


# INTRODUCTION

#### DOCUMENTATION SUR LES LAMPES

Radio, télévision, électronique : toutes ces techniques modernes doivent leur existence aux tubes électroniques. Voilà pourquoi la documentation de base dont aucun technicien ne peut se pascer est celle relative aux lampes.

Un premier moyen d'information consiste, pour le praticien, à recueillir le maximum des notices qu'impriment les fabricants de tubes, et à les compléter par les articles documentaires que publient, de temps à autre, les revues spécialisées. Moyen bien incommode, car, en admettant même que la totalité des documents puisse parvenir aux intéressés, chacun d'eux devrait, sous poine de perdre un temps considérable lors des recherches, se donner une fois pour toutes la paine de classer, compléter, unifier — et parfois vérifier — un monceau de documents.

Ce travail ingrat, des spécialistes l'entreprennent régulièrement, et le fruit de leurs efforts est condensé dans un certain nombre de publications qui ne manquent pas d'être les bienvenues de tous ceux, ô combien nombreux, dont le travail ou les loisirs ont pour points vitaux les tubes électroniques. Quels sont ces ouvrages?

Le premier en date est le LEXIQUE OFFICIEL DES LAMPES RADIO, de L. Gaudillat, qui condense, sous un format et une disposition commodes, les données numériques et culots d'une foule de tubes courants.

Très populaire également est RADIO TUBES, de E. Aisberg, L. Gaudillat et R. Deschepper, avec ses renseignements jaillissant du ou des schémastypes d'utilisation fournis pour chaque lampe.

Pour les techniciens désireux d'approfondir une étude, de connaître les capacités inter-électrodes, de travailler sur une courbe, une belle documentation fut réunie dans les albums de CARACTERISTIQUES OFFICIELLES DES LAMPES RADIO, qui présentent toute la gamme des tubes courants dans les albums suivants, dont on trouvera les tables des matières détaillées face à la page 32 du présent fascicule :

- 1 : Tubes transcontinentaux2 : Tubes à culot octal (épuisés) ;
- 3 : Tubes « Rimlock-Médium » :
- 4 : Tubes « miniature » ;
- 5 : Tubes cathodiques :
- 6, 7 et 8 : Tubes « Noval ».

#### PRECISIONS SUR CET ALBUM

On se souvient que les premiers tubes Noval présentés en France étaient destinés à la télévision. C'est ce qui explique que le premier album de cette série qui leur fut consacré, le n° 6, ait été intitulé « Série Télévision ».

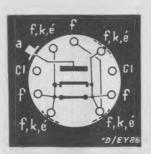
Créé quelques années plus tard, l'album n° 7 comprenait une majorité de tubes Noval destinés à la radio, mais aussi quelques nouveaux modèles pour télévision, ce qui fait qu'il fut tout simplement appelé « Deuxième série ».

Le présent fascicule, rassemblant également des créations nouvelles destinées tant à la radio qu'à la télévision, et même à l'électronique générale, sera donc le « Troisième série ». Nous attirons bien l'attention du lecteur sur le fait qu'il ne remplace pas les précédents, mais les complète en les mettant à jour.

Nous aurions aimé qu'il nous fût possible d'indiquer, pour certains tubes européens, le numéro correspondant américain. Mais les quelques équivalences que nous avons pu recueillir ayant été contestées par certains constructeurs, nous n'avons pu les publier à titre de « Caractéristiques officielles ». Nous les indiquons toutefois ci-après, en insistant bien sur le fait qu'il ne s'agit que de renseignements officieux, donnés sans garantie quant à leur reconnaissance par l'ensemble des constructeurs :

| ECC 85 = 6 AQ 8 | EY $86 = 6 AX 2$            |
|-----------------|-----------------------------|
| ECF 82 = 6 U 8  | PCC 85 = 9 AQ 8             |
| EF 86 = 6 CF 8  | PCF 82 = 9 U 8              |
| EM 85 = 6 DU 6  | UCC $85 = 26 \text{ AQ } 8$ |
| EY 81 = 6 V 3 P | UF 80 = 19 BX 6             |

Rien n'a été changé en ce qui concerne la présentation des caractéristiques et les symboles employés. Les grandeurs citées le sont d'ailleurs le plus souvent très explicitement. Et quand des symboles sont employés comme c'est le cas dans les reproductions de courbes, des légendes précisent les conventions. Les culots sont, comme toujours, vus du côté des broches (supports vus du côté des paillettes à souder). L'abréviation C.I. est relative à des broches correspondant à des connexions internes (supports d'électrodes) et qui, bien que libres apparemment, ne doivent pas être utilisées comme cosses-relais lors du câblage.


Pour terminer, nous rappellorons que toutes les caractéristiques d'utilisation et courbes citées sont des valeurs moyennes et qu'il n'est pas rare de rencontrer en pratique des tubes s'en écartant individuellement de quantités pouvant atteindre 25 ou 30 % dans certains cas.

DY 86

# CARACTÉRISTIQUES DES LAMPES NOVAL

Valve monoplaque pour très haute tension.

74 MBK DY 86



CULOT VU COTE BROCHES

#### FILAMENT

Tension . . . . 1,4 V Courant . . . . 0,55 A max 22,2 CAPACITE  $C_a = 1, 8 pF$ Les broches 1, 4, 6, 9 peuvent être utilisées pour la fixation d'un anneau anti-couronne. Les broches 3 et 7 peuvent servir de relais pour des éléments de montage au même potentiel que le filament. Ne jamais réunir ces broches à la masse.

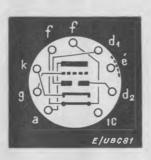
89

#### UTILISATION

| Résistance interne pour un courant d'utilisation de 1 mA           | 20<br>0,15<br>18 | kΩ<br>mA<br>kV |
|--------------------------------------------------------------------|------------------|----------------|
| LIMITES                                                            |                  |                |
| Tension inverse de pointe maximum d'ano-                           |                  |                |
| de, en charge                                                      | 22               | kV             |
| de, à vide                                                         | 27               | kV             |
| Courant redressé moyen maximum                                     | 0,8              | mA             |
| Courant redressé maximum, valeur de                                |                  |                |
| crête (pour une impulsion de durée                                 |                  |                |
| maximum égale à 10 % d'un cycle,                                   | 40               | 4              |
| avec maximum de 10 us)                                             | 40<br>2000       | mA             |
| Capacité maximum de filtrage  Tension maximum de filament, pour un | 2000             | pF             |
| courant redressé inférieur ou égal à                               |                  |                |
| 200 HA                                                             | 1.4 V            | ± 15 %         |
| Tension maximum de filament, pour un                               | ,                |                |
| courant redressé supérieur à 200 uA.                               | 1,4 V            | ± 7 %          |
|                                                                    |                  |                |

Si la cathode est chauffée au moyen d'un courant haute fréquence, la tension de chauffage peut être ajustée à 1,4 V en comparant la couleur de la cathode avec celle d'une cathode chauffée par une tension continue ou alternative correcte.

EBC 81


# CARACTÉRISTIQUES DES LAMPES NOVAL

Double diode - triode amplificatrice B.F.

62

MAN

**EBC 81** 



#### FILAMENT

Tension . . . . . 6,3 V Courant . . . . . 0,23 A

#### CAPACITES

MBX

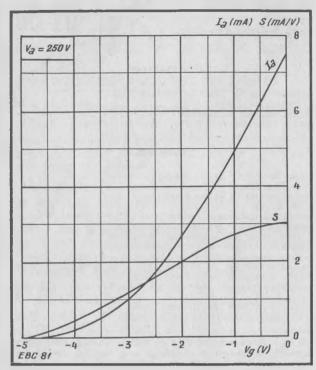
Eléments diodes Elément triode  $C_g = 2,3 pF$  $C_{d1} = 0.9 pF$  $C_a = 2,3 pF$   $C_{ag} = 1,2 pF$  $C_{d2} = 0.9 pF$  $C_{d1d2} < 0,2$  pF  $C_{d1f} < 0,25$  pF  $C_{d2f} < 0,25$  pF  $C_{gt}$  < 0,05 pF

Entre éléments diodes et triode

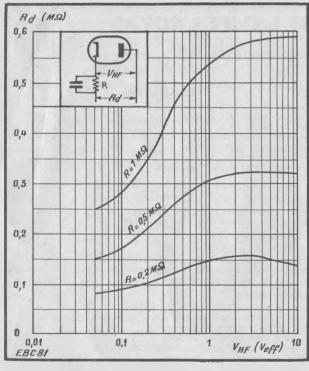
max 22,2

 $C_{dig} < 0.007 pF$  $C_{d2g} < 0.007 \text{ pF}$   $C_{d1a} < 0.005 \text{ pF}$   $C_{d2a} < 0.01 \text{ pF}$ 

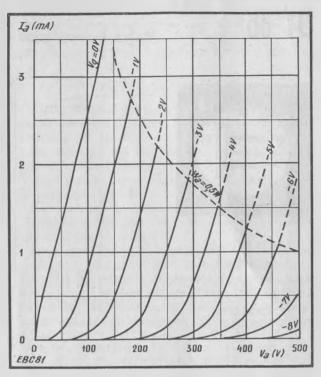
#### UTILISATION


| Tension d'anode                           | 250 V  |
|-------------------------------------------|--------|
| Tension de grille                         | — 3 V  |
| Courant d'anode                           |        |
| Pente                                     |        |
| Coefficient d'amplification               | 70     |
| Résistance interne                        | 58 kΩ  |
| Résistance maximum équivalente de souffle | 150 kΩ |

#### LIMITES


| Tension maximum filament-cathode  |      | V<br>kΩ |
|-----------------------------------|------|---------|
| Eléments diodes                   |      |         |
| (Valeurs pour chaque diode)       |      |         |
| Tension maximum inverse de pointe | 350  | V       |
| Courant moyen maximum             |      | mA      |
| Courant de pointe maximum         | 5    | mA      |
| Elément triode                    |      |         |
| Tension maximum d'anode, à froid  | 550  | V       |
| Tension maximum d'anode           | 300  | V       |
| Discipline 11                     | 0 11 | ***     |

Dissipation maximum d'anode ..... 0.5 W Courant maximum de cathode ...... 5 mA Tension de grille pour un courant de 0,3 µA .... 1,3 V 


COURBES: VOIR PAGE SUIVANTE



EBC 81, élément triode : Courant d'anode  $I_a$  et pente S, en fonction de la tension de grille  $V_g$ , pour une tension d'anode de 250  $V_*$ .

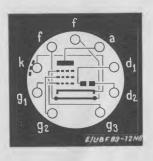


EBC 81 (chaque diode) : Résistance d'amortissement  $\mathbf{R}_{\mathrm{d}}$  en fonction de la tension haute fréquence  $\mathbf{V}_{\mathrm{HF}}$  pour trois valeurs de la résistance de détection  $\mathbf{R}_{\mathrm{c}}$ .



EBC 81, élément triode : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_{\rm u}$ , pour différentes valeurs de la tension de grille  $V_{\rm g}$ .




EBC 81 (chaque diode): Tension de signal détecté  ${\bf V}_{\rm BF}$  et composantes continues, en fonction de la tension haute fréquence  ${\bf V}_{\rm RF}$ .

**EBF 89** 

# CARACTÉRISTIQUES DES LAMPES NOVAL

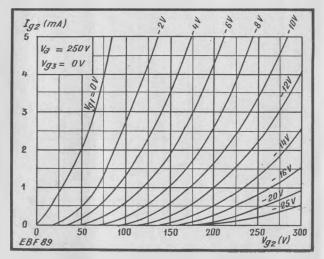
Double diode - penthode à pente variable.

**EBF 89** 



# 19 xem 22,2

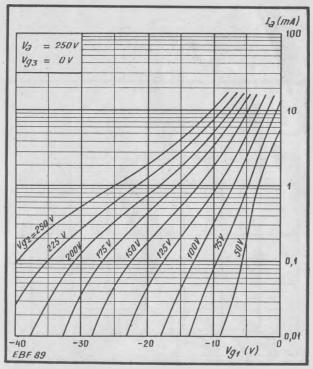
#### FILAMENT


| Tension |   | 4 |  |  | 6,3 | ٧ |
|---------|---|---|--|--|-----|---|
| Courant | , |   |  |  | 0,3 | Α |

#### CAPACITES

| Eléments                                                                                                    | diodes                | Elément pent                                                                                   | hode       | Entre                                                                | éléments |   |
|-------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|----------|---|
| $\begin{array}{ccc} C_{d1} &=& 2,5 \\ C_{d2} &=& 2,5 \\ C_{d1d2} &<& 0,2 \\ C_{d1f} &<& 0,0 \\ \end{array}$ | pF<br>25 pF<br>015 pF | $\begin{array}{l} C_a &= 5.2 \\ C_{g1} &= 5 \\ C_{ag1} &< 0.00 \\ C_{g1f} &< 0.05 \end{array}$ | pF<br>2 pF | $C_{ m d1g1} < C_{ m d2g1} < C_{ m d1a} < C_{ m d2a} < C_{ m d2a} <$ | 0,15 pF  | F |

#### UTILISATION


| Tension d'anode      | 250 | 250 | 200 | 170 V                  |
|----------------------|-----|-----|-----|------------------------|
| Tension de grille 3. | 0   | 0   | 0   | 0 7                    |
| Tension de grille 2. | 100 | 80  | 100 | 100 V                  |
| Tension de grille 1. | 2   | 1   | 1,5 | 1 V                    |
| Courant d'anode      | 9   | 9   | 11  | 12 mA                  |
| Courant de grille 2. | 2,7 | 2,7 | 3,3 | 4 mA                   |
| Pente                | 3,8 | 4,5 | 4,5 | 5  mA/V                |
| Coefficient d'ampli- |     |     |     |                        |
| fication g2/g1       | 20  | 20  | 20  | 20                     |
| Résistance interne . | 1   | 0,9 | 0,6 | $0,4~\mathrm{M}\Omega$ |

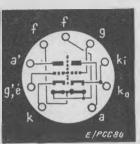


EBF 89 : Courant de grille 2  $I_{\rm g23}$  en fonction de la tension de grille 2  $V_{\rm g23}$  pour differentes valeurs de la tension de grille 1  $V_{\rm g1}$ .

| Amplification H.F. ou  | M.F.     |          |        |           |
|------------------------|----------|----------|--------|-----------|
| Haute tension          | 250      | 200      | 250    | V         |
| Tension de grille 3    | 0        | 0        | 0      | V         |
| Résistance de grille 2 | 56       | 30       | 62     | $k\Omega$ |
| Tension de grille 1 .  | -2,0 -20 | —1,5 —20 | -1 -20 |           |
| Courant d'anode        | q        | 11       | q      | m A       |

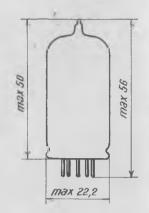
| LIWI1F2                                           |           |                                 |
|---------------------------------------------------|-----------|---------------------------------|
| Tension maximum filament-cathode                  | 100<br>20 | $\mathbf{v}_{\mathbf{k}\Omega}$ |
| Pour chaque diode                                 |           |                                 |
| Tension inverse maximum de pointe                 | 200       | V                               |
| Courant moyen maximum                             | 0.8       | цA                              |
| Courant de pointe maximum                         | 5         | mA                              |
| Pour la penthode                                  |           |                                 |
| Tension maximum pour un courant de 0,3 µA.        | -1,3      | $\mathbf{v}$                    |
| Tension maximum d'anode, à froid                  | 550       | V                               |
| Tension maximum d'anode                           | 250       | V                               |
| Dissipation maximum d'anode                       | 2,25      | W                               |
| Tension maximum de grille 2, à froid              | 550       | V                               |
| Tension maximum de grille 2, pour un courant      |           |                                 |
| anodique inférieur à 4 mA                         | 250       | V                               |
| Tension maximum de grille 2, pour un courant      |           |                                 |
| anodique supérieur à 8 mA                         | 125       | V                               |
| Dissipation maximum de grille 2                   | 0,45      | W                               |
| Courant maximum de cathode                        | 16,5      | mA                              |
| Résistance maximum de grille 1                    | 3         | $M\Omega$                       |
| (22 M $\Omega$ si la polarisation est obtenue par |           |                                 |
| résistance de chute de grille)                    |           |                                 |
| Résistance maximum de grille 3                    |           |                                 |
| Tension maximum de grille 1 (L 0.3 11A)           | 1 3       | 37                              |




EBF 89 : Courant d'anode  $I_a$ , en fonction de la tension de grille 1  $V_{\rm g1}$ , pour différentes valeurs de la tension de grille 2  $V_{\rm g2}$ .

# CARACTÉRISTIQUES DES LAMPES NOVAL

Double triode pour cascode jusqu'à 220 MHz.


