

Changeur de Fréquence 50Hz-400Hz. SDCF 300

> NOTICE TECHNIQUE

CHANGEUR DE FREQUENCE SDCF 300

SOMMAIRE

			page	5
I	-	CARACTERISTIQUES ELECTRIQUES	1	
		I-1 - TENSION d'ENTREE	1	
		I-2 - CARACTERISTIQUES DE SORTIE	1	
II	-	CONDITION d'ENVIRONNEMENT	2	
III	-	CARACTERISTIQUES PHYSIQUES	2	
IV	-	FONCTIONNEMENT	3	
		IV-1 - PRINCIPE	3	
		IV-2 - PILOTE	4	
		IV-3 - ETAGE DE PUISSANCES	7	
		IV-4 - FILTRAGE	7	
		IV-5 - ALIMENTATION	8	
V	-	MISE EN OEUVRE	3	
		Vue de la face avant	9	
		Vue de la face arrière	9	
		Liste des composants électroniques 10	à 15	

I - .CARACTERISTIQUES ELECTRIQUES

I-1 - Tension d'entrée -

Le changeur de fréquence peut être alimenté au choix à partir du secteur 127/220V 50 Hz, ou à partir de batterie 26V. Dans ce dernier cas, il existe une protection contre les inversions de polarité par diode et fusible.

I-2 - Caractéristiques de sortie -

I-2-1 - Trois tensions de sortie sont disponibles 208, 115, 26 Veff, pouvant chaques débiter 300 VA (pour le 208,115V) et 60 VA pour la sortie 26 Veff. Cette dernière puissance est limitée par un fusible inséré dans cette sortie.

I-2-2 - Fréquence -

I-2-3 - Régulation -

I-2-4 - Stabilité -

En tension \leq à 5.10⁴ par degré C En fréquence \leq à 3.10⁻⁴ par degré C

I-2-5 - Distorsion sur charge résistive

I-2-6 - Rendement -

Sur alimentation secteur à caractéristique nominale $\eta > 60\%$ Sur entrée batterie à caractéristique nominale $\eta > 65\%$

I-2-7 - Cos Ψ ≥ 0,7 AR

I-2-8 - Protection -

Contre les surtensions et sous-tensions réseau ou batterie, le conver tisseur s'arrête tant que le défaut persiste.

Contre les inversions de polarité à l'entrée, cette fausse manoeuvre fait fondre le fusible d'alimentation.

Contre les surpuissances sur la sortie 26V, par fusible.

Contre les courts-circuits sur les autres sorties, par limitation électronique du courant.

I-2-9 - Isolement claquage -

Le convertisseur tient 1500 Veff pendant 1 minute entre les entrées secteur réunies et la masse mécanique

1500 Veff pendant 1 minute entre les sorties réunies et la masse mécanique.

500 V continu pendant 1 minute entre les entrece continues réunies, et la masse mécanique. La résistance d'isolement doit être supérieure à 100 MM.

II - CONDITION D'ENVIRONNEMENT

II-1 - Température d'utilisation -

0° C < T < + 55° C

II-2 - Température de stockage -

-10° C < T <+ 70° C

II-3 - Refroidissement par convection naturelle

III - CARACTERISTIQUES PHYSIQUES

III-1 - Face avant - Planche 1

Interrupteur, fusible réseau

Interrupteur batterie

Potentiomètre d'ajustage tension à fente tournevis

Voltmètre de lecture tension de sortie classe 2,5 branché sur la sortie 115 Veff.

1 voyant marche, arrêt

III-2 - Face arrière - Planche 2

Raccordement au secteur par prise trois broches
Répartiteur tension d'entrée 127/220V
Prise de sortie 0, 26, 115,208V équipée d'une fiche avec serre cable.
Entrée continue 26V sur borne à vis type FEREL

III-3 - Cablage prise de sortie -

0 borne 1 26 borne 4 115 borne 3 208 borne 5

masse borne 2

III-4 - Cablage entrée -

Borne 3 masse

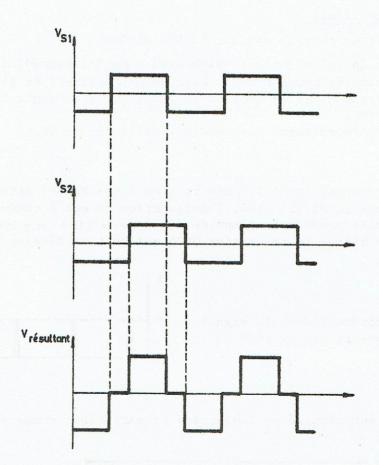
borne 1-2 secteur

III-5 - Présentation -

En coffret standard 19 pouces 3 unités

Profondeur < à 500 (à partir face avant

Accessoires joints ; cordon secteur, prise avec fiche de sortie.


