OCH DOLLU CHARLO CHARLO CHARLA COLOR CHARLA CHARLA SHARA CHARLA C "TRADER" SERVICE SHEET ## THE REPORT OF THE PROPERTY TETAL loops, shaped to follow the contour of the cabinet, permit the chassis to stand inverted on the bench for service work in the Beethoven U2038. The receiver is a 3-valve (plus rectifier) 2-band superhet designed for A.C. or D.C. mains of 190-250 V. Release date and original price: October, 1947; £15 15s, plus purchase tax. ## CIRCUIT DESCRIPTION CIRCUIT DESCRIPTION Aerial input, via isolating capacitor G1, is inductively coupled by L2 (M.W.) and L3 (L.W.) to single-tuned circuits L4, G32 (M.W.) and L5, G32 (L.W.). Coil L1 is a M.W. harmonic rejector. First valve (V1, Mullard metallized CGH35) is a triode-hexode operating as frequency changer with internal coupling. Triode oscillator grid coils L6 (M.W.) and L7 (L.W.) are tuned by G33, with parallel trimming by G34 (M.W.) and G35 (L.W.) and series tracking by C9 (M.W.) and G10 (L.W.). Reaction coupling is obtained from the common impedance of the trackers. Second valve (V2, Mullard metallized EF39) is a variable-mu R.F. pentode operating as intermediate frequency amplifier with tuned transformer couplings G4, L8, L9, G5 and G13, L10, L11, G14. Intermediate frequency 465 kc/s. Diode second detector is part of double diode pentode output valve (V3, Mullard metallized CBL31). Audio frequency component in rectified output is developed across load resistor R11 and passed via A.F. coupling capacitor C20, manual volume control R12 and C.G. stopper R13, to control grid of pentode section. I.F. filtering by C16, R9, C17 in diode circuit and R13 in pentode C.G. circuit. Provision for the connection of a crystal gramophone pick-up across R12, via isolating capacitors C21, C22. Second diode of V3, fed from V2 anode via C19, provides D.C. potentials which are developed across load resistor R17 and fed back through a decoupling circuit as G.B. to F.C. and I.F. valves, giving A.V.C. Delay voltage, together with G.B. for pentode section, is obtained from the drop across R15, R16. # BEETHOVEN When the receiver is operated from A.C. mains, H.T. current is supplied by I.H.C. half-wave rectifier (V4, Mullard CY31) which, with D.C. mains, behaves as a low resistance. Smoothing by iron-cored choke L13 and electrolytic capacitors G27, G28. ## **DISMANTLING THE SET** Removing Chassis.—Stand the cabinet upside down on a felt pad, and remove the four control knobs (recessed grub screws); remove the bottom cover (four 4BA screws) and unsolder the plate aerial connecting lead from the springy contact strip; withdraw the four 4 BA cheese-head screws at the corners of the chassis underside, and lift out chassis and speaker as a single unit. When replacing, do not omit to resolder the (Continued Clal 1 overleaf) (Continued Col. 1. overleaf) ## **COMPONENTS AND VALUES** | RESISTORS | | Values
(ohms) | Loca-
tions | |-----------|---------------------|------------------|----------------| | R1 | V1 hex C.G | 1,000,000 | A3 | | R2 | V1 fixed G.B | 220 | N8 | | R3 | V1 osc. C.G. | 47,000 | M8 | | R4 | Osc. M.W. and L.W. | 50 | K6 | | R5 | f stabilizers \ | 180 | K6 | | R6 | Osc. anode load | 33,000 | M8 | | R7 | S.G.'s H.T. feed | 33,000 | K8 | | R8 | V2 fixed G.B | 270 | L8 | | R9 | I.F. stopper | 47,000 | J8 | | R10 | A.V.C. decoup | 1,000,000 | J8 | | R11 | Sig. diode load | 470,000 | I8 | | R12 | Volume control | 1,000,000 | J5 | | R13 | V3 C.G. stopper | 47,000 | E3 | | R14 | V3 S.G. H.T. feed | 6,800 | H8 | | R15 | V3 G.B., and A.V.C. | 180 | 16 | | R16 | delay resistors \ | 180 | 15 | | R17 | A.V.C. diode load | 1,000,000 | 18 | | R18 | Tone control | 50,000 | 15 | | R19 | V4 surge limiter | 100 | G8 | | R20 | Heater ballast | 725* | F3 | | R21 | Scale lamps shunt | 100 | F2 | | 1021 | Some miles situit | 100 | | * Tapped at $625\Omega + 50\Omega + 50\Omega$ from V4 heater. | | CAPACITORS | Values
