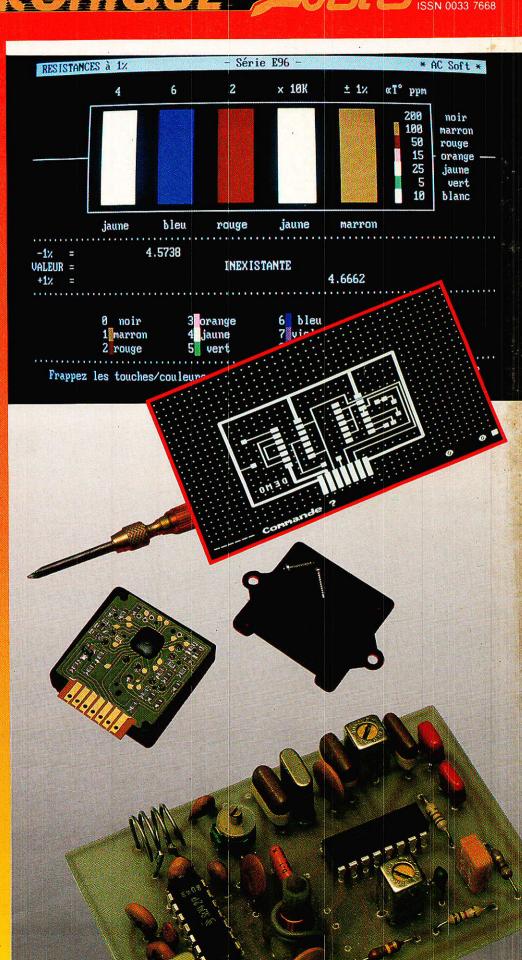
ELECTRONIQUE LOUSITS ISSN 0033 7668

Nº 498 Mai 1989

20 F


Un récepteur VHF à double changement de fréquence

Gradateur interrupteur à effleurement

es principes du filtrage numérique

Carte 32 sorties pour CPC: les applications

8		Multimètres SOAR : une gamme complète de multimètres numériques, du pocket à l'instrument de table.
11		Réalisation de la Centrale I ² C: maintenant, la domotique n'est plus seulement un mot nouveau qui "sonne" bien dans les médias, mais une réalité avec laquelle vous pouvez agir!
23		Les circuits imprimés sur PC : un amateur peut-il faire un investissement raisonnable dans un système de DAO?
27	The second secon	Les résistances à 1%: par rapport aux séries E 12 ou E 24, lire les résistances de la série E 96 nécessite une parfaite connaissance du mode de marquage. Ce petit logiciel va vous aider à vous y retrouver.
33		Répertoire des satellites TV : une mise à jour qui s'imposait. Mais nous ne connaissons pas encore les opérateurs sur TDF1.
35	I	Interface 32 sorties pour CPC: voici les outils nécessaires pour gérer facilement vos applications.
53		Un récepteur VHF à double changement de fréquence : plus délicate à mettre au point que la technique de l'hétérodyne simple, celle du double changement permet la réalisation de récepteurs plus sensibles.
59		Le filtrage numérique : des programmes et des exemples pour s'initier à la technique du filtrage numérique.
67		Une alarme infrarouge "intégrale": développé à partir d'un kit à capteur passif, ce détecteur faible consomation transmet ses informations à une centrale déportée, par infrarouges bien-sûr!
75	3	Gradateur-interrupteur : un petit appareil pour améliorer le confort de l'éclairage (commande par touch-control).
91		APSEL : un système d'appel sélectif à la norme CCIR. Un micro-ordinateur familial et quelques circuits spécialisés offrent à l'amateur les services d'un système professionnel.
<u>81, 64, 74, 96</u>		INFOS: chez Thomson, des circuits de gestion pour alimentations à découpage et des transistors MOS de puissance à commande logique.

MONTPARNASSE

R DU DEPART

BD. DU MONTPARNASSE

BD. DU MONTPARNASSE

16, rue d'Odessa -75014 PARIS Métro Montparnasse ou Edgar Quinet Ouvert de 10H à 12H30 et de 14H à 19H. Tous les jours du mardi au samedi

SERVICE EXPEDITION RAPIDE Forfait port: 35 F

MONTPARNASSE Prix donné à titre indicatif pouvant être modifié sans préavis.

Administration : paiement comptant

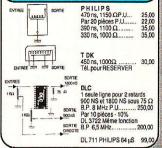
ELECTRONIQUE Tél.: 43.21.56.94

OCIONE

		LOGI	I Q U E		
TTL LS	74LS121 11,00	74LS293 6,50	74 HC03 6.00	74 HC367 7.00	4027 3.50
74LS00 1,50	74LS122 7,00	74LS299 15,00	74 HC04 4,00	74 HC368 7,00	4028 4,50
74LS01 1,80	74LS123 6,00	74LS322 15,00	74 HC08 4,00	74 HC373 9,00	4029 5.00
74LS02 1,80 74LS02 1,80	74 LS125 4,00 74 LS126 3,50	74LS323 35.00	74 HC10 4,00 74 HC11 5,00	74 HC374 9,00	4030 3,50
74LS03 1,80	74LS132 3,50	74LS324 NC 74LS353 9.00	74 HC11 5,00 74 HC14 5,50	74 HC390 8,00 74 HC393 5,00	4031 9,50 4033 8,50
74LS04 1,80	74LS133 8,50	741 5365 300	74 HC20 5,50	74 HC533 15,00	403419,00
74 LS05 2.00	74LS136 4,00	74LS366 4.00	74 HC21 10.00	74 HC534 15,00	4035 5.50
74LS06 7.50	74LS138 4,50	74LS367 3,00	74 HC27 5,00	74 HC540 16,00	4036 5,00
74LS07 7.50	74LS139 4.50	741 S368 3.50	74 HC30 7,00	74 HC541 16.00	4040 5,50
74 LS08 2,50	74LS145 8,00	74LS373 7,00	74HC32 4,00	74 HC563 16,00	4041 5,00
74LS09 2,50 74LS10 2,50	74LS147 20,00 74LS148 12,00	74LS374 7,00 74LS375 12.00	74 HC42 6,50 74 HC51 5,00	74 HC564 16,00 74 HC573 16,00	4042 4,50
74LS11 2,50	74LS150 24,00	74LS377 7,00	74 HC58 5,00	74 HC574 16,00	4043 5,00 4044 5,00
74LS12 2,50	74LS151 450	74LS378 6,00	74 HC73 4,50	74 HC595 16,00	4046 6,00
74LS13 3.00	74 LS153 4.50	74LS379 6.00	74 HC74 5.00	74 HC640 18.00	4047 5.50
74LS14 3,00	74 LS154 15.00	74LS390 6,00	74 HC75 6,00	74 HC646 28,00	4048 5,00
74LS15 3,00	74 LS155 6,00	74LS393 6,00	74 HC76 6,00	74 HC648 28,00	4049
74LS16 7,00 74LS17 7,50	74LS156 5,50 74LS157 4,50	74LS490 8,00	74 HC85 8,00 74 HC86 5,00	74 HC688 10,00 74 HC4002 7,00	4050 3,50
74LS20 3,00	74LS157 5,00	74LS540 12.00 74LS590 30,00	74 HC86 5,00 74 HC107 6,00	74 HC4002 7,00 74 HC4017 12,00	4051
74LS21 3.00	74LS159 NC	74LS608 12.00	74 HC109 6,00	74 HC4020 13,00	4053 5,00
74LS26 3.50	74LS160 5,00	74LS629 20.00	74 HC112 6.00	74 HC4024 10.00	4054 7,50
74LS27 3,00	74LS161 5,00	74LS640 15,00	74HC113 6,00	74 HC4040 10,00	4055 6,50
74LS28 3,00	74LS162 5,00	74LS670 12,00	74 HC125 7,00	74 HC4049 10,00	4060 5,00
74LS30 3,00	74 LS163 5,00		74 HC126 10.00	74 HC4050 10,00	4066 3,50
74LS32 3,00 74LS37 3,00	74LS164 5,00 74LS165 9,00	TTL S	74 HC132 6,00 74 HC133 8,00	74 HC4051 18,00 74 HC4052 18,00	4068 5,00 4069 2,50
74LS38 3.00	74LS166 7,00	74 \$00 8,00	74 HC137 12,00	74 HC4053 18,00	4070 2,50
74LS40 3.00	74 LS168 10,00	74 S02 10.00	74 HC138 7,00	74 HC4060 18,00	4071 2,50
74LS42 4.00	74LS170 10,00	74 S04 8,00	74 HC139 8,00	74 HC4066 18,00	4072 2,50
74LS43 9.00	74LS172 68.00	74 S08 12,00	74 HC151 8,00	74 HC4075 9.00	4073 2,50
74LS47 6,50	74 LS173 5,00	74 \$10 10.00	74 HC153 7,00	74 HC4078 9,00	4075 2,50
74LS48 12,00 74LS50 4,00	74LS174 6,00	74\$11 10.00	74 HC154 25,00	74 HC4511 18,00	4076 5,00
74LS50 4,00 74LS51 3,00	74LS175 5,00 74LS181 19,00	74 \$30 10.00 74 \$32 16,00	74 HC157 7,00 74 HC158 8,00	74 HC4514 28,00 74 HC4538 29,00	4077 2,50 4078 2,50
74LS53 3,00	74LS182 14,00	74 \$51 10.00	74 HC160 10.00	74 HC4543 28.00	4081 2,50
74LS54 2.50	74LS190 10,00	74 \$74 9,00	74 HC161 8,00	7 7 7 7 0 10 10 20,00	4082 2.50
74LS60 4.50	74 LS191 6,00	74 S86 9,00	74 HC162 10.00		4085 4.00
74LS70 4,00	74LS192 15,00	74\$109 17.00	74 HC163 8,00	OHOO	4086 4,50
74LS72 4,00 74LS73 3,50	74LS193 5,00 74LS194 5,00	74 S 133 18.00 74 S 138 15,00	74 HC164 10,00 74 HC165 12,00	4000 2,00	4093 3,50 4094 6,00
74LS74 3,00	74LS194 5,00 74LS195 5,00	745139 10,00	74 HC166 10.00	4000	4094 6,00 4095 7,50
74LS75 4,00	74LS196 5,00	74\$151 15.00	74 HC173 12,00	4002 2,00	4096 9,00
74LS76 3,50	74 LS198 NC	74 \$153 15.00	74 HC174 8.00	4006 5,00	4097 19,00
74LS78 3,50	74LS221 7,00	74\$158 15.00	74 HC175 8,00	4007 2,50	4098 8,00
74LS80 9,00	74LS240 7,00	74\$166 20,00	74 HC194 10,00	4008 5,00	4099 13,00
74LS81 12,00 74LS82 18,00	74LS241 7,00 74LS242 7,00	74S174 16.00 74S175 17,50	74 HC195 10,00 74 HC237 10,00	4009	4501
74LS83 4,50	74 LS243 7,00	74\$194 16.00	74 HC240 12,00	4011 2,50	4511 6,50
74LS85 6,00	74LS244 7,00	74S195 16.00	74HC241 12,00	4012 2,50	4514 15,00
74LS86 3,00	74 LS245 7,00	74\$240 18.00	74 HC242 12,00	4013 3,50	4515 19,00
74LS90 4,50	74 LS247 7,00	74 S244 18.00	74 HC243 12,00	4014 550	4518 5,00
74LS91 4,50	74LS251 5,00	74\$251 20.00	74 HC244 12,00	4015 5,00	4520 5,00
74LS92 450	74 LS253 5,00	74 S253 20.00	74HC245 13,00	4016 3,50	4528 9,50
74LS93 4,50 74LS94 8,00	74LS257 5,00 74LS258 5,00	74 \$257 20.00 74 \$258 18.00	74 HC251 8,00 74 HC253 8,00	4017 5,00 4018 5,00	4536 13,50 4538 9,00
74LS95 5,00	74LS259 6,00	74\$373 18.00	74HC257 8,00	4019 3,50	453910,00
74LS96 6,50	74LS260 16.00	745374 20,00	74 HC259 10,00	4020 5,00	4556 5,00
74LS107 4,00	74 LS266 2.50	74 S280 20,00	74 HC266 9.00	4021 5,00	4558 15.00
74LS109 4,00	74LS273 6,50	TOTAL STREET,	74HC273 10,00	4022 5,00	4584 9.00
74LS112 3,50	74LS279 8,00	TTL HC	74 HC280 15,00	4023 2,50	4585 5,00
74LS113 4,00 74LS114 4,00	74LS280 7,50 74LS283 23.00	74 HC00 2,50	74 HC299 18,00 74 HC365 7,00	4024 4,50 4025 2,50	40103 10,00 40106 4,50
74LS116 NC	74LS290 4.50	74 HC00 2,50 74 HC02 4,00	74 HC365 7,00	4026 8,50	40174 5,00
1		4,00	7,00		5,00

LES DERNIERES ACTUALITES

68705 P3S 8749 HC	120,00	74 LS 3	93	6,00
8749 HD	185.00	QUART	7	
6502	60.00	3.2768	MHz	20.00
68 B02	59,00	4.000	MHz	20.00
68B21	35.00	4.096	MHz	20.00
EPROM 2764	39,00	4.9152	MHz	20,00
EPROM 27C64	59,00	6,5536	MHz	20,00
E-EPROM9306	35,00	8,000	MHz	20,00
E-EPROM93c46	45,00	12,000	MHz	20,00
DL 470 ns	25,00	16,000	MHz	20,00
74 LS 390	6,00	SELF 10	00 µH	8,00


KIT ANTIOPE

Platine principale avec supports tulipe tout composants actifs et passifs 1200 F + 35 Fport = 1235 F sans Alimentation ni Télécommande

CIRCUITS IMPRIMES

Réalisation de C.I. percés étamés 65F le dm² simple face, 100F le dm² double face d'après films fournis (réalisation de films 100F pièce)

LIGNES A RETARD ANALOGIQUES

LIBRAIRIE TECHNIQUE

EDITIONS RADIO - ETSF EDITIONS PAUL MONTEL MICRO APPLICATIONS - PUBLITRONIC TEXAS - SGS THOMSON

	120000	No. 2 Control of the Australia	_ , , , _ , ,	9 9 9 9		
	CA	LM 709 H 10,00	SAA	TCA 730 36,00	TDA3810 37,80	BPW34 15.00
CA 3046	9.00	LM 710 15,00	SAA 1043., 110.00	TCA 740 38,00	TDA 4431 15,00	BPW 42 15,00
CA 3080	NC	LM 723 6,00	SAA 1250 65,00	TCA 750 32,00	TDA 4445 15,00	CNY 70 reflex 22,00
CA 3086	10,00	LM 723 H 12,00	SAA 1251 45,00	TCA 830 15,00	TDA 4565 45.00	Diode E IR 15,0
CA 2120	15,00	LM 725 33,00	07011231 40,00	TCA 900 12,00	TDA 5850 45,50	Diode Ré IR 15,00
CA 2140	15,00	LM 733 30,00	SAB	TCA910 12,00	TDA 7000 38,00	MCC 670 45,00
CA 3140	15,00	LM 733 30,00		TCA 040 00 00 00	TDA 7050 38,00	MCT2 11,00
	18,00	LM 741 5,00	SAB 0600 38,00	TCA 940 22,00		
	75,00	LM 741 H 12,00	SAB 3064 35,50	TCA 955 39,00	TDA 8440 59,00	MCT6 15,0
CA 3189	21,00	LM 747 16,00	SAB 0529 49,00	TCA4401 38,50		MOC 3020 15,0
	-	LM 748 13,00		TCA4500 38,10	TEA	4N 25 14,0
2	La constitución	LM 1458 8.00	SAS		TEA 1010 32,00	4N 33 14,00
L 200	24,00	LM 1496 20,00	SAS 560 28,50	TDA	TEA 1014 22.00	6N 138 45,00
L297	50,00	LM 1881 42,00	SAS 570 28,50	TDA 440 29,60	TEA 2014 9,50	TIL 111 14,00
	95,00	LM 2907 45,00	SAS 580 28,50	TDA 1001 34,00	TEA5114 50.00	FOURCHE
		LM 2917 32,00	SAS 590 28.50	TDA 1002 28,80	100101111111111111111111111111111111111	TCST 1000 22,00
	LF	LM 3900 13,00	0710 330 20,00	TDA 1005 30,00	TL	TCST 2000 25,00
LF 351		LM 3909 40,00	SL	TDA 1006 52,00	TL 071 9,00	1001 2000 20,0
LF 353	11,00	LM 3911 23,00	SL 486 38,00	TDA 1010 17,00	TL 072 9,00	PONT DE DIODE
LF 355	11,00	LM 3911 23,00	SL 400 30,00		TL 074 19,00	1A50V 4.00
LF 355.	11,00	LM 3914 54,00	SL 490 38,00	TDA 1015 18,50	TL 004 15,00	
LF 356	11,00	LM 3915 54,00	SO	TDA 1020 24,00	TL 081 9,00	1A 100V 6,0
LF 357	11,00	LM 3916 48,00		TDA 1023 22,50	TL 082 10,00	2A 400V 11,0
		LM 4558 8,00	SO 41 P 16,00	TDA 1024 25,00	TL 084 17,00	5A80V 14,00
	LM	LM 4741 18,00	SO 42 P 17,00	TDA 1026 30,00	TL 497 24,00	25A 34,00
LM 301	7,50	AND DESCRIPTION OF THE PERSON NAMED IN		TDA 1034 32,00	TLC	30A 42,0
	15,00	MC	TAA	TDA 1037 19,00		REGULATEUR
LM 307	9,00	MC 1488 12,50	TAA 550 3,00	TDA 1038 30,00	TLC 271 10,00	
LM 308	8,00	MC 1489 12,50	TAA 611A55 22,00	TDA 1039 32,00	TLC 272 19,00	100 MA Posi TO92
LM 309 K	(22,00	MC 3242 100.00	TAA 621AX 25,00	TDA 1041 33,00	TLC 274 29,00	78L05 5,00 78L08 5,00
	35,00	MC 3403 15,50	TAA761CDP 12,00	TDA 1046 28,00	U	78L08 5,00
LM 311		MC3470 150.00	TAA 765H NC	TDA 1047 90,00		78L12 5,00
	15,00	MC 3487 24,50	TAA 861 10,00	TDA 1048 17,00	U 263B1 50,00	78L15 5,00
LM317k	(25,00	MC 4024 49,00		TDA 1054 22,00		78L18 5,00
LM 318	25,00	MC4044 49,00	TBA	TDA 1057 6,00	UAA	78L24 5,00
LM 319	25,00	MC 14499 50.00	TBA 120 11,00	TDA 1059 12,00	UAA 170 30,00	100 MA Néga TO92
LM 323 F	····· 55.00	MC 146818 59,00	TBA221/741 5,00	TDA1100 38,00	UAA 180 30,00	79L05 5,00
LM 324	9,00		TBA 231 22,00	TDA1151 9,00	UAA 1004 29,00	79 L08 5,00
LM 331	59,00	MEA	TBA 440C 24,00	TDA1170 22,00		79L12 5,00
LM 334	20,00	MEA 8000 135,00	TBA 440N 27,00	TDA 1220 24 00	ULN	79L15 5,00
LM 335	19,00		TBA 520 21,00	TDA 1405 13,00	ULN 2003 16,00	79L18 5.00
LM 336	16,00	MK	TBA 530 36,00	TDA 1410 47,00	ULN 2004 22,50	79L24 5,00
LM337 F	32.00	MK 5089 35,00	TBA 540 24.00	TDA1418 12,00	AFFICHEUR	79 L24 5,00 1 A Posi TO 220
LM 3377	15.00	-	TBA 560 45,00	TDA1424 12,00	Anode commune	7805 7,00
LM 338 F	C 65.00	MM	TBA 570 24.00	TDA 1506 52,00	Rouge 12,00	7806 7.00
LM 339.	8,00	MM 53200 92,00	TBA720A 27,00	TDA1510 38,00	Vert 19,00	7808 7,00
LM 348	15,00	MM 58174 65.00	TBA 750 27,00	TDA 1908 18,00	Cathode commune	7809 (2A) 17,0
LM 349.	20,00	ACCOUNT OF STREET	TBA 800 15,00	TDA1950 30,00	Rouge 12,00	7812 7,00
	(69,00	MOC	TBA 810 15,00	TDA2002 15,00	Vert 19,00	7815 7,00
LM 358	8,00	MOC 3020 15,00	TBA820M 15,00	TDA2003 15,00	Cristaux liquide	7818 7.00
LM 378	31,00	MOC3021 15,00	TBA 820 15,00	TDA2004 32,00	3,5 Digits 90,00	7824 7,00
LM 380	15,00		TBA 850 36,00	TDA2005 38,00	4 Digits 130,00	1A Néga TO220
	N 29,00	Land Branch	TBA 860 33,00	TDA2006 23,00	4,5 Digits 130,00	7905 7,00
LM 382	20,00	NE	TBA 920 20.00	TDA2010 39,00	-,	7908 7,00
LM 383 7	7 38,00	NE 544 44,00	TBA 940 36,00	TDA2020 39,00	DIODES	7912 7,00
LM 386	15,00	NE 555 5,00	TBA 950 32,00	TDA2030 19,00	AA119 2.50	7915 7,00
	19,00	NE 556 12,00	TBA 970 48,00	TDA2040 27,50	BAT85 2,50	7918 7,00
LW 007	00.00	NE 558 35,00	10/10/10/11/19	TDA2542 28.00	BAX 13 2.50	7924 7,00
LM 388	20,00	NE 558 35,00	TCA	TDA2593 24,00	BY 227 4,50	2A Positif TO3
	22,00	NE 565 11,00			BY 255 4,50	7805 CK 29,00
	28,00	NE 566 11,00	TCA 105 22,00 TCA 150 68,50	TDA 2595 50,00	BYW95C 6.00	7812 CK 29,00
LM 391	30,00	NE 567 16,00	TCA 150 68,50	TDA 2611 24,00		
LM 393	8,00	NE 571 53,00	TCA 315 25,00	TDA 2630 29,00	1N4148 0,30	2A Négatif TO3
	5,00	NE 592 30,00	TCA 420 39,00	TDA2631 38,90	1N4004 1,00 Varicap BB105 5,00	7905 CK 29,0
LM 556	35.00	NE 5532 39,00 NE 5534 32.00	TCA 530 30,00 TCA 540 28.00	TDA 2640 55,00 TDA 3300 69.00	Varicap BB105 5,00 Diac 250	7912 CK 29.00

TRANSISTOR

TF	BA	nsis.	TOR	
	_		The second second second	
AC		BD437 6,50	BU	88
AC127	4,50	BD438 8,00	BU208 25,00	1
AC128	4.50	BD 439 8,00	BU326 21,00	88
10120	550	DD 443 0,00	00020 21,00	88
AC187	5,50 5,50	BD 440 8,00	BU508 22,00	
AC188	5,50	BD 441 11,00	BU806 28,00	-
and the second		BD 442 11,00	BU807 18,00	W
BC		BD522 18,00	BU826A 40,00	
BC107	2,00	BD561 12,00	BU931R 36,00	
BC 108	2.00	BD562 12,00	0030111 00,00	100
		BD 302 12,00	BUX	
BC109	2,00	BDW		
BC140	6,00		BUX 37 34,00	
BC141	4,00	BDW93C 19,00	BUX 47 35,00	
BC160	6.00	BDW94C 19,00	BUX 81 35,00	I 🟻
BC161	4,00		BUZ 11 A 49,00	
BC172	220	BDY	DOL 117 45,00	
BC177	2,80		THYRISTOR	
00177		BDY 56 19,00		
BC178	2,80	BDY 58 36,00	BRY 55 10,00	
BC179	2,80		TD600 13,50	
BC204	2.80		TIC 116M 12,00	
BC212	2.80	BDX	TL 1006 6.00	
BC237	2.80	BDX 18N 20.00	TYN 606 12,00	388
BC238	1.80	DDV COD 20,00	T/11000 12,00	
DU 238		BDX 62B 22,00	TYN812 19,50	
BC239	1,80	BDX 63B 21,00		88
BC307	1,80	BDX 64B 24,00	TIP	
BC308	1.80	BDX 65B 24,00	TIP 29 4,50	繳
BC309	1.80	BDX 66B 32,00	TIP 30 4,80	
BC317	3.00	BDX 67B 32.00	TIP31 4.80	
BC318				
00010	3,00	BDX 77 8,00	TIP 32 6,50	88
BC327	2,60	BDX 78 8,00	TIP 33 7,50	
BC328	2,50		TIP 34 8,50	23
BC337	3.20	BF	TIP 35 17,50	100
BC338	320	BF 115 5,80	TIP 36 18,00	*
BC516	3.40	BF 167 4,50	TIP41 6,00	
BC517	3.00		TID 4000 4000	
BC546		BF 173 4,20	TIP 122 12,00	
	2,00	BF 177 4,80	TIP132 13,00	33
BC547	2,00	BF 178 4,80	TIP 137 13,00	333
BC548	2,00	BF 179 6,80	TIP 2955 5,00	*
BC549	2,00	BF 184 7,50	TIP3055 10,00	5.3
BC550	1.50	BF 185 750	2N	300
BC556	1,50	'BF 197 2,80	2N918 8,50	
BC557	1,50	BF 198 3,80	2N930 3.90	188
BC558	2.00			8
		BF 199 2,40		
BC559	2,00	BF 240 3,10	2N 1711 3,50	188
BC560	1,90	BF 245 5,60	2N 1890 3.50	100
	1200-01	BF 256 5,70	2N2218 3.50	
BD		BF 259 3,80	2N2219 3,40	
BD115	10,00	BF 337 5,00	0N0000 000	
DD 110		DF 001 5,W	2N2222 3,00	
BD135	4,50	BF338 6,50	2N2369 3,50	
BD136	4,50	BF394 3,20	2N2484 6,00	
BD137	5.00	BF 451 4,50	2N2646 10,00	*
BD 138	5.00	BF 459 8,00	2N 2904A 3,20	20
BD 139	5.00	BF 469 4.50		
DD 140	5,00		2N 2905 3,20	
BD 140	5.80	BF 470 4,50	2N 2907A 2,20	

.. 12,60

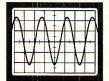
4,00 BF 494... 6,40 BF 495... 7,50 7,50 BFR 91. 6,50 BFR 91. 6,10 6,50 BS 170... 8,00 BS 250...

DECOLLETAGE

Måle	10,00 10,00 18,00 18,00 49,00	16,00 12,00 24,00 24,00 52,00 52,00	25b. 18,00 20,00 15,00 30,00 32,00 59,00 59,00	37b. 25,00 25,00 23,00 45,00 46,00
CENTRONIC	· Contraction	de verrouilla	IGE	5,00
24 broches			ARTABL	
Måle, femelle, chåssis 36 broches Måle, femelle, chåssis 36 broches Måle å sertir	39,00 75,00	2 X 12 B.àsı *Commodor A sertir sur o 2 x 10 B 2 x 13 B 2 x 17 B	e* able pas 2	49,00 54 42,00 45,00 49,00
TULIPE		2 x 20 B 2 x 25 B		55,00 61.00
3, 14,16,18, 20, 24, 21 La broche Barrette tulipe 32B Barrette måle/måle 20 points	3, 40B. 0,30 11,20 25,00	A souder su 2 x 25 B 2 x 31 B	PROMO	45,00 45,00 RS
SUPPORT		Femelle à s	E BER	
A WRAPPE 8, 14, 16, 18, 20, 24, 2 La broche SUPPORT INSERTION NU 24b	28, 40B 0,60 JLLE 90,00 140,00	2×5 B 2×8 B 2×10 B 2×13 B 2×15 B 2×17 B 2×20 B 2×25 B		9,00 12,00 15,00 17,00 18,50 23,50

MICRO

					_		_	All the second second second		
QUARTZ OSCI	LATEURS 8085	33,00	8287 39,00	6116	35,00	EF		E-EPROM		Z 8536 CIO 150.00
32,768 KHz 20,00 1,8432		190,00	8288 79,00	6264	120,00	EF /510	188,00	EF9306 35,00		Z8671 Basic 300,00
		NC				EF7910	229,00		NEC V20 100.00	MB 8876 150,00
	MHz 49,00 8088	98,00	8749 HD 185,00	coop	-	EF9340	69,00	POCKWELL	NEC V30-8 156,00	WD 9216 80,00
2,4576 MHz 20,00 16,000		89,00	DAM	0000	50.00	EF9341			TBP 24\$10 65.00 TBP 28L22 65.00	
3,2768 MHz 20,00 24,000 3,5795 MHz 20,00	VIHZ 49,00 8237 A5 8250	95,00	ZERO POWER	6802		EF9345	76.00 300,00	6502 NC 6512 100.00		AY 3-1350 84,00 AY 3-8912 NC
4,000 MHz 20,00	D-DA 8251 A		MK48ZO28 210.00	6809	49,00 65.00		160.00	6522 60.00	NSC 800 220.00	AY 53600280.00
	RTISSEURS 8253 A5			6810	34,00	EF9369		6532100.00		
	4 65.00 8254	45.00	102000 200,00	6821	25.00		200425	6545 100.00		
4,9152 MHz 20,00 ADC 08		30,00	RAM	6840	59,00	EPRO	M	6551 80.00	FD1797 165.00	C.M.S.
5.0688 MHz 20.00 ADC 08		49,00	FAM	68 B40			38,00	65 C51 150.00	DM 1883 200.00	CD 4011 7,00
6,5536 MHz 20,00 DAC 08			2114 39,00				49,00		WD 2791 200.00	CD 4013 7,00
8,000 MHz 20,00 DAC 08			4116 22,00	6850		2764	39,00	ACDII 40.00	WD 2795 330.00 TMS 2797 150.00	CD 4081 7,00
10,000 MHz 20,00 UVC 310 12,000 MHz 20,00	1 350,00 μPD 765 8282	80,00 45,00	41256 99,00 4164 39,00	68 B02 68 B10			59,00		TMS 4500 150.00	
14,000 MHz 20,00	TEL 8283	45,00	43256 Tél.	68 B21					6349 65.00	
14,318 MHz 20,00 8031 AH			4416 NC	68 B50		27256				BFR 31 -
16,000 MHz 20,00 80 C 35.	59,00 8286	105,00		68705 P3S	120,00	27512	115,00	DMA 100,00	Z 8531ASCC 200.00	PRIXUNIQUE 3,00
\										



DAR: un fab

OAR fabricant japonais d'appareils de mesure, distribué en France par MB Electronique, propose une nouvelle gamme de multimètres 3200 points réalisés autour d'un circuit intégré spécifique.

La série comprend cinq modèles baptisés respectivement: 3210, 3220, 3230, 3250 et 3255.

Ces multimètres mesurent les tensions continues de 100 μV à 1 000 volts avec des précisions de 0,7 % à 0,3 %; les tensions alternatives de 1 mV à 750 volts; les courants continus et alternatifs de 100 mA (3230/3250/ 3255) à 10 ampères ; les résistances de 0,1 Ω à 30 M Ω .

Ils possèdent tous un « beeper » pour les mesures de continuité et un test pour les jonctions de semi-conduc-

Un mode « ADP » leur permet à l'aide d'adaptateurs spécialisés, de mesurer des températures, des condensateurs, des courants forts (200 A) continus et alternatifs et des transistors.

L'affichage à cristaux liquides se compose de 4 afficheurs numériques permettant une définition de 3 200 points et d'une échelle linéaire (bargraphe) de 32

Les deux modèles haut de gamme ont des boîtiers beaucoup plus résistants ; le 3250 est étanche aux poussières et 3255 est étanche à l'eau.

Ces deux derniers peuvent effectuer, directement sans adaptateur, des mesures de température à l'aide d'un capteur à thermocouple K dans la gamme -20 °C à

L'alimentation ne nécessite que deux piles 1,5 V (très bon marché) format AA leur conférant une autonomie de 2 500 heures.

Leurs prix s'échelonnent entre 650 F H.T. et 1500 F H.T.

Mais deux autres appareils ont retenu notre attention parmi les nouveaux produits présentés par SOAR en multimètrologie, ce sont les modèles 3060 et le 3430.

de multimètres qu

Le premier est un véritable petit bijou de poche, guère plus grand qu'un paquet de gitanes en moins épais avec ses cordons et la notice d'utilisation, qui offre 3 200 points de mesure tout en étant doté d'un bargraphe de 32 points pour apprécier plus rapidement les tendances. Le 3060 dispose, outre les fonctions voltmètre (alternatif et continu) et ohmmètre avec changement automatique de gamme, du test de semi-conducteurs et d'un beeper pour le test de continuité. Il s'éteint sagement tout seul au bout de 10 mn si aucune mesure n'est effectuée, ce qui lui assure une autonomie de 250 heures avec ses 2 piles LR 44 (1,55 V). 100 g tout compris et un prix aussi léger de moins de 500 F T.T.C.!

C'est donc le multimètre qu'on promène partout, et, si l'on en juge par les réations de collègues à sa vue, il est promis à une grande carrière.

Le second est un 25 000 points, efficace vrai en alterna-

Là, il s'agit d'un petit laboratoire portable puisqu'il autorise les mesures de :

 tension (continue et alternative en eff. vraie) en cinq gammes avec une résolution de 10 µV pour la plus petite.

 d'intensité (continue et alternative en eff. vraie) en deux gammes de 250 mA et 10 A (résolution de 10 μ A).

ricant japonais

rend des mesures

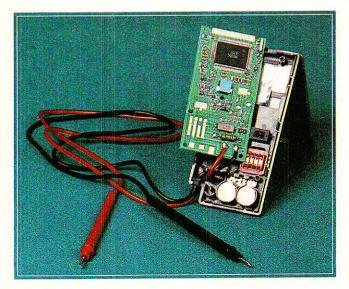
- de résistance en cinq gammes de 0,01 Ω à 25 M Ω .
- de fréquence entre le millième de Hz et 100 kHz.
- de jonctions semi-conductrices avec une résolution de 100 μV, courant de test inférieur à 1 mA.
- de température, à l'aide d'un thermocouple de type K, entre -50° et $1\,200$ ° C (compensation de jonction froide et circuit de linéarisation incorporés). Il permet aussi le test de continuité avec beeper et les mesures en décibels (dBm, référencé $1\,$ mW/600 Ω soit $0\,$ dBm = $0.7746\,$ V).

Le changement de gamme peut-être automatique ou manuel

En outre le 3430 offre quatre possibilités supplémentaires avec les touches notées REL, DATA.H, PEAKH. et $3^{1/2}$. La première (REL) permet de fixer une référence et d'effectuer des mesures par rapport à cette référence, ceci en tension = et \sim , courant = et \sim , résistance et dB.

Ainsi cette référence devient un zéro de mesure mis en mémoire et les valeurs affichées ensuite sont les écarts en + ou - avec le zéro.

La seconde (DATAH) fige l'affichage sur la dernière mesure enregistrée.


La troisième (PEAKH) intercepte un maximum durant une séquence de mesures et maintient l'affichage dessus.

Enfin la touche 3 $^{1/2}$ élimine le chiffre le moins significatif, ce qui évite toute fluctation de ce dernier lorsque la précision recherchée ne nécessite pas son affichage.

En plus certains adaptateurs conçus par SOAR étendent encore ses possibilités pour le transformer en capacimètre, en transistormètre et une sonde permet la télécommande de la fonction DATA HOLD.

Il est évident qu'avec un tel produit, certaines mesures imposant d'ordinaire plusieurs appareils peuvent être menées simplement avec l'aide d'un générateur de fonctions ou d'un petit oscillateur injecteur.

Voyons quelques exemples courants où le 3430 simplifie grandement la vie de l'utilisateur.

REPONSE EN FREQUENCE D'UN AMPLIFICATEUR :

On fait un relevé à 1 kHz, où l'on est sûr en général d'être en milieu de bande et d'obtenir le gain maximum. Le multimètre est en position $V\sim$; on passe en dBm, il affiche une certaine valeur qui va servir de zéro. En appuyant sur la touche REL, tous les relevés ensuite effectués seront donc les écarts en dB (en + ou en –). On monte en fréquence avec le générateur jusqu'à arriver au point où le multimètre affiche -3 dB. On passe en position FREQ et on lit cette fréquence. Il s'agit de la coupure haute. On redescend en-dessous de 1 kHz en étant repasser en décibel jusqu'à obtenir de nouveau le point à -3 dB représentatif de la coupure basse. En position fréquencemètre, on lit cette fréquence. Cela va beaucoup plus vite à faire qu'à écrire.

■ CHANGEMENT DE RÉFÉRENCE EN dB

Le 3430, comme d'ailleurs tous les multimètre, est référencé en dBm avec 0 dBm correspondant à 0,7746 V (1 mW sur $600~\Omega$). Parfois il peut être utile de changer de référence. Par exemple pour passer en dBV (0 dB correspondant à 1 V) rien de plus simple. On passe en fonction tension alternative calibre 2500 mV et avec une source de tension de 1 kHz (par exemple), on envoie une tension d'un volt efficace (affichage 1000,0). Alors on appuie sur la touche dBm, le multimètre indique + 2,218 dB (20 log (1/0,7746)). Il suffit dès lors d'enfoncer la touche REL, le nouveau 0dB pour les mesures qui suivent est référencé au volt.

LE FACTEUR DE CRÈTE EN EFFICACE VRAI ET SES CONSÉQUENCES.

Le facteur de crète du 3430 vaut 3. Cela veut dire que lors d'une mesure de tension alternative, le rapport $V_{\text{max}}/V_{\text{eff}}$ ne devra pas être supérieur à 3 sans quoi la mesure ne serait plus significative. De plus ce multimètre est "couplé" en alternatif par un condensateur, ce qui veut dire qu'on ne peut apprécier une tension continue superposée à la composante alternative. En régime impulsionnel cela permet par contre de prendre en compte des maxima plus importants, voire d'apprécier des rapports cycliques descendant jusqu'à 10 % sur des impulsions à recurrence fixe. Expliquons-nous!

On connaît T puisqu'on peut mesurer f (inférieure à $100 \, \mathrm{kHz}$), on connaît aussi V_{mex} puisqu'en général en impulsions il s'agit de la tension d'alimentation du circuit considéré moins la tension de déchet de l'élément final commutant.

On mesure VRMs avec le 3430. Si $(V_{max}/V_{RMS}) < 3$, la mesure est valide, on peut donc en déduire le rapport cyclique. En effet sur des impulsions à recurrence fixe, $(V_{max}/V_{RMS}) = \sqrt{(T-\Delta\,T)/\Delta\,T}$ où T est la période et ΔT , la largeur d'impulsion au niveau V_{max} . (pour un niveau zéro correspondant à la valeur moyenne du signal : couplage capacitif).

Dès lors $\Delta T/T = (V_{\text{max}}/V_{\text{RMS}})^2 + 1$.

BP 513 - 59022 LILLE Cedex 86. rue de Cambrai - LILLE **TARIF AU 1.5.89**

20.52.98.52

2 NOUVEAUTES CHEZ SELECTRONIC

BPM

LE PISTOLET DESSOUDEUR PORTABLE

Sa technique et sa fiabilité en font l'outil idéal pour l'atelier et la maintenance sur site.

Documentation détaillée sur simple demande 113.9695 1535,00 F

PORTASOL MK II

- Pour souder: 90 mn. d'autonomie.
 Thermoretracter: air chaud jusqu'à 400 °C.
 Chauffer, braser: micro-chalumeau jusqu'à
 - Couper : couteau chauffant, etc... Documentation détaillée sur simple demande

Le PORTASOL MK II 113.8559 349,50 F La RECHARGE DE GAZ 113.8558 ... 25,00 F

KIT DE TRANSMISSION AUDIO DE QUALITE PAR LE SECTEUR 220 V

INDUCTANCEMETRE DE PRECISION

A affichage digital LCD 2000 points. Cet appareil de poche se révélera vite indispensable à tous ceux qui utilisent ou bobinent des selfs fréquemment. Idéal pour mesurer toutes les inductances utilisées en B.F. - Gammes de mesure : 1 uH à 2 H

- en 4 gammes. Précision : 1 %
- Alimentation: 2 piles
- 9 V standard.

Le kit complet avec boîtier, fenêtre pour afficheur, face avant percée et

Décrit dans RADIO-PLANS nº 493 de décembre 88

2 kits vous permetront de construire un inter-phone bi-directionnel ou de sonoriser une pièce éloignée de la chaine HI-FI, par exemple...
 Plusieurs récepteurs peuvent être connectés sur

Le kit complet émetteur/récepteur (sans boîtier).

FREQUENCEMETRE MINIATURE DE TABLEAU 20 MHz A CHANGEMENT DE GAMME AUTOMATIQUE

Une exclusivité SELECTRONIC! (Décrit dans EP nº 121) Mini-fréquencemètre en kit, de hautes performances - En prévu pour s'intégrer facilement dans un appareil existant ou dans un boîtier de petites dimensions.

1888

- | 121)
 | Entrée : signaux logiques |
 | Entrée : signaux logiques |
 | 5 gammes 2 k Hz 20 k Hz 20 k Hz 2 MHz 20 MHz |
 | 5 gammes de temps pilotée par quartz |
 | 3 1/2 digits hauteur 13 mm |
 | indication : k Hz et MHz |
 | 13 mm |
 | 14 gammes | 17 x 2 g x 40 gammes |
 | 15 mm |
 | 16 mm |
 | 17 mm |
 | 17 mm |
 | 17 mm |
 | 18 mm |
 | 18 mm |
 | 19 mm |
 | 19

- encombrement: 97 × 38 × 40
- alimentation à prévoir : 5 V/170 mA.

emballage.

oratuits.

Les prix indiqués sont TTC.

113.8230

CONDITIONS GENERALES DE VENTE

Commande supérieure à 700 F: port et emballage

 Règlement en contre-remboursement : joindre environ 20 % d'acompte à la commande. Frais en sus selon taxes en vigueur

· Colis hors normes PTT : expédition en port dû par

Pour facilite

le traitement de vos commandes,

veuillez mentionne

la REFERENCE COMPLETE

des articles commandés

ment à la commande : Commande inférieure à ajouter 28,00 F forfaîtaire pour frais de port et

TOUS LES KITS ELV SONT EN STOCK CHEZ SELECTRONIC!

CATALOGUE

GÉNÉRAL

VISA

à Paris et Orléans!

Nouveaux points

de vente des kits

Sélectronic chez

NOUVEAU

SELECTRONIC

distribue les kits

Expédition FRANCO contre 15 F en timbres-poste

SELECTRONIC

TEL.: 20.52.98.52 86 rue de Cambrai BP 513 - 59022 Lille Cedex

« SCALP » 8052 AH BASIC

LE MICROCONTRÔLEUR QUI DECOIFFE!

Le SCALP (Système de Conception Assisté par un Langage Populaire) est un remarquable outil de développement progammable en BASIC et conçu spécialement comme outil de saisie de données, de test d'instrumentation et de commande de processus. Avec, en plus, de très puissantes fonctions d'entrées-sorties

Le kit complet avec alimentation, coffret pupitre, supports spéciaux, etc 113 7875

Pour connecter votre SCALP sur votre MINITEL CONVERTISSEUR DE FORMAT SERIEL

Le kit avec circuit imprimé boîtier Heiland HE 222, accessoires, etc.

PRECISION HOTOPILE

mesurer des éclairements

- 2 calibres de base : 0 à 2000 Lux 0 à
- 20000 Lux (avec loune x 10) Affichage LCD 2000 points
- Alimentation : pile 9 V (non fournie) Le kit complet avec boîtier HEILAND, cellule SOLEMS, accessoires, etc.