IV - FONCTIONFEMENT

IV-1 - Principe -

Le convertisseur est composé de quatre étages de puissance délivrant chacun des signaux rectangulaires.

Ces étages sont déphasés deux par deux de 60° entre eux, mais le déphasage des deux derniers par rapport aux deux premiers est variable, ce qui nous permet de réguler la tension de sortie.

Le déphasage de 60° entre deux étages nous permet d'obtenir le signal suivant au secondaire de deux transformateurs % et 14

Les deux autres étages nous délivre le même signal qui se déphasera par rapport à celui -ci pour réguler

L'analyse harmonique d'un tel signal nous montre qu'il ne contient que des impairs, mais pas de 3.

L'addition par transformateur de ces deux signaux résultants même déphasés nous donne un signal en sortie qui lui aussi est dépouvu d'harmonique 3. Ce qui nous permet avec un filtre simple d'obtenir une sinusoïde à faible distorsion.

IV-2 - Commande des étages de puissance - Pilote -

Il peut se décomposer en 8 sous-ensembles :

- Alimentation stabilisée
- Oscillateur
- Compteur
- Déphaseur
- Régulation tension
- Régulation courant
- Surtension sous-tension
- Amplificateur drivers

IV-2-1 - Alimentation stabilisée -

Q 101 fournit un courant contant à Q102 et Q103

Q103 suivant la valeur de la tension aval par l'intermédiaire de R105,R107 tire plus ou moins de courant de la base de Q102 celui-ci se bloque ou se sature, stabilisant ainsi la tension en JI01, que l'on règle à 15V à l'aide de R106 ou de R108.

R115 et CR104 fournissent une tension auxiliaire de 5V.

IV-2-2 - Oscillateur -


Lorsque le condenstaur C103 à une tension à ses bornes atteignant la valeur d'amorçage du D5 K2 Q104, l'unijonction se met à conduire et une impulsion apparait pendant le temps de décharge de C103 aux bornes de R112 Cette impulsion bloque le transistor Q105 qui voit sa tension collecteur monter à 5V.

en J102, nous obtenons donc le signal suivant,1a fréquence est de 2400 Hz

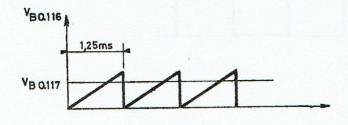
IV-2-3 - Compteur -

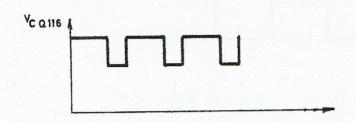
Le compteur est composé de 3 bascules schématisées comme suit :

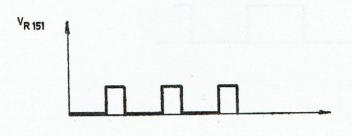
Forme des signaux

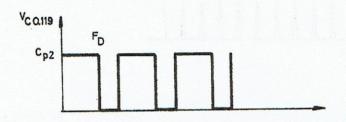
Nous obtenons ainsi trois signaux déphasés entre eux, ce qui nous permettra donc d'obtenir les signaux dépourvus d'harmonique 3 dont nous avons besoin.

1V-2-4 - Système déphaseur -


Nous différencions les deux signaux issus de Q107,Q120, ce qui nous permet d'avoir des impulsions à une fréquence de 800 Hz.


Le condensateur C112 se charge à travers R115, et à l'arrivée de ces impulsions sur la base de Q115 il se décharge.


Une dent de scie est donc appliquée sur la base de Q116.


Sur la base de Q117, nous envoyons une tension continue proportionnelle à la tension ou au courant de sortie.

Forme des signaux -

NOTA : C'est le front de descente du signal qui déclenche les bascules.