ECC 84

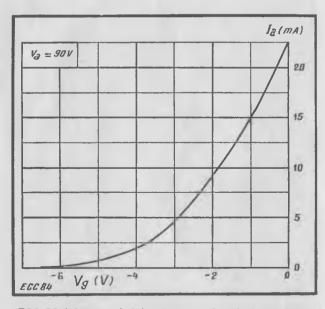
0,5 MΩ



#### FILAMENT

| Tension |  |  |  | . 6,3 | ٧ |
|---------|--|--|--|-------|---|
|         |  |  |  | 0,33  |   |

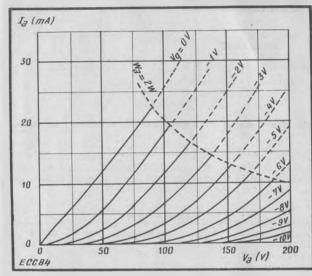



#### CAPACITES

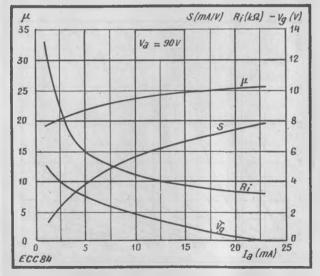
| Cag       | = 1    | ,2 pF   | C <sub>n</sub> ' ( <sub>g'</sub> + <sub>t</sub> ) |     | 2,5   | pF |
|-----------|--------|---------|---------------------------------------------------|-----|-------|----|
| Cg        |        | ,1 pF   | Ck's                                              |     | 2,7   |    |
| Ca        | = 0    | ,45 pF  | Ca'k'                                             | === | 2,3   | pF |
| Cgr       | < 0    | ,25 pF  | Cu (k + f + g')                                   |     | 1,2   | рF |
| Ca'k'     | = 0    | ),16 pF | Caa                                               | <   | 0,035 | рF |
| Ck' (g' + | f) = · | 4,7 pF  | $C_{g_n}$                                         | <   | 0,006 | pF |

#### UTILISATION

#### Chaque triode


| Tension d'anode                | 90   | V     |
|--------------------------------|------|-------|
| Tension de grille              | -1,5 | V     |
| Courant d'anode                | 12   | mA    |
| Pente                          | 6    | mA/V  |
| Coefficient d'amplification    | 24   |       |
| Conductance d'entrée à 200 MHz | 250  | IIA/V |




ECC 84 (chaque triode) : Courant d'anode I, en fonction de la tension de grille V<sub>s</sub>, pour une tension d'anode de 90 V.

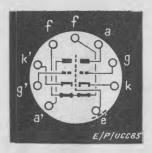
#### LIMITES

#### Chaque triode Tension maximum filament-cathode ..... Si le filament est négatif par rapport à la ca-200 V Résistance maximum filament-cathode 20 kΩ Tension maximum d'anode, à froid ...... Tension maximum d'anode 180 Dissipation maximum d'anode 2 W Courant maximum de cathode ... 22 mATension négative maximum de grille ..... 50 V 1,5 ΜΩ



ECC 84 (chaque triode) : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille  $V_g$ .




ECC 84 (chaque triode): Coefficient d'amplification u, pente S, résistance interne  $R_i$  et tension de grille  $V_g$  en fonction du courant d'anode  $I_a$ .

ECC 85

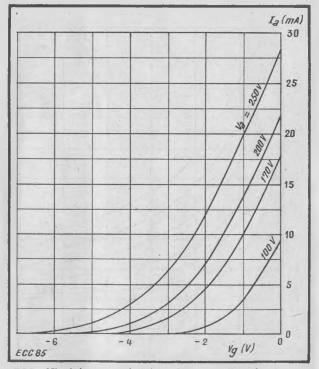
# CARACTÉRISTIQUES DES LAMPES NOVAL

Double triode amplificatrice et oscillatrice H.F.

**ECC 85** 



# Xem max 22,2


#### FILAMENT

| Tension |  |  |  | 6,3   | V |
|---------|--|--|--|-------|---|
| Courant |  |  |  | 0.435 | Α |

#### **CAPACITES**

| C <sub>ag</sub> C <sub>ak</sub> C <sub>a</sub> ( <sub>k + f + e</sub> )                                                                      | = 0.18 pF                              | $C_{aa}' < 0.04 \\ C_{gg} < 0.003$                                                                                          |                |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| lavec blindage ext                                                                                                                           |                                        | $C_{ag}' < 0.008$                                                                                                           | pF             |
| $\begin{array}{c} C_{a}{}'g'\\ C_{a}{}'k\\ C_{a}{}'\left(k'+f+e\right)\\ \text{(avec blindage ext)}\\ C_{g'}\left(k'+f+e\right) \end{array}$ | = 0,18 pF<br>= 1,2 pF<br>erne: 1,9 pF) | $\begin{array}{l} C_{a\ g} < 0,008 \\ C_{ak'} < 0,008 \\ C_{gk} < 0,003 \\ C_{a'k'} < 0,008 \\ C_{g'k} < 0,003 \end{array}$ | pF<br>pF<br>pF |

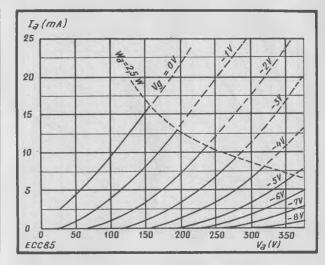
(1) (avec blindage externe: < 0.008 pF)



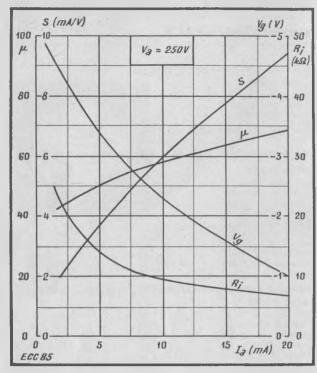
ECC 85 (chaque triode) : Courant d'anode  $I_a$ , en fonction de la tension de grille  $V_{\rm g}$ , pour quatre valeurs de la tension d'anode  $V_{\rm a}$ .

#### UTILISATION

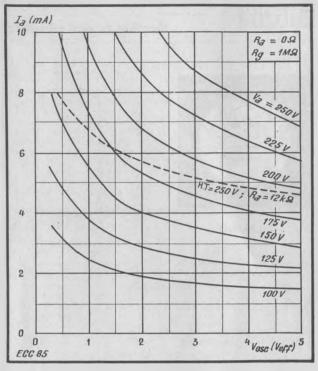
| Chaque triode                 |     |      |
|-------------------------------|-----|------|
| Tension d'anode 25            | 0   | V    |
| Tension de grille             | 2,3 | V    |
| Courant d'anode               | 10  | mA   |
| Pente                         | 5,9 | mA/V |
| Coefficient d'amplification 5 | 7   |      |
|                               |     |      |


#### En amplificatrice H.F. dans les récepteurs AM/FM

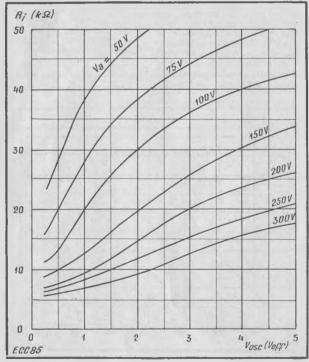
| Chaque triode                     |                       |
|-----------------------------------|-----------------------|
| Haute tension                     | 250 V                 |
| Résistance d'anode                | 1,8 kΩ                |
| Résistance de cathode             |                       |
| Tension d'anode                   |                       |
| Tension de grille                 | 2 V                   |
| Courant d'anode                   | 10 mA                 |
| Pente                             | 6 mA/V                |
| Résistance interne                | 9,7 kΩ                |
| Résistance équivalente de souffle | $0.5 \text{ k}\Omega$ |


#### Mélangeur auto-oscillateur dans les récepteurs AM/FM Chaque triode

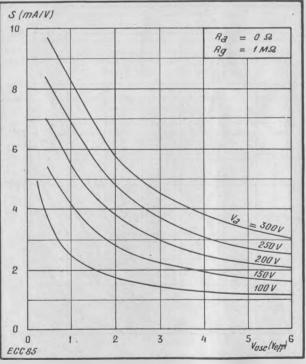
| Haute tension         | 250 | V         |
|-----------------------|-----|-----------|
| Résistance d'anode    | 12  | $k\Omega$ |
| Résistance de grille  | 1   | MΩ        |
| Courant d'anode       | 5.2 | mA/V      |
| Tension d'oscillation | 3   | V eff     |
| Pente de conversion   | 2,3 | mA/V      |
| Résistance interne    | 22  | $k\Omega$ |


| Chaque triode                                |     |                    |
|----------------------------------------------|-----|--------------------|
| Tension maximum filament-cathode             | 90  | V                  |
| Résistance maximum filament-cathode (non va- |     |                    |
|                                              | 20  | $\mathbf{k}\Omega$ |
| Tension maximum d'anode, à froid             | 550 | V                  |
| Tension maximum d'anode                      | 300 | V                  |
| Dissipation maximum d'anode                  | 2,5 | W                  |
| (4,5 W pour les deux triodes)                |     |                    |
| Courant maximum de cathode                   | 15  | mA                 |
| Tension maximum négative de grille           | 100 | V                  |
| Résistance maximum de grille                 |     |                    |
|                                              |     |                    |




ECC 85 (chaque triode) : Courant d'anode  $I_{\rm a}$ , en fonction de la tension d'anode  $V_{\rm a}$ , pour différentes valeurs de la tension de grille  $V_{\rm g*}$ 




ECC 85 (chaque triode): Coefficient d'amplification  $\mu$ , pente S, tension de grille  $V_g$  et résistance interne  $R_i$ , en fonction du courant d'anode  $I_a$ .

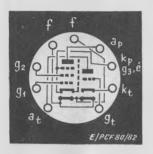


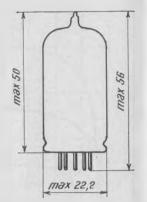
ECC 85 (chaque triode) : Courant d'anode  $I_a$ , en fonction de la tension d'oscillation  $V_{\rm osc}$ , pour différentes valeurs de la tension d'anode  $V_{\rm a}$ .



ECC 85 (chaque triode) : Résistance interne  $R_{\rm ij}$  en fonction de la tension d'oscillation  $V_{\rm osc}$ , pour différentes valeurs de la tension d'anode  $V_{\rm a}$ .




ECC 85 (chaque triode) : Pente S, en fonction de la tension d'oscillation  $V_{\rm osc}$ , pour différentes valeurs de la tension d'anode  $V_{\rm a}$ .


# **ECF 80**

# CARACTÉRISTIQUES DES LAMPES NOVAL

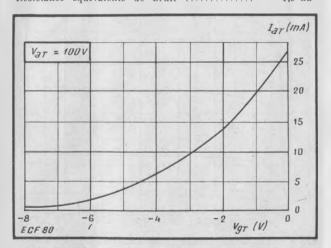
Triode - penthode à cathodes séparées.

ECF 80





#### FILAMENT


| Tension |  |  |  | 6,3  | V |
|---------|--|--|--|------|---|
| Courant |  |  |  | 0,45 | Α |

#### **CAPACITES**

| Elément triode   |                            | Elém. penthode                                                                  | Entre     | éléments                            |  |  |
|------------------|----------------------------|---------------------------------------------------------------------------------|-----------|-------------------------------------|--|--|
| C <sub>n</sub> = | 2,5 pF<br>1,8 pF<br>1,5 pF | $C_{g1} = 5.5 	ext{ pF} $ $C_{a} = 3.8 	ext{ pF} $ $C_{ag1} < 0.025 	ext{ pF} $ | $C_aP_gT$ | < 0,07 pF<br>< 0,02 pF<br>< 0,16 pF |  |  |

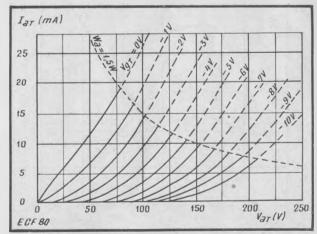
#### LITHEISATION

| UTILIZATION                                                                                        |                                 |
|----------------------------------------------------------------------------------------------------|---------------------------------|
| Elément triode Tension d'anode Tension de grille Courant d'anode Pente Coefficient d'amplification | 100 V<br>2 V<br>14 mA<br>5 mA/V |
| Elément penthode                                                                                   |                                 |
| Tension d'anode                                                                                    | 170 V                           |
| Tension de grille 2                                                                                | 170 V                           |
| Tension de grille 1                                                                                | —2 V                            |
| Courant d'anode                                                                                    | 10 mA                           |
| Courant de grille 2                                                                                | 2,8 mA                          |
| Pente                                                                                              | 6,2 mA/V                        |
| Coefficient d'amplification g2/g1                                                                  | 47                              |
| Résistance interne                                                                                 | $0.4~\mathrm{M}\Omega$          |
| Résistance équivalente de bruit                                                                    | 1,5 kΩ                          |

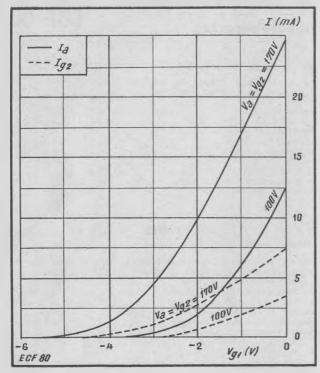


ECF 80, élément triode : Courant d'anode  $I_{\rm a}$ , en fonction de la tension de grille  $V_{\rm g}$ , pour une tension d'anode de 100  $V_{\rm c}$ .

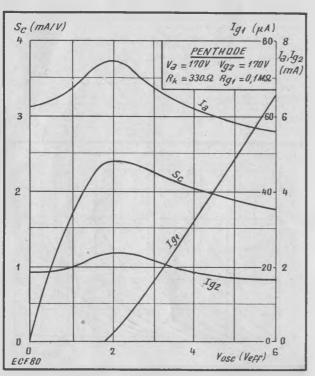
#### En changeuse de fréquence


| (La triode étant utilisée en montage Co<br>et non en montage Hartley.) | olpitts       |
|------------------------------------------------------------------------|---------------|
| Tension d'anode                                                        | 170 170 V     |
| Tension de grille 2                                                    | 170 170 V     |
| Résistance de grille 1                                                 |               |
| Résistance de cathode                                                  |               |
| Courant d'anode                                                        | 6,5 5,2 mA    |
| Courant de grille 2                                                    | 2,0 1,5 mA    |
| Courant de grille 1                                                    | 25 0 μA       |
| Tension d'oscillation                                                  | 3.5 3.5 V eff |
| Pente de conversion                                                    | 2.2 2.1 mA/V  |
| Résistance interne                                                     | 800 870 kΩ    |

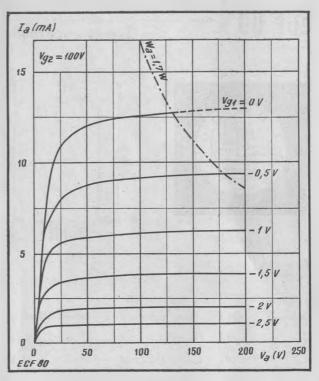
#### LIMITES


#### Elément triode

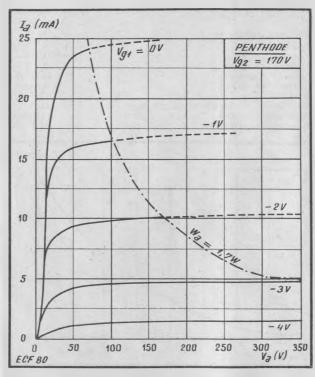
| Tension maximum filament-cathode      |     |           |
|---------------------------------------|-----|-----------|
| Tension maximum d'anode, à froid      |     |           |
| Tension maximum d'anode               |     |           |
| Dissipation maximum d'anode           | 1,5 | W         |
| Courant maximum de cathode            | 14  | mA        |
| Courant maximum de cathode, en pointe |     |           |
| Résistance maximum de grille          | 0,5 | $M\Omega$ |
| Tension maximum négative de grille    |     |           |
| $(I_g = 0.3 \mu A) \dots$             | 1,3 | V         |
|                                       |     |           |
|                                       |     |           |


| Elément penthode                                                                         |     |      |
|------------------------------------------------------------------------------------------|-----|------|
| Tension maximum filament-cathode                                                         | 100 | V    |
| Tension maximum d'anode, à froid                                                         | 550 | V    |
| Tension maximum d'anode                                                                  | 250 | V    |
| Tension maximum de grille 2, à froid<br>Tension maximum de grille 2, pour un cou-        | 550 | V    |
| rant de cathode inférieur ou égal à 10 mA).<br>Tension maximum de grille 2, pour un cou- | 200 | T.   |
| rant de cathode supérieur à 10 mA)                                                       | 175 | V    |
| Dissipation maximum d'anode                                                              | 1,7 | W    |
| Dissipation maximum de grille 2                                                          | 0,5 | W    |
| Courant maximum de cathode                                                               | 14  | mA   |
| tion automatique                                                                         | 1   | МΩ   |
| tion fixe                                                                                | 0,5 | 5 ΜΩ |
| $(I_{g1}=0.3~\mu A)~\dots$                                                               | 1,3 | V    |




ECF 80, élément triode : Courant d'anode  $\mathbf{I}_{a}$ , en fonction de la tension d'anode  $\mathbf{V}_{a}$ , pour différentes valeurs de la tension de grille  $\mathbf{V}_{g^*}$ 




ECF 80, élément penthode : Courants d'anode  $I_a$  et de grille 2  $I_{\rm gz}$ , en fonction de la tension de grille 1  $V_{\rm g1}$ .

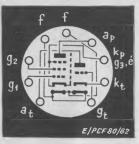


ECF 80, élément penthode : Pente de conversion  $S_c$ , courants de grille  $I_{g1}$ , d'anode  $I_a$  et de grille 2  $I_{g2}$ , en fonction de la tension d'oscillation  $V_{\rm osc}$ .



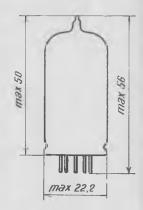
ECF 80, élément penthode : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille 1  $V_{\rm g1}$ .




ECF 80, élément penthode : Courant d'anode  $I_{\rm a}$ , en fonction de la tension d'anode  $V_{\rm a}$ , pour différentes valeurs de la tension de grille 1  $V_{\rm g1}$ .