330 F Version montée en ordre de marche (sans pile) 113.7919

THERMOMETRE PHOTOPILE

(87188/E 114)

A partir d'un prototype original issu du laboratoire SELECTRONIC, nous vous proposons ce thermomètre de précision qui fera date, puisqu'il fonctionne sans pile! La précision est de 0,1° C Le kit complet avec boîtier HEILAND,

Le kit complet avec borses.
cellule SOLEMS, accessoires, etc.: Version montée en ordre de marche 530 F

CARTE UNIVERSELLE E/S pour IBM-PC, XT,... et compatibles (880038 / E 119)

Cette carte très sophistiquée comporte tite carte tres sopnistiquee comporte : 1 convertisseur A/N 12 bits (plus un bit de polarité) précédé d'un multiplexeur 8 voies. 1 convertisseur N/A 12 bits

4 PORS 8 MFIZ de 8 DIIS 0 E/S
 3 timers programmables 8 MHz
 (6 modes + compteur BCD 4 digits ou compteur binaire 16 bits)
 Le kit complet avec supports TULIPE, PAL programmée,

connecteurs, etc. 113,7985

A DOMOTIQUE:

Les composants pour BUS I2C sont chez SELECTRONIC

Cr. RADIO-PLANS no 494 et suivants)

Microcontrôleur 80 C 652 - 113.7408

Mémoire RAM PCF 8570 - 113.7409

S2 F Horloge/Calendrier PCF 8574 - 113.7412

Mémoire RAM PCF 8570 - 113.7409

S2 F Interface parallèle PCF 8574 - 113.7412

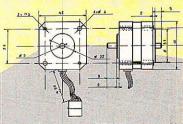
Commande d'afficheurs PCF 8577 - 113.7410

S2 F Convertisseur AD/DA PCF 8591 - 113.7414

S9 Ultra low-offset OP AMP LM 607 CN - 113.7413

17 (Kits de la CENTRALE DOMOTIQUE PC en préparation) à suivre.

INFOS et NOUVEAUTÉS

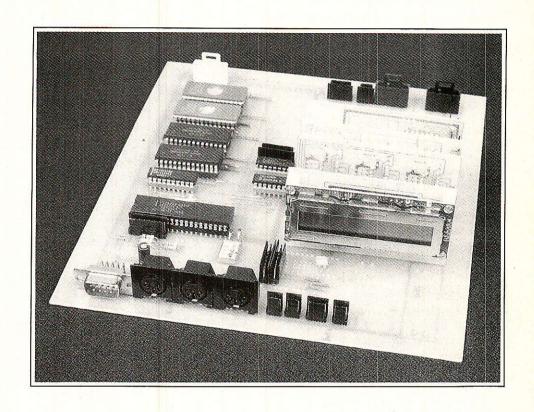

8052 AH BASIC V1.1 INTEL - 113.7136 MC 68 705 P3. La pièce : 113.4000 MM 53200. La pièce : 113.7269 Le lot de 10 : 113.7415 Le lot de 10 : 113.7416

LES BONNES AFF

MOTEUR PAS A PAS:

Bi-phasé 200 pas par tour Alimentation : 9,2 V typ., 0,24 A typ. (38 Ω par phase) Couple de blocage : = 100 m N/m Dimensions hors-tout : 42 x 42 x 46 mm

Poids: 233 g Circuit de commande: MC 3479 P


CORDON VIDEO 75 Ω :

Cordon RG 59 professionnel, BNC-BNC, Longueur 15 m, le cordon : 113.232690 F

CAPACITÉS DE SAUVEGARDE : our les cartes mémoires, etc. Très forte capacité sous volume très réduit. (Documentation technique sur demande)
SUPER-CAPA 47000 μF, 5 V, Ø x h : 14,5 x 15 mm - 113.8568
SUPER-CAPA 100000 μF, 10 V, Ø x h : 28,5 x 25,5 mm - 113.8569

(Prix par quantité: nous consulter)

Réalisation de la Centrale Domotique

Bonjour tout le monde!

Nous espérons que le mois d'avril s'est bien passé et que vous attendiez ce nouvel article avec impatience. Vous allez enfin pouvoir commencer à réaliser votre propre centrale domotique.

Pour cela nous supposons que vous avez tous bien en mémoire la structure que nous avons choisi d'utiliser afin de bien comprendre comment cela va fonctionner.

ANS ce numéro nous allons vous décrire :

— le schéma électrique de la carte de base,

— le circuit imprimé et sa nomenclature.

— la procédure de première mise sous tension de la carte,

 comment créer et stocker un programme BASIC,

— comment sauvegarder un programme (en assembleur par exemple) dans une mémoire EPROM,

— comment relire et imprimer le contenu de cette mémoire pour vérification.

Après tout cela vous serez devenus aptes à faire « tourner » le système sans l'aide de personne et dans le prochain numéro nous commencerons à vous décrire les nombreux petits modules de fonctions qui vous permettront de personnaliser votre centrale.

LES SCHEMAS ELECTRIQUES

Les schémas électroniques se divisent en différentes grandes parties : 1) la CPU

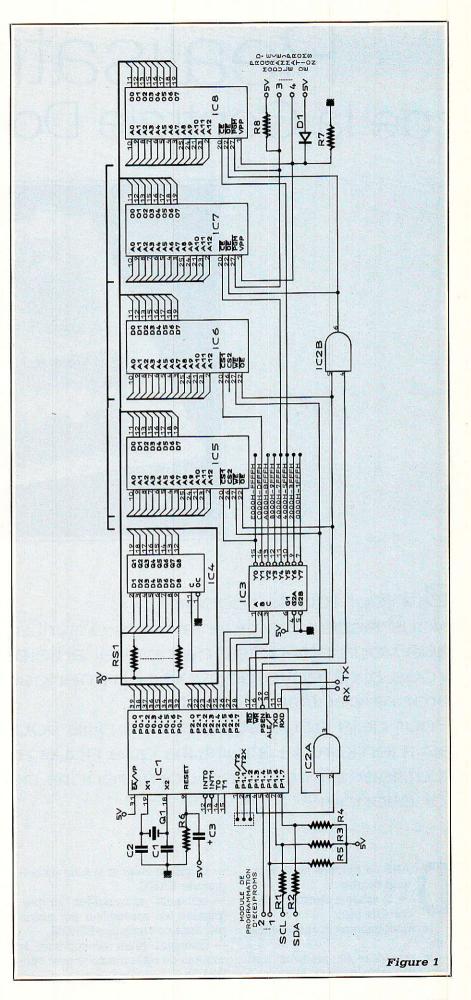
- les modules directement liées à la CPU
- le module d'interface série
- le module de programmation des EPROMs
- 2) les modules de fonctions I2C

SCHEMA DE LA CPU

Il est donné figure 1.

Ce schéma est très conventionnel et correspond comme nous vous l'avons précédemment indiqué à la seule configuration permettant d'utiliser correctement ce type de microcontrôleur.

Conformément à nos choix, vous trouvez le 8052 AH BASIC et son espace mémoire de deux fois 8Kx8 de RAMs et deux fois 8Kx8 d'EPROMs.


Le démultiplexage des adresses est effectué par le 74HC 138 bien connu et, de façon à utiliser des composants en harmonie avec ceux déjà présentés par votre revue, nous utiliserons le lactch d'adresses 74HC 573 (qui est identique au 373 avec un brochage un peu plus adapté).

Comme vous pourrez le remarquer sur le schéma, nous avons sorti tous les fils qui permettent d'adresser la totalité du champ mémoire (on n'est jamais trop précautionneux..., ça peut toujours servir à certains plus tard, on ne sait jamais !!)

Bref nous avons réglé le sort de toutes les broches du micro contrôleur concernant les adresses de A0 à A15!

Par la même occasion nous nous sommes occupés des multiples contraintes que nécessitent les différentes commandes du style READ, WRITE, CHIP ENABLE, CHIP SELECT, OUTPUT ENABLE, via les portes ET qu'il a fallu disposer aux bons endroits pour les raisons précises décrites dans le numéro précédent.

Arrivés à ce stade nous avons « achevé » déjà beaucoup de broches du microcontrôleur mais sur les 40, il en reste encore quelques unes que nous allons examiner maintenant.

L'OSCILLATEUR

L'oscillateur comporte deux broches où doivent être disposés les éléments servant d'horloge au microcontrôleur. Pour le faire osciller, il est nécessaire d'utiliser un quartz et deux capacités.

Bien que cela puisse peut-être vous paraître puéril, nous vous demandons d'être très précautionneux quant au choix du quartz, standard mais de bonne qualité (résistance série de l'ordre de 50 ohms) et de disposer des capacités extérieures qui sont en accord avec la valeur de la « capacité de charge » recommandée par le constructeur (dans notre cas 22 pF) mais par pitié ne pas mettre n'importe quoi!

En ce qui concerne la valeur du quartz: 11,0592 MHz, bien sûr!

Vous avez apprécié le bien sûr à sa juste et étrange valeur.

Aussi étrange que soit cette valeur, elle est standard car telle qu'est conçue la famille 8051 and Co au niveau de ses Timers internes, il est facile de configurer (et c'est justement ce que fait tout seul le 8052 AH BASIC) l'un d'entre eux pour obtenir un « baud rate » égal à 1200, 2400, 4800,... bauds lorsque la valeur du quartz est précisement égale à 11,0592 MHz... alors tout le monde l'utilise...

LA SORTIE DU BUS 12C

Comme nous vous l'avons expliqué dans le cas de l'emploi de ce microcontrôleur nous serons obligés d'écrire ce protocole en assembleur (ce sera le seul et une fois pour toute).

Par contre nous avons le libre choix de définir sur quel port il est le plus judicieux de faire sortir les lignes I2C.

Déjà, de par son architecture ceci ne pourra s'envisager gu'autour du port 1 mais, quand on a quelques idées derrière la tête, on s'aperçoit très vite que le microcontrôleur 80C652 de PHILIPS COMPOSANTS est broche à broche compatible et que son interface « hard » intégré sort l'horloge I2C SCL sur le port 1.6 (broche 7) et les données SDA sur le port 1.7 (broche 8). Alors pourquoi se priver d'une telle aubaine, ne serait-ce que dans le cas où nous aurions des idées d'économies un jour prochain.

Les deux résistances de « pull up » ramènent électriquement le bus à l'état haut au repos comme prévu et nous avons disposé deux autres résistances (non pas en guise de strap comme certaines mauvaises langues auraient pu le penser) mais en protection série (surtensions...) des lignes SCL et SCA.

LES MODULES ASSOCIÉS A LA CPU

MODULE DE COMMUNICATION SÉRIE STANDARD

Les entrées/sorties de communication série standard Rx et Tx sont les broches 10 et 11 du microcontrôleur respectivement.

Nous avons décidé de les utiliser telles quelles et de les sortir en l'état, c'est-à-dire avec des niveaux TTL et avec un protocole d'UART standard envoyant des mots de 8 bits plus un bit de start et un de stop, le tout sans parité.

Ceci est un peu cavalier mais comme nous sommes bon prince nous avons pensé à tous les amateurs de RS232. Aussi, à leur attention toute particulière, nous avons choisi de leur proposer de réaliser un petit module enfichable et optionnel qui permettra à chacun de personnaliser selon le niveau de conformité désiré par rapport à la norme et/ou bien sûr par rapport à l'équipement dont il dispose.

Les schémas de ces différentes parties déjà expliquées maintes fois seront décrits la prochaine fois.

LIAISON IMPRIMANTE

Parallèlement, mais en relation directe avec ces lignes de transmission (Rx et Tx) le port 1.7 sera aussi utilisé (dans son utilisation dite « alternative » de sa fonction I2C précédemment énoncée) pour commander une imprimante de type série.

MODULE PERMETTANT LA PROGRAMMATION DES EPROMS

Ici aussi nous avons prévu de pouvoir momentanément disposer d'un petit module ayant pour fonction principale de graver les EPROMs afin d'y mettre vos merveilleux programmes spécifiques.

Sur le principe, une fois ces opérations complétement terminées, ce module devrait être retiré de la carte et être rangé en attendant une nouvelle programmation d'EPROMs.

De plus ce modèle devient complétement superflu si vous désirez

investir dans l'achat d'EPROMs 8 K x 8. Donc ici aussi, nous vous offrons cette souplesse dans la conception de votre réalisation. Par contre il sera alors de votre devoir. lors de la programmation de ces composants particuliers, d'utiliser les routines de gravure adéquates.

Si l'on examine maintenant d'un peu plus près les procédés de gravure de mémoires, nous nous rendons vite compte que selon les types, les constructeurs,... les tensions de gravure, les énergies, les modes... sont très différents les uns des autres.

Nous vous avons laissé la possibilité de pouvoir graver le maximum de composants différents en laissant « en blanc » sur le schéma la valeur d'une part de la Zéner (5 V, 6 V, 12 V, 21 V,...) et la valeur de la résistance qui fournit le courant qu'il est facile d'estimer.

A ce sujet il est à noter que vous n'aurez besoin de ces tensions spéciales que lors de la phase de programmation et c'est pour cette raison que nous avons décidé que la prise qui recevrait cette alimentation spéciale serait implantée physiquement sur ce module.

De plus dans la partie logicielle de l'article, vous trouverez la façon de lancer la routine de programmation des EPROMs dans laquelle vous découvrirez que le 8052 AH BASIC contient aussi un algorythme pour programmer les mémoires EPROMs dites « intelligentes ».

De par sa construction et via l'interpréteur BASIC interposé, le microcontrôleur fournit les signaux appropriés à la programmation sur le port 1 (1.4 et 1.5)...

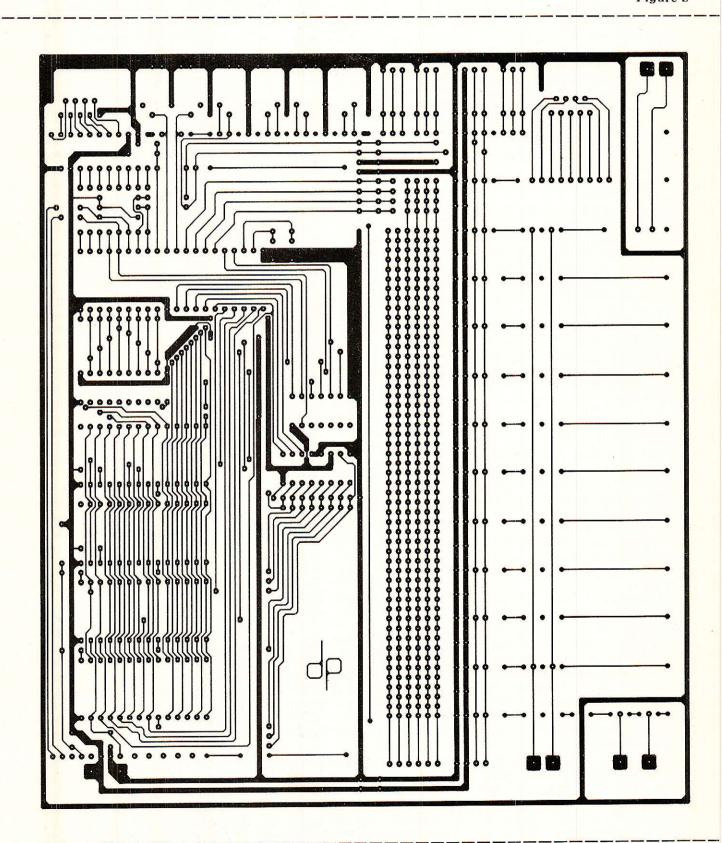
LE CIRCUIT IMPRIMÉ DE LA CPU

Le circuit imprimé et son implantation sont donnés figures 2, 3 et 4.

Nous l'avons conçu en double face mais en pensant au grand nombre d'entre-vous à qui cela pose problème, c'est-à-dire en concevant la seconde face pour qu'elle soit très dépouillée de façon à pouvoir aussi réaliser l'ensemble en simple face avec un minimum de « straps ».

Comme vous pourrez le remarquer sur la figure, la topologie du circuit imprimé permet de le découper en deux parties - la CPU et les modules de fonctions I2C — de façon à ce que vous puissiez scinder physiquement ces entités soit pour des pro-

blèmes de répartition volumique et/ ou d'encombrement soit pour des problèmes de « découpe système » en vue d'utilisations différentes.

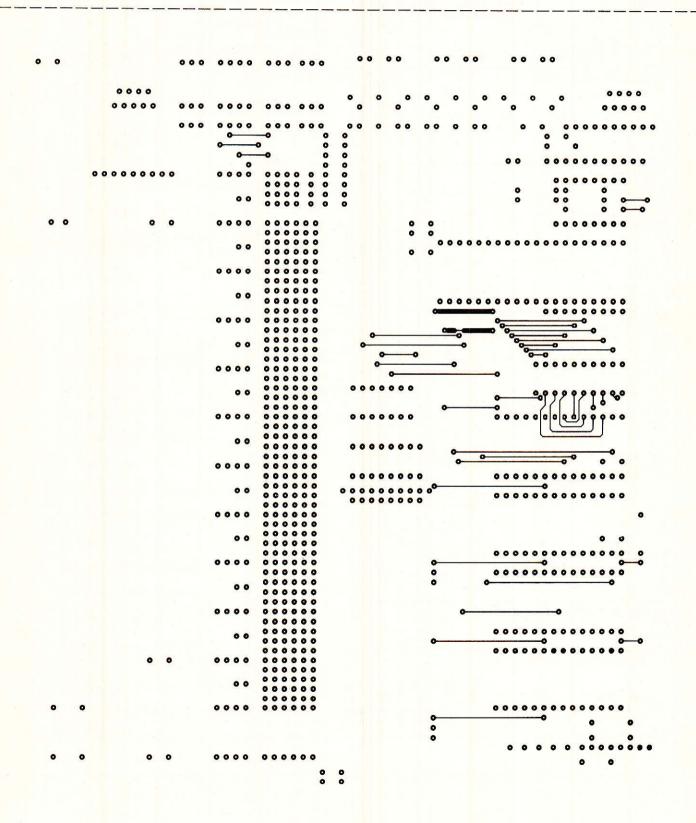

Dans tous les cas de figures, pour les amateurs de systèmes « en-

RACKables », cette découpe permet son emploi en deux cartes 3U 19 ".

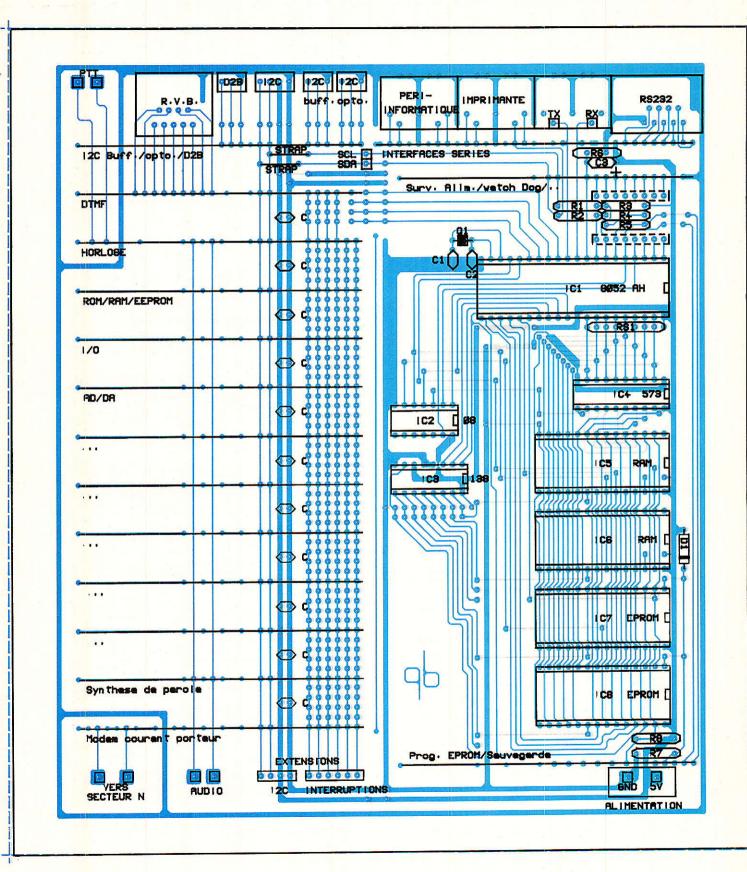
Nous avons par ailleurs omis de décrire l(es) alimentation(s) de l'ensemble car elles sont conventionnelles (0-5 V) et de consommation

réduite. Au cours de la description du logiciel nous vous expliquerons que, comme tout microcontrôleur qui se respecte, celui-ci passe la quasitotalité de son temps à dormir et donc à ne pas consommer! (ce qui

Figure 2



veut dire en version sous-titrée que vous pouvez dès à présent penser à son utilisation en version sauvegardée sur batterie auxiliaire).


LES CIRCUITS IMPRIMÉS DES MODULES

Par faute de place dans cet article nous vous les décrirons en détail dans le prochain numéro mais sachez dès maintenant qu'ils ont tous un format standard, qu'ils sont modulaires et enfichables de façon à vous laisser toute liberté dans la finalité de votre réalisation.

Figure 3

-Nomenclature -

Résistances

 RS_1 : réseau SIL 8 × 10 k Ω

 $\begin{array}{l} R_1: 330 \ \Omega \\ R_2: 330 \ \Omega \\ R_3: 1,5 \ k\Omega \\ R_4: 1,5 \ k\Omega \\ R_5: 10 \ k\Omega \\ R_6: 8,2 \ k\Omega \\ R_7: 10 \ k\Omega \end{array}$

R₈: 1k Ω

Circuits intégrés

IC₁: 8052 AH BASIC IC₂: 74 HC 08 IC₃: 74 HC 138

IC4: 74 HC 573

Condensateurs

C: 100 nF C1: 22 pF C2: 22 pF C3: 10 µF/10V

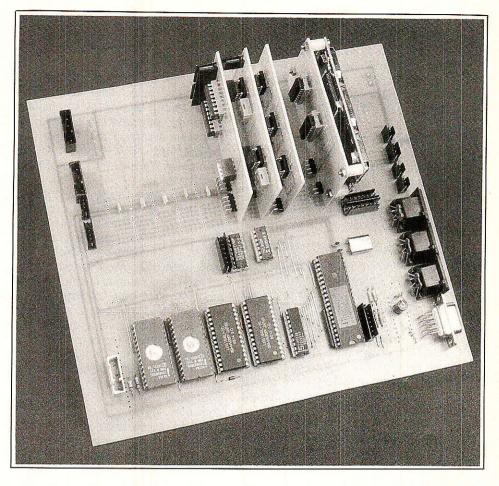
Semiconduteurs

Divers

O: 11,0592 MHz RAM: 8 K × 8 (5564...) EPROM: 8 K × 8 (27C64...)

D: 1N4148

■ MISE SOUS TENSION DE LA CARTE


Bien, maintenant que nous vous avons permis de réaliser la carte CPU, à vous de la faire fonctionner!

Evidemment, vous avez sous la main un terminal respectant un minimum de contraintes (liaison RS 232 même réduite à sa plus simple expression, vitesse de transfert comprise entre 300 et 9600 bauds, respectant le protocole de transmission du 8052 AH BASIC donné précédemment), un câble permettant le discours entre la carte CPU et le terminal.

Connectez la carte CPU au terminal à l'aide du cordon et mettez-le sous tension. Puis ce sera au tour de la carte.

Et alors là, c'est le grand moment, le suspens : la carte va-t-elle réagir ?

Pour le savoir tapez sans plus attendre sur la barre d'espace. Mais attention, vous devez réveiller le montage par cette action à l'exception de toute autre sur les autres touches du clavier. Sinon, votre carte ne répondra pas et vous passe-

rez un temps fou et bien inutile à chercher ce qui ne va pas.

Et là, oh miracle, vous lisez sur votre écran : MCS-51 (tm) BASIC V1.1 READY

Mais ce n'est pas tout. Maintenant que la carte a répondu, il faut vérifier que le 8052 AH BASIC s'est bien configuré. Pour cela, frappez :

PRINT XTAL, TMOD, TCON, T2CON, MTOP.

Si tout va bien, le montage doit vous répondre : 11059200 16 244 52 16383

En fait, lors de la procédure de RESET, le 8052 AH BASIC efface sa mémoire interne, initialise ses différents registres et pointeurs. Enfin, il regarde la taille de la mémoire externe allouée au montage, la teste et l'efface (puisque pour l'instant cela lui est permis).

Vous pouvez reconnaitre la valeur du quartz (11059200) et celle de MTOP (16383) dont le 8052 AH BASIC vient d'allouer après scrutation la valeur maximale de la mémoire RAM externe existante (puisque pour le moment on ne lui a pas encore donner d'autre valeur).

16 représente la valeur contenue dans le « SFR » TMOD

(Timer/counter MODe)
244 représente la valeur contenue
dans le « SFR » TCON
(Timer/counter CONtrol)
52 représente la valeur contenue
dans le « SFR » T2CON
(Timer/counter 2 CONtrol)

Ces trois registres initialisent les différents timers du 8052 AH BASIC.

Voilà, maintenant que votre carte CPU fonctionne, nous allons nous attaquer à ce langage évolué que l'on appelle : « BASIC ».

LE BASIC DU 8052

Pour vous qui connaissez le BASIC (et vous êtes nombreux), ce début va paraître bien inutile et nous nous en excusons. Cependant, nous espérons que vous serez suffisamment indulgents pour comprendre que d'autres parmi tous nos lecteurs ont besoin de ces quelques rappels. Car bien sûr, nous n'avons ni la prétention, ni le temps de parler du BASIC en général et de ses commandes. Un bon manuel fera très bien l'affaire.

Nous parlerons plutôt des grandes lignes d'un programme BASIC et de tout ce qui est plus ou moins spécifique au BASIC contenu dans le 8052 AH BASIC INTEL.

Alors, merci à vous qui connaissez le BASIC, pour votre indulgence, et surtout à vos manuels si vous ne le connaissez pas encore!

Tout d'abord, nous allons vous apprendre à résoudre les problèmes suivants, spécifiques de notre application:

- création d'un programme.
- stockage d'un programme en EPROM et les modifications que cela entraîne au sein de la CPU.
- comment appeler un programme pour le modifier (transfert en RAM) ou pour l'exécuter.

CRÉATION D'UN PROGRAMME

Pour créer un programme sans le mémoriser, rien de plus simple :

Votre carte CPU est connectée, en service, et le 8052 AH BASIC vous a fait signe : il est prêt : « READY ».

Vous pouvez alors commencer à écrire un programme. Chaque ligne que vous écrivez, commence par un numéro de ligne et finit par un retour chariot, comme avec tout BASIC qui se respecte!

Mais il n'y a pas d'éditeur (à moins bien sûr de passer par l'intermédiaire d'un bon vieux PC... ou compatible, de créer le fichier, futur programme BASIC, et de le transférer dans le 8052 AH BASIC par liaison RS 232).

Si une ligne est mal tapée, il faut la retaper en entier, en redonnant son numéro. La précédente sera alors écrasée.

SAUVEGARDE DE PROGRAMMES EN UVPROM

du Un des points forts 8052 AH BASIC réside dans sa facilité à exécuter et sauver des programmes en UVPROM. Lorsque vous avez créé votre programme, il est tout naturel de vouloir le stocker pour « l'immortaliser » afin de vous en resservir. Pour cela, il existe une

commande « PROG » qui permet la gravure de l'UVPROM « courante », (c'est-à-dire à la suite des programmes précédemment stockés) avec les codes programme de l'œuvre BASIC que vous venez de réaliser. L'utilisation de cette commande demande juste que le « hardware » soit bien configuré afin de pouvoir programmer l'UVPROM. paramètre n'a besoin d'être fourni au système.

« PROG », suivi de retour chariot (que nous représenterons dorénavant par « CR » comme « carriage return » en version outre-Manche!), MCS BASIC 52 place automatiquement le programme à stocker à la suite de ceux déjà existants et lui attribue un entier compris entre 1 et 255 qui permettra de le différencier des autres, afin de le reconnaitre. Ce numéro est en fait le nom du programme qui vous permettra sous certaines conditions de le rappeler pour le modifier ou le lancer. Si un message d'erreur est affiché en cours de programmation, il est alors impossible de recommencer la manœuvre sans effacer l'UVPROM au préalable.

Mais allez-vous nous dire, « qui gère ces numéros et où sont-ils stockés?»

Qui? Mais voyons! Le grand chef d'orchestre, nous avons nommé : le 8052 AH BASIC.

Le formatage d'une partie d'une EPROM avec un programme BASIC, consiste à stocker les différents codes correspondant aux instructions BASIC précédés d'un code de début de programme (55H) et finissant par le code de fin de programme (01H soit END en BASIC). La valeur 55H est uniquement gérée et utilisée par le MCS BASIC 52 pour déterminer la présence d'un programme.

Ceci est rappelé figure 5 :

Aucun

Après avoir tapé au clavier

 8000H contient 31H si PROG1 est utilisée 32H si PROG2 est utilisée

Chaque fois qu'un programme est

Lors de la procédure de program-

mation (utilisant PROG), le MCS BA-

SIC 52 compte le nombre de 55H

rencontrés dans l'EPROM, sachant

qu'après chacun d'eux, en avançant

adresse par adresse dans la mémoi-

re, il pourra trouver le code 01H lui

signifiant « End Of File ». Si un code

01H n'est pas suivi d'un code 55H, le

système saura qu'il s'agit du dernier

programme mémorisé. Il stockera le

nouveau programme à la suite et lui

attribuera le numéro correspondant

au nombre de 55H rencontrés plus

EPROM (adressé à partir de 8000H

comme nous l'avions signalé dans

l'article précédent) commence à

l'adresse 8010H (qui contient bien

évidemment 55H). Les adresses pré-

cédentes (de 8000H à 800FH) sont

réservées par MCS BASIC 52 pour la

gestion du champ de l'EPROM. Elles

contiennent les informations d'initia-

lisation pour l'utilisation des diffé-

rentes options PROG n de la com-

mande générique PROG:

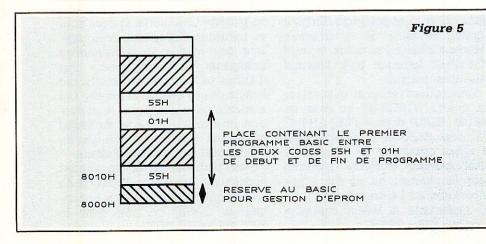
Le premier programme stocké en

un.

stocké en EPROM, le premier code

automatiquement écrit est 55H.

8001H et 8002H contiennent les poids fort et faible de la valeur de la vitesse de transmission (représentée par BAUD).


— 8003H et 8004H contiennent les poids fort et faible de la valeur de MTOP pour les options PROG3, PROG4, PROG5, PROG6.

Ces informations sont stockées par « PROG n » lors de son utilisation. Les 6 options s'utilisent seules et préalablement à une commande PROG par exemple. Elles sont utilisées pour configurer le 8052 AH BA-SIC lors de la procédure de RESET suivant l'option choisie. La syntaxe est toute simple:

PROG1 (CR) programme dans l'EPROM la vitesse de transmission utilisée. Elle permet à chaque RESET l'initialisation automatique du 8052 (en évitant de taper sur la barre d'espace pour le réveiller).

PROG2 (CR) réalise la même fonction que PROG1 et permet le lancement du premier programme stocké en EPROM à la procédure de RESET. Elle rend le 8052 tout à fait autonome afin de travailler sans la présence d'une console.

PROG3 (CR) réalise la même fonc-

tion que PROG1 et sauvegarde la valeur de MTOP.

PROG4 (CR) est une combinaison de PROG2 et PROG3.

PROG5 (CR) réalise la même fonction que PROG3 et oblige le MCS BASIC 52 à examiner l'adresse 5FH de la mémoire RAM externe lors de la procédure de RESET. Si elle ne contient pas la valeur 0A5H, le système peut effacer la mémoire RAM externe sinon il ne doit pas l'effacer.

PROG6 (CR) réalise la même fonction que PROG5 et scrute la mémoire programme externe à partir de l'adresse 4039H (où il peut y avoir un programme assembleur par exemple).

Comme vous pouvez le remarquer, ces options sont très intéressantes et certainement utilisables pour notre réalisation! A vous de les utiliser à bon escient!

■ RAPPEL, MODIFICATION, EXÉCUTION D'UN PROGRAMME

Maintenant que vous savez stocker un programme dans une EPROM, vous aimeriez bien le rappeler soit pour le modifier, soit pour l'exécuter. Pour cela, le MCS BASIC 52 possède 3 commandes « ès EPROM » pour ces actions : ROM x, XFER et RUN.

RAPPEL

La commande ROM s'emploie seule ou suivie d'un entier. Elle permet au 8052 AH BASIC de savoir qu'il va utiliser le programme contenu en ROM, dont le numéro de reconnaissance vient de lui être communiqué. Si la commande est utilisée seule, le numéro 1 sera pris par défaut.

Lorsque l'on veut sélectionner un programme, on tape « ROM » suivi du numéro précédemment attribué au programme par la commande PROG lors de son stockage. Le programme est simplement sélectionné, non modifiable ou éditable sans effectuer une autre commande BASIC.

TRANSFERT DE ROM EN RAM

La commande XFER, utilisée seule, transfert un programme précédemment sélectionné par la commande ROM vers la RAM (afin que vous puissiez lui faire subir toutes les modifications que vous désirez), et sélectionne le mode RAM. Ce mode est considéré comme le mode « normal » des opérations, car c'est le mode qui permet le plus d'interactions avec l'interpréteur BASIC. Cela nous amène à vous parler de la commande RAM qui, utilisée seule, place le 8052 AH BASIC en mode RAM ou lui indique qu'il doit travailler avec le programme contenu en RAM.

MODIFICATION

Si nous utilisons ce que nous venons de dire pour modifier un programme contenu en UVPROM, nous obtenons la procédure suivante:

 Avoir sous la main l'alimentation nécessaire au claquage de l'UV-PROM

— Tapez :

• ROM suivi du numéro du programme à modifier (CR)

XFER (CR)

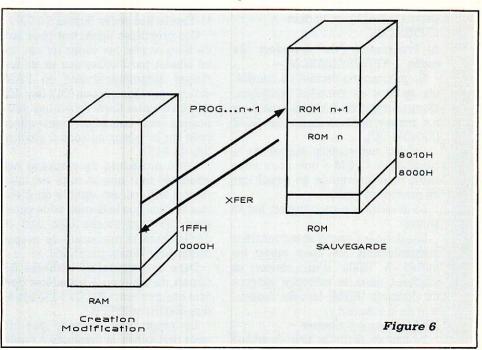
Le programme se trouve alors en RAM.

- Corriger le programme.
- Tapez :
- PROG (CR)

Le programme modifié se retrouve stocké bien sûr sous un numéro différent de celui de la première version qui n'a pas été écrasée (cf. principe d'effacement d'une UVPROM).

Si l'on résume ce que nous venons de dire précédemment pour modifier un programme, on obtient la **figure 6**:

La **figure 7** vous donne un exemple complet d'utilisation de ces commandes : vous avez déjà deux programmes BASIC stockés. L'action de « PROG » (CR) rendra le numéro 3.


> RAM READY > LIST 10 FOR I = I TO 10 20 PRINT I 30 NEXTI READY > PROG READY > LIST 10 FOR I = I20 PRINT I 30 NEXT I READY > Figure 7

EXÉCUTION

Pour lancer l'exécution d'un programme BASIC, vous utiliserez seule la commande RUN. Elle permet l'initialisation de toutes les variables à zéro, annihile toutes les interruptions précédemment utilisées avant le début de l'exécution.

Il est possible de lancer un programme BASIC, aussi bien depuis la RAM que de la ROM, grâce à cette commande. En partant d'une UVPROM, vous aurez auparavant sélectionné le programme par ROM x, ou tapé la commande condensée RROM x (ROM x + RUN).

Pour sortir d'un programme en cours d'exécution, vous pouvez soit agir sur le bouton de RESET, soit agir sur les touches CTRL C du cla-

vier qui arrèteront le programme en vous donnant la ligne où vous vous serez arrêté. Mais il vaut bien mieux concevoir des programmes qui se terminent normalement par un END. Ça fait plus « pro »!

Comme nous vous l'avons déjà expliqué, le 8052 AH BASIC est incapable d'accepter des instructions en assembleur. Aussi pour pallier cette carence, vous serez tôt ou tard obligé de rentrer quelques codes d'instruction en code machine (hexadécimal préalablement assemblé).

Ce sera notamment le cas pour ce qui concerne le logiciel d'interface I2C compte tenu de son aspect « temps réel » qui n'est pas facilement gérable au travers du BASIC.

De ce fait, il devient nécessaire de vous indiquer clairement comment mettre en mémoire ces types de programmes.

C'est donc dans ce but (non restrictif) que certains logiciels utilitaires ont été conçus.

RÉALISATION DE LOGICIELS UTILITAIRES

Ils se composent de différents programmes qui ont pour finalité de :

 transférer des codes de RAM en **EPROM UV**

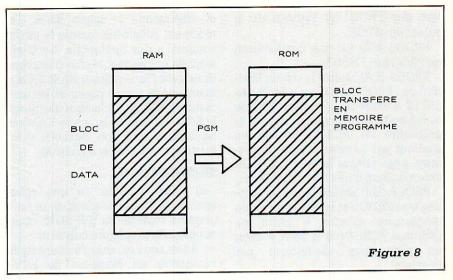
(programme baptisé « TRANSRAMROM »),

— lire le contenu (vérification...) de la mémoire externe EPROM du 8052 (programme baptisé « DUMP »).

Notons au passage que la construction du programme de l'interface soft 8052 AH BASIC/I2C est principalement basée autour du programme de transfert de codes depuis la RAM jusque dans l'EPROM UV.

A) Programme de transfert de codes — TRANSRAMROM —

Ce programme permet de transférer un bloc de données précédemment rentrées en RAM externe pour les ranger définitivement en ROM (EPROM UV).


Celui-ci est articulé autour de la commande « PGM » que nous vous avons déjà présentée en détail lors du précédent article.

Le principe de ce transfert est le suivant.

Les données sont d'abord rentrées manuellement les unes après les autres à l'aide d'un clavier et stockées dans la mémoire externe de données (RAM) lors de l'exécution de la fonction :

XBY (adresse) = donnée

Le bloc de données ainsi constitué

peut alors être transféré dans la « programme » (EPROmémoire MUV) en utilisant la commande BASIC du 8052 : « PGM », après avoir initialisé des mots réservés à cet effet dont les adresses sont dans la RAM interne du micro-contrôleur.

La figure 8 schématise le transfert de RAM en EPROM grâce à la commande PGM.

DESCRIPTIF DU PROGRAMME TRANSRAMROM

Ce programme se décompose en deux grandes parties bien distinctes. entrée des codes en hexadécimal en vue de leur stockage momentané en RAM après vérification préliminaire.

- gravure de l'EPROM UV par l'intermédiaire de la commande PGM.

L'organigramme et le listing de ce programme sont donnés figure 9.

1) Entrée des codes (lignes 5 à 70) :

Ces premières lignes ont pour but de faire rentrer les codes un par un au clavier par l'utilisateur et de les ranger automatiquement en RAM externe par l'instruction XBY (lig. 40) et, afin d'éviter toute erreur une vérification est immédiatement effectuée sur la valeur du code à stocker (lig. 45 à 55).

Cette procédure de stockage est effectuée tant que le code est inférieur à 255, ce qui signifie en d'autres termes que le dernier code entré sera 255 (non stocké bien sûr) et déclenchera le processus de préparation pour l'envoi par PGM.

Dans ce programme l'adresse de départ du contenu à transférer doit être compris entre MTOP+1 (c'est-àdire 3000H) et 3FFFH.

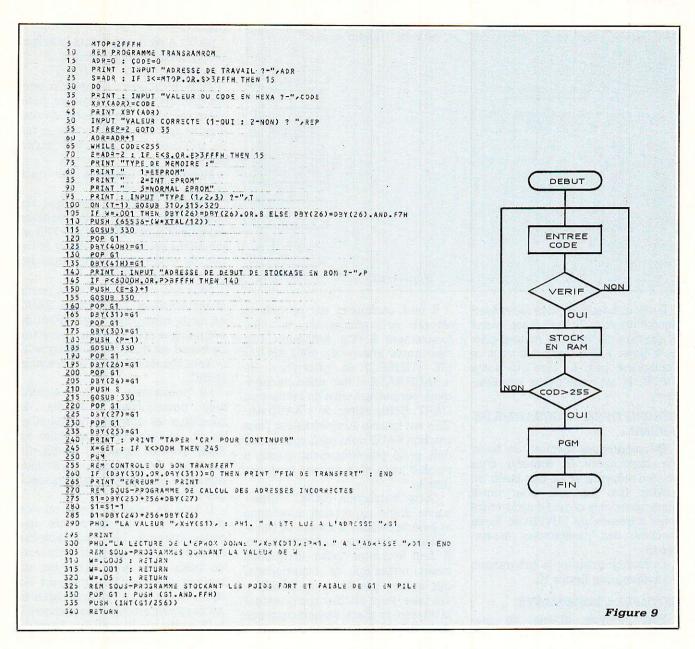
Le programme, n'ayant pas de goût particulier, la demande à l'utilisateur en ligne 20 et en teste sa valeur afin de vérifier qu'elle fait bien partie de la zone mémoire autorisée (MTOP + 1 à 3FFFH).

2) Gravure de l'EPROM (ligne 75 à la fin):

Cette seconde partie a pour but de permettre de programmer différents types de mémoires (EPROM UV...).

Afin de réaliser cela il est nécessaire que le programme tienne compte des spécificités de chacun des composants disponibles sur le marché (lig. 75 à 100).

Il faut donc indiquer au programme le type de mémoire que l'on souhaite graver par l'intermédiaire du paramètre « W », valeur qui est liée au temps d'écriture de la mémoire et qu'il faut lui fournir (lig. 315 à 325).


le 8052 AH BASIC En effet, envoyant des signaux de commande selon son propre logiciel de fonctionnement a besoin qu'on lui communique ce paramètre car il utilise un paramètre R dont la valeur est calculée en ligne 110 selon :

R = 65536 - (XTAL * W) / 12Cette valeur est alors transmise au sous-programme (lig. 330 à 340) par l'intermédiaire de la pile afin d'être découpé en deux octets dont les valeurs initialiseront les contenus des adresses 40H et 41H de la RAM interne (premières valeurs nécessaires pour lancer PGM).

Il faut aussi fournir l'adresse à partir de laquelle on souhaite commencer la gravure de l'EPROM UV.

Bien sûr il faut que celle-ci soit supérieure à 8000H et ceci au moins pour deux raisons :

— d'une part dans l'architecture que nous avons choisie, nous avons disposé les mémoires EPROM à par-

tir de cette adresse,

— et d'autre part le microcontrôleur ne sait graver tout seul les mémoires que si elles sont comprises entre les adresses 8000H et FFFFH, (taille maximale de la mémoire que nous nous sommes fixée précédemment (ligne 145)).

Puis on continue la série des initialisations des adresses mémoire RAM qui sont nécessaires à l'utilisation de PGM.

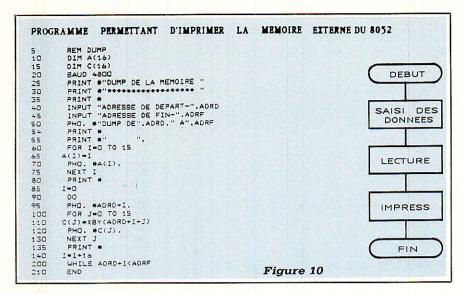
- Le nombre d'octets à programmer est stocké en 31H et 30H, (lignes 150 à 160),
- l'adresse de la PROM-1 (P-1) est stockée en 26H et 24H, (lignes 170 à 180),
- l'adresse source en RAMS est stockée en 27H et 25H, (lig. 190 à 195).