Nous constatons donc qu'en fonction de la tension continue, le signal d'horloge se déplace, et déclenchera plus ou moins tôt la demie bascule, AR 103.

Nous venons donc d'élaborer des signaux rectangulaires Q1 et $\overline{\rm Q1}$ sur $\frac{1}{2}$ AR103, il nous reste à en créer deux autres $\overline{\rm Q2}$ et $\overline{\rm Q2}$ sur l'autre $\frac{1}{2}$ de AR103 déphasés de 60° par rapport aux précédents.

Nous avons pour cela des étages identiques aux précédents (Q121, Q122, Q123,Q124,Q125). Nous envoyons une tension continue ajustable sur la base de Q123 de manière à obtenir un $C_{\rm P3}$ déphasé de 60° par rapport au $C_{\rm P2}$

IV-2-5 - Régulation de tension -

L'enroulement auxiliaire de la self L2 détecte une tension proportion - nelle à la tension de sortie.

Elle est redréssée et filtrée dans C116. Cette tension est comparée à une référence (CR120) AR104 amplifie la tension d'erreur et l'émetteur Followwer Q120 transmet cette tension à la base de Q117, ce qui a pour effet nous l'avons vu d'amener un déphasage entre nos deux tensions résultantes en sortie.

IV-2-6 - Régulation courant -

L'électronique est identique. La tension proportionnelle au courant étant détectée aux bornes de la self série L 3

IV-2-7 - Surtension - sous-tension -

Tant que la tension sur la base de Q111 n'a pas atteint une certaine valeur, celui-ci conduit, il bloque Q112 qui lui-même bloque Q113, ce qui rend Q114 conducteur. Celui-ci met alors un zéro sur les bases de Q108 et Q109 qui sont alors bloqués.

Au delà d'un certain niveau Q111 se bloque, Q112 devient conducteur, Q113

également, ce qui bloque Q114, le système démarre.

En continuant à monter en tension d'entrée, le potentiel sur la base de Q112 atteint celui de son émetteur, il se bloque. La résistance R133 est sur vérouillage supplémentaire.

Q112 se bloquant, Q113 se bloque, Q114 conduit et bloque à nouveau les étages drivers.

IV-2-8 - Etages Drivers-

Il y en a quatre et sont identiques.

Chacun est attaqué par les signaux Q et \overline{Q} issus de AR101 et AR106, AR103 Les étages Q107 et Q110 ne sont que des circuits NAND classiques à une entrée.

Q108 et Q109 recoivent respectivement sur leurs bases des signaux rectan - gulaires en opposition de phase et sont chargés par un transformateur drivers dont les secondaires attaquent un étage de puissance puch-pull.

IV-3 - Etage de puissance -

Il est composé de quatre sous-ensembles identiques.

Chaque étage est attaqué par les secondaires des transformateurs drivers (TS 483) c'estun puch-pullfonctionnant en signaux carrés.

Les diodes inverses sont là pour éliminer la puissance réactive du système Les quatre secondaires des transformateurs de puissance (TS 482) sont montés en série. Nous obtenons ainsi la somme des quatre signaux rectan - gulaires.

Nous obtenons ensuite la sinusoïde en filtrant le signal.

IV-4 - Filtrage -

Le filtrage est effectué par les cellules L215,C8 et L216,C7 accordées sur 400 Hz.Le filtrage est relativement efficace du fait que le premier harmonique a éliminer est l'harmonique 5.

IV-5 - Alimentation -

La tension continue néccessaire au fonctionnement du convertisseur est fournie soit directement si l'on utilise les entrées batterie, soit par le redressement double alternance, L1,C5, C6, CR1, CR2, CR3, CR4.

V - MISE EN OEUVRE

- V 1 Insérer un fusible dans le circuit alimentation batterie
- V-2 Monter la carte circuit imprimé sur un prolongateur correspondant uniquement à la partie alimentation. Les transformateurs drivers se trouvent ainsi déconnectés ce qui évite de détruire du matériel, au cas ou les compteurs ne basculeraient pas normalement.