# **ECF 82**

## CARACTÉRISTIQUES DES LAMPES NOVAL


**ECF 82** 

#### Triode - penthode oscillatrice et changeuse.



### FILAMENT

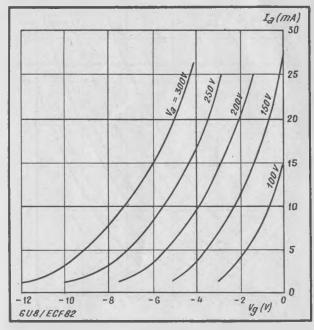

| Tension |  |  |  | 6,3  | V |
|---------|--|--|--|------|---|
| Courant |  |  |  | 0,45 | Α |



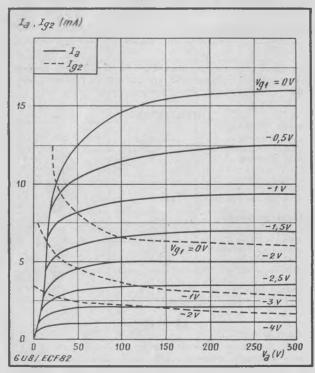
#### CAPACITES

 $C_{fk} = 3 pF$ 

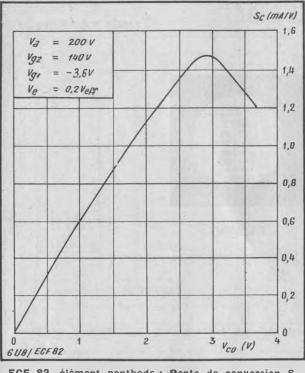
| Elément                                                  | triode                                     | Elément                                                                | penthode                                   |                      |
|----------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|----------------------|
| C <sub>ag</sub><br>C entrée<br>C sortie<br>avec blindage | = 1,8 pF<br>= 2,5 pF<br>= 0,4 pF<br>= 1 pF | C <sub>ng1</sub><br>avec blind.<br>C entrée<br>C sortie<br>avec blind. | = 0,01<br>= 0,006<br>= 5<br>= 2,6<br>= 3,5 | pF<br>pF<br>pF<br>pF |



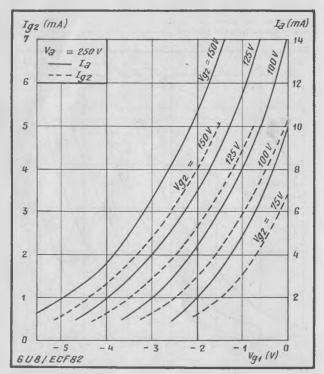

ECF 82, élément triode : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille  $V_{g^*}$ 


Les deux éléments du tube ECF 82/6 U8 sont séparés par un blindage moderne relié à la cathode de l'élément pen-

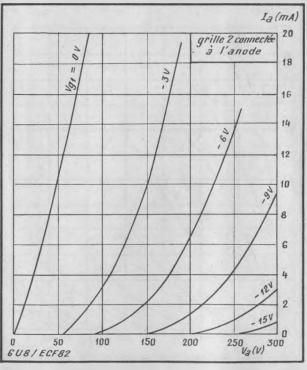
#### UTILISATION


| Elément triode                          |           |            |
|-----------------------------------------|-----------|------------|
| Tension d'anode                         | 150       | V          |
| Résistance de cathode                   | 56        | Ω          |
| Courant d'anode                         | 18        | mA         |
| Pente                                   | 8,5       | mA/V       |
| Résistance interne                      | 5         | $k\Omega$  |
| Coefficient d'amplification             | 40        |            |
| Tension de blocage ( $I_a = 10 \mu A$ ) | 12        | V          |
| Pilimant manthada                       |           |            |
| Elément penthode                        | 0 = 0     |            |
| Tension d'anode                         | 250       | V          |
| Tension de grille 2                     | 110<br>68 | V<br>Ω     |
| Résistance de cathode                   | 10        | mA         |
| Courant d'anode                         | 3,5       | 24417      |
| Pente                                   |           | mA/V       |
| Résistance interne                      | 400       |            |
| Tension de blocage (Ia = 10 µA)         |           | V env.     |
| Tension de biocage (ia — 10 Mil)        | 10        | 1 022 1 1  |
| LIMITES                                 |           | 1          |
| Elément triode                          |           |            |
| Tension maximum filament-cathode        | 90        | v          |
| Tension maximum d'anode                 | 300       |            |
| Dissipation maximum d'anode             |           | w          |
| Tension maximum de grille               | 0         | V          |
| 9                                       | U         | *          |
| Elément penthode                        |           |            |
| Tension maximum filament-cathode        | 90        | V          |
| Tension maximum d'anode                 | 300       | V          |
| Tension maximum de grille 2             | 300       | V          |
| Dissipation maximum d'anode             |           | 3 W<br>5 W |
| Dissipation maximum de grille 2         | 0,0       |            |
| Tension maximum de grille 1             | U         | V          |




ECF 82, élément triode : Courant d'anode  $I_a$ , en fonction de la tension de grille  $V_g$ , pour différentes valeurs de la tension d'anode  $V_a$ .



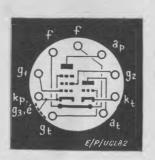

ECF 82, élément penthode : Courants d'anode  $I_a$  et de grille 2  $I_{\rm g2}$ , en fonction de la tension d'anode  $V_{\rm n}$  pour différentes valeurs de la tension de grille 1  $V_{\rm g1}$ .

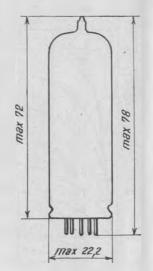


ECF 82, élément penthode : Pente de conversion  $S_{\rm co}$  en fonction de la tension de crête d'oscillation  $V_{\rm co}$ 



ECF 82, élément penthode : Courants d'anode  $I_a$  et de grille 2  $I_{g2}$ , en fonction de la tension de grille 1  $V_{g1}$ , pour differentes valeurs de la tension de grille 2  $V_{g2}$ .





ECF 82, élément penthode connecté en triode : Courant d'anode Ia, en fonction de la tension d'anode Va, pour différentes valeurs de la tension de grille 1 Val.

# CARACTÉRISTIQUES DES LAMPES NOVAL

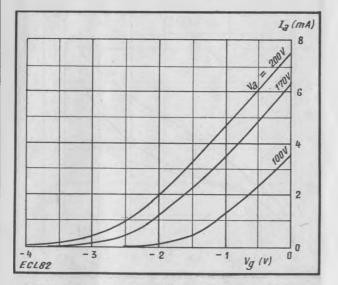
Triode - penthode basse fréquence.

ECL 82





#### FILAMENT


Tension . . . . . 6,3 V Courant . . . . 0,78 A

#### CAPACITES

| Elém                   | ent | tois                   | da       | Eléme                     | entp | enth                   | ode      | Entr                          | е   | élémen                           | ts       |
|------------------------|-----|------------------------|----------|---------------------------|------|------------------------|----------|-------------------------------|-----|----------------------------------|----------|
| Cg<br>Ca<br>Cga<br>Cgf | =   | 3<br>4,3<br>4,5<br>0,1 | pF<br>pF | Cgi<br>Ca<br>Cgia<br>Cgif | ==   | 9,3<br>8<br>0,3<br>0,3 | pF<br>pF | C <sub>E</sub> T <sub>E</sub> | P < | 0,020<br>0,020<br>0,025<br>0,250 | pF<br>pF |

#### UTILISATION

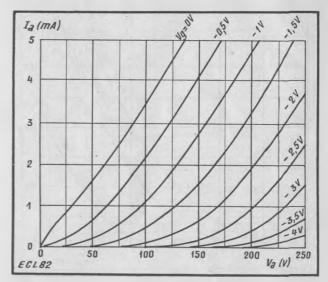
| 011213711011                |          |
|-----------------------------|----------|
| Elément triode              |          |
| Tension d'anode             | 100 V    |
| Tension de grille           | 0 V      |
| Courant d'anode             | 3,5 mA   |
| Pente                       | 2,5 mA/V |
| Coefficient d'amplification | 70       |



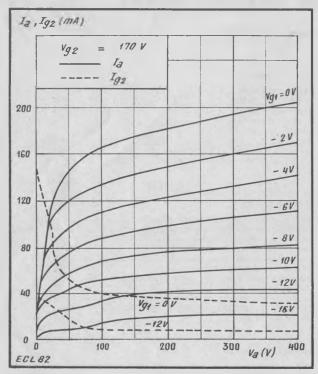
ECL 82, élément triode : Courant d'anode  $I_{\rm a}$ , en fonction de la tension de grille  $V_{\rm g}$ , pour trois valeurs de la tension d'anode  $V_{\rm o}$ .

#### Elément penthode

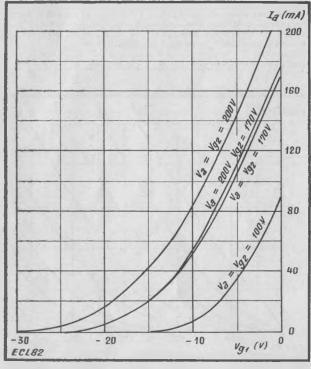
|            | d'anode                    |       |       |     |      |
|------------|----------------------------|-------|-------|-----|------|
| Tension    | de grille 2                | 170   | 170   | 200 | V    |
| Tension    | de grille 1                | -11,5 | -12,5 | -16 | V    |
| Courant    | d'anode                    | 41    | 35    | 35  | mA   |
| Courant    | de grille 2                | 8     | 6,5   | 7   | mA   |
| Pente      |                            | 7,5   | 6,8   | 6,4 | mA/V |
| Résistano  | e interne                  | 16    | 20,5  | 20  | kO   |
| Coefficien | nt d'amplification g2/g1 . | 9,5   | 9,5   | 9,5 |      |


#### LIMITES

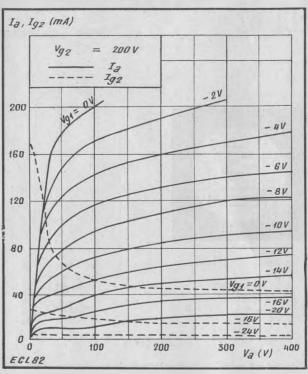
#### Elément triode


| Tension maximum filament-cathode                 | 100 | V                  |
|--------------------------------------------------|-----|--------------------|
| Résistance maximum filament-cathode              | 20  | $\mathbf{k}\Omega$ |
| Tension maximum d'anode à froid                  | 550 | V                  |
| Tension maximum d'anode                          | 300 | V                  |
| Dissipation maximum d'anode                      | 1   | W                  |
| Courant maximum de cathode                       | 15  | mA                 |
| Résistance maximum de grille (polarisation au-   |     |                    |
| tomatique)                                       | 3   | $M\Omega$          |
| Résistance maximum de grille (polarisation fixe) | 1   | $M\Omega$          |
| Résistance maximum de grille (polarisation par   |     |                    |
| fuite de grille)                                 | 22  | $M\Omega$          |

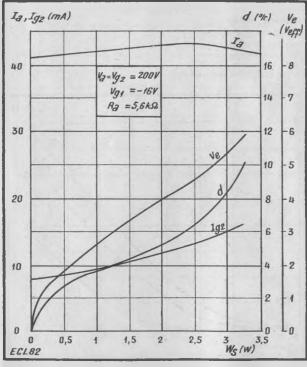
#### Elément penthode


| •                                                |     |                    |
|--------------------------------------------------|-----|--------------------|
| Tension maximum filament-cathode                 | 100 | $\mathbf{v}$       |
| Résistance maximum filament-cathode              | 20  | $\mathbf{k}\Omega$ |
| Tension maximum d'anode, à froid                 | 900 | V                  |
| Tension maximum d'anode                          | 600 | V                  |
| Dissipation maximum d'anode (tension d'anode     |     |                    |
| supérieure à 250 V)                              | 5   | W                  |
| (Tension d'anode inférieure à 250 V)             | 7   | W                  |
| Tension maximum de grille 2, à froid             | 550 | $\mathbf{v}$       |
| Tension maximum de grille 2                      | 300 | V                  |
| Dissipation maximum de grille 2                  | 1,8 | 11.                |
| Courant maximum de cathode                       | 50  | mA                 |
| Résistance maximum de grille 1 (polarisation au- |     |                    |
| tomatique)                                       | 2   | $M\Omega$          |
| Résistance maximum de grille 1 (polarisation     |     |                    |
| fixe)                                            | 1   | $M\Omega$          |
|                                                  |     |                    |




ECL 82, élément triode : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille  $V_g$ .




ECL 82, élément penthode : Courants d'anode  $I_a$  et de grille 2  $I_{g2}$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille 1  $V_{g1}$ , et une tension de grille 2 de 170 V.

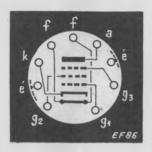


ECL 82, élément penthode : Courant d'anode  $I_a$ , en fonction de la tension de grille 1  $V_{\rm g1}$ , pour différentes valeurs des tensions d'anode  $V_a$  et de grille 2  $V_{\rm g2}$ .



ECL 82, élément penthode : Courants d'anode  $\mathbf{I}_a$  et de grille 2  $\mathbf{I}_{23}$  en fonction de la tension d'anode  $\mathbf{V}_{n1}$  pour différentes valeurs de la tension de grille 1  $\mathbf{V}_{v1}$  et une tension de grille 2 de 200  $\mathbf{V}$ .




ECL 82, élément penthode : Courants d'anode  $\mathbf{I}_{a}$  et de grille 2  $\mathbf{I}_{g^{2}}$ , distorsion totale d et tension d'entrée  $\mathbf{V}_{\nu}$ , en fonction de la puissance de sortle  $\mathbf{W}_{\nu}$ .

# **EF 86**

# CARACTÉRISTIQUES DES LAMPES NOVAL

Penthode préamplificatrice B.F.

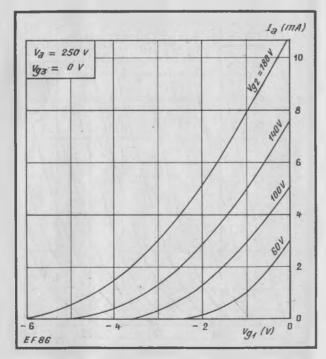
**EF 86** 



# max 22,2

#### FILAMENT

| Tension |   |  |  |  | 6,3 | ٧ |
|---------|---|--|--|--|-----|---|
| Courant | , |  |  |  | 0,2 | Α |


#### CAPACITES

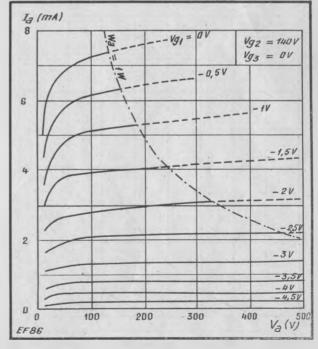
|  | entrée<br>sortie |  | 4<br>5,5 | pF<br>pF | Cg1a<br>Cg1f | = | 0,025 |  |
|--|------------------|--|----------|----------|--------------|---|-------|--|
|--|------------------|--|----------|----------|--------------|---|-------|--|

#### UTILISATION

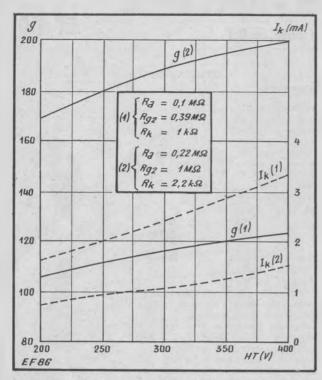
#### En triode

| Tension d'anode    | 250 V    |
|--------------------|----------|
| Tension de grille  | —5 V     |
| Courant d'anode    | 4 mA     |
| Pente              | 2 - mA/V |
| Résistance interne | 16,5 kΩ  |
| Gain               | 33       |

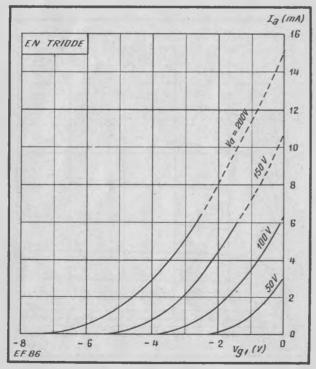



EF 86 : Courant d'anode  $I_n$ , en fonction de la tension de grille 1  $V_{\rm g1}$ , pour quatre valeurs de tension de grille 2  $V_{\rm g2}$ .