Toutes ces valeurs sont parfaitement conformes à nos précédentes explications concernant l'initialisation de la commande PGM qui est enfin lancée en ligne 240. Le programme donne alors le résultat de son travail.

Un test de bon fonctionnement est effectué en ligne 260 avec le cas échéant impression à l'écran du type d'erreur rencontrée (ligne 270...).

En effet, si les octets 30H et 31H contiennent la valeur 00, la programmation sera effectuée jusqu'au bout (il n'y a plus d'octets à transférer), sinon le programme calcule l'adresse source à laquelle il y a eu un problème (lig. 300) ainsi que l'adresse de l'EPROM correspondante et affiche les valeurs contenues dans ces adresses.

Ce problème arrive lorque la valeur contenue dans l'adresse de la PROM est de FF (signe que la EPROM n'a pas été claquée).


UTILISATION DE CE PROGRAMME

Pour lancer ce programme, il suffit de taper RROM suivi du numéro sous lequel vous l'avez sauvegardé.

Ce type de logiciel nous permet de transférer en mémoire programme un bloc de codes, précédemment mémorisé en RAM. Il va donc nous permettre de réaliser notre interface « soft » entre le 8052 AH BASIC et les composants du bus I2C.

Pour l'utiliser, il faut, bien sûr, avoir une série de codes en hexadécimal, sur 8 bits, à stocker. Il faut connaître l'endroit (en ROM) où l'on va stocker les codes et donc connaître parfaitement la place restant libre, sinon le programme détectera une erreur lors de la gravure de l'UV-PROM et tout votre travail sera perdu.

Il a donc besoin de tous ces renseignements pour l'initialisation avant la gravure. Il ne vous restera plus qu'à taper « CR » quand il vous le demandera pour lui dire que votre UV PROM est prête à être program-

DESCRIPTIF DU PROGRAMME DE « DUMP »

Ce programme permet de lister sur imprimante le contenu d'un espace mémoire et en particulier de vérifier (par exemple pour notre application), les codes stockés entre deux adresses de l'UVPROM (code machine des programmes assembleur).

L'organigramme et le programme sont donnés en figure 10.

NOTE SUR L'IMPRIMANTE

Pour pouvoir utiliser ce programme tel qu'il a été écrit, il faut bien évidemment une imprimante série commandée par le port P1.7 du microcontrôleur (l'une des trois broches utilisées pour la sortie RS232).

Il faut configurer sur ce port la vitesse de transmission, ou plus exactement il faut configurer l'un des timers interne du 8052 AH BA-SIC (TIMER 2) en générateur de « BAUD RATE » (ou débit numérique), permettant ainsi de réaliser un UART. Cette valeur de « BAUD RA-TE » est fournie au système par l'instruction BAUD dont nous vous avons déjà parlé précédemment. Aussi, il semble juste d'en donner quelques détails.

Cette instruction BASIC s'utilise suivie d'une expression numérique et permet de fixer la vitesse de transmission pour sortie sur imprimante. Il faut exécuter cette instruction avant utilisation de l'imprimante, dès qu'une procédure de RESET a été faite. Pour calculer correctement la vitesse, le cristal (valeur contenue dans XTAL) doit être correctement assigné.

Cette instruction peut aussi bien être utilisée en mode commande qu'en mode RUN. Sa syntaxe est la suivante:

BAUD A où A représente la valeur de la vitesse de transmission.

Exemple: BAUD 4800 (CR)

Ainsi, vous pourrez imprimer tous vos listings. N'est-ce pas un petit micro complet ? Il n'a besoin de rien d'autre pour vous rendre tout un tas de services. Et ce n'est qu'un début

Maintenant revenons au programme lui-même.

Dans le listing on voit que les codes sont transférés en mémoire « données » par XBY (ligne 110) et présentés par blocs de 16 sur le listing de sortie dont un exemple est fourni en figure 11.

Pour notre utilisation nous avons choisi d'utiliser l'instruction BAUD en mode commande et en début de programme, afin de ne pas l'omettre. La valeur est mise à 4800 en ligne 20 et sera conservée jusqu'au prochain RESET.

Le programme, n'ayant aucune idée personnelle, a besoin de connaître les adresses de début et de fin de l'espace de mémoire en ROM externe (lignes 40 et 45). Ce sont ces deux valeurs qu'il vous demande de lui fournir (en hexadécimal bien sûr).

Il fera sa mise en page en vue d'une sortie sur imprimante des codes attendus. Les deux tableaux A(16) et C(16) permettent cette mise en place. En effet, C(16) est un tableau de transfert contenant les codes à écrire sur chaque ligne et A(16) se voit attribuer les nombres 0 à 15 écrits sur la première ligne du DUMP en guise de repère de chaque colonne de codes.

UTILISATION DE CE PROGRAMME

Pour lancer ce programme, il suffit de taper RROM suivi du numéro sous lequel vous l'avez sauvegardé. Il est évident que l'imprimante doit être connectée avant le lancement du programme.

Voilà, c'est tout pour aujourd'hui, à bientôt.

D. PARET - M.L. CIBOT

```
DUMP DE 9EOOH A 9F10H
       00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 08H 0CH 0DH 0EH 0FH
                            92H C2H
EOH 12H
           90H D2H 91H D2H
                                     91H
 9E00H 02H
                                         90H
                                              30H
                                                  OOH
                                                      EOH
                                                           12H
                                                               9EH
                                                                   80H
                                                                       40H
                                                                   9EH FOH
           A3H EOH F9H A3H
                                     9EH 87H
                                              40H
                                                  02H
                                                      D9H F7H 12H
9E10H OCH
                            FFH FFH FFH
 9E20H 22H
           FFH
                FEH
                    FFH FFH
                                         FFH
                                              FFH
                                                  FEH
                                                      FFH FFH FFH
                                                                   FEH FEH
9E30H D2H
           90H
                D2H 91H D2H
                            92H C2H
                                     91H 90H
                                              30H 00H
                                                      EOH 12H
                                                               9EH 80H 40H
9E40H 3AH A3H E0H F9H
9E50H 92H C2H 91H 00H
                                                                   90H
                        A3H
                            EOH 12H
                                     9EH
                                         87H
                                              40H
                                                  30H
                                                      DOH
                                                           F7H
                                                               DIH
                                                                        DIH
                                                           12H
                                                               9EH
                                                                   SOH
                    DOH DOH
                                     90H
                                                                        40H
                            DOH DOH
                                              DOH EOH
                                         30H
                                                      04H
                             14H
                                          ОВН
                                                       9EH BOH
           90H 30H
                    03H
                        EOH
                                 ASH
                                     60H
                                                  12H
                                                                   9EH
                                                                        DOH
 9E60H 1AH
9E7OH FOH
                D9H
                    F6H 12H
                             9EH BOH
                                     12H
                                          9EH
                                              DCH FOH
                                                       12H
                                                           9EH
                                                               FOH
                                                                   22H
                                                                        FFH
           ASH
                                                                   9-4
           90H
                    OOH DOH
                             C2H
                                 92H
                                     7AH
                                          08H
                                              OOH
                                                  33H
                                                       92H
                                                           90H
                                                               02H
                                                                        DOH
 9E30H
       CZH
                OOH
                                                       92H OOH AZH 90H
                                                                        OOH
9E90H 00H
           DOH
                CZH
                    92H 00H
                             DAH F3H
                                     D2H
                                          90H
                                              OOH
                                                  D2H
                                                               FFH FFH
9EAOH
       CZH
           92H
                22H
                    FFH
                        FFH
                             FFH
                                 FEH
                                     FFH
                                          FFH
                                              FFH
                                                  FFH
                                                       FFH
                                                           FFH
                                 D2H
                                      92H
                                          OOH
                                              A2H
                                                   90H
                                                       00H
                                                           C2H
                                                               92H
                                                                    33H
                                                                        DAH
       7AH 08H E4H
                        90H 00H
9EBOH
                    D2H
                                                  FFH
                                      FFH
                                          FFH
                                              FFH
                                                           FFH
                                                               FFH
                                                                    FFH
                                                                        FFH
                FFH
                        FFH
                             FFH
9ECOH F2H
                    FFH
           22H
                                      HOO
                                          C2H
                                              92H
                                                  COH
                                                       22H D2H
                                                               90H 02H
                                                                        92H
PEDOH DOH
           CZH
                90H
                    D2H
                        92H
                             OOH
                                 OOH
                                                                        FFH
                                                               FEH FEH
                                      FFH
                                          FFH
                                              FFH
                                                  FFH
                                                       FFH
                                                           FFH
PEECH OOH OOH OOH
                    C2H
                        92H
                            .00H
                                 22H
                                                                        90H
                                                  DOH OOH OOH OOH D2H
                                 C2H
                                     90H 02H
                                              92H
SEEDH SOH
           3FH
                FEH
                    E4H
                        33H
                             FOH
           91H 22H FFH FFH FFH FFH FFH
                                          FFH
                                              FFH
                                                   FFH
                                                       FFH
                                                           FFH
                                                               FFH
                                                                    FFH
                                                                        FFH
9FOOH D2H
 Figure 11
```

Le dessin de circuits imprimés sur PC

Grâce à une constante baisse des prix, les compatibles PC sont devenus presque aussi abordables que les « familiaux », tout en offrant des avantages plus que significatifs.

De plus en plus nombreux sont donc ceux de nos lecteurs qui possèdent ce bel outil et qui souhaitent, quoi de plus normal, en tirer un maximum de satisfaction.

Ordinateur de classe professionnelle, le PC a accès à toute une bibliothèque de logiciels de très haut niveau, parmi lesquels les programmes de dessin de circuits imprimés arrivent en bonne place!

L'AMATEUR ET LA CAO

Nos lecteurs sont en grande partie des amateurs, dont les besoins et les moyens financiers n'ont rien de commun avec ceux des industriels de l'électronique. Doivent-ils pour autant ignorer superbement les vastes possibilités offertes par la CAO?

Si nous écrivons ces lignes, c'est évidemment qu'à notre avis la réponse est négative. Cet avis, nous le partageons avec un certain nombre de confrères : souvenez-vous de

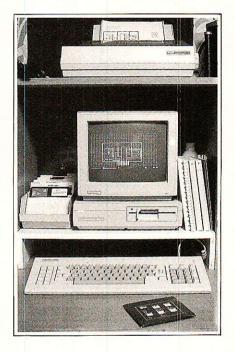
ces superbes logiciels pour AMS-TRAD CPC développés par le tandem « AC ».

Bien entendu, il est parfaitement possible de vivre sans CAO, tout comme on peut aussi se passer de téléphone, de voiture, de télévision, et pourquoi pas, d'électricité et d'eau courante. Le pastillage manuel a fait ses preuves, et certains professionnels ne jurent encore que par le ruban crêpé adhésif!

Le problème est en fait que la complexité des circuits imprimés augmente rapidement à mesure que circuits numériques et microprocesseurs envahissent nos réalisations ; il faut faire serpenter des pistes toujours plus fines entre les pastilles des circuits intégrés, exploiter toutes les ressources du « double face », et employer force connecteurs.

A l'échelle 1, l'exercice devient vite un calvaire. Passons donc à l'échelle 2 ou même 4, mais il faudra évidemment recourir à une réduction photographique avant la gravure. L'électronicien moyen n'est généralement pas équipé en conséquence, tandis que la réduction à la photocopieuse ne convient qu'à des tracés grossiers, relativement ceux-là mêmes que l'on peut fort bien dessiner à l'échelle 1!

Le principal avantage de la CAO est que l'utilisateur se trouve délivré de tout souci de précision graphique : les pistes les plus fines seront tracées impeccablement tant sur l'écran que sur le papier, selon les instructions données au clavier ou à la souris, tandis que les empreintes de composants de la «bibliothèque » peuvent être reproduites autant de fois que nécessaire avec la plus grande exactitude. De plus, sur l'écran, le « zoom » permet de travailler à une échelle commode, indépendante de celle qui sera adoptée en phase finale.


Tout le travail se faisant dans la mémoire de l'ordinateur, la suppression ou le déplacement de pastilles, de pistes, ou de pans entiers d'un dessin peuvent se faire par simple appui sur quelques touches: en général, quand on déplace un composant, les pistes qui y aboutissent suivent le mouvement!

Archivés sur disquettes, les tracés déjà dessinés peuvent être repris pour modification ou incorporation dans un nouveau dessin, sans manipulation de calques ou de films fragiles et ne vieillissant pas toujours très bien.

Bref, la vocation première d'un logiciel de CAO pour circuits imprimés est de remplacer la main de l'homme pour réaliser le tracé, en exécutant avec précision des commandes formulées selon un code simple.

Mais l'outil informatique peut faire encore beaucoup plus, par exemple décider à la place de l'opérateur du parcours d'une piste devant relier deux pastilles données : c'est ce que l'on appelle le « routage automatique ».

Les logiciels les plus performants permettent de créer des cartes extrêmement complexes en un temps record: c'est ainsi que de nouveaux produits (notamment périinformatiques) peuvent être com-

mercialisés très peu de temps après la naissance de l'idée, ce qui est souvent vital.

Evidemment, de tels outils capables de remplacer un ou plusieurs dessinateurs de haut niveau, coûtent cher: facilement amortissables par une entreprise, ils restent hors de portée de l'amateur.

En bas de la gamme (ce qui n'a rien de péjoratif) existent néanmoins des solutions offrant un excellent rapport qualité-prix, tout à fait susceptibles d'intéresser nos lecteurs.

PETITE REVUE DU MARCHE

Il suffit de commencer à prospecter en vue de l'achat d'un logiciel de CAO pour se rendre compte de l'extrême diversité des produits existants: depuis les programmes BASIC pour ordinateurs familiaux tenant sur deux pages d'une revue jusqu'aux systèmes professionnels de plusieurs dizaines de milliers de

Le dernier catalogue du CIRCUIT IMPRIMÉ FRANÇAIS contient une sélection de logiciels capables de répondre à pratiquement n'importe quel besoin, et « notés » de façon très instructive tant sur le plan des performances que du prix :

- catégorie 1 : prix inférieur à 2000 F

- DACIM de SIDENA
- catégorie 2 : de 2 000 à 7 000 F
- QUICK CIRCUIT de BISHOP GRA-PHICS

(pour MAC-INTOSH)

- catégorie 3 : de 7 000 à 15 000 F
- PCB TURBO de INSTAGRAPHIC
- INCAD
- catégorie 4 : de 15 000 à 65 000 F
- DOUGLAS PROFESSIONAL CAD-

(pour MAC-INTOSH)

• CAE

Il apparaît immédiatement que si les prix de la catérorie 1 sont du même ordre que ceux des logiciels courants pour PC (traitements de textes, tableurs, bases de données, etc.), ceux des catérories 3 et 4 peuvent allègrement dépasser celui de l'ordinateur lui-même. Et encore, le véritable routage automatique n'est guère disponible qu'en catégorie 4.

C'est d'ailleurs dans cette dernière catégorie que se placent pratiquement tous les logiciels « haut de gamme »: ORCAD-PCB, P-CAD, etc.

Pour en tirer convenablement parti, des investissements relativement lourds doivent aussi être consentis au niveau matériel : unité centrale largement pourvue en mémoire RAM, disque dur, carte et moniteur couleur haute résolution, table tracante.

C'est donc plus de 10 000 francs qu'il faut compter pour un système complet matériel + logiciel!

L'amateur dispose pour sa part le plus souvent d'un ordinateur qu'il ne peut guère se permettre de compléter par des accessoires trop coûteux : typiquement une unité centrale genre AMSTRAD PC 1512 ou COMMODORE PC 1, un moniteur au standard graphique CGA (couleur ou plus souvent monochrome), et une

imprimante matricielle possédant des possibilités graphiques qu'il ne faut pas sous-estimer.

Les logiciels des catégories 1 et 2 acceptent généralement de « sortir » sur imprimante, à l'échelle 1 ou 2. Evidemment, la qualité graphique ainsi obtenue n'atteint pas celle des tracés que nous vous offrons dans la revue : nous les obtenons sur table traçante professionnelle à l'aide d'un logiciel de haut de gamme dont vous profitez ainsi indirectement!

Avec un ruban à peu près neuf et sur un papier de bonne qualité (80 grammes pour photocopie à toner liquide, par exemple), les résultats sont néanmoins tout à fait honorables.

ECRIRE OU ACHETER?

Beaucoup de possesseurs de PC sont capables de programmer fort convenablement leur machine, et n'achètent que les « gros » logiciels qu'ils mettraient des mois ou des années à écrire seuls, à condition toutefois qu'ils existent à un prix acceptable.

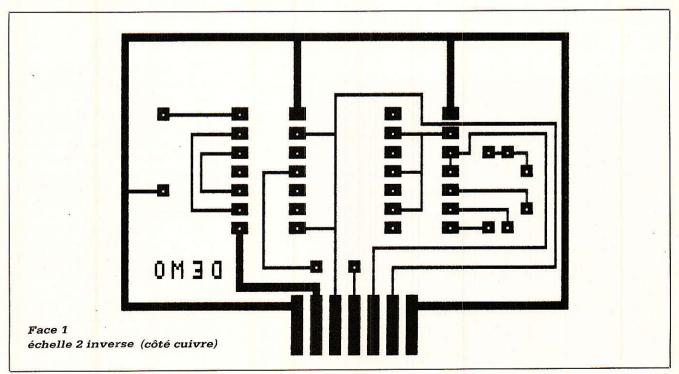
C'est dans cet esprit qu'est né DACIM: nos lecteurs connaissent certainement la Société SIDENA (117, rue de la Croix-Nivert, 75015 PARIS), dont nous avons largement utilisé les cartes d'entrée-sortie pour ordinateurs SINCLAIR puis ORIC. Développant des cartes de plus en plus complexes, les responsables de cette petite entreprise ont souhaité.

en 1986, s'équiper d'un système de CAO mais ont reculé devant les prix...

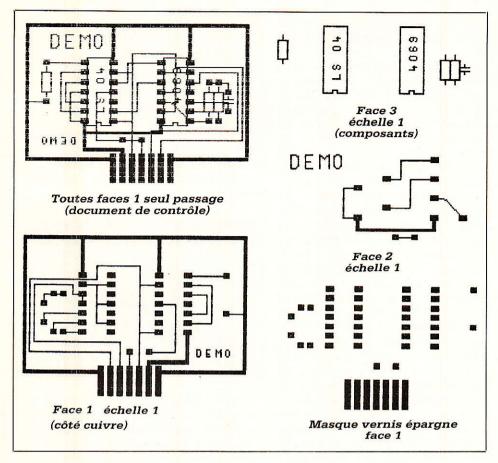
DACIM est donc un logiciel écrit par ses utilisateurs : il représente 2 500 lignes de TURBO-PASCAL et plusieurs mois de travail. L'amateur dispose donc d'une solution de rechange s'il ne souhaite pas s'atteler à une telle entreprise : DACIM est un produit jeune mais bien rodé, déjà utilisé par de nombreux professionnels aux movens modestes. En l'essayant, nous avons particulièrement apprécié la rapidité avec laquelle se fait sa « prise en main » : en deux heures de temps, l'opérateur est complètement familiarisé avec les commandes très simples, en langue française, de DACIM. Il ne lui reste plus qu'à ranger son matériel de dessin, qu'il réutilisera néanmoins à l'occasion : la CAO n'est en effet vraiment rentable que pour des tracés de complexité moyenne ou importante, pas pour implanter un 555 et quatre composants discrets!

Par contre, des assemblages simples de pastilles et/ou de pistes pourront avantageusement être saisis et enregistrés en bibliothèque: ces « composants » pourront à l'avenir être rappelés et introduits dans un dessin plus complexe.

A la limite, des symboles de composants peuvent même être définis et utilisés pour tracer des schémas de principe simples : DACIM permet même d'y ajouter des textes alphanumériques.


■ PRENONS LES COMMANDES

Quel que soit le logiciel utilisé, l'écran reproduit généralement la grille de 2,54 mm sous la forme de points qu'il est possible d'éclipser lorsque l'on souhaite ne voir que le tracé. Il est important que pastilles et composants puissent être positionnés avec un décalage par rapport à cette grille (composants « hors pas »).



Des « menus » montrant les commandes disponibles sont parfois incrustés dans cet écran (PCB TUR-BO) mais il est souvent plus confortable d'appeler une page d'aide lorsque l'on a oublié le libellé d'un ordre : toute la surface de l'écran reste alors disponible pour le tracé (DACIM).

Un curseur peut être déplacé sur tout l'écran grâce aux touches fléchées du clavier ou, plus rarement, à l'aide d'une « souris ». L'écran luimême n'est qu'une « fenêtre »

ouverte dans une «feuille» bien plus grande : cette fenêtre peut être déplacée à loisir, et l'échelle modifiée pour avoir soit une vue d'ensemble de la carte, soit un « zoom » sur la zone de travail.

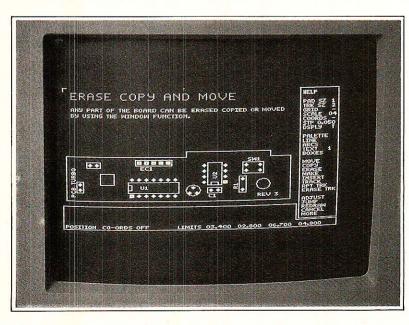
Poser une pastille est une opération simple, qui se résume en fait à amener le curseur là où il faut la dessiner, et à en choisir le type. Des assemblages de pastilles sont normalement disponibles en bibliothèque, ce qui permet par exemple de

n'avoir à taper que L CI40 pour dessiner l'empreinte d'un boîtier DIL à 40 broches. Ledit boîtier pourra ensuite, tout comme une simple pastille, être supprimé ou déplacé à volonté par des commandes simples: il suffit de prendre l'habitude de bien « pointer » avec le curseur la pastille « origine » du composant (ne pas changer de convention en cours de travail!).

Bien entendu, l'utilisateur peut définir lui-même les motifs qu'il utilise fréquemment, et les enregistrer en bibliothèque.

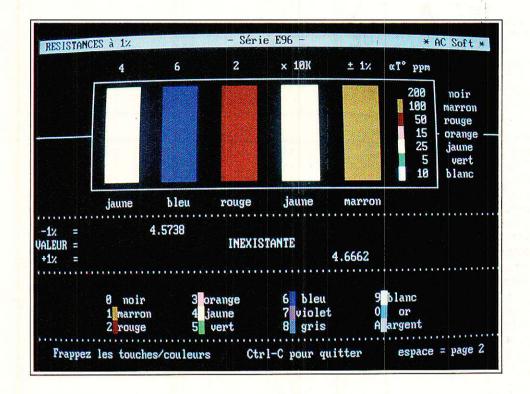
C'est toujours en déplaçant le curseur que l'on définit le tracé des pistes devant relier les pastilles : après avoir rendu le curseur « marquant », il suffit de l'amener à destination pour que la piste le « suive » fidèlement, soit tout droit, soit obliquement. Il est généralement préférable de passer par des points intermédiaires auxquels les « vecteurs » pourront être raccordés à angle droit : les obliques sont en effet quelque peu « dentelées » lorsque l'on « sort » sur imprimante.

A tout moment en cours de travail et évidemmennt en fin de dessin, le tracé peut être sauvé sur disquette. C'est là qu'on ira le chercher avec le programme d'impression, souvent séparé du logiciel principal mais évidemment fourni sur le même disque. DACIM est ainsi livré avec DACLPT (sortie sur imprimante) et DACPLOT (sortie sur table tracante). Les documents de contrôle peuvent être imprimés en une seule passe de la tête d'impression, mais pour le « bon à graver », on aura intérêt à demander un double passage (comme en impression de textes de « qualité courrier »)


Les meilleurs résultats sont obtenus en imprimant à l'échelle 2 puis en réduisant photographiquement, mais il est très suffisant d'imprimer à l'échelle 1 et de tirer un film « contact ». Avec certains rubans d'imprimante, il est même possible d'imprimer directement sur du papier calque!

CONCLUSION

La CAO est un outil puissant et confortable mis à la disposition tant des professionnels que des amateurs. Les besoins et les moyens de ces deux catégories d'utilisateurs étant fort différents, des logiciels extrêmement divers ont été développés, permettant de tirer le meilleur parti de toutes les configurations matérielles, des plus simples aux plus complètes.


Pour l'amateur, les systèmes les plus économiques offrent des performances déjà très satisfaisantes, comme il est facile de s'en convaincre en se procurant, pour une dépense très minime, quelques disquettes de démonstration. Mais attention: essayer la CAO, c'est bien souvent l'adopter...

Patrick GUEULLE

Les résistances à 1%

(ou Pc fait de la résistance)

A l'heure où les « 1% » sont devenues financièrement abordables, il n'est peut être pas inutile de préciser quelques éléments relatifs à leur identification. Le passage de la série E12 à la E96 nécessite une gymnastique pas si évidente que cela, même si le code des couleurs reste le même. Nous allons tenter d'aider ceux d'entre vous qui ne sont pas familiarisés avec ces composants de précision, et ce de deux manières:

- En extrayant pour eux l'essentiel des normes (auxquelles nous ajouterons quelques remarques personnelles).
- En proposant un soft pour IBM-PC et compatible (GWBASIC), dont l'aspect éducatif n'échappera à personne.

POUR QUELQUES CERCLES DE PLUS...

Nous ne parlerons pas des résistances de précision marquées en clair qui ne justifient aucun commantaire. Par contre, le rajoût brutal de deux cercles de couleur aux quatres bien connus force à changer les habitudes. Il n'était pas possible de faire autrement pour coder des valeurs comportant au moins trois chiffres significatifs. Exemples:

- 27 k Ω : un cercle rouge, un cercle violet et un orange suffisent.

 $-27.4 \text{ k}\Omega$ est impossible à coder avec trois cercles: celà impose l'ajoût d'au moins un cercle. Ainsi, on verra rouge/violet/jaune/rouge.

De quoi dérouter ceux qui ne travaillent pas tous les jours avec ce genre de produit!

C'est cette tolérance qui impose la série E96 dont l'échelonnement se trouve en figure 1.

Notons tout de suite que ce qui va être dit concernant le codage est également applicable aux séries E48 et E192. En effet, c'est à partir de la E48 (2 %), qu'un troisième chiffre significatif est indispensable.

Sauf spécification particulière, on peut considérer la E96 comme « réductible » à une série E24, dont les éléments bénéficieraient à la fois de valeur précises et de la stabilité en température, souvent plus importante que la précision.

Ainsi, en théorie..., celà se résumerait aux deux premières colonnes du tableau de la figure 2.

La deuxième colonne comporte les deux valeurs les plus proches de la série E24, et les « * » attirent l'attention sur celles que l'on cherchera à retenir. MAIS...

Il s'avère que certains fabricants construisent des résistances à 1 % aux valeurs nominales de la E24. C'est parfait, mais il faut le savoir, car cette façon de faire n'est pas mentionnée dans les normes.

C'est pourtant une excellente initiative, car si vous cherchez une 430 k Ω par exemple, en E96 (1 %) la valeur la plus proche est 432 k Ω .

En E192 (0.5 %), elle sera toujours de 432 k Ω (on passe de 427 à 432).

C'est ainsi que les 18 valeurs qui ne font pas partie des manuels, s'ajoutent à la E192, et créent une « E210 » pour notre plus grand plai-

La troisième colonne de notre tableau, isole ces 18 valeurs. Une étoile « * » repère celles qui appar-

		RESISTA	NCES à	1%: 1a	série E96		
100	133	178	237	316	422	562	750
102	137	182	243	324	432	576	768
105	140	187	249	332	442	590	787
107	143	191	255	340	453	604	806
110	147	196	261	348	464	619	825
113	150	200	267	357	475	634	845
115	154	205	274	365	487	649	866
118	158	210	280	374	499	665	887
121	162	215	287	383	511	681	909
124	165	221	294	392	523	698	931
127	169	226	301	402	536	715	953
130	174	232	309	412	549	732	976
	Figure 1						

r:	~~~	
L.I	gure	-

E24	E96	E24 1%	NOMENCLATURE 1%
100	* 100	E12	100
110	* 110		110
120	* 121 118	* 120 E12	120 121 (118)
130	* 130 127		130
150	* 150	E12	150
160	* 162 * 158	* 160	160 162 (158)
180	* 182 * 178	* 180 E12	180 182 (178)
200	* 200		200
220	* 221 215	220 E12	220 221 (215)
240	* 243 * 237	* 240	240 243 (237)
270	274 * 267	270 E12	270 (274) 267
300	* 301 294	300	300 301 (294)
330	* 332 324	330 E12	330 332 (324)
360	365 * 357	360	360 (365) 357
390	* 392 383	390 E12	390 392 (383)
430	* 432 422	430	430 432 (422)
470	* 475 464	* 470 E12	470 475 (464)
510	* 511 499	510	510 511 (499)
560	* 562 549	560 E12	560 562 (549)
620	634 * 619	620	620 (634) 619
680	* 681 665	680 E12	680 681 (665)
750	* 750 732		750
820	* 825 806	820 E12	820 825 (806)
910	931 * 909	910	910 (931) 909

Figure 2

tiennent aussi à la série E192. La quatrième et dernière colonne récapitule les trois alternatives possibles : celle de la E24, et les deux de la E96 qui l'encadrent, avec entre paranthèses, celle que l'on cherchera à éviter.

Pas évident de passer à 1 %, ditesvous? Si!, et vous allez vite vous y sentir en terrain connu.

Avant de donner les règles d'identification (qui respectent le code des couleurs classique), nous allons attirer votre attention sur une particularité visible dans le tableau précédent, et ce grâce à la mention E12 ajoutée entre les colonnes 3 et 4 :

En effet, il faut bien reconnaitre que dans la plupart des cas, la série E12 convient parfaitement, et l'appel à la E96 ne doit faire qu'en cas d'absolue nécessité.

Si seule la stabilité en température vous conduit à ce choix, nous vous suggérons de choisir de préférence les valeurs évitant de destabiliser par trop le code connu.

Conserver des vieilles habitudes le réflexe des deux premiers cercles de couleur (de 560 à 562, « 56 » reste commun), est bien sympathique.

Exemple: en E96, la valeur 360 n'existe pas; il faut choisir entre 357 et 365. 357 est la valeur la plus proche mais nous vous conseillons d'opter pour 365 car de 360 à 365, « 36 » reste inchangé alors qu'il n'en est pas de même de 357 à 360.

Voyons maintenant la signification

des six cercles de couleur illustrée par la figure 3.

- * 1, 2 et 3 donnent les trois premiers chiffres significatifs (mantisse)
- * 4 indique le multiplicateur (en puissance de 10)
- * 5 donnent la tolérance
- * 6 le cœfficient de température.

Cette même figure présente également toutes les possibilités que vous pouvez rencontrer.

Si l'on part du principe que les résistances qui vous sont proposées sont de 1 %, 50 ppm, les cercles 5 et 6 seront respectivement Brun/Rouge.

Restent 4 cercles (trois pour la valeur + un multiplicateur) pour tout connaître de ce composant. Ainsi :

vivement recommandée mais pas impérative: le nom de chaque couleur est rappelé partout où un problème pourrait se présenter. Nous reviendrons plus en détails sur la figure 4 mais voyons d'abord à quoi sert ce programme, nommé E96.BAS.

1° — Vous entrez les trois chiffres significatifs et le multiplicateur — en respectant le code des couleurs : 0 = noir, 1 = brun, 2 = rouge... — et le soft affiche la valeur de votre résistance.

OU

2º — Vous choisissez une valeur dans la série E96 présentée à l'écran, et vous obtenez les couleurs correspondantes.

Brun 1	1	Noir 0	/	Noir 0	/	Rouge ×10 ²	1	Brun 1 %	/	Rouge 50 ppm	10 kΩ
Vert 5	1	Bleu 6	1	Rouge 2	1	Or × 0,1 (10 ⁻¹)	1	Brun 1 %	1	Rouge 50 ppm	56,2 Ω
Vert 5	1	Bleu 6	-/	Rouge 2	1	Noir × 1 (100)	/		=	562 Ω	
Vert 5	1	Bleu 6	/	Rouge 2	/	Brun × 10 (10¹)	1		=	5,62 kΩ	
Vert 5	1	Bleu 6	1	Rouge 2	1	Argent × 0.01 (10-2)	1		=	5,62 Ω	

Ces quelques exemples devraient vous permettre de remarquer qu'il faudra vite changer le vieux réflexe qui consistait à « peser » la résistance en observant son multiplicateur.

C'est ainsi qu'un cercle Orange en E12/24 annonce la gamme des dizaine de $k\Omega$, en E48/96/192 c'est la centaine de $k\Omega$...!! Ceci est dû à la présence du troisième cercle, qui multiplie déjà par 10.

Les avantages sont évidents : les atténuateurs seront précis, les gains dans les mélanges parfaits, etc. De plus ce choix aide à une bonne stabilité en température.

Le dernier conseil, que nous donnerons à ceux qui ne maîtrisent pas encore parfaitement cette nouvelle lecture, est de n'avoir pas honte de vérifier les valeurs au multimètre, avant d'implanter et souder sur un CI double-faces OU...

POUR QUELQUES LIGNES DE PLUS...

Si votre ohmmètre ne possède pas de changement de gamme automatique, la tâche est lourde, aussi, nous vous proposons la frappe du listing de la **figure 4**.

Il est destiné aux possesseurs de compatibles IBM-PC et la couleur est E96 dispose de deux « pages » commutables par une simple touche. La page 1 attend les couleurs, la page 2, les valeurs.

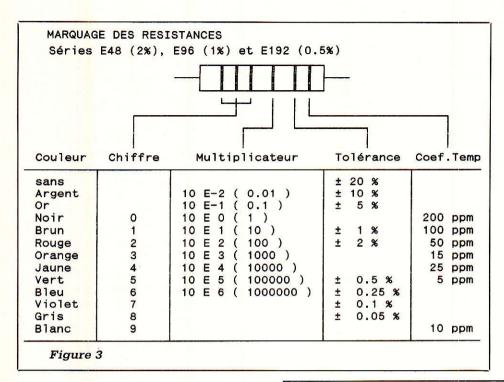
Leur point commun est le dessin

d'une résistance dont l'un des cercles est déjà défini : celui de la tolérance, peint en marron puisqu'il s'agit de « 1 % ». Le dernier cercle n'en n'est pas vraiment un ; il rappelle les différentes valeurs du cœfficient de température.

Après un RUN, vous êtes dans la page 1; fonction: entrée des couleurs (la touche « ESPACE » permet de passer immédiatement en page 2). Le code des couleurs est affichée en bas de l'écran et la saisie est contrôlée:

- Le noir (0) est interdit pour le premier cercle.
- L'or (O) et l'argent (A) ne sont autorisés que pour le multiplicateur mais ce 4° cercle interdit le violet (7), le gris (8) et blanc (9).

Quand les quatres couleurs ont été entrées, la valeur de la résistance s'affiche au centre de l'écran, ainsi que ses limites à -1 % et +1 %.


Pour effectuer une nouvelle saisie, vous devez taper RETURN, qui efface couleurs et valeurs.

Il se peut que les cercles donnés ne correspondent à aucune valeur de la série E96, dans ce cas on affiche « INEXISTANTE », mais les limites s'inscrivent quand même.

A la fin d'une saisie (ou avant d'en débuter une nouvelle), la touche ESPACE commute sur la page 2.

		4	6		4	x	10K	± 1×	αΤ	ppm	
4.5936 1.64 MR 4.6864									2000 Emily (1900)	200 100 50 15 25 5	noir marro rouge orang jaune vert blanc
	jaı	me	ble		jaune	ja	une	marro	n		
100	121	147	178	215	261	316	383	>464	562	681	825
102	124	150	182	221	267	324	392	475	576	698	845
105	127	154	187	226	274	332	402	487	590	715	866
107	130	158	191	232	280	340	412	499	604	732	887
110	133	162	196	237	287	348	422	511	619	750	909
113	137	165	200	243	294	357	432	523	634	768	931
115	140	169	205	249	301	365	442	536	649	787	953
118	143	174	210	255	309	374	453	549	665	806	976

remplacé par 0 (noir), et le multipli-

Le soft vous signale que cette valeur n'existe pas, vous passez en page 2 et tapez RETURN : on affiche la valeur immédiatement supérieure en E96, si vous n'oubliez pas de taper «- » pour diviser le multiplicateur par 10.

Pour finir avec l'utilisation de « E96 », signalons que le clavier doit être en mode majuscule, et que pour sortir, il faut taper CONTROL-C, en page 1.

Avant de nous quitter, jetons à nouveau un œil en figure 4. Certains symboles présents dans le listing ne figurent pas sur le clavier : « +/- » et « alpha » en ligne 140 s'obtiennent avec ALT enfoncé et 241 pour le premier, 224 pour le second, sur le pavé numérique. Le « ohm » (lignes 1100 à 1120) = ALT + 234.

Certaines formules de calcul -

Le symbole «> » (supérieur) pointe dans le série E96 la valeur trouvée en page 1, ou la valeur immédiatement supérieure si celle-ci n'existait pas. En tapant RETURN, vous affichez les couleurs correspondant à la valeur pointée.

Le multiplicateur est celui donné en page 1 mais vous pouvez le faire varier à l'aide des touches « - » et (+), entre 0,01 (argent) et 10E6 (bleu). Le « poids » résultant de la résistance est affiché à gauche, avec au-dessus -1, % et en-dessous +1 %.

Mais les fonctions de la page 2 ne s'arrêtent pas là :

Les flèches curseur-haut et curseur-bas déplacent le pointeur respectivement vers le début et la fin de la liste, valeur par valeur, et les flèches droites et gauches le déplacent colonne par colonne. RETURN pour « afficher la couleur », « +/- » pour modifier la gamme sont bien sûr toujours disponibles.

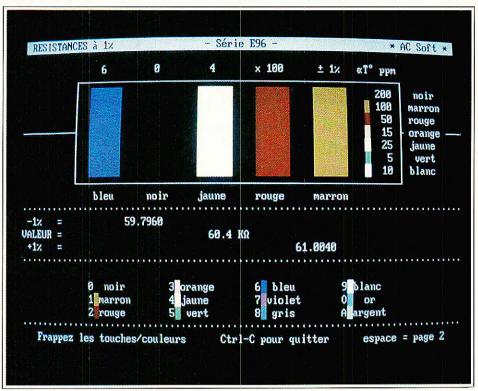
Vous pouvez ainsi trouver rapidement la résistance 1 % la plus proche du résultat d'un calcul, en prenant en compte ses limites.

Pour retrouver la page 1, frappez ESPACE.

Le programme peut aussi servir à établir des correspondances entre séries. Par exemple, il vous faut une 330 kΩ 1 % :

En E24, cela s'écrit orange/ orange/jaune. Vous tapez (en page 1) les deux premiers chiffres, le 3e cercle — inexistant en E24 — sera

```
10 ' E96. BAS * AC Soft 1989 *
  20 SCREEN 0,0,0,0:ENCRE=7:FOND=0:COLOR ENCRE,FOND:CLS:KEY OFF
40 SCREEN 0,0,0:COLOR ENCRE+16:PRINT "Veuillez patienter ... ":COLOR ENCRE
50 DIM C$(11),CC(11):RESTORE 60:FOR I=0 TO 11:READ C$(1),CC(1):NEXT
60 DATA "noir ",00, "marron",06, "rouge ",04, "orange",12, "jaune ",14, "vert ",02
70 DATA "bleu ",01, "violet",05, " gris ",08, "blanc ",15, " or ",03, "argent",07
80 DATA "200", "100", "50", "15", "25", "5", "10"
90 '
100 PRINT "Dessin résistance"
110 FOR PAGE=1 TO 2:SCREEN 0, PAGE, 0
120 CLS:COLOR FOND, ENCRE:PRINT " RESISTANCES à 1%";TAB(35);"- Série E96 -";
130 PRINT TAB(68);"* AC Soft * ":COLOR ENCRE, FOND
140 PRINT:PRINT TAB(46);"× ± 1% aT° ppm"
150 PRINT TAB(11);CHR$(218)+STRING$(57,196)+CHR$(191)
160 RESTORE 80:FOR I=0 TO 6:READ T$:PRINT TAB(11);CHR$(179);:COLOR CC(1)
170 PRINT TAB(54);STRING$(6,219);:COLOR CC(I):PRINT TAB(63);CHR$(219);";
180 COLOR ENCRE:PRINT T$+" "+CHR$(179)+" "+C$+(I):NEXT
190 PRINT TAB(11);CHR$(192)+STRING$(57,196)+CHR$(217)
200 LOCATE 8.1:PRINT STRING$(10.196)+CHR$(180)
   200 LOCATE 8,1:PRINT STRING$(10,196)+CHR$(180)
210 LOCATE 8,69:PRINT CHR$(195):LOCATE 8,78:PRINT STRING$(3,196);
   220 COLOR CC(9):LOCATE 11,63:PRINT CHR$(219):COLOR ENCRE:LOCATE 11,71
230 PRINT C$(9):PRINT:PRINT TAB(54);C$(1):PRINT STRING$(80,249)
240 NEXT PAGE
250 '
260 SCREEN 0, 0, 0. 0:LOCATE 2, 1:PRINT "Définition page 1"
270 SCREEN 0, 1, 0:LOCATE 15, 1
280 PRINT "-1% =":PRINT "VALEUR =":PRINT " +1% =":PRINT STRING$(80, 24)
290 J=14:FOR I=0 TO 9 STEP 3:LOCATE 20, J:PRINT RIGHT$(STR$(I), 1);
300 COLOR CC(I):PRINT CHR$(219);:COLOR ENCRE:PRINT C$(I);:J=J+15:NEXT
310 J=14:FOR I=1 TO 10 STEP 3:LOCATE 21, J:PRINT RIGHT$(STR$(I), 1);
320 COLOR CC(I):PRINT CHR$(219);:COLOR ENCRE:PRINT C$(I);:J=J+15:NEXT
330 J=14:FOR I=2 TO 11 STEP 3:LOCATE 22, J:PRINT RIGHT$(STR$(I), 1);
340 COLOR CC(I):PRINT CHR$(219);:COLOR ENCRE:PRINT C$(I);:J=J+15:NEXT
350 LOCATE 21, 59:PRINT "O":LOCATE 22, 59:PRINT "A":PRINT STRING$(80, 249);
360 PRINT TAB(4); "Frappez les touches/couleurs Ctrl-C pour quitter";
   240 NEXT PAGE
                                                                                                                                                                                                                                          =":PRINT STRING$(80, 249)
   360 PRINT TAB(4); "Frappez les touches/couleurs
370 PRINT " espace = page 2"; :EFF=-1
  380 '
390 SCREEN 0, 0, 0:LOCATE 2,1:PRINT "Définition page 2"
400 SCREEN 0, 2,0:RESTORE 460
410 CL=5:FOR I=0 TO 95 STEP 8:FOR J=0 TO 7:READ E96
420 LOCATE J+15, CL:PRINT E96:NEXT:CL=CL+6:NEXT:PRINT STRING$(80, 249);
430 LOCATE 24,4:PRINT "Flèches = choix val. Return = couleurs";
440 PRINT " +/- = unités espace = page 1";
450 LG=15:CL=5:X=2:LOCATE 8,2:PRINT SPACE$(9)
  460 DATA 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143
470 DATA 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210
480 DATA 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309
490 DATA 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453
500 DATA 464, 475, 487, 499, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665
510 DATA 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 953, 976
  530 SCREEN 0, 1, 1 ' programme page 1
540 K$=INKEY$:IF K$="" THEN 540 ELSE K$=RIGHT$(K$, 1)
550 IF ASC(K$)=3 THEN SCREEN 0, 0, 0, 0:KEY ON:END
560 IF K$=" " THEN 780 ELSE IF K$=CHR$(13) THEN 730
   570 IF NOT EFF THEN 540
580 IF K$<"1" OR K$>"9" THEN 540 ELSE N=VAL(K$):RES=N*100:C=0:GOSUB 990
```


ligne 660 par exemple — utilisent l'exposant, représenté par un accent circonflexe :

En ce qui concerne les couleurs, un réglage du contraste sera peut être nécessaire pour obtenir les teintes adéquates, sauf pour l'or, qui décidément est difficile à trouver! Il est remplacé par du bleu ciel.

