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PREFACE

In acquiring a knowledge of electronics, or in the applica-
tion of such knowledge, once it is acquired, a certain amount
of mathematics is indispensable. The topics covered here have
been selected as some of the most essential and will provide
a good basic foundation in electronic math.

Scientific notation (powers of ten) greatly reduces the num-
ber of digits required in dealing with very large or very small
quantities. The text shows how to use powers of ten to add,
subtract, multiply, divide, square, and extract square roots.

The working principles of basic algebra are useful when-
ever it is necessary to find some unknown gquantity in terms
of known quantities. Only the simplest operations are covered,
including negative numbers, terminology, combining terms,
factoring, and simple equations,

Ohm'’s law is probably the most important and most used law
in electronics. The three basic forms and their application to
series cireuits, parallel circuits, and combinations of these two
eircuit types are given.

The circuit elements, resistance, capacitance, and indue-
tance, each receive a separate chapter for their study. This
includes definitions, series and parallel combinations, reac-
tance formulas, charge and energy, and time constants,

In electronics, many phenomena are associated with the use
of alternating current with certain components, Reactance,
both inductive and capacitive, varies as the frequency of ap-
plied AC varies. This is shown by the reactance formulas. In
addition, there are such properties as phase relationships, rms
and peak values of voltage and current, real and apparent
power, power factor, and series and parallel resonance. These
are all given the detailed attention their importance warrants,
and worked examples show how formulas are used to solve for
their numerical values,

The reader who understands and masters the math pre-
sented here will be able to handle a majority of the math
problems associated with general electronics applications.
If further specialized study is needed, he will have a good
foundation on which to build.

ALAN ANDREWS
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CHAPTER 1

SCIENTIFIC NOTATION

In electronics, numbers in the millions are often used, as
well as numbers of less than one—on down to a millionth or
less. The complete numbers, expressed in basic units, can be
carried straight through an entire problem. But we waste time
by doing so, and greatly increase the chance of error. As an
example, suppose we had to take 10 megohms times 50 pico-
farads, to find the time constant of a circuit. The problem
would read:

10,000,000 x 0.00000000005 = 0.00050000000

Look at all the zeros we have to write, thus increasing the
possibility of making mistakes.

In this chapter we will show you a method of abbreviation
called “engineer’s shorthand,” “scientific notation,” or more
simply, “powers of ten.” The last title most aptly describes the
process, because all numbers are expressed as powers of ten.
This means any number can be expressed as a number between
1 and 10, multiplied by 10 raised to some power. For example:

628 = 6.28 X 10°
2,000 =2 x 1¢*
3,000,000 = 3 x 10¢
0.0056 =56 x 10—*

The power of 10 is the exponent; it tells how many times
10 is used as a factor in multiplying. For example 107 indi-
cates 10 x 10, or 10 used twice; 10* is 10 x 10 x 10, or 10
used three times, ete. Following is a partial list of the powers
of ten which occur most often.



10" =1 10-1'=0.1

10t = 10 10-* = 0.01
102 = 100 10— = 0.001
10% = 1,000 10~ = 0.0001
10 = 10,000 10-7 = 0.00001
107 = 100,000 10-* = 0.000001

10° = 1,000,000

The negative powers of 10—10—!, 10-2, etc.—may require
some explanation. Actually, it is difficult to imagine 10 being
used minus 2 times as a factor. In fact, anything less than
zero has little practical meaning. But we can show that 10 to
a negative power has a real-number meaning. There is a rule
that states that the numerator and denominator of a fraction
ecan be multiplied or divided by the same number without
changing the value of the fraction. Let's use 10-' and multiply

by 10

10-1 10" _10°_ 1

T X101 10 1

For the present we will assume that any number to the
zero power has a value of 1. In the next chapter we will show
why this is true. Using the same method as above we can
show the value of 102,

2075 0t 10 ] 1

1 “10% T 10° T 10° 100 0.0l

There are two rules we ecan apply in converting numbers
to powers of 10.