(µF) | Loca-
tions | |-----------|------------------------|---------------------|----------------------| | C1 | Aerial isolator | 0.01 | L6 | | C2 | Earth isolator | 0.1 | L7 | | C3 | V1 hex. C.G | 0.0001 | B2 | | C4 | lst I.F. transformer | 0.0001 | B3 | | C5 | $\int tuning $ | 0.0001 | B 3 | | <u>C6</u> | V1 osc. C.G | 0.0001 | M7 | | C7 | V1 cath. by-pass | 0.1 | N7 | | C8 | A.V.C. decoup, | 0.1 | A4 | | C9 | M.W. tracker | 0.000555 | K6 | | C10 | L.W. tracker | 0.00018 | K6 | | C11 | Osc. anode coup | 0.01 | M7 | | C12 | S.G's decoupling | 0.1 | N8 | | C13 | 2nd I.F. transformer { | 0.0001 | \mathbf{D}_{3} | | C14 | f tuning \ | 0.0002 | $\bar{\mathbf{D}}$ 3 | | C15 | V2 cath. by-pass | 0.1 | L7 | | C16 | I.F. by-passes | 0.0001 | J8 | | C17 | | 0.0001 | J8 | | C18* | V3 cath. by-pass | 25.0 | 16 | | C19 | A.V.C. coupling | 0.00001 | D3 | | C20 | A.F. coupling | 0.01 | J6
J6 | | C21 | }-P.U. isolating ca- { | | | | C22 | pacitors \ | 0.01 | J8
K7 | | C23* | V3 S.G. decoup | 4.0 | | | C24 | Tone corrector | 0.002 | 17 | | C25 | Tone control | 0.05 | H7 | | C26 | H.T. R.F. by-pass | 0.01 | H7
C3 | | C27* | H.T. smoothing ca- { | 16.0 | C3 | | C28* | pacitors } | 16·0
0·01 | 67 | | C29 | Mains R.F. by-pass | | | | C30‡ | Aerial M.W. trim | 0.00003 | M5
M5 | | C31‡ | Aerial L.W. trim | 0.0001
0.0004428 | B3 | | C32† | Aerial tuning | 0.0004428 | B2 | | | Oscillator tuning | 0.0004428 | L5 | | C34‡ | Osc. M.W. trim | 0.00003 | L5 | | C35‡ | Osc. L.W. trim | 0.0001 | 110 | * Electrolytic. § "Swing † Variable. ‡ Pre-set. value, min. to max. # BEETHOVEN | OTHER COMPONENTS | Approx.
Values
(ohms) | Loca-
tions | |--|---|--| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 24·0
1·0
2·0
2·6
17·0
2·5
6·6
8·0
8·0
8·0
6·0
2·7
215·0
500·0
0·4 | C3
N6
N6
N6
N6
K6
K6
B3
D3
D3
D3
D1
D1
K5 | ## Dismantling the Set-continued plate aerial lead to the springy contact strip on the chassis side of the bottom cover. Removing Speaker.—Unsolder the systoflex covered earthing lead from a tag beneath the upper right-hand speaker fixing bolt; remove the four self-tapping screws securing the sub-baffle to the vertical chassis end-frame supports, and lift out the speaker leads. To free the speaker entirely, unsolder the four coloured leads from tags on the speaker input transformer, and remove the four cheese-head bolts (with spring washers) securing it to the sub-baffle. When replacing, the speaker should be replaced with its input transformer nearest to the bevelled edge of the sub-baffle, and the assembly must be fitted to the chassis end-frame supports so that the transformer is directly beneath the scale backing plate, a Three-quarter real view of the chassis deck, with the speaker and subbaffle in position. R13 is in the top cap lead to V3. fibre washer going between the sub-baffle and the end frame support in the case of each of the upper fix- each of the upper nxing screws. The four coloured speaker leads should be resoldered as follows, numbering the tags on the input transformer from left to right when viewed from the rear: 1, green; 2, red; 3, black; 4, yellow. ## GENERAL NOTES GENERAL NOTES Switches.—S1-S8 are the waveband switches, ganged in a two-position rotary unit on the front chassis member. The unit is indicated in our under-chassis view, and shown in detail in the diagram inset in the top left-hand corner of the circuit diagram overleaf, where it is drawn as seen from the rear of an inverted chassis. S2, S3, S5 and S7 close on M.W. (knob clockwise); S1, S4, S6 and S8 close on L.W. (knob anti-clockwise). Scale Lamps.—These are two Osram M.E.S. types rated at 6.5 V, 0.3 A. Gramophone Pick-up.—Two sockets are provided for a crystal pick-up, which should be shunted by a 2-4 megohm resistor, or a magnetic pick-up via a step-up transformer. Any screen braiding must be connected to the "earthy" (left-hand) socket—not to chassis. External Speaker.