V-3 - Réglage pilote -

Régler la tension régulée à + 15V à l'aide de R106 ou R108 Vérifier l'alimentation 5V (Zener CR4)

Ajuster R113 de telle sorte que le composante continue à ses bornes soit de l'ordre de 1,2V

Ajuster la fréquence des impulsions de l'unijonction à 2400 Hz .

Ajuster la tension crête de la dent de scie aux bornes de C112 à une valeur légèrement supérieure à 5V (R46).

Ajuster R172 de telle sorte que le front descendant du signal observé sur le collecteur de R125 au 2/3 de la période de récurrence.

Régler la sous-tension à 18 V (R130) Q114 se bloque

Régler la surtension à 33 V (R134) Q114 conduit

Tous les drivers besculent normalement à 400 Hz

Brancher le pilote sur deux rallonges

Monter la tension d'alimentation à 26V en ayant pris soin de limiter le courant. (Convertisseur non chargé)

Vérifier la bonne commutation des charges de puissance et surtout leurs phases respectives (60° entre les deux premiers) - (60° entre les deux derniers)

Ajuster la tension de sortie à 115 Veff (R156)

Charger le convertisseur à 300 VA

Prérégler la limitation en courant (R180) l'ajuster à 2,7A (position 115V)

Ajuster la distorsion au minimum (300 VA) à l'aide de R172

Vérifier les caractéristiques de l'appareil

Faire l'essai sur l'entrée secteur

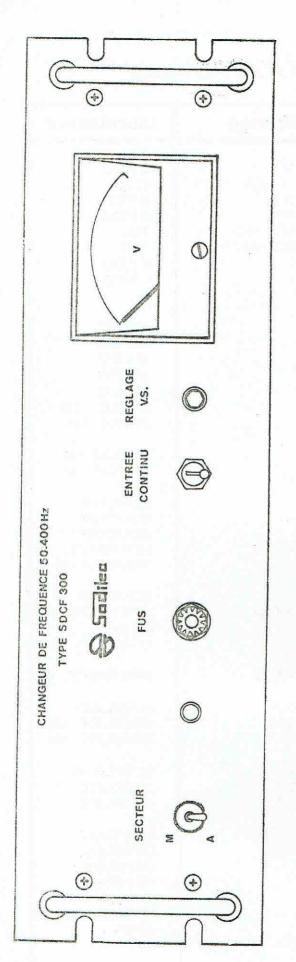
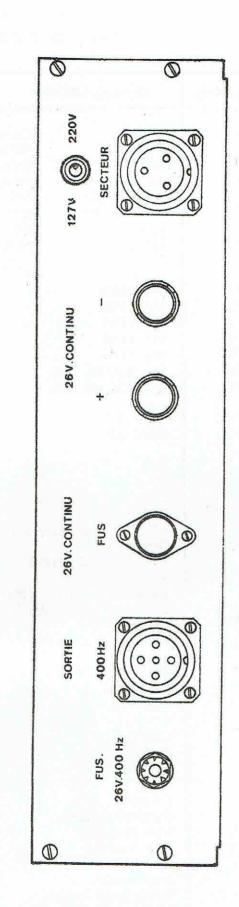
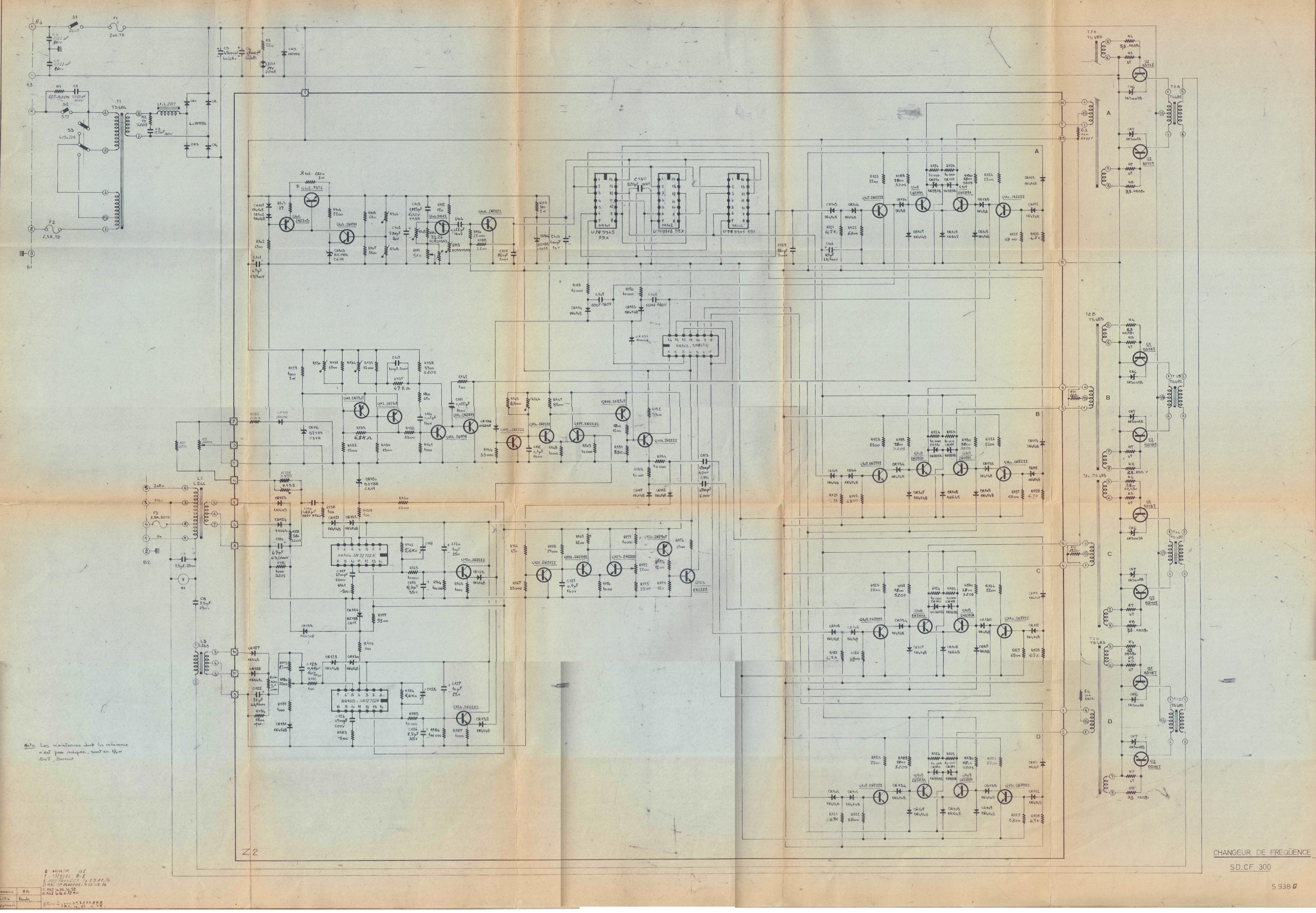