Rule 1. For a number larger than 1, move the decimal
point to the left until a number between 1 and 10 results.
Then count the number of places the decimal was moved,

and use that number as a peositive power of 10.
Thus:

732,000 = 7.32 x 10°
In this example the decimal point was moved five places
to the left to make the number 7.32. To compensate for the

change, 7.32 was multiplied by 10° to make the two quantities
equal,

Rule 2. For a number smaller than 1, move the decimal
point te the right until a number between 1 and 10 resulis.
Then count the number of places the decimal was moved and
use that number as a negative power of 10.

Thus:
0.00732="T.32 % 101,

In this example the decimal point was moved three places
to the right, again resulting in 7.832. To compensate for the
change, 7.32 was multiplied by 10-* to make the two quantities
equal.

We reverse the process by performing opposite actions.
For example:

2.4 x 10° = 2,400.

The decimal peint was moved to the right the number of
places indicated by the power of 10. An example of a number
less than 1:

3.24 » 10-* = 0.0324,

Here the decimal was moved to the left two places, as indi-
cated by the power of 10. We could summarize these actions
by saying: A number larger than 1 has a positive power of 10.
A number smaller than 1 has a negalive power of 10. The
number 1 itself has a zero power of 10 because 10° = 1. 10! is
usually written as 10, the power of 1 being understood. It is
necessary, however, to include the minus sign in 10—,

In the examples thus far, we have converted each number
to a value between 1 and 10 and then used the proper power
of 10. For some problems it may suit our purpose to express
a number in a slightly modified form; the next examples show
several ways of expressing 254.

2.54 x 10¢ 2b4 x 10° 0.0254 % 100
20.4 x 10 0.254 x 10# 2,640 x 10—

ADDITION AND SUBTRACTION

To add or subtract numbers expressed as powers of 10, we
must first convert all numbers to the same power of 10. Then
the numbers can be added (or subtracted) and the same power
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retained in the answer. This is illustrated by the next two
problems:

1. 432 x 10* + 668 x 10* 4+ 142 x 10 = ?

432 x 10 = 4.320 x 10¢
6.68 % 10* = 0.668 x 104
142 X 10 =0.142 x 104

5.130 x 10*

2. 2.88 x 10* — 0.656 x 10*= 1

2.88 x 100 = 2.880 x 10¢
0.65 x 10* = —0.065 x 104
2.815 x 10*

Or we could have solved the second problem like this:

28.80 x 10®
—0.65 x 10/
28.15 x 10°

which is the same answer obtained in the first solution.

MULTIPLICATION

To obtain the product of numbers expressed as powers of
10, multiply the numbers together and then add the expo-
nents of the 10’s. For example:

4200 = 300

=42 x10% x 3 x 102
= 4.2 3% 3 x 10% x 10°
= 12.6 x 10°

In this example both powers of 10 were positive and so were
added. The same rule also holds true when all exponents are
negative, as in the next problem:

0.036 x 0.002
=38% 102 x 2 x10-*
=36 X2xX 102 x 103
=T2 10"

If the exponents have different signs, the smaller exponent
is subtracted from the larger and the sign of the larger is
retained. This is illustrated in the next two problems:

10

360 % 0.5
=36 x 100 x5 x 10—
=36 x5 x 10 x 101
= 18 x 10 = 180
T500 x 0.0004
=TbHx10P x4 x 101
=Thx 4 10 10—
=80x10"=8.0

Multiplication of more than two numbers would be handled
in the same way, as illustrated by the next example;
650 x 2300 = 0.0002

=65 X100 %23 x 10 x 2 x 10—
=065 %283 %2 x10%x 10% x 10—*
=299 x 10 =299

DIVISION

To divide numbers involving powers of 10, divide the num-
bers and then subtract the exponent of the divisor from the
exponent of the number being divided. Thus:

