 145
344 \\
\hline Transmission of analog and digital signals & 203A & 319 & Design considerations & 202A & 344 \\
\hline Transmission-line reflections & 203A & 343 & Design example & 202A & 345 \\
\hline Transmission-line transformers & 205A & 463 & Maximum available gain & 202A & 346 \\
\hline Triac applications, circuit factors charts & 206A & 379 & Maximum usable gain & 202A & 346 \\
\hline Triac circuit, full-wave: & & & Video amplifier, integrated-circuit & 202A & 153 \\
\hline AC & 206A & 380 & Applications & 202A & 158 \\
\hline DC & 206A & 381 & Biasing & 202A & 153 \\
\hline Triac controls for three-phase, power & 206A & 467 & Characteristics & 202A & 155 \\
\hline Triac gate characteristics & 206A & 390 & Common-mode rejection & 202A & 157 \\
\hline Triac product matrix & 206A & 13 & Gain control & 202A & 157 \\
\hline Triacs for use with IC zero-voltage switch & 206A & 141 & Harmonic distortion & 202A & 158 \\
\hline Triacs, isolated-tab (technical data) & 206A & 143 & Input and output impedance & 202A & 156 \\
\hline Triacs with integral diac (technical data) & 206A & 48 & Swing capability & 202A & 158 \\
\hline Traics, \(400-\mathrm{Hz}\) types (technical data) & 206A & 67,119 & Video amplifiers, integrated-circuit & 202A & 77. \\
\hline Triacs (technical data) & 206A & 21-148 & & & 182,268 \\
\hline Triac voltage-current characteristic & 206A & 390 & Video and wide-band amplifier, & & \\
\hline Trigger circuits, crowbar & 204A & 685 & integrated-circuit (technical data) & 201A & 278, \\
\hline Tri-level comparator, COS/MOS & 203A & 409 & & & 284,304 \\
\hline Triple-tuned interstage filter & 202A & 23 & Video detection, linear & 202A & 46 \\
\hline True/complement buffer, COS/MOS quad & & & Video detector, integrated-circuit & 202A & 49 \\
\hline (technical data) & 203A & 199 & Video if amplification & 202A & 46 \\
\hline Tuned amplifier, integrated circuit & 202A & 138 & Voitage-controlled oscillators & 203A & 359 \\
\hline Turn-on time definitions (SCR) & 206A & 363 & Voltage-current curves & 202A & 31 \\
\hline TV circuits & 206A & 41 & Voltage-follower amplifier, COS/MOS & 203A & 299 \\
\hline TV receiver & 202A & 46 & Voltage follower, integrated-circuit & 202A & 281 \\
\hline Two-transistor analogy (of SCR) & 206A & 434 & Voltage regulation & 204A & 633,692 \\
\hline & & & Voltage-regulator modules & 204A & 690 \\
\hline & & & Voltage regulators, ac & 206A & 420 \\
\hline & & & Voltage regulators, integrated-circuit (technical data) & 201A & 409 \\
\hline UHF amplifier, single-ended & 205A & 477 & Voltage regulators, power-hybrid circuit: & & \\
\hline UHF power generation & 205A & 422 & Assembly and handling & 204A & 692 \\
\hline Package considerations & 205A & 422 & Basic structure & 204A & 686 \\
\hline Pulsed operation of rf power trans. & 205A & 425 & Circuit description & 204A & 684 \\
\hline Reliability considerations & 105A & 424 & & 204A & 687 \\
\hline RF performance criteria & 205A & 422 & Foldback circuit, analysis of & 204A & 687 \\
\hline Safe-area curves for rf power trans. & 205A & 425 & Operating considerations & 204A & 689 \\
\hline UHF power transistors, broadband & & & Power dissipation & 204A & 688 \\
\hline applications of & 205A & 473 & Voltage regulator, series type & 204A & 581 \\
\hline Broadband amplifier chain & 205A & 481 & Volume-control circuit, conventional & 202A & 38 \\
\hline Broadband circuit design approach & 205A & 475 & Volume-control circuit, feedback type & 202A & 38 \\
\hline Combined-transistor stage & 205A & 481 & Volume-control circuit, losser type & 202A & 38 \\
\hline Gain equalizer & 205A & 479 & Volume controls, types of & 202A & 38 \\
\hline Single-ended amplifier & 205A & 477 & Volume-control tapers & 202A & 40 \\
\hline UHF power transistors, characteristics of & 205A & 473 & & & \\
\hline Hot-spot thermal resistance & 205A & 473 & & & \\
\hline Overdrive capability & 205A & 473 & Wideband multipurpose amplifier, & & \\
\hline Pulsed operation & 205A & 473 & integrated-circuit & 202A & 173 \\
\hline Ultor voltage & 206A & 404 & Applications & 202A & 182 \\
\hline Universal motors & 206A & 368 & Circuit description & 202A & 174 \\
\hline \multirow[t]{4}{*}{Universal motor speed controls} & \multirow[t]{4}{*}{206A} & \multirow[t]{4}{*}{396} & Gain-frequency response & 202A & 176 \\
\hline & & & Limiting & 202A & 176,181 \\
\hline & & & Noise performance & 202A & 181 \\
\hline & & & Operating characteristics & 202A & 175 \\
\hline Variable-feedback volume-control circuits, & 202A & 38 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Wideband multipurpose power amplifiers, integrated circuit:}} \\
\hline VCO, phase-locked & 203A & 359 & & & \\
\hline Versawatt transistors, epitaxial-base, & & & Applications & 202A & 190 \\
\hline silicon n-p-n (technical data) & 204A & 161 & Circuit description and operation & 202A & 187 \\
\hline
\end{tabular}

\section*{Subject Index}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Databook & Page & & Databook & Page \\
\hline Operating characteristics & 202A & 190 & Inductive-load switching & 202A & 240 \\
\hline Technical data & 201A & 270 & Load characteristics & 202A & 226 \\
\hline Wideband video and if amplifier, & & & Proportional control & 202A & 239 \\
\hline integrated-circuit: & & & Sensing amplifier & 202A & 238 \\
\hline Bias modes & 202A & 197 & Sensor isolation & 202A & 231 \\
\hline Characteristics & 202A & 198 & Supplementary characteristics data & 202A & 240 \\
\hline Circuit & 202A & 201 & Temperature-controller application & 202A & 227 \\
\hline Circuit description & 202A & 195 & Technical data & 201A & 380 \\
\hline Construction techniques & 202A & 203 & Zero-voltage switches, integrated- & & \\
\hline Ratings & 202A & 198 & circuit, & 206A & 477,489 \\
\hline Stability considerations & 202A & 202 & Characteristics data & 206A & 493 \\
\hline Technical data & 201A & 284 & Circuit operation & 206A & 477,489 \\
\hline & & & Effect of thyristor load & 206A & 478 \\
\hline & & & Fail-safe feature & 206A & 478,493 \\
\hline & & & Half-cycling effect & 206A & 478 \\
\hline \(Y\) parameters & 202A & 93 & Hysteresis characteristics & 206A & 478,492 \\
\hline & & & Inductive-load switching & 206A & 493 \\
\hline & & & On-off sensing amplifier & 206A & 491 \\
\hline & & & Proportional control & 206A & 492 \\
\hline Zero-voltage switches integrated-circuit & 202A & 224,236 & Applications & 206A & 479,493 \\
\hline Applications & 202A & 240 & Zero-voltage switching & 206A & 450 \\
\hline Circuit operation & 202 & 224,270 & Zero-voltage switches, integrated & & \\
\hline Fail-safe feature & 202A & 226,240 & circuit (technical data) & 201A & 380 \\
\hline Half-cycling effect & 202A & 226 & Zero-voltage switch, integrated-circuit & 206A & 467 \\
\hline Hysteresis characteristics & 202A & 226,239 & Zero-voltage synchronous switching & 206A & 469 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File & DATA: BOOK Vol. No. & Page & Type No. & Product Line & Catalog & File
No. & DATABOOK Vol. No. & Page \\
\hline 1 N 248 C & RECT & THC-500B & 6 & SSD-206A & 326 & 1N5391 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1N249C & RECT & THC-500B & 6 & SSD-206A & 326 & 1 N 5392 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1 N 250 C & RECT & THC-500B & 6 & SSD-206A & 326 & 1N5393 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1 N 440 B & RECT & THC-500B & 5 & SSD-206A & 262 & 1N5394 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1N441B & RECT & THC-500B & 5 & SSD-206A & 262 & 1N5395 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1 N 442 B & RECT & THC-500B & 5 & SSD-206A & 262 & 1N5396 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1 N 443 B & RECT & THC-500B & 5 & SSD-206A & 262 & 1N5397 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1 N 444 B & RECT & THC-500B & 5 & SSD-206A & 262 & 1N5398 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1 N 445 B & RECT & THC-500B & 5 & SSD-206A & 262 & 1N5399 & RECT & THC-500B & 478 & SSD-206A & 300 \\
\hline 1N536 & RECT & THC-500 & 3 & SSD-206A & 265 & 2N176 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1 N537 & RECT & THC-500B & 3 & SSD-206A & 265 & 2N217 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N538 & RECT & THC-500B & 3 & SSD-206A & 265 & 2N274 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N539 & RECT & THC-500B & 3 & SSD-206A & 265 & 2N301 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N540 & RECT & THC-500B & 3 & SSD-206A & 265 & 2N301A & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N547 & RECT & THC-500B & 3 & SSD-206A & 265 & 2N351 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1095 & RECT & THC-500B & 3 & SSD-206A & 265 & 2N376 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1183A & RECT & THC-500B & 38 & SSD-206A & 332 & 2N404 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1184A & RECT & THC-500B & 38 & SSD-206A & 332 & 2N414 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1186A & RECT & THC-500B & 38 & SSD-206A & 332 & 2N681 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1187A & RECT & THC-500B & 38 & SSD-206A & 332 & 2N682 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1188A & RECT & THC-500B & 38 & SSD-206A & 332 & 2N683 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1189A & RECT & THC-500B & 38 & SSD-206A & 332 & 2N684 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1190A & RECT & THC-500B & 38 & SSD-206A & 332 & 2N685 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1195A & RECT & THC-500B & 6 & SSD-206A & 326 & 2N686 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1196A & RECT & THC-500B & 6 & SSD-206A & 326 & 2N687 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1197A & RECT & THC-500B & 6 & SSD-206A & 326 & 2N688 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1198A & RECT & THC-500B & 6 & SSD-206A & 326 & 2N689 & SCR & THC-5008 & 96 & SSD-206A & 233 \\
\hline 1N1199A & RECT & THC-500B & 20 & SSD-206A & 320 & 2N690 & SCR & THC-500B & 96 & SSD-206A & 233 \\
\hline 1N1200A & RECT & THC-500B & 20 & SSD-206A & 320 & 2N697 & PWR & PTD-187D & 16 & SSD-204A & 472 \\
\hline 1N1202A & RECT & THC-500B & 20 & SSD-206A & 320 & 2N699 & PWR & PTD-187D & 22 & SSD-204A & 320 \\
\hline 1N1203A & RECT & THC-500B & 20 & SSD-206A & 320 & 2N718A & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1204A & RECT & THC-500B & 20 & SSD-206A & 320 & 2N720A & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1205A & RECT & THC-500B & 20 & SSD-206A & 320 & 2 N 918 & RF & RFT-700K & 83 & SSD-205A & 18 \\
\hline 1N1206A & RECT & THC-500B & 20 & SSD-206A & 320 & 2N1066 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1341B & RECT & THC-500B & 58 & SSD-206A & 317 & 2N1183 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1342B & RECT & THC-500B & 58 & SSD-206A & 317 & 2N1183A & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1344B & RECT & THC-500B & 58 & SSD-206A & 317 & 2N1183B & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1345B & RECT & THC-500B & 58 & SSD-206A & 317 & 2N1184 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1346B & RECT & THC-500B & 58 & SSD-206A & 317 & 2N1184A & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1347B & RECT & THC-500B & 58 & SSD-206A & 317 & 2N1184B & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1348B & RECT & THC-500B & 58 & SSD-206A & 317 & 2N1224 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1612 & RECT & THC-500B & 18 & SSD-206A & 315 & 2N1225 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1613 & RECT & THC-500B & 18 & SSD-206A & 315 & 2N1226 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1614 & RECT & THC-500B & 18 & SSD-206A & 315 & 2N1285 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1615 & RECT & THC-500B & 18 & SSD-206A & 315 & 2N1395 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1616 & RECT & THC-500B & 18 & SSD-206A & 315 & 2N1396 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1763A & RECT & THC-500B & 89 & SSD-206A & 272 & 2N1397 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N1764A & RECT & THC-500B & 89 & SSD-206A & 272 & 2N1479 & PWR & PTD-187D & 135 & SSD-204A & 474 \\