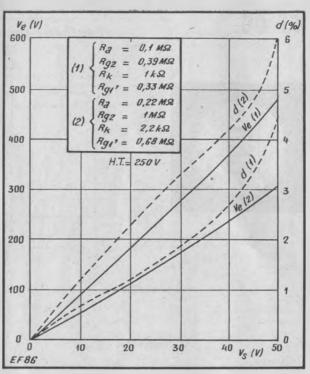
#### UTILISATION (suite)


#### En penthode

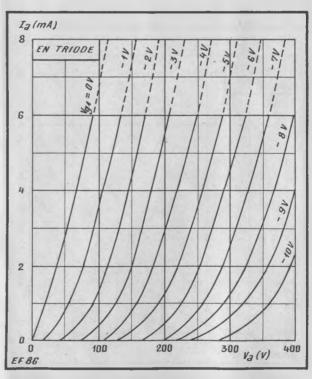
| Tension d'anode                   | 250 V             |
|-----------------------------------|-------------------|
| Tension de grille 3               | 0 V               |
| Tension de grille 2               | 110 V             |
| Tension de grille 1               | —2 V              |
| Courant d'anode                   | $3 - \mu \Lambda$ |
| Courant de grille 2               | 0,6 UA            |
| Courant de grille 1               | <0.05 µA          |
| Pente                             | -1,85  mA/V       |
| Résistance interne                | $2 - M\Omega$     |
| Coefficient d'amplification ga/ga | 38                |


| Tension maximum filament-cathode:               |     |            |
|-------------------------------------------------|-----|------------|
| Cathode positive                                | 100 | V          |
| Cathode négative                                | 50  | V          |
| Résistance maximum filament-cathode             | 20  | kΩ         |
| Tension maximum d'anode, à froid                | 550 | V          |
| Tension maximum d'anode                         | 300 | 1.         |
| Dissipation maximum d'anode                     | 1   | 11.        |
| Tension maximum de grille 2, à froid            | 550 | V          |
| Tension maximum de grille 2                     | 200 | V          |
| Dissipation maximum de grille 2                 | 0,2 | W          |
| Courant maximum de cathode                      | 6   | $m\Lambda$ |
| Résistance de grille 1 (dissipation d'anode in- |     |            |
| férieure à 0,2 W)                               | 10  | $M\Omega$  |
| (Dissipation d'anode supérieure à 0,2 W)        | 3   | $M\Omega$  |
| (Polarisation par fuite de grille)              | 22  | $M\Omega$  |
| Tension maximum négative de grille 1            |     |            |
| $(I_{g1} = 0.3 \mu A) \dots$                    | 1,3 | V          |
|                                                 |     |            |



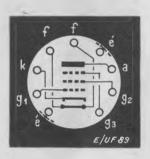

EF 86 : Courant d'anode  $l_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille 1  $V_{\rm gr}$ .

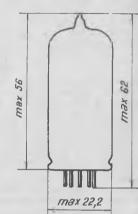



**EF 86:** Gain g et courant de cathode  $\mathbf{I}_k$ , en fonction de la haute tension **H.T.** et pour deux conditions d'utilisation.



EF 86, en triode : Courant d'anode  $I_a$ , en fonction de la tension de grille 1  $V_{\rm g1}$ , pour quatre valeurs de la tension d'anode  $V_{\rm a}$ .



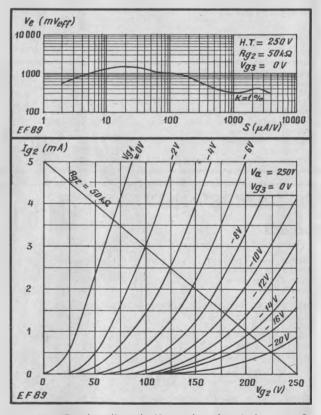


EF 86 : Tension d'entrée  ${\bf V}_{\rm o}$  et distorsion totale d, en fonction de la tension de sortie  ${\bf V}_{\rm o}$ , pour deux conditions d'utilisation.



EF 86, en triode : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille 1  $V_{\rm g1}$ .

#### Penthode à pente variable.



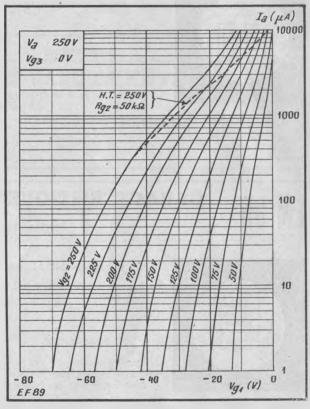



#### FILAMENT

| Tension |  |  |  |  | 6,3 | V |
|---------|--|--|--|--|-----|---|
| Courant |  |  |  |  | 0,2 | Α |

#### **CAPACITES**

| $C_a$    | =  | 5,1 | pF | $C_{\rm agi}$ | < | 0,002 | pF |
|----------|----|-----|----|---------------|---|-------|----|
| $C_{g1}$ | == | 5,5 | pF | $C_{g1f}$     | = | 0,05  | pF |



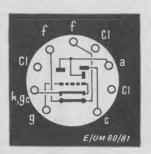

EF 89 : Tension d'entrée  ${\bf V}_{\rm e}$ , en fonction de la pente S, pour 1 % de distorsion par intermodulation; courant de grille 2  ${\bf I}_{\rm g2}$ , en fonction de la tension de grille 2  ${\bf V}_{\rm g2}$ , pour différentes valeurs de la tension de grille 1  ${\bf V}_{\rm g1}$ .

#### UTILISATION

| Tension d'anode                                         | 250 | 250  | 170  | V          |
|---------------------------------------------------------|-----|------|------|------------|
| Tension de grille 3                                     | 0   | 0    | 0    | V          |
| Tension de grille 2                                     | 100 | 85   | 100  | V          |
| Tension de grille 1                                     | -2  | 1,5  | -1.5 | Z.         |
| Courant d'anode                                         | 9   | 9    | 12   | $m\Lambda$ |
| Courant de grille 2                                     | 3   | 3,2  | 4,4  | $m\Lambda$ |
| Pente                                                   | 3,6 | 4,0  | 4,4  | mA/V       |
| Résistance interne                                      | 0,9 | 0,75 | 0,4  | $M\Omega$  |
| Coefficient d'amplification $\mathrm{g}2/\mathrm{g}1$ . |     | 21   |      |            |

| Tension maximum filament-cathode           | 100  | V                  |
|--------------------------------------------|------|--------------------|
| Résistance maximum filament-cathode        |      |                    |
| Tension maximum d'anode, à froid           | 550  | V                  |
| Tension maximum d'anode                    | 250  | V                  |
| Dissipation maximum d'anode                | 2,25 | 11.                |
| Tension maximum de grille 2, à froid       |      |                    |
| Tension maximum de grille 2                | 250  | V                  |
| Dissipation maximum de grille 2            | 0,45 | W                  |
| Courant maximum de cathode                 | 16,5 | mA                 |
| Résistance maximum de grille 1             | 3    | $M\Omega$          |
| (22 MΩ en cas de pol. par fuite de grille) |      |                    |
| Résistance maximum de grille 3             | 10   | $\mathbf{k}\Omega$ |




EF 89 : Courant d'anode  $I_{\rm a},$  en fonction de la tension de grille 1  $V_{\rm g1},$  pour différentes valeurs de la tension de grille 2  $V_{\rm gos}$ 

EM 80

### CARACTÉRISTIQUES DES LAMPES NOVAL

Indicateur d'accord.

EM 80



#### **FILAMENT**

| Tension |  |  |  |   | 6,3 | V |
|---------|--|--|--|---|-----|---|
| Courant |  |  |  | , | 0,3 | V |

#### DIMENSIONS

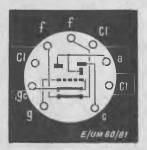
Diamètre maximum : 22 mm. Hauteur maximum : 67 mm. (dont 6 mm pour les broches)

#### UTILISATION

| Tension d'alimentation | 250 | v |
|------------------------|-----|---|
| Tension de cible       | 250 | V |
| Résistance d'anode     | 0,5 | M |

| Résistance de grille | 3        | $M\Omega$ |
|----------------------|----------|-----------|
| Tension de grille    | -1 $-14$ | V         |
| Angle de déviation   | 5 50     | 0         |
| Courant d'anode      | 0,37 0,0 | 1 mA      |
| Courant de cible     | 2 2.3    | mA        |

#### LIMITES


| Tension maximum filament-cathode    | 100 | 1.        |
|-------------------------------------|-----|-----------|
| Résistance maximum filament-cathode |     |           |
| Tension maximum d'anode, à froid    | 550 | V         |
| Tension maximum d'anode             | 300 | V         |
| Dissipation maximum d'anode         | 0,2 | W         |
| Tension maximum de cible, à froid   | 550 | V         |
| Tension maximum de cible            | 300 | V         |
| Tension minimum de cible            | 165 | V         |
| Tension maximum négative de grille  |     |           |
| $(I_g = 0.3 \mu A) \dots$           | 1,3 | V         |
| Courant maximum de cathode          | 3   | mA        |
| Résistance maximum de grille        | 3   | $M\Omega$ |
|                                     |     |           |

EM 81

# CARACTÉRISTIQUES DES LAMPES NOVAL

Indicateur d'accord.

EM 81



#### FILAMENT

| Tension |  |  |  |  | 6,3 | V |
|---------|--|--|--|--|-----|---|
| Courant |  |  |  |  | 0,3 | V |

#### DIMENSIONS

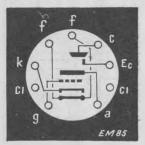
Diamètre maximum : 22 mm. Hauteur maximum : 67 mm. (dont 6 mm pour les broches)

#### UTILISATION

| Tension d'alimentation | 250 - | V         |
|------------------------|-------|-----------|
| Tension de cible       | 250   | V         |
| Résistance d'anode     | 0,5   | $M\Omega$ |

| Résistance de grille | 3          | $M\Omega$ |
|----------------------|------------|-----------|
| Tension de grille    | -1 $-10,5$ | V         |
| Angle de déviation   | 65 5       | 0         |
| Courant d'anode      | 0,37 0,02  | mA        |
| Courant de cible     | 2 93       | mA        |

#### LIMITES


| Tension maximum filament-cathode         | 100 V |    |
|------------------------------------------|-------|----|
| Résistance maximum filament-cathode      | 20 kΩ |    |
| Tension maximum d'anode, à froid         | 550 V |    |
| Tension maximum d'anode                  | 300 V |    |
| Dissipation maximum d'anode              | 0,2 W |    |
| Tension maximum de cible, à froid        | 550 V |    |
| Tension maximum de cible                 | 300 V |    |
| Tension minimum de cible                 | 165 V |    |
| Courant maximum de cathode               | 3 mA  | L. |
| Tension maximum négative de grille (Ig = |       |    |
| 0,3 μΑ)                                  | 1,3 V |    |
| Résistance maximum de grille             | 3 MO  |    |

EM 85

# CARACTÉRISTIQUES DES LAMPES NOVAL

Indicateur d'accord.

EM 85



#### FILAMENT

| Tension | , |  |  |  | 6,3 | V |
|---------|---|--|--|--|-----|---|
|         |   |  |  |  | 0,3 |   |

#### DIMENSIONS

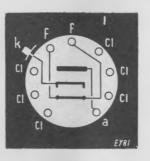
Diamètre maximum : 22 mm. Hauteur maximum : 67 mm. (dont 6 mm pour les broches)

#### UTILISATION

| Electrode de commande reliee a l'anode |     |           |
|----------------------------------------|-----|-----------|
| Tension d'alimentation                 | 250 | V         |
| Tension de cible                       | 250 | V         |
| Résistance d'anode                     | 0,5 | $M\Omega$ |

| Résistance de grille<br>Tension de grille<br>Angle de déviation<br>Courant d'anode | 0<br>100<br>0,5 | 18<br>0 | V             |
|------------------------------------------------------------------------------------|-----------------|---------|---------------|
| Electrode de commande alimentée sépar                                              | ément           |         |               |
| Tension d'alimentation                                                             | 250             |         | V             |
| Tension de cible                                                                   | 250             |         | V             |
| Tension d'électrode de commande                                                    | 5               | 160     | V             |
| Angle de déviation                                                                 | 110             | 0       | 0             |
| Courant d'électrode de commande                                                    | 5               | 180     | $\mu \Lambda$ |

| Tension maximum filament-cathode    | 100 V                 |  |
|-------------------------------------|-----------------------|--|
| Résistance maximum filament-cathode | $200 \text{ k}\Omega$ |  |
| Tension maximum d'anode             | 300 V                 |  |
| Dissipation maximum d'anode         | 0,2 W                 |  |
| Tension maximum de cible            | 300 V                 |  |
| Tension minimum de cible            | 165 V                 |  |
| Courant maximum de cathode          | 3 - mA                |  |
| Résistance maximum de grille        | $3 M\Omega$           |  |


# **EY 81**

# CARACTÉRISTIQUES DES LAMPES NOVAL

Diode de récupération pour télévision.

MAX

EY 81

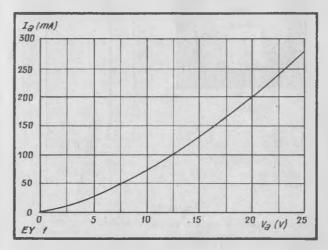


#### **FILAMENT**

| Tension |  | , |  | 6,3  | V |
|---------|--|---|--|------|---|
| Courant |  |   |  | 0,81 | Α |

#### CAPACITES

C<sub>a</sub> == 6,4 pF  $C_{k\ell} = 2,5 pF$ 

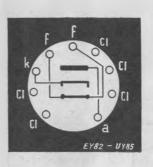

#### LIMITES

9%

| Courant maximum d'anod    | e 150                 | $_{ m mA}$      |
|---------------------------|-----------------------|-----------------|
| Courant maximum de po     | ointe d'anode 450     | mA              |
| Capacité maximum de « s   | gonflage » 4          | $\mu_{\Lambda}$ |
| Tension maximum filam     | ent-cathode           |                 |
| (cathode positive par rap | port au filament) 600 | V               |

#### Pendant le retour du balayage :

| Tension maximum de pointe filament-cathode | <br>4.500 V |
|--------------------------------------------|-------------|
| Tension maximum de pointe anode-cathode    | <br>4.500 V |
| Tension maximum de pointe anode-filament   | <br>3.000 V |




EY 81: Courant d'anode Ia, en fonction de la tension d'anode V...

# EY 82

### CARACTÉRISTIQUES DES LAMPES NOVAL

Valve monoplaque.

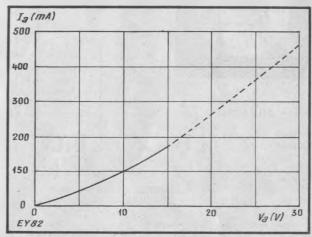


#### FILAMENT

| Tension |   |  |    |  | 6,3 | V |
|---------|---|--|----|--|-----|---|
| Courant | - |  | 14 |  | 0,9 | A |

# 28 max 22,2

max 22,2


#### LIMITES

Tension maximum filament-cathode ......

Pour deux tubes utilisés en montage biplaque

V eff Courant maximum redressé ..... 360 mA

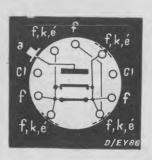
Courant maximum de pointe, par anode ... Capacité maximum d'entrée du filtre ..... Résistance minimum de trans-formateur



EY 82 : Courant d'anode  $I_{\rm a}$ , en fonction de la tension d'anode  $V_{\rm a}$ . En trait interrompu, valeurs admissibles seulement en régime de pointe.

**EY 86** 

# CARACTÉRISTIQUES DES LAMPES NOVAL


Valve monoplaque pour très haute tension.

14

max 22,2

EY 86

22 kV



#### **FILAMENT**

| Tension |  |  |  | 6,3  | V |
|---------|--|--|--|------|---|
| Courant |  |  |  | 0,09 | V |

#### UTILISATION

Courant redressé ... 0,15 mA Tension redressée 18 kV

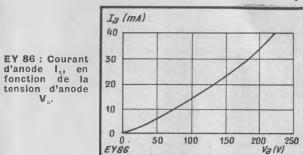
#### LIMITES

WEU

| Tension filament pour un courant redressé |      |    |    |     |    |
|-------------------------------------------|------|----|----|-----|----|
| inférieur ou égal à 200 $\mu A$           | 6,3  | V  | 土  | 15  | %  |
| Pour un courant redressé supérieur à      | 6,3  | ** | 1. | _   | 01 |
| 200 μΑ                                    | υ, ο | V  | 7  | - 6 | 10 |

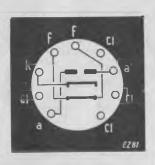
#### Tension sinusoïdale 50 Hz

| Tension maximum d'alimentation        |        |
|---------------------------------------|--------|
| Courant maximum redressé              |        |
| Capacité maximum à l'entrée du filtre |        |
| Résistance minimum du transformateur  | 0,1 MΩ |
| Régime d'impulsions                   |        |


Tension maximum inverse de pointe d'anode ......

(24 kV pour une impulsion durant au maximum 18 % d'une période, avec un maximum de

18 us) Courant maximum redressé


Courant maximum de pointe d'anode  $0.8 \,\mathrm{mA}$ 40 mA (pour une durée maximum de 10 % d'une période,

avec maximum de 10 µs)
Capacité maximum à Pentrée du filtre ............. 2000 pF



# CARACTÉRISTIQUES DES LAMPES NOVAL

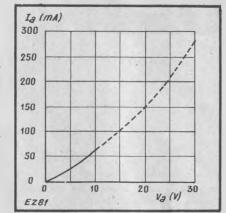
Valve biplaque.



#### FILAMENT

Tension . . . . . . 6,3 V Courant ...... 1 A

# 84 max 22,2

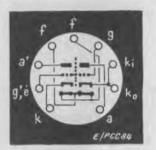

#### LIMITES

| Tension maximum | mament-cathode, cathode    |           |
|-----------------|----------------------------|-----------|
|                 |                            |           |
| Tension maximum | d'alimentation             | 350 V eff |
| Tension maximum | inverse de pointe d'anode. | 1 kV      |
| Courant maximum | redressé                   | 150 mA    |
| Courant maximum | de pointe d'anode          | 450 mA    |

#### UTILISATION

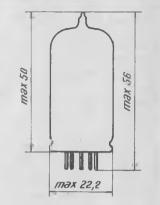
| Tension d'ailmenta-  |                |                |                |         |
|----------------------|----------------|----------------|----------------|---------|
| tion 2               | $2 \times 250$ | $2 \times 300$ | $2 \times 350$ | V eff   |
| Condensateur à l'en- |                |                |                |         |
| trée du filtre       | 50             | 50             | 50             | $\mu$ F |
| Résistance minimum   |                |                |                |         |
| du transformateur,   |                |                |                |         |
| par anode            | 150            | 200            | 240            | Ω       |
| Courant redressé     | 150            | 150            | 150            | mA      |
| Tension redressée    | 245            | 293            | 347            | V       |
|                      |                |                |                |         |

EZ 81 : Courant d'anode I<sub>a</sub>, en fonction de la tension d'anode V<sub>a</sub>. En trait interrompu, va-leurs admissi-bles seulement en régime de pointe.




