KC 1 Triode

30

This triode is useful as an A.F. amplifier valve, anode-bend detector, or oscillator in battery receivers. Its use as a grid detector is not recommended, since the maximum alternating output voltage is then usually insufficient for the output stage. In the case of A.F. amplification, care must be taken that the A.F. gain following the grid of this valve is not made too great, as this is liable to set up microphony.

Fig. 1 Dimensions in mm.

FILAMENT RATINGS

	TT	diana ka la sa	1	atta				. T	1.1	~		~].			
Fig. 2	Heating:	direct by		oane.	гy	; I	Jai	aı	let	S	чp.	րդ	۲۰.		
Arrangement of	Filament	voltage .		•	•		•			•	•	•		•	$V_f = 2.0 V$
base connections.	Filament	current.							•						$V_f = 2.0 V$ $I_f = 0.065 A$

CAPACITANCES

C_{ag}	:=	3.5	$\mu\mu F$
C_a			$\mu\mu F$
C_g	$\cdot -$	3.0	$\mu\mu\mathbf{F}$

STATIC DATA

Anode voltage	
$V_a = 90 \text{ V}$	135 V
Anode current	
$I_a = 0.3 \text{ mA}$	1.2 mA
Grid bias	
$V_g = -1.5 \text{ V}$	-1.5 V
Internal resistance	
$R_i = 60,000 \text{ ohms}$	40,000 ohms
Amplification factor	
$\mu = 25$	25

MAXIMUM RATINGS

V_a		max.	150 V
W_a	::	max.	0.5 W
I_k	*=	max.	4 mA
$V_g (I_d = + 0.3 \mu\text{A})$		max,	0.2 V
R_{yf}		max.	$3 {\rm ~M}$ ohms
192			

Fig. 4 Anode current as a function of the anode voltage with grid bias as parameter.

 TABLE

 KC 1 used as a resistance-coupled A.F. amplifier

		Anode	Grid	output	lternating voltage Veff	For an alternating output voltage of 10 Veff		
Battery voltage	Coupling resistor	current	bias	Gain	Distortion	Gain	Distortion	
$\frac{Vb}{(V)}$	Ra (megohms)	Ia (mA)	Vg (V)	$\frac{Vo}{Vi}$	4tot (%)	Vo Vi	dtot %	
90	0.32	0.08	1.5	$\begin{array}{c} 14.6 \\ 16.7 \end{array}$	$2.7 \\ 1.6$			
90 135	$\begin{array}{c} 0.32\\ 0.32\end{array}$	$\begin{array}{c} 0.13 \\ 0.18 \end{array}$	-0.75 1.5	10.7		19	1.0	
$135 \\ 135$	0.32	0.23	0.75		-	20	0.8	
90 90	$\begin{array}{c} 0.2 \\ 0.2 \end{array}$	$\begin{array}{c} 0.11 \\ 0.17 \end{array}$	$-1.5 \\ -0.75$	$\begin{array}{c} 14.3 \\ 16.2 \end{array}$	$\frac{4}{1.5}$			
$135 \\ 135$	$0.2 \\ 0.2$	$\begin{array}{c} 0.26 \\ 0.32 \end{array}$	-1.5 -0.75			$18 \\ 18.5$	1.0 0.8	