(64 x 10%) + (4 x 10%)
_ 64 x 107
4 x 104
= 64 % 10° x 103
4
=16 ¥ 10* = 1600
Notice that when the 10’s are divided, the 10 in the divisor

can be moved to the numerator by changing the sign of the
exponent,

420,000 4.2 x 107
210 21 x10°
42 x 107 x 102
~ 2
= 2.0 x 10* = 2000.
Both multiplication and division may be found in the same
electronics problems. They can be combined and solved as
follows :




520 x 0.0036 _ 5.2 x 10° x 3.6 x 10~*
2600 2.6 % 107

_ 52x8.6x10%x 10-% x 10-*
B 256

= 7.2 x 10—* = 0.00072

RECIPROCALS

To take the reciprocal of a number means to divide that
number into 1. For example the reciprocal of 250 is 1/250.
An easy way of taking reciprocals with powers of 10 is to
state the number with the decimal point just preceding the
first significant digit. Then, after the number is divided into 1,
the decimal will appear after the first digit. The power of 10
in the answer is the same as in the original problem but has

the opposite sign. Two examples are given, using these rules
in the solutions:

1| sta i
250 .25 x 10°

1 1

=4 x 10-%= 004

=5 % 10* =500

0.002 2 x10-°¢

SQUARES AND SQUARE ROOTS

When squaring a number stated as a power of 10, multiply
the number by itself and then double the exponent of the 10.

(6 x 10%)* = 36 x 10*
(2.5 % 10%)2 = 6.25 x 10°
(4 % 10-1)2=16 x 102

The opposite is done when taking the square root of a num-
ber. But first the number should be arranged so that the power
of 10 is an even number, either positive or negative. The square
root of the number is taken, and the power of 10 is then di-
vided by 2.

V529 x 10° = /520 x 10 = 2.3x10
V6.4 X 103 =1/64 x10-" =8 x 10-*
144 x 10° =12 x 10%
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UNITS OF MEASUREMENT

For effective exchange of information in any technical field,
we must have units by which we can measure and express
various guantities. This is especially true in electronics be-
cause 80 many separate components and circuit character-
istics enter into the over-all operation or description of any
particular piece of equipment. Especially in the mathematical
study of electronics, these units and their uses should be well
understood.

Ohm’s Law

The units used in Ohm’s law probably oceur more frequently
than any others. So let’s define these first.

Volt—The volt is the basic unit of electromotive force, or
electrical pressure. One volt is the force necessary to cause a
current of one ampere to flow through a resistance of one ohm.

Ampere—The ampere is the practical unit for measuring
current. One ampere is the amount of electron flow that re-
sults when one volt is applied across a resistance of one ohm.
(Actually, the ampere is a rate of flow rather than a quantity,
and the number of amperes can be defined as the number of
coulombs passing a given point each second.)

Coulomb—The coulomb is the unit for measuring the quan-
tity of electricity, or charge. Numerically, one coulomb is a
charge of 6.24 x 10'® electrons, and is the amount delivered
by a current of one ampere in one second. Coulombs are used
to measure the quantity of flow, and amperes the rate of flow,
of electrons through a eircuit. Coulombs are also used to ex-
press the quantity of charge on a capacitor.

Ohm—The ohm (2) is the basic unit of resistance or oppo-
gition to electron flow. One ohm is the amount of resistance
which will allow a current flow of one ampere when one volt
is applied across it.

Mho—The mho (ohm spelled backwards) is the unit of
conductance, or the ease with which electrons can flow in a
eircuit. The numbers of mhos is the reciprocal of the circuit
resistance. The symbol for conductance is G or g.

13



Power and Energy

The capacity or ability to do work is called energy. The rate
at which the work is done is called power. For energy, the
practical unit of measurement is the watt-hour. For power,
the practical unit is the watt.

Watt—The practical unit of power. One watt is the dissi-
pation which occurs when one ampere of current is passing
through a resistance of one ohm. One watt is also the same
as one joule per second.