**PCC 84** 

# CARACTÉRISTIQUES DES LAMPES NOVAL


Double triode pour cascode jusqu'à 220 MHz.

**PCC 84** 



#### **FILAMENT**

| Tension |  |  |  |  | 7   | V |
|---------|--|--|--|--|-----|---|
| Courant |  |  |  |  | 0.3 | Α |



#### CAPACITES

| Cag                 |   | 1,2  | pF | Ca' (g' + f) |   | 2,5   | pF |
|---------------------|---|------|----|--------------|---|-------|----|
| Cg                  |   | 2,1  | pF | Ck'f         | = | 2,7   | pF |
| C <sub>a</sub>      | = | 0,45 | pΕ | Ca'g'        | = | 2,3   | pF |
| Cgf                 | < | 0,25 | рF | Cn (k+f+g)   | = | 1,2   | рF |
| $C_{n'k'}$          | = | 0,16 | pF | Caa*         | < | 0,035 | рF |
| $C_{k}'$ $(g' + t)$ | - | 4,7  | pF | Cga '        | < | 0,006 | pF |

#### UTILISATION

| Tension d'anode                   | 90 V   |
|-----------------------------------|--------|
| Tension de grille —               | l,5 V  |
|                                   | 12 mA  |
|                                   | 6 mA/V |
|                                   | 24     |
| Conductance d'entrée à 200 MHz 25 | 0 μA/V |

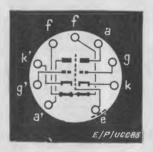
#### Notes

L'élément a-g-ki-ko est la triode à cathode à la masse du cascode et la section a'-g'-k' la section à grille à la masse. La triode à cathode à la masse possède deux connexions de cathode l'une, ki destinée à être connectée au circuit d'entrée, et l'autre ko au châssis.

#### LIMITES

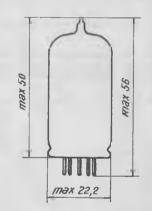
| Tension maximum filament-cathode k         | 100 | V                  |
|--------------------------------------------|-----|--------------------|
| Tension maximum filament - cathode k'      |     |                    |
| (k' positive)                              | 250 | V                  |
| (k' négative)                              | 100 | V                  |
| Résistance maximum filament-cathode        | 20  | $\mathbf{k}\Omega$ |
| Tension maximum d'anode à froid            | 550 | V                  |
| Tension maximum d'anode                    | 180 | V                  |
| Dissipation maximum d'anode                | 2   | W                  |
| Courant maximum de cathode                 | 22  | ınA                |
| Tension maximum de grille                  | 50  | V                  |
| Résistance maximum de grille               | 0,5 | $M\Omega$          |
| (1,5 MΩ en cas d'alimentation en parallèle |     |                    |
| du filament)                               |     |                    |

#### **COURBES**


Voir ECC 84, page 4.

# **PCC 85**

# CARACTÉRISTIQUES DES LAMPES NOVAL


Double triode amplificatrice et oscillatrice H.F.

**PCC 85** 



#### FILAMENT

| Tension |  |  |  |  | 9   | ٧ |
|---------|--|--|--|--|-----|---|
| Courant |  |  |  |  | 0,3 | Α |



#### CAPACITES

| Cag        |   | 1,5   |    | Ca'g'       | =  | 1,5   | pF |
|------------|---|-------|----|-------------|----|-------|----|
| Cak        |   | 0,18  | pF | Ca'k'       | == | 0,18  | pF |
| Ca (k+1+0) | = | 1,2   | pF | Ca' (k'+f+e | =  | 1,2   | pF |
| Cg (k+fe)  | = | 3     | pF | Cg'(k'+f+e) | =  | 3     | pF |
| Can"       | < | 0,04  | pF | Cak'        | <  | 0,008 | рF |
| Cgg'       | < | 0,003 | pF | Cgk'        | <  | 0,003 | рF |
| Cag'       | < | 0,008 | pF | Ca'k        | <  | 0,008 | pF |
| Ca g       | < | 0,008 | pF | Cg'k        | <  | 0,003 | pF |

#### UTILISATION

| Tension   | d'anode   |           | 100  | 170  | 200 V    |
|-----------|-----------|-----------|------|------|----------|
| Tension   | de grille |           | 1,1* | -1,5 | 2,1 V    |
| Courant   | d'anode   |           | 4,5  | 10   | 10 mA    |
| Pente     |           |           | 4,6  | 6,2  | 5,8 mA/V |
| Coefficie | nt d'ampl | ification | 50   | 50   | 48       |

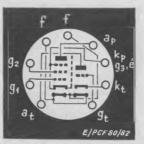
#### LIMITES

#### Chaque triode

| 5114415 111645                      |     |                    |
|-------------------------------------|-----|--------------------|
| Tension maximum filament-cathode    | 90  | V                  |
| Résistance maximum filament-cathode | 20  | $\mathbf{k}\Omega$ |
| Tension maximum d'anode, à froid    | 550 | V                  |
| Tension maximum d'anode             | 250 | V                  |
| Dissipation maximum d'anode         | 2,5 | W                  |
| Courant maximum de cathode          | 15  | mA                 |
| Tension maximum négative de grille  | 100 | $\mathbf{v}$       |
| Résistance maximum de guille        | -1  | 310                |

<sup>\*</sup> Un courant grille peut apparaître dans ce cas. S'il est indésirable, porter la polarisation à -1,5 V ou plus si nécessaire.

#### COURBES


Voir ECC 85, page 5.

PCF 80

# CARACTÉRISTIQUES DES LAMPES NOVAL

Triode - penthode à cathodes séparées.

**PCF 80** 



#### FILAMENT

Tension ..... 9 Courant . . . . . . 0,3 A



#### CAPACITES

| Elén           | nent | tri               | ode | Elén | nent pentl                | node | Entre       | éléments                            |
|----------------|------|-------------------|-----|------|---------------------------|------|-------------|-------------------------------------|
| C <sub>a</sub> | =    | 2,5<br>1,8<br>1,5 | pF  | C    | = 5,5<br>= 3,8<br>< 0,025 | pF   | $C_aP_{g}T$ | < 0,07 pF<br>< 0,02 pF<br>< 0,16 pF |

UTILISATION

| Elément penthode                                         |           |
|----------------------------------------------------------|-----------|
| Tension d'anodè                                          |           |
| Tension de grille 2                                      | V         |
| Tension de grille 1 —2                                   | L.        |
| Coulitaint a unione 111111111111111111111111111111111111 | mA        |
| Courant de grille 2 2,8                                  |           |
| 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                  | mA/V      |
| Coefficient d'amplification g2/g1                        |           |
| ,                                                        | $M\Omega$ |
| Résistance équivalente de bruit                          | kΩ        |

COURBES: Voir ECC 80, pp. 7 et 8.

| E | lé | m | en | t | tr | io | d | е |  |
|---|----|---|----|---|----|----|---|---|--|
|   |    |   |    |   |    |    |   |   |  |

| Tension d'anode             | 100 V  |
|-----------------------------|--------|
| Tension de grille           | 2 V    |
| Courant d'anode             | 14 mA  |
| Pente                       | 5 mA/V |
| Coefficient d'amplification |        |

#### LIMITES

#### Elément triode

| Tension maximum mament-camoue (camoue  |     |           |
|----------------------------------------|-----|-----------|
| négative)                              | 100 | V         |
| (cathode positive)                     | 200 | V         |
| (composante continue : 120 V maximum). |     |           |
| Tension maximum d'anode, à froid       | 550 | V         |
| Tension maximum d'anode                | 250 | V         |
| Dissipation maximum d'anode            | 1,5 | 11.       |
| Courant maximum de cathode             | 14  | mA        |
| Résistance maximum de grille           | 0,5 | $M\Omega$ |
| Tension maximum négative de grille     |     |           |
| $(I_n - 0.3 \text{ pA})$               | 1.3 | 1.        |

#### Elément penthode

| négative)                                      | 100  | V    |
|------------------------------------------------|------|------|
| (cathode positive)                             | 200  | V    |
| (composante continue : 120 V maximum).         |      |      |
| Tension maximum d'anode, à froid               | 550  | V    |
| Tension maximum d'anode                        | 250  | 1.   |
| Dissipation maximum d'anode                    | 1,7  | W    |
| Tension maximum de grille 2, à froid           | 550  | T.   |
| Tension maximum de grille 1, pour un cou-      |      |      |
| rant cathodique de 14 mA                       | 175  | V    |
| Tension maximum de grille 2, pour un courant   |      |      |
| cathodique inférieur ou égal à 10 mA           | 200  | V    |
| Dissipation maximum de grille 2, pour une dis- |      |      |
| sipation anodique supérieure à 1,2 W           | 0,5  | M    |
| Dissipation maximum de grille 2, pour une      |      |      |
| dissipation anodique inférieure à 1,2 W        | 0,73 | 11 G |
| Courant maximum de cathode                     | 11   | mA   |

Résistance maximum de grille 1 (polarisation

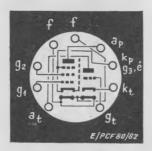
Tension maximum négative de grille 1 .....

automatique) ......(Polarisation fixe)

Tension maximum filament-cathode (cathode

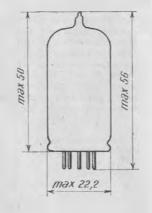
 $0.5~\mathrm{W}$ 0.75 W

 $\begin{array}{cc} 1 & M\Omega \\ 0,5 & M\Omega \end{array}$ 


1,3 V

**PCF 82** 

## CARACTÉRISTIQUES DES LAMPES NOVAL


Triode - penthode oscillatrice et changeuse.

# PCF 82



#### **FILAMENT**

Tension . . . . 9,45 V Courant . . . . 0,3 A

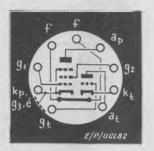


#### UTILISATION

#### Elément triode

| Tension d'anode                         | 150 V    |
|-----------------------------------------|----------|
| Résistance de cathode                   | 56 Ω     |
| Courant d'anode                         | 18 mA    |
| Pente                                   | 8,5 mA/V |
| Résistance interne                      | 5 kΩ     |
| Coefficient d'amplification             | 40       |
| Tension de blocage ( $I_a = 10 \mu A$ ) | 12 V     |
| Elément penthode                        |          |
| Tension d'anode                         | 250 V    |
| Tanalan da sulla 9                      | 440 31   |

| Teligibili tie sheefibe (sa = 20 F-12)  |           |
|-----------------------------------------|-----------|
| Elément penthode                        |           |
| Tension d'anode                         | 250 V     |
| Tension de grille 2                     |           |
| Résistance de cathode                   |           |
| Courant d'anode                         |           |
| Courant de grille 2                     |           |
| Pente                                   |           |
| Résistance interne                      |           |
| Tension de blocage ( $I_a = 10 \mu A$ ) | 10 V env. |


CAPACITES, LIMITES ET COURBES: Voir ECF 82, page 9.

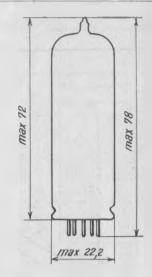
**PCL 82** 

# CARACTÉRISTIQUES DES LAMPES NOVAL

Triode - penthode.

**PCL 82** 




#### FILAMENT

| Tension |  |  |  | 16  | ٧ |
|---------|--|--|--|-----|---|
| Courant |  |  |  | 0,3 | Α |

#### CAPACITES

#### Elément triode

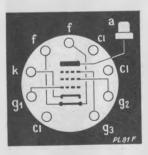
 $C_{g} = 2.7 \text{ pF}$   $C_{a} = 4 \text{ pF}$   $C_{ag} = 4 \text{ pF}$   $C_{gf} < 0.02 \text{ pF}$ 



#### AUTRES CAPACITES, UTILISATION ET COURBES :

Voir ECL 82. page 11.

#### LIMITES

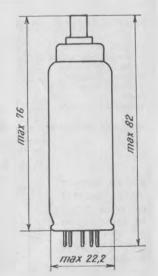

| Elément triode                                                          |      |           |
|-------------------------------------------------------------------------|------|-----------|
| Tension maximum filament-cathodes                                       | 200  | V         |
| Résistance maximum filament-cathodes                                    | 20   | $k\Omega$ |
| Tension maximum d'anode, à froid                                        | 550  | V         |
| Tension maximum d'anode                                                 | 250  | 1.        |
| Tension maximum de pointe d'anode, pour une                             |      |           |
| impulsion de durée maximum égale à 4 %                                  |      |           |
| d'une période avec maximum de 0,8 ms                                    | 600  | V         |
| Dissipation maximum d'anode                                             | 1    | W         |
| Courant maximum de cathode                                              | 15   | mA        |
| Résistance maximum de grille pour une pola-                             |      |           |
| risation fixe                                                           | 1    | $M\Omega$ |
| pour une polarisation automatique                                       | 2    | $M\Omega$ |
| polarisation par fuite de grille                                        | 22   | $M\Omega$ |
| Elément penthode                                                        |      |           |
| • • • • • • • • • • • • • • • • • • • •                                 |      |           |
| Tension maximum d'anode, à froid                                        | 900  | V         |
| Tension maximum d'anode                                                 | 600  | V         |
| Tension maximum de pointe d'anode, pour une                             |      |           |
| impulsion de durée maximum égale à 4 %                                  |      |           |
| d'une période, avec maximum de 0,8 ms                                   | 2500 | V         |
| Tension maximum négative de pointe d'anode                              | 500  | V         |
| Dissipation maximum d'anode (tension d'anode                            |      | 777       |
| supérieure à 250 V)                                                     | 5 7  | W         |
| (Tension d'anode inférieure à 250 V)                                    |      | W         |
| Tension maximum de grille 2, à froid                                    | 550  | V         |
| Tension maximum de grille 2                                             | 250  | V         |
| Dissipation maximum de grille 2                                         |      | 3 W       |
| Dissipation maximum de pointe de grille 2<br>Courant maximum de cathode |      | 5 W.      |
|                                                                         | 50   | mA        |
| Résistance maximum de grille 1 Polarisation fixe                        | 1    | $M\Omega$ |
| Polarisation automatique                                                | 2    | MΩ        |
| rotatisation automatique                                                | 2    | 741 23    |
|                                                                         |      |           |

# PI 81 F

# CARACTÉRISTIQUES DES LAMPES NOVAL

Penthode de sortie « lignes ».

# PL 81 F




#### FILAMENT

| Tension |  |  |  | 21,5 | V  |
|---------|--|--|--|------|----|
| Courant |  |  |  | 0.3  | IA |

#### CAPACITES

 $\begin{array}{lll} C_{g1} &=& 14.7 \ pF \\ C_{n} &=& 6 \ pF \\ C_{ak1} &<& 0.8 \ pF \\ C_{nk} &<& 0.1 \ pF \\ C_{nre} &<& 0.2 \ pF \end{array}$ 



#### COURBES

Voir PL 81 / 21 A 6, Album nº6, p. 20.

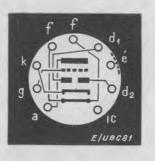
#### UTILISATION

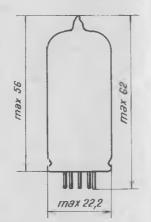
| Tension d'anode                   | 170 | 200 V  |
|-----------------------------------|-----|--------|
| Tension de grille 3               | 0   | 0 V    |
| Tension de grille 2               | 170 | 200 V  |
| Tension de grille 1               | -22 | —28 V  |
| Courant d'anode                   | 45  | 40 mA  |
| Courant de grille 2               | 3   | 2,8 mA |
| Pente                             | 6,2 | 6 mA/V |
| Résistance interne                | 10  | 11 kΩ  |
| Coefficient d'amplification g2/g1 | 5,5 | 5,5    |

#### Deux tubes en push-pull classe 13

| Tension d'anodes et de grilles 2     |   | 170   |   | 200 V      |
|--------------------------------------|---|-------|---|------------|
| Polarisation                         | _ | -27   | - | −31,5 V    |
| Résistance entre anodes              |   | 2,5   |   | 2,5 kΩ     |
| Résistance de grilles 2              |   | 1     |   | 1 kΩ       |
| Courant d'anodes (au repos) 2        | X | 20 2  | × | 25 mA      |
| Courant de grilles (au repos) 2      | X | 1,5 2 | × | 2 mA       |
| Tension maximum d'entrée             |   | 19    |   | 22,5 V eff |
| Courant d'anodes correspondant 2     | X | 73 2  | X | 87 mA      |
| Courant de grilles 2 correspondant 2 | X | 10 2  | × | 12,5 mA    |
| Puissance de sortie correspondante   |   | 13,5  |   | 20 W       |
| Distorsion totale                    |   | 5,5   |   | 5,5 %      |

#### LIMITES


Voir 21 B 6, page 32 de cel album.


# **UBC 81**

# CARACTÉRISTIQUES DES LAMPES NOVAL

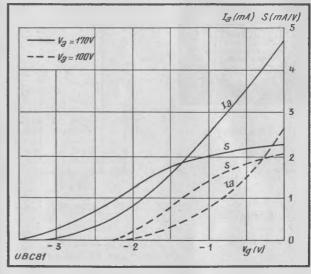
Double diode - triode amplificatrice B.F.