\hline 1N2858A & RECT & THC-500B & 91 & SSD-206A & 280 & 2N1480 & PWR & PTD-187D & 135 & SSD-204A & 474 \\
\hline 1N2859A & RECT & T'HC-500B & 91 & SSD-206A & 280 & 2N1481 & PWR & PTD-187D & 135 & SSD-204A & 474 \\
\hline 1 28860 A & RECT & THC-5008 & 91 & SSD-206A & 280 & 2N1482 & PWR & PTD-1870 & 135 & SSD-204A & 474 \\
\hline 1 N2861A & RECT & THC-500B & 91 & SSD-206A & 280 & 2N1483 & PWR & PTD-1870 & 137 & SSD-204A & 479 \\
\hline 1N2862A & RECT & THC-500B & 91 & SSD-206A & 280 & 2N1484 & PWR & PTD-187D & 137 & SSD-204A & 479 \\
\hline 1N2863A & RECT & THC-500B & 91 & SSD-206A & 280 & 2N1485 & PWR & PTD-187D & 137 & SSD-204A & 479 \\
\hline 1N2864A & RECT & THC-500B & 91 & SSD-206A & 280 & 2N1486 & PWR & PTD-187D & 137 & SSD-204A & 479 \\
\hline 1N3193 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1487 & PWR & PTD-187D & 139 & SSD-204A & 484 \\
\hline 1N3194 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1488 & PWR & PTD-187D & 139 & SSD-204A & 484 \\
\hline 1N3195 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1489 & PWR & PTD-187D & 139 & SSD-204A & 484 \\
\hline 1N3196 & RECT & THC-500B & 41 & SSD-206A & 288 & 2N1490 & PWR & PTD-187D & 139 & SSD-204A & 484 \\
\hline 1N3253 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1491 & RF & RFT-700K & 10 & SSD-205A & 22 \\
\hline 1N3254 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1492 & RF & RFT-700K & 10 & SSD-205A & 22 \\
\hline 1N3255 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1493 & RF & RFT-700K & 10 & SSD-205A & 22 \\
\hline 1N3256 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1613 & PWR & PTD-187D & 106 & SSD-204A & 323 \\
\hline 1N3563 & RECT & THC-500B & 41 & SSD-206A & 268 & 2N1683 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 1N3754 & RECT & THC-500B & 39 & SSD-206A & 258 & 2N1700 & PWR & PTD-187D & 141 & SSD-204A & 489 \\
\hline 1N3755 & RECT & THC-500B & 39 & SSD-206A & 258 & 2N1701 & PWR & PTD-187D & 141 & SSD-204A & 489 \\
\hline 1N3756 & RECT & THC-500B & 39 & SSD-206A & 258 & 2N1702 & PWR & PTD-187D & 141 & SSD-204A & 489 \\
\hline 1N5211 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1711 & PWR & PTD-187D & 26 & SSD-204A & 328 \\
\hline 1N5212 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1842A & SCR & THC-500B & 28 & SSD-206A & 221 \\
\hline 1 N 5213 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1843A & SCR & THC-5008 & 28 & SSD-206A & 221 \\
\hline 1N5214 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1844A & SCR & THC-500B & 28 & SSD-206A & 221 \\
\hline 1N5215 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1845A & SCR & THC-500B & 28 & SSD-206A & 221 \\
\hline 1N5216 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1846A & SCR & THC-500B & 28 & SSD-206A & 221 \\
\hline 1 N 5217 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1847A & SCR & THC-500B & 28 & SSD-206A & 221 \\
\hline 1N5218 & RECT & THC-500B & 245 & SSD-206A & 286 & 2N1848A & SCR & THC-500B & 28 & SSD-205A & 221 \\
\hline
\end{tabular}

Index to Devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type No. & \begin{tabular}{l}
Product \\
Line
\end{tabular} & Catalog & File No. & DATABOOK Vol. No. & Page & Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page \\
\hline 2N1849A & SCR & THC-500B & 28 & SSD-206A & 221 & 2N4037 & PWR & PTD-187D & 216 & SSD-204A & 428 \\
\hline 2N1850A & SCR & THC-500B & 28 & SSD-206A & 221 & 2N4063 & PWR & PTD-187D & 64 & SSD-204A & 222 \\
\hline 2N1893 & PWR & PTD-187D & 34 & SSD-204A & 332 & 2N4064 & PWR & PTD-187D & 64 & SSD-204A & 222 \\
\hline 2N1905 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N4101 & SCR & THC-500B & 114 & SSD-206A & 161 \\
\hline 2N1906 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N4102 & SCR & THC-500B & 114 & SSD-206A & 161 \\
\hline 2N2015 & PWR & PTD-187D & 12 & SSD-204A & 500 & 2N4103 & SCR & THC-500B & 116 & SSD-206A & 214 \\
\hline 2N2016 & PWR & PTD-187D & 12 & SSD-204A & 500 & 2N4240 & PWR & PTD-187D & 135 & SSD-204A & 229 \\
\hline 2N2102 & PWR & PTD-187D & 106 & SSD-204A & 323 & 2N4314 & PWR & PTD-187D & 216 & SSD-204A & 428 \\
\hline 2N2147 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N4346 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 2N2148 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N4347 & PWR & PTD-187D & 528 & SSD-204A & 44 \\
\hline 2N2270 & PWR & PTD-187D & 24 & SSD-204A & 338 & 2N4348 & PWR & PTD-187D & 526 & SSD-204A & 60 \\
\hline 2N2338 & PWR & PTD-187D & 141 & SSD-204A & 489 & 2N4427 & RF & RFT-700K & 228 & SSD-205A & 79 \\
\hline 2N2405 & PWR & PTD-187D & 34 & SSD-204A & 332 & 2N4440 & RF & RFT-700K & 217 & SSD-205A & 85 \\
\hline 2N2631 & RF & RFT-700K & 32 & SSD-205A & 26 & 2N4932 & RF & RFT-700K & 249 & SSD-205A & 90 \\
\hline 2N2857 & RF & RFT-700K & 61 & SSD-205A & 31 & 2N4933 & RF & RFT-700K & 249 & SSD-205A & 90 \\
\hline 2N2869/2N301 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N5016 & RF & RFT-700K & 255 & SSD-205A & 94 \\
\hline 2N2870/2N301A & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N5034 & PWR & PTD-187D & 244 & SSD-204A & 68 \\
\hline 2N2876 & RF & RFT-700K & 32 & SSD-205A & 26 & 2N5035 & PWR & PTD-187D & 244 & SSD-204A & 68 \\
\hline 2N2895 & PWR & PTD-187D & 143 & SSD-204A & 342 & 2N5036 & PWR & PTD-187D & 244 & SSD-204A & 68 \\
\hline 2N2896 & PWR & PTD-187D & 143 & SSD-204A & 342 & 2N5037 & PWR & PTD-187D & 244 & SSD-204A & 68 \\
\hline 2N2897 & PWR & SPG-201J & 143 & SSD-204A & 442 & 2N5038 & PWR & PJD-187D & 367 & SSD-204A & 371 \\
\hline 2N3053 & PWR & PTD-187D & 432 & SSD-204A & 348 & 2N5039 & PWR & PTD-187D & 367 & SSD-204A & 371 \\
\hline 2N3054 & PWR & PTD-187D & 527 & SSD-204A & 20 & 2N5070 & RF & RFT-700K & 268 & SSD-205A & 98 \\
\hline 2N3055 & PWR & PTD-187D & 524 & SSD-204A & 28 & 2N5071 & RF & RFT-700K & 269 & SSD-205A & 103 \\
\hline 2N3118 & RF & RFT-700K & 42 & SSD-205A & 35 & 2N5090 & RF & RFT-700K & 270 & SSD-205A & 107 \\
\hline 2N3119 & RF & RFT-700K & 44 & SSD-205A & 39 & 2N5102 & RF & RFT-700K & 279 & SSD-205A & 111 \\
\hline 2N3228 & SCR & THC-500B & 114 & SSD-206A & 161 & 2N5108 & RF & RFT-700K & 280 & SSD-205A & 116 \\
\hline 2N3229 & RF & RFT-700K & 50 & SSD-205A & 43 & 2N5109 & RF & RFT-700K & 281 & SSD-205A & 120 \\
\hline 2N3262 & RF & RFT-700K & 56 & SSD-205A & 46 & 2N5179 & RF & RFT-700K & 288 & SSD-205A & 126 \\
\hline 2N3263 & PWR & PTD-187D & 54 & SSD-204A & 354 & 2N5180 & RF & RFT-700K & 289 & SSD-205A & 132 \\
\hline 2N3264 & PWR & PTD-187D & 54 & SSD-204A & 354 & 2N5189 & PWR & PTD-187D & 296 & SSD-204A & 378 \\
\hline 2N3265 & PWR & PTD-187D & 54 & SSD-204A & 354 & 2N5202 & PWR & PTD-187D & 299 & SSD-204A & 360 \\
\hline 2N3266 & PWR & PTD-187D & 54 & SSD-204A & 354 & 2N5239 & PWR & PTD-187D & 321 & SSD-204A & 241 \\
\hline 2N3375 & RF & RFT-700K & 386 & SSD-205A & 50 & 2N5240 & PWR & PTD-187D & 321 & SSD-204A & 241 \\
\hline 2N3439 & PWR & PTD-187D & 64 & SSD-204A & 222 & 2N5262 & PWR & PTD-187D & 313 & SSD-204A & 383 \\
\hline & PWR & PTD-187D & 64 & SSD-204A & 222 & 2N5293 & PWR & PTD-187D & 332 & SSD-204A & 76 \\
\hline 2N3441 & PWR & PTD-187D & 529 & SSD-204A & 36 & 2N5294 & PWR & PTD-187D & 332 & SSD-204A & 76 \\
\hline 2N3442 & PWR & PTD-187D & 528 & SSD-204A & 44 & 2N5295 & PWR & PTD-187D & 332 & SSD-204A & 76 \\
\hline 2N3478 & RF & RFT-700K & 77 & SSD-205A & 58 & 2N5296 & PWR & PTD-187D & 332 & SSD-204A & 76 \\
\hline 2N3528 & SCR & THC-500B & 114 & SSD-206A & 161 & 2N5297 & PWR & PTD-187D & 332 & SSD-204A & 76 \\
\hline 2N3529 & SCR & THC-500B & 114 & SSD-206A & 161 & 2N5298 & PWR & PTD-187D & 332 & SSD-204A & 76 \\
\hline 2N3553 & RF & RFT-700K & 386 & SSD-205A & 50 & 2N5320 & PWR & PTD-187D & 325 & SSD-204A & 389 \\
\hline 2N3583 & PWR & PTD-187D & 138 & SSD-204A & 229 & 2N5321 & PWR & PTD-187D & 325 & SSD-204A & 389 \\
\hline 2N3584 & PWR & PTD-187D & 138 & SSD-204A & 229 & 2N5322 & PWR & PTD-187D & 325 & SSD-204A & 389 \\
\hline 2N3585 & PWR & PTD-187D & 138 & SSD-204A & 229 & 2N5323 & PWR & PTD-187D & 325 & SSD-204A & 389 \\
\hline 2N3600 & RF & RFT-700K & 83 & SSD-205A & 18 & 2N5415 & PWR & PTD-187D & 336 & SSD-204A & 437 \\
\hline 2N3632 & RF & RFT-700K & 386 & SSD-205A & 50 & 2N5416 & PWR & PTD-187D & 336 & SSD-204A & 437 \\
\hline 2N3650 & SCR & THC-500B & 408 & SSD-206A & 236 & 2N5441 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 2N3651 & SCR & THC-500B & 408 & SSD-206A & 236 & 2N5442 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 2N3652 & SCR & THC-500B & 408 & SSD-206A & 236 & 2N5443 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 2N3653 & SCR & THC-500B & 408 & SSD-206A & 236 & 2N5444 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 2N3668 & SCR & THC-500B & 116 & SSD-206A & 214 & 2N5445 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 2N3669 & SCR & THC-500B & 116 & SSD-206A & 214 & 2N5446 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 2N3670 & SCR & THC-500B & 116 & SSD-206A & 214 & 2N5470 & RF & RFT-700K & 350 & SSD-205A & 136 \\
\hline 2N3730 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N5490 & PWR & PTD-187D & 353 & SSD-204A & 85 \\
\hline 2N3731 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N5491 & PWR & PTD-187D & 353 & SSD-204A & 85 \\
\hline 2N3732 & PWR & SPG-201J & 14 & SSD-204A & 572 & 2N5492 & PWR & PTD-187D & 353 & SSD-204A & 85 \\
\hline 2N3733 & RF & RFT-700K & 72 & SSD-205A & 62 & 2N5493 & PWR & PTD-187D & 353 & SSD-204A & 85 \\
\hline 2N3771 & PWR & PTD-187D & 525 & SSD-204A & 52 & 2N5494 & PWR & PTD-187D & 353 & SSD-204A & 85 \\
\hline 2N3772 & PWR & PTD-187D & 525 & SSD-204A & 52 & 2N5495 & PWR & PTD-187D & 353 & SSD-204A & 85 \\
\hline 2N3773 & PWR & PTD-187D & 526 & SSD-204A & 60 & 2N5496 & PWR & PTD-187D & 353 & SSD-204A & 85 \\
\hline 2N3839 & RF & RFT-700K & 229 & SSD-205A & 67 & 2N5497 & PWR & PTD-1870 & 353 & SSD-204A & 85 \\
\hline 2N3866 & RF & RFT-700K & 80 & SSD-205A & 71 & 2N5567 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 2N3870 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5568 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 2N3871 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5569 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 2N3872 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5570 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 2N3873 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5571 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 2N3878 & PWR & PTD-187D & 299 & SSD-204A & 360 & 2N5572 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 2N3879 & PWR & PTD-187D & 299 & SSD-204A & 360 & 2N5573 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 2N3896 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5574 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 2N3897 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5575 & PWR & PTD-187D & 359 & SSD-204A & 92 \\
\hline 2N3898 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5578 & PWR & PTD-187D & 359 & SSD-204A & 92 \\
\hline 2N3899 & SCR & THC-500B & 578 & SSD-206A & 243 & 2N5671 & PWR & PTD-187D & 383 & SSD-204A & 395 \\
\hline 2N4012 & RF & RFT-700K & 90 & SSD-205A & 75 & 2N5672 & PWR & PTD-187D & 383 & SSD-204A & 395 \\
\hline 2N4036 & PWR & PTD-187D & 216 & SSD-204A & 428 & 2N5754 & TRI & THC-500B & 414 & SSD-206A & 22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page & Type No. & Product Line & Catalog & \begin{tabular}{l}
File \\
No.
