Service Manual

CASSETTE TAPE DECK
 CT-F700

MPIONEER

MODEL CT-F700 COMES IN FIVE VERSIONS DISTINGUISHED AS FOLLOWS:

Type	Voltage	Remarks
KU	120 V only	U.S.A. model
KC	120 V only	Canada model
HG	220 V and 240 V (Switchable)	Europe or Oceania model
D	$120 \mathrm{~V}, 220 \mathrm{~V}$ and 240 V (Switchable)	General export model
D/G	120V,220V and 240 V (Switchable)	U.S. Military model

- This service manual is applicable to the CT-F700/D, D/G.
- The CT-F700/KU, KC service manual is issued as appendix. For further details about the
CT-F700/KU and KC, refer to the supplementary material on page 61 .
During repairs, and ordering of spare parts, take special note of the type (i.e. CT-F700/D, D/G,
KC, KU).

CONTENTS

1. SPECIFICATIONS 3
2. FRONT PANEL FACILITIES 4
3. DISASSEMBLY 6
4. PARTS LOCATION 9
5. LEVEL DIAGRAM 11
6. CIRCUIT DESCRIPTIONS
6.1 Recording and Playback Circuit 13
6.2 Dolby Processor 15
6.3 Oscillator Circuit 16
6.4 Muting Circuit 16
6.5 Control Circuit 17
6.6 Meter Circuit 19
7. MECHANICAL ADJUSTMENTS
7.1 Pinch Roller Pressure 20
7.2 Reel Turntable Torque 21
7.3 Tape Speed 21
7.4 Pause Timing 21
7.5 Motor Switch and Play Timing 21
7.6 Muting Switch Operation 22
7.7 Wow and Flutter 23
8. ELECTRICAL ADJUSTMENTS
8.1 Head Azimuth 25
8.2 Playback Equalizer 25
8.3 Playback Level 25
8.4 Level Meter and D.L. Meter 26
8.5 Recording Current 26
8.6 Recording Bias 26
8.7 Recording/Playback Frequency Response 26
8.8 Recording Levet 26
9. PACKING 28
10. EXPLODED VIEWS
10.1 Exterior 29
10.2 Mechanism Assembly (Front Side) 31
10.3 Mechanism Assembly (Rear Side) 33
10.4 Front Panel 35
10.5 Panel Stay 36
10.6 Mother Assembly 37
11. SCHEMATIC DIAGRAMS, P.C. BOARD PATTERNS AND PARTS LIST
11.1 Miscellaneous Parts List 38
11.2 Connection Diagram 39
11.3 Schematic Diagram 41
11.4 Mother Assembly 43
11.5 Muting Assembly (RWX-192) 47
11.6 Dolby Assembly (RWX-191) 49
11.7 Amplifier Assembly (RWF-084) 50
11.8 Control Assembly (RWG-085) 53
11.9 Meter Amplifier Assembly (RWX-195) 56
11.10 Power and Oscillation Assembly (RWR-061) 58
11.11 Connection Assembly (RWX-196) 60
Additional Service Manual 61

1. SPECIFICATIONS

Motor	Electronically-controlled DC motor (built-in generator) $\times 1$
Heads	"Ferrite Solid" recording/playback head $\times 1$
	Ferrite erasing head $\times 1$
Fast Winding Time	```l}\begin{array}{l}{\mathrm{ Approximately 85 seconds (C-60}}\\{\mathrm{ tape)}}```
Wow and Flutter	No more than 0.05\% (WRMS)
	No more than $\pm 0.17 \%$ (DIN)
Frequency Response	Standard, LH tapes: 25 to $15,000 \mathrm{~Hz}$
	$\begin{aligned} & (30 \text { to } 14,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}),(40 \text { to } \\ & 13,000 \mathrm{~Hz} \text { DIN }) \end{aligned}$
	Ferrichrome tape: 25 to $17,000 \mathrm{~Hz}$ (30 to $16,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$)
	Chromium dioxide tape: 25 to
	$\begin{aligned} & 17,000 \mathrm{~Hz}(30 \text { to } 16,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}), \\ & (40 \text { to } 14,000 \mathrm{~Hz} \text { DIN }) \end{aligned}$
Signal-to-Noise Ratio	Dolby NR OFF: More than 54 dB
	Dolby NR ON: More than $64 d B$ (ove 5 kHz , standard, LH tapes)
	(When chromium dioxide tape is
	used, signal-to-noise ratio is further improved by 4.5 dB over 5 kHz)
	More than 58 dB (DIN)
Harmonic Distortion No more than 1.5\% (0dB) Inputs (Sensitivity/Maximum allowable input/Impedance)	

MIC (L, R); $0.3 \mathrm{mmV} / 100 \mathrm{mV} / 10$ kilohms, 6 mm diam. jacks (Reference MIC impedance; 250 ohms to 10 kilohms) L.INE (2 -channel stereo); $64 \mathrm{mV} / 25 \mathrm{~V} / 100$ kilohms REC/PLAY $\times 1$; Input \& output, $14 \mathrm{mV} / 4.5 \mathrm{~V} / 1.8$ kilohms $5 p$ jack (DIN standard)
Outputs (Reference level/Maximum level/Load impedance) LINE (2-channel stereo); $450 \mathrm{mV} / 710 \mathrm{mV} / 50$ kilohms REC/PLAY $\times 1 ; 450 \mathrm{mV} / 710 \mathrm{mV} / 50$ kilohms 5 p jack (DIN standard)
Headphones $\times 1 ; 60 \mathrm{mV} / 100 \mathrm{mV} / 8$ ohms, 6 mm diam. jack

Semiconductors

Amplifier Section
Transistors $\times 35$ ICs $\times 4$
Diodes $\times 51$
Motor control section ... Transistors x 3, Diodes x 1
Subfunctions

- Meter
\{Dynamic level meter: for recording $\}$ Bias meter: for recording Peak meter: for playback
- Bias adjustment system
- Input selector (LINE/MIC-DIN)
- Memory stop (ON/OFF)
- Dolby system (ON-OFF) with indicator lamp
- Tape Selector (STD/FeCr/CrO 2)

Automatic tape selector for CrO_{2} tape, and Manual tape selector of independently BIAS/EQ

- Cassette compartment illumination

Power Requirements AC 120V, 220V, 240 V (switchable) $50 / 60 \mathrm{~Hz}$
Power Consumption 21 watts
Dimensions

Weight

Furnished parts Stereo connecting cord with pin plugs $\times 2$
Head cleaning kit $\times 1$
Fuse
(120V; 1A or $220,240 \mathrm{~V} 500 \mathrm{~mA}$)
Operating instruction $\times 1$
NOTE:
Specifications and the design subject to possible modification without notice due to improvements.

NOTES:

1. Reference Tapes: Standard \& LH: DIN 45513/BLATT6 or equiv.
: CrO_{2} : DIN $45513 /$ BLATT $7\left(\mathrm{CrO}_{2}\right)$ or equiv.
2. Reference Recording Level: Meter OdB indicating level (160 nwb/m magnetic level = Philips cassette reference level)
3. Reference Signal: 333 Hz
4. Wow \& Flutter: - JIS [3kHz, with acoustic compensation (weighted), rms value] - DIN [3150 Hz , with acoustic compensation (weighted) PEAK value] ; DIN 45507
5. Frequency Response: Measured at -20 dB level, DOLBY NR OFF, level deviation is $\pm 6 \mathrm{~dB}$ without indication - DIN is DIN 45500
6. Signal-to-Noise Ratio: - Measured at +4 dB level (250nwb/m magnetic level $=$ DIN 45513 specified reference level), IEC A curve with acoustic compensation (weighted) - DIN is DIN 45500
7. Sensitivity: Input level (mV) required for reference recording level with input (REC) controls set to maximum.
8. Maximum Allowable Input: While decreasing settings of input (REC) level controls and increasing level at input jacks, this is the maximum input level (mV) at the point where recording amplifier output waveform becomes clipped.
9. Reference Output Level: Playback output level when meter indicates 0 dB .
10. Maximum Output Level: Playback output level with respect to reference recording level when output (PLAY) level controls are set to maximum.

Unit: mm
$420(\mathrm{~W}) \times 187(\mathrm{H})$ $\times 304$ (D) mm Max.

3. DISASSEMBLY

Exterior Parts

1. Remove screws (1) thru (6), and remove the bonnet.
2. Remove knobs A and B, remove screws 7 thru (1) fastening the front panel to the chassis, and remove the front panel. Be sure to unhook the door spring from the adjusting hole; otherwise, the front panel cannot be separated from the chassis.
3. Remove screws (12) thru (11), and remove the bottom plate.

Fig. 1 Disassembly of exterior parts

2. FRONT PANEL FACILITIES

POWER SWITCH

The power comes on when the POWER switch is depressed. The level meters and the remaining tape display light will then light up. To turn off the power, release the switch by depressing it again.

[CASSETTE DOOR OPEN BUTTON

Depress this button to open the cassette door. To close the door, press it lightly and close.

CASSETTE DOOR

Always keep this door closed to prevent dirt and dust from adhering to the head section and rotating parts.

DYNAMIC LEVEL/BIAS METER

Dynamic level meter: When setting the recording level, you will be able to record any program source at the correct recording level if you adjust this meter so that the pointer does not deflect more than +6 dB with respect to a peak signal of the program source even if the level meter pointer deflects up to +3 dB .
This meter serves at a peak meter during playback.
Bias meter: Use this meter to adjust the bias in accordance with the characteristics of the tape being used. Meter indication is in percent.

LEVEL METERS

These indicate the input level during recording and the output level during playback.

OPERATING LEVERS

REC lever: To record, depress this lever and the play lever together.
This lever will not work when a cassette is not loaded or when the erasure prevention tabs of a loaded cassette have been broken off. Rewind lever (4): Depress this lever to rewind the tape (the tape will travel from right to left at high speed).
Play lever $(>$): Depress this lever when playing back a tape. Depress it together with the REC lever for recording (the tape will travel from left to right).
Stop lever (): When this lever is depressed during tape play, the operating levers in use will be released and the tape will stop. Fast formard lever $(\rightarrow$): Depress this lever to send the tape forward at top speed (the tape will travel from left to right).
PAUSE lever: Depress this lever to stop the tape temporarily during recording or playback. When it is released, the tape will continue to travel as before. This lever is also depressed for unattended recording when the cassette deck is being used together with a timer.

NOTES:

1. Apart from the play and REC levers. Do not depress any of the levers simultaneously.
2. The operating levers will not return to their original positions even when the power is switched OFF.

REC INDICATOR

This light comes on when the play and REC levers are depressed together to indicate that the cassette deck is now set to the recording mode.

DOLBY NR INDICATOR

This light comes on when the DOLBY NR switch is set to ON to indicate that the cassette deck is now set up for Dolby recording or Dolby playback.