PLANCHE 1

LISTE DES COMPOSANTS ELECTRONIQUES

repère	désignation	référence	fournisseur
C1 C2 C3 C4 C5 C6 C7 C8	22 nf 400V 0,1 µf 160V 22 nf 400V 22 nf 400V 47000 µf 40V 47000 µf 40V 7,5 µf 250V 7,5 µf 250V	C296 TA/A CPM 50 CPM 50 FELSIC HG FELSIC HG	EFCO CGC EFCO EFCO SIC SIC EFCO EFCO
CR1 CR2 CR3 CR4 CR5 CR6 CR7	1N 1186 1N 1186 1N 1186 1N 1186 1N 1186 1N 3001B AB 1N 3001B AB		SILEC SILEC SILEC SILEC SILEC (4) SILEC (4)
Q1 Q2	BDY 57 BDY 57		SE SCO (4) SE SCO (4)
R1 R2 R3 R4 R5 R6	220 n 0,5W5% 10 n 0,5W5% 220 n 0,25W5% 3,3 n 47 n 0,25W5% Dispo	S20 S S20 S S07 RWM 4X10 S07	SOVCOR SOVCOR SOVCOR SFERNICE (4) SOVCOR (4)
R7 R8 R9 R10 R11	47 n O,25W5 % 3,3 n 2200 n 0/6 L=20 220 n O,25W5 % Dispo	S07 RWM 4X10 Q22 S07	SOVCOR (4) SFERNICE (4) LEGPA SOVCOR
R12	10 n	RWM 4X10	SFERNICE (4)
T1 T2 T3	TS 484 TS 483 TS 482	3. 10909 3. 10839 3. 10912	SODILEC SODILEC (4) SODILEC (4)
L1 L2 L3	L 281 L 266 L 265	3, 10913 3, 10908 3, 10906	SODILEC SODILEC SODILEC
F1 F2 XF1 XF2	Fusible 20A Fusible 2,5A Pte fusible Pte fusible	D2O TD/2O D8TD/2,5 235 30 23312	CEHESS CEHESS CEHESS CEHESS
S1 S2 S3	Inverseur Inverseur bipol. Inverseur bipol.	2605 519 L 409×204	RUSSENBERG APR APR