Si pour des raisons diverses (convenance ou message d'erreur du BASIC), vous désirez changer les couleurs affichées, reportez-vous aux lignes 60 et 70. On y trouve le nom de la couleur, suivi de son numéro (celui-ci n'a rien à voir avec le code des résistances), qui peut être modifié mais doit toujours comporter deux chiffres.

Enfin, pensez que la comparaison des longueurs des lignes du listing les unes par rapport aux autres est un moyen efficace de « débugging ».

590 FOR J=0 TO 1 600 K\$=INKEY\$:IF K\$="" THEN 600 610 IF K\$<"0" OR K\$>"9" THEN 600 ELSE N=VAL(K\$):RES=RES+N*10^(1-J)


```
610 IF K$<"0" OR K$>"9" THEN 600 ELSE N=VAL(K$):RES=RES+N*10^(1-J)
620 C=J+1:GOSUB 990:NEXT
630 K$=INKEY$:IF K$="" THEN 630
640 IF (K$<"0" OR K$>"6") AND (K$<>"A" AND K$<>"0") THEN 630
650 IF K$="A" THEN N=-2 ELSE IF K$="0" THEN N=-1 ELSE N=VAL(K$)
660 X=N:TEMP=RES:RES=RES*10"N:C=3:GOSUB 1030:GOSUB 1100:I=0:RESTORE 460
670 READ E96:IF (E96>=TEMP OR I=95) THEN 680 ELSE I=I+1:GOTO 670
680 LG=(I MOD 8)+15:CL=(I\8)*6+5:IF E96<>TEMP THEN RES$="INEXISTANTE"
690 LOCATE 15, 20:PRINT USING"###. ####";RES-(RES/100)
700 LOCATE 17, 50:PRINT USING"###. ####";RES+(RES/100)
720 EFF=0:GOTO 540
 720 EFF=0:GOTO 540
730 FOR C=0 TO 3:LOCATE 3,C*10+14:PRINT SPACE$(6)
 740 COLOR CC(0):FOR I=5 TO 11:LOCATE I, C*10+14:PRINT STRING$(6,219):NEXT 750 COLOR ENCRE:LOCATE 13, C*10+14:PRINT SPACE$(6):NEXT:LOCATE 3, 46:PRINT "×" 760 FOR I=15 TO 17:LOCATE I, 20:PRINT SPACE$(38):NEXT:EFF=-1:GOTO 540
770 '
780 SCREEN 0, 2, 2 ' programme page 2
790 LOCATE LG, CL:PRINT ">"
800 K$=INKEY$:IF K$="" THEN 800 ELSE K$=RIGHT$(K$, 1)
810 LOCATE LG, CL:PRINT " ":IF K$=" " THEN 530
820 IF K$="H" THEN LG=LG-1 ELSE IF K$="P" THEN LG=LG+1
830 IF LG=14 THEN LG=LC:CL=CL-6 ELSE IF LG=23 THEN LG=15:CL=CL+6
840 IF K$="K" THEN CL=CL-6 ELSE IF K$="M" THEN CL=CL+6
850 IF CL=-1 THEN CL=71 ELSE IF CL=77 THEN CL=5
860 IF K$=CHR$(13) THEN GOSUB 920
870 IF K$="-" AND X>-2 THEN X=X-1:GOSUB 940
880 IF K$="+" AND X<6 THEN X=X+1:GOSUB 940
890 GOTO 790
  890 GOTO 790
  900
  910 'sous programmes
920 R=0:FOR C=0 TO 2:N=VAL(CHR$(SCREEN(LG,CL+C+1))):GOSUB 990
930 R=R+N*10^(2-C):NEXT
 930 K=R+N*10 (2-U):NEX1
940 C=3:N=X:GOSUB 1030:RES=R*10^X:GOSUB 1100
950 LOCATE 6,2:PRINT USING"###.####";RES-(RES/100)
960 LOCATE 8,2:PRINT SPACE$(8):LOCATE 8,2:PRINT RES$
970 LOCATE 10,2:PRINT USING"###.####";RES+(RES/100):RETURN
  980
  990 LOCATE 3, C*10+15:PRINT N
1000 COLOR CC(N):FOR I=5 TO 11:LOCATE I, C*10+14:PRINT STRING$(6, 219):NEXT
   1010 COLOR ENCRE:LOCATE 13, C*10+14:PRINT C$(N):RETURN
 1020 '
1030 IF N=0 THEN N$=" × 1 " ELSE IF N=1 THEN N$=" × 10 "
1040 IF N=2 THEN N$="× 100 " ELSE IF N=3 THEN N$=" × 1K "
1050 IF N=4 THEN N$="× 10K " ELSE IF N=5 THEN N$="× 100K"
1060 IF N=6 THEN N$=" × 1M " ELSE IF N=-1 THEN N$=" × 0.1":N=10
1070 IF N=-2 THEN N$="× 0.01":N=11
1080 LOCATE 3, C*10+14:PRINT N$:GOTO 1000
   1020
   1100 IF RES<10^3 THEN U$="9"
  11100 IF RES\10 3 THEN RES=RES/10^3:U$="K\O"
1110 IF RES\=10^3 THEN RES=RES/10^3:U$="M\O"
1120 IF RES\=10^3 THEN RES=RES/10^3:U\$="M\O"
1130 RES\$=STR\$(RES)+" "+U\$:RETURN
   1150 * *** Fin du listing ***
```

CONCLUSION

Il ne vous reste plus qu'à vous équiper de 96 casiers pour ranger vos nouvelles connaissances, avant de passer à la E192...

(C'est une mise en boîte!)

Alain CAPO et Jean ALARY.

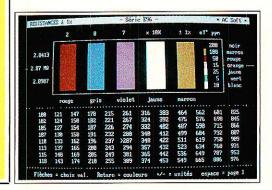


Figure 4

VOTRE Circ. Imp.

CHEZ MATEK de 9 h à 12 h et 14 h à 19 h du lundi au samedi

Tél. 54,27,69,18

PARÇAY 36250 SAINT-MAUR

Circ. Imp. (V.E. percés, étamés), S.F. 30 F/dm² D.F. 40 F/dm²

omposants Electroniques

ACTUALITES	ACTUALITES	ACTUALITES	ACTUALITES		
4060 4.80	2716 56.00	1 N 4148 0.30	DMT 7000, 20 A		
4066 2,70	2764 37,00	LED JRV O 3 . 1 00	2000 points		
4011 2,30	2732 25.00	LED JRV 0.5 1.00	Affichage 19 mm		
4013 2.30	41256120,00	PERITEL M	= 000 :		
4053 4,30	4164 29,00		ERUU		
	DL470 18,00	Câble VIDEO 5C 10,00	•		
052 4,50	DI 450 20.00	Transfo 5 VA 36,00			
093 2.70	TDA4565 37,00	2 × 6, 2 × 15, 10 VA 53,00			
520 4,30		2 × 9, 2 × 24, 16 VA 62,00			
1040 4,30	Self 100 µH	2 × 12 2 × 18, 26 VA 63,00	23 1		
1020 5,00	TDA2593 12,00	SUP. CI 2 × 4 0,70			
1584 4,30	TDA1950 29,00	SUP. CI 2 × 7 1.20	Transistormètre, capacimètre,		
5,20	TEA2014 21.00	SUP CI 2 X 8 1,40	quencemètre, test diode et de co		
'4LS05 1,60	2 N 2222 2,00	SUP CI 2 × 9 2,00	nuité VCC 1000 0,5 %. VC		
'4161LS 3,30	2 N 2907 2,00	SUP CI 2 × 14 3,00	750 - 20 mΩ - 20 μF 200 kHz		
74157LS 2,40	BF 245 3.00	SUP CI 2 × 14 4.00	HFE × 1000 . 572 F T		
74HC00 3,00	2 N 2903 2.50				
_M324 4,00	BC 308 0,60	TANTALE 1 µF 1.80			
.M7805-12 4,00	BC 547 0,60	TANTALE 4.7 μF 2.80	VPC UNIQUEMENT		
M311 5,00	BFR 91 9,00	TANTALE 10 µF 3.50	CONDITIONS DE VENTES		
_M7412,50	Réseau 4 × 10 K 4,00	2 200 µF 25 V 9,50	Chèq, à la commande		
M555 2,50	Pot ajus, carb. 1.30	4.7 μF 25 V 1,40	Commande de Cir Imp.		
rL074 12,00	Promocological est	2,2 nF 3,3 nF 4,7 nF 10 nF			
TL082 4.00	Res 1/2 ou 1/4 W	22 nF 47 nF 33 nF 0,65	min 15 F + port 12 F		
306	par 10	100 nF 63 V 0.75	Commande de Circ Imp. et		
	mêmes valeurs 1,20	470 nF 63 V	composants min 50 F		
8705P3S100.00	Q 4,9152 MHz 12,00	1 µF 63 V 2,40	+ port 25 F		
8B02 35,00	Q 3,2768 MHz 12,00	TOTAL CONTRACTOR OF THE PARTY O	Commande Composants		
8B21 20,00	Q 4 MHz 12,00	CERAM par 10 memes	min. 50 F + port 25 F		
3749HC 120,00	Q 6,5536 MHz 12,00	valeurs 1 pF-33 nF 4,00	Prix min. par Circ. imp.		
	Q 1 MHz 65 00	COFFRET IML D80 98,00	5,00 F par unité		
3116 21,00	PONT 1A5 . 4,00	COFFRET IML D30 40,00	Remise par quantité NC		

11 bis, rue Chaligny 75012 PARIS - Télex 215 502 F

MAGASIN DE VENTE

DU LUNDI au VENDREDI INCLUS de 9 h à 18 h sans interruption

COMPOSANTS PROFESSIONNELS SIEMENS

Actifs - Passifs -Optoélectronique-Relais ONRON Connecteurs - Câbles -Coffrets - Interrupteurs - Secme Transformateurs -

Condensateurs - Poten tiomètres - Microswitchs

 ↓ lumbera (JBC) ASSMANN

Potter&Brumfield

Résistances-Soudure etc. ET AUTRES MARQUES...

SUR DEMANDE ÉCRITE :

EXTRAIT DE TARIFS MAGASIN (9 timbres à F. 2,20 pour les particuliers)

CATALOGUE PROFESSIONNEL (F. 54, port inclus pour les particuliers)

RÉSERVEZ VOTRE **ALBUM 1988** * D'ÉLECTRONIQUE APPLICATIONS

RÉUNISSANT LES SIX NUMÉROS DE L'ANNÉE ÉCOULÉE (NUMÉROS 57 à 62)

Prix: 126 F (port compris)

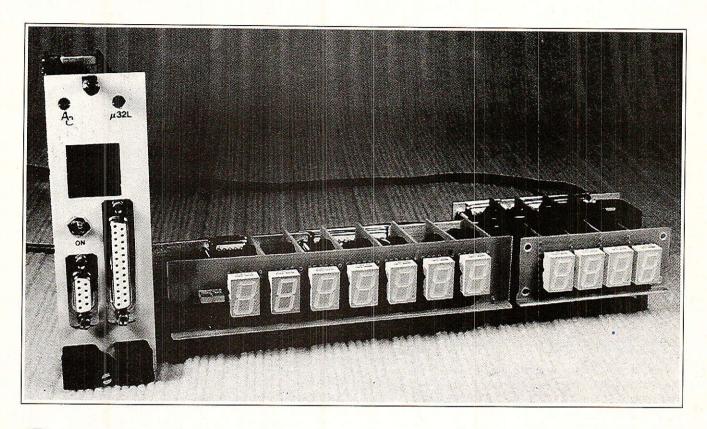
Envoyez votre commande accompagnée d'un chèque à l'ordre de ÉLECTRONIQUE APPLICATIONS à : ÉLECTRONIQUE APPLICATIONS, Vente au Numéro, 2 à 12, rue de BELLEVUE, 75940 PARIS CEDEX 19

Répertoire des satellites de télévision, début 1989

Le paysage audiovisuel « transmis » par satellite a subi quelques bouleversements. Une mise à jour du répertoire des satellites TV géostationnaires s'imposait donc. La voici. Notons toutefois que nous ne connaissons pas encore les décisions du CSA concernant l'attribution des canaux de TDF 1.

Pour l'utilisation de ce document, rappelons que la polarisation des ondes sur TDF 1 est circulaire dextrogyre (CD) et qu'il n'y a pas de sous-porteuses audio s'agissant de D2MAC et donc d'un multiplex temporel.

Pour les autres satellites, les ondes ont une polarisation orthogonale avec le champ électrique transmis horizontalement (H) ou verticalement (V). Les programmes audio d'accompagnement sont véhiculés sur des sous-porteuses FM multiplexées en fréquence avec la vidéo en bande de base.


SATELLITE position orbitale et PIRE au PV	PROGRAMMES	Langue	Canal ou répéteur	Pola- risation*	Faisceau	Norme	Fréquence porteuse en GHz	Fréquence sous-porteuse audio en MHz	Remarques
TDF1 19º Ouest 66 dBW	non encore attribué non encore attribué non encore attribué non encore attribué non encore attribué		1 2 3 4 5	CD CD CD CD CD	unique unique unique unique unique	D2MAC D2MAC D2MAC D2MAC D2MAC	11,727 11,804 11,808 11,957 12,034		non opérationne
	Lifestyle - Screen Sport - TV Sport - Sport Kanal	Anglais Français Allemand	1	Н	H1	PAL	11,214 6,5-7,2 7,38 7,02 7,56		crypté en sept. 89
	réservé à un opérateur All.		2	V	V2		11,229		RFA?
	SCAN SAT TV3		3	Н	H2	D2MAC	11,243		crypté
	DISNEY CHANNEL.	Anglais	4	V	V1	PAL	11,252		crypté diff. proch
	CHILDREN'S CHANNEL	Anglais	5	Н	H1	PAL	11,273	6,5	crypté en 9-89
	réservé à un opérateur All.		6	V	V2		11,288		RFA?
ASTRA	SCAN SAT TV4		7	H	H2	D2MAC	11,302		Diff, prochaine
19º EST	Sky Channel	Anglais	8	V	V1	PAL	11,317	6,5	
53 dBW	Eurosport	Anglais	9	Н	H1	PAL	11,332	-6,5-7,08 7,2 7,38 7,56	
	réservé à un opérateur All.		10	V	V2		11,347		RFA?
	FILMNET	Anglais	11	H	H2	PAL	11,367	6,6	crypté
	SKY NEWS	Anglais	12	V	V1	PAL	11,376	6,5	
	?		13	Н	H1		11,391		
	réservé à un opérateur All.		14	V	V2		11,406		RFA?
	MTV	Anglais	15	Н	H2	PAL	11,420	6,5	
	SKY MOVIES	Anglais	16	V	V1	PAL	11,425	6,5	crypté

Répertoire des satellites de télévision, début 1989

SATELLITE position orbitale et PIRE au PV	PROGRAMMES	Langue	Canal ou répéteur	Pola- risation*	Faisceau	Norme	Fréquence porteuse en GHz	Fréquence sous-porteuse audio en MHz	Remarques
	RTL+	Allemand	1	Н	Ouest	PAL	11,007	6,65	
			2	٧	Ouest	PAL	11,071		
	TV 5	Français	4	Н	Ouest	PAL	11,472	6,6	+ Worldnet (11,486
EUTELSAT	GALAVISION	Espagnol	5	., H	Atlantique	PAL	11,565	6,65-7,2	
1F4	SKY CHANNEL	Anglais	6	. H	Ouest	PAL	11,650	6,65-7,2	
13° EST 46 dBW	TÉLÉ-CLUB	Allemand	7	٧	Ouest	PAL	10,987	6,5	bientôt crypté
40 UDIV	3 SAT	Allemand	8	٧	Est	PAL	11,091	6,65	
	FILMNET	Anglais	9	٧	Ouest	PAL	11,140	6,6	crypté
	SAT 1	Allemand	10	٧	Ouest	PAL	11,507	6,6	
EUTELSAT	3 SAT	Allemand	7	٧	Ouest	PAL	10,987	6,65	
1F5	RAIUNO	Italien	1	Н	Ouest	PAL	11,009	6,6	
10° EST 46 dBW	NRK 1	Norvégien	9	· V	Ouest	CMAC	11,181		
	RAI DUE	Italien	6	Н	Ouest	PAL	11,640	6,6	
EUT 1F1 16° E							45 dBW		
	3 SAT	Allemand		Н	Ouest	PAL	10,974	6,65	+ Musik Cana
INTELSAT	WDR 3	Allemand		Н	Ouest	PAL	11,010	6,65	
V AF 12	TELE 5	Allemand		Н	Ouest	PAL	11,133	6,65	
60° Est	BAYERN 3	Allemand		H	Ouest	PAL	11,174	6,65	
46 dBW	EINS PLUS	Allemand		Н	Ouest	PAL	11,550	6,65	
	PRO 7	Allemand		Н	Ouest	PAĽ	11,600	6,65	
	M6	Français	1	V	unique	SECAM	12,522	5,80	
			2	V	unique		12,564		non affecté
TÉLÉCOM 1C	LA 5	Français	3	V	unique	SECAM	12,606	5,80	
5° Ouest 52 dBW	CANAL + crypté	Français	4	V	unique	SECAM	12,648	5,80	en prévision ou TDF
32 UDVV	CANAL J	Français	6	٧	unique	PAL	12,732	5,80	crypté
INTELSAT V F2 1° Ouest - 44 dBW	NORSK TV 1	Norvégien	1	Н	Nord	PAL	11,016	6,6	
	TV Norvège	Norvégien	3	Н	Nord	PAL	11,471	6,6	
INTELSAT V AF 11 27,5° Ouest 44 dBW faisceau Ouest	CHILDREN'S CHANNEL	Anglais	2	Н	Ouest	PAL	11,015	6,65	crypté 89
	- lifestyle - Screen Sport - TV sport - Sport Kanal	Anglais Anglais Français Allemand	3	Н	Ouest	PAL	11,135	6,65 6,65 7,38 7,02	crypté 89
47 dBW	BBC	Anglais	4	Н	Ouest	PAL	11,174	6,65	crypté
faisceau Est	CNN	Anglais	2	V	Est	PAL	11,155	6,65	

32L, Applications

Comme promis le mois dernier, voici quelques utilitaires permettant de faire travailler sérieusement et copieusement la carte 32 sorties décrite dans le précédent numéro. Tout d'abord nous donnerons le soft destiné à piloter les animations lumineuses (sans qu'il soit besoin de connaître quoi que ce soit de la « programmation »), et qui assistera votre imagination et votre créativité de manière efficace.

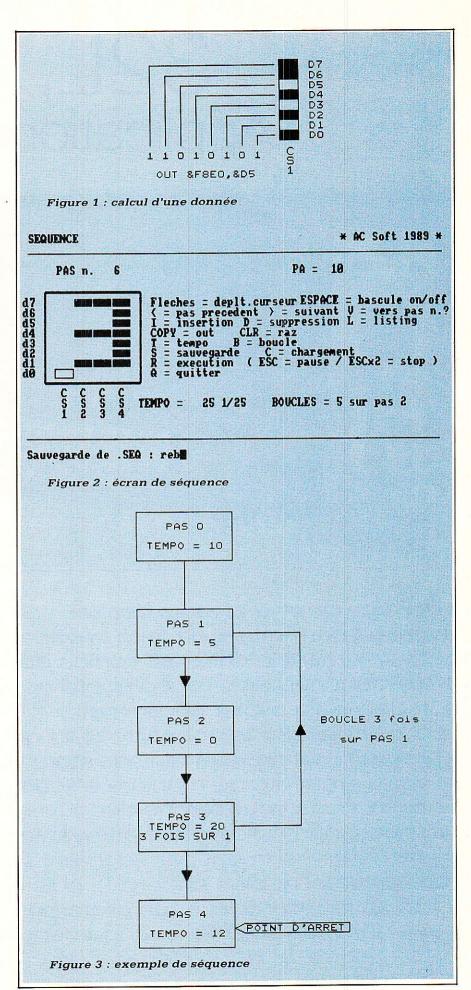
Ensuite, nous vous ferons découvrir des ressources cachées, particulièrement attrayantes : commander 4 afficheurs segment par segment (affichage hexadecimal et plus encore...), puis au moyen d'une toute autre méthode, nous piloterons 7 afficheurs avec point décimal, polarité, changement d'échelle automatique, et dépassement de capacité (999 milliards...).

Construire en 1989 une carte 32 sorties pour CPC peut sembler ringard, voire désuet, à condition que l'on reste traditionnellement dans le domaine des sorties, sans autre imagination!

Nous avons choisi de mener plus loin la démarche, afin de prouver au jeune lecteur qu'il a sa portée un immense domaine, et que chaque outil mis à sa disposition laisse un champ d'action phénoménal aux « retournements » de toute nature, riches souvent en surprises agréables. En effet, quatre adresses disposant d'un port huit bits de données donnent bien 32 sorties, mais si l'on regarde les choses autrement celà pourrait bien ressembler à un port 32 bits... Avec toutes les possibilités nouvelles que cette configuration peut permettre.

A vrai dire, nous n'exploiterons qu'une petite partie de celles-ci car comme il se doit, nous vous proposons une application pratique, simple et performante, mais pas monstrueuse!

Prenons les choses dans l'ordre et voyons tout d'abord le soft 32L et son exécuteur.


SEQUENCE BAS

Dans le précédent numéro, nous vous avons donné deux exemples de commandes de la carte 32L : le test des damiers et le bargraphe aléatoire. Dans les deux cas, il a été nécessaire de calculer les données à envoyer. Ce calcul est simple: sachant que le bit 0 est en bas, il faut faire correspondre chaque LED d'une colonne à chaque bit d'une donnée, une LED allumée donnant un bit à 1 (ou à 0 si les buffers sont inverseurs). La figure 1 explique la manière de procéder.

Pour définir un affichage complet, cette opération est à reprendre quatre fois puisque notre pavé comporte quatre colonnes. Enfin, ce chiffre est à multiplier par le nombre de pavés désirés.

NOTE: Nous parlons « d'affichage » pour simplifier, mais nous pourrions aussi employer le terme « commande » car les sorties obéissent aux mêmes règles : à chaque configuration du pavé correspond un état à 0 ou 1 des 32 sorties.

Si par exemple vous vouliez commander une animation lumineuse dans une discothèque, le nombre de pavés à programmer aurait vite fait de vous décourager. Partant de cette

constation, il nous a paru indispensable de posséder un outil de gestion de la carte 32L. Ce programme s'appelle SEQUENCE, et son nom explique en grande partie sa fonction.

Pour gérer 32 sorties disposées en matrice, le soft affichera l'image de cette matrice. Ainsi, on disposera d'une correspondance totale entre l'écran et le pavé.

Si vous risquez un œil sur la figure 2, vous verrez l'écran de SEQUEN-CE. Le cadre à gauche représente notre pavé de LED. Les 4 colonnes sont repérées CS1 à CS4, chaque ligne correspondant à 1 bit. Le chiffre 3 dessiné dans le cadre apparaîtra tel quel sur le pavé de la carte 321.

Terminologie:

- Nous appellerons un cadre défini un « PAS ».
- Il est possible de définir 256 cadres (256 pas) différents. Une suite de PAS portera le nom de « SEQUEN-CE »

Cette séquence pourra ensuite être exécutée, c'est-à-dire qu'on enverra les données des pas vers la carte, à la suite les unes des autres (le pas affiché dans la figure 2 fait partie d'une séquence qui débute avec le dessin du 9, et se termine avec celui du 0 : en l'exécutant, on assiste à un compte à rebours).

- Bien entendu, si l'on veut voir les chiffres apparaître, il faut que chacun d'eux s'affiche assez longtemps : on pourra donc définir une « TEMPO » pour chaque pas.

- Enfin, il sera possible de répéter plusieurs fois une séquence, ou une partie de séquence en programmant des « BOUCLES ».

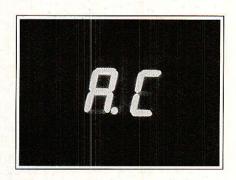
La figure 3 nous montre un exemple graphique de séquence. Les données à envoyer ne sont pas représentées, mais on retrouve nos tempos et une boucle. A noter également que chaque pas est indentifié par un numéro (compris entre 0 et 255). En écrivant l'enchaînement des pas, on obtient la suite 0 1 2 3 1 2 3 1 2 3 4. c'est-à-dire que lors de l'exécution. la série 123 sera répétée trois fois.

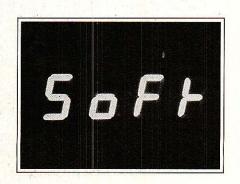
Enfin, la séquence s'arrêtera sur le pas n° 4, identifié comme étant le POINT D'ARRET.

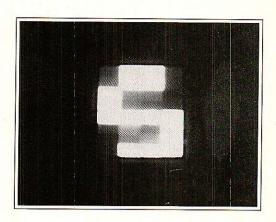
Avant de continuer, nous vous laissons cinq minutes pour taper le listing de la **figure 4**.

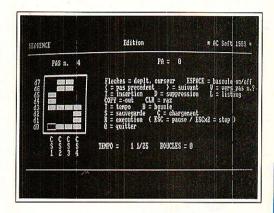
- La variable AD en ligne 50 renseigne le programme sur l'adressage de la carte (F8E0 pour la première adresse). Si celui-ci est différent vous devrez aiuster cette valeur

- Pour les lecteurs qui ont préféré les buffers inverseurs, il faudra placer des REMs au début des lignes 1490 et 1520, et retirer celles qui se trouvent en 1500 et 1530.
- Un traitement des erreurs est installé: la ligne 70 contient une instruction « ON ERROR GOTO ». Elle est utile en fonctionnement normal mais pour les premiers essais, nous vous conseillons de ne pas la taper En effet, il est difficile d'entrer plus de 100 lignes sans faute et une telle instruction vous empêcherait de les voir, donc de les corriger. N'oubliez pas de la remettre quand toutes les fonctions auront été testées.
- En cas de problème insoluble, vous pouvez contacter Alain CAPO au 84.78.00.62, après 23 h. Ceci concerne uniquement les softs.
- Et ne négligez pas les sauvegardes intermédiaires!


Retour à la figure 2, pour analyser le tableau de bord


Le numéro du pas courant (celu. sur lequel on travaille) est affiche au-dessus du cadre que nous connaissons. Sur la même ligne, en face, nous trouvons le point d'arrêt (PA =)


Sous le rappel des commandes, on trouve la valeur de la tempo, ainsi que l'indicateur de boucle(s).


Enfin, la zone du bas est la fenêtre de saisie des commandes. Le badin, le vor et l'altimètre sont en option.

Une commande est appellée en tapant la lettre ou la touche qui

l'identifie. Aucune validation n'est nécessaire

Sauf exception, toutes les commandes demandant une réponse de votre part peuvent être abandonnées en tapant RETURN.

Nous allons passer en revue ces fonctions, et préciser certains points importants pour la bonne utilisation du programme.

■ MODE D'EMPLOI DE SEQUENCE

LE PAS

Les flèches déplacent un curseur en forme de rectangle dans le cadre. Pour « allumer » une position, tapez la barre d'espace. Un deuxième appur l'éteint. Comme le curseur entoure la positon, il est toujours visible sous forme d'un rectangle plein, ou vide.

Ne vous attendez pas à voir le pavé de LED reproduire instantanément vos actions à l'écran, car cellesci sont juste mémorisées. Deux solutions permettent d'activer les sorties: l'exécution (c'est pour plus tard), ou la touche « COPY ». Cette commande envoie les données du pas courant vers la carte 32L. Vous pouvez ainsi juger de l'effet.

* « CLR » = ARRET D'URGENCE

Après avoir utilisé COPY, éteindre le CPC ne change rien : les lampes commandées restent allumées car les latches figent les sorties!

La commande CLR remet les 32 LED — donc les 32 sorties — à 0. Celà ne modifie en aucune manière le contenu du pas courant.

* LA SEQUENCE

Le premier « pas » étant franchi, il serait intéressant d'apprendre à marcher...!

La commande « pas suivant » est actionnée par « > » (supérieur). Le numéro du pas passe à 1, et les actions précitées sont toujours possibles. On peut avancer ainsi de 0 à 255.

A l'inverse, on accède à la marche arrière par « < » (inférieur), afin d'aller visualiser ou corriger des pas déjà définis.

Plus difficile: le saut. La commande « Vers pas » (touche « V ») permet de se rendre directement à un pas dont on donne le numéro (entre 0 et 255).

Rappellons au passage que si vous frappez « V » par erreur, la touche RETURN abandonne la commande.

Cette fonction accepte également « PA » comme réponse : ces deux caractères font référence au Point d'Arrêt (voir Exécution).

* LA TEMPO

La tempo peut être définie pour chaque pas, et même plus!

Son unité est le 1/25 de seconde et ce choix n'est pas un hasard. En effet, elle correspond à un défilement de 25 « images » par seconde, qui est la vitesse utilisée en télévision: cela garantit une animation sans à-coup.

Pour définir la tempo d'un pas, c'est-à-dire sa durée, placez-vous sur le pas à régler et tapez « T ». Un message en bas de l'écran vous demande d'entrer un nombre (qui est à multiplier par 1/25 pour obtenir le temps en secondes).

La valeur entrée peut osciller entre 0 (aucune attente) et 2500 (2500 imes1/25 = 100 secondes). Nous verrons comment étendre cette durée à une dizaine de jours.

La précision est suffisante pour toutes les applications normales : quelques dizièmes sur 10 secondes.

Après la validation de la tempo, un second message apparaît car

Programme SEQUENCE.BAS * AC Soft 1989 * 40 DEFINT a-z:maxi=255:DIM pas(maxi,6),itr(maxi):n=0
50 ad=&F8E0
60 GOSUB 1480:GOSUB 1560 00 00 BREAK CONT:ON ERROR GOTO 1670 80 MODE 2:WINDOW#0,1,80,3,20:WINDOW#1,1,80,22,25:WINDOW#2,1,80,1,2 90 PRINT#2, "SEQUENCE"; SPACE\$(55); "* AC Soft 1989 *":PRINT#2,STRING\$(79,95) 430 GOTO 310
440 IF b<>0 THEN pas(n,cs)=d AND (NOT b):cur\$=cur0\$:RETURN
450 IF b=0 THEN pas(n,cs)=d OR masq:cur\$=cur1\$:RETURN 460 ' pas precedent 470 IF n>0 THEN n=n-1 ELSE RETURN 480 GOTO 510 480 GOTO 510
490 ' pas suivant
500 IF n(maxi THEN n=n+1 ELSE RETURN
510 LOCATE 17,2:PRINT USING"###";n:LOCATE 52,2:PRINT USING"###";der
520 LOCATE 35,15:PRINT USING"###";pas(n,4)+1
530 LOCATE 57,15:IF pas(n,5)=-1 THEN PRINT " infini "; ELSE PRINT pas(n,5);
540 IF pas(n,5)=0 THEN PRINT SPACE\$(16) ELSE PRINT"sur pas";pas(n,6);SPACE\$(6)
550 FOR i=9 TO 18 STEP 3:FOR j=5 TO 12:LOCATE i,j
560 IF (pas(n,(i-9)/3) AND 2^(12-j))=0 THEN PRINT CO\$ ELSE PRINT C1\$
570 NEXT:NEXT
580 RETURN 590 ' vers pas
600 LINE INPUT#1, "Vers le pas n. ";k\$:IF k\$="" THEN RETURN
610 IF UPPER\$(k\$)="PA" THEN i=der ELSE i=VAL(k\$)
620 IF i<0 THEN i=0 ELSE IF i>maxi THEN i=maxi
630 n=i:GOTO 510
640 ' insertion 630 n=i:GOTO 510
640 'insertion
650 PRINT#1, Tapez '0' pour inserer avant le pas";n
660 k\$=UPPER\$(INKEY\$):IF k\$="" THEN 660 ELSE IF k\$<>"0" THEN RETURN
670 PRINT#1:PRINT#1, Patientez svp ...
680 FOR i=maxi TO n+1 STEP-1:FOR j=0 TO 6:pas(i,j)=pas(i-1,j):NEXT
690 IF pas(i,6)=n THEN pas(i,6)=pas(i,6)+1
700 NEXT:IF der(maxi THEN der=der+1
710 FOR i=0 TO 6:pas(n,i)=0:NEXT:GOSUB 510:RETURN
720 'suppression
730 PRINT#1, Tapez '0' pour supprimer le pas";n
740 k\$=UPPER\$(INKEY\$):IF k\$="" THEN 740 ELSE IF k\$<>"0" THEN RETURN
750 PRINT#1:PRINT#1, "Patientez svp ..."
760 FOR i=n TO maxi-1:FOR j=0 TO 6:pas(i,j)=pas(i+1,j):NEXT:NEXT
770 IF der>0 THEN der=der-1
780 GOTO 510 780 GOTO 510 790 ' listing 780 GOTO 510
790 ' listing
800 PRINT#1, "Du pas";n;:LINE INPUT#1, "au pas ? : ",k\$:IF k\$="" THEN RETURN
810 IF UPPER\$(k\$)="PA" THEN i=der ELSE i=VAL(k\$)
820 IF i.0 THEN i=0 ELSE IF i>maxi THEN i=maxi
830 PRINT#1, "Tapez '0' pour lister"
840 k\$=UPPER\$(INKEY\$):IF k\$="" THEN 840 ELSE IF k\$<>"0" THEN RETURN
850 IF INP(&F500) AND 64 THEN RETURN
860 FOR Is=n TO i:PRINT#8,USING"**#***;ls;:PRINT#8,": ";
870 FOR j=0 TO 3:PRINT#8,HEX\$(pas(ls,j),2);" ";BIN\$(pas(ls,j),8);" ";:NEXT
880 PRINT#8,USING"****;pas(ls,4)+1;:IF pas(ls,5)=0 THEN 910

vous pouvez définir la même durée pour plusieurs pas, en une seule opération : donnez le numéro du dernier pas concerné (« PA » est accepté). Si seul le pas courant vous intéresse, tapez RETURN.

* L'EXECUTION

Maintenant que quelques pas sont

définis (avec des tempos permettant de les voir passer), pourquoi ne pas les faire défiler?

La commande «R» nous offre cette possibilité.

D'abord, où commencer? Par défaut, sur le pas n° 0, c'est logique. Dans ce cas, tapez RETURN à la première question. Sinon, vous pou-

```
890 IF pas(1s,5)=-1 THEN PRINT#8," B inf. "; ELSE PRINT#8," B";pas(1s,5); 910 PRINT#8."-";pas(1s,6); 910 PRINT#8:NEXT:RETURN 920 'tempo
       920 ' tempo
930 LINE INPUT#1, "tempo = ",k$:IF k$="" THEN RETURN ELSE i=VAL(k$)
940 IF i<0 THEN i=0 ELSE IF i>2500 THEN i=2500
950 pas(n,4)=i-1:LINE INPUT#1, "jusqu'au pas : ",k$:IF k$="" THEN 510
960 IF UPPER$(k$)="PA" THEN i=der ELSE i=VAL(k$)
970 IF i<0 THEN i=n ELSE IF i>maxi THEN i=maxi
980 PRINT#1:PRINT#1, "Patientez svp ..."
990 FOR j=n TO i:pas(j,4)=pas(n,4):NEXT:GOTO 510
1000 ' boucle
                                                   tempo
       990 FOR j=n TO i:pas(j,4)=pas(n,4):NEXT:GOTO 510
1000 ' boucle
1010 LINE INPUT#1, "Boucles = ",k$:IF k$="" THEN RETURN ELSE i=VAL(k$)
1020 IF i<0 THEN i=-1 ELSE IF i=1 THEN i=0 ELSE IF i>9999 THEN i=9999
1030 pas(n,5)=i:IF i=0 THEN 1060
1040 LINE INPUT#1, "Sur pas n. ",k$:IF k$="" THEN 510 ELSE i=VAL(k$)
1050 IF i<0 THEN i=0 ELSE IF i>n THEN i=n
1060 pas(n,6)=i:GOTO 510
1070 ' sauvegarde
1080 LINE INPUT#1, "Sauvegarde de .SEQ : ",nom$:IF nom$="" THEN RETURN
1090 WINDOW#0,1,80,22,25:nom$=nom$+".SEQ":CLOSEOUT:OPENOUT nom$:PRINT #9,der
1100 PRINT:PRINT "Patientez svp ..."
1110 FOR i=0 TO maxi:FOR j=0 TO 6:PRINT #9,pas(i,j);:NEXT:NEXT
       1110 FOR i=0 TO maxi:FOR j=0 TO 6:PRINT #9,pas(i,j)::NEXT:NEXT
1120 CLOSEOUT:GOTO 1700
1130 ' chargement
1140 LINE INPUT#1, "Chargement de .SEQ: ",nom$:IF nom$="" THEN RETURN
1150 WINDOW#0,1,80,22,25:nom$=nom$+".SEQ":OPENIN nom$:INPUT #9,der
1160 PRINT:PRINT:PRINT "Patientez *vp ..."
1170 FOR i=0 TO maxi:FOR j=0 TO 6:INPUT #9,pas(i,j):NEXT:NEXT
1180 GOSUB 1700:n=0:GOTO 510
1170 FOR i=0 TO maxi:FOR j=0 TO 6:INPUT #3,pas(i,j):NEXT:NEXT
1180 GOSUB 1700:n=0:GOTO 510
1190 ' execution
1200 CL$#1:PRINT#1, "Depart (0 = Return): ";
1210 dp=0:LINE INPUT#1, "",k$:IF k$="" THEN 1230 ELSE i=VAL(k$)
1220 IF i<0 OR i>maxi THEN 1200 ELSE dp=i
1230 PRINT#1, "Point d'arret (";der;" = Return): ";
1240 LINE INPUT#1, "",k$:IF k$="" THEN i=der ELSE i=VAL(k$)
1250 IF i<0 OR i>maxi THEN 1230 ELSE CL$#1:PRINT#1, "Du pas";dp;"au pas";i
1260 PRINT#1, "(B)us, (E)cran ou Return pour quitter ? ";
1270 k$=UPPER$(INKEY$):IF k$="" THEN 1270
1280 IF k$="B" THEN db=1 ELSE IF k$="E" THEN db=0 ELSE RETURN
1290 IF db THEN PRINT#1,"-> BUS" ELSE PRINT#1,"-> ECRAN"
1300 PRINT#1, "(P)as a pas, (C)ontinu ou Return pour quitter ? ";
1310 k$=UPPER$(INKEY$):IF k$="" THEN 1310
1320 IF k$="P" THEN pp=-1 ELSE IF k$="C" THEN pp=0 ELSE RETURN
1330 IF pD THEN PRINT#1,"-> PAS a PAS" ELSE PRINT#1, "CONTINU"
1340 PRINT#1, "Patientez svp ...";:n=dp:der=i:FOR i=0 TO maxi:itr(i)=0:NEXT
1350 GOSUB 510:PRINT#1,STRING$(17,8);"R pour lancer la sequence ";
1360 k$=UPPER$(INKEY$):IF k$="" THEN 1360 ELSE IF k$<>"R" THEN RETURN
1370 PRINT#1,CHR$(24);" EXECUTION ";CHR$(24);
1380 quit=0:ON BREAK GOSUB 1540
1390 IF quit THEN 1470
1400 IF db THEN GOSUB 1510 ELSE GOSUB 510
1410 IF pp THEN CALL &BB18:GOTO 1430
1420 IF db THEN FOR tempo=0 TO pas(n,4):FOR tt=0 TO 82:NEXT:NEXT tempo
1430 IF pas(n,5)=-1 THEN n=pas(n,6)-1:GOTO 1460
1440 IF pas(n,5)>0 AND itr(n)=0 THEN itr(n)=pas(n,5)
1450 IF itr(n)>0 THEN itr(n)=itr(n)-1:IF itr(n)<>0 THEN n=pas(n,6)-1
1460 IF n:der THEN n=n+1:GOTO 1390
1470 GOSUB 1480:GOSUB 510:ON BREAK CONT:RETURN
1480 ' raz
       1470 GOSUB 1480:GOSUB 510:ON BREAK CONT:RETURN
      1480
                                                 raz
                                   FOR i=0 TO 3:OUT ad+i,0:NEXT:RETURN ' BUFFERS NON-INVERSEURS ' FOR i=0 TO 3:OUT ad+i,&FF:NEXT:RETURN ' BUFFERS INVERSEURS ' out
       1490 FOR
1510 ' out
1520 FOR i=0 TO 3:OUT ad+i,pas(n,i):NEXT:RETURN ' BUFFERS NON-INVERSEURS
1530 ' FOR i=0 TO 3:OUT ad+i,NOT(pas(n,i)) AND &FF:NEXT:RETURN ' BUFFERS INV.
1540 ' break
1550 quit=-1:RETURN
1560 ' dessin leds et curseur
1570 SYMBOL AFTER 240
1580 SYMBOL 240,0,127,127,127,127,127,0
1590 SYMBOL 241,0,255,255,255,255,255,0
1600 SYMBOL 242,0,254,254,254,254,254,254,0
1610 SYMBOL 242,0,254,254,254,254,254,254,255
1620 SYMBOL 243,255,128,128,128,128,128,128,255
1620 SYMBOL 244,255,0,0,0,0,0,0,255
1630 SYMBOL 245,255,1,1,1,1,1,1,255
1640 curo$=cHR$(243)+CHR$(244)+CHR$(245):cur1$=CHR$(143)+CHR$(143)+CHR$(143)
1650 co$=CHR$(243)+CHR$(32)+CHR$(32):c1$=CHR$(240)+CHR$(241)+CHR$(242)
      1510
1660 REIURN
1670 'erreur
1680 PRINT CHR$(7):PRINT#1
1690 PRINT#1,"erreur -> tapez une touche":CALL &BB18:RESUME 1700
1700 WINDOW#0,1,80,3,20:CLOSEIN:RETURN
1710 'quitter
1720 PRINT#1,"Tapez '0' pour quitter"
1730 k$=UPPER$(INKEY$):IF k$="" THEN 1730 ELSE IF k$<>"0" THEN RETURN
1740 ON BREAK STOP:ON ERROR GOTO 0:SYMBOL AFTER 255:MODE 2:END
1750 '*** fin du listing ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Figure 4
```

vez entrer un autre numéro (0 à 255), de façon à débuter en cours de séquence.

Ensuite, où s'arrêter? Sur le Point d'Arrêt, c'est toujours aussi logique. A la première exécution, il est égal à 0 puisqu'il n'a pas encore été défini. Vous entrez donc le numéro du pas sur lequel vous désirez que la

séquence s'arrête. Pour les exécutions suivantes, vous pourrez tapez simplement RETURN, si sa valeur n'a pas à être modifiée.

Et où aller? Trois solutions sont envisageables: «B» = le BUS, c'està-dire la carte 32L. «E» = l'ECRAN, les pas s'affichent dans le cadre. «RETURN» = nulle part, car vous abandonnez la commande.