TAPE COUNTER

This indicates the position of the tape run

COUNTER RESET BUTTON

Depress this button to reset the tape counter display to ' 000 '.

CrO_{2} INDICATOR

This light comes on when a chrome tape is being used. It will come on when a cassette is not loaded but this does not indicate a failure.

Fe-Cr INDICATOR

This light comes on when the EQ switch is set to $\mathrm{Fe}-\mathrm{Cr}$.

MEMORY STOP SWITCH

When this switch is depressed to the ON position, the position the tape counter is set to '000' is memorized during recording and playback, and the tape can be stopped with this memory.

METER SELECTOR SWITCH

Set this switch to DYNAMIC LEVEL when you want to make use of the dynamic level meter, and to BIAS when you want to use the bias meter.

BIAS CONTROL

Use this control to adjust the bias in accordance with the charac. teristics of the tape being used. It is set so that the center position (center click) corresponds to the standard bias.

EQ SWITCH

Use this switch to select the recording and playback equalization characteristics in accordance with the type of tape being used.
STD: For ordinary tapes and low-noise/high-output tapes. Fe-Cr: For ferrichrome tapes.

[^0] holes, and so this type of tape cannot be used.

5. LEVEL DIAGRAM

PLAYBACK

4. PARTS LOCATIONS

Front Panel View

Front View with Front Panel Removed

ear Panel View

Button Replacement

The buttons are bonded to the switches. To remove the buttons, heat the lever of the button to be removed, with a hair dryer or other similar device, and then pull the button off.

Fig. 2 Button replacement
Tape-Indicator Lamp, Reel Turntable and Belt Replacement

1. To replace the tape indicator lamp, first loosen screws (1) and 2, and remove the cassette plate.
2. Then unsolder the lamp leads with a soldering iron, and replace the lamp.
3. Remove screws (3) thru (5), and remove the supply reel turntable full ass'y.
Then, remove screws 6 thru 8, and remove the take-up reel turntable full ass'y. Both the supply and take-up reel turntables are supplied as assembly.
4. Remove the flywheel ass'y to remove the capstan belt, being careful not to lose the oil washer. Never get any oil on the capstan. Both sides of the belt are polished, and either side can be the front or back.

Mechanism Ass'y

After removing the front panel, remove screws (1) thru (3) at the front and screws (4) and (5) at the top, and remove the mechanism ass'y.

Fig. 3 Remove mechanism ass'y

Fig. 4 Tape indicator lamp, reel turntable and belt replacement

Equalizer/microphone amp. (Fig. 11)
The microphone amp section of the PA4001 is used. Its input is a differential amplifier, and its output is an emitter follower type. When recording, this circuit is used as a flat frequency response microphone amp by switching the NFB circuit. At playback, it is used as a playback equalizer amp by making the NFB circuit a time constant circuit. The playback equalizer amp is switched between $\mathrm{CrO}_{2}, \mathrm{Fe}-\mathrm{Cr}$ and STD. At $\mathrm{CrO}_{2}, \mathrm{Fe}-\mathrm{Cr}$, a CR series circuit is inserted at the output side of the equalizer amp by a transistor switch.

When a cassette half having a chrome tape detector hole is loaded (CrO_{2} tape detector switch S_{5} at the HOLE position), or the EQ switch S_{4} is set to the $\mathrm{Fe}-\mathrm{Cr}, \mathrm{CrO}_{2}$ position, +B is supplied through the route D_{206} or $D_{208} \rightarrow R_{221} \rightarrow R_{313} \rightarrow$ Q301. Since Q301 is turned ON by cancelling of -B, the amp is made a CrO_{2} ($\mathrm{Fe}-\mathrm{Cr}$) equalizer amp (time constant $70 \mu \mathrm{sec}$ at the high range) by C 308 and R311.

When a cassette half not having a chrome tape detector hole (S5 at the NO HOLE position) and S_{4} is set to the STD position, +B is not supplied to Q301 and Q301 is turned OFF by -B (time constant $120 \mu \mathrm{sec}$ at the high range).

Recording bias switching circuit (Fig. 12)

The recording bias is switched between CrO_{2} and $\mathrm{Fe}-\mathrm{Cr}$, and STD. The bias current is switched by changing the oscillation width by changing the bias oscillator supply voltage. The bias current can be varied from -15% to $+10 \%$ for CrO_{2} and from -20% to $+15 \%$ for $\mathrm{Fe}-\mathrm{Cr}$ and STD, by adjusting the bias fine-adjustment semifixed resistor
bias 0% of the set is indicated at the THIRD METER (BIAS meter).

When a cassette half without chrome tape detector hole is loaded (CrO_{2} detector switch S_{5} at the NO HOLE position), at recording power is supplied to the oscillator circuit through the route R_{223} and $\mathrm{S}_{5} \rightarrow \mathrm{D}_{205} \rightarrow \mathrm{R}_{218} \rightarrow \mathrm{VR}_{202}$. Since the series with R_{223} when a cassete half with detector hole is loaded (Ss at the HOLE position), the voltage supplied to the oscillator circuit becomes high. When VR202 is at the center click position, the CrO_{2} recording bias becomes approximately 20% to 30% deeper than for STD/Fe-Cr.

The recording bias is indicated on the bias meter by setting the THIRD METER switch S_{10} to the BIAS position. VR 203 is for " 0 " adjustment of the STD/Fe-Cr bias indication, and VR204 is for " 0 " adjustment of the CrO_{2} bias indication. Q201 acts as a switching transistor which mutes the THIRD METER when the REC/PB switch S_{2} is set to the PB position and the MUTING switch S_{7} is set to the ON position.

Fig. 11 Equalizer/microphone amp circuit

Fig. 12 Recording bias switching circuit

Head Replacement

PB/REC head

Remove screws 1 and (2), and disconnect the PB/REC head wiring, being careful not to lose the head adjusting spring. Be sure to adjust the head azimuth after replacing the PB/REC head. Refer to the electrical adjustment item on page 24 for details.

Erasing head

Remove screws (3) and (1), remove the lead clamp, and disconnect the erasing head wiring.
Pinch arm
Remove the E-washer and nylon washer, and remove the pinch arm, while pushing the pinch pressure spring downward.

Fig. 5 Head replacement

Meter Lamp Replacement

1. Remove the tape and meter cover sealing tape.
2. Replace the meter lamp, using a soldering iron. Be careful not to touch the scale plate and pointer with the soldering iron when replacing the meter lamp.

Fig. 6 Meter lamp replacement

Subchassis and Motor Bracket

When replacing the capstan motor, first remove the subchassis.

1. Remove screws (1) thru (3) and remove the subchassis.
2. Remove screw 4, and remove the motor bracket.
3. Remove screws 5 thru (7, and remove the capstan motor.

Fig. 7 Remove subchassis and motor bracket

Door

Remove the two door-shaft stoppers, and remove the door from the escutcheon. The front panel is attached to the escutcheon with double-sided adhesive tape.

Fig. 8 Door replacement

6. CIRCUIT DESCRIPTIONS

Fig. 9 Block diagram

The circuit construction of the set is shown in the block diagram, and the circuit schematic is shown on page 41.

6.1 RECORDING AND PLAYBACK CIRCUITS

The special tape deck system IC (PA4001) developed by Pioneer is used in the recoridng and playback circuits. The PA4001 is a 16-pin dual-inline IC containing a microphone amp, recording amp, and headphone amp. Its block diagram is shown in Fig. 10.

Flat amp 1

The flat amp section of PA4001 is used. This amp has a flat frequency response, and boosts the equalizer amp output at playback and the microphone output or LINE input signal at record.
Flat amp $2\left(\mathbf{O}_{401}\right)$
This amp has a flat frequency response, and amplifies the output of the Dolby processor.

Headphone amp

The headphone amp section of the PA4001 is used. This amp is a headphone and level meter drive complementary amp, and has a gain of approximately 7.5 dB . The headphone output is divided by resistors.

Fig. 10 Block diagram of PA4001

AUTO STOP operation (Fig. 17)

1. When the tape stops running, the base voltage of Q701 remains constant and the its collectorr voltage also remains constant, as shown in Fig. 17 (B).
2 . Since the change in the collector voltage of Q701 is taken from C704 and rectified by D703 and D704, no output voltage will appear when the collector voltage is constant.
2. Therefore, bias to Q703 is removed, and Q703 is turned OFF.
3. When Q703 is turned OFF, C706 proceeds to charge and the anode voltage of D708 rises as shown in Fig. 17 (D).
$5 .+B_{2}$ is divided by R_{721} and R_{720} and applied to the anode of D708, and since this anode voltage rises further, D708 conducts.
4. Therefore, bias is applied to Q704, Q704 is turned ON, a voltage drop is generated across R_{719}, and Q705 is also turned ON.
5. Consequently, blas is applied to Q707, Q707 is turned ON , current flows through the route $+\mathrm{B}_{2} \rightarrow \mathrm{~S}_{7} \rightarrow \mathrm{D}_{714} \rightarrow$ solenoid $\rightarrow \mathrm{Q}_{707} \rightarrow$ ground, and the mechanism is released (placed into the STOP state) by the solenoid.
6. When the tape is stopped in the REW (FF) state, current flows through the route $+\mathrm{B}_{2} \rightarrow$
$\mathrm{S}_{7} \rightarrow \mathrm{D}_{715} \rightarrow$ solenoid $\rightarrow \mathrm{Q}_{707} \rightarrow$ ground, because S_{7} is at the ON side, and the mechanism is released by the solenoid.
Since this route does not pass through the PAUSE switch S_{9}, auto stop is performed even if the PAUSE button is pushed.
7. Since S_{8} is switched to the OFF side when the mechanism is in the STOP state, Q703 is biased through the route $+\mathrm{B}_{3} \rightarrow \mathrm{~S}_{8} \rightarrow \mathrm{R}_{729} \rightarrow \mathrm{Q}_{703}$, and Q703 is turned ON.
8. Therefore, the anode voltage of D_{708} drops, Q704, ,Q705 and Q707 are turned ON, and the current flowing through the solenoid is interrupted.
9. When the PAUSE button has been pushed in the PLAY (REC) state, S_{9} is switched to the ON side, and Q703 is biased through the route $+\mathrm{B}_{2} \rightarrow \mathrm{~S}_{7} \rightarrow \mathrm{R}_{726} \rightarrow \mathrm{D}_{716} \rightarrow \mathrm{~S}_{9} \rightarrow \mathrm{D}_{712} \rightarrow \mathrm{R}_{710} \rightarrow \mathrm{D}_{705} \rightarrow$ $\mathrm{R}_{712} \rightarrow$ Q703 and Q703 is turned ON.
10. Consequently, Q704, Q705, and Q707 remain in the OFF state, even if the tape is stopped.
11. When the PAUSE button has been pushed in the FF (REW) state, the route of item 11 above is not established, Q703 is turned ON and OFF in accordance with running of the tape, and the auto stop circuit operates normally.