\end{tabular} & DATABOOK Vol. No. & Page \\
\hline 2N5755 & TRI & THC-500B & 414 & SSD-206A & 22 & 2N6259 & PWR & PTD-187D & 526 & SSD-204A & 60 \\
\hline 2N5756 & TRI & THC-500B & 414 & SSD-206A & 22 & 2N6260 & PWR & PTD-187D & 527 & SSD-204A & 20 \\
\hline 2N5757 & TRI & THC-500B & 414 & SSD-206A & 22 & 2N6261 & PWR & PTD-1870 & 527 & SSD-204A & 20 \\
\hline 2N5781 & PWR & PTD-187D & 413 & SSD-204A & 100 & 2N6262 & PWR & PTD-187D & 528 & SSD-204A & 44 \\
\hline 2N5782 & PWR & PTD-187D & 413 & SSD-204A & 100 & 2N6263 & PWR & PTD-187D & 529 & SSD-204A & 36 \\
\hline 2N5783 & PWR & PTD-187D & 413 & SSD-204A & 100 & 2N6264 & PWR & PTD-187D & 529 & SSD-204A & 36 \\
\hline 2N5784 & PWR & PTD-187D & 413 & SSD-204A & 100 & 2N6265 & RF & RFT-700K & 543 & SSD-205A & 231 \\
\hline 2N5785 & PWR & PTD-187D & 413 & SSD-204A & 100 & 2N6266 & RF & RFT-700K & 544 & SSD-205A & 237 \\
\hline 2N5786 & PWR & PTD-187D & 413 & SSD-204A & 100 & 2N6267 & RF & RFT-700K & 545 & SSD-205A & 243 \\
\hline 2N5804 & PWR & PTD-187D & 407 & SSD-204A & 247 & 2N6268 & RF & RFT-700K & 546 & SSD-205A & 249 \\
\hline 2N5805 & PWR & PTD-187D & 407 & SSD-204A & 247 & 2N6269 & RF & RFT-700K & 546 & SSD-205A & 249 \\
\hline 2N5838 & PWR & PTD-187D & 410 & SSD-204A & 253 & 2N6288 & PWR & PTD-187D & 542 & SSD-204A & 161 \\
\hline 2N5839 & PWR & PTD-187D & 410 & SSD-204A & 253 & 2N6289 & PWR & PTD-187D & 542 & SSD-204A & 161 \\
\hline 2N5840 & PWR & PTD-187D & 410 & SSD-204A & 253 & 2N6290 & PWR & PTD-187D & 542 & SSD-204A & 161 \\
\hline 2N5913 & RF & RFT-700K & 423 & SSD-205A & 142 & 2N6291 & PWR & PTD-187D & 542 & SSD-204A & 161 \\
\hline 2N5914 & RF & RFT-700K & 424 & SSD-205A & 148 & 2N6292 & PWR & PTD-187D & 542 & SSD-204A & 161 \\
\hline 2N5915 & RF & RFT-700K & 424 & SSD-205A & 148 & 2N6293 & PWR & PTD-187D & 542 & SSD-204A & 161 \\
\hline 2N5916 & RF & RFT-700K & 425 & SSD-205A & 154 & 2N6354 & PWR & PTD-187D & 582 & SSD-204A & 415 \\
\hline 2N5917 & RF & RFT-700K & 425 & SSD-205A & 154 & 2N6371 & PWR & PTD-187D & 607 & SSD-204A & 119 \\
\hline 2N5918 & RF & RFT-700K & 448 & SSD-205A & 160 & 2N6372 & PWR & PTD-187D & 608 & SSD-204A & 169 \\
\hline 2N5919 & RF & RFT-700K & 426 & SSD-205A & 165 & 2N6373 & PWR & PTD-187D & 608 & SSD-204A & 169 \\
\hline 2N5919A & RF & RFT-700K & 505 & SSD-205A & 172 & 2N6374 & PWR & PTD-187D & 608 & SSD-204A & 169 \\
\hline 2N5920 & RF & RFT-700K & 440 & SSD-205A & 178 & 2N6383 & PWR & PTD-187D & 609 & SSD-204A & 455 \\
\hline 2N5921 & RF & RFT-700K & 427 & SSD-205A & 184 & 2N6384 & PWR & PTD-187D & 609 & SSD-204A & 455 \\
\hline 2N5954 & PWR & PTD-187D & 435 & SSD-204A & 138 & 2N6385 & PWR & PTD-187D & 609 & SSD-204A & 455 \\
\hline 2N5955 & PWR & PTD-187D & 435 & SSD-204A & 138 & 2N6386 & PWR & PTD-187D & 610 & SSD-204A & 461 \\
\hline 2N5956 & PWR & PTD-187D & 435 & SSD-204A & 138 & 2N6387 & PWR & PTD-187D & 610 & SSD-204A & 461 \\
\hline 2N5992 & RF & RFT-700K & 451 & SSD-205A & 192 & 2N6388 & PWR & PTD-187D & 610 & SSD-204A & 461 \\
\hline 2N5993 & RF & RFT-700K & 452 & SSD-205A & 197 & 3N128 & MOS/FET & MOS-160C & 309 & SSD-201A & 568 \\
\hline 2N5994 & RF & RFT-700K & 453 & SSD-205A & 202 & 3N138 & MOS/FET & MOS-160C & 283 & SSD-201A & 573 \\
\hline 2N5995 & RF & RFT-700K & 454 & SSD-205A & 208 & 3N139 & MOS/FET & MOS-160C & 284 & SSD-201A & 577 \\
\hline 2N5996 & RF & RFT-700K & 455 & SSD-205A & 213 & 3N140 & MOS/FET & MOS-160C & 285 & SSD-201A & 610 \\
\hline 2N6032 & PWR & PTD-187D & 462 & SSD-204A & 401 & 3N141 & MOS/FET & MOS-160C & 285 & SSD-201A & 610 \\
\hline 2N6033 & PWR & PTD-187D & 462 & SSD-204A & 401 & 3N142 & MOS/FET & MOS-160C & 286 & SSD-201A & 582 \\
\hline 2N6055 & PWR & PTD-187D & 563 & SSD-204A & 450 & 3N143 & MOS/FET & MOS-160C & 309 & SSD-201A & 568 \\
\hline 2N6056 & PWR & PTD-187D & 563 & SSD-204A & 450 & 3N152 & MOS/FET & MOS-160C & 314 & SSD-201A & 588 \\
\hline 2N6077 & PWR & PTD-187D & 492 & SSD-204A & 260 & 3N153 & MOS/FET & MOS-160C & 320 & SSD-201A & 593 \\
\hline 2N6078 & PWR & PTD-187D & 492 & SSD-204A & 260 & 3N154 & MOS/FET & MOS-160C & 335 & SSD-201A & 596 \\
\hline 2N6079 & PWR & PTD-187D & 492 & SSD-204A & 260 & 3N159 & MOS/FET & MOS-160C & 326 & SSD-201A & 618 \\
\hline 2N6093 & RF & RFT-700K & 484 & SSD-205A & 219 & 3N187 & MOS/FET & MOS-160C & 436 & SSD-201A & 636 \\
\hline 2N6098 & PWR & PTD-187D & 485 & SSD-204A & 111 & 3N200 & MOS/FET & MOS-160C & 437 & SSD-201A & 644 \\
\hline 2N6099 & PWR & PTD-187D & 485 & SSD-204A & 111 & 29 & PWR & PTD-187D & 583 & SSD-204A & 175 \\
\hline 2N6100 & PWR & PTD-187D & 485 & SSD-204A & 111 & 29A & PWR & PTD-187D & 583 & SSD-204A & 175 \\
\hline 2N6101 & PWR & PTD-187D & 485 & SSD-204A & 111 & 29B & PWR & PTD-187D & 583 & SSD-204A & 175 \\
\hline 2N6102 & PWR & PTD-187D & 485 & SSD-204A & 111 & 29C & PWR & PTD-187D & 583 & SSD-204A & 175 \\
\hline 2N6103 & PWR & PTD-187D & 485 & SSD-204A & 111 & 30 & PWR & PTD-187D & 584 & SSD-204A & 180 \\
\hline 2N6104 & RF & RFT-700K & 504 & SSD-205A & 224 & 30A & PWR & PTD-187D & 584 & SSD-204A & 180 \\
\hline 2N6105 & RF & RFT-700K & 504 & SSD-205A & 224 & 30B & PWR & PTD-187D & 584 & SSD-204A & 180 \\
\hline 2N6106 & PWR & PTD-187D & 488 & SSD-204A & 145 & 30 C & PWR & PTD-187D & 584 & SSD-204A & 180 \\
\hline 2N6107 & PWR & PTD-187D & 488 & SSD-204A & 145 & 31 & PWR & PTD-187D & 585 & SSD-204A & 185 \\
\hline 2N6108 & PWR & PTD-187D & 488 & SSD-204A & 145 & 31A & PWR & PTD-187D & 585 & SSD-204A & 185 \\
\hline 2N6109 & PWR & PTD-187D & 488 & SSD-204A & 145 & 31B & PWR & PTD-187D & 585 & SSD-204A & 185 \\
\hline 2N6110 & PWR & PTD-187D & 488 & SSD-204A & 145 & 31C & PWR & PTD-187D & 585 & SSD-204A & 185 \\
\hline 2N6111 & PWR & PTD-187D & 488 & SSD-204A & 145 & 32 & PWR & PTD-187D & 586 & SSD-204A & 190 \\
\hline 2N6175 & PWR & PTD-187D & 508 & SSD-204A & 268 & 32A & PWR & PTD-187D & 586 & SSD-204A & 190 \\
\hline 2N6176 & PWR & PTD-187D & 508 & SSD-204A & 268 & 32B & PWR & PTD-187D & 586 & SSD-204A & 190 \\
\hline 2N6177 & PWR & PTD-187D & 508 & SSD-204A & 268 & 32C & PWR & PTD-187D & 586 & SSD-204A & 190 \\
\hline 2N6178 & PWR & PTD-187D & 562 & SSD-204A & 407 & 41 & PWR & PTD-187D & 587 & SSD-204A & 195 \\
\hline 2N6179 & PWR & PTD-187D & 562 & SSD-204A & 407 & 41 A & PWR & PTD-187D & 587 & SSD-204A & 195 \\
\hline 2N6180 & PWR & PTD-187D & 562 & SSD-204A & 407 & 41B & PWR & PTD-187D & 587 & SSD-204A & 195 \\
\hline 2N6181 & PWR & PTD-187D & 562 & SSD-204A & 407 & 41C & PWR & PTD-187D & 587 & SSD-204A & 195 \\
\hline 2N6211 & PWR & PTD-187D & 507 & SSD-204A & 443 & 42 & PWR & PTD-1870 & 588 & SSD-204A & 200 \\
\hline 2N6212 & PWR & PTD-187D & 507 & SSD-204A & 443 & 42A & PWR & PTD-187D & 588 & SSD-204A & 200 \\
\hline 2N6213 & PWR & PTD-187D & 507 & SSD-204A & 443 & 42B & PWR & PTD-1870 & 588 & SSD-204A & 200 \\
\hline 2N6214 & PWR & PTD-187D & 507 & SSD-204A & 443 & 42C & PWR & PTD-187D & 588 & SSD-204A & 200 \\
\hline 2N6246 & PWR & PTD-187D & 541 & SSD-204A & 153 & 101 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 2N6247 & PWR & PTD-187D & 541 & SSD-204A & 153 & 102 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 2N6248 & PWR & PTD-187D & 541 & SSD-204A & 153 & 103 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 2N6249 & PWR & PTD-187D & 523 & SSD-204A & 276 & 104 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 2N6250 & PWR & PTD-1870 & 523 & SSD-204A & 276 & 105 & PWR & PTD-187D & 556 & SSD-204A & 209 \\
\hline 2N6251 & PWR & PTD-187D & 523 & SSD-204A & 276 & 106A & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 2N6253 & PWR & PTD-187D & 524 & SSD-204A & 28 & 106B & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 2N6254 & PWR & PTD-187D & 524 & SSD-204A & 28 & 106C & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 2N6257 & PWR & PTD-187D & 525 & SSD-204A & 52 & 106D & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 2N6258 & PWR & PTD-187D & 525 & SSD-204A & 52 & 106E & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page \\
\hline 106F & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 106M & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 1060 & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 106Y & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 107A & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 107B & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 107C & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 1070 & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 107E & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 107F & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 107M & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 1070 & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 107Y & SCR & THC-500B & 555 & SSD-206A & 150 \\
\hline 201 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 202 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 203 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 204 & PWR & PTD-187D & 557 & SSD-204A & 205 \\
\hline 205 & PWR & PTD-187D & 556 & SSD-204A & 209 \\
\hline 370 & PWR & PTD-187D & 558 & SSD-204A & 213 \\
\hline 371 & PWR & PTD-187D & 558 & SSD-204A & 213 \\
\hline 410 & PWR & PTD-187D & 509 & SSD-204A & 284 \\
\hline 411 & PWR & PTD-187D & 510 & SSD-204A & 290 \\
\hline 413 & PWR & PTD-187D & 511 & SSD-204A & 296 \\
\hline 423 & PWR & PTD-187D & 512 & SSD-204A & 302 \\
\hline 431 & PWR & PTD-187D & 513 & SSD-204A & 308 \\
\hline 520 & PWR & PTD-187D & 558 & SSD-204A & 213 \\