Dans le cas de l'affichage sur écran, les tempos ne seront pas prises en compte.

Pas à pas ou continu? En pas à pas, c'est la pression sur une touche qui provoquera le passage au pas suivant (les tempos seront négligées), et en continu, la séquence se déroulera d'elle-même, en respectant les tempos (il était temps!).

Après quelques secondes de patience, vous pouvez tapez « R » pour lancer la séquence (ou autre chose pour abandonner). Le message « EXECUTION » s'affiche en vidéo-inverse. Si vous êtes en pas à pas, n'oubliez pas que c'est à vous de faire avancer les choses!

Quand l'exécution est terminée, la fenêtre du bas s'efface, et les LED s'éteignent.

Vous avez la possibilité d'interrompre une séquence en cours de déroulement : l'appui sur « ESCA-PE » provoque une pause, une touche quelconque (sauf « ESCAPE ») permettant de repartir.

« ESCAPE » DEUX FOIS stoppe l'exécution et les 32 sorties sont remises à zéro.

* SAUVEGARDE/CHARGEMENT

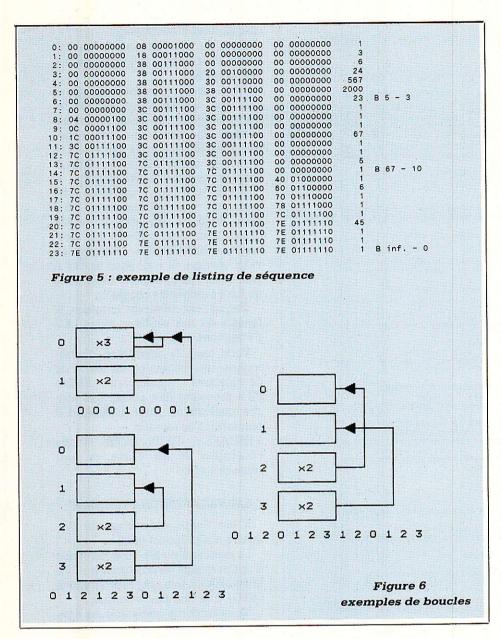
Il est temps de sauver sur disquette nos premiers essais.

La commande « S » vous demande d'entrer le nom de la séquence ; l'extension étant fixée par le programme (.SEQ), il ne faut pas la donner.

La sauvegarde comprend les données, les tempos, les boucles, et la valeur du point d'arrêt. Elle occupera toujours 6 Ko.

La commande « C » permet de recharger une séquence : là encore, ne donnez pas d'extension.

Ces deux fonctions demandant quelques secondes, un message vous invite à patienter.


IMPORTANT: le fait de charger une séquence efface tous les pas présents en mémoire donc:

1° — Pensez à la sauvegarde.

2° — Il peut être utile de sauver une séquence vide: lancez le programme et effectuez aussitôt une sauvegarde (sans avoir défini aucun pas) sous le nom « 000 » (la disquette contiendra « 000.SEQ »). Ainsi, il suffira de charger cette séquence pour remettre tous les pas à zéro entre deux phases de travail différentes.

Vous pouvez également obtenir un listing de la séquence sur impriman-

te. La figure 5 en montre l'aspect : de gauche à droite, on trouve le numéro du pas, les données en hexadécimal et binaire (de CS1 à CS4), la valeur de la tempo en 1/25e de seconde et le bouclage éventuel (nombre de boucles — destination). Pour lister une séquence, tapez « L » sur le pas de départ, et donnez le numéro du pas de fin (ou « PA » pour le point d'arrêt).

LES BOUCLES

La commande «B» permet de définir une boucle : dans la figure 3, le pas nº 3 contenait les informations suivantes: boucle = 3 sur le pas nº 1; on répète ainsi 3 fois la suite 123.

Le nombre de boucles correspond donc au nombre de répétitions d'une série. Cette série est délimitée par le

numéro du pas où l'on définit la boucle (nº 3 dans notre exemple), et par le numéro du pas de destination (nº 1).

En premier lieu, il faut donner le nombre de boucle(s), entre 0 et 9999 (précisons que 1 équivaut à 0 = aucun bouclage).

Un nombre négatif programme une BOUCLE INFINIE.

Puis on vous demande le numéro du pas de destination. Il doit être inférieur ou égal au pas courant : les boucles « en avant » sont interdites. Si une valeur précédemment définie n'a pas à être changée, vous pouvez taper RETURN.

Il est possible d'avoir plusieurs boucles dans une même séquence : elles peuvent se suivre ou même être imbriquées, ou croisées. La figure 6 montre quelques exemples, en

donnant pour chacun d'eux la séquence obtenue. On voit, en haut à gauche, que l'on peut boucler un pas sur lui-même (pour allonger la tempo, au besoin jusqu'à plusieurs jours). La séquence de droite est moins évidente : le croisement des boucles n'est pas le plus sûr moyen d'aborder le bouclage!

*** ESCAPE (2 fois) est la seule voie de sortie des boucles infinies.

* INSERTION/SUPPRESSION

Durant la mise au point d'une séquence, il est fort possible d'oublier un pas, et de ne s'en rendre compte que plus tard. L'insertion évite un décalage manuel et glisse un pas là où vous le souhaitez.

Exemple: pour insérer un pas juste avant le pas nº 5, placez-vous sur celui-ci et tapez « I ». Après une dizaine de secondes nécessaires à l'opération, l'ancien pas 5 sera numéroté 6, et un nouveau pas 5 sera libre. Attention: si votre séquence comporte déjà 256 pas, le dernier est perdu.

Dans le même ordre d'idée, la suppression, touche « D », enlève un pas en resserrant les suivants.

La valeur du point d'arrêt est incrémentée de 1 dans le premier cas, et décrémentée d'autant dans le second.

* SORTIE

Pour quitter le programme, tapez « Q ». Une confirmation est demandée mais en cas de doute, deux sauvegardes valent mieux qu'une !

de malheur, En cas « GOTO 50 » relance le programme sans effacer les pas : sauvez la séquence oubliée et si vous voulez continuer votre travail, quittez puis relancez le soft par un RUN.

Le traitement des erreurs filtre les erreurs disc, mais aussi la saisie dans certains cas: si le message « erreur » apparaît en bas de l'écran, tapez une touche pour continuer votre travail.

Nous espérons avoir fait le tour du mode d'emploi.

L'utilisation de SEQUENCE est plus simple que les lignes précédentes ne le laissent penser.

Mais l'utilisateur final n'est pas forcément celui qui a programmé la séquence, et c'est pourquoi nous vous proposons un « exécuteur de séquence », avec en plus un variateur de vitesse intégré.

```
Programme 32L.BAS * AC Soft 1989 *
                                                                                                                                                                                                                      Figure 7
  30 'initialisation
40 DEFINT a-z:maxi=255:DIM pas(maxi,6),itr(maxi)
50 ad=&F8E0:GOSUB 450

COND. COLO. SQC.ON BREAK CONT
  60 ch=0:ON ERROR GOTO 530:ON BREAK, CONT
  80 MODE 2:WINDOW#0,1,80,2,25:WINDOW#1,1,80,1,1
  80 MUDE 2:WINDOW#0,1,80,2,25:WINDOW#1,1,80,1,1
90 PRINT#1, " - 32L -";SPACE$(55);" - AC Soft 1989 -"
100 CLS:RESTORE:FOR 1=0 TO 2:LOCATE 30,1*2+10:READ op$:PRINT op$:NEXT
110 DATA "1- Charger une sequence","2- Executer une sequence","3- Qui
120 k$=INKEY$:IF k$="" THEN 120 ELSE IF k$<"1" OR k$>"3" THEN 120
130 ON VAL(k$) COSUM 150 230 ESC
140 GOTO 100
150 ' chargement
160 CLS:LOCATE 18,12:LINE INPUT "Nom de la sequence a charger (*.SEQ) : ",nom$
170 IF nom$="" THEN RETURN ELSE nom$=UPPER$(nom$)
180 OPENIN nom$+".SEQ":INPUT #9,der
190 LOCATE 32,24:PRINT "Patientez svp ..."
200 FOR 1=0 TO maxi:FOR j=0 TO 6:INPUT #9,pas(i,j):NEXT:NEXT
210 CLOSEIN:ch=-1:RETURN
220 ' execution
210 CLOSEN:ch-1:RETURN
220 'execution
230 CLS:IF ch THEN 250 ELSE PRINT "Aucune sequence en memoire";CHR$(7);
240 FOR 1=0 TO 2500:NEXT:RETURN
250 FOR 1=0 TO 2500:NEXT:RETURN
250 FOR 1=0 TO maxi:itr(i)=0:NEXT:LOCATE 28,12:PRINT "'R' pour lancer ";nom$
260 k$=UPPER$(INKEY$):IF k$=" THEN 260 ELSE IF k$<>"R" THEN RETURN
270 LOCATE 28,12:PRINT nom$;" en cours d'execution"
280 LOCATE 32,15:PRINT "SLOW ";CHR$(242);" ";CHR$(241);" ";CHR$(243);" FAST"
290 LOCATE 40,16:PRINT "0"
300 LOCATE 40,23:PRINT "Pause = Escape / Stop = Escape x2"
310 x=0:n=0:quit=0:ON BREAK GOSUB 510
320 IF quit THEN 430
330 IF INKEY(2)=0 THEN x=0
340 IF INKEY(2)=0 THEN x=x+20 ELSE IF INKEY(1)=0 THEN x=x-20
350 IF x<-100 THEN x=x-100:PRINT CHR$(7);
360 IF x>1060 THEN x=1060:PRINT CHR$(7);
370 GOSUB 480
380 FOR tempo=0 TO pas(n,4):FOR tt=0 TO 82+x:NEXT:NEXT tempo

390 IF pas(n,5)=-1 THEN n=pas(n,6)-1:GOTO 420

400 IF pas(n,5)>0 AND itr(n)=0 THEN itr(n)=pas(n,5)

410 IF itr(n)>0 THEN itr(n)=itr(n)-1:IF itr(n)
420 IF nn
420 IF nn
430 IF n
430 OFF THEN n=n+1:GOTO 320
 430 GOSUB 450:00 BREAK CONT:LOCATE 28,12:PRINT "Execution de ":nom$;" terminee" 440 LOCATE 24,23:PRINT SPACE$(9); "Tapez une touche"; SPACE$(9):CALL &BB18:RETURN
                   PR i=0 TO 3:OUT ad+i,0:NEXT:RETURN ' BUFFERS NON-INVERSEURS
FOR i=0 TO 3:OUT ad+i,&FF:NEXT:RETURN ' BUFFERS INVERSEURS
 460 FOR
                    out
 490 FOR i=0 TO 3:OUT ad+i,pas(n,i):NEXT:RETURN 'BUFFERS NON-INVERSEURS 500 'FOR i=0 TO 3:OUT ad+i,NOT(pas(n,i)) AND &FF:NEXT:RETURN 'BUFFERS 510 'break
                                                                                                                                                                                                         BUFFERS INV.
 520 quit=-1:RETURN
 540 CLOSEIN:PRINT "Erreur disc -> tapez une touche":CALL &BB18:RESUME 60
550 'quitter
560 CLS:LOCATE 30,12:PRINT "'Q' pour quitter 32L"
570 k$=UPPER$(INKEY$):IF k$="" THEN 570 ELSE IF k$<>"Q" THEN RETURN
580 ON BREAK STOP:ON ERROR GOTO 0:MODE 2:PRINT "32L termine":END
590 ' *** Fin du listing ***
```

mètre: il permettait de faire varier la vitesse d'exécution. Nous nous sommes dit: les lecteurs de RADIO-PLANS y ont droit.

En conséquence, la touche curseur à gauche ralentit l'exécution, curseur à droite l'accélère, et curseur en bas revient à la vitesse nominale. Cette variation respecte les durées relatives de chaque pas (tempo) programmées dans SEQUENCE.

La séquence peut être interrompue: « ESCAPE » provoque une pause (autre touche pour repartir), « ESCAPE » deux fois stoppe l'exécution en effectuant une remise à zéro du pavé et des sorties.

Il est possible de lancer autant de fois que l'on veut une séquence précédemment chargée.

3 — Quitter 32L.

Cette option sort du programme, après confirmation par « Q ».

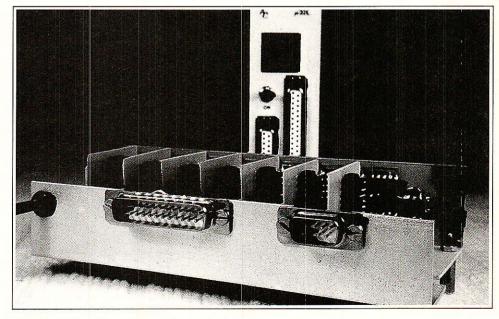
Là encore, pensez au mode de fonctionnement de vos buffers: pour les inverseurs, placez des REMs en 450 et 480, et retirez-les en 460 et 490. Enfin, l'adresse de la carte est en ligne 50.

NOTA: la disquette proposée par MICROLOGIC comportera plusieurs séquences prêtes à l'emploi, à titre d'exemple.

Le listing est en figure 7, 32L permet de charger une séquence créée avec le programme précédent, et de l'exécuter. Les données seront envoyées en continu, et uniquement vers le rack.

L'utilisation est très simplifiée : un menu propose le chargement, l'exécution, et la sortie.

1 — Charger une séquence.


On entre le nom d'une séquence — sans extension —, suivi de RETURN (la frappe de RETURN seule renvoie au menu). Elle est chargée en mémoire et le menu réapparaît.

2 — Exécuter une séquence.

Si aucune séquence n'a été chargée, un message le signale, avant de revenir automatiquement au menu.

Sinon, la touche «R» permet de lancer l'exécution.

En observant un appareil destiné à l'animation lumineuse dans une discothèque (16 sorties seulement, et séquences pré-programmées, activant des tubes-light), nous avons été très intéressés par un potentio-

APPLICATIONS

Comme nous vous l'avons dit, nous allons voir ensemble deux petits applications destinées à être connectées aux sorties du module. Nous les avons appelées 4AFF et 7AFF, car il s'agit de piloter par soft deux cartes comportant respectivement 4 et 7 afficheurs.

4AFF

L'idée est la suivante : disposant de 32 sorties, pourquoi ne pas commander 32 segments soit 4 afficheurs, points décimaux compris? Chacun d'entre nous sait à quel point il est difficile de trouver des décodeurs hexa, et connaît également le prix des TIL311... Mais certains cherchent peut-être encore l'intérêt d'un système d'affichage externe, alors qu'on dispose d'un magnifique écran de visualisation ?

Plusieurs cas peuvent justifier cette solution : affichage de scores dans les salles de jeu (à condition de commander des afficheurs géants constitués de linolites), indications en cours de déroulement d'un programme (surveillance de l'évolution d'une ou plusieurs variables, passage par des lignes à surveiller, ou encore mémorisation de la dernière commande etc.).

La figure 8 donne le schéma de 4AFF et l'on constatera l'extrême simplicité du montage. Chaque sortie de µ32L passant à 1, commandera les buffers inverseurs constitués de T1 à T8, lesquels allumeront chacun un segment ou le point décimal d'un afficheur à anode commune.

La relation entre les bits de chaque octet et les segments des afficheurs est un peu fantaisiste à première vue. Mais comme il n'y a aucune loi régissant cette répartition, nous avons opté pour la solution la plus simple au niveau hard, c'est-à-dire celle qui facilitait le dessin des circuits imprimés. Ce sera au soft de s'organiser pour clarifier la situation.

Par convention, nous avons décidé d'affecter l'afficheur de droite (poids faible) à l'adresse F8E0 et celui de gauche à F8E3.

La réalisation pratique fait appel à une carte de base présenté figure 9 et qui portera, outre les autres cartes, un régulateur permettant de disposer de + 5 V à partir d'une source extérieure non régulée.

La seconde carte visible figure 10 est celle qui disposera les afficheurs de manière élégante en façade.

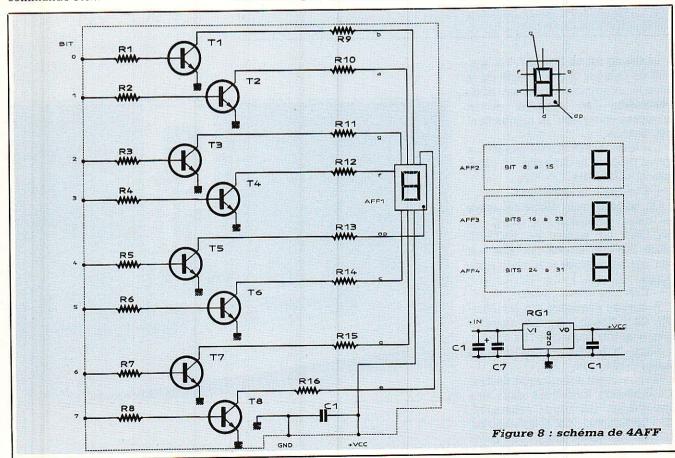
Enfin, la **figure 11** donne le dessin de la carte qu'il faudra reproduire en

quatre exemplaires.

Les photographies sont suffisamment parlantes pour éviter de grands discours. Un peu de soin et quelques pattes de résistances permettent de constituer un petit ensemble solide et idéalement adapté à une utilisation comme instrument de tableau.

Pour raccorder ce dernier au module 32L, nous avons retenu la solution consistant à placer des socles de 25 et 9 points sur une petite cornière, et à user de câbles prolongateurs. Ces derniers seront d'ailleurs réutilisables pour 7AFF.

NOMENCLATURE SIMPLIFIÉE


 $R_1 \stackrel{.}{a} R_8 = 3.9 \text{ k}\Omega$ $R_9 \ a \ R_{16} = 330 \ \Omega$ $C_1 = 0.1 \, \mu F 63 \, V \, et$ $C_7 = 10 \, \mu F \, 25 \, V$

 T_1 à $T_8 = BC547$ ou équivalent.

Tous les afficheurs sont à anodes communes.

 $RG_1 = 7805 + RADIATEUR$.

Avant de passer au soft, vous pouvez jeter un œil sur la figure 12, laquelle donne une idée de quelques signes affichables. Nous en avons inclus une bonne partie dans le programme, mais nous vous ferons savoir comment rajouter ceux qui pourrainet vous être utiles.

Pour une application aussi spécifique (comme pour la suivante), il fallait un soft spécifique. Il s'agit de 4AFF.BAS, en figure 13.

Ce programme se découpe en deux parties : la première permet de saisir un « message », la seconde le transcrit et l'inscrit sur nos afficheurs.

Tout d'abord, voyons les initialisations. En ligne 50, on définit l'adressage et on effectue une remise à zéro en envoyant un message (MG\$), contenant quatre espaces : tous les segments de tous les afficheurs s'éteignent.

La chaîne de caractères POLICE\$ (ligne 60) contient tout les symboles qui seront acceptés lors de la saisie.

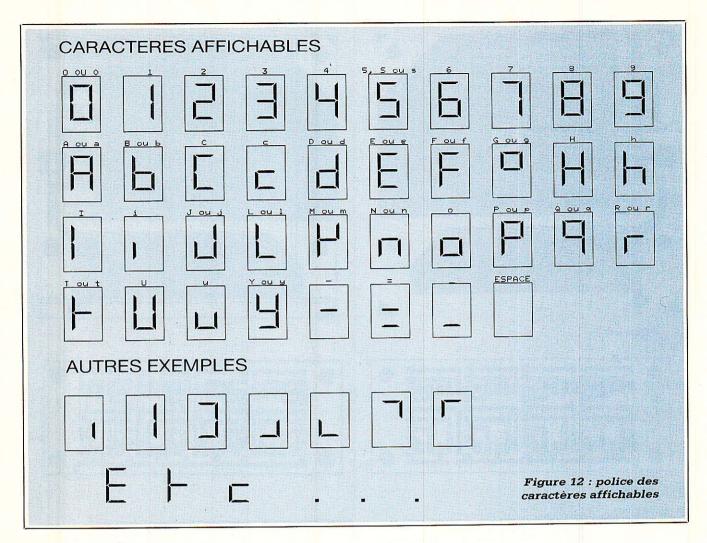
Cela ne veut d'ailleurs pas dire qu'ils sont affichables :

Le T majuscule ne peut pas être reproduit mais il peut être remplacé par le t minuscule au moment de la traduction, donc on autorise sa frappe.

Par contre, le K est toujours refusé puisqu'il n'est jamais représentable.

Autre possibilité : le C majuscule et le C minuscule sont acceptés tous les deux, et ont chacun un dessin particulier.

Citons enfin le cas de G (ou g) qui sera remplacé par le symbole du degré car celui-ci n'existe pas sur le clavier du CPC.


La figure 12 nous montre tous les caractères affichables et la ou les

touches(s) à frapper pour les obtenir. Bien entendu, vous pouvez limiter la saisie aux seuls symboles directement reproductibles: si la lettre J ne doit jamais apparaître dans un message, enlevez J et j de POLICE\$, et supprimez la ligne 1280 qui en effectue la traduction.

Enfin, pour ajouter un caractère reportons nous à la figure 14 qui montre l'exemple du crochet gauche. Les deux premières lignes du tableau représentent la correspondance entre chaque bit de l'octet à envoyer et le segment qui lui est associé.

On « écrit » le crochet et l'on note les segments le constituant : un segment allumé donne un bit à 1, les

autres bits sont portés à 0. Le binaire n'étant pas très facile à manipuler, il reste à obtenir la valeur hexadécimale de l'octet ainsi formé.

Si la notation hexadécimale est très utilisée en informatique, c'est surtout qu'un chiffre hexa correspond à une série de 4 bits, ainsi, deux caractères hexa représentent un octet (0 à 255). La traduction binaire/hexa est donc très simple : on divise notre octet en deux quartets, et on inscrit les poids binaires (puissance de deux) correspondants. Dans notre exemple, nous avons 2+1 pour le poids faible, et 4+2 pour le poids fort : la valeur hexadécimale de l'octet 0110 0011 est &63 (si la somme des bits d'un quartet dépasse 9, on remplace par les lettres A et F: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15. Par exemple, 4 bits à 1 donnent 8 + 4 + 2 + 1 = 15= F, ce qui est le maximum sur 4 bits.

Fermons cette parenthèse et continuons l'insertion du crochet : il faut d'abord l'autoriser dans la saisie, on ajoute donc «] » dans POLI-CE\$ (sa position n'a aucune importance). Il faut ensuite le traduire, c'est-à-dire renseigner le programme sur la valeur à envoyer lorsqu'il va rencontrer ce caractère. C'est l'objet de la ligne 1395 (là encore, l'ordre n'est pas déterminant) : si la variable DG\$ est égale à «] », alors on affecte à DG(i) la valeur &63.

La suite de IF est passé en revue quatre fois puisqu'il y a quatre lettre par message, et on détermine les valeurs de DG(0) à DG(3). Ces quatre octets sont envoyés par les lignes 1450 ou 1460 suivant les buffers utilisés.

L'espace (afficheur éteint) ne nécessite pas de traduction particulière car DG() est égal à zéro par défaut. Celà signifie également que si le message contient un symbole non traduit, celui-ci sera remplacé par un espace.

Enfin, le point décimal est traité à part, en ligne 1430. C'est en fait l'attribut d'un caractère, et non un caractère à lui tout seul. Vous pouvez tapez «S.O.S» aussi bien que « ... », mais dans ce dernier cas, le programme insèrera lui-même les espaces manquants.

Utilisation de 4AFF:

Vous entrez un message de quatre caractères maximum (sans compter les points décimaux), et vous validez par RETURN. Le message s'inscrit alors sur les afficheurs.

Les lettres non acceptées sont signalées par un BEEP.

La touche DEL permet d'effacer le message en cours de saisie.

Pour quitter le programme, frappez la touche CLR, qui provoque une RAZ au passage.

7AFF

Ce second module utilise un principe totalement différent du précédent : les 32 sorties sont exploitées comme un bus 32 bits, ou plus précisemment comme un bus de 8 quartets. Bien des combinaisons sont ainsi possibles, et si nous en avons retenu une comme exemple pratique, il ne faudrait pas ignorer les autres... C'est ainsi que l'on peut envisager bien entendu de commander 8 afficheurs si l'on n'a pas besoin d'indication de polarité ni d'overflow, ou encore 6 afficheurs +polarité + overflow + indicateur de gamme, etc.

Mais ce n'est pas tout : on peut également constituer deux indicateurs de 4 afficheurs chacun, entièrement indépendants, mais aussi imaginer de placer des 74154 sur chaque quartet et de piloter ainsi 128 sorties. Avec un soft performant, il semblerait envisageable de créer des animations intéressantes. Etc., Etc.

La figure 15 présente le schéma de 7AFF. Les sept premiers quartets commandent des classiques 7447, décodeurs BCD 7 segments dont il doit bien trainer quelques exemplaires dans vos fonds de tiroirs! On se rappelle que ce décodeur affiche correctement les chiffres de 0 à 9, mais délire gentiment pour les données hexa comprises de 10 à 15. Toutefois nous avons conservé la possibilité d'utiliser les données 12 et 15, lesquelles permettent d'obtenir respectivement un genre de « u » et l'extinction totale de l'afficheur : le « u » nous servira d'indicateur de dépassement de capacité et l'extinction de séparateur au-delà de 9999999 (10 millions).

Sur le schéma, on peut voir en pointillés des liaisons entre les broches RBI et RBO des décodeurs. En effet, nous avons prévu les cartes de telle sorte que ces points soient accessibles à ceux qui voudraient constituer un bloc de 8 afficheurs, et traiter par le hard l'extinction des zéros non significatifs. Dans notre cas, ce traitement est fait par soft et les connexions sur la carte mère.

L'analyse du dernier quartet est plus intéressante, car elle conduit à la solution retenue pour commander les points décimaux, le signe moins (polarité) et le témoin de multiplication par 10E6, soit un million...

Les points décimaux ainsi que la LED de multiplication sont commandés par un 74138, lequel activera une sortie parmi 8 en fonction de l'état des trois bits présents en entrées. On conçoit donc qu'il ne faudra pas s'attendre à voir s'afficher deux points décimaux en même temps, ce qui est logique. Pour les nombres ayant dépassé 9999999 (10 millions), le changement de gamme est automatique, et l'on affichera 10 000 plus l'allumage du multiplicateur par 10E6. On lira donc très vite 10 millions, et tout aussi vite 999999499903 (999 milliards...). Nous verrons d'ailleurs pourquoi ce nombre est le maximum affichable sur notre système.

```
4AFF.BAS * AC Soft 1989 *
   20
         'Initialisations
MODE 2:DEFINT a-z:quit=0
ad=&F8E0:mg$=" ":GOSUB 1000
police$=" 0123456789ABBCCDDEEFFGgHhIiJjL1MmNnOoPpQqRrSsTtUuYy-=_"
  70 'programme principal
80 PRINT:PRINT "Message : ";:GOSUB 90:IF quit THEN END ELSE 80
90 'Saisie d'un message
100 ma$=""
  100 mg$=""
110 k$=INKEY$:IF k$="" THEN 110
120 IF k$=CHR$(16) THEN mg$=" ":GOSUB 1000:quit=-1:RETURN
130 IF k$=CHR$(13) THEN GOSUB 1000:RETURN
140 IF k$=CHR$(127) THEN PRINT " * DEL *";:RETURN
150 IF k$="." THEN PRINT ".";:mg$=mg$+".":GOTO 110
160 IF INSTR(police$,k$)<>0 THEN PRINT k$;:mg$=mg$+k$:GOTO 110
170 PRINT CHR$(7);:GOTO 110
1000 'envoi d'un message
   100 mgs=
  1000 'envoi d'un message

1010 dgm%=mg$:IF LEFT$(dgm%,1)="." THEN dgm%=" "+dgm$

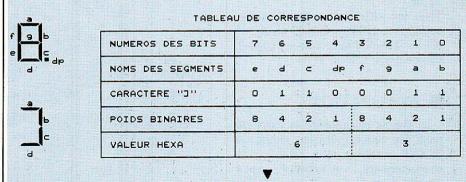
1020 dgt%="":FOR i=1 TO LEN(dgm$)

1030 IF MID$(dgm%,i,1)<>"." AND MID$(dgm%,i+1,1)<>"." THEN dgt%=dgt%+MID$(dgm%,i,1)+" " ELSE IF MID$(dgm%,i,2)=".." THEN dgt%=dgt%+". " ELSE dgt%=dgt%+MID$(dgm%,i,2)=".." THEN dgt%=dgt%+". " ELSE dgt%=dgt%+MID$(dgm%,i,2)=".." THEN dgt%=dgt%+". " ELSE dgt%=dgt%+".
1040 NEXT: WHILE LEN(dgt$) <8:dgt$=" "+dgt$: WEND
  1360 IF dg$="t" OR dg$="T" THEN dg(i)=&8C:GOTO 1430

1370 IF dg$="U" THEN dg(i)=&E9:GOTO 1430

1380 IF dg$="u" THEN dg(i)=&E0:GOTO 1430

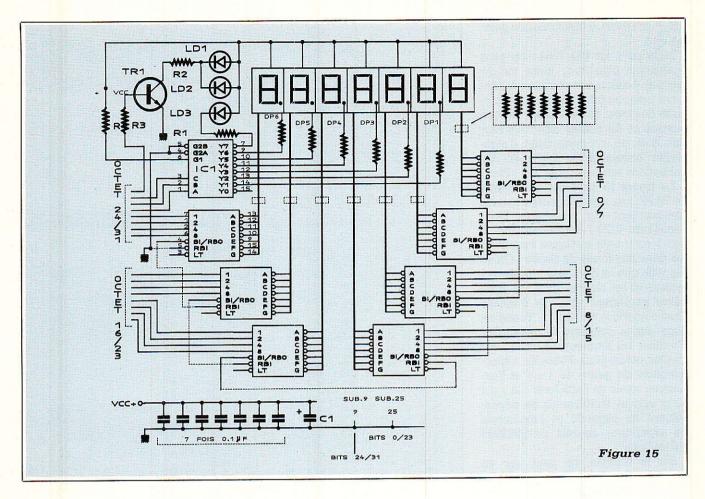
1390 IF dg$="y" OR dg$="Y" THEN dg(i)=&6D:GOTO 1430


1400 IF dg$="-" THEN dg(i)=&4:GOTO 1430

1410 IF dg$="-" THEN dg(i)=&44:GOTO 1430

1420 IF dg$=" " THEN dg(i)=&44:GOTO 1430
               IF dg$="_" THEN dg(i)=&40

IF MID$(dgt$,8-i*2,1)="." THEN dg(i)=dg(i) OR 16
   1420 TF dos=
   1450 FOR i=0 TO 3:OUT ad+i,dg(i):NEXT:RETURN ' BUFFERS NON-INVERSEURS
1460 ' FOR i=0 TO 3:OUT ad+i,NOT(dg(i)) AND &FF:NEXT:RETURN ' BUFFERS
1470 ' *** Fin du listing ***
   1450 FOR
```


Figure 13

LIGNE A MODIFIER : "0123456789Aa ... TtUuYg]-=_"
LIGNE A AJOUTER : 1395 IF dg\$="]" THEN dg(i)=863:GOTO 1430

Figure 14: affectation des segments

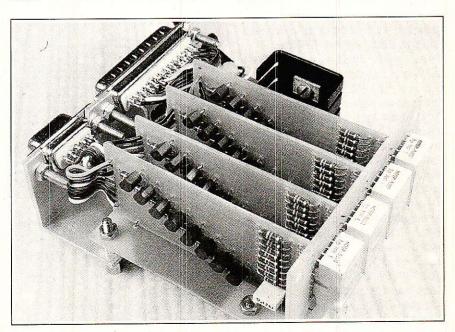
Mais revenons au dernier bit libre : il sera utilisé pour afficher le signe moins constitué de deux LED rectangulaires, pilotées par le transistor TR1.

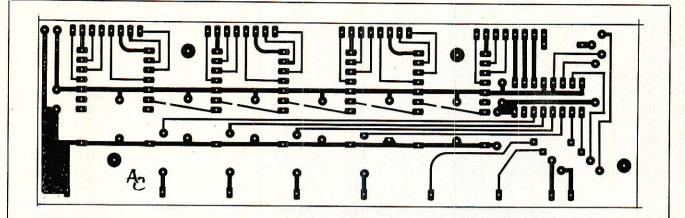
Au point où nous en sommes balayons rapidement la nomenclature simplifiée de 7AFF:

Toutes les résistances sont des 330 Ω sauf $R_2 = 150 \Omega$ et $R_3 = R_4 =$ $3,9 \text{ k}\Omega$.

Tous les condensateurs sont des $0.1 \mu F 63 V \text{ sauf } C_1 = 10 \mu F 25 V.$ Tous les IC sont des 7447 sauf IC1 = 74138.

Tous les afficheurs sont à anodes communes et $TR_1 = BC547$ ou eq. $LD_1 = LD_2$ (rectangulaires rouges), LD3 de diam 5 étant verte


REALISATION


La figure 16 présente la carte de base (on remarquera les pistes de BLANK ouvertes, que ceux qui le n'auraient qu'a souhaiteraient reconstituer).

La figure 17 représente la carte portant les afficheurs et les LED, et la figure 18 l'une des 7 cartes décodeur. Nous vous conseillons pour ces derniers de les mettre sur supports à profil bas, comme nous ne l'avons pas fait...

Le principe d'assemblage et de connexions est strictement indentique à 4AFF, mais on notera toutefois que l'alimentation ne comportant pas de régulateur, c'est du 5V précisément qu'il faudra amener. A ce sujet, il est possible de prélever cette tension sur la carte mère du rack, en pensant quand même qu'au maximum la consommation est de 52 × 15 mA soit 780 mA.

Et un soft, un! Le listing est en figure 19. Il est court mais vous allez comprendre pourquoi : le but du programme est de transcrire un nombre pour le rendre affichable. Ce programme peut être le résultat d'une opération quelconque, ou provenir

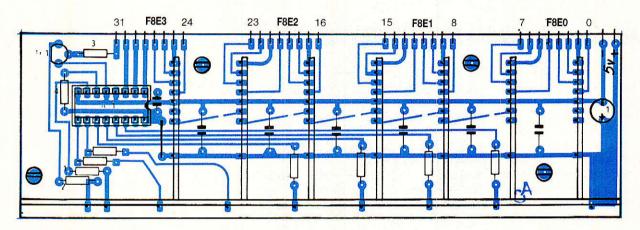


Figure 16

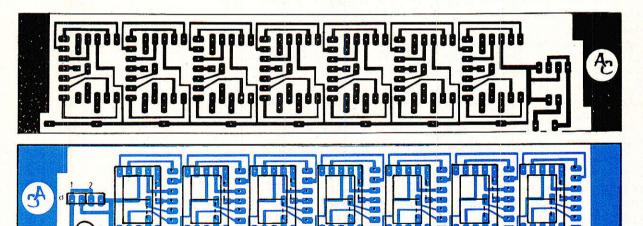


Figure 17

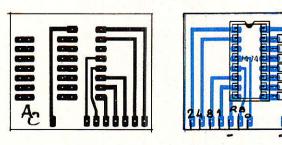


Figure 18


```
10 ' 7AFF.BAS * AC Soft 1989 *
                  ' Initialisations
  30
 40 MODE 2:DEFREAL n
50 ad=&F8E0:nb=0:GOSUB 1000
 60 'Programme principal
70 INPUT "Nombre : ",nb:IF nb=666 THEN nb=0:GOSUB 1000:END
80 GOSUB 1000:GOTO 70
No Gosub 1000:Goto 70

1000 'traitement et envoi d'un nombre
1010 nbt=ABS(nb):IF nbt<10^7 THEN 1070
1020 IF nbt>=9.99995E+11 THEN nbt$="CCCCCCC":GOTO 1060
1030 nbt=INT(nbt)/10^6:nbt=ROUND(nbt,7-LEN(STR$(INT(nbt))))
1040 nbt$=MID$(STR$(nbt),2,8):dp=INSTR(nbt$,".")
1050 IF dp=0 THEN nbt$=nbt$+"F" ELSE MID$(nbt$,dp,1)="F"
1060 dp=7:GOTO 1110
1070 nbt=ROUND(nbt,8-LEN(STR$(INT(nbt))))
1080 IF nbt<>INT(nbt) THEN dp=LEN(STR$(nbt))-LEN(STR$(INT(nbt)))-1 ELSE dp=0
1090 nbt=nbt*10^dp:nbt$=MID$(STR$(nbt),2,7)
1100 IF INT(ABS(nb))=0 THEN FOR vi=1 TO dp:nbt$="0"+nbt$:NEXT
1110 WHILE LEN(nbt$)<7:nbt$="F"+nbt$:WEND:nbt$=RIGHT$(STR$(dp),1)+nbt$
1120 vj=8:FOR vi=0 TO 3
1130 dg(vi)=VAL("&h"+MID$(nbt$,vj,1)) OR VAL("&h"+MID$(nbt$,vj-1,1))*16
1140 vj=y-2:NEXT:IF nb<0 THEN dg(3)=dg(3) OR 128
1150 FOR vi=0 TO 3:OUT ad+vi,dg(vi):NEXT:RETURN 'BUFFERS NON-INVERSEURS
1160 'FOR vi=0 TO 3:OUT ad+vi,NOT(dg(vi)) AND &FF:NEXT:RETURN 'BUFFERS INV.
                                                                                                                                                                                                                                                                                                                                          Figure 19
```

d'une carte d'acquisition externe... Comme il est impossible de couvrir tous les cas de figures, la provenance du nombre se limite dans notre cas, à un simple INPUT. A l'occasion d'autres applications, nous verrons comment exploiter cette possibilité mais d'ores et déjà nous allons vous fournir toutes les explications nécessaires à vos propres réalisations.

Le nombre peut être compris entre 0 et 999 999 499 903 (en valeur absolue), au-delà, une rangée de « u » signale l'overflow.

Le nombre de décimales affichables (à droite de la virgule), dépend de la partie entière (à gauche). Nous disposons de sept afficheurs donc si la partie entière est comprise entre 0 et 9, celà laisse la place à 6 décimales. Si cette partie entière est entre 10 et 99, plus que 5 décimales et ainsi de suite jusqu'à 999 999. A partir de un million, seule la partie entière peut s'afficher.

Notons à ce sujet que la valeur est arrondie sur la dernière décimale (ou sur le dernier chiffre au-delà de 1 million).

La plus petite valeur affichable est 0,000001 (en valeur absolue), en-dessous, on affiche 0.

A partir de 10 millions, un changement d'échelle intervient : l'indicateur 10E6 s'allume et le nombre est séparé en deux par un espace (123 567 se lit 123 millions 567 mille) Le maximum affichable passe alors à « 999999 espaces », ce qui correspond en gros à mille milliards. Bien entendu, les décimales sont négligées à ce stade et la partie arrondie plus importante: est. 999 999 000 000 à 999 999 999 903

on affiche toujours 1 000 milliards.

L'overflow arrive juste après. En effet, si on atteint... 904, le CPC passe en notation exponentielle (puissance de 10), et le traitement ne peut plus s'effectuer correcte-

Les limites étant fixées, voyons comment utiliser 7AFF, et surtout réutiliser son sous-programme d'en-

En ligne 40, après avoir initialisé l'adresse de 32L, on affecte la valeur 0 à NB, puis on fait appel au GOSUB 1000: c'est le sous-programme de traitement et d'envoi d'un nombre. Le fait d'envoyer 0 provoque une RAZ des afficheurs : seul un zéro subsiste à droite. Les lignes 60 à 80 constituent le « programme principal ». Dans ce cas, il sert surtout à tester la carte. Tout nombre tapé est affiché, sauf 666, qui stoppe le programme.

A partir de 1000 (et jusqu'à la fin), se situe le « cœur » de 7AFF.

Pour réutiliser cette partie dans vos propres situations sans problème, un certain nombre de conditions sont à respecter :

- Le nombre à afficher doit être contenu dans une variable nommée « NB ». Celle-ci peut être entière ou réelle. Le sous-programme change pas son contenu.
- Le sous-programme utilise et modifie les variables suivantes :
- NBT, NBT\$, DP, DG() (tableau), VI, VJ. Ne les utilisez pas, à moins d'aimer les acrobaties!
- La variable AD contient la première adresse affectée à la carte 32L, prenez en grand soin.
- Enfin, vous devez choisir entre les lignes 1150 ou 1160, suivant l'hu-

meur de vos buffers.

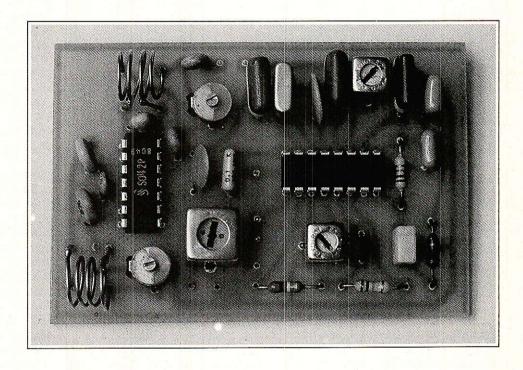
MISE EN GARDE

Nous ne pouvons pas vous laisser quitter le HARD sans crier haut de ne pas faire n'importe quoi si vous voulez commander des sorties 220V. Nous serons amenés à vous en reparler plus en détail mais retenez déjà ceci :

- Les liaisons avec les modules (ou le rack) se feront par photocoupleurs, IMPERATIVEMENT.
- Les alimentations des circuits externes seront autonomes (pas question d'utiliser celle de µPO-WER).
- Les câbleurs spécialisés dans les épissures volantes devront apprendre le mécanisme simple des DOMI-NOS ou les principes plus complexes de la gaine thermo-rétractable...

Techniquement parlant, les montages à triac ont largement été publiés dans la presse technique, et nous vous conseillons d'utiliser des circuits spécialisés du genre MOC 3041, ou encore le classique TDA1024. Les systèmes déclanchant le triac au passage du zéro sont recommandés pour les charges résistives (ampoules), car ils évitent les selfs d'antiparasitage, très coûteuses pour les forts débits.

Au fait, un triac çà chauffe... Pensez à les munir de radiateurs appropriés, non accessibles aux mains innocentes!


CONCLUSION

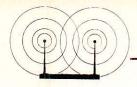
Vous saviez déjà que la société MICROLOGIC réservait aux abonnés de RADIO-PLANS une disquette pour CPC comportant tous les programmes parus concernant le uRACK, plus SERVEUR etc. ?

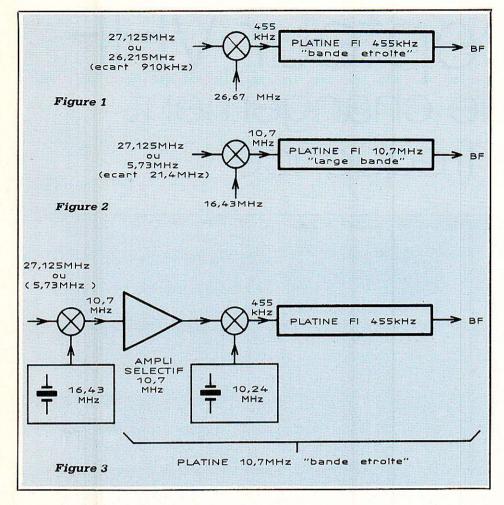
Alors yous savez tout!

Alain CAPO & Jean ALARY

Un récepteur VHF à double changement de fréquence

Avec l'encombrement croissant des fréquences radioélectriques, il devient de plus en plus nécessaire de disposer de récepteurs très sélectifs, sans pour autant négliger la sensibilité.