Fig. 17 Control circuit

Recording amp（Fig．13）

The recording amp section of the PA4001 is used．Its input is a differential amp，and its output is a complementary circuit．A low－range compen－ sation circuit is provided in the NFB loop，and a recording bias trap is provided in the output circuit．

The high range peaking characteristic can be switched between $\mathrm{CrO}_{2}, \mathrm{Fe}-\mathrm{Cr}$ ，and STD by three NPN transistor switches．
$+B$ is supplied to the base of Q303，Q304，or Q305 by the tape position determined by the CrO_{2} tape detector switch S_{5} and $E Q$ switch $S_{4},-B$ is cancel－ led，and the appropriate peaking circuit is operated． The peaking frequency is approximately 14 kHz for STD，and approximately 15 kHz for CrO_{2} and $\mathrm{Fe}-\mathrm{Cr}$ ．

$$
\begin{aligned}
& \mathrm{S}_{4}: E O \text { switch } \\
& \mathrm{S}_{5}: \mathrm{CrO}_{2} \text { tape sense switch }
\end{aligned}
$$

Fig． 13 Recording amp circuit

6．2 DOLBY PROCESSOR

This set uses a Dolby B type noise reduction circuit．A Dolby B type circuit boosts the recording level when the input signal drops below a pre－
scribed level（Dolby level）at the mid－range，the range at which the ear is most sensitive，and automatically returns it to its original level at playback．This reduces tape hiss by the amount of drop in the playback level，and improves the S / N ratio at the high range（above 5 kHz ）by 10 dB ． A monolithic IC（CR860）is used as the Dolby processor．Dolby processor circuit is shown in Fig． 14.

At record，the compressor input is taken from the input side of the summing amplifier C and the prescribed characteristic is obtained by adding the output of the compressor to the main signal at the summing amplifier C ．

At playback，the compressor input is taken from the output side of the summing amplifier C ． When the input taken from the output side has been added to the summing amplifier C as the output of the compressor，it is added in the op－ posite phase of the main signal and is，in effect， subtracted．

Compressor

The input signal is sent to amplifier D thru attenuator H via high－pass filter G ．The output of amplifier D is sent to clipper J and then to summing amplifier C as compressor output． On the other hand，it is also sent to amplifier E ． The output of amplifier E is sent to rectifier I and fed back to attenuator H as a control signal．

When the signal passing thru high－pass filter G is low level，the rectifier I voltage becomes almost ＂ 0 ＂，the attenuation of attenuator H becomes minimum and the output of the compressor in－ creases．

When the signal passing thru high－pass filter G is high level，the rectifier I voltage becomes high， the attenuation of attenuator H becomes maximum and the output of the compressor decreases．

Fig． 14 Dolby processor circuit

6.3 OSCILLATOR CIRCUIT

The oscillator circuit is shown on Fig. 15. This circuit is a push-pull circuit (Q803, Q804), and supplies recording bias current to the recording head and erasing current to the erasing head (frequency is approximately 85 kHz).

Since a push-pull oscillator produces few even harmonics, there is no DC magnetization of the tape (even harmonics produce a plus and minus asymmetrical waveform) and little noise.

1. When the REC button is pushed, the REC/PB switch S_{2} is switched to the REC side, and $+B$ is supplied to the oscillator. But since the MUTING switch S_{7} is at the ON side, Q805 is turned OFF by -B , and the circuit does not oscillate (only the amp section is used).
2. When the REC and PLAY buttons are pushed simultaneously, S_{7} is switched to the OFF side, Q8os is turned ON, and the circuit begins to oscillate.

Fig. 15 Oscillator circuit

6.4 MUTING CIRCUIT

Muting when the power switch is turned ON and OFF in the PLAY state (Fig. 16)

This circuit suppresses the click noise produced when the power switch is switched.
Power switch ON

1. Since $+B_{2}$ flows through the route $C_{601}-R_{603}-$ Q601 only while C601 is charging, Q601 is turned ON.
2. Consequently, Q602 is turned ON, Q603 (Q604) is turned ON, and muting is actuated. The muting time is determined by the time constant of C601 and R_{603}, and is set at approximately 4.5 seconds.
Power switch OFF
3. Since $+B$ is supplied to the base of Q_{602} when the power switch is set to the ON position, Q602 is turned OFF.
4. On the other hand, C_{602} is charged by $+\mathrm{B}_{2}$ through the route $\mathrm{D}_{606}-\mathrm{R}_{615}-\mathrm{R}_{602}$.
5. When the power switch is set to the OFF position, $+\mathrm{B}_{2}$ is no longer applied to the base of Q602.
6. Furthermore, the base voltage of Q_{602} is quickly raised to zero potential through the route D604--$R_{610}-R_{605}-S_{2}$ - ground. (This route is D_{605} -$R_{611}-R_{606}-S_{2}$ ground at recording.)
7. At this time, the emitter potential of Q_{602} is maintained by the charge across C_{602}, and Q_{602} is turned ON.
8. When Q602 is turned ON, Q603 (Q604) is turned ON, muting is actuated, and the click noise when the power switch is turned off is prevented.

Fig. 16 Muting circuit

Muting at FF, REW, and STOP (Fig. 16)
This circuit prevents unwanted noise (for instance, motor noise) at FF, REW and STOP.

1. When the set is in the STOP state, or the FF or REW button is pushed, MUTING switch S_{7} is set to the ON side.
2. ${ }^{+} \mathrm{B}_{1}$ is supplied to Q_{604} (Q603) through the route $\mathrm{S}_{7} \rightarrow \mathrm{REC}$ switch $\mathrm{S}_{11} \rightarrow \mathrm{R}_{232} \rightarrow \mathrm{D}_{603} \rightarrow \mathrm{R}_{614}\left(\mathrm{R}_{613}\right)$ \rightarrow D608 (D607) \rightarrow Q604 (Q603), and Q604 (Q603) is turned ON.
3. When Q604 (Q603) is turned ON, the signal current of both the L and R channels flows to ground and is muted.

Recording muting (Fig. 16)

REC switch S_{11} is ganged with the REC button. Mechanical muting is provided so that S_{11} is opened after the REC/PB switch S_{2} has been switched when the REC button is pushed, and S_{2} is switched to the PB side after S_{11} has been closed when returning to the STOP state after the REC button is pushed. Noise produced when the REC button has been pushed, and noise produced at REC \rightarrow STOP and REC/PLAY \rightarrow STOP are muted by the timing of these actions and the muting circuit consisting of Q601 to Q604 and Q302.
In the STOP state, the MUTING switch S_{7} is at the ON side, and since $+\mathrm{B}_{1}$ is applied through the route $\mathrm{S}_{7} \rightarrow \mathrm{~S}_{11} \rightarrow \mathrm{R}_{208} \rightarrow \mathrm{D}_{201} \rightarrow \mathrm{R}_{319} \rightarrow \mathrm{Q}_{302}$, the recording amp signal is muted.

When the PLAY button is pushed, $+\mathrm{B}_{2}$ is supplied through the route $\mathrm{S}_{2} \rightarrow \mathrm{R}_{319} \rightarrow \mathrm{Q}_{302}$, Q302 is turned ON, and the muting amp signal is muted, the same as at the STOP state. When the REC button is pushed, S_{2} is switched to the REC side, Q302 is turned OFF, and the signal enters the recording amp. Noise produced by switching is prevented by turning Q302 ON and OFF in this manner.

Muting at follow-on recording (Fig. 16)

This is the muting circuit when follow-on recording by pushing the REC button from PLAY operation.

1. When the REC/PB switch S_{2} is switched from the playback side to the recording side, $+\mathrm{B}_{2}$ is supplied through the route $\mathrm{R}_{612} \rightarrow \mathrm{D}_{605} \rightarrow \mathrm{C}_{605} \rightarrow$ $\mathrm{R}_{608} \rightarrow \mathrm{~S}_{2} \rightarrow$ ground.
2. The base potential of Q602 is dropped and Q602 is turned ON during the charging time of C605.
3. When Q602 is turned ON, Q603 and Q604 are also turned ON, and muting is actuated. The muting time is determined by the time constant of C605 and R608, and is set at approximately 0.5 second.
4. When S_{2} has been switched from the playback side to the recording side, $+\mathrm{B}_{2}$ is supplied through the route $\mathrm{R}_{612} \rightarrow \mathrm{D}_{604} \rightarrow \mathrm{C}_{604} \rightarrow \mathrm{R}_{607} \rightarrow \mathrm{~S}_{2} \rightarrow$ ground.
5. Q602 is turned ON during the charging time of C 604.
6. When Q602 is turned ON, muting is actuated as described in item 3 above. However, the muting time is determined by the time constant of C604 and R607.

6.5 CONTROL CIRCUITS
 AUTO STOP circuit (Fig. 17)

This circuit automatically releases the mechanism by means of a solenoid when running of the tape is detected and the tape has been stopped with the mechanism in the FF, REW or PLAY (REC) state.

Running of the tape is detected by coupling a Hall element detector switch to the take-up reel turntable with a belt. Since C703 is charging during normal operation, Q702 is turned OFF, and is unrelated to the AUTO STOP operation. When tape is running

When the PLAY (FF, REW) button is pushed, the MOTOR switch S_{8} is switched to the ON side, and the MUTING switch S_{7} is set to the OFF side (to the ON side at FF and REW). Moreover, since the PAUSE button S_{9} is not pushed, it is at the OFF side.
1 . While the tape is running the base potential of Q701 is changed as illustrated in Fig. 17 (A), by switching of the Hall element.
2. This change is taken from C704, rectified by D703 and is used to turn Q703 ON and OFF.
3. C706 is charged through the route $+\mathrm{B}_{2} \rightarrow \mathrm{R}_{714} \rightarrow$ $\mathrm{C}_{706} \rightarrow$ ground, but since Q703 is turned ON and OFF, the anode voltage of D_{708} is varied as illustrated in Fig. 17 (C).
4. $+\mathrm{B}_{2}$ is divided by R_{721} and R_{720} and applied to the base of Q_{704} through $D_{710} \rightarrow R_{713}$. It is also applied to the emitter of Q704 through R719. Therefore, D708 is reverse biased and turned off, and Q704 is turned OFF.
5. When Q704 is turned OFF, there is no voltage drop across R_{719}, and Q705 is zero biased and turned OFF.
6. Consequently, since Q707 is zero biased, it is turned OFF and current does not flow to the solenoid.