\hline 521 & PWR & PTD-1870 & 558 & SSD-204A & 213 \\
\hline 1000 & PWR & PTD-187D & 594 & SSD-204A & 468 \\
\hline 1001 & PWR & PTD-187D & 594 & SSD-204A & 468 \\
\hline 40022 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40050 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40051 & PWR & PTD-187D & 14 & SSD-204A & 572 \\
\hline 40080 & RF & RFT-700K & 301 & SSD-205A & 260 \\
\hline 40081 & RF & RFT-700K & 301 & SSD-205A & 260 \\
\hline 40082 & RF & RFT-700K & 301 & SSD-205A & 260 \\
\hline 40084 & PWR & PTD-187D & 40 & SSD-204A & 505 \\
\hline 40108 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40109 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40110 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40111 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40112 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40113 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40114 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40115 & RECT & THC-500B & 48 & SSD-206A & 319 \\
\hline 40208 & RECT & THC-500B & 120 & SSD-206A & 324 \\
\hline 40209 & RECT & THC-500́B & 120 & SSD-206A & 324 \\
\hline 40210 & RECT & THC-500B & 120 & SSD-206A & 324 \\
\hline 40211 & RECT & THC-500B & 120 & SSD-206A & 324 \\
\hline 40212 & RECT & THC-500B & 120 & SSD-206A & 324 \\
\hline 40213 & RECT & THC-500B & 120 & SSD-206A & 324 \\
\hline 40214 & RECT & THC-500B & 120 & SSD-206A & 324 \\
\hline 40216 & SCR & THC-500B & 247 & SSD-206A & 250 \\
\hline 40250 & PWR & PTD-187D & 112 & SSD-204A & 124 \\
\hline 40250V1 & PWR & PTD-187D & 112 & SSD-204A & 124 \\
\hline 40251 & PWR & PTD-187D & 112 & SSD-204A & 124 \\
\hline 40254 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40266 & RECT & THC-500B & 75 & SSD-206A & 309 \\
\hline 40267 & RECT & THC-500B & 75 & SSD-206A & 309 \\
\hline 40279 & RF & RFT-700K & 46 & SSD-205A & 264 \\
\hline 40280 & RF & RFT-700K & 68 & SSD-205A & 268 \\
\hline 40281 & RF & RFT-700K & 68 & SSD-205A & 268 \\
\hline 40282 & RF & RFT-700K & 68 & SSD-205A & 268 \\
\hline 40290 & RF & RFT-700K & 70 & SSD-205A & 272 \\
\hline 40291 & RF & RFT-700K & 70 & SSD-205A & 272 \\
\hline 40292 & RF & RFT-700K & 70 & SSD-205A & 272 \\
\hline 40294 & RF & RFT-700K & 202 & SSD-205A & 276 \\
\hline 40296 & RF & RFT-700K & 603 & SSD-205A & 283 \\
\hline 40305 & RF & RFT-700K & 144 & SSD-205A & 290 \\
\hline 40306 & RF & RFT-700K & 144 & SSD-205A & 290 \\
\hline 40307 & RF & RFT-700K & 144 & SSD-205A & 290 \\
\hline 40309 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40310 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40311 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40312 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40313 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File No. & \begin{tabular}{l}
BOOK \\
Vol. No.
\end{tabular} & Page \\
\hline 40314 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40315 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40316 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40317 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40318 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40319 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40320 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40321 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40322 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40323 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40324 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40325 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40326 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40327 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40328 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40340 & RF & RFT-700K & 74 & SSD-205A & 295 \\
\hline 40341 & RF & RFT-700K & 74 & SSD-205A & 295 \\
\hline 40346 & PWR & PTD-187D & 211 & SSD-204A & 237 \\
\hline 40346 V 1 & PWR & PTD-187D & 211 & SSD-204A & 237 \\
\hline 40346 V 2 & PWR & PTD-187D & 211 & SSD-204A & 237 \\
\hline 40347 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40347 V 1 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40347 V 2 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40348 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40348 V 1 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40348 V 2 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40349 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40349 V 1 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40349 V 2 & PWR & PTD-187D & 88 & SSD-204A & 129 \\
\hline 40360 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40361 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40362 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40363 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40364 & PWR & PTD-187D & 78 & SSD-204A & 510 \\
\hline 40366 & PWR & PTD-187D & 215 & SSD-204A & 421 \\
\hline 40367 & PWR & PTD-187D & 215 & SSD-204A & 421 \\
\hline 40368 & PWR & PTD-187D & 215 & SSD-204A & 421 \\
\hline 40369 & PWR & PTD-187D & 215 & SSD-204A & 421 \\
\hline 40372 & PWR & PTD-187D & 527 & SSD-204A & 20 \\
\hline 40373 & PWR & PTD-187D & 529 & SSD-204A & 36 \\
\hline 40374 & PWR & PTD-187D & 128 & SSD-204A & 229 \\
\hline 40375 & PWR & PTD-187D & 299 & SSD-204A & 360 \\
\hline 40385 & PWR & PTD-187D & 215 & SSD-204A & 421 \\
\hline 40389 & PWR & PTD-187D & 432 & SSD-204A & 348 \\
\hline 40390 & PWR & PTD-187D & 64 & SSD-204A & 222 \\
\hline 40391 & PWR & PTD-187D & 216 & SSD-204A & 428 \\
\hline 40392 & PWR & PTD-187D & 432 & SSD-204A & 348 \\
\hline 40394 & PWR & PTD-187D & 216 & SSD-204A & 428 \\
\hline 40406 & PWR & PTD-187D & 219 & SSD-204A & 516 \\
\hline 40407 & PWR & PTD-187D & 219 & SSD-204A & 516 \\
\hline 40408 & PWR & PTD-187D & 219 & SSD-204A & 516 \\
\hline 40409 & PWR & PTD-187D & 219 & SSD-204A & 516 \\
\hline 40410 & PWR & PTD-187D & 219 & SSD-204A & 516 \\
\hline 40411 & PWR & PTD-187D & 219 & SSD-204A & 516 \\
\hline 40412 & PWR & PTD-187D & 211 & SSD-204A & 237 \\
\hline 40412 V 1 & PWR & PTD-187D & 211 & SSD-204A & 237 \\
\hline 40412 V 2 & PWR & PTD-187D & 211 & SSD-204A & 237 \\
\hline 40414 & RF & RFT-700K & 259 & SSD-205A & 299 \\
\hline 40421 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40429 & TRI & THC-500B & 351 & SSD-206A & 41 \\
\hline 40430 & TRI & THC-500B & 351 & SSD-206A & 41 \\
\hline 40431 & TRI & THC-500B & 477 & SSD-206A & 48 \\
\hline 40432 & TRI & THC-500B & 477 & SSD-206A & 48 \\
\hline 40439 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40440 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40446 & RF & RFT-700K & 301 & SSD-205A & 260 \\
\hline 40462 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40467A & MOS/FET & MOS-160C & 324 & SSD-201A & 601 \\
\hline 40468A & MOS/FET & MOS-160C & 323 & SSD-201A & 606 \\
\hline 40484 & PWR & SPG-201J & 14 & SSD-204A & 572 \\
\hline 40485 & TRI & THC-500B & 352 & SSD-206A & 54 \\
\hline 40486 & TRI & THC-500B & 352 & SSD-206A & 54 \\
\hline 40502 & TRI & THC-500B & 351 & SSD-206A & 41 \\
\hline 40503 & TRI & THC-500B & 351 & SSD-206A & 41 \\
\hline 40504 & SCR & THC-500B & 266 & SSD-206A & 168 \\
\hline
\end{tabular}

Index to Devices
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File & DATABOOK Vol. No. & Page & Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page \\
\hline 40505 & SCR & THC-500B & 266 & SSD-206A & 168 & 40644 & RECT & THC-500B & 354 & SSD-206A & 290 \\
\hline 40506 & SCR & THC-500B & 266 & SSD-206A & 168 & 40654 & SCR & THC-500B & 496 & SSD-206A & 191 \\
\hline 40509 & TRI & THC-500B & 352 & SSD-206A & 54 & 40655 & SCR & THC-500B & 496 & SSD-206A & 191 \\
\hline 40510 & TRI & THC-500B & 352 & SSD-206A & 54 & 40656 & SCR & THC-500B & 496 & SSD-206A & 191 \\
\hline 40511 & TRI & THC-500 & 477 & SSD-206A & 48 & 40657 & SCR & THC-5008 & 496 & SSD-206A & 191 \\
\hline 40512 & TRI & THC-500B & 477 & SSD-206A & 48 & 40658 & SCR & THC-500B & 496 & SSD-206A & 191 \\
\hline 40513 & PWR & PTD-187D & 244 & SSD-204A & 68 & 40659 & SCR & THC-500B & 496 & SSD-206A & 191 \\
\hline 40514 & PWR & PTD-187D & 244 & SSD-204A & 68 & 40660 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40525 & TRI & THC-500B & 470 & SSD-206A & 27 & 40661 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40526 & TRI & THC-500B & 470 & SSD-206A & 27 & 40662 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40527 & TRI & THC-500B & 470 & SSD-206A & 27 & 40663 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40528 & TRI & THC-500B & 470 & SSD-206A & 27 & 40664 & TRI & THC-500B & 375 & SSD-206A & 61 \\
\hline 40529 & TRI & THC-500B & 470 & SSD-206A & 27 & 40665 & RF & RFT-700K & 386 & SSD-205A & 50 \\
\hline 40530 & TRI & THC-500B & 470 & SSD-206A & 27 & 40666 & RF & RFT-700K & 386 & SSD-205A & 50 \\
\hline 40531 & TRI & THC-500B & 470 & SSD-206A & 27 & 40667 & TRI & THC-500B & 375 & SSD-206A & 61 \\
\hline 40532 & TRI & THC-500B & 470 & SSD-206A & 27 & 40668 & TRI & THC-500B & 364 & SSD-206A & 73 \\
\hline 40533 & TRI & THC-500B & 470 & SSD-206A & 27 & 40669 & TRI & THC-500B & 364 & SSD-206A & 73 \\
\hline 40534 & TRI & THC-500B & 470 & SSD-206A & 27 & 40671 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40535 & TRI & THC-500B & 470 & SSD-206A & 27 & 40672 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40536 & TRI & THC-500B & 470 & SSD-206A & 27 & 40673 & MOS/FET & MOS-160C & 381 & SSD-201A & 679 \\