La technique du double changement de fréquence est utilisée depuis longtemps sur les récepteurs de télécommunications, mais sa mise en œuvre est évidemment plus délicate que c'elle d'un hétérodyne simple. Des choix judicieux en matière de fréquences intermédiaires permettent toutefois de profiter de composants standards facilitant la conception et le réglage de récepteurs performants capables d'opérer approximativement de 20 à 200 MHz.


■ SIMPLE OU DOUBLE HETERODYNE?

Le principe du changement de fréquence ou « hétérodyne » est utilisé dans l'immense majorité des récepteurs, tant de radiodiffusion ou de

télévision que de télécommunications (radiotéléphones, amateurisme, CB, etc.)

La figure 1 rappelle, sur un exemple classique, comment fonctionne un récepteur à simple changement de fréquence : Pour recevoir une fréquence de 27,125 MHz, on applique à un mélangeur le signal d'antenne et celui d'un oscillateur « local » réglé sur 26,670 MHz. La théorie, confirmée par la pratique, dit qu'en sortie du mélangeur sont disponibles deux

« produits de battement », les fréquences « somme » et « différence » (plus éventuellement des résidus des fréquences appliquées).

Si donc notre oscillateur est réglé sur 26,670 MHz (par exemple grâce à un quartz de cette fréquence), le mélange avec un signal reçu de 27,125 MHz produit du 455 kHz (0.455 MHz) et du 53.795 MHz. Il est facile de construire une « platine FI», c'est-à-dire un amplificateur sélectif et un démodulateur audio capables de traiter le 455 kHz ainsi obtenu, pour en extraire l'information transmise.

Il est bien plus facile de travailler ainsi sur 455 kHz, fréquence fort basse, qu'en 27 MHz. Par ailleurs, des composants standards existent (transformateurs accordés, filtres céramique), qui éliminent pratiquement toute difficulté technique.

Pour changer de fréquence de réception, il suffit de modifier le réglage de l'oscillateur (donc de changer de quartz), sans avoir à faire quoi que ce soit au niveau de la platine FI.

L'inconvénient de la méthode est qu'avec un oscillateur réglé sur 26,670 - 26,215 = 0,455= 27, 125 - 26,670.

Bien sûr, un étage sélectif en amont du mélangeur permet de défavoriser fortement cette « fréquence image » indésirable, mais comme il n'y a que 910 kHz entre celle-ci et la fréquence utile, ce n'est pas forcément facile...

Par ailleurs, une puissante émission sur la fréquence image sera tout de même reçue, et à 910 kHz seulement d'écart, il se peut fort bien qu'elle appartienne à la même bande, ce qui entraîne des risques de confusion.

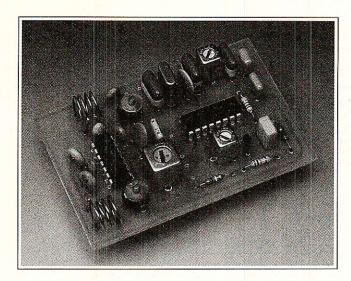
Si la « fréquence intermédiaire » de 455 kHz est largement utilisée dans les récepteurs à « bande étroite » (bande passante audio de l'ordre de 4500 Hz), celle de 10,7 MHz est préférée en réception FM à bande large (radiodiffusion stéréophonique): des composants standards sont donc également disponibles pour cette fréquence et on peut songer à en profiter.

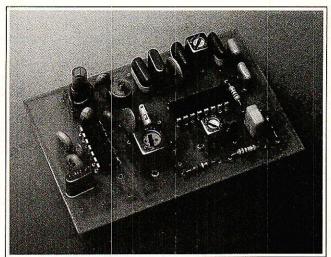
La figure 2 montre comment on pourrait procéder pour recevoir du 27,125 MHz avec une FI de 10,7 MHz, grâce à un oscillateur calé

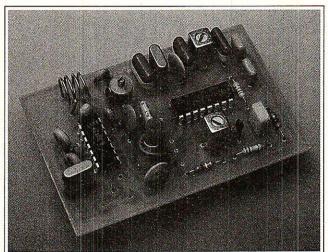
pourrait procéder pour recevoir du 27,125 MHz avec une FI de 10,7 MHz, grâce à un oscillateur calé sur 16,430 MHz: la fréquence-image, 5,73 MHz, serait ainsi renvoyée très loin, tout à fait hors de la bande recue, et donc très facile à atténuer en admettant qu'elle soit gênante.

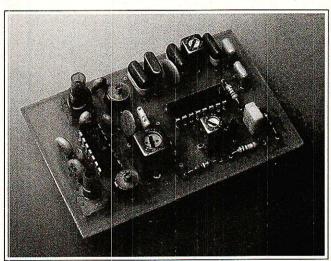
Seulement, une platine FI réalisée avec des transfos et des filtres céramique courants présente une largeur de bande de l'ordre de 300 kHz: pour de la réception FM stéréo c'est indispensable, mais en télécommunications c'est beaucoup trop! En CB, par exemple, cela mènerait tout droit à la réception de trente canaux pêle-mêle, pratiquement toute la bande...

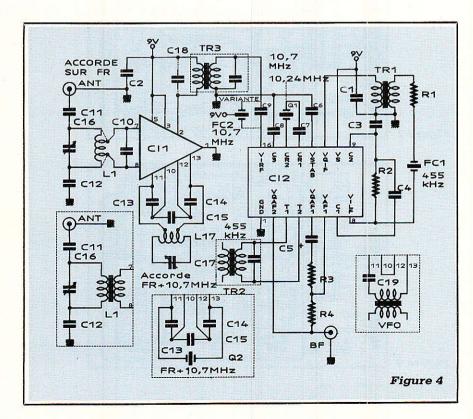
En 455 kHz, la largeur de bande est d'environ 9 kHz, ce qui convient parfaitement à un écart entre canaux de 10 kHz, et on peut faire mieux.

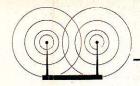

Le compromis idéal est le double changement de fréquence : la figure 3 montre comment on peut pratiquer une première conversion pour obtenir un signal FI 10,7 MHz à bande large puis, après amplification, une seconde conversion donnant du 455 kHz facile à traiter en bande étroite.


En somme, la platine 455 kHz, le second mélangeur (à quartz de 10.240 MHz) et l'ampli 10,7 MHz équivalent à une platine 10,7 MHz qui bénéficierait de la sélectivité d'une platine 455 kHz.


Avantage supplémentaire, l'ampli 10,7 MHz et le second mélangeur introduisent du gain : plusieurs dizaines de dB en général, ce qui fait qu'un tel récepteur à double changement de fréquence est presque toujours largement plus sensible qu'un simple hétérodyne 455 kHz. En fait, une sensibilité nettement meilleure que le microvolt est assez facile à obtenir en double hétérodyne.


UN RECEPTEUR COMPLET

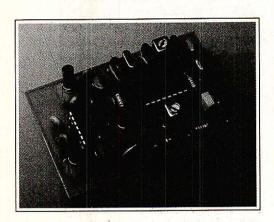

Le schéma de la figure 4, qui fait appel à cette technique du double changement de fréquence, peut être facilement adapté à toutes sortes de bandes, grossièrement de la CB au 144, en FM à bande étroite. Pas question donc de s'en servir pour recevoir France Musique: il s'agit ici de recevoir des émetteurs de communication véhiculant de la phonie ou des données, pas de faire de la HIFI!



Le cœur du montage est un circuit intégré que nous avons déjà eu l'occasion d'utiliser en 27 MHz FM, le TBB 1469 (ou S 1469). Muni d'un oscillateur à quartz incorporé, il peut opérer entre 10 et 50 MHz, avec une sensibilité déjà satisfaisante.

Equipons-le d'un quartz de 10,240 MHz (valeur courante relativement facile à obtenir), et le voici transformé en une platine FI 10,7 MHz à bande étroite, utilisant une seconde FI de 455 kHz. Il suffit donc d'ajouter une tête HF ou VHF sortant sur 10,7 MHz pour obtenir un très bon récepteur, dont la sensibilité sera celle du TBB 1469 augmentée du « gain de conversion » de la tête, donc excellente.

Cette tête, nous avons choisi de la réaliser d'une manière qui nous est chère depuis une douzaine d'années, avec un SO42P. Cet oscillateurmélangeur intégré peut travailler sans problème de 455 kHz à 160 MHz et même très en dehors de


ces limites qui sont simplemennt celles de nos essais jugés satisfaisants.

L'oscillateur incorporé peut être accordé par un bobinage ou par un quartz, mais peut aussi être neutralisé au profit d'un VFO extérieur (un simple dip-mètre peut suffire!)

Ces trois variantes sont reprises sur le schéma, et pourront être mises en œuvre sur le même circuit imprimé en changeant simplement quelques valeurs de composants.

Il est évident que l'oscillateur à quartz offre un maximum de simplicité de réglage et de commodité pour changer de fréquence, mais il faut arriver à se procurer la valeur voulue.

A condition que le montage soit bien rigide et enfermé dans un boîtier métallique relié à la masse, l'oscillateur LC reste aussi une bonne solution pour recevoir une fréquence fixe: l'accord est évidemment assez « pointu », mais c'est la rançon incontournable d'une forte sélectivité.

Quant au VFO, couplé par une simple spire, il permet d'expérimenter commodément sur une bande de fréquence qui peut être assez large.

Le bobinage de couplage d'antenne est évidemment prévu pour être accordé sur la fréquence à recevoir, mais on peut au besoin l'éliminer si on souhaite privilégier la facilité de réglage plutôt que la sensibilté : deux straps assureront alors la continuité du circuit d'entrée, mais c'est dommage...

Le couplage du SO42P peut se faire soit par prises intermédiaires (sur bobinages VHF de quelques spires) soit par secondaire isolé (une ou deux spires de fil de câblage par dessus les bobinages 27 MHz, par exemple).

Réalisé de cette façon, ce récepteur est assez facile à régler, mais

Figure 5

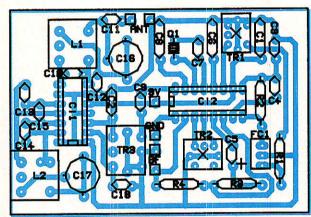


Figure 6

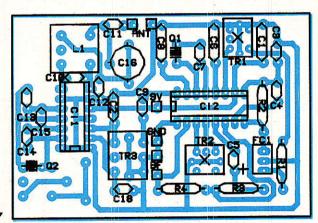


Figure 7

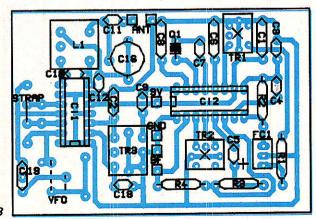


Figure 8

avec du soin et de la méthode : il y a tout de même cinq circuits accordés à aligner avec précision, et il n'v a guère d'espoir d'y parvenir sans un dip-mètre (grid-dip) ou la proximité immédiate de l'émetteur. Il est souhaitable de commencer par aligner la partie FI en injectant un signal de 10,7 MHz modulé en FM, puis de s'occuper des étages HF.

Les plus hardis de nos lecteurs pourront remplacer C9 par un filtre céramique 10,7 MHz pour gagner encore en sélectivité, mais au prix

d'un réglage plus délicat.

A vrai dire, cette réalisation s'adresse à ceux de nos lecteurs qui ont l'usage d'un récepteur monofréquence VHF-FM à bande étroite, c'est-à-dire essentiellement à ceux qui pratiquent déjà la radio et disposent donc d'un minimum d'instrumentation spécialisée : débutants s'abstenir, d'autant que, mal réglé, ce récepteur ne fournira qu'un fort souffle, bien décevant.

RÉALISATION PRATIQUE

Le circuit imprimé de la figure 5 est commun à toutes les variantes d'exécution qu'admet le schéma de la figure 4.

La figure 6 représente l'implantation la plus complète, correspondant à une tête VHF accordée par bobinages. Avec quatre spires de fil étamé 8/10 bobinées sur air avec un diamètre de 8 mm et deux prises intermédiaires, des condensateurs ajustables de 3/30 à 10/60 pF permettent capter EUROSIGNAL de 87.5 MHz environ. Compte tenu de la permanence de l'émission et de sa couverture nationale, c'est là un excellent début permettant de vérifier que tout va bien et de fignoler le réglage de la partie FI (transfos 10,7 MHz et 455 kHz ajustés au maximum de signal audio).

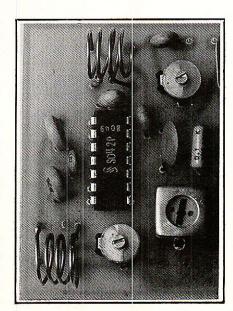
En réduisant le diamètre des bobinages (jusqu'à 4 mm s'il le faut) on pourra facilement monter aux environs du 144 MHz.

Inversement, on pourra passer à 6 ou 8 spires pour descendre bien endessous de 80 MHz.

Le cas de la figure 7 est particulièrement intéressant lorsqu'il s'agit de recevoir une fréquence fixe comprise entre 20 et 80 MHz environ : l'oscillateur à quartz démarre sans le moindre réglage, et il ne reste qu'à

ajuster le bobinage d'entrée (réalisé sur mandrin LIPA à picots) au maximum de sensibilité.

Cela suppose que l'on se procure le quartz correspondant à la fréquence à recevoir, par exemple un 30,742 MHz pour recevoir sur 41,44 MHz les téléphones sans fil agréés.


Dans certains cas, il est possible de se rabattre sur des quartz « fond de tiroir » en utilisant une FI autre que 10.7 MHz (entre 10 et 50 MHz). Le seul inconvénient est qu'il faut réaliser, à la place de TR3, un transfo accordé sur cette FI inhabituelle.

Un emplacement est réservé à un condensateur C18 permettant au besoin de faire légèrement diminuer la fréquence d'accord d'un transfo standard de 10.7 MHz, ou d'accorder un transfo « maison ».

A la figure 8, enfin, on voit comment utiliser un oscillateur (VFO) externe, qui peut fort bien n'être qu'un simple dip-mètre couplé par une grande spire de diamètre 10 mm ou davantage. Le circuit d'antenne devra bien sûr être accordé en conséquence, ou rendu apériodique.

Ces possibilités variées, alliées à l'imagination et aux pièces dont disposent nos lecteurs, permettent en fait de réaliser une infinité de récepteurs capables de résoudre les problèmes les plus divers de transmissions de phonie ou de données, grâce aux techniques employées dans les équipements les plus modernes comme les téléphones sans fil.

Il ne reste plus qu'à en faire bon usage!

-Nomenclature -

Résistances : 5 % 1/4 W

 $R_1:470\Omega$ $R_2:1.5 k \Omega$ $R_3:1 k \Omega$ R4: 100 k Ω

Condensateurs (les céramique en 50 V)

C1: 0,1 µF C2: 22 nF

C3: 1 μF ou 0,47 μF C4: 1 µF ou 0,47 µF C5: 1 µF Tantale

C6: 0,1 µF C7: 22 pF C8: 0,1 µF

C9: 0.1 µF ou FC2 10,7 MHz

C10: 4,7 pF

C₁₁: 3,3 pF à 18 pF voir texte C₁₂: 3,3 pF à 18 pF voir texte

C₁₃: 15 pF C₁₄: 15 pF

C₁₅: 15 pF (68 pF avec quartz)

C₁₆: ajustable 3/30 pF C₁₇: ajustable 3/30 pF C₁₈: voir texte (facultatif)

C19: 10 nF

Circuits intégrés

CI1: SO42 P

CI2: TBB 1469 ou S 1469

TR₁ et TR₂: transfos FI 455 kHz $7 \times 7 \text{ mm} \text{ (LMC 4100 TOKO)}$

TR₃: transfo FI 10,7 MHz

 $10 \times 10 \text{ mm}$

FC₁: filtre céramique 455 kHz FC2: filtre céramique 10,7 MHz (facultatif à la place de C₉) Q1: quartz 10,240 MHz

Q2: quartz selon fréquence RX L₁/L₂ : selon fréquence RX

ELECTRONIQUE

51, cours de la Liberté 69003 - Tél.: 78.62.94.34

· Outo contoni	Julion Ct doccoon Co
KITS OK PRESTIGE	KITS JO KIT HYPER 15
RT 1 Fréquence de OA 1 GHz	radar alarme
avec coffret 78	BO F TC 256 RC 256 Ensemble
RT 2 Chambre d'écho digital	
256 K	80 F Codé PROMO 499 I
50 MHz	50 F (Vente par correspondance)
NOTRE KIT GENERATEUR DE I	ONCTION DE 2 à 200 kHz 195 F

ALIMENTATION FIC

AL823 2 x 0 à 30 V ou 0 à 60 V 5 A

GENERATEUF 948,80 F

BECKMAN INDUSTRIAL

CADEAU: 1 kit générateur de fonction de 2 à 200 kHz

puble trace 2 x 20 MHz. Ligne à retard. Testeur de composants 3 750 F Livré avec 2 sondes combinées .

HM 203-6 Double trace 2 x 20 MHz 2 mV a 20 V Addition soustraction, déclencheur, DC-AC-HF-BF Testeur composant incorporé Avec 2 sondes combinées

3 990 F

JBC FER A SOUDER AVEC PANNE LONGUE DUREE 136,50 F 220 V 30 et 40 W 124,60 F Support universel 78,30 F

WELLER

865,80 F TTC WECP 20: 1 125 F TTC ste thermoregiagle EC 2002 : thermoréglé -1 600 F TTC 6 450 F Affichage digital

VP 801 EX : ensemble de dessoudage

MANUDAX M 3650 Multimètre 20 A 3 1/2 digits Capacimètre. Transistormètre.

Fréquencemètre Test diode. Bip sonore. Afficheur 80 mm. **DE 100** CONDEN. 695 F TTC SATEURS CERAMIQUES

1" CHOIX GRATUIT M 4650 - 20.000 P Mêmes caractéristiques que M 3650.

+ HOUSSE

1 090 F TTC

PROMO LABO KI Banc à isoler 270 x 400 mm, livré en kit Machine à graver 180 x 240 mm DIAPHANE KF rend transparent tout papier

3 Plaques époxy présensibilisées 150 x 200 mm 3 Litres de perchlorure de ler 1 Sachet de révélateur

Prix: 1 800 F T.T.C.

EN PRIME UN MULTIMETRE UNIVERSEL : POUR TOUT ACHAT D'UN LABO. Expédition par transporteur en port dû

KITS VELLEMAN COMPOSANTS Télécommande Variateur de UN APERÇU DES infrarouge K 2547 lumière, K 2657 QUARTZ Equipée de 4 canaux indépendants. Livrée

	coffret · 285 F	
	Récepteur infrarouge K 2548	K 2
ě	Pour la	K
	télécommande	àc
	K 2547 372 F	COL
Ŋ	Barrière IR	Sir
Š	Emetteur infrarouge	K 2
	K 2549	So
Í	portée 10 m env.	1 40
	202 F	1 "
i	Récepteur	P

un élégant

nfrarouge 235 F K 2550 Centrale d'alarme K 2551 pour K 2549 K 2550 285 F

Commande à distance r téléphone 2650 220 F arme automobile 2638 létection de urant rène Kojak 2604 82 F

nnette musicale 153 F rix maximum TTC autorisés jusqu'au 31.3.89 Nous consulter pour les autres

8,80 F 14,00 F 12,00 F 32.768 kHz 4 9152 6 5536 CIRCUITS JAPONAIS TA 7222
'A 7223
TA 7225
TA 7227
TA 7229 31,00 F 35.00 F 45.00 F

65.00 F HA 1377 HA 1368 35.00 F 48,00 F 29,00 F 45,00 F HA 1389 HA 1392 HA 1398 LA 4420 LA 4422 LA 4430 79,00 F 30,00 F 24,00 F 18.00 F LA 4440 LA 4460 A 4461 44.00 F

SUR NOS COMPOSANTS
UPC 1026 26,50 F
UPC 1030 65,00 F
UPC 1156 32,00 F UPC 1030 UPC 1156 UPC 1161 UPC 1181 H 38.00 F UPC 1182 H UPC 1185 H UPC 1230 H UPC 1350 H 29,00 F 35,00 F 35,00 F 35,00 F

Sachets Résistances
5 % 1/4 W 1 000 p ... 100
5 % 1/2 W 1 000 p ... 100
Capas Chimiques 1, µF à 2 200 µF
Les 100 pièces ... 150
Capas mylars de 1 nF à 0,470 µF
Les 100 pièces ... 60
LOT TRANSISTORS:
BC 550/556/557/547/548
BC 327/328/329
Les 100 pièces ... 550 100,00 F 100,00 F 150,00 F 60,00 F 50.00 F Les 100 pièces

sons vos circuits imprimés sur époxy d'après vos mylars ou documents foumis. Tout pour le circuit imprimé C.I.F.-K.F. JELT. correspondance règiement à la commande + 35 F port pour moins de 3 kg ou contre remboursement. Condition Vente par corresp

Les kits que tout le monde s'arrache!! Laser TSM 19 (alimentation 220 V) 980 F Laser TSM 215 (fonctionne en 9 V et 12 V)

NOUVEAU 11MHz

GENERATEUR DE FONCTIONS 869

0,01 Hz à 11 MHz

Sinus - carré - triangle. Rapport cyclique réglable 30 V crête à crête à vide Z = 50 ohms

Laser TSM 218 son jeu de 3 miroirs et 3 moteurs, 450 F AL 823 elc Anni

> DOUBLE ALIMENTATION 2 × 0-30 V 5 A ou 0-60 V 5 A 3 200F

AL 781 N ec (tanada)

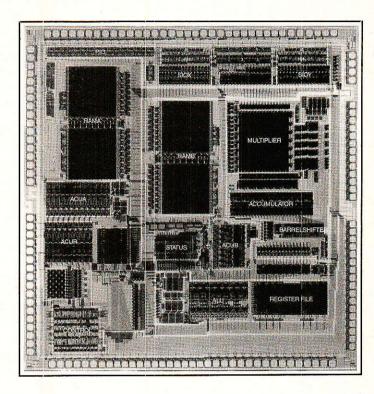
0-30 V 5 A 1 900F


Beckman Industrial

Générateurs de fonctions FG2

- Signaux sinus, carrés. triangle, pulses
- de 0,2 Hz à 2 MHz en 7 gammes
- 0,5 % de précision
- Entrée UCF Prix TTC: 1 978 F

LE PISTOLET DESSOUDEUR PORTABLE

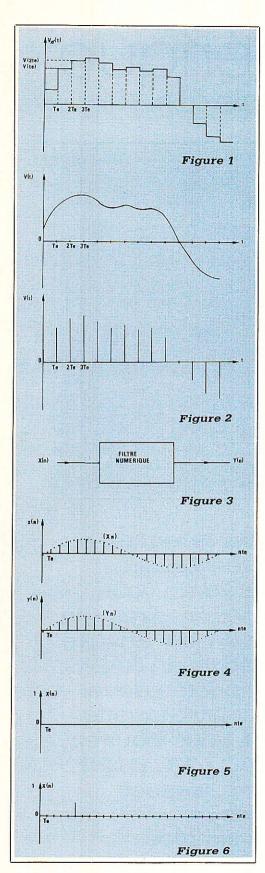

Bénéficiez d'un prix de 1 459 Fau lieu de 1 530 F en nous retournant le bon de commande ci-dessous. Prix spéciaux pour professionnels, nous consulter.

BON DE COMMANDE RAPIDE à nous retourner accompagné de votre règlement + 45 F de frais de port

A CONTRACTOR OF THE PERSON	The second second second		STATE OF THE PARTY
NOM			
ADRESSE		 	
CP			
WAI CHICL	and the second		

Ci-joint : ☐ MANDAT ☐ CHEQUE DE

Le filtrage numérique mais c'est très simple



Processeur numérique de signal Philips PC 5010/11 (doc. Philips).

Le but des lignes qui suivent est d'initier le lecteur au filtrage numérique afin d'aboutir à des réalisations concrètes. Elles vous permettront d'abord de vous familiariser avec les notions nouvelles nécéssaires à la compréhension des phénomènes mis en jeu. Ensuite, à l'aide de programmes de simulation écrits en BASIC, vous pourrez vérifier les principales propriétés de tel ou tel filtre numérique. Puis, en réalisant la maquette qui vous sera proposée ultérieurement, vous pourrez à l'aide d'un micro-ordinateur AMSTRAD CPC 6128 ou CPC 464 et des programmes fournis, réaliser concrètement certains filtres numériques et créer vous mêmes quelques filtrages numériques simples.

AR la suite, nous vous montrerons d'autres avantages offerts par la maquette proposée; en particulier, comment effectuer la saisie d'un signal et transformer votre micro-ordinateur en oscilloscope à mémoire ou bien en générateur de signaux microprogrammés périodiques de forme quelconque.

Ces perspectives intéressantes méritent de lire avec attention les paragraphes suivants où nous avons essayé de limiter le plus possible le formalisme mathématique et les calculs pour donner la préférence aux représentations graphiques.

FILTRAGE ET ALGORITHME DE CALCUL

Echantillonner un signal à la fréquence Fe, c'est prélever toutes les Te secondes (Te = 1/Fe) la valeur prise par ce signal aux instants d'échantillonnage (figure 1).

En réalité, on procède très souvent à un échantillonnage — blocage du signal (figure 2). Ceci permet de disposer, pendant un temps égal à la période d'échantillonnage Te, de la valeur prise par le signal à ces instants.

Les valeurs x (nTe) ainsi obtenues à partir d'un signal analogique x (t) (tension électrique dans la plupart des cas) forment une suite de valeurs appelée séquence d'entrée et notée (x (n)).

D'une manière simple, on peut dire que l'opération de filtrage numérique consiste à obtenir, à partir d'une séquence d'entrée (x (n)), une séquence de sortie différente (y (n)) (figure 3) dans laquelle:

x (n) est le nième élément de la séquence d'entrée.

Y (n) est le nième élément de la séquence de sortie.

En principe, la suite (y (n)) est différente de la suite (x (n)), sinon on obtient un filtre passe-tout avec lequel pour tout n, on a:

$$Y(n) = x(n)$$

La valeur du nième échantillon de sortie y (n) ne dépend que des valeurs prises par l'entrée ou la sortie à des instants antérieurs. On a donc pour expression générale de l'algorithme:

$$y(n) = \sum_{k} a_{k}x(n-k) + \sum_{j} b_{j}y(n-j)$$

$$y(n) = \frac{x(n) + x(n-1)}{3}$$

$$y(n) = \frac{x(n) + 0.4 x(n-2) + 0.3 x(n-3)}{3}$$

$$y(n) = \frac{x(n) - y(n-1)}{2}$$

$$y(n) = \frac{x(n) + 0.5 y(n-2) + 0.2 y(n-3)}{3}$$

Si les b sont tous nuls, on parle de filtres NON RÉCURSIFS. La sortie v (n) ne dépend que des valeurs à l'entrée x(n), x(n-1),... x(n-k). C'est le cas des deux premiers exem-

Sinon le filtre est RÉCURSIF. La sortie y (n) dépend aussi des valeurs de sortie antérieures y (n-2)... y(n-k). C'est le cas des deux derniers exemples.

L'opération de filtrage numérique nécessite trois opérations élémentai-

l'addition (la soustraction)

- la multiplication par un scalaire (la division)
- la mémorisation des valeurs antérieures

Les micro-ordinateurs possédant ces trois opérations sont tout à fait indiqués pour simuler en vraie grandeur le filtrage numérique. De plus, les représentations graphiques obtenues sur l'écran concrétisent bien les phénomènes et leur retranscription sur imprimante permet d'en garder trace. (figure 4)

FILTRES RII ET FILTRES RIF

C'est la réponse obtenue lorsque l'entrée est une séquence impulsion unité soit :

$$x(n) = (1, 0, 0, 0, 0, 0, 0, 0, \dots)$$

Seul le premier échantillon est non nul et vaut 1, figure 5.

Les réponses en sortie sont de deux types:

1 — Le nombre d'échantillons différents de zéro en sortie est fini : On a une Réponse Impulsionnelle Finie. On dit qu'on a affaire à un filtre de type RIF (ou FIR en anglo-saxon).

2 — Le nombre d'échantillons différents de zéro en sortie est infini : On a donc une Réponse Impulsionnelle Infinie. On dit qu'on a affaire à un filtre de type RII (recursive filter).

La séquence d'entrée peut être décalée de k périodes par rapport à l'instant origine. C'est alors le kième échantillon qui est non nul ; soit : $(x(n)) = (0, 0, 0, 0, 0, 1, 0, 0, 0, \dots)$

On a pris ici k = 5 (figure 6). On voit figure 7 et 8 que la réponse temporelle est elle aussi décalée de k périodes d'échantillonnage. C'est la vérification de l'invariance temporelle qui peut être constatée concrètement grâce au programme Basic fourni en annexe qui permet de visualiser, sur l'écran du CPC 6128 (ou 464), la réponse temporelle de tout filtre numérique.

Ainsi, les figure 7 et 8 font apparaître les tracés de la réponse temporelle, la première pour un filtre non récursif, la deuxième pour un filtre récursif. Noter que les tableaux de valeurs joints permettent de vérifier par des calculs à la main très simples la valeur des échantillons de sortie.

Pour connaître la réponse temporelle d'un autre filtre, il suffit d'introduire l'algorithme caractéristique de ce filtre au moment demandé lors de l'exécution du programme.

■ STABILITÉ D'UN FILTRE NUMÉRIQUE

Par définition, un système est stable s'il revient à sa position initiale après application d'un signal momentané, le plus souvent une impulsion.

Un filtre RIF est systématiquement stable puisqu'il revient à zéro après un nombre fini de périodes Te.

Un filtre RII peut l'être ou non selon que y (n) tend vers zéro ou non quand n tend vers l'infini.

Le programme Basic proposé permet de mettre en évidence ces notions. Quelques exemples sont donnés aux figures 9 et 10.

TRANSMITTANCE EN Z D'UN FILTRE NUMÉRIQUE

On travaille ici sur les transformées en z qui sont tout simplement les transformées de Laplace des signaux échantillonnés.

On pose en effet : $z = e^{pTe}$ expression dans laquelle z comme p est une variable complexe et Te la période d'échantillonnage.

Cette expression deviendra $z = e^{j\omega Te}$ lorsque le signal sera sinusoïdal de pulsation ω .

Soit par définition, X(z) la transformée en z du signal d'entrée, c'est-à-dire de la séquence (x(n)) et soit Y(z) la transformée en z du signal de sortie, c'est-à-dire de la séquence (y(n)).

Alors, on montre que la séquence (y(n-k)), c'est-à-dire la séquence (y(n)) retardée de k périodes d'échantillonnage a pour transformée en z l'expression :

En effet, il suffit de se rappeler que si le signal y(t) à pour Transformée de Laplace Y(p), alors le signal y(t-to), qui est le signal y (t) retardé d'un temps to, a pour Transformée de Laplace. (figure 11):

Pour les signaux échantillonnés, le retard est un nombre entier de périodes d'échantillonnage soit kTe. Par conséquent la Transformée en z d'un signal retardé de kTe est donc :

$$e^{-pkTe}Y(z) = z^{-k}Y(z)$$

Ceci est illustré **figure 11**, où nous avons noté T L, la Transformée de Laplace et T Z, la Transformée en z. On en déduit que, b étant un scalaire, la séquence (b.Y(n-k)) a pour transformée en z l'expression :

Par définition, on appelle Transmittance du filtre numérique l'expression:

$$H(z) = \frac{Y(z)}{X(z)}$$

Compte-tenu de ce qui précède, on peut l'obtenir facilement à partir de l'algorithme du filtre.

Exemple 1:

Soit y(n) =
$$\frac{x(n) + x(n-1)}{2}$$

d'où Y(z) = 0,5 × (X(z) + + z⁻¹X(z))

soit H(z) =
$$\frac{Y(z)}{X(z)}$$
 = $\frac{z+1}{2z}$

Exemple 2:

Soit
$$y(n) = x(n) + a \times y(n-1)$$

qui donne
$$Y(z) = X(z) + a \times z^{-1}Y(z)$$

Soit
$$H(z) = \frac{z}{z-a}$$

Le coefficient a qui annule le dénominateur de la transmittance est appellé pour cette raison pôle de H(z).

Exemple 3:

Soit
$$y(n) = x(n) - y(n-1) - 0.5 \times y(n-2)$$

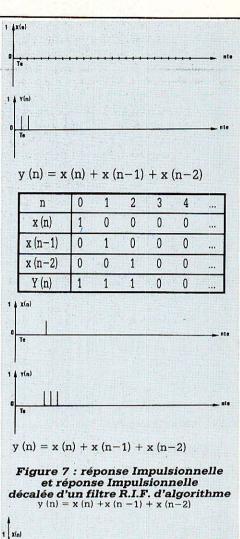
ce qui donne

$$Y(z) = X(z) - z^{-1}Y(z) - 0.5 \times z^{-2} Y(z)$$

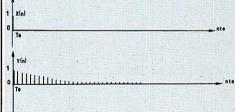
soit
$$Y(z) (1 + z^{-1} + 0.5 \times z^{-2}) = X(z)$$

finalement H (z) =
$$\frac{z^2}{z^2 + z + 0.5}$$

Les poles de H(z) ont alors pour expression:

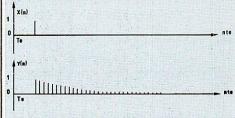

$$p1 = -0.5 + j0.5$$

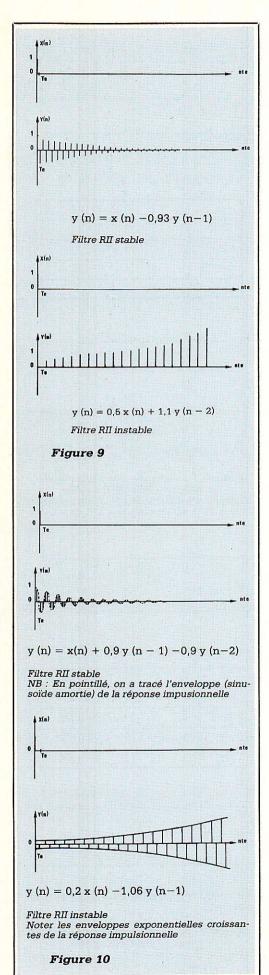
 $p2 = -0.5 - j0.5$

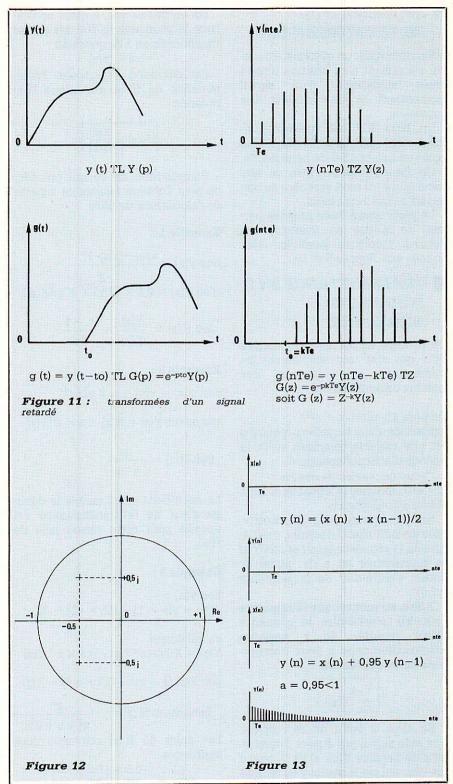

Ils possèdent un module qui vaut sensiblement 0.707.

Ils sont représentés dans le plan complexe figure 12.

D'une manière générale on démontre que si H(z) possède au moins un pôle de module égal ou supérieur à 1, alors le filtre numérique est INSTABLE.

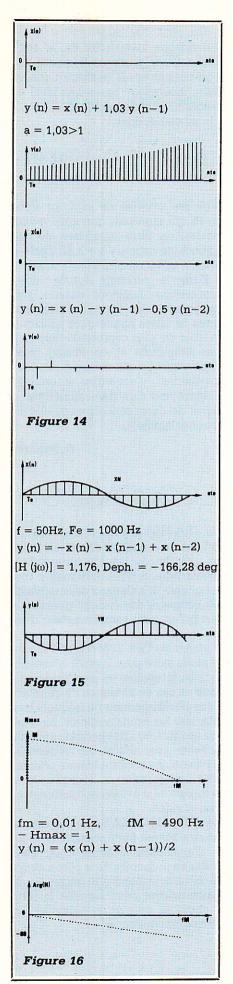

Ainsi, ci-dessus, les exemples 1 et 3 correspondent à des filtres stables


y(n) = x(n) + 0.9 y(n-1)


Contract of the contract of th	n	0	1	2	3	4	
	x (n)	1	0	0	0	0	
	y (n-1)	0	1	0,9	0,81	0,729	
	0,9 y (n-1)	0	0,9	0,81	0,729	0,656	
	y (n)	1	0,9	0,81	0,79	0,656	

NB: y(n) = 0 pour $n < 0 \Rightarrow y(n-1) = 0$ pour n < 1

figure 8 : réponse Impulsionnelle et réponse Impulsionnelle décalée d'un filtre R.I.I. d'algorithme $y\ (n) = x\ (n) + 0.9\ (n-1)$


mais, pour l'exemple 2, le filtre sera stable si le cœfficient a est inférieur à 1 et sera instable si a est égal ou supérieur à 1.

Ce critère de stabilité peut être vérifié dans les exemples représentés aux figure 13 et 14 ainsi que dans ceux donnés au paragraphe 3 (revoir les figures 9 et 10) en calculant les transmittances en z puis ensuite leurs pôles.

TRANSMITTANCE FRÉQUENTIELLE Η (jω)

Définition:

Soit une grandeur analogique $x(t) = Xm \sin \omega t$ échantillonnée à la fréquence Fe = 1/Te. On obtient alors une séquence (x(n)). Appliquée à l'entrée d'un filtre numérique, elle

donne en sortie et en régime permanent une séquence (y(n)), elle-même sinusoïdale, à laquelle on peut faire correspondre une grandeur analogique $y(t) = Ym \sin(\omega t + \phi)$ de même pulsation ω que x(t), d'amplitude Ym et présentant un déphasage ϕ par rapport à x(t) (figure 15).

On est capable, comme vous le verrez dans les programmes de calculer Ym et ϕ .

On définit alors de manière simple le module et l'argument de la transmittance H (jw) par les relations :

$$H(j\omega) = \frac{Ym}{Xm}$$

$$Arg (H (j\omega)) = \varphi$$

Montrons la signification de cette transmittance sur un exemple très simple. Soit un filtre numérique d'algorithme:

$$y(n) = \frac{x(n) + x(n-1)}{2}$$

et soit $x(t) = Xm \sin \omega t$. On en déduit que les échantillons successifs x (nTe) notés plus simplement x (n) ont pour expression :

 $x(n) = x(nTe) = Xm \sin n\omega te$ Donc x(n-1) = x((n-1)Te) $= Xm \sin (n-1) \omega Te$ d'où y(n) = $0.5.Xm (\sin n\omega Te)$

+ $\sin (n-1)\omega Te$)
En transformant la somme de sinus en produit cosinus sinus y (n) = (Xm cos 0,5 ωTe)
($\sin (n\omega Te - 0,5 \omega Te)$)

Posons Xm cos 0,5 ω Te = Ym et -0,5 ω Te = ϕ

Les échantillons en sortie du filtre sont identiques à ceux que donnerait l'échantillonnage (à la fréquence Fe = 1/Te) d'un signal analogique y (t) d'expression : y (t) = Ym sin $(n\omega Te - \phi)$

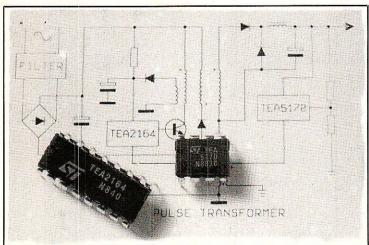
```
10 PRESENTATION DU PROGRAMME***********

20 CLS
30 MODE 0
40 INK 0,0:INK 1,15:INK 2,26:INK 3,24
50 LOCATE 2,5
60 PRINT "TRACE DE LA REPONSE"
70 LOCATE 2,10
80 PRINT"HPULSIONNELLE D'UN"
90 LOCATE 2,15
100 PRINT" FILTRE NUMERIQUE"
110 FOR I=1 TO 2000:I=I+1:NEXT I
120 MODE 1
130 CLS
140 PRINT "CE PROGRAMME PERMET D'OBTENIR LE TRACE "
150 PRINT "CE PROGRAMME PERMET D'OBTENIR LE TRACE "
150 PRINT "CE PROGRAMME PERMET D'OBTENIR LE TRACE "
                                PRESENTATION DU PROGRAMME*********************
 160 PRINT
170 PRINT"DE LA REPONSE IMPULSIONNELLE D'UN FILTRE"
180 PRINT
190 PRINT"NUMERIQUE SOIT NON RECURSIF (d'ordre
 200 PRINT
 210 PRINT"quelconque ) SOIT RECURSIF (limite aux" 220 PRINT" 230 PRINT"termes y(n-1) et y(n-2) ) 240 PRINT
 250 PRINT
                                     320 PRINT" Entrez l'algorithme du filtre a etudier selon la syntaxe suivante :"
330 PRINT" y(n)=0.748*x(n)+1.353*y(n-1)+..etc.. ";a$ 350 PRINT"Creer la ligne NO 960 du programme en reccrivant ou en recopiant l'a lgorithme,puis lancer l'execution par un goto 380"
 360 EDIT 960
 370 CLS
380 PRINT "
                              "a$
 390 PRINT
 410 INPUT "Entrez la valeur la plus eleve du coefficient k des termes en X(n-k)
ou en Y(n-k) apparaissant dans votre algorithme";g
420 PRINT
 440 IF g(O THEN GOTO 410
440 INPUT "Entrez la valeur du coefficient de Y(n-1) apparaissant dans votre alg
 orithme";b
orithme";D
450 PRINT
460 INPUT "Entrez la valeur du coefficient de Y(n-2) apparaissant dans votre alg
orithme";C
470 '
480 CLS
500 'CALCUL DE LA STABILITE ET DU NOMBRE D'ECHANTILLONS A CALCULER POUR LE TRACE
510 '
520 IF b=0 AND c=0 THEN nt=15*g:GOTD 650
530 de=(b*b)+(4*c):ab=ABS(c)
540 IF de>=0 THEN z1=(b+SQR(de))/2 :z2=(b-SQR(de))/2
550 IF ABS(z1)>=1 DR ABS(z2)>=1 THEN In=1
560 IF ABS(z1)>=ABS(z2) THEN p1=ABS(z1) ELSE p1=ABS(z2)
570 IF de<0 AND ab>=1 THEN In=1
580 IF de<0 AND ab>=1 THEN In=1
580 IF de<0 AND ab>=1 THEN In=1
600 IF In=1 THEN PRINT " ATTENTION : VOTRE FILTRE EST INSTABLE":nt = 40
610 PRINT
620 PRINT
A30 LE In=0 THEN PRINT " VOTRE FILTRE EST STABLE": At=FIX(-5/LOG(p1))
```

 \iint

On peut dire aussi que y (t) est l'enveloppe temporelle de la suite (y(n)). C'est d'ailleurs le signal que l'on obtient après passage dans un filtre analogique passe-bas idéal de fréquence de coupure Fe/2. On en déduit donc :

$$H (j\omega) = \frac{Ym}{Ym} = \cos 0.5 \omega Te$$
et $\omega = 0.5 \omega Te$


d'où les courbes de réponse figure 16 qui montrent que nous avons obtenu un filtre passe-bas, de fréquence de coupure à -3 dB égale à Fe/4, à variation de phase linéaire.