AUTO START circuit (Fig. 17)

This circuit inhibits the start of the PLAY and REC operations until the power supply voltage rises to a stable value after the power switch has been set to the ON position

1. When the power switch is set to the ON position, the charging current of C703 flows through the route $+\mathrm{B}_{2} \rightarrow \mathrm{C}_{703} \rightarrow \mathrm{R}_{707} \rightarrow \mathrm{Q} 702 \rightarrow$ ground, and Q702 is turned ON.
2. $+\mathrm{B}_{2}$ is applied to the anode of D706 through R710, but since Q_{702} is ON , its rise is very small and Q703 is turned OFF.
3. Therefore, C 706 is charged through the route $+B_{2} \rightarrow R_{714} \rightarrow C_{706} \rightarrow$ ground, and the anode voltage of D708 rises.
4. When the anode voltage of D708 rises, Q704, Q705 and Q707 are turned ON through the same process as at AUTO STOP.
5. When Q707 is turned ON, current flows through the route $+\mathrm{B}_{2} \rightarrow \mathrm{~S}_{7} \rightarrow \mathrm{D}_{714} \rightarrow$ Q707, the solenoid is $^{\text {th }}$ operated, and the tape is started. At the same time, S_{9} is switched to the OFF side.

MEMORY REWIND operation (Fig. 17)

This circuit automatically stops the REW operation when the counter reaches " 999 " after the REW button S_{13} has been pushed while the MEMORY switch S_{14} is set to the ON position. When the counter reaches " 999 ", S 12 is turned ON.

1. When the REW operation is performed by setting S_{14} to the ON position, the charging current of C_{710} begins to flow through the route $+\mathrm{B}_{2} \rightarrow \mathrm{R}_{727} \rightarrow \mathrm{~S}_{12} \rightarrow \mathrm{C}_{710} \rightarrow \mathrm{~S}_{13} \rightarrow \mathrm{~S}_{14} \rightarrow \mathrm{R}_{717} \rightarrow \mathrm{D}_{709} \rightarrow$ R_{715} the instant the counter reaches " 999 ".
2. This causes the voltage drop across R_{715} to be applied to the base of Q704 through R713, and Q704 to be turned ON.
3. Therefore, Q705 and Q707 are also turned ON, current flows through the route $+\mathrm{B}_{2} \rightarrow$ MUTING switch $\mathrm{S}_{7} \rightarrow \mathrm{D}_{714} \rightarrow$ solenoid, and the mechanism is released (placed into the STOP state) by the solenoid.

6.6 METER CIRCUIT

The meter circuit is shown in Fig. 18. The meter is operated as a peak meter with a flat frequency response at playback, and as a peak meter having a frequency response which increases at the low and high ranges at recording.

Q501, Q502 and Q503 comprise a 3-stage directcoupled amp. Logarithmic compression amplification is performed by inserting D503 and D504 into the feedback loop from the emitter of Q503.

When recording, the low-range frequencies are boosted by R_{504} and C502, and the high-range frequencies are boosted by the LRC series circuit inserted at the emitter of Qsol.

The logarithmic compression amplified signal is rectified by C_{510}, and DC amplified by Q505 and Q506. The THIRD METER (dynamic level meter) is operated by setting the METER switch S_{10} to the DYNAMIC LEVEL position. Q504 is a muting transistor that prevents the meter pointer from deflecting when the power switch is set to the ON position.

Fig. 18 Meter circuit

1. Insert a screwdriver into the groove in the switch bracket shown in Fig. 23, and adjust the bracket (by moving it back and forth) so that the motor switch is turned ON (reel turntable rotates) the instant the pinch roller is pressed against the capstan.
2. Confirm that the distance between the capstan and pinch roller is within $0-0.2 \mathrm{~mm}$ when the reel turntable begins to rotate.
3. When the distance between the capstan and pinch roller is within $0-0.2 \mathrm{~mm}$ and the adjustment standard cannot be satisfied by the adjustment of item 1 above, roughly adjust by moving the switch bracket back and forth so that the motor switch is turned on when the distance between the capstan and pinch roller is within $0-0.5 \mathrm{~mm}$.
4. After the adjustment of item 3 is completed, insert a screwdriver at the point where the capstan and pinch roller make contact, and adjust so that the distance between the capstan and pinch roller is within $0-0.2 \mathrm{~mm}$, being careful not to damage the pinch roller with the screwdriver.

Fig. 23 Motor switch and play timing adjustment

Confirmation after adjustment

1. Motor switch operation

There must be a back and forth stroke that switches the motor switch when the PLAY, FFl and REW button is slowly pushed.
2. After motor switch operation

The tape must not fly out or be quickly wound when a tape is inserted and the PLAY button is pushed (not especially slow, but normal PLAY operation).

7.6 MUTING SWITCH OPERATION

Adjustment standard

Contact B must be moved $1 \mathrm{~mm}{ }_{-0.3}^{+0.5} \mathrm{~mm}$ further after contact A of the switch separator contacts contact B of the fixed piece by switching of the MUTING switch in the PLAY state. However, this does not include the movement caused by the overstroke of the operating button.

The muting switch switching timing must be slow at STOP \rightarrow PLAY and fast at PLAY \rightarrow STOP. The switch must be perfectly switched.
Adjustment procedure

1. Apply 8V DC to the relay ass'y [(-) at terminal No. $44,(+)$ at terminal No. 47 , and terminals No. 45 and No. 46 shorted].
2. Load a cassette tape, and slowly push the PLAY button. Insert a screwdriver into the groove shown in Fig. 24, and adjust so that the cassette lamp is illuminated simultaneously with stopping of the head base operation.
3. After adjustment, place the set into the PLAY state, and confirm that the cassette lamp is not extinguished even when the PLAY button is pushed up.

Fig. 24 Muting switch operation adjustment

7. MECHANICAL ADJUSTMENTS

- Adjustment is usually performed with the mechanism section removed from the chassis. However, the wiring must not be disconnected. (Refer to page 6 for the method of removing each part).
- When pushing the PLAY lever with a cassette half not mounted, press the lever while pushing the cassette detector pin.
- The mechanism section adjustment points are shown in Fig. 19.

Fig. 19 Adjustment points

7.1 PINCH ROLLER PRESSURE

1. Place the set into the PLAY state, push a tension gauge (rod balance: $500 \mathrm{~g} /$ full scale) against the part indicated by the \quad in Fig. 20 until the pinch roller is separated from the capstan (approximately 0.5 mm).
2. Slowly push the pinch roller against the capstan, and read the value indicated at the gauge the instant the pinch roller begins to rotate.
3. If the tension gauge indication is not within the 280 g to 360 g range, adjust the pinch roller pressure by changing the hooking position in the pinch pressure spring.
4. If the tension gauge indication is still not within the 280 g to 360 g range after the adjustment in step 3 above, replace the pinch pressure spring (RBH-304).

Fig. 20 Pinch roller pressure adjustment

7.2 REEL TURNTABLE TORQUE

Measure the reel turntable torque with a torque meter at the PLAY, FF, and REW operations. The reel turntable torque is normal if it is within the allowable value given in the below table. When the torque is outside this value, clean the reel turntable idler, and other roller contact parts, and remeasure the torque. If it is still outside the allowable value, replace the take-up reel full assembly (RXA-786) or supply reel full assembly (RXA-787).

Table

	Take-up reel turntable	Supply reel turntable
PLAY operation	$35 \sim 50 \mathrm{~g} \cdot \mathrm{~cm}$	${ }^{*} 6 \mathrm{~g} \cdot \mathrm{~cm}$ or less
FF operation	$70 \sim 100 \mathrm{~g} \cdot \mathrm{~cm}$	${ }^{*} 6 \mathrm{~g} \cdot \mathrm{~cm}$ or less
REW operation	${ }^{*} 7 \mathrm{~g} \cdot \mathrm{~cm}$ or less	$70 \sim 100 \mathrm{~g} \cdot \mathrm{~cm}$
${ }^{*}$ Back tension torque		

7.3 TAPE SPEED

1. Connect a frequency counter to the LINE OUTPUT terminal.
2. Play the 3 kHz signal of the STD-301 tape speed, wow \& flutter test tape.
3. Insert a screwdriver through the hole at the rear of the motor, and adjust the variable resistor for a reading of 2995 Hz to 3010 Hz at the frequency counter when winding of the tape begins.
4. When the semifixed resistor is turned clockwise, the tape speed increases, and when it is turned counter-clockwise, the tape speed decreases.

7.4 PAUSE TIMING

Adjustment standard

The pinch roller is separated from the capstan by about 1 to 2 mm by slowly pushing the PAUSE button in the PLAY state.

The pause timing is then adjusted so that the take-up reel shaft and pinch roller begin to rotate simultaneously when the PAUSE button is slowly released. However, the take-up reel shaft must begin to rotate while the pinch roller and capstan are still 0.1 mm apart.
Adjustment procedure
Adjust the pause timing by bending the part indicated by A in Fig. 22 in the pause operating plate movement direction.

The pinch arm and pause arm must be separated in the PLAY state (PAUSE OFF) after adjustment. Moreover, load a tape and place the set into the PLAY state, and confirm that the tape does not fly out or is not wound quickly when the PAUSE button is pushed.

Fig. 22 Pause timing adjustment

7.5 MOTOR SWITCH AND PLAY TIMING

Adjustment Standard

The motor switch and play timing are adjusted so that the reel turntable and pinch roller (capstan) begin to rotate simultaneously, or the reel turntable begins to rotate somewhat before the pinch roller when the PLAY button is slowly pushed. When the reel turntable begins to rotate before the pinch roller, the distance between the capstan and pinch roller the instant the reel turntable begins to rotate must be within $0-0.2 \mathrm{~mm}$. Adjustment procedure

Fig. 21 Tape speed adjustment

8.4 LEVEL METER AND D.L. METER

1. Set the INPUT switch to the LINE position.
2. Connect an mV meter to the TP terminal of the Dolby ass'y.
3. Place the set into the recording state, and apply a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal to the LINE terminal.
4. Adjust the INPUT control for an mV meter indication of $-7.7 \mathrm{dBv}(410 \mathrm{mV})$.
5 . Then adjust VR301 to obtain a reading of " 0 dB " at the level meter.
5. Set the METER switch to the DYNAMIC LEVEL position.
6. Adjust VRsor to obtain a reading of " 0 dB " at the DYNAMIC LEVEL meter.

8.5 RECORDING CURRENT (ROUGH ADJUSTMENT)

The recording current is fine adjusted by the adjustment of item "8.8 Recording Level".
The input signal and position of the INPUT control conform with the adjustment of item " 8.4 Level Meter and D.L. Meter".

1. Set the EQ switch to the STD position.
2. Connect an mV meter between mother ass'y terminals No. 46 (Lch) and No. 47 (ground), and terminals No. 43 (Rch) and No. 42 (ground).
3. Adjust VR303 to obtain a reading of 0.46 mV $(46 \mu \mathrm{~A})$ at the mV meter.
Since the level is extremely low, be careful of extraneous noise when adjusting.

8.6 RECORDING BIAS (ROUGH ADJUSTMENT)

The recording bias is fine adjusted by the adjustment of item " 8.7 Recording/Playback Frequency Response".