UBC 81





#### **FILAMENT**


Tension . . . . . 14 V Courant . . . . 0,1 A

Elianoma diadaa

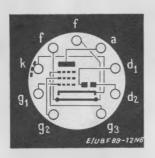
#### UTILISATION

| Résistance interne de chaque diode pour un courant de 1 µA | 100   | kΩ                 |
|------------------------------------------------------------|-------|--------------------|
| Elément triode                                             |       |                    |
| Tension d'anode 100                                        | 170   | V                  |
| Tension de grille                                          | -1,55 | V                  |
| Courant d'anode 0,8                                        | 1,5   | mA                 |
| Coefficient d'amplification 70                             | 70    |                    |
| Résistance interne 50                                      | 42    | $\mathbf{k}\Omega$ |
| Danie d 4                                                  | 4 0 " | A /                |

Capacités et limites : voir EBC 81, pages 1 et 2.



UBC 81, élément triode : Courant d'anode  $I_a$  et pente S en fonction de la tension de grille  $V_g$ , pour deux valeurs de la tension d'anode  $V_a$ .


# **UBF 89**

# CARACTÉRISTIQUES DES LAMPES NOVAL

1,65 mA/V

Double diode - penthode à pente variable.

**UBF 89** 

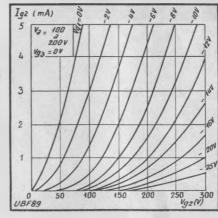


# 19 xem 22,2

#### FILAMENT

Tension . . . . 19 V Courant . . . . 0,1 A

#### UTILISATION

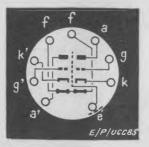

| Tension    | d'anode                   | 100 | 170 | 200   | L.        |
|------------|---------------------------|-----|-----|-------|-----------|
| Tension of | de grille 3               | 0   | 0   | 0     | V         |
| Tension    | de grille 2               | 100 | 100 | 100   | V.        |
| Tension    | de grille 1               | 2   | 1   | 1,5   | V         |
| Courant    | d'anode                   | 8,5 | 12  | 11 1  | mA        |
| Courant    | de grille 2               | 2,8 | 4   | 3,3 1 | mA        |
| Pente      |                           | 3,5 | 5   | 4,5   | $m_1A/V$  |
| Résistanc  | e interne                 | 0,3 | 0,4 | 0,6   | $M\Omega$ |
| Coefficier | nt d'amplification g2/g1. | 20  | 20  | 20    |           |
|            |                           |     |     |       |           |

#### Amplification H.F. ou M.F.

| Haute tension          | 100      | 200        | V         |
|------------------------|----------|------------|-----------|
| Tension de grille 3    | 0        | 0          | /r        |
| Résistance de grille 2 | 0        | 30         | 1.        |
| Tension de grille 1    | -2 -10   | -1,5 $-20$ | V         |
| Courant d'anode        | 8,5      | 11 —       | mA        |
| Courant de grille 2    | 2,8 —    | 3,3 —      | mA        |
| Pente                  | 3,5 0,11 | 4,5 0,12   | 2 mA/V    |
| Résistance interne     | 0,3 —    | 0,6 —      | $M\Omega$ |

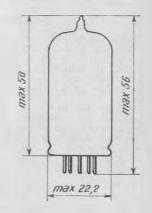
Capacités et limites : voir EBF 89, page 3.

UBF 89, élément triode: Courant de grille 2 lgay en fonction de la tension de grille 2 Vg2, pour différentes valeurs de la tension de grille 1 Vg1.




**UCC 85** 

# CARACTÉRISTIQUES DES LAMPES NOVAL


Double triode amplificatrice et oscillatrice H.F.

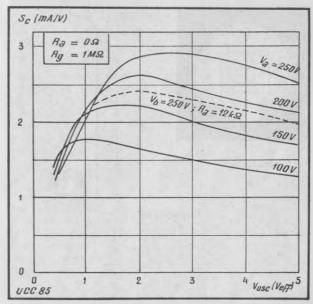
UCC 85



#### FILAMENT

| Tension |  |  |  | 26  | V |
|---------|--|--|--|-----|---|
| Courant |  |  |  | 0,1 | Α |




#### UTILISATION

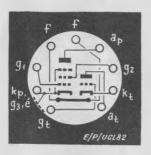
#### Chaque triode

| Tension d'anode             | 100 | 170  | 200 V    |
|-----------------------------|-----|------|----------|
| Tension de grille           | 1,5 | -1,5 | -2,1 V   |
| Courant d'anode             | 4,5 | 10   | 10 mA    |
| Pente                       | 4,6 | 6,2  | 5,8 mA/V |
| Coefficient d'amplification |     | 50   | 48       |

#### CAPACITES, LIMITES ET COURBES

Voir ECC 85, page 5.




UCC 85: Pente de conversion  $S_{\rm ci}$  en fonction de la tension d'oscillation  $V_{\rm osci}$  pour différentes valeurs de la tension d'anode  $V_{\rm a}$ . ( $V_{\rm b}=$  haute tension).

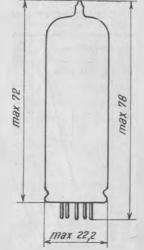
**UCL 82** 

# CARACTÉRISTIQUES DES LAMPES NOVAL

Triode - penthode basse fréquence.

UCL 82




#### **FILAMENT**

| Tension |  |  |  | 50  | V |
|---------|--|--|--|-----|---|
| Courant |  |  |  | 0,1 | Α |

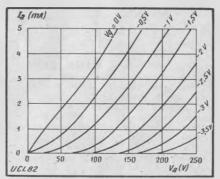
#### CAPACITES

#### Elément triode

$$C_g = 2.7 \text{ pF}$$
 $C_a = 4.0 \text{ pF}$ 
 $C_{ng} = 4 \text{ pF}$ 
 $C_{gf} < 0.02 \text{ pF}$ 



Autres capacités, limites et courbes : voir ECL 82, page 11.

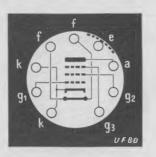

#### UTILISATION

#### Elément penthode

| Tension | d'anode     | 100 | 170 | 200 | 200 | $\mathbf{v}$ |
|---------|-------------|-----|-----|-----|-----|--------------|
| Tension | de grille 2 | 100 | 170 | 170 | 200 | V            |



UCL 82: Courant d'anode I<sub>a</sub>, en fonction de la tension d'anode V<sub>a</sub>, pour différentes valeurs de la tension de grille V<sub>κ</sub>.



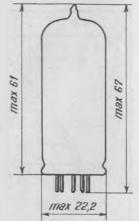

**UF 80** 

# CARACTÉRISTIQUES DES LAMPES NOVAL

Penthode à grande pente amplificatrice H.F. et M.F.

**UF 80** 




#### FILAMENT

| Tension | <br>19  | V |
|---------|---------|---|
| Courant | <br>0,1 | Α |

 $\begin{array}{cccc} \textbf{CAPACITES} \\ \textbf{C}_{g1} &=& 7,5 & \text{pF} \\ \textbf{C}_{a} &=& 3,3 & \text{pF} \\ \textbf{C}_{ag1} &<& 0,007 & \text{pF} \\ \textbf{C}_{ak} &<& 0,012 & \text{pF} \\ \textbf{C}_{g2} &=& 5,4 & \text{pF} \\ \textbf{C}_{g1g2} &=& 2,6 & \text{pF} \\ \textbf{C}_{g1f} &<& 0,15 & \text{pF} \\ \end{array}$ 

COURBES

Voir EF 80, Album 6, pages 3 à 6.



#### UTILISATION

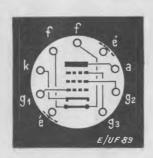
| Tension    | d'anode                               | 170 | T.        |
|------------|---------------------------------------|-----|-----------|
| Tension    | de grille 3                           | 0   | V         |
| Tension    | de grille 2                           | 170 | Λ.        |
| Tension    | de grille 1                           | 2   | V         |
| Courant    | d'anode                               | 10  | mA        |
| Courant    | de grille 2                           | 2,5 | mA        |
| Pente .    |                                       | 7,4 | mA/V      |
| Résistano  | ce interne                            | 0,4 | $M\Omega$ |
| Coefficien | nt d'amplification g2/g1              | 50  |           |
|            | ce équivalente de bruit               |     |           |
|            | ce d'entrée à 50 MHz, broche 1 reliée |     |           |
|            | maha 3                                | 10  | 10        |

#### LIMITES

| Tension maximum filament-cathode     | 150 V        |   |
|--------------------------------------|--------------|---|
| Résistance maximum filament-cathode  | $20 k\Omega$ |   |
| Tension maximum d'anode à froid      | 550 V        |   |
| Tension maximum d'anode              | 250 V        |   |
| Dissipation maximum d'anode          | 2,5 W        |   |
| Tension maximum de grille 2, à froid | 550 V        |   |
| Tension maximum de grille 2          | 250 V        |   |
| Dissipation maximum de grille 2      | 0,7 W        |   |
| Courant maximum de cathode           | 15 mA        |   |
| Tension maximum négative de grille 1 |              |   |
| $(I_{g1} = 0.3 \mu A)$               | 1,3 V        |   |
| Résistance maximum de grille 1       |              |   |
| Polarisation fixe                    | 0,5 M9       | 2 |
| Polarisation automatique             | 1 M9         | 2 |

**UF 89** 

# CARACTÉRISTIQUES DES LAMPES NOVAL

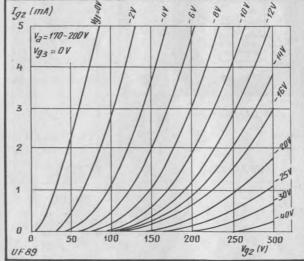

Penthode à pente variable.

62

MAX

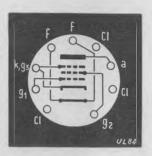
max 22,2

**UF 89** 




#### FILAMENT

| Tension |  |  |  | 12,6 | V |
|---------|--|--|--|------|---|
| Courant |  |  |  | 0,1  | Α |

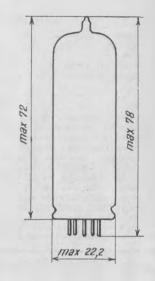



# CAPACITES ET LIMITES : voir EF 89, page 15.



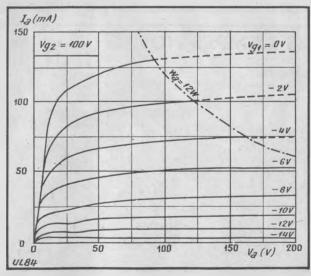
UF 89: Courant de grille 2  $I_{\rm g2}$ , en fonction de la tension de grille 2  $V_{\rm g2}$ , pour différentes valeurs de la tension de grille 1  $V_{\rm g1}$ .

#### Penthode de sortie B.F.




#### FILAMENT

| Tension | , |  | , | 45  | V |
|---------|---|--|---|-----|---|
| Courant |   |  |   | 0,1 | Α |


#### CAPACITES

| $C_{g1}$ |              | 12  | рF |
|----------|--------------|-----|----|
| Ca       | and the same | 6   | pF |
| Cagi     | 4            | 0,6 | pF |



#### UTILISATION

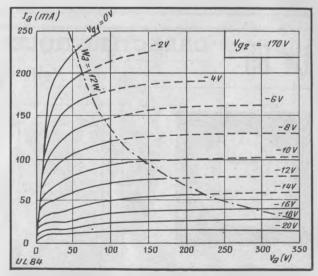
| Tension d'anode             | 100  | 170 V   |
|-----------------------------|------|---------|
| Tension de grille 2         | 100  | 170 V   |
| Tension de grille 1         | -6,7 | -12,5 V |
| Résistance de cathode       | 125  | 140 Ω   |
| Courant d'anode             | 43   | 70 mA   |
| Courant de grille 2         | 3    | 5  mA   |
| Coefficient d'amplification | 8    | 8       |
| Résistance interne          | 23   | 23 kΩ   |
| Pente                       | 9    | 10 mA/V |
| Impédance de charge         | 2,4  | 2,4 kΩ  |
| Tension d'entrée            | 4,3  | 7 V eff |
| Puissance de sortie         | 1,9  | 5,6 W   |
| Distorsion totale           | 10   | 10 %    |



UL 84 : Courant d'anode  $I_{\rm s}$ , en fonction de la tension d'anode  $V_{\rm s}$ , pour différentes valeurs de la tension de grille 1  $V_{\rm gt}$  et une tension de grille 2 de 100 V.

#### UTILISATION EN TRIODE

(Grille 2 réunie à l'anode)


#### Amplification classe A

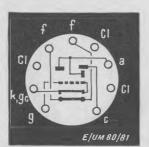
| Tension d'anode            | 100 | 170 V      |
|----------------------------|-----|------------|
| Résistance de polarisation | 8   | —15 V      |
| Imp. de charge anode-anode | 1,2 | 1,2 kΩ     |
| Tension d'entrée           | 5,7 | 10,8 V eff |
| Courant d'anode            | 36  | 62 mA      |
| Puissance de sortie        | 0,5 | 2 \W       |
| Distorsion totale          | 10  | 10 %       |

#### Deux tubes en classe AB

| Tension d'anodes    | 100         | 170           | V     |
|---------------------|-------------|---------------|-------|
| Tension de grille 1 | 270         | 270           | Ω     |
| Impédance de charge | 3,5         | 3,5           | kū    |
| Tension d'entrée    | 7,3         | 13,4          | V eff |
| Courant d'anodes2   | $\times$ 20 | $2 \times 36$ | mA    |
| Puissance de sortie | 1           | 3,9           | W     |
| Distorsion totale   | 3,2         | 3,8           | %     |

| Tension maximum filament-cathode             | 200  | $\mathbf{v}$       |
|----------------------------------------------|------|--------------------|
| Résistance maximum filament-cathode          | 20   | $\mathbf{k}\Omega$ |
| Tension maximum d'anode                      | 250  | $\mathbf{v}$       |
| Dissipation maximum d'anode                  | 12   | W                  |
| Tension maximum de grille 2                  | 200  | V                  |
| Dissipation maximum de grille 2              | 1,75 | W                  |
| Courant maximum de cathode                   | 100  | mA                 |
| Résistance maximum de grille 1, en polarisa- |      |                    |
| tion automatique                             | 1    | $M\Omega$          |




UL 84 : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille 1  $V_{\rm g1}$  et une tension de grille 2 de 170 V.

**UM 80** 

# CARACTÉRISTIQUES DES LAMPES NOVAL

Indicateur d'accord.

UM 80



#### FILAMENT

| Tension |  |   |  | , | 19  | V |
|---------|--|---|--|---|-----|---|
| Courant |  | , |  |   | 0,1 | Α |

#### DIMENSIONS

Diamètre maximum : 22 mm. Hauteur maximum : 67 mm. (dont 6 mm pour les broches)

#### UTILISATION

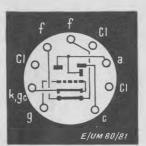
| Haute te   | nsion   |    |
|------------|---------|----|
| Tension    | de cibl | e. |
| Résistance | d'ano   | de |
| Résistanc  | e d     | G  |
| grille     |         |    |

| O I I I I I I |     |     |           |
|---------------|-----|-----|-----------|
| 200           | 170 | 100 | V         |
| 200           | 170 | 100 | V         |
| 0,5           | 0,5 | 0,5 | $M\Omega$ |
| 3             | 3   | 3   | $M\Omega$ |

#### UTILISATION (SUITE)

| Tension de grille<br>Angle de dévia- | 1    | 14 - | -1  | 12 – | -1 - | -7 N | 7  |
|--------------------------------------|------|------|-----|------|------|------|----|
| tion                                 | 4    | 50   | ă   | 50   | 8    | .50  | 0  |
| Courant de cible.                    | 5,7  | 7    | 4,5 | 5,7  | 2,1  | 2,5  | mA |
| Courant d'anode.                     | 0,35 | 0,01 | 0,3 | 0,01 | 0,18 | 0,01 | mA |

#### LIMITES


| Tension maximum filament-cathode                                                                                                   | 150 | V                  |
|------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|
| Résistance maximum filament-cathode                                                                                                | 20  | $\mathbf{k}\Omega$ |
| Tension maximum d'anode, à froid                                                                                                   | 550 | V                  |
| Tension maximum d'anode                                                                                                            | 250 | V                  |
| Dissipation maximum d'anode                                                                                                        | 0,2 | W                  |
| Tension maximum de cible, à froid                                                                                                  | 550 | V                  |
| Tension maximum de cible                                                                                                           | 250 | V                  |
| Tension minimum de cible                                                                                                           | 90  | V                  |
| Courant maximum de cathode                                                                                                         | 10  | mA                 |
| Tension maximum négative de grille                                                                                                 |     |                    |
| $(I_g = 0,3  \mu_A)  \dots $ | 1,3 | V                  |
| Résistance maximum de grille                                                                                                       |     | $M\Omega$          |
|                                                                                                                                    |     |                    |

UM 81

# CARACTÉRISTIQUES DES LAMPES NOVAL

Indicateur d'accord.