repère	désignation	référence	fournisseur
DS1 XDS1	Voyant 24V2OmA Pte voyant Cabochon blanc	LILIPUT LAF 288, 1 288, 4, 2,	SIEMELEC SIEMELEC SIEMELEC
В1	Prise mâle Prise femelle Serre cable	EM 23C FFD 23C SC. 2. 9. 11	SOCAPEX SOCAPEX SOCAPEX
B2 B3 B4	Prise femelle Prise mâle Serre cable Borne noire Borne rouge	EF 25 S FMD 25 S SC. 2. 9. 11 S20 28 2N S20 28 2R	SOCAPEX SOCAPEX SOCAPEX DYNA DYNA
M1	Voltmètre type 96 redresseur incorpore O à 150V repère 115V Classe 2,5%		O.M.
F3 XF3	Fusible 2,5A Pte fusible	D8TD/2,5 23312	CEHESS CEHESS
J1 J2	Réceptacle Receptacle	25 4-11 AFZ 25 4-11 AFZ	SOCAPEX SOCAPEX
		TO VES 10 10 10 10 10 10 10 10 10 10 10 10 10	


Z2

repère	désignation	référence	fournisseur	
C101 C102 C103 C104 C105 C106 C107 C108 C109 C110 C111 C112 C113 C114 C115 C116 C117	CABLAGE C.I. 47 µf 63/100V 100 µf 20V 15 nf 400V 22 nf 160V 100 µf 10V 47 µf 63/100V 10 nf 160V 10 nf 160V 100 pf 500V 0,01 µf 160V 22 nf 160V 22 nf 160V 0,1 µf 160V 4,7 nf 400V 50 pp 63/100V 4,7 nf 400V Dispo	3. 12565 P.015 CTS 13 FM 5R CPM 50 CTS 13 P.015 CPM 50	SIC FIRADEC EFCO EFCO FIRADEC SIC EFCO EFCO EFCO EFCO EFCO EFCO EFCO EFC	
C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129	4,7 μf 35 V 10 μf 25 V 0,1 μf 160 V 22 μf 63/100 V 0,47 μf 160 V 4,7 nf 400 V Dispo 2,2 μf 35 V 10 μf 25 V 820 pf 500 V	CTS 13 CTS 13 CPM 50 P.015 PF 60 CPM 50 CTS 13 CTS 13 DIZ 608 DIZ 608	FIRADEC FIRADEC EFCO SIC PRECIS EFCO FIRADEC FIRADEC LCC LCC	
C130 CR101 CR102 CR103 CR104 CR105 CR106 CR107 CR108 CR109 CR110 CR111 CR1112 CR1113 CR1114 CR1115 CR1116 CR1117 CR1118 CR1119	820 pf 500V 1N 4148 1N 4148 BZY88C6V8 BZX85C5V1R 1N 4148 1N 4148 1N 4448 1N 4448 1N 981B 1N 981B 1N 981B 1N 4148 1N 4148 1N 4148 1N 4148 1N 4148 1N 4148 BZY88C3V9 1N 4148 1N 4148 1N 4148	DI Z 608	SE SCO SE SCO SE SCO (4) SE SCO (4) SE SCO (4) SILEC (4) SILEC (4) SILEC (4) SILEC (4) SILEC (4) SILEC (4) SE SCO (4) SE SCO SE SCO SE SCO SE SCO	