1. Connect an mV meter between mother ass'y terminals No. 46 (Lch) and No. 47 (ground), and terminals No. 43 (Rch) and No. 44 (ground).
2. Set the EQ switch to the STD position, and load a STD cassette half.
3. Place the set into the recording state, and set the INPUT control to minimum.
4. Adjust VR801 and VR802 to obtain a reading of $1.5 \mathrm{mV}(150 \mu \mathrm{~A})$ at the mV meter.

8.7 RECORDING/PLAYBACK FREQUENCY RESPONSE

1. Set the EQ switch to the STD position, the DOLBY NR switch to the OFF position, and the METER switch to the BIAS position.
2. Center bias fine adjustment variable resistor VR202.
3. Apply a $333 \mathrm{~Hz},-30 \mathrm{dBv}(31.6 \mathrm{mV})$ signal to the INPUT signal, and record this singal on test tape STD-601.
4. Then record a 6.3 kHz signal on the same tape (STD-601), and adjust VR801 and VR802 for a playback level deviation of +0.5 dB , relative to 333 Hz of item 3 above.
5. Record and playback up to 12 kHz and confirm that they are within the rating (Fig. 29).
When not within the ratings, adjust to 0 dB ${ }_{-0.5}^{+1} \mathrm{~dB}$ by readjusting VR80ı and VR802.
6. Adjust VR203 so that the pointer deflects to " 0 " on the D.L. meter STD/Fe-Cr scale.
7. Record 333 Hz and 6.3 kHz signals, using test tape STD-602 (for CrO_{2}), and adjust VR201 for a 6.3 kHz playback output deviation of $+0.5 \mathrm{~dB} \pm 1 \mathrm{~dB}$ referred to 333 Hz .
8. Adjust VR204 so that the pointer deflects to " 0 " on the D.L. meter CrO_{2} scale.
9. VR_{203} ($\mathrm{STD} / \mathrm{Fe}-\mathrm{Cr}$ side) must not be turned after the adjustment of step 8.
10. Set the EQ switch to the $\mathrm{Fe}-\mathrm{Cr}$ position, record and playback STD-601, and confirm that it is within the rating.
11. Then set the DOLBY NR switch to the ON position, record and playback over the frequency range stipulated by the ratings, and verify that they are within the ranges shown in Fig. 29.
12. Vary VR202 and confirm that the bias meter indication is between -20% and $+15 \%$ at STD, $\mathrm{Fe}-\mathrm{Cr}$, and between -15% and $+10 \%$ at CrO_{2}.
13. Connect an mV meter between mother ass'y terminals No. 37 (Lch) and No. 36 (ground), and terminals No. 40 (Rch) and No. 41 (ground).
14. Place the set into the recording state, and confirm that the bias leakage voltage is less than 1V.

8.8 RECORDING LEVEL

1. Set the EQ switch to the STD position, and the DOLBY NR switch to the ON position.
2. Apply a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal to the INPUT terminal, and connect an mV meter to the DOLBY ass'y TP terminal.
3. Adjust the INPUT control to obtain a reading of $-7.7 \mathrm{dBv}(410 \mathrm{mV})$ at the mV meter.
4. Then record and playback 333 Hz with test tape STD-601, and adjust VR303 to obtain a reading of -7.7 dBv at the mV meter.
5. Record and playback a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal with test tape STD-602, and confirm that the mV meter reads $-7.7 \mathrm{dBv} \pm 1.5 \mathrm{~dB}$.

7．7 WOW AND FLUTTER

Wow \＆flutter is noticeable，check for the following items，and clean，adjust or replace the faulty parts，as required：
1．Capstan bent，rattling，dirty．
2．Pinch roller dirty，or pressure is unsuitable．
3．Capstan belt dirty or deteriorated．
4．Take－up ideler dirty，eccentric，or pressure is unsuitable．
5．Take－up reel turntable variation．
6．Back tension unsuitable or irregular．
7．Detector switch rotation not smooth．
8．Tape counter operation not smooth．
9．Cassette tape faulty．
10．Flywheel thrust play．

SIMPLE THRUST PLAY ADJUSTMENT METHOD

Slowly turn the thrust adjusting screw until there is no flywheel play，being careful not to turn it more than necessary，and then back－off the screw 90° ．Next，confirm that the flywheel rotates smoothly and then lock the screw．

8.1 HEAD AZIMUTH

1. Connect an mV meter to the LINE OUTPUT terminal.
2. Set the EQ switch to the STD position.
3. Play $10 \mathrm{kHz},-20 \mathrm{~dB}$ of test tape STD-341A, and adjust the head azimuth adjusting screw shown in Fig. 27 to obtain maximum output at both the L and R channels.
4. Be sure to lock the adjusting screw with screw lock after adjustment.

8.2 PLAYBACK EQUALIZER

1. Connect an mV meter to the LINE OUTPUT terminal.
2. Set the EQ switch to the STD position.
3. Play $333 \mathrm{~Hz},-20 \mathrm{~dB}$ of test tape STD-341A, and read the mV meter indication.
4. Play $6.3 \mathrm{kHz},-20 \mathrm{~dB}$ of test tape STD-341A, and adjust VR301 to obtain an mV meter indication of 0.5 dB higher than that for 333 Hz .
5. Under this state, set the tape selector switch to the CrO_{2} and $\mathrm{Fe}-\mathrm{Cr}$ position, and verify that the frequency response referred to 333 Hz is within the $-5.3 \mathrm{~dB} \sim-3.3 \mathrm{~dB}$ range at 6.3 kHz .

8.3 PLAYBACK LEVEL

1. Connect an mV meter to the TP terminal of the Dolby ass'y.
2. Set the DOLBY NR switch to the ON position, and the EQ switch to the STD position.
3. Play $333 \mathrm{~Hz}, 0 \mathrm{~dB}$ of test tape STD-341A, and adjust VR302 for an mV meter indication of -3.7 dBv (650 mV).
Since this adjustment determine the Dolby level, it must be performed precisely.

Fig. 27 Head azimuth adjustment

Fig. 28 Adjustment points

8. ELECTRICAL ADJUSTMENTS

Proceed as follows before beginning adjustment of the electrical system:

1. Confirm that the mechanism section has been properly adjusted.
2. Clean the heads.
3. Procure the specified test tapes.

STD-331A. . . Playback system overall use
STD-341A... Playback system adjustment use (see Fig. 25)
STD-601... . STD blank tape
STD-602 CrO2 blank tape
4. When making measurements, make the level $0 \mathrm{dBv}=1 \mathrm{~V}$, and connect a $50 \mathrm{k} \Omega(47-52 \mathrm{k} \Omega)$ dummy load to the OUTPUT terminal.
5. Unless otherwise specified, "recording state" in this manual indicates the state under which a cassette half without chrome detector hole is loaded and the REC and PLAY levers are pushed (PAUSE lever may also be pushed).

Adjustment Items

Always perform adjustment in the following sequence. If this sequence is not followed, complete adjustment will be impossible, and the set will not display its full performance. The adjustment points are shown in Fig. 26.
Playback System

1. Head azimuth adjustment
2. Playback equalizer adjustment
3. Playback level adjustment

Recording System

4. Level meter adjustment
5. Recording current rough adjustment
6. Recording bias rough adjustment
7. Recording frequency response adjustment
8. Recording level adjustment

Note: The recording trap is not adjusted.

Function of Semifixed Variable Resistors VR_{301} (playback equalizer adjustment): This VR is located at the equalizer amp NFB circuit, and makes the playback frequency response flat by changing the time constant of the circuit.
VR302 (playback level adjustment): This VR is inserted at the output of the equalizer amp at playback, and adjusts the gain of the playback circuit and the channel balance.
VR_{303} (recording level adjustment): This VR is located at the input of the recording amp, and sets the standard recording level by adjusting the gain of the recording circuit.
VR304 (level meter adjustment): This VR sets the meter indication to the standard value by changing the input level of the level meter.
VR_{201} : This VR fine adjusts the CrO_{2} bias.
V_{202} : This VR fine adjusts the STD/Fe-Cr bias.
VR203: This VR " 0 " adjusts the THIRD METER (bias meter) $\mathrm{STD} / \mathrm{Fe}-\mathrm{Cr}$ bias indication.
VR 204 : This VR " 0 " adjusts the THIRD METER (bias) CrO_{2} bias indication.
VR ${ }_{501}$: This VR " 0 " adjusts the THIRD METER (dynamic level meter).
$\mathrm{VR}_{801}\left(\mathrm{VR}_{802}\right)$: This VR is inserted between the oscillator circuit and recording head, and adjusts the recording head bias current.

Fig. 25 Recorded contents of test tape STD-341

Fig. 26 Adjustment points

Using STD－601 and the STD position． with DOLBY NR OFF．

Using STD－601 and the STD position， with DOLBY NR ON．

Using STD－601 and the $\mathrm{Fe}-\mathrm{Cr}$ position， with DOLBY NR OFF．

Using STD－601 and the Fe－Cr position， with DOLBY NR ON．

Fig． 29 Frequency response

Fig． 30 Adjustment points

9. PACKING

Description Parts No.

Spacer	RHC-077
Spacer A	RHC-071
Spacer B	RHC-072

1 | 2

10.3 MECHANISM ASSEMBLY (REAR SIDE)

10.2 MECHANISM ASSEMBLY (FRONT SIDE)

5	6

NOTE:

Parts indicated in \square type cannot be supplied.
PSB 4×8

10. EXPLODED VIEWS

RESISTANCE VALUE CODES

Code numbers of resistors used in Pioneer equipment are expressed in the following way:-

Furthermore, in the list of parts found in the Service Manual, the resistance (code value) part of the above code number is expressed as $\square \square \square$ or $\square \square \square \square$.

Resistors included in the Service Manual list of parts

Ex. RD $1 / 4$ PS
When ordering resistor components, first ascertain the actual resistance value from the circuit diagram, and then convert it into code no. form as shown in the following examples.

For further details on code numbers, refer to "Tuning Fork" VOL. 1.

