AMPEREX TUBE TYPE OG 3/85A2

The OG3/85A2 is a miniature voltage reference tube of the cold cathode discharge type, for use in D.C. Amplifiers, stable regulated power supplies, oscilloscope calibrators and similar applications. Among its features are: (1) better regulation (2) larger allowable operating current range (3) reproducibility between tubes with 5 volt tolerance.

GENERAL CHARACTERISTICS

ELECTRICAL

Maximum ratings, absolute values		
D.C. Starting Voltage (max.)	125	volts
D.C. Operating Current (max.)	10	ma
D.C. Operating Current (min.)	1	ma
Ambient Temperature Limits	-55 to + 9	0 ⁰ C
Typical Operation		
Recommended D.C. Operating Current	6	ma
A.C. Resistance at 6 ma (average value)	300	ohms
A.C. Resistance at 6 ma (max. value)	450	ohms
D.C. Operating Voltage at 6 ma,		
Variation From Tube to Tube	83 to 87	volts
Temp. Coefficient of Operating Voltage	-2.7	mv/ ⁰ C
Percentage Variation of Operating Voltage		
During First 300 hrs. of Life (max.)	0.3	%
Percentage Variation of Operating Voltage		
During Subsequent 1000 hrs. of Life (max.)	0.2	%
Short-term (100 hrs. max.) Variation of		
Operating Voltage After First 300 hrs.		
of Life (max.)	0.1	%

MECHANICAL

Cathode	Cold Cathode
Base	Miniature Button-7 Pin
Bulb	T 5½
Max. Overall Height	2 1/8"
Max. Seated Height	1 7/8"
Max. Diameter	3/4"
Mounting Position	any

0G3/85A2

NOTES:

- 1. The tube should be operated only with the cathode negative and the anode positive.
- 2. Equilibrium conditions are normally reached after 3 minutes of operation.

During life the AC resistance will remain essentially constant, but the temperature coefficient of the operating voltage can be expected to decrease slightly.

- 3. The greatest constancy of the operating voltage is obtained when the tube is operated at one value of current.
- 4. The noise of the tube over a frequency band of 30 to 10,000 cycles/sec. is of the order of 60 μ V (equivalent noise resistance 22 megohms), and is evenly distributed over the frequency range.
- 5. The tube should not be subjected to severe shock or continuous vibration.

0G3/85A2

APPLICATION NOTES

Basically, the OG3 is similar in construction and operation to common voltage regulator tubes such as the OA3 for example. The OA3 is intended to provide a resonably constant D.C. voltage across itself, for varying loads and line voltage, by drawing a compensating current through a voltage dropping resistor. The OG3 is intended as a voltage reference tube and is designed for operating voltage stability over long periods of time.

Especially after a "run-in" period of 300 hours, the voltage across the OG3 remains very constant for a constant current flowing through the tube and compares well with a standard cell in this respect. Instability, such a voltage jumps and oscillations are greatly reduced in this tube. However, this improvement is accompanied by a higher A.C. resistance. The detriment is of little consequence for the application intended since a constant D.C. current is drawn by the tube.

FIGURE I ACCURATE D.C. VOLTAGE SOURCE

Fig. 1 shows two OG3's used as regulator tubes, in controlling the input to the OG3 used as a voltage reference tube. This arrangement provides a constant current through the voltage reference tube, thereby providing a very constant 85 volts. This may be tapped off by an accurate voltage dividing network. The resistor R_2 is required to insure firing of V_1 first, followed by the firing of V_2 . Parallel operation of the OG3 is not recommended because the tube with the lower striking voltage will take all the load.