\hline 40537 & PWR & PTD-187D & 320 & SSD-204A & 523 & 40680 & SCR & THC-500B & 578 & SSD-206A & 242 \\
\hline 40538 & PWR & PTD-187D & 320 & SSD-204A & 523 & 40681 & SCR & THC-500B & 578 & SSD-206A & 242 \\
\hline 40539 & PWR & PTD-187D & 303 & SSD-204A & 527 & 40682 & SCR & THC-500B & 578 & SSD-206A & 242 \\
\hline 40542 & PWR & PTD-187D & 304 & SSD-204A & 531 & 40683 & SCR & THC-500B & 578 & SSD-206A & 242 \\
\hline 40543 & PWR & PTD-187D & 304 & SSD-204A & 531 & 40684 & TRI & THC-5008 & 414 & SSD-206A & 22 \\
\hline 40544 & PWR & PTD-187D & 303 & SSD-204A & 527 & 40685 & TRI & THC-500B & 414 & SSD-206A & 22 \\
\hline 40546 & PWR & SPG-201J & 14 & SSD-204A & 572 & 40686 & TRI & THC-500B & 414 & SSD-206A & 22 \\
\hline 40553 & SCR & THC-500B & 306 & SSD-206A & 175 & 40687 & TRI & THC-500B & 414 & SSD-206A & 22 \\
\hline 40554 & SCR & THC-500B & 306 & SSD-206A & 175 & 40688 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 40555 & SCR & THC-500B & 306 & SSD-206A & 175 & 40689 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 40559A & MOS/FET & MOS-160C & 323 & SSD-201A & 606 & 40690 & TRI & THC-500B & 593 & SSD-206A & 127 \\
\hline 40575 & TRI & THC-500B & 300 & SSD-206A & 105 & 40691 & TRI & THC-5008 & 431 & SSD-206A & 34 \\
\hline 40576 & TR! & THC-500B & 300 & SSD-206A & 105 & 40692 & TRI & THC-500B & 431 & SSD-206A & 34 \\
\hline 40577 & RF & RFT-700K & 297 & SSD-205A & 305 & 40693 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40578 & RF & RFT-700K & 298 & SSD-205A & 312 & 40694 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40581 & RF & RFT-700K & 301 & SSD-205A & 260 & 40695 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40582 & RF & RFT-700K & 301 & SSD-205A & 260 & 40696 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40594 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40697 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40595 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40698 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40600 & MOS/FET & MOS-160C & 333 & SSD-201A & 624 & 40699 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40601 & MOS/FET & mos-160C & 333 & SSD-201A & 624 & 40700 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40602 & MOS/FET & MOS-160C & 333 & SSD-201A & 624 & 40701 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40603 & MOS/FET & mos-160C & 334 & SSD-201A & 632 & 40702 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40604 & MOS/FET & mos-160C & 334 & SSD-201A & 632 & 40703 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40605 & RF & RFT-700K & 389 & SSD-205A & 318 & 40704 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40606 & RF & RFT-700K & 600 & SSD-205A & 325 & 40705 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40608 & RF & RFT-700K & 356 & SSD-205A & 332 & 40706 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40611 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40707 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40612 & PWR & SPG-201J & 14 & SSD-204A & 572 & 40708 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40613 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40709 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40616 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40710 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40618 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40711 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40621 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40712 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40622 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40713 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40623 & PWR & SPG-201J & 14 & SSD-204A & 572 & 40714 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40624 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40715 & TRI & THC-500B & 406 & SSD 206A & 141 \\
\hline 40625 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40716 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40626 & PWR & SPG-201J & 14 & SSD-204A & 572 & 40717 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40627 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40718 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40628 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40719 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40629 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40720 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40630 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40721 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40631 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40722 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40632 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40723 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40633 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40724 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40634 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40725 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40635 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40726 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40636 & PWR & PTD-187D & 358 & SSD-204A & 537 & 40727 & TRI & THC-5008 & 406 & SSD-206A & 141 \\
\hline 40637 & PWR & SPG-201J & 14 & SSD-204A & 572 & 40728 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40638 & TRI & THC-500B & 352 & SSD-206A & 54 & 40729 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40639 & TRI & THC-500B & 352 & SSD-206A & 54 & 40730 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40640 & SCR & THC-500B & 354 & SSD-206A & 179 & 40731 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40641 & SCR & THC-500B & 354 & SSD-206A & 179 & 40732 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40642 & RECT & THC-500B & 354 & SSD-206A & 290 & 40733 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline 40643 & RECT & THC-500B & 354 & SSD-206A & 290 & 40734 & TRI & THC-500B & 406 & SSD-206A & 141 \\
\hline
\end{tabular}

Index to Devices
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page \\
\hline 40735 & SCR & THC-500B & 408 & SSD-206A & 236 \\
\hline 40737 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40738 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40739 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40740 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40741 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40742 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40743 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40744 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40745 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40746 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40747 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40748 & SCR & THC-500B & 417 & SSD-206A & 206 \\
\hline 40749 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40750 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40751 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40752 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40753 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40754 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40755 & SCR & THC-5008 & 418 & SSD-206A & 225 \\
\hline 40756 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40757 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40758 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40759 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40760 & SCR & THC-500B & 418 & SSD-206A & 225 \\
\hline 40761 & TRI & THC-500B & 431 & SSD-206A & 34 \\
\hline 40762 & TRI & THC-500B & 431 & SSD-206A & 34 \\
\hline 40766 & TRI & THC-500B & 431 & SSD-206A & 34 \\
\hline 40767 & TRI & THC-500B & 431 & SSD-206A & 34 \\
\hline 40768 & SCR & THC-500B & 476 & SSD-206A & 185 \\
\hline 40769 & TRI & THC-500B & 441 & SSD-206A & 35 \\
\hline 40770 & TRI & THC-500B & 441 & SSD-206A & 35 \\
\hline 40771 & TRI & THC-500B & 441 & SSD-206A & 35 \\
\hline 40772 & TRI & THC-500B & 441 & SSD-206A & 35 \\
\hline 40773 & TRI & THC-500B & 442 & SSD-206A & 67 \\
\hline 40774 & TRI & THC-500B & 442 & SSD-206A & 67 \\
\hline 40775 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40776 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40777 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40778 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40779 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40780 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40781 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40782 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40783 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40784 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40785 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40786 & TRI & THC-500B & 443 & SSD-206A & 90 \\
\hline 40787 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40788 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40789 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40790 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40791 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40792 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40793 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40794 & TRI & THC-500B & 487 & SSD-206A & 119 \\