Ex. 1 For 믐 Codes

* General resistors

Nominal resistance (Ω)	Significant figure (two figures)	Multiplier $(10 \times)$	Resistance value code
5.1	510	$\ldots \ldots$	$5 R 10$
5.62	562	$\ldots \ldots$	$5 R 62$
10	100	$\ldots \ldots$	$10 R 0$
22.5	225	$\ldots \ldots$	$22 R 5$
110	110	$\times 10^{\circ}$	1100
1 k (1000) 1.56 k (1560) 10 k (10000)	100	$\times 10^{1}$	1001
33.6 k (33600) 112 k (112000) 1 M (1000000) 1.56 M (1560000) 156	$\times 10^{1}$	1561	

Ex. 2 For $\square \square \square$ Codes

* General resistors

Significant figures
Multiplier (10^{x})

* Resistors with fractional values

Ex. 2

Nominal resistance (Ω)	Significant figure (two figures)	Multiplier $(10 \mathrm{X})$	Resistance value code
0.5	01	$\ldots \ldots$	OR5
1.5	15	$\ldots \ldots$	1R5
1	01	$\times 10^{\circ}$	010
22	22	$\times 10^{0}$	220
330	33	$\times 10^{1}$	331
1 k			
(1000)	10	$\times 10^{2}$	102
5.6 k $15600)$ 68 k (68000) 820 K (820000) 1 M (1000000) 2.2 M (2200000)	56	$\times 10^{3}$	562

Appearance of Transistors and ICs

2SA564
2SA564A
2SC828
2SC828A

2SC1684
2SA825
2SC1 740LN

2 SC372
2SC373

CR860

2SC1166

2SC790
2SC1419
2SD234

PA400 1

\square
10.6 MOTHER ASSEMBLY

Meter amplifier assembly RWX-195

Dolby assembly RWX-191

NOTE:
Parts indicated in \square type cannot be supplied.

Rotary switch (INPUT) RSB-017

Power and oscillation assembly RWR-061

Pinjack assembly RKB-013

Dolby assembly RWX-191

1．SCHEMATIC DIAGRAMS，P．C．BOARD PATTERNS AND PARTS LIST

11．1 MISCELLANEOUS PARTS LIST

NOTE：
－When ordering resistors，first covert resistance values into code form as shown in the following examples．
Ex． 1 When there are 2 effective digits（any digit apart from 0），such as 560 ohm and 47 k ohm（tolerance is shown by $J=5 \%$ ，and $K=10 \%$ ）． $560 \Omega-56 \times 10^{1}-561 \ldots R D^{1 / 4} P S$ 国困团 J $47 \mathrm{k} \Omega-47 \times 10^{3}-473 \ldots R D^{1 / 4} P S$ 田 4 ［7］J 0．5 $\Omega-0 R 5$ ．．．．．．．．．．．．．．．．$R N 2 H$ 回圆囷 K $1 \Omega-010$ ．．．．．．．．．．．．．．．RS1P

Ex． 2 When there are 3 effective digits（such as in high precision metal film resistors）．

ASSEMBLIES

＇art No．
3WF－084 3WX－191 3WR－061 3WX－192

3WX－195 ZWG－085

Description

Amplifier assembly
Dolby assembly
Power and oscillation assembly
Muting assembly

Meter amplifier assembly
Control assembly

［RANSFORMER

＇art No．

ITT－132
Symbol \＆Description
T1 Power transformer
；WITCHES
＇art No．
3SA－020
3SN－016
3SG－057

こAPACITORS

＇art No．
SKDYF 473250
343－003

ZESISTORS

＇art No．
Symbol \＆Description

OTHERS

Part No
\(\left.$$
\begin{array}{ll}\text { RDG－019 } & \begin{array}{l}\text { Power cord } \\
\text { RKR－020 } \\
\text { Line voltage selector } \\
\text {（switchable 3 positions）}\end{array} \\
\text { RKN－040 } & \begin{array}{l}\text { Jack assembly } \\
\text { RAW－074 }\end{array}
$$

RAW－070 \& Level meter assembly P

\& Level meter assembly\end{array}\right\}\)| | |
| :--- | :--- |
| REL－056 | Lamp assembly |
| RXX－218 | Front panel assembly |
| RNA－321 | Bonnet |
| RAA－207 | Knob A |
| RAA－208 | Knob B |
| | |
| RAA－209 | Rotary knob |

List of Changed Parts for Factory Modification
List of changed parts information will be furnished whenever necessary and you are requested to a－ mend parts number in this parts list．

Symbal	Part No．	Description

Parts List of Mother Assembly

ASSEMBLIES

\qquad Description

RWF-084
RWX-191
RWR-061
RWX-192
RWX-195
Amplifier assembly
Dolby assembly
Power and oscillation assembly
Muting assembly
Meter amplifier assembly

SWITCHES AND COILS

Part No.
Symbol \& Description
RTF-033 L101, L102 Trap coil
RSB-017 S4,S6, S10 Rotary switch
RSB-018 S3 Rotary switch
RSH-027 S2 Slide switch
RSH-030 Slide switch M

CAPACITORS

Part No.

RCE-021	C101, C102	$680 \mathrm{p} / 50 \mathrm{~V}$
RCE-003	C103, C104	$100 \mathrm{p} / 50 \mathrm{~V}$
CEA 2R2P 50	C105, C106	
CEA OR47P 50	C201	
CEA 470P 10	C202	
CEA 101P 10	C203	

CEA 101P 10

RESISTORS

Part No.
RCP-041
RCS.016
RCP-042
C92-857

RD½PS $\square \square \mathrm{J}$

RD½PSF ロan J
RS1PSF ㅁㅡㅣ J

When ordering resistors, convert resistance value into code form, then rewrite the part no. as bef

Symbol \& Description
VR201 Semifixed 100-B

VR202 Variable resistor
VR203 Semifixed 220-B
VR204 Semifixed 22k-B

R101-122, R201-R203, R206-R212, R
R221, R222, R224-R231
R204, R205, R213, R215, R220, R223
R218

SEMICONDUCTORS

Part No.
Symbol \& Description

2SC372-Y
Q201
(2SC373)
2SC828-R. S or Q)
1 S2473 D201-D203, D205-D211

OTHERS

Part No.
Symbol \& Description

RKB-013 Pin-jack assembly
RNK-396

Joint hook

11.5 MUTING ASSEMBLY (RWX-192)

Parts List

CAPACITORS

Part No.		Symbol \& Description
CEA 100P 25		C601
CEA 221P 25		C602
CEA OR47P 50	C603	
CEA 330P 25	C604, C605	

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

RESISTORS

Symbol \& Description
Part No.

RD1⁄PS ㅁㅁ J
R601-R618

SEMICONDUCTORS

Part No.
Symbol \& Description
2SC828-R,S or Q Q601, Q603, Q604
2SA825-P or Q
Q602
(2SA564-R, S or Q)

1S2473 D601-D608

Foil Side

Foil Side

Parts List of Dolby Assembly (RWX-191)

COILS		Part No.	Symbol \& Description
Part No.	Symbol \& Description	CEA OR47P 25	C416
RTF-029	L401 MPX coil A		Note: When ordering resistors, convert theresistance value into code form, and
RTF.030	L402 MPX coil B		
CAPACITORS		RESISTORS	then rewrite the part no. as before.
		Part No.	Symbol \& Description
Part No.	Symbol \& Description		
		RD $1 / 4 \mathrm{PS} \square \square \square J$	R401-R403, R405-R416
CSSA OR47M 10	C401	RD½PSF	R404
CEA 101P 25	C402		
CEA 221P 16	C403	SEMICONDUCTORS	
CQMA 273K 50	C404		
CEA 100P 16	C405, C408, C410, C413-C415	Part No.	Symbol \& Description
CQMA 472K 50	C406	CR860	IC401
CQMA 562K 50	C407	2SC1684-R or S	Q401
COMA 473K 50	C409	(2SC828H-R or S)	
COMA 104K 50	C411		
CSSA OR33M 10	C412	OA90	D401

11.7 AMPLIFIER ASSEMBLY (RWF-084)

Parts List

COILS	
Part No.	
RTF-031	Symbol \& Description
RTF-037	L301

Part No.		Symbol \& Description
${ } }$	C324	
CCDSL 220K 50	C326	
CEA 470P 25	C327	
CKDYF 4732 50	C328	
COMA 102K 50	C329	

CAPACITORS

Part No.	Symbol \& Description
RCH-017	C301 4.7/25V
CEA 101P 16	C302
CCDSL 101K 50	C303, C310, C325
RCH-036	C304 33/16V
CCDSL 330K 50	C305
COMA 103K 50	C306
CEA 100P 25	C307, C317
CQMA 153K 5.0	C308
CEA R47P 50	C309
CEA 220P 16	C311
CEA 010P 50	C313
CEA 330P 16	C314
CEA 100P 16	C315
CSSA OR22M 10	C316, C318
COMA 223J 50	C319
COMA 473K 50	C320
COMA 333K 50	C321
COMA 393K 50	C322, C323

RESISTORS

Note: When ordering resistors, convert the resistance value into code form, and

Part No.	Symbol \& Description
RCP-032	VR301, VR303 Semi fixed 10k-B
RCP. 009	VR302 Semi fixed 22k-B
RCP-039	VR304 Semi fixed 3.3k-B
RD1/4PS ㅁㅁ J	R301-R305, R307-R341
RD1⁄4VS ㅁ口ロ J	R306

SEMICONDUCTORS

Part No.	Symbol \& Description
PA 4001	IC301
2 2SC372-Y	
(2SC373) (2SC828-R, S or Q)	
1 K60A or 1 N60 D301	

Foil Side

Parts List

CAPACITORS

Part No.
CEA 220P 16 CEA 101P 25 CEA 470P 50 CEA 3R3P 25 CEA 2R2P 50

CEA 470P 25 COMA 473K 50 CEA 010P 50

Symbol \& Description

C701
C702
C703
C704
C705

C 706
C707
C709, C710

Note: When ordering resistors, convert the resistance value into code form, and
RESISTORS then rewrite the part no. as before.

Part No.
Symbol \& Description
$R D 1 / 4 P S \square \square \square$ J701-R730

SEMICONDUCTORS

Part No.
Symbol \& Description

2SC828A-R or S Q701-Q704
2SA564A-R or S Q705, Q706
2SC1419-C T O707
(2SC790-Y)

1S2473	D701-D705, D707-D710
1S2471	D706, D711, D712, D716, D717
W03B or W03C	D713-D715

List of Changed Parts for Factory Modification

	Pymbol	Part No.
		Description

Foil Side

Parts List
Note: When ordering resistors, convert the resistance value into code form, and

COIL
Part No.
RTF-039

CAPACITORS

Part No.
CEA 2R2P 50
CQMA 683K 50 CCDSL 680K 50
CEA 101P 10
CEA 010P 50
CEA 470P 25
CQMA 123K 50
COMA 472K 50
CEA 100P 35
COMA 104K 50

CEA 220P 35

Symbol \& Description
L501 Peaking coil

Symbol \& Description
C501
C502
C503
C504
C505
C506
C507
C508
C509
C510
C511

RESISTORS

Part No.
Symbol \& Description

RCP-009
$R D \%$ PS $\square \square \square$

VR501 Semifixed
R501-R526

SEMICONDUCTORS

Part No. Symbal \& Description

2SC372-Y
Q501-Q504
(2SC373)
(2SC828-R,S or Q)
2SC1740LN-S 0505
2SA825-P or Q Q506
(2SA564-R. S or Q)
1 K60A or 1 N60 D501, D502
1S2473
D503-D507

