LE MAN'X TOP

Dans le domaine des multimètres, il existe deux grandes familles : les analogiques et les numériques. Tout deux possèdent des qualités et souffrent de défauts, de sorte qu'ils sont plus complémentaires que rivaux.

- Les premiers possèdent une précision moindre et une impédance d'entrée peu élevée. Toutefois, ils permettent d'apprécier des tendances et des variations de mesures rapides.
- · Les seconds, alliant résolution et précision, disposent d'une impédance d'entrée importante. Cependant, ils acquiérent les données trop lentement pour certaines applications (deux à trois fois par seconde pour les multimètres courants). Pour pallier ce problème, les constructeurs incorporent parfois sur leurs multimètres haut de gamme un bargraph, sorte de graduation reproduisant une échelle analogique devant laquelle un curseur se déplace. Plus rapide, il est vrai, ce système demeure parfois insuffisant, car la résolution reste bien souvent faible et la lecture pas toujours facile.

La seule véritable solution consiste à incorporer, dans un même appareil, un galvanomètre et un afficheur numérique. On obtient ainsi un ensemble éliminant la majorité des défauts de ces deux familles.

Le Man'x Top reprend cette configuration tout en y ajoutant d'autres plus que nous allons découvrir tout du long de ce banc d'essai.

L'ALIMENTATION

Une pile 9 V standard, type 6F22, fournit l'énergie nécessaire à l'appareil. On obtient ainsi une autonomie de 400 à 500 heures avec une pile alcaline et 350 à 450 heures avec une pile

Zinc. La consommation ne dépasse pas 1,4 mA sur l'ensemble des fonctions, excepté en test de continuité électrique (2,7 mA). Une indication d'usure de pile apparaît lorsque la tension de l'élément descend au-dessous de 7,5 V.

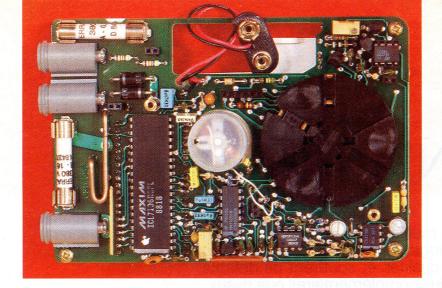


Photo 2. - Vue de dessus du circuit imprimé avec les 3 douilles de sécurité,

SELECTION DES CALIBRES ET DES FONCTIONS

CDA a retenu la solution du rotacteur unique. L'auteur la préfère de loin aux systèmes de poussoirs ou de bornes innombrables, conduisant l'utilisateur tôt ou tard à commettre une erreur fatale pour l'appareil.

Hormis la borne commune, l'appareil présente deux autres entrées : la première V.A. Ω permet

MESURES DE RESISTANCES

de réaliser toutes les mesures courantes, tandis que la borne 20 A se destine à la mesure de grandes intensités.

En somme, l'utilisation d'un unique rotacteur et d'un nombre réduit de bornes limite les erreurs de manipulation de l'opérateur.

LES LIAISONS AVEC L'EXTERIEUR

Le raccordement avec l'extérieur s'effectue avec trois bornes de

MESURES DE TENSIONS CONTINUES ET ALTERNATIVES

TENSIONS CONTINUES

sécurité Ø 4 mm, éliminant tout risque accidentel de contact électrique avec une partie sous tension.

Les cordons, d'excellente qualité, comportent les anneaux de garde, permettant ainsi une bonne prise en main, et des embouts amovibles que l'on retirera pour emboîter les pointes de touches dans une prise de courant. L'ensemble augmente la sécurité d'utilisation du multimètre.

L'AFFICHAGE DES MESURES

• Analogique: le galvanomètre dispose seulement de trois échelles linéaires, avec possibilité de dépassement de 25 % du calibre sélectionné sur la majorité des positions et une échelle graduée en décibels (dB). L'impédance d'entrée est identique à la partie numérique.