\hline 40795 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 40796 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 40797 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 40798 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 40799 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 40800 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 40801 & TRI & THC-500B & 457 & SSD-206A & 83 \\
\hline 40802 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 40803 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 40804 & TRI & THC-500B & 458 & SSD-206A & 98 \\
\hline 40805 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40806 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40807 & TRI & THC-500B & 459 & SSD-206A & 112 \\
\hline 40808 & RECT & THC-500B & 449 & SSD-206A & 311 \\
\hline 40809 & RECT & THC-500B & 449 & SSD-206A & 311 \\
\hline 40819 & MOS/FET & MOS-160C & 463 & SSD-201A & 650 \\
\hline 40820 & MOS/FET & MOS-160C & 464 & SSD-201A & 658 \\
\hline 40821 & MOS/FET & MOS-160C & 464 & SSD-201A & 658 \\
\hline 40822 & MOS/FET & MOS-160C & 465 & SSD-201A & 666 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page & Type No. & Product Line & Catalog & \[
\begin{aligned}
& \text { File } \\
& \text { No. }
\end{aligned}
\] & DATABOOK Vol. No. & Page \\
\hline 40960 & RECT & THC-500B & 580 & SSD-206A & 333 & CA3028AH & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline 40964 & RF & RFT-700K & 581 & SSD-205A & 389 & CA3028AL & LIC & CDL-820E & 515 & SSD-201A & 545 \\
\hline 40965 & RF & RFT-700K & 581 & SSD-205A & 389 & CA3028AS & LIC & CDL-820E & 382 & SSD-201A & 344 \\
\hline 40967 & RF & RFT-700K & 596 & SSD-205A & 393 & CA3028B & LIC & CDL-820E & 382 & SSD-201A & 344 \\
\hline 40968 & RF & RFT-700K & 596 & SSD-205A & 393 & CA3028B/1-4 & LIC & CDL-820E & 400 & SSD-201A & 355 \\
\hline 40970 & RF & RFT-700K & 604 & SSD-205A & 397 & CA3028BF & LIC & CDL-820E & 382 & SSD-201A & 344 \\
\hline 40972 & RF & RFT-700K & 597 & SSD-205A & 402 & CA3028BS & LIC & CDL-820E & 382 & SSD-201A & 344 \\
\hline 40973 & RF & RFT-700K & 597 & SSD-205A & 402 & CA3029 & LIC & CDL-820E & 316 & SSD-201A & 507 \\
\hline 40974 & RF & RFT-700K & 597 & SSD-205A & 402 & CA3029A & LIC & CDL-820E & 310 & SSD-201A & 516 \\
\hline 40975 & RF & RFT-700K & 606 & SSD-205A & 406 & CA3030 & LIC & CDL-820E & 316 & SSD-201A & 507 \\
\hline 40976 & RF & RFT-700K & 606 & SSD-205A & 406 & CA3030A & LIC & CDL-820E & 310 & SSD-201A & 516 \\
\hline 40977 & RF & RFT-700K & 606 & SSD-205A & 406 & СА3033 & LIC & CDL-820E & 360 & SSD-201A & 488 \\
\hline 44001 & RECT & THC-500B & 495 & SSD-206A & 296 & CA3033A & LIC & CDL-820E & 360 & SSD-201A & 488 \\
\hline 44002 & RECT & THC-500B & 495 & SSD-206A & 296 & CA3033 \({ }^{\text {}}\) & LIC & CDL-820E & 516. & SSD-201A & 534 \\
\hline 44003 & RECT & THC-500B & 495 & SSD-206A & 296 & CA3035 & LIC & CDL-820E & 274 & SSD-201A & 74 \\
\hline 44004 & RECT & THC-500B & 495 & SSD-206A & 296 & CA3035H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline 44005 & RECT & THC-500B & 495 & SSD-206A & 296 & CA3035V1 & LIC & CDL-820E & 274 & SSD-201A & 74 \\
\hline 44006 & RECT & THC-500B & 495 & SSD-206A & 296 & СА 3036 & LIC & CDL-820E & 275 & SSD-201A & 202 \\
\hline 44007 & RECT & THC-500B & 495 & SSD-206A & 296 & CA3037 & LIC & CDL-820E & 316 & SSD-201A & 507 \\
\hline 45190 & PWR & PTD-187D & 559 & SSD-204A & 217 & CA3037A & LIC & CDL-820E & 310 & SSD-201A & 516 \\
\hline 45191 & PWR & PTD-187D & 559 & SSD-204A & 217 & CA3038 & LIC & CDL-820E & 316 & SSD-201A & 507 \\
\hline 45192 & PWR & PTD-187D & 559 & SSD-204A & 217 & CA3038A & LIC & CDL-820E & 310 & SSD-201A & 516 \\
\hline 45193 & PWR & PTD-187D & 559 & SSD-204A & 217 & СА 3039 & LIC & CDL-820E & 343 & SSD-201A & 166 \\
\hline 45194 & PWR & PTD-187D & 559 & SSD-204A & 217 & CA3039 & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline 45195 & PWR & PTD-187D & 559 & SSD-204A & 217 & CA3039L & LIC & CDL-820E & 515 & SSD-201A & 545 \\
\hline 45411 & DIAC & THC-500B & 577 & SSD-206A & 354 & CA3040 & LIC & CDL-820E & 363 & SSD-201A & 284 \\
\hline 45412 & DIAC & THC-500B & 577 & SSD-206A & 354 & CA3041 & LIC & CDL-820E & 318 & SSD-201A & 90 \\
\hline CA2111AE & LIC & CDL-820E & 612 & SSD-201A & 112 & CA3042 & LIC & CDL-820E & 319 & SSD-201A & 98 \\
\hline CA2111AQ & LIC & CDL-820E & 612 & SSD-201A & 112 & CA3043 & LIC & CDL-820E & 331 & SSD-201A & 57 \\
\hline CA3000 & LIC & CDL-820E & 121 & SSD-201A & 290 & CA3043H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3000/1-4 & LIC & CDL 820 E & 368 & SSD-201A & 296 & CA3044 & LIC & CDL-820E & 340 & SSD-201A & 78 \\
\hline CA3000H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3044V1 & LIC & CDL-820E & 340 & SSD-201A & 78 \\
\hline CA3001 & LIC & CDL-820E & 122 & SSD-201A & 304 & CA3045 & LIC & CDL-820E & 341 & SSD-201A & 221 \\
\hline CA3001/1-4 & LIC & CDL-820E & 369 & SSD-201A & 310 & CA 3045/1-4 & LIC & CDL-820E & 401 & SSD-201A & 227 \\
\hline CA3001H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3045F & LIC & CDL-820E & 341 & SSD-201A & 221 \\
\hline CA3002 & LIC & CDL-820E & 123 & SSD-201A & 258 & CA3045H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3002H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3045L & LIC & CDL-820E & 515 & SSD-201A & 545 \\
\hline CA3004 & LIC & CDL-820E & 124 & SSD-201A & 318 & CA3046 & LIC & CDL-820E & 341 & SSD-201A & 221 \\
\hline CA3005 & LIC & CDL-820E & 125 & SSD-201A & 324 & CA3047 & LIC & CDL-820E & 360 & SSD-201A & 488 \\
\hline CA3005H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3047A & LIC & CDL-820E & 360 & SSD-201A & 488 \\
\hline CA3006 & LIC & CDL-820E & 125 & SSD-201A & 324 & CA3048 & LIC & CDL-820E & 377 & SSD-201A & 250 \\
\hline CA3007 & LIC & CDL-820E & 126 & SSD-201A & 331 & CA3048H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3008 & LIC & CDL-820E & 316 & SSD-201A & 507 & CA3049H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3008A & LIC & CDL-820E & 310 & SSD-201A & 516 & CA3049L & LIC & CDL-820E & 515 & SSD-201A & 545 \\
\hline СА3010 & LIC & CDL-820E & 316 & SSD-201A & 507 & CA3049T & LIC & CDL-820E & 611 & SSD-201A & 363 \\
\hline CA3010A & LIC & CDL-820E & 310 & SSD-201A & 516 & CA3050 & LIC & CDL-820E & 361 & SSD-201A & 372 \\
\hline CA3011 & LIC & CDL-820E & 128 & SSD-201A & 264 & CA3051 & LIC & CDL-820E & 361 & SSD-201A & 372 \\
\hline CA3012 & LIC & CDL-820E & 128 & SSD-201A & 264 & CA3052 & LIC & CDL-820E & 387 & SSD-201A & 28 \\
\hline CA3012 \({ }^{\text {H }}\) & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3053 & LIC & CDL-820E & 382 & SSD-201A & 344 \\
\hline CA3013 & LIC & CDL-820E & 129 & SSD-201A & 62 & CA3054 & LIC & CDL-820E & 388 & SSD-201A & 336 \\
\hline CA3014 & LIC & CDL-820E & 129 & SSD-201A & 62 & CA3054H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3015 & LIC & CDL-820E & 316 & SSD-201A & 507 & CA3054L & LIC & CDL-820E & 515 & SSD-201A & 545 \\
\hline CA3015A & LIC & CDL-820E & 310 & SSD-201A & 516 & CA3058 & LIC & CDL-820E & 490 & SSD-201A & 380 \\
\hline CA3015A/1-4 & LIC & CDL-820E & 371 & SSD-201A & 525 & CA3059 & LIC & CDL-820E & 490 & SSD-201A & 380 \\
\hline CA3015H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3059H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3015L & LIC & CDL-820E & 515 & SSD-201A & 545 & CA3060AD & LIC & CDL-820E & 537 & SSD-201A & 466 \\
\hline CA3016 & LIC & CDL-820E & 316 & SSD-201A & 507 & CA3060BD & LIC & CDL-820E & 537 & SSD-201A & 466 \\
\hline CA3016A & LIC & CDL-820E & 310 & SSD-201A & 516 & CA3060D & LIC & CDL-820E & 537 & SSD-201A & 466 \\
\hline CA3018 & LIC & CDL-820E & 338 & SSD-201A & A 204 & CA 3060 E & LIC & CDL-820E & 537 & SSD-201A & 466 \\
\hline CA3018A & LIC & CDL-820E & 338 & SSD-201A & 204 & CA3060H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3018H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3062 & LIC & CDL-820E & 421 & SSD-201A & 401 \\
\hline CA3018L & LIC & CDL-820E & 515 & SSD-201A & 545 & CA3064 & LIC & CDL-820E & 396 & SSD-201A & 84 \\
\hline CA3019 & LIC & CDL-820E & 236 & SSD-201A & 162 & CA3065 & LIC & CDL-820E & 412 & SSD-201A & 106 \\
\hline CA3019H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3066 & LIC & CDL-820E & 466 & SSD-201A & 125 \\
\hline CA3020 & LIC & CDL-820E & 339 & SSD-201A & 270 & CA3067 & LIC & CDL-820E & 466 & SSD-201A & 125 \\
\hline CA3020A & LIC & CDL-820E & 339 & SSD-201A & 270 & CA3068 & LIC & CDL-820E & 467 & SSD-201A & 117 \\
\hline CA3020H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3070 & LIC & CDL-820E & 468 & SSD-201A & 143 \\
\hline CA3021 & LIC & CDL-820E & 243 & SSD-201A & 278 & CA3071 & LIC & CDL-820E & 468 & SSD-201A & 143 \\
\hline CA3022 & LIC & CDL-820E & 243 & SSD-201A & 278 & CA3072 & LIC & CDL-820E & 468 & SSD-201A & 143 \\
\hline CA3023 & LIC & CDL-820E & 243 & SSD-201A & A 278 & CA3075 & LIC & CDL-820E & 429 & SSD-201A & 53 \\
\hline CA3023H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3075H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3026 & LIC & CDL-820E & 388 & SSD-201A & 336 & CA3076 & LIC & CDL-820E & 430 & SSD-201A & 70 \\
\hline CA3026H & LIC & CDL-820E & 516 & SSD-201A & 534 & CA3076H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3028A & LIC & CDL-820E & 382 & SSD-201A & A 344 & CA3078AS & LIC & CDL-820E & 535 & SSD-201A & 479 \\
\hline CA3028AF & LIC & CDL-820E & 382 & SSD-201A & 344 & CA3078AT & LIC & CDL-820E & 535 & SSD-201A & 479 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & \begin{tabular}{l}
File \\
No.