Foil Side

Parts List

COIL

Part No．

T64－001

CAPACITORS
Part No．
CEA 471P 50 CEA 102P 50 CEA 330P 35 CKDYF $103 Z 50$ CEA 101P 35

CEA 102P 16
CEA 330P 16
COPA 223K 50
COMA 103K 50
CCOSL 181 K 50
COMA 333K 50
CEA 4R7P 35
RCE－025

RESISTORS
Part No．
RCP－040
RD½PSF ロロロJ
$R D 1 / 4$ PS ロロロ J

Note：When ordering resistors，convert the resistance value into code form，and then rewrite the part no．as before．

SEMICONDUCTORS

Part No．
2SD234－O or R

2SC372－Y
Q802，Q805
（2SC373）
2SC1166－O or Y Q803，Q804
（2SC1214－B or C）

SIQB10

W03B or W03C
D802
（SIB 01－02）
WZ－250
D803
152473
D805

1. CONTRAST OF MISCELLANEOUS PARTS LIST

NOTE:

Capacitors: in μF unless otherwise noted $p: p F$
Resistors: in $\Omega, 1 / 4 W$ unless otherwise noted $k: k \Omega, M: M \Omega$

ASSEMBLIES

Symbol	Description	Part No.				
		D type	D/G type	KU type	KC type	HG type
	Fuse assembly	RWX-202
	Amplifier assembly	RWF-084	RWF-084	RWF-085	RWF-085	RWF-082
	Dolby assembly	RWX-191	RWF-191	RWX-200	RWX-200	RWX-200
	Power and oscillation assembly	RWR-061	RWR-061	RWR-063	RWR-066	RWR-066
	Muting assembly	RWX-192	RWX-192	RWX-192	RWX-192	RWX-192
	Meter amplifier assembly	RWX-195	RWX-195	RWX-195	RWX-195	RWX-195

TRANSFORMER

Symbol	Description	Part No.				
		D type	D/G type	KU type	KC type	HG type
T	Power transformer	RTT-132	RTT-132	RTT-131	RTT-138	RTT-133

SWITCHES

Symbol	Description	Part No.				
		D type	D/G type	KU type	KC type	HG type
S_{1}	Power switch					RSA-021

CAPACITOR

Symbol	Description	Part No.				
		D type	D/G type	KU type	KC type	HG type
	Capacitor 0.01	$C 43-003$	$C 43-003$	$\ldots \ldots \ldots$	$\ldots \ldots \ldots$	$\ldots \ldots \ldots$

FUSES

Symbol	Description	Part No.				
		D type	D/G type	KU type	KC type	HG type
	0.5A	REK-048	REK-048
	1 A	REK-051	REK-051	\ldots	\ldots
	T500mA			$\ldots . .$.	REK-049

11.11 CONNECTION ASSEMBLY (RWX-196)

RWX-201, No. 11 -RWG-085, No. $12<\overbrace{\text { COUNTER }}^{S_{12}}$
Foil Side
\qquad

MOTOR
WWITCH

RWX-201, No. 23 -

AUTO LAMP
SELECTOF

RWX-201, No. 14 - \qquad

RWX-201, No. $3-$

Parts List

CAPACITOR

Part No.
COMA 103K 50 C101

CASSETTE TAPE DECK CT-F700

- This additional service manual is applicable to the CT-F700/KU, KC and HG. Connections, operating, and adjustments are basically the same as CT-F700/D, D/G.
- The parts which are different from the CT-F700/D, D/G are covered in this additional service manual. Please use this manual together with the CT-F700/D, D/G service manual when ordering parts and repair.

CONTENTS

1. CONTRAST OF MISCELLANEOUS PARTS LIST 62
2. CT-F700/KU
2.1 Circuit Descritpion 64
2.2 Miscellaneous Parts List 65
2.3 Connection Diagram 66
2.4 Schematic Diagram 67
2.5 Mother Assembly 69
2.6 Dolby Assembly (RWX-200) 73
2.7 Power and Oscillation Assembly (RWR-063). . 75
2.8 Amplifier Assembly (RWF-085) 77
3. CT-F700/KC
3.1 Miscellaneous Parts List 80
3.2 Power and Oscillation Assembly (RWR-066). . 80
3.3 Mother Assembly 80
4. CT-F700/HG
4.1 Miscellaneous Parts List 81
4.2 Connection Diagram 82
4.3 Schematic Diagram 83
4.4 Amplifier Assembly (RWF-082) 85
4.5 Fuse Assembly (RWX-202) 88

2.3 CONNECTION DIAGRAM

OTHERS

Symbol	Description	Part No.				
		D type	D/G type	KU type	KC type	HG type
	Power cord	RDG-019	RDG-019	RDG-013	RDG-021
	Spark killer			RWX-109	RWX-150 ${ }^{\text {a }}$
	Capacitor sleeve A	REC-150	REC-150		
	Capacitor sleeve D			REC-250	REC-250
	Line voltage selector (Switchable 3 positions)	RKR-020	RKR-020		\ldots.
	Line voltage selector (Switchable 2 position)				RKR-019
	Front panel assembly	RXX-221	$R \times X-221$	RXX-223	RXX-223	RXX-221
	AC socket (INLET)					RKP-014
	Wire nut			RBM-004	RBM-004	$\ldots . .$.

PACKING MATERIALS AND FURNISHED PARTS

Symbol	Description	Part No.				
		D type	D/G type	KU type	KC type	HG type
	Packing case	RHG-210	RHG-211	RHG-216	RHG-215	RHG-218
	Spacer	.	RHC-077 ${ }^{\text {a }}$.
	Spacer A	-	RHC-071
	Spacer B	-	RHC-072	
	0.5A Fuse	REK-048	REK-048	.	$\ldots \ldots$
	1A Fuse	REK-051	REK-051
	Vinyl bag (for fuse)	H46-854	H46-854	\cdots		
	Operating instructions (English)	RRB-085	RRB-088	RRB-087	RRB-087	RRB-088
	Operating instructions (German/French)		 ${ }^{\text {. }}$	RRD-027

2. CT-F700/KU

2.1 CIRCUIT DESCRIPTION

Although the CT-F700/KU and KC, and the CT-F700/D and D/G employ the same basic circuitry, there are differences in the power supply circuit (power supply and oscillation assembly) and Dolby assembly. The Dolby Processor is described here in detail, while all other circuits are discussed under Circuit Descriptions starting on page 13.

Dolby Processor

Both the CT-F700/KU and CT-F700/KC are equipped with a Dolby Processor IC (PA4002) recently developed by Pioneer. Unlike earlier ICs (such as the CR860 employed in the CT-F700/D and $\mathrm{D} / \mathrm{G})$, the PA4002 makes use of a voltagecontrolled amplifier instead of variable resistance elements. As can be seen from the block diagram, the same Dolby Processor circuit is used during recording and playback modes.

Recording Mode Operation

1. Input signals are first applied to the MPX filter where the FM broadcasting station's pilot signal is removed, and where an 85 kHz bias trap is employed to prevent mis-operation of the Dolby noise reduction system.
2. From the MPX filter, the signals are passed on to the buffer amplifier whose output is divided into 2 routes. The main signal is passed directly to the adding amplifier, while the sub-signal is passed via the side chain amplifier and clipper before being recombined with the main signal in the adding amplifier.
3. Besides being applied to the clipper, the side chain amplifier output is also passed via the voltage controlled amplifier and integrating amplifier back to the side chain amplifier input, forming a variable filter circuit.
4. In addition to the above, the side chain amplifier output is further applied to a high-pass filter and rectifier where it is converted into a DC voltage for control of the voltage controlled amplifier.
5. When the level of the signal passed through the high-pass filter is low, the rectifier output DC voltage will be almost " 0 ", resulting in a minimum turnover frequency for the variable filter. The level of the adding amplifier output will thus be 10 dB (above 5 kHz) higher than the level of the main signal, thereby contracting the dynamic range.
6. The clipper produces a time lag in the signal applied to the voltage-controlled amplifier, and since it is not capable of responding to sudden level changes, no uncontrolled signals iwll be applied to the adding amplifier.
7. When the level of the signal passed through the high-pass filter is high, the rectifier output DC voltage will also be high, and the variable filter turnover frequency will be increased. The subsignal level will therefore become almost " 0 ", so there will be no contraction of the dynamic range.

Playback Mode Operation

Although each section of the Dolby Processor operates in the same way as during recording mode, the sub-signal is derived from the output of the adding amplifier. And since the adding amplifier is an inversion amplifier (where output phase is opposite to input phase), the sub-signal will be of opposite phase, thereby forming an NFB loop.

In Dolby B noise reduction systems, contraction and expansion occur within a fixed frequency range determined by the variable filter circuit. And, in order to achieve perfectly symmetrical operation, it is necessary to fix a reference level for the operational point. This is the so-called "Dolby level", below which no contraction and expansion is performed

NOTE：

－When ordering resistors，first covert resistance values into code form as shown in the following examples．
Ex． 1 When there are 2 effective digits（any digit apart from 0），such as 560 ohm and 47 k ohm （tolerance is shown by $J=5 \%$ ，and $K=10 \%$ ）． $560 \Omega-56 \times 10^{1}-561 \ldots R D^{1 / 4} P S$ 国困回 J $47 \mathrm{k} \Omega-47 \times 10^{3}-473 \ldots . .$.
 $1 \Omega-010$ ．．．．．．．．．．．．．．．．．RS1P

Ex． 2 When there are 3 effective digits（such as in high precision metal film resistors）． $562 \times 10^{1} 5621 \ldots \ldots . . . N^{1 / 4} S R$［5］［6］${ }^{1}$ 团 F

ASSEMBLIES

Part No．	Description
RWF－085	
RWX－200	
Amplifier assembly	
RWR－063	
RWX－192	Power and oscillation assembly
	Muting assembly
RWX－195	
RWG－085	Meter amplifier assembly

TRANSFORMER

Part No．	Symbol \＆Description
RTT－131	T1

SWITCHES

Part No．	Symbol \＆Description	
RSA－021	S1	Power switch
RSN－016	S11	Leaf switch（REC）
RSG－057	S14	Push switch（MEMORY）
RESISTORS		
Part No．		

OTHERS

Part No．
RDG－013
RKN－040
RAW－074
RAW－070
REL－047

Symbol \＆Description

Power cord
Jack assembly
Level meter assembly P
Level meter assembly
Lamp assembly

Part No．		Symbal \＆Description
RXX－223		Front panel assembly
RNA－321		Bonnet
RAA－207		Knob A
RAA－208	Knob B	
RAA－209	Rotary knob	
RWX－109		Spark killer
REC－250		Capacitor sleeve D

List of Changed Parts for Factory Modification List of changed parts information will be furnished whenever necessary and you are requested to amend parts number in this parts list．