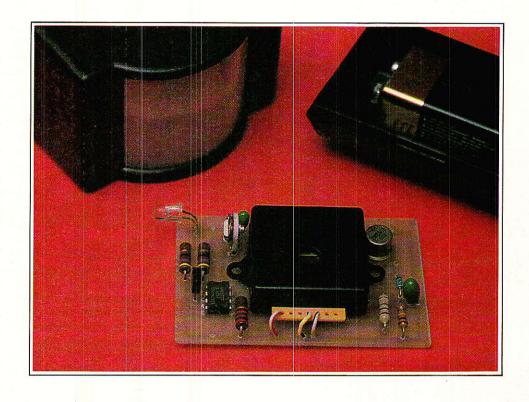
Dans le prochain article, nous montrerons comment obtenir, par programme, les réponses harmoniques de filtres numériques ainsi que le tracé de leurs courbes de réponses (en Amplitude et en Phase), puis nous expliquerons comment on peut synthétiser, c'est-à-dire déterminer l'algorithme d'un filtre numérique à partir de notre connaissance des filtres analogiques.

D. Bognier

CIRCUITS POUR ALIMENTATIONS A DECOUPAGE ST

SGS-THOMSON introduit un jeu de deux circuits intégrés qui simplifie grandement la conception d'alimentations à découpage de hautes performances pour une utilisation dans les téléviseurs et les moniteurs de visualisation. Les TEA 2164 et TEA 5170 forment le cœur d'un système maître-esclave dans lequel la tension de l'enroulement secondaire principal d'un transformateur d'alimentation isolé est utilisée pour commander le circuit de commutation du côté primaire, ce qui permet d'employer un seul transformateur, à la fois en mode normal et en mode attente (standby).

Du côté primaire, le TEA 2164 esclave fournit directement le courant de ±1,5 A au transistor de commutation relié à l'enroulement primaire du transformateur d'alimentation. Du côté secondaire, le TEA 5170 maître contrôle la sortie filtrée et génère des signaux de commande pour le TEA 2164. Un couplage des circuits primaire et secondaire ne requiert qu'un petit transformateur d'impulsions à faible coût.


Les points clés de l'ensemble TEA 2164/TEA 5170 sont le fonctionnement en mode salve pour le mode attente et la protection contre les surintensités ou les surtensions, la coupure automatique en cas de détection de surintensités répétées, ainsi que le changement de fréquence en mode attente pour éliminer les bruits audibles. La large gamme de fréquences (jusqu'à 50 kHz) permet une utilisation de ces composants avec toutes les fréquences ligne standard de télévision, les rendant idéaux pour les moniteurs haute résolution puisque la stabilité de la tension de sortie élevée permet d'éviter les interférences entre les signaux audio et vidéo.

Le jeu de circuits TEA 2164/TEA 5170 permet de concevoir des régulateurs hautes performances avec un seul transformateur d'alimentation faible coût, sans détériorer les possibilités de puissance de la partie audio. De plus, la possibilité de fonctionner à une fréquence de commutation fixe synchronisée, pour laquelle le filtre peut être facilement optimisé, permet de minimiser les effets des radiations électromagnétiques.

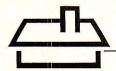
SGS THOMSON

7, avenue Galliéni, 94253 GENTILLY Cedex

Une alarme infrarouge « intégrale »

Plus fiables que celles à ultrasons mais plus économiques que celles à hyperfréquences, les alarmes à infrarouges passifs constituent un bon compromis qui retient même l'attention des installateurs professionnels.

Grâce à un nouveau composant hybride, la réalisation d'un équipement de haute qualité est désormais parfaitement accessible à l'amateur. Parallèlement, la disponibilité de tout un choix d'éléments optiques spécialisés ouvre des horizons fort vastes.

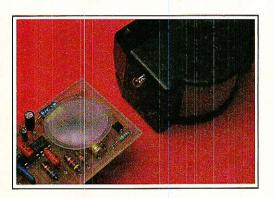

armi les applications envisageables, nous avons choisi de développer un détecteur volumétrique totalement autonome : une pile alcaline miniature de 9 V suffira à l'alimenter pendant toute une année, tandis qu'en cas d'effraction il communiquera la

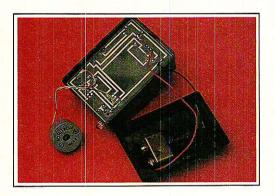
mauvaise nouvelle à la centrale d'alarme sans fil, toujours par infrarouges.

Ce montage est donc le complément idéal de toute centrale d'alarme devant protéger des zones où aucun câblage ne peut être envisagé!

LE MODULE HYBRIDE MS 02 ET SES COMPLÉMENTS **OPTIQUES**

Des éléments détecteurs d'infrarouges passifs à effet « pyroélectri-




que » sont depuis longtemps déjà disponibles dans le commerce : ressemblant à un gros transistor muni d'une fenêtre transparente, ces composants délivrent une faible tension électrique lorsqu'ils recoivent le rayonnement infrarouge d'un corps suffisamment chaud (en particulier d'un être humain ou d'un animal).

Ils sont dits « passifs » car ils n'émettent aucun rayonnement : ils se contentent de travailler en récep-

Si la source d'infrarouges se déplace, la tension délivrée varie, rendant possible la détection du mouvement par des moyens électroniques.

Il est évidemment possible de réaliser soi-même une électronique des-

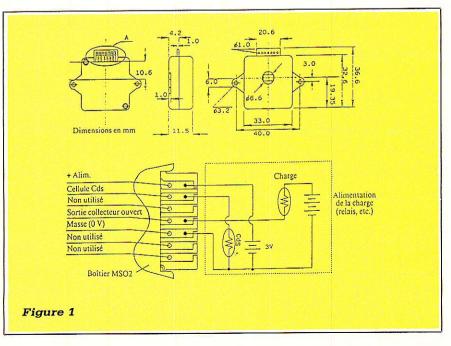
tinée à être associée à un tel capteur, mais l'affaire est relativement délicate: il s'agit de traiter des signaux très faibles, disponibles sous haute impédance. Il est difficile de conjuguer une bonne sensibilité, une faible probabilité de déclenchement intempestif, et une faible consommation, surtout en se limitant à l'emploi de composants courants.

Importé et distribué par SELEC-TRONIC, le module hybride MS 02 contient un capteur pyroélectrique et un amplificateur utilisant un circuit intégré spécifique et des composants « CMS » : sous un encombrement minimal et pour un prix abordable, il peut ainsi se permettre d'afficher des performances de niveau professionnel.

En fait, ce module constitue déià un système d'alarme rudimentaire à lui tout seul : la figure 1 montre qu'il suffit de l'alimenter (sous 2,6 à 5,5 V) pour qu'il actionne pendant huit secondes un relais ou un avertisseur consommant jusqu'à 300 mA lorsqu'un individu passe à moins de deux mètres environ de sa fenêtre sensible.

Avec une consommation de 15 à 50 μA en veille et de 1 à 2,5 mA en détection, le MS 02 peut fonctionner sur piles pendant des années si nécessaire. On pourrait facilement atteindre dix ans d'autonomie avec un élément au lithium de taille moyenne!

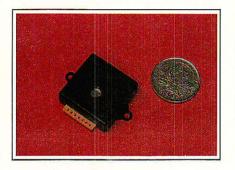
Ses très petites dimensions pourraient permettre d'installer des « traquenards » fort discrets dans toutes sortes de lieux, mais le fin du fin est de faire appel aux ressources de l'optique pour protéger une zone importante avec un seul capteur.

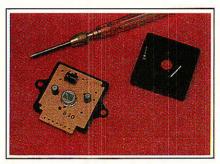

SELECTRONIC Précisemment. offre également tout un choix de lentilles de Fresnel capables d'accroître sensiblement les performances du MS 02. Passionné d'optique, l'auteur apprécie à leur juste valeur ces composants qui pourtant « ne payent pas de mine » : on les croirait découpés dans une vulgaire feuille de plastique translucide!

En y regardant de plus près, on distingue cependant de fines gravures sur l'une des faces : c'est là que réside tout le secret! Il s'agit en fait de la même technique que celle utilisée pour réaliser les plus puissantes des lentilles, celles équipant les phares maritimes : chaque strie est en fait un minuscule prisme moulé avec une extrême précision, et l'ensemble se comporte pratiquement comme une épaisse lentille de verre. bien que son épaisseur soit inférieure au millimètre.

Mieux encore, en associant des microprismes de caractéristiques différentes, on peut obtenir un résultat qui exigerait normalement l'assemblage de plusieurs lentilles très particulières.

Le meilleur exemple est celui de la figure 2: la lentille CE 24 est un rectangle de 57 × 45 mm qui ne rassemble pas moins de vingt-quatre lentilles distinctes. Pourvu qu'on l'installe avec le rayon courbure prescrit (29,6 mm) et que le détecteur pyroélectrique soit placé à son foyer optique, on obtiendra vinatquatre zones de détection distinctes réparties dans un quart de cercle de ravon 10 à 12 mètres.

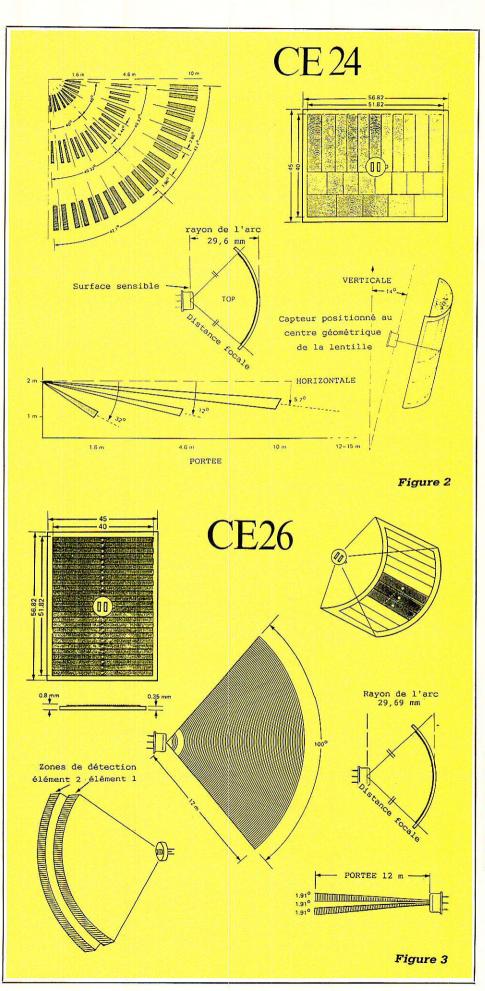

Non seulement cette disposition permet de concentrer la sensibilité du détecteur sur les zones significatives, mais en plus elle accentue l'aptitude de l'ensemble à détecter des mouvements lents (cambrioleur astucieux cherchant à tromper le système). En effet, chaque zone sensible est séparée de sa voisine par un secteur insensible : en passant, même très lentement, d'un secteur au suivant, un corps rayonnant causera automatiquement une nette variation du rayonnement reçut!

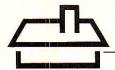


La lentille CE 26 (figure 3) est de dimensions exactement identiques. mais présente des caractéristiques optiques fondamentalement différentes : sa zone de sensibilité se réduit à un mince « rideau » d'une douzaine de mètres constituant une véritable « barrière invisible ». Son emploi sera à réserver à des cas un peu spéciaux, notamment lorsqu'une zone sensible trop large entrainerait des risques de déclenchements intempestifs, spécialement en extérieur (présence d'animaux ou de passants).

A vrai dire, on utilisera la plupart du temps la CE 24, parfaitement adaptée à la surveillance de pièces de dimensions moyennes.

Un positionnement extrêment précis du capteur par rapport à la lentille est absolument indispensable





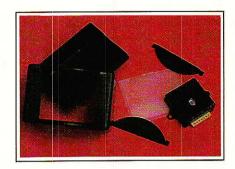
pour que les performances annoncées soient obtenues : c'est une affaire de dixième de millimètre! Fort heureusement, il est proposé aussi un boîtier plastique « GIL-BOX », spécialement étudié pour recevoir les lentilles et un circuit imprimé supportant le MS 02 : c'est l'ensemble de ces trois éléments de base que nous allons mettre à contribution dans cette étude.

UN DÉTECTEUR 100 % AUTONOME

Lors de l'installation d'un système d'alarme, l'un des problèmes les plus irritants est le passage des câbles nécessaires : pas toujours les bien-

venus lorsque les lieux sont déjà décorés, ils constituent également un point faible exposé au sabotage lors d'une effraction.

fonctionner Capable de années sur piles, le MS 02 n'a nul besoin de câble d'alimentation, mais il lui faut bien transmettre l'information de détection à la centrale d'alarme ou au transmetteur téléphonique, à moins qu'on se contente de lui faire actionner une mini-sirène en local.

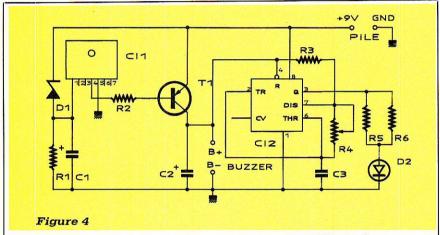

Ne quittons pas ce domaine si riche de l'opto-électronique, et utilisons donc un faisceau d'infrarouges pour réaliser cette liaison : ce n'est guère compliqué, comme en témoigne la figure 4. Un simple 555 suffit

pour faire émettre un intense faisceau modulé à une LED infrarouge aussi directive que possible (par exemple une LD 274). Ĉet oscillateur de puissance (300 mA), réglé aux environs de 16 kHz par R4, est alimenté par un transistor commandé par le MS 02. Les 9V d'une pile alcaline miniature ne sont pas de trop pour produire le courant nécessaire, mais c'est d'à peine 4V qu'a besoin le MS 02 : en tout cas, il ne supporterait pas 9V!

Pas question d'utiliser un régulateur qui consommerait des dizaines de fois plus de courant que le module, mais pas question non plus de se contenter d'une simple résistance chutrice puisque la consommation

peut varier de 15 µA à 2,5 mA (rapport de près de 170).

L'astuce employée tient compte du fait que le MS 02 fonctionne parfaitement de 2,6 à 5,5V : sa tension d'alimentation n'a donc pas besoin d'être régulée ni même stabilisée, mais simplement limitée avec le moins de perte possible.



Monté « à l'envers », un stabilisateur à diode zener convient très bien : avec un courant de quelques dizaines de micro-ampères, la zener fonctionnera très loin de la zone optimale, mais chutera suffisamment de tension pour que le MS 02 n'en recoive pas trop. Et bien entendu, quelques milliampères ne lui font

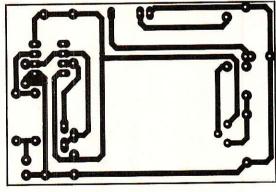


Figure 5

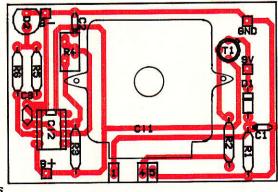
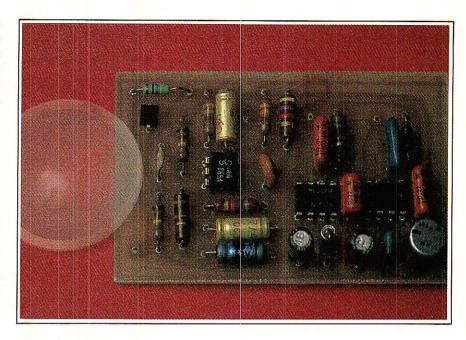


Figure 6

absolument pas peur! Une résistance de $100~k\Omega$ est tout de même prévue pour appeler un minimum de courant afin que même si le MS 02 consommait moins que prévu, il ne puisse pas recevoir une tension excessive.

RÉALISATION PRATIQUE DU DÉTECTEUR

Le circuit imprimé reproduit à la figure 5 a été spécialement étudié pour prendre place dans le boîtier GIL-BOX permettant l'adaptation des lentilles de Fresnel. Il va cependant de soi que si une distance de détection de deux mètres suffit pour votre application, vous pouvez installer la carte dans un boîtier différent, éventuellement même encastré dans une cloison.

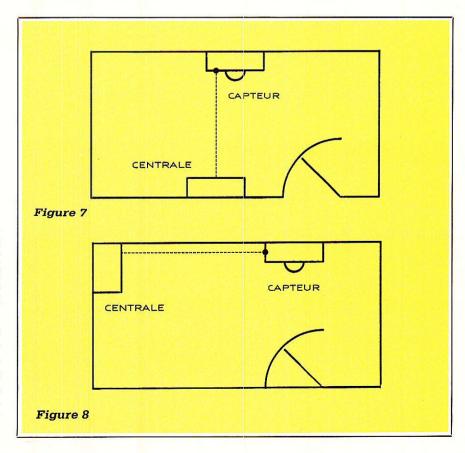

En cas d'utilisation du boîtier GIL-BOX, il est préférable de tirer le circuit sur la plaquette cuivrée livrée avec lui : son épaisseur de 0,7 mm est exactement adaptée aux butées garantissant un positionnement précis du détecteur par rapport à la lentille de Fresnel.

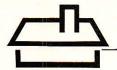
Fidèle à son esprit de contradiction bien connu, l'auteur a évidemment essayé d'employer du stratifié standard de 1,6 mm! Dans ces conditions, le couvercle du boîtier ne peut être engagé à fond et interdit toute fixation sérieuse, par exemple sur un mur. On peut songer à meuler légèrement les butées, ce qui enfonce la carte de 0,9 mm: le boîtier peut alors fermer, mais la mise au point optique en souffre. La perte de portée qui en résulte n'est pas énorme, mais sensible.

Le câblage selon la **figure 6** n'appelle de commentaires particuliers que pour deux composants :

En ce qui concerne le module MS 02, nous conseillons plutôt un collage qu'un vissage, afin que les têtes de vis ne viennent pas buter contre la pile (il faut déjà couper les queues de composants au ras de la carte si l'on veut pouvoir intercaler un carton anti-court-circuits).

Nous avons utilisé pour cela une généreuse pulvérisation de JELTO-FIX, colle « repositionnable » permettant éventuellement une dépose sans problème du module. Avec d'autres colles (notamment cyanocrylates ou époxy), il faut considérer l'assemblage comme définitif.

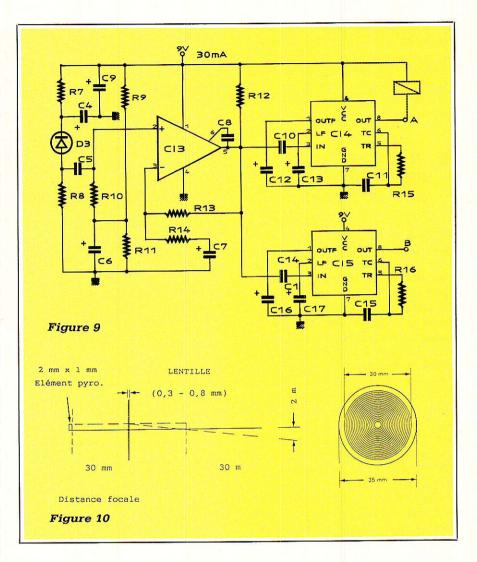

Les trois connexions (masse, alimentation et sortie), seront naturellement exécutées avant collage, à l'aide de fils souples de 15 à 20 mm de long : veillez bien au respect du brochage!


Pour ce qui est de la diode émettrice d'infrarouges, deux options sont possibles: un montage « debout » lui permettant de s'insérer dans le trou existant dans la façade du boîtier (un peu agrandi), ou un cambrage des pattes à 90 ° corres-

pondant à une sortie par un trou à percer sur le côté.

La première option est à choisir dans le cas d'une disposition d'alarme en face du détecteur (figure 7).

Pour notre part, nous préférons l'agencement de la **figure 8**, qui met la centrale hors de portée d'un intrus pénétrant par la porte. En pratique, il faut cependant choisir cas par cas, notamment en fonction de la disposition des fenêtres!

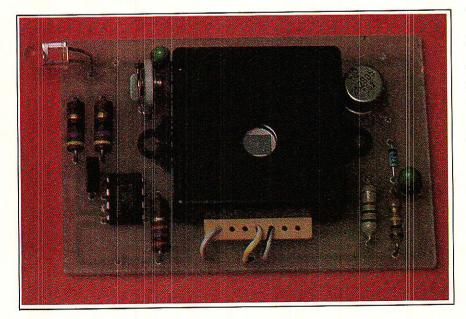

L'inclinaison de la diode dans son trou permet d'ailleurs la visée de n'importe quel point de la pièce, voire d'une pièce voisine si la porte reste ouverte ou si une ouverture existe, même vitrée.

Deux points de raccordement sont prévus pour un buzzer « piézo-actif » (c'est-à-dire à oscillateur incorporé) s'alimentant en courant continu et consommant au maximum quelques milliampères. Monté à l'extérieur du boîtier, celui-ci fera suffisamment de bruit pour réaliser une « pré-alartotalement autoprotégée : c'est souvent suffisant pour faire fuir l'intrus, avant même que la centrale principale ne se déclenche.

Les fils de ce bruiteur, comme ceux du clip de pile, seront soudés côté cuivre, une fois la carte insérée dans le boîtier. On pourra donc procéder à des essais avant même d'avoir construit le récepteur infrarouge!

La toute dernière opération sera le montage de la lentille de Fresnel par l'intérieur du boîtier : deux pièces en ABS sont fournies à cet effet. On les utilisera pour bien pousser la lentille dans son logement courbe, face cannelée vers l'intérieur (c'est très important).

On se servira si possible de pinces de photographe pour les maintenir provisoirement en place, et lorsque tout sera bien au point, on passera à leur collage, une seule à la fois. Il faut employer de la colle pour PVC rigide, normalement destinée au collage des tuyaux de sanitaires. Veillez scrupuleusement à ne pas « baver » sur la lentille, et laissez les pinces en place au moins deux heures.


LE RÉCEPTEUR POUR LA CENTRALE

La figure 9 fournit le schéma d'un récepteur infrarouge à deux canaux destiné à être adjoint à une centrale d'alarme quelconque, à un transmetteur téléphonique (voir notre série spécialisée), ou à une simple sirène de puissance qui retentira alors huit secondes à chaque mouvement détecté.

Le second canal est destiné à recevoir l'émission d'un boîtier portatif servant à armer et désarmer le système.

Nos lecteurs habituels reconnaîtront le schéma du récepteur de notre « télécommande domotique », avec laquelle cette réalisation est entièrement compatible : simplement, nous avons réglé la voie A sur une bande passante plus large afin de fiabiliser de fonctionnement en cas de glissement de la fréquence d'émission dû à une température extrême ou à la fatigue de la pile (qu'il ne faut pas oublier de remplacer une fois par an, de préférence avant l'hiver, mais on ne sait jamais...).

Il n'y a pas de réglage sur ce récepteur : c'est l'émetteur que l'on doit accorder sur la fréquence du 567 à

l'aide de son unique potentiomètre, qu'il faut caler au milieu de la plage activant le récepteur.

Les deux sorties du récepteur sont de type « collecteur ouvert », capables aussi bien de commander un relais qu'une entrée de circuit logique : de quoi piloter à peu près ce que vous voudrez, à commencer par une LED pour les essais!

En principe, placé dans de bonnes conditions (lumière atténuée), cet ensemble émetteur-récepteur porte grossièrement à deux ou trois mètres, ce qui est généralement insuffisant. C'est là qu'intervient la lentille de Fresnel CE 01 (figure 10). De forme ronde et de focale 30 mm. cette pièce est normalement prévue pour équiper le détecteur MS 02 lorsqu'il s'agit de protéger un long couloir (portée de 30 mètres!)

Placée à 3 cm de la BP 104 de notre récepteur (et convenablement centrée), elle augmente considérablement la portée de notre liaison. En contrepartie, la directivité du récepteur augmente fortement : il faut « pointer » soigneusement la diode de l'émetteur vers la lentille, qui doit se trouver bien en face.

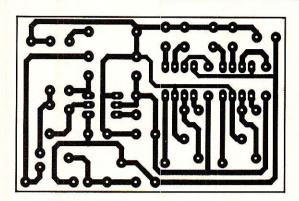


Figure 11

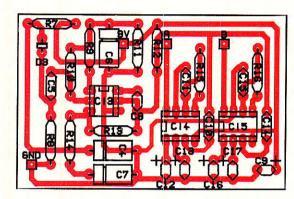


Figure 12

Nomenclature

Résistances : 5 % 1/4 W

 $R_1:100 \text{ k}\Omega$ $R_2:1 k\Omega$ $R_3: 2.7 k\Omega$

 R_4 : pot-ajustable 22 k Ω

R₅: 47 Ω R6:47 Ω $R_7:4,7 k\Omega$ $R_8:120 \text{ k}\Omega$ $R_9:3.3 k\Omega$ $R_{10}: 120 \text{ k}\Omega$

Condensateurs chimiques 16 V ou non polarisés 100 V

C1: 10 µF Tantale goutte C2: 10 µF Tantale goutte C3: 4,7 nF

C4: 4,7 nF C5: 1 nF C6: 4,7 µF C7: 1 µF Cs: 2,2 µF C9: 100 uF C10: 0,22 µF C11: 10 nF C12: 4,7 µF

C13: 0,1 µF

C14: 0,22 uF

C15: 10 nF C16: 4,7 µF C17: 0,47 uF

Transistor T₁: 2N2905

Circuits intégrés

CI₁: MS 02 Sélectronic

CI2: LM 555

CI₃: TCA 335A, TAA 765A, etc.

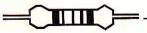
CI4: LM 567 CI₅: LM 567

Autres semi-conducteurs

D₁: Zener 5,1V 1/4W

D2: LD 274 D₃: BP 104

Divers


Lentille CE 24 Sélectronic Lentille CE 01 Sélectronic Boîtier GIL-BOX Pile 9V avec clip Alim 9V 30 mA permanent Buzzer piézo-actif 3 à 24V (facultatif)

On obtient ainsi une liaison très fiable, pratiquement insensible aux rayonnements provenant de directions autres que celle de l'émetteur.

La figure 11 donne le tracé du circuit imprimé de ce récepteur, qu'il faudra câbler conformément à la figure 12 avant de l'incorporer, avec sa lentille, dans le coffret de votre centrale d'alarme. Le récepteur consommera environ 30 mA sur l'alimentation de celle-ci, qui sera donc de préférence du type « secteur » secourue par batterie tampon.

Bien entendu, rien n'empêche d'installer plusieurs détecteurs infrarouges équipés chacun de leur récepteur, afin d'exploiter au mieux les possibilités d'une centrale à multiples « niveaux de protection », y compris éventuellement une traditionnelle « boucle de rupture ». Mais nous abordons là des choix qui ne nous regardent plus: à vous de jouer!

Patrick GUEULLE

TRANSFORMATEURS AUDIO HAUTE PERFORMANCE

La société SYSTEL, du groupe BALLOFET, vient d'éditer une plaquette de présentation de sa gamme de Transformateurs Audio.

Ces transformateurs s'adressent aux constructeurs de matériel du type : table de mixage, amplificateur, générateur du secteur audio.

Cette documentation permet au constructeur de ces matériels de choisir, parmi une gamme standard, le transformateur dont les caractéristiques sont adaptées à son application, en ce qui concerne la bande passante, l'impédance présentée, la distorsion, la dynamique de la protection contre les champs extérieurs.

En corollaire de sa gamme standard, SYSTEL réalise tout transformateur sur cahier des charaes.

La nouvelle documentation présente les croquis des différents boîtiers possibles et des types de sorties notamment par perles de verre, par fils, par pins.

Les tranformateurs audio SYSTEL, qu'il s'agisse de transformateurs d'entrée, de sortie, d'adaptation micro ou d'impédance, disposent d'un boîtier protégé contre les influences des ravonnements magnétiques extérieurs ou inhérents au transformateur lui-même.

Cette protection consiste en l'adjonction de un à trois blindages intérieurs concentriques en MUMETAL.

SYSTEL:

ZI de Pissaloup - Parc Héliopolis rue, E.-Branly - 78190 TRAPPES

Tél.: 30.69.01.10

LE MULTIPLEXEUR MPXA DE NOGEMA

Le multiplexeur MPXA est un boîtier d'interface permettant l'interconnexion et la centralisation de tout appareil équipé d'un interface série asynchrone (consoles centrales, balances, terminaux portables, imprimantes, ordinateurs, automates, lecteur de code à barres. lecteur de badges, afficheur, etc.).

L'ordinateur central est libéré de toutes contraintes (temps de réponse, charge machine, etc.), par un stockage automatique des données dans le multiplexeur et le contrôle automatique des flux entre ce dernier et les divers appareils qui lui sont connectés. L'ordinateur central peut interroger le multiplexeur quand il le veut pour converser avec chaque appareil.

Le multiplexeur MPXA est très simple d'emploi et ne demande que des modifications mineures pour s'intégrer à des applications existantes. Il s'intègre dans tout environnement micro ou mini et principalement pour des applications individuelles.

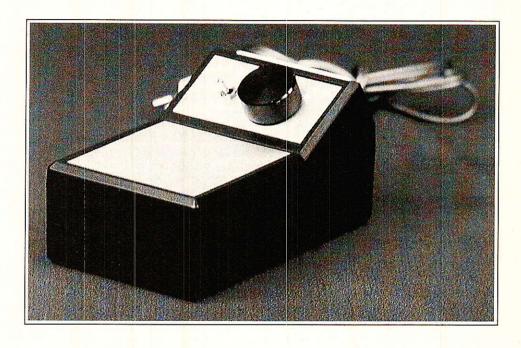
DESCRIPTION:

Le MXPA peut être équipé sur demande de diverses cartes et configurations en fonction des besoins de l'utilisateur. Une évolution du matériel reste toutefois possible après installation grâce à sa modularité.

Il se présente sous forme de RACK avec des cartes identiques au format EUROPE. Chaque carte est équipée d'un processeur, d'une mémoire RAM, et d'une liaison externe série. Il comprend une carte mère (liaison avec l'ordinateur central) et de 8 à 64 cartes filles (liaison avec les divers appareils).

Un boîtier (comportant 9, 17, 25, 33, 41, 49, 57 ou 65 alvéoles). Une alimentation intégrée au boîtier. Chaque carte (mère ou fille) peut être équipée soit en RS232, RS422, soit en boucle de courant. Chaque carte fille peut recevoir 8 000 ou 32 000 octets de mémoire de données. La carte mère est en liaison avec l'ordinateur central à 9 600 bauds. Les cartes filles sont configurables par programmes:

- Vitesse 300, 1 200, 2 400, 4 800 et 9 600 bauds.
- Réception privilégiée ou émission privilégiée.
- Fonctionnement de DTR ou XON-XOFF.
- Caratère de fin de transmission.

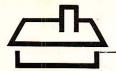

OPTIONS: Équipement de commandes d'appareil et de prise d'information :

- Chaque fille peut être équipée de 2 relais et de 2 entrées logiques avec optocoupleurs.
- Des adaptations de programmation spécialisée peuvent être réalisées sur devis.
- Alimentation avec sauvegarde sur batterie.

INSTALLATION: 1 prise 220 V avec terre (0,5 A). Chaque câble de liaison doit être équipé d'une prise 9 points femelle.

NOGEMA INFORMATIQUE **8 RUE DU GAL GOURAUD 54000 NANCY** TEL: 83.40.44.44

Gradateur Interrupteur temporisé à effleurement


Depuis l'apparition sur le marché grand public de circuits intégrés à grande intégration, comprenant la presque totalité des composants intervenant pour la réalisation d'une fonction, il est devenu très facile de mettre en œuvre des applications spécifiques qui, auparavant, nécessitaient un grand nombre de composants discrets. Cet avantage a cependant trois inconvénients majeurs. Le premier est de réduire souvent la conception d'un appareil à un suivi scrupuleux de la note d'applications du fabricant, sans comprendre nécessairement le fonctionnement du circuit.

E second réside dans la difficulté qu'il y de réaliser un appareil dont les fonctions doivent différer un peu de celles qui ont été prévues par le constructeur et ceci passe souvent par la

mise en œuvre d'artifices, et donc de circuits périphériques plus ou moins complexes. Quant au troisième, c'est tout simplement un problème de distribution. S'il s'agit de circuits assez simples, il est alors toujours plus

instructif, et parfois plus simple, de recourir à des composants discrets.

L'appareil que nous vous présentons doit réaliser deux fonctions différentes. La première est un interrupteur/gradateur à effleurement.La

seconde est un interrupteur temporisé qui permet d'allumer une lampe très progressivement, dans un temps qui peut varier entre 10 secondes et 10 minutes (effet de crépuscule). Si la première peut facilement être réalisée à l'aide du S 566 B de Siemens, il en va différemment de la seconde. C'est la raison pour laquelle nous avons opté pour une solution «discrète», mais numérique. 8 circuits logiques C-MOS sont suffisants, avec, en prime, une consommation dérisoire. Et puis, il y a le plaisir de comprendre exactement ce que l'on fait! En voici les caractéristiques (figure 1).

POSITION GRADATEUR

- effleurement bref : marche / arrêt - effleurement long : montée (ou descente) progressive de l'intensité lumineuse tant que l'on effleure la touche; le niveau atteint est maintenu après relâchement de la touche; un deuxième effleurement long inverse le sens de progression. La progression s'arrête automatiquement dès que le maximum (ou le minimum) est atteint.

POSITION INTERRUPTEUR TEMPORISÉ

- effleurement bref : marche / arrêt - effleurement long : montée (ou descente) progressive de l'intensité lumineuse qui démarre dès le relâchement de la touche et se poursuit jusqu'à ce que le maximum (ou le minimum) soit atteint. La durée de la progression est réglable entre environ 10 secondes et 10 minutes.

SYNOPTIQUE

Pour commander l'intensité lumineuse d'une lampe, il faut découper les alternances du secteur. Ceci est habituellement réalisé à l'aide d'un

triac qu'il suffit de déclencher avec un certain retard par rapport au passage de la tension par zéro, lors du début de chaque alternance.

Pour générer ce retard, deux solutions sont possibles : la première, analogique, consiste à créer une rampe de tension synchronisée sur le début de chaque alternance et de déclencher le triac dès que cette tension dépasse une tension de consigne. La seconde, numérique, utilise un compteur prépositionnable qui déclenche le triac dès qu'il atteint une certaine valeur. C'est cette solution que nous avons adoptée car elle peut s'interfacer ditectement avec les circuits logiques de gestion de la touche de commande

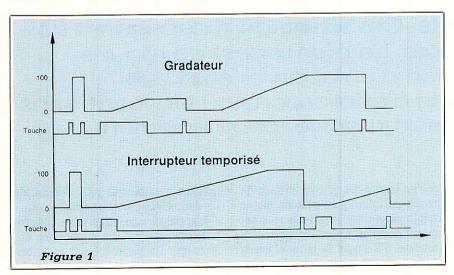
La figure 2 présente le synoptique retenu.

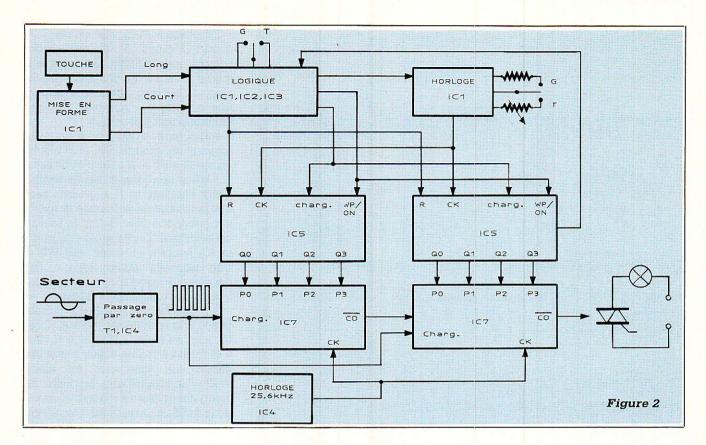
Le monostable numérique est créé par les circuits IC5 à IC8 qui sont des compteurs-décompteurs prépositionnables à 4 bits.

Un module (T₁, IC₄) détecte le début de chaque alternance (passage par zéro) et génère une très courte impulsion. Cette impulsion provoque le chargement dans IC7 et IC8 de la valeur présente sur les sorties Qo à Q3 de IC5 et IC6.

IC7 et IC8 recoivent des impulsions d'horloge à une fréquence d'environ 25,6 kHz ($16 \times 16 \times 100$ Hz). Lorsque leur contenu atteint 255, la sortie Co de IC8 passe à zéro et ce signal déclenche le triac. Le délai entre le début de l'alternance et le déclenchement du triac ne dépend donc que de la valeur chargée dans les compteurs IC7 et IC8, donc de l'état des sorties Qo à Q3 de IC5 et IC6. Ces sorties codent donc un nombre que nous désignerons par N.

Les circuits de gestion de la touche de commande différencient une impulsion courte d'une impulsion longue (supérieur à 0,6 seconde) et envoient ces signaux dans une logique de commande qui contrôle l'état des compteurs IC5 et IC6. Les entrées de prépositionnement de ces compteurs sont toutes à 1. Pour obtenir une intensité maximale, la logique envoie une impulsion de chargement. Ainsi, IC7 et IC8 reçoivent la valeur 255 au début de chaque alternance et déclenchent immédiatement le triac. Au contraire, pour éteindre complètement la lampe, la logique envoie une impulsion de reset à IC5 et IC6. Ainsi, IC7 et IC8 reçoivent la valeur 0 au début de chaque alternance et, compte-tenu de la fréquence de l'horloge, n'ont pas le temps d'atteindre 255 avant la fin de l'alternance : le triac n'est donc jamais déclenché. Toute valeur de N intermédiaire entre 0 et 255, obtenue à l'aide d'une seconde horloge (lente et de fréquence variable en position «interrupteur temporisé») engendre un retard (et donc une intensité lumineuse) intermédiaire.


SCHÉMA DE PRINCIPE


Il est présenté sur la figure 3. Vu la faible consommation de l'ensemble. l'alimentation a été confiée à un couple condensateur-résistance. La tension aux bornes de C2 est à peu près filtrée et vaut environ 6 V.

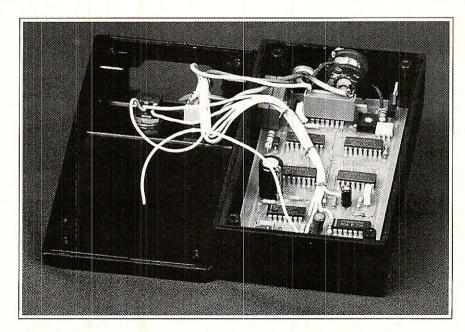
T₁ génère un signal carré synchronisé sur les alternances du secteur. Ce signal est mis en forme par IC4-1. Les fronts montants et descendants sont différenciés et on dispose finalement, sur la sortie d'IC4-2 d'une impulsion fine lors de chacun de ces deux fronts. Ces impulsions sont envoyées à l'entrée de chargement de IC7 et IC8. IC4-3 réalise l'horloge à 25,6 kHz, dont la fréquence devra être ajustée (c'est le seul réglage).

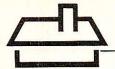
La sortie Co d'ICs commande la LED d'un opto-triac qui déclenche le triac de puissance. En dehors de l'isolement galvanique (qui ne nous intéresse pas ici), un opto-triac présente l'intérêt de commander très efficacement un triac, aussi bien pendant les alternances positives que pendant les alternances négatives.

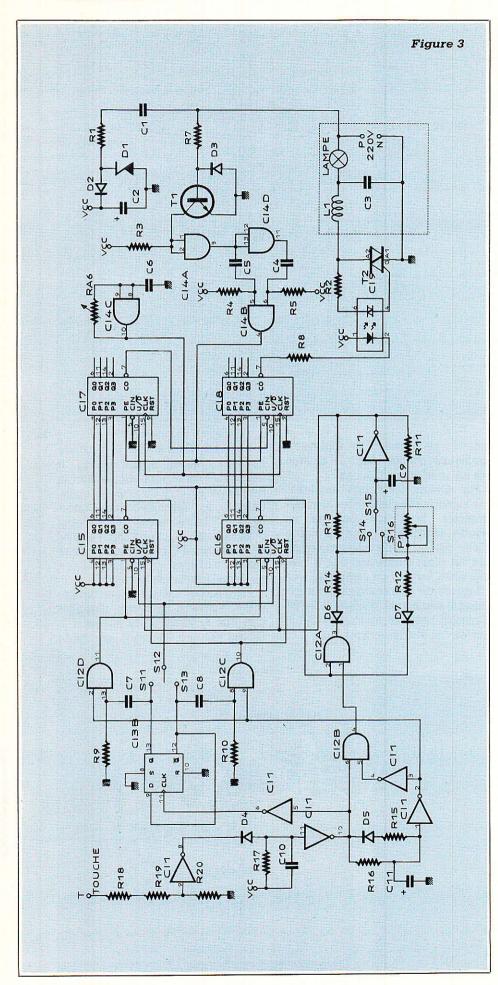
On reconnaît en IC5, IC6, IC7, et IC8 le monostable numérique présenté dans le synoptique : les sorties des deux premiers sont reliées aux

entrées de prépositionnement des deux derniers. Les entrées de prépositionnement d'IC $_5$ et IC $_6$ sont toutes reliées à 1. Un reset (entrée R) fait passer N à 0 ; un chargement (entrée PR) le fait passer à 255.

La touche de commande est une touche à effleurement. La tension « de bruit » présente sur le doigt et appliquée sur la touche, est mise en forme par IC1-4 et intégrée. A la sortie d'IC1-5, on dispose d'un signal carré très propre qui reproduit l'action sur la touche. Ce signal passe dans un second circuit intégrateur puis mis en forme par IC1-1 dont la sortie passe à 0 si l'effleurement dure plus de 0,6 seconde (environ) En combinant ce signal avec celui présent sur la sortie d'IC1-5, on obtient, en sortie d'IC2-2, un 1 lorsque l'on appuie sur la touche pendant plus de 0,6 seconde.


Le créneau disponible en sortie d'IC₁₋₃ est inversé avant d'être appliqué sur l'entrée horloge d'une bascule D (IC₃) montée en compteur par 2. Les sorties d'IC₃ sont utilisées pour commander le sens de comptage des compteurs IC₅ et IC₆. Le


sens de progression de l'intensité lumineuse change donc à chaque fois qu'on relâche la touche.


Par ailleurs les fronts montants des signaux sur ces sorties sont différenciés. Si l'impulsion qui en résulte apparaît lorsque la sortie d'IC₁₋₁ est à 1 (effleurement court), elle est alors transmise, soit à l'entrée reset (extinction complète), soit à l'entrée de prépositionnement (allumage maximum) d'IC₅ et IC₆. Ce dispositif règle la fonction tout-ourien en cas d'effleurement bref.

Il ne reste qu'à voir la seconde horloge, réalisée autour d'IC1-6. Il s'agit d'un oscillateur simple dont la fréquence est fixe en position « gradateur », variable en position « interrupteur temporisé ». Ce signal d'horloge est appliqué sur l'entrée de comptage d'IC5 et d'IC6. L'horloge peut être bloquée par l'intermédiaire de D_6 ou D_7 (selon le mode).

En position « interrupteur temporisé », l'horloge continue d'osciller tant que la sortie Co de ICo est à 1. Quand ICo et ICo sont en mode

« comptage » (UP), Co passe à 0 quand N vaut 255; en mode « décomptage » (DOWN), Co passe à 0 quand N vaut 0. En position « gradateur », l'horloge oscille à condition que la sortie Co d'IC6 soit à 1 et que l'effleurement soit long.