—Two sockets are provided for the connection of a low impedance (2-5 Ω) external speaker. Drive Cord Replacement.—The sketch (cok 1) shows the course taken by the tuning drive cord as seen from the front with the gang at external speaker. Drive Cord Replacement.—The sketch (cok 1) shows the course taken by the tuning drive cord as seen from the front with the gang at maximum. The the cord into a loop having an all-round length of 40½ in, so that it can be stretched taut over two pins stuck in the bench 20½ in apart. 4ft of cord is ample. Slip the knotted end of the loop on to the tension spring, and hook the spring to its anchor. Pass the rest of the loop through the slot in the drum groove, and follow the course shown. ## VALVE ANALYSIS Valve voltages and currents given in the table below are those measured in our receiver when it was operating on A.C. mains of 227 V, using the 210-229 V tapping on the heater ballast resistor. The receiver was tuned to the lowest wavelength on the M.W. band and the volume and tone controls were turned fully clockwise, but there was no signal input. Voltages were measured on the 400 V scale of a model 7 Avometer, chassis being the negative connection. | Nalve | Anode
Voltage
(V) | Anode
Current
(mA) | Screen
Voltage
(V) | Screen
Current
(mA) | |---------------------------------|-------------------------|--|--------------------------|--| | V1 CCH35 | 216
Oscil
95 | $\left\{\begin{array}{c} 5\cdot 1 \\ \text{lator} \\ 4\cdot 0 \end{array}\right\}$ | 98 | 1.8 | | V2 EF39
V3 CBL31
V4 CY31† | 216
196 | 7.6
38.0 | 98
183 | $\begin{array}{c} 2 \cdot 1 \\ 4 \cdot 6 \\ \end{array}$ | † Cathode to chassis, 230V D.C. # CIRCUIT ALIGNMENT CIRCUIT ALIGNMENT 1.F. Stages.—For this operation the chassis must be removed from the cabinet. Switch set to M.W., turn volume control to maximum and gang to minimum capacitance, and connect signal generator, via an 0.1 µF capacitor in each lead, to control grid (top cap) of V1 and chassis. Feed in a 465 kc/s (645.16 m) signal, and adjust the cores of L8, L9, L10 and L11 (location references B4, D4) for maximum output. R.F. and Oscillator Stages.—These operations must be carried out with the chassis in position in the cabinet, after removal of the bottom cover. With the gang at minimum capacitance the cursor should coincide with the left-hand vertical line on each scale. It may be adjusted in position by slackening the screw clamping the cursor carriage to the drive cord. Transfer signal generator leads to A and E sockets, via a suitable dummy aerial. L.W.—Switch set to L.W., tune to 2,000 m on scale, feed in a 2,000 m (150 kc/s) signal, and adjust the cores of L7 (K6) and L5 (N6) for maximum output. Tune to 1,000 m on scale, feed in a 2,000 m (300 kc/s) signal, and adjust the cores of L6 (K6) and L4 (N6) for maximum output. Tune to 214 m on scale, feed in a 500 m (600 kc/s) signal, and adjust the cores of L6 (K6) and L4 (N6) for maximum output. Tune to 214 m on scale, feed in a 214 m (1,400 kc/s) signal, and adjust the cores of L6 (K6) and L4 (N6) for maximum output. Tune to 214 m on scale, feed in a 214 m (1,400 kc/s) signal, and adjust the cores of L6 (K6) and L4 (N6) for maximum output. Tune to 214 m on scale, feed in a 214 m (1,400 kc/s) signal, and adjust the cores of L6 (K6) and L4 (N6) for maximum output. Tune to 214 m on scale, feed in a 200 m (300 kc/s) signal, and adjust the cores of L6 (K6) and L7 (N6) for maximum output. Tune to 214 m on scale, feed in a 214 m (1,400 kc/s) signal, and adjust the cores of L6 (K6) and L7 (N6) for maximum output. Tune to 214 m on scale, feed in a 214 m (1,400 kc/s) signal, and adjust the cores of L6 (K6) and L7 (N6) for maximum output. Tune to 214 m on scale, feed Under-chassis view. The S1-S8 switch unit is indicated beside the row of trimmers.