\end{tabular} & DATABOOK Vol. No. & Page \\
\hline CA3078H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3078S & LIC & CDL-820E & 535 & SSD-201A & 479 \\
\hline CA3078T & LIC & CDL-820E & 535 & SSD-201A & 479 \\
\hline CA3079 & LIC & CDL-820E & 490 & SSD-201A & 380 \\
\hline CA3080 & LIC & CDL-820E & 475 & SSD-201A & 458 \\
\hline CA3080A & LIC & CDL-820E & 475 & SSD-201A & 458 \\
\hline CA3080AS & LIC & CDL-820E & 475 & SSD-201A & 458 \\
\hline CA3080H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3080S & LIC & CDL-820E & 475 & SSD-201A & 458 \\
\hline CA3081 & LIC & CDL-820E & 480 & SSD-201A & 170 \\
\hline CA3081H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3082 & LIC & CDL-820E & 480 & SSD-201A & 170 \\
\hline CA3082H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3083 & LIC & CDL-820E & 481 & SSD-201A & 174 \\
\hline CA3083F & LIC & CDL-820E & 481 & SSD-201A & 174 \\
\hline CA3083H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3084 & LIC & CDL-820E & 482 & SSD-201A & 178 \\
\hline CA3084H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3084L & LIC & CDL-820E & 515 & SSD-201A & 545 \\
\hline CA3085 & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085A & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085AF & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085AS & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085B & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085BF & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085BS & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3085F & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3085S & LIC & CDL-820E & 491 & SSD-201A & 409 \\
\hline CA3086 & LIC & CDL-820E & 483 & SSD-201A & 234 \\
\hline CA3088E & LIC & CDL-820E & 560 & SSD-201A & 42 \\
\hline CA3089E & LIC & CDL-820E & 561 & SSD-201A & 46 \\
\hline CA30900 & LIC & CDL-820E & 502 & SSD-201A & 36 \\
\hline CA3091D & LIC & CDL-820E & 534 & SSD-201A & 417 \\
\hline CA3091H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3093E & LIC & CDL-820E & 533 & SSD-201A & 196 \\
\hline CA3093H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3094AT & LIC & CDL-820E & 598 & SSD-201A & 388 \\
\hline CA3094BT & LIC & CDL-820E & 598 & SSD-201A & 388 \\
\hline CA3094T & LIC & CDL-820E & 598 & SSD-201A & 388 \\
\hline CA3095E & LIC & CDL-820E & 591 & SSD-201A & 240 \\
\hline CA3096AE & LIC & CDL-820E & 595 & SSD-201A & 185 \\
\hline CA3096E & LIC & CDL-820E & 595 & SSD-201A & 185 \\
\hline CA3102E & LIC & CDL-820E & 611 & SSD-201A & 363 \\
\hline CA3118AT & LIC & CDL-820E & 532 & SSD-201A & 210 \\
\hline CA3118H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3118T & LIC & CDL-820E & 532 & SSD-201A & 210 \\
\hline CA3120E & LIC & CDL-820E & Prel. & SSD-201A & 159 \\
\hline CA3121E & LIC & CDL-820E & Prel. & SSD-201A & 141 \\
\hline CA3146AE & LIC & CDL-820E & 532 & SSD-201A & 210 \\
\hline CA3146E & LIC & CDL-820E & 532 & SSD-201A & 210 \\
\hline CA3146H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3183AE & LIC & CDL-820E & 532 & SSD-201A & 210 \\
\hline CA3183E & LIC & CDL-820E & 532 & SSD-201A & 210 \\
\hline CA3183H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3458S & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3458T & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3541D & LIC & CDL-820E & 536 & SSD-201A & 429 \\
\hline CA3541H & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3558S & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3558T & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3741CH & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3741CS & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3741CT & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3741L & LIC & CDL-820E & 515 & SSD-201A & 545 \\
\hline CA3741S & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3741T & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3747CE & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3747CF & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3747CH & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline CA3747CT & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3747E & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3747F & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3747T & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3748CH & LIC & CDL-820E & 516 & SSD-201A & 534 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & \[
\begin{aligned}
& \text { File } \\
& \text { No. }
\end{aligned}
\] & DATABOOK Vol. No. & Page \\
\hline CA3748CS & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3748CT & LIC & CDL-820E & 531 & SSD-201A & 1 \\
\hline CA3748S & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA3748T & LIC & CDL-820E & 531 & SSD-201A & 501 \\
\hline CA6078AS & LIC & CDL-820E & 592 & SSD-201A & 496 \\
\hline CA6078AT & LIC & CDL-820E & 592 & SSD-201A & 496 \\
\hline CA6741S & LIC & CDL-820E & 592 & SSD-201A & 496 \\
\hline CA6741T & LIC & CDL-820E & 592 & SSD-201A & 496 \\
\hline CD2150 & LIC & CDL-820E & 308 & SSD-201A & 3 \\
\hline CD2151 & LIC & CDL-820E & 308 & SSD-201A & 3 \\
\hline CD2152 & LIC & CDL-820E & 308 & SSD-201A & 3 \\
\hline CD2153 & LIC & CDL-820E & 308 & SSD-201A & 43 \\
\hline CD2154 & LIC & CDL-820E & 402 & SSD-201A & 455 \\
\hline CD2500E & LIC & CDL-820E & 392 & SSD-201A & 437 \\
\hline CD2501E & LIC & CDL-820E & 392 & SSD-201A & 37 \\
\hline CD2502E & LIC & CDL-820E & 22 & SSD-201A & 7 \\
\hline CD2503E & LIC & CDL-820E & 392 & SSD-201A & 437 \\
\hline CD4000AD & COS/MOS & COS-278B & 479 & SSD-203A & 24 \\
\hline CD4000AE & cos/mos & COS-278B & 479 & SSD-203A & 24 \\
\hline CD4000AH & COS/MOS & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4000AK & COS/MOS & COS-278B & 79 & SSD-203A & 4 \\
\hline CD4001AD & COS/MOS & COS-278B & 479 & SSD-203A & 24 \\
\hline CD4001AE & COS/MOS & COS-278B & 479 & SSD-203A & 4 \\
\hline CD4001AH & Cos/mos & COS-278B & 517 & SSD-203A & 68 \\
\hline CD4001AK & COS/MOS & COS-278B & 479 & SSD-203A & 24 \\
\hline CD4002AD & COS/MOS & COS-278B & 479 & SSD-203A & 24 \\
\hline CD4002AE & cos/mos & COS-278B & 479 & SSD-203A & 24 \\
\hline CD4002AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4002AK & cos/mOS & COS-278B & 479 & SSD-203A & 24 \\
\hline CD4004A Series & Replaced & CD4024 & ries & & \\
\hline CD4006AD & COS/MOS & COS-278B & 479 & SSD-203A & 31 \\
\hline CD4006AE & Cos/mos & COS-278B & 479 & SSD-203A & 31 \\
\hline CD4006AH & Cos/mos & COS-278B & 517 & SSD-203A & 8 \\
\hline CD4006AK & cos/mos & COS-278B & 479 & SSD-203A & \\
\hline CD4007AD & cos/mos & COS-278B & 479 & SSD-203A & 37 \\
\hline CD4007 & cos/ & COS-278 & 479 & SSD-203A & 37 \\
\hline CD4007AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4007AK & cos/mos & COS-278B & 479 & SSD-203A & 37 \\
\hline CD4008AD & cos/mos & COS-278B & 479 & SSD-203A & 43 \\
\hline CD4008AE & COS/MOS & COS-278B & 479 & SSD-203A & 43 \\
\hline CD4008AH & cos/mos & COS-278B & 517 & SSD-203A & 68 \\
\hline CD4008AK & COS/MOS & COS-278B & 479 & SSD-203A & 43 \\
\hline CD4009AD & COS/MOS & COS-278B & 479 & SSD-203A & 48 \\
\hline CD4009AE & cos/mos & COS-278B & 479 & SSD-203A & 48 \\
\hline CD4009AH & COS/MOS & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4009AK & cos/mos & COS-278B & 479 & SSD-203A & 8 \\
\hline CD4010AD & cos/mos & COS-278B & 479 & SSD-203A & 48 \\
\hline CD4010AE & COS/MOS & COS-278B & 479 & SSD-203A & 48 \\
\hline CD4010AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4010AK & cos/mos & COS-278B & 479 & SSD-203A & \\
\hline CD4011AD & cos/mos & COS-278B & 479 & SSD-203A & 55 \\
\hline CD4011AE & cos/mos & COS-278B & 479 & SSD-203A & 55 \\
\hline CD4011AH & COS/MOS & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4011AK & cos/mos & COS-278B & 479 & SSD-203A & 55 \\
\hline CD4012AD & cos/mos & COS-278B & 479 & SSD-203A & \\
\hline CD4012AE & cos/mos & COS-278B & 479 & SSD-203A & 55 \\
\hline CD4012AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4012AK & cos/mos & COS-278B & 479 & SSD-203A & 5 \\
\hline CD4013AD & cos/mos & COS-278B & 479 & SSD-203A & 62 \\
\hline CD4013AE & cos/mos & COS-278B & 479 & SSD-203A & 2 \\
\hline CD4013AH & cos/mos & COS-278 & 517 & SSD-203A & 268 \\
\hline CD4013AK & cos/mos & COS-278B & 479 & SSD-203A & 62 \\
\hline CD4014AD & cos/mos & COS-278B & 479 & SSD-203A & 68 \\
\hline CD4014AE & cos/mOS & COS-278B & 479 & SSD-203A & 68 \\
\hline CD4014AH & cos/mOS & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4014AK & COS/MOS & COS-278B & 479 & SSD-203A & 68 \\
\hline CD4015AD & cos/mos & COS-278B & 479 & SSD-203A & 73 \\
\hline CD4015AE & cos/mos & COS-278B & 479 & SSD-203A & 73 \\
\hline CD4015AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4015AK & COS/MOS & COS-278B & 479 & A & 73 \\
\hline CD4016AD & COS/MOS & COS-278B & 479 & SSD-203A & 78 \\
\hline CD4016AE & COS/MOS & COS-278B & 479 & SSD-203A & 78 \\
\hline CD4016AH & COS/MOS & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4016AK & cos/mos & COS-278B & 479 & SSD-203A & 78 \\
\hline CD4017AD & cos/mos & COS-278B & 479 & SSD-203A & 84 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & \[
\begin{aligned}
& \text { File } \\
& \text { No. }
\end{aligned}
\] & DATA BOOK Vol. No & Page & Type No. & Product Line & Catalog & \[
\begin{aligned}
& \text { File } \\
& \text { No. }
\end{aligned}
\] & DATABOOK Vol. No. & Page \\
\hline CD4017AE & cos/mos & COS-278B & 479 & SSD-203A & 84 & CD4036AE & cos/mos & COS-278B & 613 & SSD-203A & 181 \\
\hline CD4017AH & cos/mos & cos-278B & 517 & SSD-203A & 268 & CD4036AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4017AK & cos/mos & cos-278B & 479 & SSD-203A & 84 & CD4036AK & cos/mos & COS-278B & 613 & SSD-203A & 181 \\
\hline CD4018AD & Cos/mOS & COS-278B & 479 & SSD-203A & 89 & CD4037AD & cos/mos & COS-278B & 576 & SSD-203A & 188 \\
\hline CD4018AE & cos/mos & Cos-278B & 479 & SSD-203A & 89 & CD4037AE & cos/mos & COS-278B & 576 & SSD-203A & 188 \\
\hline CD4018AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4037AK & cos/mos & COS-278B & 576 & SSD-203A & 188 \\
\hline CD4018AK & cos/mos & COS-278B & 479 & SSD-203A & 89 & CD4038AD & cos/mos & COS-278B & 503 & SSD-203A & 159 \\
\hline CD4019AD & cos/mos & cos-278B & 479 & SSD-203A & 94 & CD4038AE & cos/mos & COS-278B & 503 & SSD-203A & 159 \\
\hline CD4019AE & cos/mos & cos-278B & 479 & SSD-203A & 94 & CD4038AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4019AH & cos/mos & cos-278B & 517 & SSD-203A & 268 & CD4038AK & cos/mos & COS-278B & 503 & SSD-203A & 59 \\
\hline CD4019AK & cos/mos & COS-278B & 479 & SSD-203A & 94 & CD4039AD & cos/mOS & COS-278B & 613 & SSD-203A & 181 \\
\hline CD4020AD & cos/mos & COS-278B & 479 & SSD-203A & 99 & CD4039AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4020AE & cos/mos & cos-278B & 479 & SSD-203A & 99 & CD4039AK & COS/MOS & COS-278B & 613 & SSD-203A & 181 \\
\hline CD4020AH & cos/mos & cos-278B & 517 & SSD-203A & 268 & CD4040AD & cos/mos & COS-278B & Prel. & SSD-203A & 195 \\
\hline CD4020AK & cos/mOS & COS-278B & 479 & SSD-203A & 99 & CD4040AE & cos/mos & COS-278B & Prel. & SSD-203A & 195 \\
\hline CD4021AD & cos/mos & COS-278B & 479 & SSD-203A & 104 & CD4040AK & cos/mOS & COS-278B & Prel. & SSD-203A & 9 \\
\hline CD4021AE & cos/mos & cos-278B & 479 & SSD-203A & 104 & CD4041AD & cos/mos & COS-278B & 572 & SSD-203A & 199 \\
\hline CD4021AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4041AE & cos/mos & COS-278B & 572 & SSD-203A & 199 \\
\hline CD4021AK & cos/mos & cos-278B & 479 & SSD-203A & 104 & CD4041AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4022AD & cos/mos & COS-278B & 479 & SSD-203A & 109 & CD4041AK & cos/mos & COS-278B & 572 & 03A & 9 \\