Ainsi, en position gradateur, si la lumière est éteinte, IC5 et IC6 sont en mode « UP », N vaut 0 et C0 est à 1. Une action longue sur la touche libère l'horloge et N augmente tant que la touche est actionnée et que N est inférieur à 255. Quand la touche est relâchée, IC3 change d'état et IC5 et IC6 passent en mode « DOWN ». Une nouvelle action longue fait décroître N jusqu'à ce qu'il atteigne 0 ou que la touche soit relâchée.

En position « interrupteur temporisé », si la lumière est éteinte, IC5 et IC6 sont en mode « DOWN », N vaut 0 et C0 est à 0. Une action brève fait passer les compteurs en mode « UP », apparaître une impulsion de chargement (sortie d'IC2-3). N passe donc à 255 et C0 reste à 0. Une action longue sur la touche provoque seulement un passage en mode « UP » (dès que la touche est relâchée). De ce fait, C0 passe à 1, ce qui libère l'horloge et N augmente jusqu'à atteindre 255.

RÉALISATION PRATIQUE

La presque-totalité des composants prend place sur un petit circuit imprimé simple face de 12,7 × 6,8 cm. Le tracé est donné sur la figure 4 et l'implantation à la figure 5. La self antiparasites n'a pas été placée sur le circuit imprimé car son encombrement varie beaucoup d'un fournisseur à l'autre.

Si l'on souhaite commander une assez forte puissance (lampadaire halogène), il est conseillé de placer un petit radiateur sur le triac T_2 . Ne pas oublier de câbler les 10 straps.

Le plan de câblage est présenté sur la figure 6. Le condensateur C₃ et la self antiparasites doivent être montés « en lair ». Cette dernière a souvent la fâcheuse manie d'émettre un grésillement désagréable et très intense quand la luminosité est aux alentours de 50 %. Pour atténuer ce bruit, il suffira de noyer la self dans une résine (genre araldite, résine plexi...).

L'ensemble pourra prendre place dans un petit coffret aux convenances de chacun. Quant à la touche de commande, vous pouvez donner

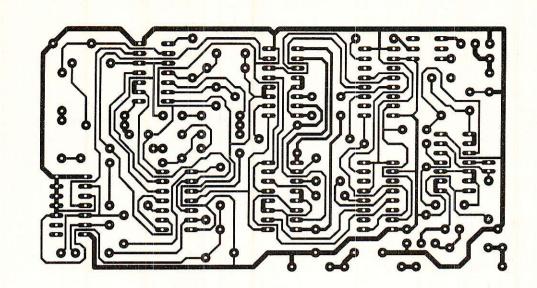


Figure 4

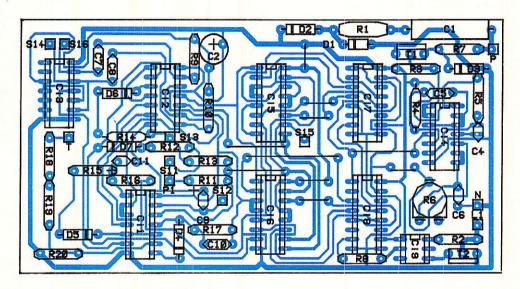
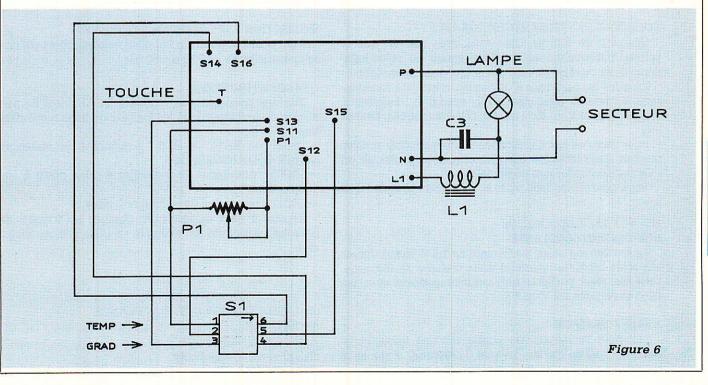
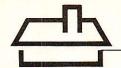




Figure 5

libre cours à votre imagination pourvu qu'elle soit métallique. L'auteur a utilisé le boîtier TO 3 d'un transistor, mais certains préférerons peut-être caresser un petit chien en bronze!

Attention aux plaques alu anodisées qui ne conduisent pas.

Enfin, les plus astucieux interfacerons certainement ce montage avec leur réveil favori.

MISE ENROUTE

La mise au point ne nécessite aucun instrument de mesure. Après les vérifications d'usage, placez R6 à mi-course. S1 en position gradateur, branchez une lampe à incandescence sur la sortie et raccordez le montage au secteur. Par des effleurements brefs de la touche, vous devez pouvoir alternativement allumer complètement et éteindre en partie (ou totalement) la lampe. Si ce n'est pas le cas, inversez le sens de branchement de la prise de courant.

Lorsque cette étape est franchie, placez-vous dans la position qui provoque un extinction complète de la lampe. C'est tout.

Achevez de vous persuader du bon fonctionnement général en vérifiant que vous obtenez bien les caractéristiques décrites en début d'article.

A tous, bons réveils en douceur!

X. MONTAGUTELLI

Nomenclature

	Résistances (1/8 sauf spécificati			Conde	nsateurs	Cir	cuits intégrés
l	contraires)			$C_1:0,2$	2 μF 400 V	IC ₁	: 4069
١	$R_1: 1 k\Omega, 1 W$	R11: 15 kg	5		00 μF 16 V		: 4081
١	$R_2: 1 k\Omega, 1 W$	$R_{12}:1 k\Omega$		C3: 0,1	μF 400 V	IC ₃	: 4013
١	$R_3:15 \text{ k}\Omega$	R ₁₃ : 39 kg	2	C4:1 n	F 100 V	IC ₄	: 4093
١	$R_4:82 k\Omega$	R14: 1 k C	2	C5:1 r	F 100 V	IC ₅	: 4516
	R ₅ : 82 kΩ	R ₁₅ : 3,9 k	Ω	C6: 3,3	nF 100 V	IC ₆	: 4516
١	$R_6: 22 k\Omega$ ajust	R16: 56 kg	5		0 nF 100 V		: 4516
١	$R_7:82~k\Omega$	R ₁₇ : 680 l	Ω_{2}		0 nF 100 V		: 4516
l	R ₈ : 470 Ω	R ₁₈ : 1 MS			μF 16 V		: MOC 3020
l	$R_9:15 k\Omega$	R19: 1 MS			22 μF 100	٧ ۾	ivers
l	$R_{10}: 15 k\Omega$	R20: 470 l	Ω	$C_{11}:10$) μF 16 V		
١						P ₁	: 1 MΩ linéaire
1	Semi-conducted	ırs				S ₁	: inverseur
١	T ₁ : BC 168		D2 · ·	1N4004	D ₅ : 1N41	48	2 positions
1	T ₂ : Triac 400 V	6A		1N4004	D ₆ : 1N41	48	2 circuits
1	D ₁ : Zéner 6,8 V		Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is the Owner, where the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, w		D7: 1N41	48 L1	: self antiparasites
١							

Attention, dans certains cas le 4013 (IC 3) bien que recevant les impulsions d'horloge peut ne pas basculer. Ceci parce que les fronts ne sont pas suffisamment raides. Remède : placer un circuit différenciateur-C 4,7 nF en série, résistance entre l'entrée du 4013 et la masse (220 k Ω)-à la sortie de IC 1 (broche 6).

A REPONSE AUX BESOINS D'ENERGIE INTENSE

La société RALSTON ENERGY SYSTEMS FRANCE lance une gamme complète d'accumulateurs Nickel-Cadmium, au format des piles standard.

POURQUOI DES PILES RECHARGEABLES ?

Combien de fois ne vous êtes vous pas dit que la voiture télécommandée de votre enfant ou votre baladeur étaient des dévoreurs d'énergie, donc de budget ?

En effet les appareils d'utilisation fréquente fonctionnent à l'aide de piles classiques, exemples : baladeurs, magnétophones, ou bien encore télécommandes, flashes etc.

Pour tous ces cas d'utilisation, les piles rechargeables peuvent remplacer les piles classiques et présenter un avantage financier non négligeable.

Vous pourrez les recharger et les utiliser plus de 1 000

ASPECT TECHNOLOGIQUE:

UNE TENSION CONSTANTE

La tension est selon les formats de 1,2 V ou 8,4 V mais elle reste constante pendant toute la durée de décharge. Ceci les rend parfaitement interchangeables avec les piles classiques 1,5 V ou 9 V.

FORTE PUISSANCE

Les piles rechargeables possèdent une faible résistance interne ce qui leur permet de disposer d'une forte puissance pour les décharges rapides.

INSENSIBILITE A LA SURCHARGE

Les piles rechargeables UCAR peuvent absorber en toute sécurité et sans dégradation de leurs performances, de longues périodes de surcharge.

UTILISATION PAR CONDITIONS EXTREMES

Il est possible d'utiliser les piles rechargeables par des températures de -40 °C à +50 °C.

CHARGEUR UNIVERSEL

Une des spécificités du chargeur UCAR, c'est de permettre de recharger tous les formats de piles rechargeables.

RC20 — RC14 — RC6: possibilité de recharger jusqu'à 4 piles/module de 2.

- RC03 : possibilité de recharger 4 piles grâce à son adaptateur.

- RC22 : possibilité de recharger 2 piles.

Rapide, il peut en une nuit, charger les formats de piles les plus courants (exemple : 4 piles RC6 en 8 heures).

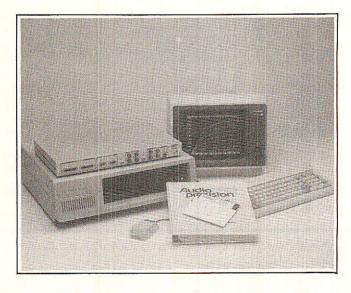
RALSTON ENERGY SYSTEMS FRANCE PILES UCAR

4. allée du Ct Mouchotte 91550 Paray-Vieille-Poste Tél.: 49.75.16.68

AUDIO PRECISION SYS 127

Un système économique de tests en courant continu et numérique géré par ordinateur.

Audio précision dont le « system one » a établi la réputation dans le monde de la mesure, a développé un système de mesure complet, articulé autour d'un module « DCX 127 » et géré par un micro-ordinateur compatible PC. Ce dernier doit posséder une mémoire de 640 Ko et un système de visualisation CGA, Hercule, EGA ou VGA. L'appareil complet comprend donc le module Audio-précision DCX 127, l'interface et le logiciel.


Le DCX 127 contient un voltmètre-ohmètre c.c. $4\frac{1}{2}$ digits, deux sources de tension continue ± 10.5 V programmables indépendamment avec une résolution de $20~\mu\text{V}$, un port parallèle entrée/sortie 21 bits et trois ports parallèles de commande de 8 bits.

La détermination des paramètres de tests et l'implantation des procédures (enchaînement de plusieurs tests), ne requièrent aucune expérience de programmation. Le logiciel permet d'appeler à tout moment sur l'écran un menu, ou un tableau très clair et détaillé affichant les données et informations relatives à la configuration de l'essai en cours, y compris les paramètres d'excitation soumis à sélection par l'opérateur.

Le mot numérique de 21 bits, ou bien chacune des sources de courant continu, peut être balayé en tant que variable d'excitation ou stimulus (axe horizontal du graphique), alors que se dessine en temps réel sur l'écran la courbe représentative — ou suivant le cas, le tableau — d'une mesure en courant continu, d'une mesure de résistance, ou d'une valeur de ce mot numérique d'entrée en fonction de ce stimulus.

Une courbe de limite admise peut être incluse. La fonction calcul (« compute ») du logiciel donne la possibilité d'obtenir la courbe ou le tableau présentant directement les écarts vis-à-vis de cette limite.

Parmi les applications types de cet équipement, notons ;

- Mesure de résistance d'un élément résistif variable. (F.E.T., LDR, Opto-coupleurs, etc.)
- Mesure d'un convertisseur numérique-analogique ou analogique-numérique, (écarts par rapport à la linéarité théorique).
- Décharge d'une batterie NiCd dans le temps.
- Réseau des caractéristiques d'un transistor F.E.T. grâce au balayage en cascade.
- Commutation de charges d'amplificateur.
- Tests « bon/mauvais » avec limites prédéterminées.
 Tous les résultats sont immédiatement exploitables par une imprimante extérieure.

SPECIFICATIONS:

MESURES DE TENSIONS CONTINUES

- gammes 0, 0.2, 2, 20, 200, 500 V.
- précision de 0.055 % à 0.07 % pleine échelle (suivant gamme).
- résolution 0.005 % pleine échelle (sauf gamme 500 V.: 100 mV.)
- résistance d'entrée 10 Mohms.

MESURE DES RESISTANCES

- gammes 0, 0.2, 2, 20, 200, 2 000 kΩ.
- précision de 0.055 % à 0.07 % pleine échelle suivant gamme (env. 0.15 % dans la gamme 2 Mohms).
- résolution 0.005 % pleine échelle (sauf gamme 2 Mohms : 200 Ohms)
- tension de mesure 6 V. c.c. en circuit ouvert.

SOURCE DE TENSION CONTINUE

- gammes 0 à + 10.5 V et 0 à -10.5 V (sortie bi-polaire).
- résolution 20 μV. (équivalente à 20 bits).
- précision (0.05 % + 0.2 mV), absolue
- 40 µV, relative à la meilleure ligne moyenne.

ENTREE/SORTIE NUMERIQUE

- configuration : mot de 21 bits + signe, plus signaux de validation et de données nouvelles.
- compatibilité LSTTL/CMOS; sortie max. + 5 mA/bit.
- transfert de données, max. 8 ms par transfert (limitée par vitesse du processeur).

PORTS DE SORTIE AUXILIAIRES

— configuration : 3 ports de sortie indépendants 8 bits parallèles. Pour interfaçage avec relais et circuits logiques.

ETABLISSEMENTS MESUREUR

72-76, rue du Château-des-Rentiers 75013 PARIS - Tél. (1) 45.83.66.41

AMATEURS, TRAVAILLEZ EN PRO! vos photocopies de circuit sur film. Tarifs très bas. Doc. 2,20 F. Particuliers par corresp. uniquement. M. J. MACHE, 42 B, rue Y. Gagarine, 69500 Bron.

Achète Superkit II Data RD 6809. Laisser messages. Tél. 46.22.74.68.

Cherche pag. 25 à 48 Votre Carrier P 5 à 8 Dicafed - Chiron. Tél. 66.78.58.83.

Vds T07/70 + lect. K7 exc. état peu servi + basic 10 + 128 + manuels + log. parole music + microprocesseur+ Demo + Collect. microtom + Logs + Livre. Tél. 42.87.14.64.

600 F d'investissement + quelques heures par semaine = plusieurs milliers de francs par an. Un revenu supplémentaire en toute légalité et sans bouger de chez soi.

Pour doc. gratuite écrire M. DOVALE, 13, av. Ronsard, 19100 Brive.

Trav. à dom. simp. gain imp. si sérieux. Doc ct 1 env. timb. à LALOU (RP), BP 65, 59192 Beuvrages.

Etudiant (sciences) avec expérience cherche stage électronique (vente - entreprise) sur Lyon et banlieue (juillet et août). Tél. (h. r.) au : 78.93.62.16 (PHILIPPE CHAGNY).

Vds séparés clavier/monit. coul. CPC 6128/Drive 5 1/4 (1700 / 1300 / 1000). Tél. BERNA (1) 43.72.64.64.

Vds Radio Plans nº divers du 80 au 493 par numéro cours radio Electrolab documentation oscilloscope Eurelec 806 avec schémas lampemètre générateur BF HF Eurelec contrôleur VOC 40 plan microordinateur Sinclair ZX 81 livrés dépannage TV plans radio année 1949 à 1959 cours TV Eurelec. Revue Haut-Parleur nº 1658 à 1725 listes contre 3 timbres. M. BOISSEAU Maurice, 16, résidence Fontenailles, 50A, rue Pillet, 71000 Mâcon.

Cherche tous travaux de câblage sur région Puy de Dôme Allier et autres sous traitant. Travail soigné. M. BOILON Guy. Tél. 73.38.32.67 (Riom).

La rubrique petites annonces de Radio Plans est ouverte à tous nos lecteurs pour toute offre d'achat, de vente, d'échange de matériel ou demande de renseignements interlecteurs. Ce service est offert gratuitement une fois par an à tous nos abonnés (joindre la dernière étiquette-adresse de la revue). Les annonces doivent être rédigées sur la grille-annonce insérée dans cette rubrique. Le texte doit nous parvenir avant le 30 du mois précédant la parution, accompagné du paiement par CCP ou chèque bancaire.

Vends brochage et caractéristiques des CI logiques sur CPC 464 + prog. de recherche. M. PERIS, 52, rue d'Ausson, 31210 Montrejeau.

Appareils de mesures électroniques d'occasion. Achat et vente. HFC. Audio-visuel Tour de l'Europe 68100 Mulhouse. Tél. 89.45.52.11.

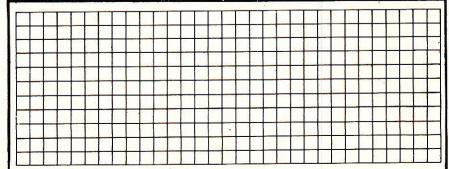
BREVETEZ VOUS-MEME VOS INVENTIONS grâce à notre Guide complet. Demandez la notice 125 contre 2 timbres. ROPA - BP 41 - 62101 Calais.

Recherche Haut-Parleur nº 1644. Faire offre à BAZIN Bernard, usine EVM, 88160 Le Thillot.

Radio local vend ampli FM 88, 108 MHz, 300 W équipé protections, état neuf avec schémas. Prix: 7 500 F. Tél. (1) 48.36.80.52, le soir.

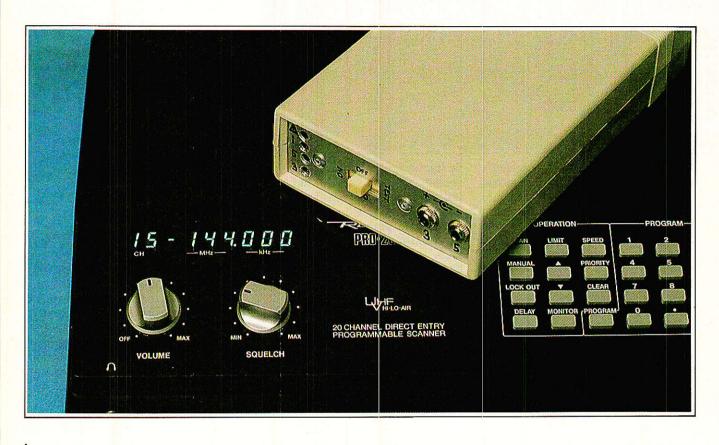
BON A DECOUPER ET A RETOURNER, ACCOMPAGNE DE SON REGLEMENT A

RADIO PLANS SERVICE P.A., S.A.P., 70, rue Compans, 75019 PARIS Tél. 42 00 33 05


Texte de l'annonce que je désire insérer dans RADIO PLANS.

Ecrire lisiblement en capitale et en laissant une case blanche entre chaque mot.

ATTENTION: le montant des petites annonces doit obligatoirement être joint au texte.


TARIF: 40 F TTC, la ligne de 31 signes ou espaces.

			T T	11	11	1			TT		
١	юм									1	
F	Prénom		+		+		Н	+	H	Ħ	+
F	dresse						H			_	
										_	#
	······································									_	
•		1	+		++		+	-		+	

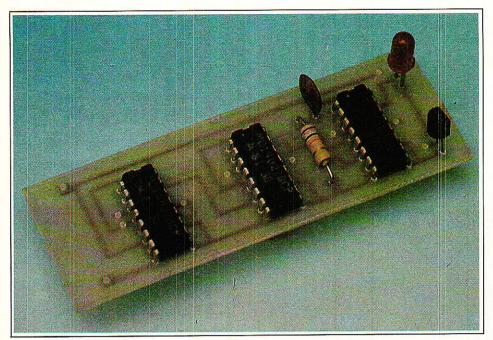
« APSEL » :

un système d'appel sélectif à la norme CCIR

La technique de l'appel sélectif est très largement utilisée dans les réseaux radiotéléphoniques pour permettre le partage d'une même fréquence entre différents usagers.

Une variante de ce procédé est également à la base des systèmes d'appel de personnes ou « paging », tandis que les applications ne manquent pas en matière de télécommande.

OUS allons montrer ici comment l'amateur peut s'offrir la qualité professionnelle en mettant à contribution, d'une part des circuits intégrés spécialisés, et d'autre part un simple micro-ordinateur « familial ».


Dès lors, la voie sera ouverte à

toutes sortes d'usages plus passionnants les uns que les autres!

LES GRANDS PRINCIPES:

Les premiers systèmes d'appel sélectif sont apparus dès que les radiotéléphones ont commencé à se répandre suffisamment pour que se posent des problèmes de partage des fréquences: le spectre radioélectrique étant, on le sait bien, tout sauf extensible, il a fallu vite renoncer à attribuer des fréquences exclusives aux utilisateurs.

L'appel sélectif permet à plusieurs utilisateurs de se partager un même « canal » radio, sans trop se gêner et, du moins en principe, en toute discrétion.

Un radiotéléphone équipé d'un « sélectif » est normalement muet ; son haut-parleur ne pourra être mis en service que si une suite bien précise de tonalités est reçue. Ce groupe de tonalités constitue en quelque sorte le « numéro d'appel » du poste et lui est strictement personnel. N'importe quel usager du même canal peut donc être appelé séparément, à condition que la fréquence ne soit pas déjà occupée : moyennant un minimum de discipline (ou une automatisation performante), une excellente efficacité peut donc être obtenue.

Remplaçons les postes radiotéléphones par des récepteurs de poche calés sur la fréquence d'un émetteur central et nous obtenons un système d'appel de personnes ou de « radiopaging » qui ne permet pas la conversation mais seulement la réception d'un signal « tout ou rien ». L'EUROSIGNAL en est un exemple concret d'ampleur internationale (le réseau couvre la France, la R.F.A. et la Suisse).

Installons des récepteurs munis de décodeurs le long d'une autoroute, par exemple, et la commande individuelle de toutes sortes de dispositifs de signalisation devient possible à partir d'un poste central équipé d'un émetteur suffisamment puissant pour couvrir la zone voulue.

Bien entendu, ces principes s'appliquent tout aussi bien aux bandes de fréquence exploitées par les particuliers (CB) ou par les radioamateurs : du matériel spécialisé existe dans le commerce, mais n'offre pas toujours la souplesse voulue pour les utilisations projetées. Par ailleurs, leur coût est loin d'être négligeable...

LA NORMALISATION

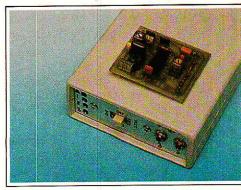
Nos lecteurs ont déjà eu largement l'occasion d'expérimenter les transmissions de tonalités codées ; nous leur avons fait émettre et recevoir les « paires de fréquences » du code DTMF sur les lignes du téléphone et également par radio.

Ce code est cependant mieux adapté à une transmission par fil que par radio : les décodeurs, même et surtout professionnels, sont extrêmements exigeants quant au respect des caractéristiques très précises des signaux.

Tout se passe bien si la liaison radio est excellente, mais la reconnaissance devient vite impossible en cas de perturbation. Des codes spéciaux ont donc été imaginés, basés non plus sur des paires de fréquences mais sur la succession rapide de tonalités pures : en quelque sorte un codage « série » et non plus « parallèle ».

La figure 1 réunit les descriptions des principaux codes actuellement utilisés dans le monde, tous capables de véhiculer quinze « chiffres » distincts. Bien entendu, ces fréquences n'ont pas été choisies au hasard! On a cherché à minimiser autant que possible l'influence des battements pouvant se produire entre elles.

Parmi ces codes, le CCIR est le plus largement utilisé en Europe: c'est donc très logiquement celui que nous avons expérimenté, mais nous verrons qu'il serait extrêmement simple d'en changer. Parallèlement aux appels sélectifs proprement dits, ce code sert à transmettre les numéros de téléphone demandés, en automatique, à partir des navires maritimes ou des bateaux fluviaux et de certains téléphones de voiture.


Que personne ne vienne nous reprocher de « révéler » ces informations qui n'ont rien de confidentiel : chacun peut en prendre connaissance dans un passionnant ouvrage publié chez Eyrolles avec la bénédiction du CNET, « Systèmes de radiocommunications avec les mobiles »...

UN LOGICIEL DE CODAGE

A partir de ces données chiffrées, il est évidemment possible de construire un codeur capable de composer les suites de tonalités représentant tous les codes d'appel sélectif imaginables: un code est constitué d'un certain nombre de tonalités (en général cinq pour les systèmes « 5 tons «) durant chacune une centaine de millisecondes, sans être normalement séparées par plus de 5 ms. La précision exigée étant très stricte, on utilise volontiers des synthétiseurs programmables pilotés par quartz.

Or, ce type de synthétiseur se rencontre dans beaucoup d'ordinateurs familiaux: ORIC, AMSTRAD, etc.

Le AY-3-8910 (ou 8912) de GENE-RAL INSTRUMENT qui équipe cette catégorie de machines fonctionne division d'une fréquence d'horloge généralement fixée à 1 MHz: d'abord par 16, puis par une valeur dite « période », spécifiée

dans une instruction BASIC nommée SOUND.

Toute fréquence sous-multiple de 62500 Hz peut donc être gérée avec la précision du quartz : pour 1124 Hz (chiffre 1) on adoptera par exemple une période de 56, menant à une fréquence réelle de 1116 Hz. L'erreur commise est de 0,7 % alors que l'on tolère couramment 1 %.

Le programme de la figure 2 est écrit pour « tourner » sur un ORIC 1 ou sur un ATMOS. Il suffirait de modifier la syntaxe des instructions SOUND et de supprimer les WAIT et PLAY devenus inutiles, pour l'adapter par exemple à un CPC 464 : le « réglage » des périodes pourrait rester le même.

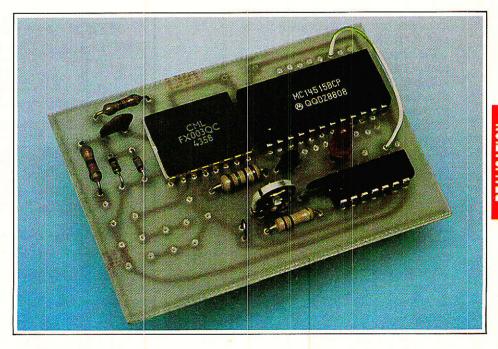
Une fois le programme lancé par RUN, il suffit de frapper au clavier n'importe quelle suite de chiffres ou de lettres majuscules A, B, C, D ou E puis de presser RETURN pour que la séquence de tonalités correspondante soit émise.

Le signal audio est disponible sur haut-parleur et sur une prise DIN à un niveau permettant l'attaque confortable d'une entrée « micro » d'émetteur radio.

Bien entendu, chacun reste libre de modifier à son gré les fréquences produites et la durée des tonalités : il est simplement souhaitable de choisir une norme compatible avec les décodeurs existants.

UN DÉCODEUR DE QUALITÉ PROFESSIONNELLE

Bien entendu, les tonalités d'appel sélectif peuvent être reconnues par des détecteurs aussi courants que le LM 567 ou par des décodeurs stéréo « trafiqués ». Cependant, compte tenu des conditions climatiques dans lequelles tout « sélectif » risque d'être amené à fonctionner, un pilotage par quartz est de très loin préférable.


Nous avons déjà montré comment le SSI 202, récepteur DTMF à capacités commutées, pouvait revenir moins cher que huit 567 tout en offrant des performances sans commune mesure.

Ici, c'est quinze 567 qu'il s'agit de remplacer! La solution existe néanmoins chez CML, spécialiste britannique des filtres à capacités commutées que nos lecteurs connaissent bien pour avoir expérimenté son crypteur-décrypteur FX 224.

003 QA (EIA)	003 QC (CCIR)	003 QE (EEA)	003 QZ (ZVEI)	003 QZS (ZVEI-S)	Q3	Outpu Q2	t Code Q1	Qo	QTC Format Character
600	1981	1981	2400	2400	0	0	0	0	0
741	1124	1124	1060	1060	0	0	0	1	1
882	1197	1197	1160	1160	0	0	1	0	2
1023	1275	1275	1270	1270	0	0	1	1	2 3
1164	1358	1358	1400	1400	0	1	0	0	4
1305	1446	1446	1530	1530	0	1	0	1	
1446	1540	1540	1670	1670	0	1	1	0	5 6
1587	1640	1640	1830	1830	0	1	1	1	7
1728	1747	1747	2000	2000	1	0	0	0	8
1869	1860	1860	2200	2200	1	0	0	1	9
2151	2400	1055	2800	886	1	0	1	0	Α
2433	930	930	810	810	1	0	1	1	
2010	2247	2247	970	740	1	1	0	0	B C
2292	991	991	886	680	1	1	0	1	D
459	2110	2110	2600	970	1	1 .	1	0	E
NOTONE	NOTONE	NOTONE	NOTONE	NOTONE	1	1	1	1	F

Figure 1 : Tableau des principaux codes mondiaux.

- 1	
	1 REM APPEL SELECTIF CCIR 1020 WAIT 7
	10 DIM T(15) 1030 NEXT F
	20 DATA 32,56,52,49,46,43,41,38,36 1040 PLAY 0,0,0,0
	30 DATA 34,26,67,28,63,30 1050 GOTO 100
	40 FOR F=0 TO 14 2000 REM (c) 1988 Patrick GUEULLE
	50 READ C: T(F)=C
	60 NEXT F
	100 INPUT N\$
	200 FOR F=1 TO LEN (N\$)
1	250 M\$=MID\$ (N\$,F,1)
	300 IF M\$="A" THEN N=10: GOTO 1000
	310 IF M\$="B" THEN N=11 : GOTO 1000
1	320 IF M\$="C" THEN N=12: GOTO 1000
1	330 IF M\$="D" THEN N=13: GOTO 1000
	340 IF M\$="E" THEN N=14 : GOTO 1000
	500 N=VAL (M\$)
	1000 P=T (N)
	1010 SOUND 1,P,10 Figure 2
L	

Le FX 003 est un récepteur capable de convertir en un mot de quatre bits les tonalités d'appel sélectif qu'il recoit, même novées dans le bruit : c'est en effet bien plus qu'une simple batterie de filtres, mais un véritable corrélateur numérique.

Une exécution spéciale, le FX 003 QT, est d'ailleurs employée par les principaux fabricants de récepteurs EUROSIGNAL, dont on exige les meilleurs performances possibles dans les pires conditions : une sérieuse référence!

La figure 1 montre qu'un type existe pour chaque code courant. Pour notre part, nous préconisons le FX 003 QC, conforme à la norme CCIR pour laquelle est écrit notre logiciel.

Évidemment, ce composant professionnel en boîtier céramique est relativement coûteux. Guère plus cependant que quinze 567 malgré des performances à faire rêver. Qui plus est, son importateur (GINSBU-RY) le tient à la disposition des revendeurs qui approvisionnent nos lecteurs.

Le schéma de la figure 3 associe le FX 003 à un décodeur CMOS offrant une ligne de sortie séparée pour chaque tonalité et une pour l'absence de tonalité valide. Cette dernière sortie passe à zéro toutes les fois qu'aucune tonalité du code n'est présente pendant 33 ms ou davantage.

exige un signal Le FX 003 d'horloge à 560 kHz qui peut être produit à l'aide d'un résonateur céramique (CERALOCK MURATA) ou d'un quartz de cette valeur (impérative!). Un condensateur ajustable est même prévu pour compenser une éventuelle imprécision.

Un fréquencemètre numérique branché à la broche 1 du FX 003 doit indiquer 23,333 kHz si la fréquence d'horloge est correcte, mais une légère tolérance est admissible.

Pensant à ceux de nos lecteurs qui auraient des difficultés à se procurer un tel cristal, nous avons prévu une variante utilisant un simple multivibrateur en CMOS: bien réglé, sa stabilité nous a surpris, même vis-àvis d'une généreuse giclée de bombe givrante! Par contre, il est impératif que la tension d'alimentation soit régulée très précisément à 5 volts (utilisez donc notre alimentation l'ensemble « alpil », car consomme quère qu'un demi-milliampère.

Le signal d'entrée peut évoluer

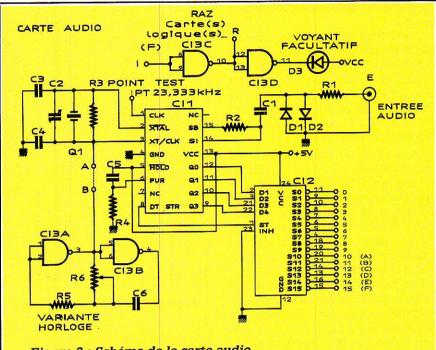


Figure 3 : Schéma de la carte audio.

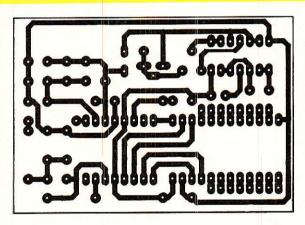


Figure 4 : Tracé de la carte audio.

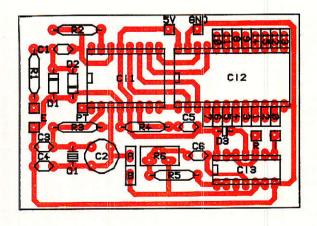


Figure 5: Implantation des composants.

dans une très large dynamique: nous avons obtenu d'aussi bons résultats avec un capteur téléphonique placé devant le décodeur aux bornes de ce même HP! Un limiteur à diodes est d'ailleurs prévu en cas d'excès de niveau...

Deux inverseurs logiques complètent cette carte « audio » : le premier complémente le signal délivré par la sortie « F » (absence de tonalité valide) afin de l'adapter à ce qu'attend la carte suivante. Le second alimente un voyant facultatif mais bien utile lors des essais.

Cette première partie de la réalisation se câble sur le circuit imprimé de la figure 4. L'implantation de la figure 5 rassemble les composants des deux versions de l'horloge, C₁₃ devant de toute façon être absent.

En l'absence du quartz et de ses composants associés, il faudra établir un pont entre les points A et B pour relier l'oscillateur extérieur au FX 003.

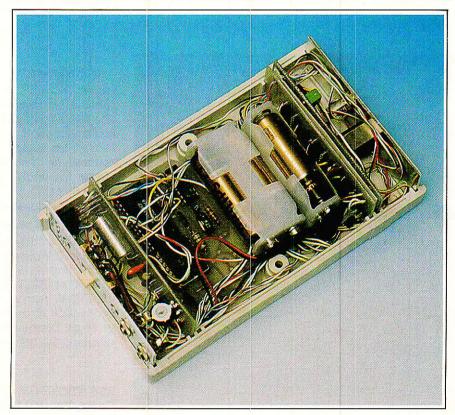
En aucun cas ces deux horloges ne devront coexister!

La version CMOS pourra être réglée à l'aide d'un fréquencemètre numérique branché au point test, ou de façon à obtenir la réponse des sorties concernées lorsque l'ORIC émettra tour à tour les différentes tonalités du code.

UN DÉCODEUR DE NUMÉRO

La figure 6 montre comment six bascules JK peuvent être associées en une sorte de « serrure électronique » capable de reconnaître une suite et une seule de six tonalités consécutives.

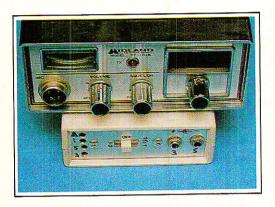
Bien évidemment, ce nombre pourra être diminué ou augmenté à volonté (par exemple pour décoder du « 5 tons »).


Toutes les bascules sont remises à zéro lors de toute absence de tonalité valide durant plus de 33 ms, sauf la dernière : celle-ci mémorise en effet l'appel jusqu'à ce que le système soit mis manuellement ou automatiquement hors tension.

Un voyant à LED signale le déclenchement, tandis qu'un transistor se charge de commander un éventuel relais « actionneur » (activation d'un haut-parleur de récepteur, ou de tout dispositif devant être télécommandé).

Le circuit imprimé de cette seconde carte est dessiné à la figure 7: ses dimensions permettent de le monter dans les rainures d'un boî-

> Comme nous, vous pouvez mettre votre réalisation en coffret (ici un coffret Hammond 1598 A) On reconnaît contre la face avant, notre module ALPIL décrit précédemment.



tier HAMMOND 1598 A, aux côtés de notre alimentation à piles « AL-PIL », vivement conseillée ici. Rappelons d'ailleurs que celle-ci prévoit quatre voyants qui trouvent maintenant une utilité évidente.

Plusieurs cartes logiques peuvent en effet être branchées en parallèle sur une seule carte audio associée à l'un des modules de réception radio que nous avons décrits : réagissant à des codes différents, elles commanderont chacune un voyant et/ou un relais distinct.

Le câblage selon la figure 8 se limite à fort peu de composants, mais l'interconnexion devra être réalisée avec vigilance : le point « R » devra rejoindre celui de même nom

de la carte « audio », sur laquelle le point « I » sera raccordé à la sortie «F» ou «15». Cette ligne de remise à zéro des bascules étant installée, il restera à relier le point « 1 » de la carte logique à la sortie du 4515 correspondant au premier chiffre du code, le point « 2 » à la sortie correspondant au second chiffre et ainsi de suite jusqu'au point « 6 ».

Même opération éventuellement pour d'autres cartes logiques et le décodeur sera terminé : il pourra être complété par un module récepteur 27 MHz ou autre, ou simplement branché à la sortie d'un récepteur existant (par exemple un poste CB).

Le micro-ordinateur chargé de l'émission étant pour sa part associé à un solide émetteur, on disposera alors à relativement peu de frais d'un système d'appel de personnes et/ou de télécommande de fort bonne qua-

Nos lecteurs ne manqueront pas de lui trouver d'innombrables applications pratiques!

Patrick GUEULLE

Importateur CML

GINSBURY: 30, Place de la Madeleine 75008 PARIS - Tél.: 42.68 04.00

Nomenclature-

Résistances 5 % 1/4 W

 $R_1:4.7 \text{ k}\Omega$ $R_5:100 \text{ k}\Omega$ $R_2: 2.2 M\Omega$ $R_6:47 k\Omega$ $R_7:10~k\Omega$ $R_3:1 M\Omega$

 $R_4:1 M\Omega$

Condensateurs céramique

C1: 4,7 nF

C2: 6/60 pF ajustable

C3: 47 pF

C4: 47 pF C6: 47 pF C5: 10 nF C7: 4,7 nF

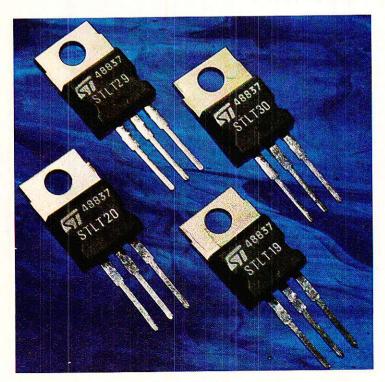
Circuits intégrés

CI1: FX 003 QC CI4: CD 4027 B CI₅: CD 4027 B CI2: CD 4515 B CI6: CD 4027 B CI3: CD 4011 B

Transistor

T1: BC 167

Autres semiconducteurs


D₁: 1 N 4148 D₃: LED rouge D2: 1 N 4148 D4: LED rouge

Divers

O1: résonateur céramique ou quartz 560 kHz

RL₁: relais selon besoins

NOUVEAU MOSFET DE PUISSANCE A COMMANDE PAR NIVEAU LOGIQUE

SGS-THOMSON vient de commercialiser quatre nouveaux MOSFET de puissance à enrichissement en canal N, qui combinent une commutation ultra-rapide à une faible tension de seuil (2,5 V max.), permettant une commande directe par les broches E/S du microprocesseur et les autres signaux à niveau logique. Avec des courants de drain allant de 10 A à 25 A max., des résistances ON de 0,08 ohms, ces nouveaux composants se révèlent particulièrement bien adaptés à la commande des lampes, des relais et aux servo-commandes.

Le STLT 2 et le STLT 30 sont des composants à 25 A, (Ron = 0,08 ohm), avec des tensions drain-source de 50 V et 60 V max. respectivement. Le temps de mise en conduction est de 25 ns, et le temps de blocage 55 ns. Le STLT 1 et STLT 20 sont des dispositifs 15 A/50 V et 15 A/60 V, respectivement, avec des temps de mise en conduction et de blocage encore plus restreints : 10 ns et 35 ns. Les quatre types de MOSFETS sont conditionnés dans des boîtiers TO-220.

SGS THOMSON - 7, avenue Galliéni, 94253 GENTILLY Cedex, Tél.: (1) 47.40.77.57, Fax.: (1) 47.40.79.23

Vous avez apprécié cette revue, suivez le guide et partagez les vôtres...

Comment faire le vide dans vos placards, contribuer à la collecte du vieux papier et emmener votre bibliothèque (Et celle des autres) en vacances sans payer de surtaxe à l'aéroport.

Chapitre I: Découpage.

Pas le choix, un bon massicot capable de couper 100 pages (Ca existe ?) ou une latte, de préférence en métal, un bon cutter et un support pour épargner votre table de cuisine...

Chapitre II: Scannage.

Si vous ou votre patron avez un scanner recto-verso qui converti en pdf passez au chap. III.

Sinon il vous faut au minimum un scanner avec chargeur (Ou être insomniaque). Il est important que le programme de gestion du scanner soit convivial. Pour éviter/réduire les images fantômes du verso de la page qui apparaissent par transparence augmenter lumière et contraste de 10-15 %, ça aide beaucoup.

Scannez toutes les pages (1 pdf par page) impaires dans la directory 1 et renommez le <u>début</u> du fichier (FileRenamer fait ça très bien, increment, step 2, start from 1): 001, 003, 005... 055. (Par exemple). Retournez le paquet, scannez dans la directory 2 (A l'envers, la première page scannée sera la dernière du livre!) et renommez à l'envers (FileRenamer: <u>decrement</u>, step 2, start from 56): 056, 054, 052... 002. Transférez les deux directories dans une directory commune et fusionnez toutes les pages en un seul fichier avec votre prg favori. (PDF Tools de Tracker Soft fait ça très bien).

Tous les prg cités sont en version d'essai sur eMule ;-)

Chapitre III: Partagez.

Sur Rapidshare & co c'est bien mais encore faut-il trouver les liens et avoir la chance que les fichiers n'aient pas été effacés... à la demande des éditeurs! Torrent faut chercher beaucoup aussi, eMule il faut un peu de patience mais on trouve tout et tout de suite. Merci de soutenir eMule. Si vous avez des (vieilles) séries genre: Bateaux, Voile Magazine, Motor Boat, Neptune... merci ôssi, ça se fait rare.

Au boulot...

Pour lire les revues un programme léger et très complet : pdfXchange viewer (Pro). A configurer par défaut dans « affichage » : Afficher 2 pages en vis-à-vis + Afficher la <u>couverture</u> en mode vis-à-vis. Vous aurez ainsi à chaque fois les pages paires à gauche et impaires à droite + F12 = plein écran. Pour feuilleter les couvertures sous forme de vignettes un explorateur pas mal : XnView (Affiche à peu près tout ce qui existe.)

Un programme qui fait les deux : Koobit, mais nombre de vignettes limité à 2 lignes.

En ligne prochainement plusieurs centaines de Radio Plans & Elektor depuis les années '70. Faite une recherche avec « index radio plans electronique maj » ou « index elektor electronique maj » pour la liste complète des sommaires.