UM 81



#### FILAMENT

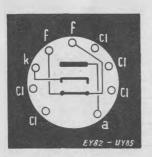
| Tension |  |  |  |   | 19  | V |
|---------|--|--|--|---|-----|---|
| Courant |  |  |  | , | 0,1 | Α |

#### DIMENSIONS

Diamètre maximum : 22 mm. Hauteur maximum : 67 mm. (dont 6 mm pour les broches)

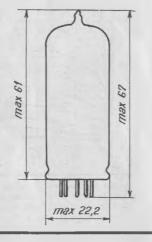
#### UTILISATION

| Haute tension        | 200        | V   |
|----------------------|------------|-----|
| Tension de cible     | 200        | V   |
| Résistance d'anode   |            | MQ. |
| Résistance de grille | 3          | MΩ  |
| Tension de grille    | -1 $-10,5$ | V   |
| Angle de déviation   | 65 5       | 0   |
| Courant d'anode      | 0,37 0,02  | mA  |
| Courant de cible     | 2 2,3      | mA  |


LIMITES: voir UM 80, ci-dessus.

UY 85

# CARACTÉRISTIQUES DES LAMPES NOVAL


Valve monoplaque.

UY 85



#### FILAMENT

Tension ..... 38 V Courant ..... 0,1 A



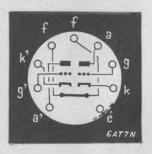
#### UTILISATION

| Tension  | d'alimentation       | 110 | 127 | 220 | 250 V eff |
|----------|----------------------|-----|-----|-----|-----------|
| Tension  | redressée            | 112 | 135 | 215 | 245 V     |
| Courant  | redressé             | 110 | 110 | 110 | 110 mA    |
| Capacité | à l'entrée du filtre | 100 | 100 | 100 | 100 µF    |

X

#### LIMITES

| Tension  | maximum    | inverse de pointe  | 700 V  |
|----------|------------|--------------------|--------|
|          |            | redressé           |        |
|          |            | anodique de pointe | 660 mA |
| Résistan | res minima | d'alimentation :   |        |


0 Ω pour 110 et 127 V; 90 Ω pour 220 V; 100 Ω pour 250 V eff. alimentation

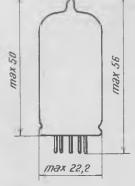
# 6 AT 7 N

# CARACTÉRISTIQUES DES LAMPES NOVAL

Double triode à cathodes séparées.

6 AT 7 N




#### FILAMENT

| Tension |  |   | , | , | 6,3 | V |  |
|---------|--|---|---|---|-----|---|--|
| Courant |  | , | , |   | 0,3 | Α |  |

#### CAPACITES

#### Chaque triode

| $C_g$          |      |   |    | =   | 2,5  | рF |
|----------------|------|---|----|-----|------|----|
| $C_{\rm a}$    |      |   |    | =   | 0,4  | рF |
| Cag            |      |   |    |     | 1,45 | pF |
| $C_{ak}$       |      |   |    | ==  | 0,15 | pF |
| $C_{kf}$       |      |   |    |     | 2,5  | рF |
| $C_k$          | ( g  | + | f) | === | 5    | рF |
| C <sub>a</sub> | ( 27 | + | f) | =   | 1,6  | pF |



#### Entre éléments

| Cgg" | < 0,005 | pF |
|------|---------|----|
| C'   | < 0.07  |    |

#### UTILISATION

| Tension d'anode             | 170 | 200 | 250   | V    |
|-----------------------------|-----|-----|-------|------|
| Tension de grille           | 1,5 | 1,5 | -2,35 | V    |
| Courant d'anode             | 10  | 10  | 10    | mA   |
| Pente                       | 6   | 5,5 | 4,9   | mA/V |
| Coefficient d'amplification | 62  | 57  | 43    |      |



#### LIMITES

| Tension maximum filament-cathode Résistance maximum filament-cathode Tension maximum d'anode, à froid Tension maximum d'anode Dissipation maximum d'anode Résistance maximum de grille (polarisation auto- | 20<br>550<br>300<br>2,5 | V<br>W    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|
| matique)                                                                                                                                                                                                   |                         | $M\Omega$ |



#### **COURBES**

Voir ECC 81 / 12 AT 7, Album 6, pages 17 à 19.

# 6 AX 2 N

# CARACTÉRISTIQUES DES LAMPES NOVAL

Valve monoplaque pour très haute tension.

6 AX 2 N



#### FILAMENT

Tension . . . . 6,3 V Courant . . . . 0,09 A

# #12 xeml #12 xeml #12 xeml

#### NOTES

1) La tension redressée doit être prise de préférence sur la broche nº 1, à laquelle on aura intérêt à relier une bague anti-corona, à placer autour du support à la hauteur des broches.

2) Les broches NC (non connectées) peuvent être utilisées comme relais si le potentiel auquel elles seront portées de ce fait est proche de celui du filament.

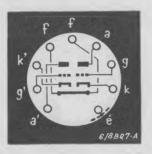
#### UTILISATION

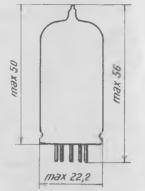
| Tension | inverse de | crête | 22    | kV      |
|---------|------------|-------|-------|---------|
| Tension | redressée  |       | 18    | kV      |
| Courant | redressé   |       | à 300 | $\mu$ A |



#### LIMITES

| Tension filament :<br>Pour un courant redressé inférieur ou   |                        |
|---------------------------------------------------------------|------------------------|
| égal à 200 μA<br>Pour un courant redressé supérieur à         | 6,3 V $\pm$ 15 %       |
| 200 μΑ                                                        | 6,3 V ± 7 %            |
| Tension maximum inverse de crête Pour un courant anodique nul | 22 kV (3)<br>24 kV (3) |
| Courant maximum redressé                                      | 1 mA<br>40 mA (3)      |
| Capacité maximum de filtrage                                  | 2 000 pF               |


3) La valeur crête-crête de l'impulsion est la somme de la valeur positive de crête et de la valeur négative additionnelle de crête résultant des oscillations aux bornes du transformateur de lignes. Cette dernière peut atteindre  $23\,\%$  de la tension redressée par le tube. La durée maximum de l'impulsion est de  $18\,\%$  d'un cycle avec maximum de  $18\,\mu s$ .

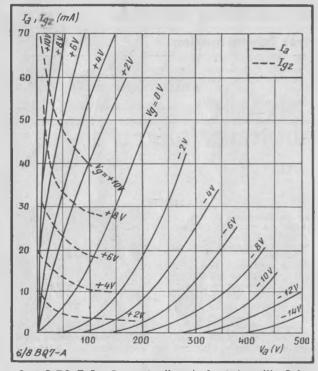

# 6 BQ 7 A

# CARACTÉRISTIQUES DES LAMPES NOVAL

Double triode pour cascode.

6 BQ 7 A






#### FILAMENT

| Tension |  | , | · |   | 6,3 | V |
|---------|--|---|---|---|-----|---|
| Courant |  |   |   | , | 0,4 | Α |

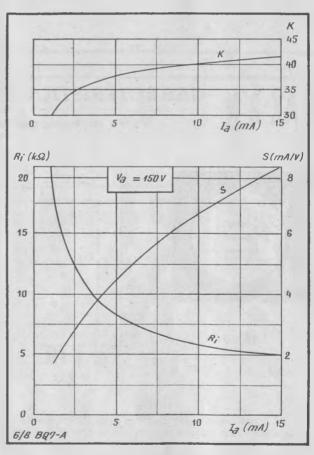
#### **CAPACITES**

| Cag                                             | =  | 1,15  | рF |
|-------------------------------------------------|----|-------|----|
| C entrée                                        | == | 2,85  | pF |
| C sortie (circuit cascode, éléments k', g', a') | == | 4,95  | pF |
| C sortie                                        | =  | 1,35  | pF |
| C sortie (circuit cascode, éléments k', g', a') | -  | 2,27  | pF |
| Cak                                             | <  | 0,15  | рF |
| Cek                                             | =  | 2,65  | рF |
| Cg'a'                                           | =  | 1,15  | pF |
| Ca k                                            | <  | 0,15  | pF |
| Crk'                                            |    | 2,7   | pF |
| Caa'                                            | <  | 0,01  | pF |
| Cex                                             | <  | 0,024 | рF |
|                                                 |    |       |    |



6 et 8 BQ 7 A : Courants d'anode  $I_a$  et de grille 2  $I_{\rm g2}$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille  $V_{\rm g}$ .

#### UTILISATION


| Chaque triode                          |                    |
|----------------------------------------|--------------------|
| Tension d'anode                        | V _                |
| Résistance de cathode                  | Ω                  |
| Courant d'anode 9                      |                    |
| Tension de grille ( $I_a = 10 \mu A$ ) | V environ          |
| Coefficient d'amplification 39         |                    |
| Pente 6,4                              | mA/V               |
| Résistance interne 6,1                 | $\mathbf{k}\Omega$ |

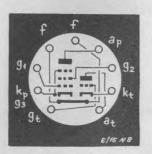
#### LIMITES

| Chaque triode                                                   |     |       |  |
|-----------------------------------------------------------------|-----|-------|--|
| Tension maximum filament-cathode                                | 200 | V     |  |
| En montage cascode à liaison directe,                           |     |       |  |
| cette tension peut atteindre 300 V pour un courant d'anode nul. |     |       |  |
| Tension maximum d'anode                                         | 250 | W (1) |  |
|                                                                 |     |       |  |
| Dissipation maximum d'anode                                     | 2   | W     |  |
| Courant maximum de cathode                                      | 20  | mA    |  |
|                                                                 |     |       |  |

(1) 300 V pour  $I_{\alpha} = 0$ , en montage cascode à liaison directe.

COURBES: voir aussi 8 BQ 7 A, page 30.




6 et 8 BQ 7 A : Coefficient d'amplification K, résistance interne  ${\bf R}_i$  et pente S, en fonction du courant d'anode  ${\bf I}_{a^*}$ 

# 6 CN 8

# CARACTÉRISTIQUES DES LAMPES NOVAL

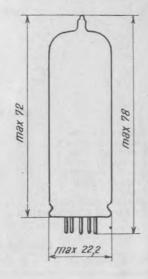
Triode - penthode de sortie son.

6 CN 8



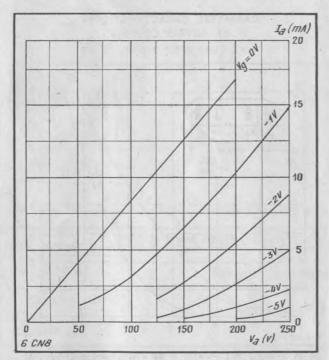
#### FILAMENT

| Tension |  |  |   |  | 6,3 | V |
|---------|--|--|---|--|-----|---|
| Courant |  |  | + |  | 0,7 | A |


#### CAPACITES

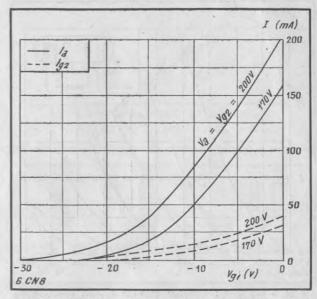
#### Elément triode

| C entrée | === | 2,7 | pF |
|----------|-----|-----|----|
| C sortie | -   | 2,5 | pF |
| Cga      | =   | 1,4 | pF |
| Cgf      | ==  | 0,1 |    |


#### Elément penthode

| C entrée | = 9 pF   |
|----------|----------|
| C sortie | = 8 pF   |
| Cgia     | < 0,3 pF |
| Cg1f     | < 0,3 pF |




#### Entre éléments

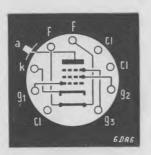
| CgiaT | < | 0,015 | pF |
|-------|---|-------|----|
| Свтар | - | 0,015 |    |
| CgTg1 | < | 0,02  | pF |
| Catap | < | 0,1   | pF |



6 CN 8, élément triode : Courant d'anode  $I_a$ , en fonction de la tension d'anode  $V_a$ , pour différentes valeurs de la tension de grille  $V_{\rm g}$ .

| UTILISATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| Elément triode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |           |
| Tension d'anode 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 250   | V         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 - 220 | Ω         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,3 9   | mA        |
| Courties a minorio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 —12   | V         |
| Pente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6 4.9 | mA/V      |
| Pente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,7 12  | $k\Omega$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 60    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |
| Elément penthode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 200   | V         |
| Tension de grille 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | V         |
| Tension de grille 2 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | V         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,5 —16 | V         |
| Courant d'anode 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | mA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3-    | mA        |
| Résistance de charge d'anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,8 5   | kΩ        |
| Pente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,5 6,4 |           |
| Puissance de sortie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,3 3,5 |           |
| Distorsion totale 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 10    | %         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |
| LIMITES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |
| Elément triode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |           |
| Tension maximum filament-cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90      |           |
| Tension maximum d'anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300     | , V       |
| Dissipation maximum d'anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2       | 2,25 W    |
| Résistance maximum de grille 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | ,5 MΩ     |
| The state of the s |         |           |
| Elément penthode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |
| Tension maximum filament-cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |
| Résistance maximum filament-cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |
| Tension maximum d'anode, à froid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600     |           |
| Tension maximum de grille 2, à froid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |           |
| Tension maximum de grille 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250     |           |
| Dissipation maximum d'anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           |
| Dissipation maximum de grille 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |           |
| Courant maximum de cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50      | mA        |
| Résistance maximum de grille 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 150.7     |
| Polarisation fixe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       | $M\Omega$ |

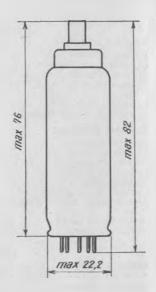



6 CN 8, élément penthode : Courants d'anode  $I_a$  et de grille 2  $I_{\rm g2}$ , en fonction de la tension de grille 1  $V_{\rm g1}$ , pour deux valeurs de la tension d'anode et de grille 2.

6 DR 6

# CARACTÉRISTIQUES DES LAMPES NOVAL

Penthode sortie « lignes »


6 DR 6



#### FILAMENT

Tension . . . . 6,3 V Courant . . . . 1,05 A

Ce tube est une version renforcée de l'EL 81 / 6 CJ6.



#### CAPACITES

 $\begin{array}{lll} C_{gt} & = 14,7 \text{ pF} \\ C_{a} & = 6 \text{ pF} \\ C_{ag1} & < 0,8 \text{ pF} \\ C_{ak} & < 0,1 \text{ pF} \\ C_{g1f} & < 0,2 \text{ pF} \end{array}$ 

#### UTILISATION

| Tension d'anode                       | 250 V    |
|---------------------------------------|----------|
| Tension de grille 3                   | 0 V      |
| Tension de grille 2                   | 250 V    |
| Tension de grille 1                   |          |
| Courant d'anode                       | 32 mA    |
| Courant d'écran                       | 2,4 mA   |
| Pente                                 | 4,6 mA/V |
| Résistance interne                    | 15 k0    |
| Coefficient d'amplification $g_2/g_1$ | 5,1      |

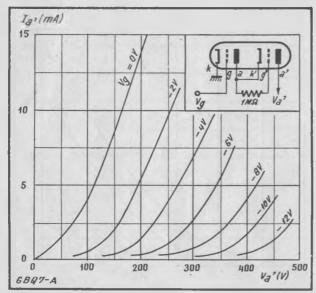
#### LIMITES ET COURBES

VOIR TUBE EL 81 / 6 CJ6 (ALBUM Nº 7, PAGE 12),

8 BQ 7 A

# CARACTÉRISTIQUES DES LAMPES NOVAL

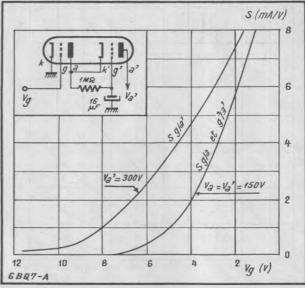
Double triode pour cascode.


8 BQ 7 A

**FILAMENT** 

Tension . . . . . 8,4 V Courant . . . . 0,3 V

Voir 6 BQ 7 - A, page 28.


**CULOT ET COTES** 

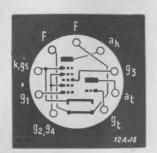


6 et 8 BQ 7 A : Courant d'anode  $I_a$ ,, en fonction de la tension d'anode  $V_a$ , du deuxième élément, pour différentes valeurs de la tension de grille  $V_g$  du premier élément.

# CAPACITES, CARACTERISTIQUES ET AUTRES COURBES

VOIR TUBE 6 BQ 7 A, PAGE 28




6 et 8 BQ 7 A : Pentes S de chacune des triodes et de l'ensemble des deux triodes connectées en cascode  $S_{\pi}/a'$ , en fonction de la tension de grille  $V_{\pi}$ .

12 AJ 8

# CARACTÉRISTIQUES DES LAMPES NOVAL

Triode - heptode changeuse de fréquence.

Cg Ca Cag 12 AJ 8



#### FILAMENT

Tension . . . . 12,6 V Courant . . . . 0,15 V

UTILISATION, LIMITES ET COURBES VOIR TUBE ECH 81 / 6 AJ 8 (ALBUM N° 7, PAGE 6).

19 xem 22,2

#### CAPACITES

Elément triode

= 2,6 pF = 2,1 pF = 1 pF < 0,02 pF

Cg1 Ca Cag1 Cg3 Cg1g3 Cg1f Cg3f = 4,8 pF = 7,9 pF < 0,006 pF = 6 pF < 0.3 pF < 0,017 pF

< 0,06 pF

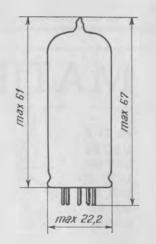
Elément hectode

#### Entre éléments

 $\begin{array}{lll} C_{nT-a}H & = 0.2 & pF \\ C_{aT-g}H_t & < 0.09 & pF \\ C_{g1T-a}H & < 0.06 & pF \\ C_{g1-g}H & < 0.17 & pF \\ C_{g1T-gH+g3} & < 0.45 & pF \\ C_{aT-gH-g3} & < 0.35 & pF \end{array}$ 

12 N 8

# CARACTÉRISTIQUES DES LAMPES NOVAL


Double diode - penthode à pente variable.