repère	désignation	référence	fournisseur
CR120 CR121 CR122 CR123 CR124 CR125 CR126 CR127 CR128 CR129 CR130 CR131 CR132 CR133 CR134 CR135 CR136 CR137	B ZY 88C5V1 1N 4148 1N 4148 1N 645 1N 645 1N 4148 B ZY 88C5V1 1N 645 1N 645 1N 4148		RT
Q101 Q102 Q103 Q104 Q105 Q106	2N 2905 73T2 2N 1711 D5K2 2N 2222 Dispo		TEXAS SESCO SGS G.E. TEXAS
Q107 Q108 Q109 Q110 Q111 Q112 Q113 Q114 Q115 Q116 Q117 Q118 Q119 Q120 Q121 Q122 Q123 Q124	2N 2222 2N 2891 2N 2891 2N 2222 2N 2907 2N 2907 2N 1711 2N 2219 2N 2222 2N 2222		TEXAS (4) SESCO (4) SESCO (4) TEXAS (4) TEXAS
Q125 Q126	2N 2222 2N 2222		TEXAS TEXAS
R101 R102 R103	180 a 2W10 % 4,7 Ka 0,25 W5 % 27 a 0,25 W5 %	RC42 S07 S07	AB SOVCOR SOVCOR

repère	désignation	référence	fournisseur
R104 R105	2,2 Ka 0,25W5 % 680 a 0,25W5 %	S07 S07	SOVCOR SOVCOR
R106 R107 R108	Ajustable 560 n 0,25W5% Ajustable	S 07	SOVCOR
R109 R110 R111 R112 R113	Ajustable 33,2 Kn 0,25W1% 5 Kn 120 n 0,25W5% Ajustable	RCM S05K3 910-20 S07	SFERNICE I.R.C. SOVCOR
R114 R115 R116 R117	22 Kn O,25W5% 100 n 2W10% 150 n O,5W5% Dispo	S07 RC42 S20S	SOVCOR AB SOVCOR
R118 R119 R120 R121 R122 R123 R124 R125 R126 R127 R128 R129 R130	Dispo 10 Ka	\$07 \$07 \$07 \$07 \$07 \$07 \$07 \$07 \$07 \$07	SOVCOR SOVCOR (4) SOVCOR (4) SOVCOR (4) SOVCOR (4) SOVCOR (4) SOVCOR (4) SOVCOR (4) SOVCOR (4) SOVCOR (4) SOVCOR (4)
R131 R132 R133	6,8 Ka O,25 W5 % 1,5 Ka O,25 W5 % 6,8 Ka O,25 W5 %	507 507 507	SOVCOR SOVCOR SOVCOR
R134 R135 R136 R137 R138 R139 R140 R141 R142 R143	Ajustable 12 Ka O, 25 W5 % 1,5 Ka O, 25 W5 % 47 Ka O, 25 W5 % 3,3 Ka O, 25 W5 % 470 a O, 25 W5 % 1 Ka O, 25 W5 % 100 a O, 25 W5 % Dispo	507 507 507 507 5205 507 507 507	SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR
R144 R145 R146	33 Ka O, 25W5 % 47 Ka O, 25W5 % Ajustable	S07	SOVCOR SOVCOR
R147 R148 R149 R150 R151 R152 R153 R154 R155	8,2 Kn O,25W5 % 1 Kn O,25W5 % 10 Kn O,25W5 % 1,2 Kn O,25W5 % 33 Kn O,25W5 % 3,9 Kn O,25W5 % 10 Kn O,25W5 % 10 Kn O,25W5 % 3,9 Kn O,25W5 % 3,9 Kn O,25W5 %	507 507 507 507 507 507 507 507	SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR SOVCOR

repère	désignation	référence	fournisseur
R156 R157 R158 R159 R161 R162 R163 R164 R165 R166 R167 R177 R177 R177 R177 R178 R183 R184 R185 R187 R189 R191 R193 R194 R195	Dispo 2, 2 Ka	S07 S07 S07 S07 S07 S07 S07 S07	SOVCOR SOVCOR
AR101 AR102 AR103 AR104 AR105 AR106	U7A 9945 59X U7A 9945 59X SN 8473 SN 72702N SN 72702N U7A 9945 59X		SGS SGS TEXAS TEXAS TEXAS SGS
P101 P102	Connecteur Connecteur	254-11 AM 254-11 AM	SOCAPEX SOCAPEX
			3.0