\hline CD4022AE & cos/mos & COS-278B & 479 & SSD-203A & 109 & CD4042AD & COS/MOS & COS-278B & 589 & SSD-203A & 208 \\
\hline CD4022AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4042AE & COS/MOS & COS-278B & 589 & SSD-203A & 208 \\
\hline CD4022AK & cos/mOS & cos-278B & 479 & SSD-203A & 109 & CD4042AK & cos/mos & COS-278B & 589 & SSD-203A & 208 \\
\hline CD4023AD & cos/mos & cos-278B & 479 & SSD-203A & 55 & CD4043AD & cos/mos & COS-278B & 590 & SSD-203A & 214 \\
\hline CD4023AE & cos/mos & cos-278B & 479 & SSD-203A & 55 & CD4043AE & cos/mOS & COS-278B & 590 & SSD-203A & 214 \\
\hline CD4023AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4043AK & COS/MOS & COS-278B & 590 & SSD-203A & 214 \\
\hline CD4023AK & cos/mos & COS-278B & 479 & SSD-203A & 55 & CD4044AD & cos/mos & COS-278B & 590 & SSD-203A & 214 \\
\hline CD4024AD & cos/mos & cos-278B & 503 & SSD-203A & 114 & CD4044AE & cos/mos & COS-278B & 590 & SSD-203A & 214 \\
\hline CD4024AE & cos/mos & COS-278B & 503 & SSD-203A & 114 & CD4044AK & cos/mos & COS-278B & 590 & SSD-203A & 214 \\
\hline CD4024AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4045AD & cos/mOS & COS-278B & Prel. & SSD-203A & 222 \\
\hline CD4025AD & cos/mos & COS-278B & 479 & SSD-203A & 24 & CD4045AE & COS/MOS & COS-278B & Prel. & SSD-203A & 222 \\
\hline CD4025AE & cos/mos & Cos-278B & 479 & SSD-203A & 24 & CD4045AK & cos/mos & COS-278B & Prel. & SSD-203A & 222 \\
\hline CD4025AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4046AD & cos/mos & COS-278B & Prel. & SSD-203A & 224 \\
\hline CD4025AK & cos/mOS & cos-278B & 479 & SSD-203A & 24 & CD4046AE & cos/mos & COS-278B & Prel. & SSD-203A & 224 \\
\hline CD4026AD & cos/mos & cos-278B & 503 & SSD-203A & 120 & CD4046AK & cos/mos & COS-278B & Prel. & SSD-203A & 224 \\
\hline CD4026AE & cos/mos & COS-278B & 503 & SSD-203A & 120 & CD4047AD & COS/MOS & COS-278B & Prel. & SSD-203A & 228 \\
\hline CD4026AH & cos/mos & \(\cos 2788\) & 517 & SSD-203A & 268 & CD4047AE & cos/mos & COS-278B & Prel. & SSD-203A & 228 \\
\hline CD4026AK & cos/mos & cos-278B & 503 & SSD-203A & 120 & CD4047AK & cos/mos & COS-278B & Prel. & SSD-203A & 228 \\
\hline CD4027AD & cos/mos & cos-278B & 503 & SSD-203A & 129 & CD4048AD & cos/mos & COS-278B & Prel. & SSD-203A & 233 \\
\hline CD4027AE & cos/mos & cos-278B & 503 & SSD-203A & 129 & CD4048AE & cos/mOS & COS-278B & Prel. & SSD-203A & 233 \\
\hline CD4027AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4048AK & cos/mos & COS-278B & Prel. & SSD-203A & 233 \\
\hline CD4027AK & cos/mos & cos-278B & 503 & SSD-203A & 129 & CD4049AD & cos/mos & COS-278B & 599 & SSD-203A & 237 \\
\hline CD4028AD & cos/mos & cos-278B & 503 & SSD-203A & 135 & CD4049AE & cos/mos & COS-278B & 599 & SSD-203A & 237 \\
\hline CD4028AE & cos/mos & cos-278B & 503 & SSD-203A & 135 & CD4049AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4028AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4049AK & cos/mos & COS-278B & 59 & SSD-203A & 237 \\
\hline CD4028AK & cos/mos & COS-278B & 503 & SSD-203A & 135 & CD4050AD & COS/MOS & COS-278B & 599 & SSD-203A & 237 \\
\hline CD4029AD & cos/mos & COS-278B & 503 & SSD-203A & 140 & CD4050AE & cos/mos & COS-278B & 599 & SSD-203A & 237 \\
\hline CD4029AE & cos/mos & cos-278B & 503 & SSD-203A & 140 & CD4050AH & cos/mos & COS-278B & 517 & SSD-203A & 268 \\
\hline CD4C29AH & cos/mos & cos-278B & 517 & SSD-203A & 268 & CD4050AK & cos/mos & COS-278B & 599 & SSD-203A & 237 \\
\hline CD4029AK & cos/mos & COS-278B & 503 & SSD-203A & 140 & CD4051AD & cos/mos & COS-278B & Prel. & SSD-203A & 245 \\
\hline CD4030AD & cos/mos & COS-278B & 503 & SSD-203A & 147 & CD4051AE & cos/mos & COS-278B & Prel. & SSD-203A & 245 \\
\hline CD4030AE & cos/mos & COS-278B & 503 & SSD-203A & 147 & CD4051AK & cos/mos & cos-278B & Prel. & SSD-203A & 245 \\
\hline CD4030AH & cos/mOS & COS-278B & 517 & SSD-203A & 268 & CD4052AD & cos/mos & COS-278B & Prel. & SSD-203A & 245 \\
\hline CD4030AK & cos/mos & cos-278B & 503 & SSD-203A & 147 & CD4052AE & cos/mos & cos-278B & Prel. & SSD-203A & 245 \\
\hline CD4031AD & cos/mos & COS-278B & 569 & SSD-203A & 152 & CD4052AK & cos/mos & COS-278B & Prel. & SSD-203A & 245 \\
\hline CD4031AE & cos/mos & COS-278B & 569 & SSD-203A & 152 & CD4053AD & cos/mOS & COS-278B & Prel. & SSD-203A & 245 \\
\hline CD4031AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4053AE & cos/mos & COS-278B & Prel. & SSD-203A & 245 \\
\hline CD4031AK & cos/mos & COS-278B & 569 & SSD-203A & 152 & CD4053AK & cos/mos & cos-278B & Prel. & SSD-203A & 245 \\
\hline CD4032AD & cos/mos & COS-278B & 503 & SSD-203A & 159 & CD4054AD & cos/mos & cos-278B & Prel. & SSD-203A & 249 \\
\hline CD4032AE & cos/mos & COS-278B & 503 & SSD-203 & 159 & CD4054AE & cos/mos & Cos-278B & Prel & SSD-203A & 249 \\
\hline CD4032AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4054AK & cos/mos & COS-278B & Prel. & SSD-203A & 249 \\
\hline CD4032AK & cos/mos & COS-278B & 503 & SSD-203A & 159 & CD4055AD & cos/mos & COS-278B & Prel. & SSD-203A & 249 \\
\hline CD4033AD & cos/mos & COS-278B & 503 & SSD-203A & 120 & CD4055AE & cos/mos & \(\cos -278 \mathrm{~B}\) & Prel. & SSD-203A & 249 \\
\hline CD4033AE & cos/mos & COS-278B & 503 & SSD-203A & 120 & CD4055AK & cos/mos & COS-278B & Prel. & SSD-203A & 249 \\
\hline CD4033AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CD4056AD & cos/mos & COS-278B & Pre & SSD-203A & 249 \\
\hline CD4033AK & cos/mos & COS-278B & 503 & SSD-203A & 120 & CD4056AE & cos/mos & COS-278B & Prel. & SSD-203A & 249 \\
\hline CD4034AD & COS/M(S & COS-278B & 575 & SSD-203A & 164 & CD4056AK & cos/mos & COS-278B & Prel. & SSD-203A & 249 \\
\hline CD4034AE & cos/mos & COS-278B & 575 & SSD-203A & 164 & CD4057AD & cos/mos & COS-278B & Prel. & SSD-203A & 254 \\
\hline CD4034AH & cos/mos & cos-278B & 517 & SSD-203A & 268 & CD4058AD & cos/mos & COS-278B & Prel. & SSD-203A & 262 \\
\hline CD4034AK & cos/mos & COS-278B & 575 & SSD-203A & 164 & CD4058AK & cos/mos & cos-278B & Pre & SSD-203A & 262 \\
\hline CD4035AD & cos/mos & COS-278B & 568 & SSD-203A & 173 & CH2102 & PWR & SPG-201J & 469 & SSD-204A & 544 \\
\hline CD4035AE & cos/mos & COS-278B & 568 & SSD-203A & 173 & CH2270 & PWR & SPG-201J & 469 & SSD-204A & 544 \\
\hline CD4035AH & cos/mos & COS-278B & 517 & SSD-203A & 268 & CH2405 & PWR & SPG-201J & 469 & SSD-204A & 544 \\
\hline CD4035AK & cos/mos & cos-278 & 568 & SSD-203A & 173 & CH3053 & PWR & SPG-201J & 469 & SSD-204A & 544 \\
\hline CD4036AD & cos/mos & COS-278B & 613 & SSD-203A & 181 & CH3439 & PWR & SPG-201J & 469 & SSD-204A & 54 \\
\hline
\end{tabular}

\section*{Index to Devices}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page & Type No. & Product Line & Catalog & File No. & DATABOOK Vol. No. & Page \\
\hline CH3440 & PWR & SPG-201J & 469 & SSD-204A & 544 & CR324 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CH4036 & PWR & SPG-201J & 469 & SSD-204A & 544 & CR325 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CH4037 & PWR & SPG-201J & 469 & SSD-204A & 544 & CR331 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CH5320 & PWR & SPG-201J & 469 & SSD-204A & 544 & CR332 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CH5321 & PWR & SPG-201J & 469 & SSD-204A & 544 & CR333 & PECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CH5322 & PWR & SPG-201J & 469 & SSD-204A & 544 & CR334 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CH5323 & PWR & SPG-201J & 469 & SSD-204A & 544 & CR335 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR101 & RECT & THC-500B & 84 & SSD-206A & 337 & CR341 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR102 & RECT & THC-500B & 84 & SSD-206A & 337 & CR342 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR103 & RECT & THC-500B & 84 & SSD-206A & 337 & CR343 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR105 & RECT & THC-500B & 84 & SSD-206A & 337 & CR344 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR106 & RECT & THC-500B & 84 & SSD-206A & 337 & CR351 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR107 & RECT & THC-500B & 84 & SSD-206A & 337 & CR352 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR108 & RECT & THC-500B & 84 & SSD-206A & 337 & CR353 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR109 & RECT & THC-500B & 84 & SSD-206A & 337 & CR354 & RECT & THC-500B & 60 & SSD-206A & 344 \\
\hline CR110 & RECT & THC-500B & 84 & SSD-206A & 337 & HC1000 & HYB & PHC-600A & 565 & SSD-204A & 550 \\
\hline CR201 & RECT & THC-500B & 86 & SSD-206A & 341 & HC1000H & HYB & PHC-600A & 565 & SSD-204A & 550 \\
\hline CR203 & RECT & THC-500B & 86 & SSD-206A & 341 & HC2000 & HYB & PHC-600A & 566 & SSD-204A & 555 \\
\hline CR204 & RECT & THC-500B & 86 & SSD-206A & 341 & HC2000H & HYB & PHC-600A & 566 & SSD-204A & 555 \\
\hline CR206 & RECT & THC-500B & 86 & SSD-206A & 341 & HC3000 & HYB & PHC-600A & 539 & SSD-204A & 560 \\
\hline CR208 & RECT & THC-500B & 86 & SSD-206A & 341 & HC3100 & HYB & PHC-600A & 564 & SSD-204A & 563 \\
\hline CR210 & RECT & THC-500B & 86 & SSD-206A & 341 & HC4005 & HYB & PHC-600A & 571 & SSD-204A & 566 \\
\hline CR212 & RECT & THC-500B & 86 & SSD-206A & 341 & HC4005A & HYB & PHC-600A & 571 & SSD-204A & 566 \\
\hline CR273/8008 & RECT & THC-500B & 100 & SSD-206A & 350 & HC4012 & HYB & PHC-600A & 571 & SSD-204A & 566 \\
\hline CR274/872A & RECT & THC-500B & 100 & SSD-206A & 350 & HC4012A & HYB & PHC-600A & 571 & SSD-204A & 566 \\
\hline \[
\begin{gathered}
\text { CR275/866A/ } \\
3 \mathrm{~B} 25 / 3 \mathrm{~B} 28
\end{gathered}
\] & RECT & THC-500B & 100 & SSD-206A & 350 & HC4015
HC4015A & \[
\begin{aligned}
& \text { HYB } \\
& \text { HYB }
\end{aligned}
\] & PHC-600A & 571
571 & SSD-204A & 566
566 \\
\hline CR280 & RECT & THC-500B & 86 & SSD-206A & 341 & QR2900 & RECT & THC-500 & 571 & SSD-206A & 8 \\
\hline CR301 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2901 & RECT & THC-500B & _ & SSD-206A & 8 \\
\hline CR302 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2902 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR303 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2903 & RECT & THC-500B & - & SSU-206A & 8 \\
\hline CR304 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2904 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR305 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2905 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR306 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2906 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR307 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2907 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR311 & RECT & THC-500B & 60 & SSD-206A & 344 & OR2908 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR312 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2909 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR313 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2910 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR314 & RECT & THC-500B & 60 & SSD-206A & 344 & QR2911 & RECT & THC-500B & - & SSD-206A & 8 \\
\hline CR315 & RECT & THC-500B & 60 & SSD-206A & 344 & R47M10 & RF & RFT-700K & 605 & SSD-205A & 410 \\
\hline CR316 & RECT & THC-500B & 60 & SSD-206A & 344 & R47M13 & RF & RFT-700K & 605 & SSD-205A & 410 \\
\hline CR317 & RECT & THC-500B & 60 & SSD-206A & 344 & R47M15 & RF & RFT-700K & 605 & SSD-205A & 410 \\
\hline CR321 & RECT & THC-500B & 60 & SSD-206A & 344 & & & & & & \\
\hline CR322 & RECT & THC-500B & 60 & SSD-206A & 344 & & & & & & \\
\hline CR323 & RECT & THC-500B & 60 & SSD-206A & 344 & & & & & & \\
\hline
\end{tabular}
```