12 N 8



#### FILAMENT

Tension . . . . . 12,6 V Courant . . . . 0,3 A



#### CAPACITES

= 4,9  $C_{g_1}$ = 4,2pF < 0,0025 pF  $C_{a\,\mathrm{g}1}$ Cg1f < 0,07  $C_{d1}$ pF  $C_{d2}$ 2,35 0,35  $C_{d1d2}$ Cd1f 0,02  $C_{\rm d2f}$ 0,005 < 0,000 < 0,000 < 0,00 < 0,2 < 0,05  $C_{\tt d1g1}$  $C_{\rm d2g1}$ 0,001  $C_{d1n}$ 

UTILISATION, LIMITES ET COURBES

VOIR TUBE EBF 80 (ALBUM N° 6, PAGE 7).

16 CN 8

### CARACTÉRISTIQUES DES LAMPES NOVAL

Triode - penthode de sortie son.

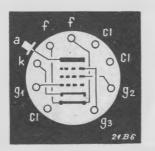
16 CN 8

FILAMENT

CULOT, COTES, CAPACITES, UTILISATION, LIMITES ET COURBES

VOIR TUBE 6 CN 8, PAGE 29.

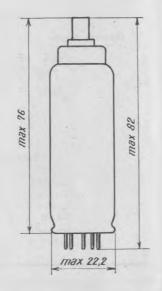
Tension . . . . 16 V Courant . . . . 0,3 A


La mise à jour de ces albums est effectuée au moyen de caractéristiques publiées par TOUTE LA RADIO ☆ RADIO CONSTRUCTEUR ET DÉPANNEUR 😓 TÉLÉVISION

21 B 6

## CARACTÉRISTIQUES DES LAMPES NOVAL

Penthode de sortie lignes.


21 B 6



#### FILAMENT

Tension ..... 21,5 V Courant . . . . . 0,3 A

UTILISATION Voir PL 81 F, page 21.



#### LIMITES

| Tension maximum filament à l'allumage         | 32  | 1.                 |
|-----------------------------------------------|-----|--------------------|
| Résistance maximum filament-cathode           | 20  | $\mathbf{k}\Omega$ |
| Tension maximum filament-cathode              | 200 | V                  |
| Tension maximum d'anode, à froid              | 550 | V                  |
| Tension maximum d'anode                       | 250 | V                  |
| Tension de pointe d'anode, pour une impulsion |     |                    |
| durant au maximum 18 % de la période et       |     |                    |
| moins de 18 µs                                | 7   | kV                 |
| Tension maximum de grille 2, à froid          | 550 | V                  |
| Tension maximum de grille 2                   | 250 | V                  |
| Tension maximum négative de grille 1 (Ig      |     |                    |
| = 0,3 \mu A)                                  | 1,3 | V                  |
| Courant maximum de cathode                    | 180 | mA                 |
| Dissipation maximum d'anode                   | 8   | W                  |
| Dissipation maximum d'écran                   | 4,5 | ZZ.                |
| Dissipation maximum anode + écran             | 10  | W                  |
| Résistance maximum grille 1-cathode           | 0,5 | $M\Omega$          |

#### COURBES

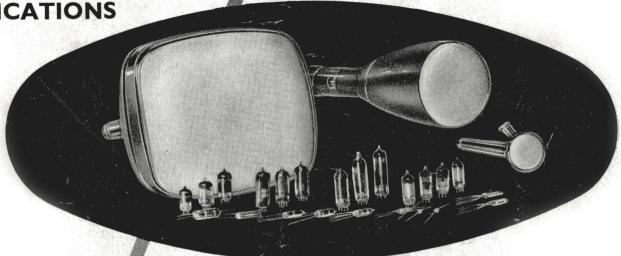
VOIR PL 81 / 21 A 6, ALBUM 6, PAGE 20

#### Liste alphanumérique des tubes présentés dans ces 8 ALBUMS

- Les parenthèses rappellent que les Albums 1 et 2 sont épuisés. Pour les 3 et 4, il s'agit de la 2° édition.
  Les chiffres en gras sont relatifs à des tubes dont les COURBES caractéristiques ont été fournies.

# TABLE DES MATIERES

| DY 86  | 1 PL 81 F   | 21 |
|--------|-------------|----|
| EBC 81 | 1 UBC 81    | 22 |
| EBF 89 | 3 UBF 89    | 22 |
| ECC 84 | 4 UCC 85    | 23 |
| ECC 85 | 5 UCL 82    | 23 |
| ECF 80 | 7 UF 80     | 24 |
| ECF 82 | 0           | 24 |
| ECL 82 | 11 UL 84    | 25 |
| EF 86  | 13 UM 80    | 26 |
| EF 89  | 15 UM 81    | 26 |
| EM 80  | 16 UV 0F    | 26 |
| EM 81  | 16          | 27 |
| EM 85  | 16 CAY 2 NI | 27 |
| EY 81  | 7           | 28 |
| EY 82  | 17 6 BQ 7 A |    |
| EY 86  | 18 6 CN 8   | 29 |
| EZ 81  | 18 6 DR 6   | 30 |
| PCC 84 | 19 8 BQ 7 A | 30 |
| PCC 85 | 19 12 AJ 8  | 31 |
| PCF 80 | 20 12 N 8   | 31 |
| PCF 82 | 20 16 CN 8  | 31 |
| PCL 82 | 21 21 B 6   | 32 |
|        |             |    |


|                  | 4.0           |                |                |        |          |                  |   |        |          |                      |               |                  |
|------------------|---------------|----------------|----------------|--------|----------|------------------|---|--------|----------|----------------------|---------------|------------------|
|                  | Album         | Page           |                | Album  | Page     |                  | A | lbum   | Page     |                      | Album         | Page             |
| C 30 SB I        | 5             | 10             | EF 42          | -      | 12       | UBF 80           |   | 7      | 22       | 6J5                  | 2             | 19               |
| C 30 SV I        | 5             | 10             | EF 80          | 6      | 2        |                  |   | 8      | 22       | 6 J 6                |               | 25               |
|                  |               | 10             | EF 85          | 7<br>8 | 10       | UCC 85           |   | 8      | 23       | 6 J 7                | 2             | 10               |
|                  | 5             | 13             | EF 86<br>EF 89 | 8      | 13       | UCH 42           |   | 3<br>7 | 24       | 6 K 7                | 2 2           | 6                |
|                  | -             | 13             | EF 91          | 4      | 15<br>14 |                  |   | -      | 23       |                      |               | 20               |
|                  | 5             | 13             | EF 93          | 4      | 19       | UCL 82<br>UF 41  |   | 8      | 23<br>26 | 6 L 5                |               | 27               |
| C 127 SW 1       | 5             | 13             | EF 94          | 4      | 16       | UF 42            |   | 3      | 28       | 6 L 7                | _             | 4                |
| C 220 MW I       | 5             | 15             | EF 95          | 4      | 11       | UF 80            |   | 8      | 24       | 6 M 7                | _             | 7                |
| C 310 MW I       | 5             | 17             | EK 90          | 4      | 21       | UF 85            |   | 7      | 24       | 6 N 7                |               | 29               |
|                  | 4             | 6              | EL 2           | (1)    | 21       | UF 89            |   | 3      | 24       | 6 P 9                | 4             | 26               |
|                  | 4             | 2              | EL 3 N         | (1)    | 24       | UL4I             |   | 3      | 29       | 6 Q 7                | 2             | 17               |
|                  | 5             | 21             | EL 5           | (1)    | 27       | UL 84            |   | 8      | 25       | 6 R 7                | 2             | 18               |
| DB 7-6           | 5             | 22             | EL 6           | (1)    | 29       | UM 80 .          |   | 8      | 26       | 6 S 7                | 2             | 16               |
| DB 10-2          | 5             | 23             | EL 41          | 3      | 13       | UM 81 .          |   | 8      | 26       | 6 T 7                | 2             | 16               |
| DB 10-6          | 5             | 24             | EL 42          | 3      | 15       | UY 41            |   | 3      | 31       | 6 U 7<br>6 V 3       | <b>2</b><br>7 | 8                |
| DB 13-2          | 5             | 25             |                | 7      | 12       | UY 42 .          |   | 3      | 31       |                      |               | 28<br>1 <b>8</b> |
| DC 80<br>DF 91   | 7<br>4        | 1<br>7         | EL 83          | 7      | 14       | UY 85 .          |   | 8      | 25       | 6 V 4                | 2             | 30               |
| D = 00           |               |                | EL 84          | 7      | 15       | IAC6             |   | 4      | 2        | 6 X 4                | _             | 27               |
| DF 92<br>DG 7-5  | <b>4</b><br>5 | <b>3</b><br>21 | EL 90<br>EM I  | 4      | 14<br>13 | I A 3            |   | 4      | 2        | 6 X 5                |               | 31               |
| DG 7-6           | 5             | 22             | EM 4           | (1)    | 12       |                  |   | 4      | 3        | 6 X 8                |               | 28               |
| DG 10-2          | 5             | 23             | EM 80          | 8      | 16       | 185              |   | 4      | 6        | 6 Z 4                | . 4           | 27               |
| DG 10-6          | 5             | 24             |                | 8      | 16       |                  |   | 4      | 7        | 7 JP 4               | . 5           | 30               |
| DG 13-2          | 5             | 25             |                | 8      | 16       |                  |   | 4      | 8        | 8 BQ 7-A<br>8 SA I   | . 8           | 30               |
| DK 91            | 4             | 4              | EQ 80          | 6      | 9        | 3 A 4            |   | 4      | 9        |                      |               | - 11             |
| DK 92            | 4             | 2              | EY 51          | 6      | 31       | 3 Q 4            |   | 4      | 9        | 8 SA 2               |               | - []             |
| DL 92            | 4             | 10             |                | 7      | 18       | 3 \$ 4           |   | 4      | 10       | 8 SA 4<br>8 SA 5     |               | 11               |
| DL 93            | 4             | 9              | EX 81          | 8      | 17       | 3 V 4            |   | 4      | 10       | 8 SA 5<br>9 AK 8     |               | 11               |
| DL 94            | 4             | 10             | EY 82          | 8      | 17       | 5 Y 3-G          |   | 2      | 32       | 9 BM 5               |               | 26               |
| DL 95            | 4             | 9              | EY 86          | 8      | 18       |                  |   | 2      | 14       | 9 J 6                | 4             | 25               |
| DR 7-5<br>DR 7-6 | 5<br>5        | 21             | EZ 40          | 3      | 18       | 6 A F 7          |   | 2      | 15       | 9 P 9                | 4             | 26               |
|                  | 5             | 22<br>23       | EZ 41<br>EZ 80 | 3      | 18<br>18 |                  |   | 7      | 6        | 10 BP 4-A            |               | 28               |
|                  | 5             | 24             | EZ 81          | 7<br>8 | 18       | 6 A K 5          |   | 4      | 11       | 10 SA I              |               | 12               |
|                  | 5             | 25             | EZ 91          | 4      | 18       |                  |   | 7      | 2        | 10 SA 2              |               | 12               |
| m14 a :          | 8             | 1              | GZ 40          | 3      | 19       | 6 AL 5           |   | 4      | 13       | 10 SA 4              |               | 12               |
|                  | 7             | 2              | GZ 41          | 3      | 19       | 6 AM 6           |   | 4      | 14       | 10 SA 5              | 5             | 12               |
|                  | 3             | 1              | HBC 90         | 4      | 16       | _                |   | 4      | 14       | 12 AJ 8              |               | 31               |
| EBC 3            | (1)           | 15             | HBC 91         | 4      | 18       | 6 AT 6           |   | 4      | 16       | 12 AT 6              | 4             | 16               |
| EBC 41           | 3             | 3              | HF 93          | 4      | 19       | 6 AT 7-N         |   | 8      | 27       | 12 AU 6<br>12 AU 7   | 4 7           | 16               |
|                  | 8             | - 1            | HF 94          | 4      | 16       | 6 AU 6           |   | 4      | 16       | 12 AU 7<br>12 AV 6   | 4             | 30<br>18         |
| EBC 90           | 4             | 16             | HK 90 .        | 4      | 21       | 6 AV 4           |   | 4      | 18       | 12 AX 7              | 7             | 31               |
| EBC 91           | 4             | 18             | MT 125         | 5      | 4        |                  |   | 4      | 18       | 12 BA 6              | 4             | 19               |
| EBF 2<br>EBF 80  | (1)           | 9              | MT 125 A       | 5      | 4        |                  |   | 8      | 27       | 12 BA 7              | 7             | 25               |
| EBF 89           | 6             | 7              | MT 336 A       | 5      | 5        |                  |   | 2      | - 1      | 12 BE 6              | 4             | 21               |
| FBL I            | (1)           | 19             | MW 6-2         | 5      | 20       | 6 BA 6           |   | 4      | 19       | 12 LP 4              | 5             | 28               |
| 50.4             | (1)           | 14             |                | <br>5  | 26<br>6  | 6 BA 7<br>6 BE 6 |   | 7      | 25       | 12 N 8               | . 8           | 31               |
| EB 41            | 3             | 3              | OE 407 .       | 5      | 6        | 6 BF 5           |   | 4      | 21       | 16 AP 4-A            | 5             | 29               |
| EB 91            | 6             | 31             | OE 411         | 5      | 7        |                  |   | 8      | 28       | 16 GP 4              |               | 29               |
|                  | <br>3         | 5              | OE 411 PA      | 5      | 7        | 6 BM 5           |   | 4      | 26       | 16 CN 8              | 8             | 31               |
|                  | 6             | 17             | OE 418 .       | 5      | 8        |                  |   | 4      | 27       | 17 N 8               |               | 22               |
| ECC 82           | 7             | 30             | OE 418 PA      | 5      | 8        |                  |   | 7      | 10       | 17 Z 3               | 7             | 19               |
|                  | 7             | 31             | PABC 80 .      | 7      | 19       |                  |   | 7      | 26       | 18 MA 4              |               | 14<br>23         |
|                  | 8             | 4              |                | 8      | 19       | 6 B 8            |   | 2      | 11       | 19 AJ 8<br>19 AP 4-B |               | 30               |
| ECC 85           | 8             | 5              | PCC 85         | 8      | 19       | 6 CB 6           |   | 4      | 24       | 19 BY 7              | _             | 24               |
| ECC 91           | 4             | 25             | PCC 91         | 4      | 25       |                  |   | 7      | 12       | 21 B 6               | 8             | 32               |
| ECF 80           | 8             | 7              | PCF 80         | 8      | 20       |                  |   | 7      | 14       | 23 MA 4              |               | 15               |
|                  | 3             | 9              | PCF 82         | 8      | 20       |                  |   | 7      | 26       | 26 MG 4              |               | 16               |
| ECH 3<br>ECH 42  | (1)           | 4              | PCL 82         | 8      | 21       |                  |   | 8      | 29       | 28 AK 8              | . 7           | 20               |
| ECH 81           | 3<br>7        | 7              | PL 81 F        | 8      | 20<br>21 |                  |   | 2      | 21       | 31 MA 4              |               | 17               |
|                  | 6             | 6<br>11        | PL 82          | 6      | 23       | 6 DR 6           |   | 8      | 20<br>30 | 31 MC 4              |               | 17               |
| ECL 82           | 8             | 11             | PL 83          | 6      | 27       | _                |   | 2      | 30       | 31 MG 4              |               | 16               |
| EC 80            | 7             | 4              | PY 80          | 6      | 29       |                  |   | 2      | 2        | 31 MR 4              | . 5           | 17               |
| FO 0:            | 7             | 5              | PY 81          | 6      | 19       | 6 F 5            |   | 2      | 22       | 31 MS 4<br>35 W 4    | . 5<br>4      | 17               |
| EF 6             | (1)           | 17             | PY 82          | 6      | 30       | 6 F 6            |   | 2      | 24       | FORF                 | 4             | 28<br>29         |
| EF 8             | (i)           | ï              | UABC 80        | 7      | 20       | 6 F 8            |   | 2      | 23       | 117 Z 3              | 4             | 30               |
| EF 9             | (1)           | 6              | UAF 42         | 3      | 20       | 6 G 6            |   | 2      | 26       | 1654                 | 4             | 30               |
| EF 40            | 3             | 9              | UBC 41         | 3      | 22       | 6 H 6            |   | 2      | 14       | 1882                 | (i)           | 32               |
| EF 41            | 3             | 10             | UBC 81         | 8      | 22       | 6 H 8            |   | 2      | 13       | 1883                 | (1)           | 32               |
|                  |               |                |                | <br>   | _        |                  |   |        |          |                      |               |                  |

# TUBES ÉLECTRONIQUES ET SEMI-CONDUCTEURS

Miniwatt

DARIO >

POUR TOUTES APPLICATIONS





Tubes série NOVAL et série miniature. Tubes-images pour TV

(vue directe et projection)
Tubes à rayons cathodiques pour mesures.
Tubes subminiatures.
Tubes amplificateurs de puissance.
Tubes pour O. C. et pour O. T. C
Diodes germanium. Transistors.
Tubes pour applications industrielles
Thyratrons, redresseurs.
Cellules photoélectriques, etc.

# LA RADIOTECHNIQUE

DIVISION TUBES ÉLECTRONIQUES ET SEMI-CONDUCTEURS

DÉPT. CONSTRUCTEURS RADIO ET TV: 130, Av. Ledru-Rollin, PARIS-11e - VOL. 23-09 DÉPT. COMMERCE ET STATIONS-SERVICE: 4, rue de Téhéran, PARIS-8e - CAR. 33-31