Symbol	Part No．	Description

4	5	6

tual circuit may due to improvements in design

Parts List of Mother Assembly

ASSEMBLIES

Part No．	Description
RWF－085	Amplifier assembly
RWX－200	Dolby assembly
RWR－063	Power and oscillation assembly
RWX－192	Muting assembly
RWX－195	Meter amplifier assembly
SWITCHE	COILS

Part No．
RTF－003
RSB－017
RSB－018
RSH－027
RSH－030

CAPACITORS

Part No．	Symbol \＆Description	
RCE－021	C101，C102	680p／50V
RCE－003	C103，C104	100p／50V
CEA 2R2P 50	C105，C106	
CEA OR47P 50	C201	
CEA 470P 10	C202	
CEA 101P 10	C203	

RESISTORS

\qquad
RCP－041
RCS－016
RCP－042
C92－857

RD $1 / 4 P S$ DOD J

RD½PSF $\square \square \square J$
RS1PSF $\square \square \square \mathrm{J}$

Note：When ordering resistors，convert resistance value into code form，a then rewrite the part no．as befo

Symbol \＆Description

VR201	Semifixed	$100-B$
VR202	Variable resistor	
VR203	Semifixed	$220-B$
VR204	Semifixed	$22 k-B$

R101－188，R201－R203，R206－R212，R2 R221，R222，R224－R231
R204，R205，R213，R215，R220，R223
R218

SEMICONDUCTORS

Part No．	Symbol \＆Description
2SC372－Y	Q201
（2SC373）	
（2SC828－R，S or Q）	
1S2473	D201－D203，D205－D211
OTHERS	
Part No．	Symbol \＆Description
RKB－014	4 P mount pin－jack
RNK－396	Joint hook

2．6 DOLBY ASSEMBLY（RWX－200）

Parts List

COILS
\qquad
RTF－034
RTF－035

Symbol \＆	Description
L401	MPX coil C
L402	MPX coil D

CAPACITORS
Part No．
CEA 220P 16
CEA 100P 25
CEA 470P 16
C402
C404
COMA 222K 50
CEA 4R7P 35

COMA 183K 50
C409
CSSA 010M $50 \quad$ C410
CEA R33M 50
COMA $123 K 50$

Note：When ordering resistors，convert resistance value into code form，
RESISTORS then rewrite the part no．as befo

Part No．Symbol \＆Description
RCP－038 VR401 Semi fixed 4．7k－B
RD $1 / 2$ PS ロロロ」
R401－R411
RD\％VS ロロロ」 R412

SEMICONDUCTOR

Part No．
Symbol \＆Description

PA4002
IC401

Dolby Assembly (RWX-200)

Foil side

4	5	6

1	2	3

2.8 AMPLIFIER ASSEMBLY (RWF-085)

ロ D >

Foil side

rts List

IL
t No．
$4-001$

PACITORS

t No．

A 471P 50
A 102P 50
A 330P 35 DYF 103250 A 101P 35

A $102 P 16$
A 330P 16
PA 223K 50
MA 103 K 50
OSL 101 K 50

MA 333K 50
A 4R7P 35
E－025

Symbol \＆Description
T801 Oscillation coil
Symbol \＆Description
C801
C802
C803，C804
C805，C807，C818
C806
C808
C809，C810，C817，C821
C811
C812
C813，C814
C815
C816
C819，C820 Polystyrene $\quad 180 \mathrm{P} / 50 \mathrm{~V}$

Note：When ordering resistors，convert the resistance value into code form，and then rewrite the part no．as before．

RESISTORS

Part No．
RCP－040
RD $1 / 2$ PSF $\square \square \square J$
RD $\%_{4} P$ ロロロ」
RS1PF ロロロJ

Symbol \＆Description

VR801，VR802 Semi fixed 220k－B
R801
R802－R809
R810

SEMICONDUCTORS

Part No．
Symbol \＆Description
2SD234－O or R 0801
2SC372－Y Q802，Q805
（2SC373）
2SC1166－O or Y Q803，Q804
（2SC1214－B or C）
SIOB10
D801，D804
W03B or W03C
D802
（S1B 01－02）
WZ． 250

1 S2473

Parts List

COILS

Part No.	Symbol \& Description	
RTF-031	L301	Peaking coil
RTF-037	L302	Peaking coil

CAPACITORS

Part No.	Symbol \& Description
RCH-017	C301 4.7/25V
CEA 101P 16	C302
CCDSL 101K 50	C303, C310, C325
RCH-036	C304
CCDSL 330K 50	C305
COMA 103K 50	C306
CEA 100P 25	C307, C312, C317
COMA 153K 50	C308, C329
CEA R47P 50	C309
CEA 220P 16	C311
CEA 330P 16	C314
CEA 100P 16	C315
CSSA OR22M 10	C316, C318
CEA 2R2P 50	C318
COMA 223 50	C319
COMA 473K 50	C320, C322
CQMA 393K 50	C321, C322
COMA 683K 50	C324
CCDSL 220 K 50	C326
CEA 470P 25	C327
CKDYF $473 Z 50$	C328

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.
RESISTORS
Part No.
RCP-032
RCP-009
RCP-039
RD1\%PS ㅁㅁㅣ
Symbol \& Description
VR301, VR303 Semi fixed 10k-B VR302 Semi fixed 22k-B VR304 Semi fixed 3.3k-B R301-R305, R307-R316, R318-R337, R339-R341
R306

SEMICONDUCTORS

Part No.	Symbol \& Description
PA4001	IC301
2SC372-Y	O301-Q305
(2SC373) (2SC828-R, S or O)	
1 K60A or 1 N60 D301	

List of Changed Parts for Factory Modification

3. CT-F700/KC

3.1 MISCELLANEOUS PARTS LIST

NOTE:

- Capacitors: in μF unless otherwise noted p:pF
- Resistors: in $\Omega, 1 / 4 W$ unless otherwise noted $k: k \Omega, M: M \Omega$

ASSEMBLIES

Part No.		Description
RWF-085		Amplifier assembly
RWX-200		Dolby assembly
RWR-066		Power and oscillation assembly
RWX-192		Muting assembly
RWX-195		Meter amplifier assembly
RWG-085	Control assembly	

TRANSFORMER

Part No.
RTT-131

Symbol \& Description
T1 Power transformer

SWITCHES

Part No.		Symbol \& Description	
RSA-021		S1	Power switch
RSN-016		S11	Leaf switch (REC)
RSG-057	S14	Push switch (MEMORY)	
RESISTORS			

Part No.	Symbol \& Descritpion	
		VR101

OTHERS

Part No.
RDG-013
RKN-040
RAW-074
RAW-070
REL-056
RXX-218 Front panel assembly
RNA-321
RAA-207
RAA-208
RAA-209
RWX-150
REC-250

Bonnet
Knob A
Knob B
Rotary knob
Symbol \& Description
Power cord
Jack assembly
Level meter assembly P
Level meter assembly
Lamp assembly

Spark killer
Capacitor sleeve D

The CT-F700/KU and CT-F700/KC differ in the following respects;

3.2 POWER AND OSCILLATION ASSEMBLY (RWR-066)

The CT-F700/KU power supply and oscillation assembly (RWR-063) and the CT-F700/KC power supply and oscillation assembly (RWR-066) are almost exactly teh same in composition and time constants, the only difference being that the RWR-066 has had the R810 resistor ($5.6 \Omega 1 \mathrm{~W}$) replaced by a jumper wire.
Refer to page 75 for further details.

Power and oscillation assembly (RWR-063) for CT-F700/KU type

3.3 MOTHER ASSEMBLY

The power supply and oscillation assembly is one of the component assemblies mounted on the mother assembly board. Since the component part no. for this component assembly has been changed, the mother assembly component part no. has also been changed. See page 69 for further details on the mother assembly, page 73 for the Dolby assembly, page 77 for the amplifier assembly, and page 47 for the same muting assembly used in the CT-F700/D and D/G.

4. CT-F700/HG

4.1 MISCELLANEOUS PARTS LIST

NOTE:

- Capacitors: in μF unless otherwise noted p:pF
- Resistors: in $\Omega, 1 / 4 W$ unless otherwise noted $k: k \Omega, M: M \Omega$

ASSEMBLIES

Part No.	Description
RWF-082	
RWX-191	Amplifier assembly
RWR-066	Polby assembly
RWX-192	Muting assembly
RWX-195	Meter amplifier assembly
RWG-085	Control assembly
RWX-202	Fuse assembly

TRANSFORMER
Part No.

Symbol \& Description
RTT-133
T1
Power transformer
SWITCHES

Part No.		Symbol \& Description	
		S1	Power switch
RSA-022		S11	Leaf switch (REC)
RSG-016		S14	Push switch (MEMORY)

RESISTORS

Part No.	Symbol \& Description	
RCV-045	VR101	Variable resittor (INPUT) 20k-A
RCV-046	VR102	Variable resistor(OUTPUT)20k-B

RCV-046
VR102
Variable resistor(OUTPUT)20k-B

OTHERS
Part No.
Symbol \& Description
RKN-040
RAW-074
RAW-070
REL-056
RXX-221
RNA-321
RAA-207
RAA-208
RAA-209
REK-049
RKR-019 Line voltage selector
(switchable 2 positions)
Jack assembly
Level meter assembly P
Level meter assembly
Lamp assembly
Front panel assembly

Bonnet
Knob A
Knob B
Rotary knob
Fuse T500mA

List of Changed Parts for Factory Modification

Symbol	Part No.	Description

(17.4 AMPLIFIER ASSEMBLY (RWF-082)

4.5 FUSE ASSEMBLY (RWX-202)

Parts List

Part No.	
RKR-013	
Fuse holder B	
REK-056-A	
REK-049-B	
Fuse 1A	
REK-060-Q	Fuse 500 mA
	Fuse 450mA

Parts List

COILS

Part No.		Symbol \& Description		
		L301		Peaking coil
:---				
RTF-031				
RTF-038				

CAPACITORS

Part No.	Symbol \& Description
RCH-017	C301
CEA 470P 16	C302
CCDSL 101K 50	C303, C310, C325
CEA 330P 16	C304, C314
CCDSL 330K 50	C305
CQMA 103K 50	C306
CEA 100P 25	C307, C312, C317
CQMA 153K 50	C308, C329
CEA 4R7P 16	C309
CEA 220P 16	C311
CEA 010P 50	C313
CEA 100P 16	C315
CSSA OR22M 10	C316, C318
COMA 223J 50	C319
COMA 473K 50	C320, C322, C323
COMA 393K 50	C321
COMA 683K 50	C324
CCDSL 220 K 50	C326
CEA 470P 25	C327
CKDYF 473250	C328

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

List of Changed Parts for Factory Modification

Symbol	Part No.	Description

[^0]: NOTE:
 There is no need to operste this switch if you are using a chrome tape since the bias and equalizer are selected automatically by the built-in mechanisms. Make sure that your chrome tape has detection holes. The chrome tape detector will not work with chrome tapes which are not equipped with these detection