A noter une particularité très intéressante de l'appareil : le Man'x Top peut s'utiliser en galvanomètre de zéro. En effet, l'aiguille dévie toujours dans le même sens, que la valeur mesurée soit positive ou négative. Il suffit de lire

	Ü	200 Ω	2 KΩ	20 KΩ	200 KB	2 Mß	20 MΩ
	Courant de mesure	1 mA	100 µA	10 µA	1 μΑ	100 nA	10 nA
	Tension maxi en circuit ouvert	2,4 V	2,4 V	2,4 V	2,2 V	1 \	0,1 V
A EE - L	Lecture maxi	199,9 n	1,999 kΩ	19,99 kn	199,9 kΩ	1,999 MΩ	19,99 MΩ
Amenage	Résolution	0,1 \alpha	1 \\ \O	10 \argainst 10 \argainst 10	100 Ω	1 KΩ	10 kΩ
nurnendue	Précision			+ 1 %	±1%±1pt		
	Lecture maxi	250 Ω	2,5 kΩ	25 KΩ	250 KΩ	2,5 Mn	25 Mn
Affichage	Valeur lue par division	5 n	20 a	500 a	5 kΩ	50 kΩ	500 kΩ
Amenage	Echelle de lecture			0,25	25		
	Coefficient de lecture	×10	×0,1	×1	×10	×0,1	×
	Précision			± 2,5 %	2 %		

		/ ~ 000	\ C	V 00	7000	1 000 7
	\ \	ZOO IIIV	2 V	ZU V	× 007	> 000 -
	Impédance d'entrée	≥ 100 MΩ		10 MR	ល	
A 15: -1 - 21 A	Lecture maxi	199,9 mV	1,999 V	19,99 V	199,9 V	1 000 V
Атіспаде	Résolution	0,1 mV	1 mV	10 mV	100 mV	> 1
enbueunu	Précision (1)			± 0,5 % ± 1 pt		
	Lecture maxi	250 mV	2,5 V	25 V	250 V	1 000 V
A #6.00000	Valeur lue par division	5 mV	50 mV	500 mV	5 V	20 V
analogique	Echelle de lecture		2	25		1 000
	Coefficient de lecture	×10	×0,1	×	×10	×1
	Précision			± 2,5 %		

Erreur de symétrie : \pm 0,2 %

INTENSITES CONTINUES

1 000 V

200 V

1 000 V

V 6,661

100 mV

1 000 V

250 V

20 V

5 <

1 000

× 10

-	200 µA	2 mA	20 mA	200 mA	20 A (1)	7 (1)	Q.	<i>\</i> >	200 mV	2.V	20 V
	Chute tension à mi-calibre	100 mV	104 mV	130 mV	400 mV	250 mV		Impédance d'entrée	≥ 100 MΩ 72 pF		1 Ma/7
Affichage	Lecture maxi	199,9 μΑ	1,999 mA	19,99 mA	199,9 mA	19,99A		Lecture maxi	199,9 mV	1,999 V	19,99 V
o i mério	Résolution	0,1 µA	1 µA	10 µA	100 µA	10 mA	Amichage	Résolution	0,1 mV	1 mV	10 mV
	Précision (2)			± 1% ± 1pt			enbueunn	Précision (1)	- 44		± 1% ± 1pt
	Lecture maxi	250 µA	2,5 mA	25 mA	250 mA	20 A		Lecture maxi	250 mV	2,5 V	25 V
Affichade	Valeur lue par division	5 μA	50 µA	500 µA	5 mA	500 mA	A 555 - H - 235 A	Valeur lue par division	5 mV	50 mV	500 mV
analogique	Echelle de lecture			0,25			Amichage	Echelle de lecture		25	JO.
	Coefficient de lecture	× 10	x0,1	×	× 01	×		Coefficient de lecture	× 10	x 0,1	×
	Précision			± 2,5%				Précision			± 2,5 %

35 à 500 Hz. Précision donnée de 100 pts à 2 000 pts dans la plage de référence en fréquence

PROTECTION

INTENSITES ALTERNATIVES

1 000 V 200 V

200 V

20 V 1 000 V

		CV						M	ECA	NIC	UE
		200 mV	380 √ ~	349				syst form	is reti ème nante cs. C x dei e forr t et c	Man de l'	x, papp
		V==== et ~ .	Surcharge admissible					tre a L'ap pous et le des	t et cuit im intich opare ssière s che milier hantie	prime oc. eil, p e, les ocs, p ux dé	rote
Control of the contro	20 A (1)	0	250 mV	19,99A	10 mA		20 A	500 mA		×	
	200 mA		400 mV	199,9 mA	100 µA		250 mA	5 mA		×10	
	20 mA	100	130 mV	19,99 mA	10 µA	± 1,7% ± 2pt	25 mA	500 µA	0,25	×	± 2,5%
	2 mA	10.4	104 mV	1,999 mA	1 µA	TI	2,5 mA	Pπ 09		×0,1	
	200 µA	7	I OO mv	199,9μΑ	0,1 µA		250 µA	5 µA	-	×10	
	1	Chute tension	à mi-calibre	Lecture maxi	Résolution	Précision (2)	Lecture maxi	Valeur lue par division	Echelle de lecture	Coefficient de lecture	Précision
				0000	origino Órigino	endne		0	ogique		

Précision donnée jusqu´à 10 A, Au-delà, ajouter 1 %. Précision donnée de 100 points à 2 000 points dans la plage de référence en fréquence : 35 à 500 Hz.

PROTECTIONS

et ~	200 mA	2 mA	20 mA	200 mA	20 A
Protection	1	Fus. 315 Pouvoir de coupu	Fus. 315 mA HPC ouvoir de coupure 50 kA 380 V ∼		Fus. 16 A HPC Pouvoir de coup 50 kA 380 V~

l'affichage numérique pour prendre connaissance de la polarité. On dispose ainsi d'une double longueur d'échelle pour une valeur fluctuant autour du zéro.

Numérique : l'affichage à cristaux liquides offre 2 000 points avec une précision de base de 0,5 %. La hauteur des cristaux liquides atteint les 8 mm, et la visibilité reste correcte, donnant un angle de vision élargi.

LES PROTECTIONS ES

bien entendu le protection perareil contre les e compose de lles en élastoboîtier envelopation souple du du galvanomè-

égé contre la ojections d'eau s'utiliser dans orables comme

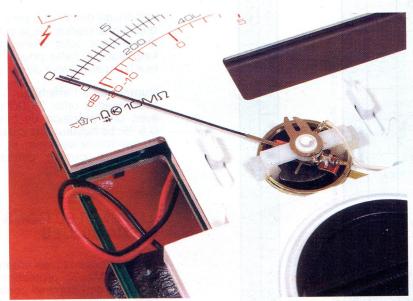


Photo 3. - Gros plan du cadre et de l'affichage à cristaux liquides.

CARACTERISTIQUES

L'appareil, comme nous allons le découvrir, permet des mesures de :

- tensions continues et alternatives jusqu'à 1 000 V;
- intensités continues et alternatives jusqu'à 20 A ;
- ullet résistances jusqu'à 20 M Ω ;
- test de continuité sonore ;
- test-diode
- décibels (dB) en voltmètre alternatif sur l'échelle analogique.

Protections:

- Une thermistance CTP protège tous les calibres Ω et test semiconducteurs contre les surcharges brèves accidentelles jusqu'à 380 V ~.
- De plus, le fusible 315 mA protège aussi tous les calibres Ω.

CONCLUSION

Particulièrement bien protégé aux niveaux mécanique et électrique, cet appareil, conçu par CDA, constructeur français, est réellement performant et polyvalent, avec un prix grand public avoisinant les 1 400 F.

Issu de la série Man'x, le Top peut être équipé de nombreux accessoires augmentant ses possibilités et son champ d'applications : sondes hautes tensions, pinces et mini-pinces ampèremétriques, cellules photoélectriques, sondes thermométriques, etc.

Cet appareil est garanti pendant trois ans et distribué dans tout le réseau de revendeurs CDA.

Christophe PICHON

Photo 4. - Le MAN'X TOP protégé par le célèbre boîtier anti-chocs.

PERCEUSE DE LABORATOIRE CIF

Idéale pour les amateurs éclairés comme pour les lycées et collèges, la perceuse de précision CIF, commercialisée sous la référence DP 60, offre une vitesse de rotation de 30 000 tours par minute. Sa puissance de 85 W permet d'effectuer nombre de travaux en électronique, modélisme, etc.

Alimentée directement sous 220 V, elle dispense l'utilisateur d'un bloc d'alimentation, toujours encombrant. Sa capacité de serrage de 3,2 mm, ses roulements en bronze de haute qualité en font un outil pratique et performant.

Un second modèle référencé DP 59 étend la puissance à 115 W et comprend un variateur de vitesse incorporé.

La gamme de produits comprend également un support vertical à colonne. Le DP 61 permet une descente rigoureusement verticale de la perceuse.

On obtient alors un ensemble parfait pour le perçage des circuits imprimés.

C.I.F. 11, rue Charles-Michels 92220 Bagneux Tél.: 45.47.48.00.