Joule—The joule is a unit of energy. One joule is the amount
of energy (or work) required in maintaining a current of one
ampere for one second through a resistance of one ohm. It is
also equivalent to one watt-second—3,600 joules (watt-sec-
onds) equal one watt-hour.

Watt-Hour—The watt-hour is the practical unit of elee-
trical energy. The number of watt-hours is caleulated by mul-
tiplying the number of watts times the hours during which
that amount of power is being dissipated. One watt-hour is
equal to 3,600 joules.

Horsepower—The horsepower is a practical unit of power.
One horsepower (hp) is equal to 746 watts.

Reactive Units

Cyecle—An alternating current goes through one complete
cyele when it increases from zero to maximum, decreases to
zero, increases to maximum in the reverse direction, then de-
creases to zero again, The number of eyveles of AC which oceur
in one second of time is called the fregueney, and the basic
unit of frequency is the hertz (cycle per second).

Henry—The basic unit of inductance is the henry. One henry
is the amount of inductance that will result in an electromotive
force of one volt being generated by a change in current rate
of one ampere per second. (As voltage is applied to a coil, it
opposes the increase of current by generating a counter volt-
age which is opposite in polarity to the applied voltage.)

Farad—The basic unit of capacitance is the farad, although
it is too large to be a practical unit. One farad is the amount
of capacitance that will exhibit a potential of one volt across
it when it is charged for one second by one ampere of current
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flow. A farad can also be defined as the amount of capacitance
which will produce a current of one ampere when a change of
one volt per second oceurs across it.

Units of Length

Various units of length are used in electronics to express
wavelength, antenna length, and other physical characteristics
of components and devices. Two different systems are used,—
the English and the metric—and the electronics technician
should be familiar with the primary units of both. Following
is a list of length relationships which occur most frequently
in basic electronics calculations:

1 mil = 0.001 inch 1 centimeter = 3937 inch
12 inches =1 foot 1 meter = 3.28 feet
3 feet =1 yard 1 meter = 39.37 inches

1,760 yards = 1 mile (statute) 1 kilometer = 3,280 feet
5,280 feet =1 mile (statute)

For measuring extremely short wavelengths, other units
are used. One of these, the micron, is equal to 10—* centimeter.
The millimicron is 0.001 of a micron, or 10-7 centimeter,
Another similar unit is the Angstrom wunit, which is equal to
10—*% centimeter.

Prefixes

Expression of electronics quantities often involves extremely
large or small numbers. We have already seen the number of
electrons in a coulomb (6.24 x 18'%). Capacitance in a circuit
may be as small as 5 x 10—'2 farad. Other quantities of com-
parable numbers are often used. To express these numbers
as powers of ten simplifies the writing, as well as the caleu-
lations involving them. But prefixes are also used (prefixes
are portions of words used before the names of the units),
each separate prefix indicating a certain power of 10. For in-
stance centi indicates 0.01(10-2); therefore, a centimeter is
0.01 of a meter. Kilo means 1,000 (10*); so a kilometer is
1,000 meters. |

Following is a list of prefixes used most frequently in ex-
pressing electronics measurements. Each represents a certain
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power of 10 (either positive or negative) as indicated. Each
prefix also has a symbol which is often used to represent it:

deka (da) = 100 deci (d) =10-1
hekto (h) =10* centi (¢) = 10-¢
kilo (k) =108 milli (m) = 10-#

mega (M) =10° micro («) =10-°

giga (G) =10 nano (n) = 10-%

tera (T) =10 pico (p) = 10—
or

micromicro {pu)

Examples of the use of prefixes in electronic notation, and
their numerical equivalents, are illustrated next:

1 microfarad = 1 » 10-° farad = 0.000,001 farad

3 kilohertz = 8 x 10® hertz = 8,000 hertz

b picofarads = 5 x 102 farad = .000,000,000,005 farad
2 nanoseconds = 2 x 10-* second = .000,000,002 second

Sometimes confusion may arise in using M for mege and
m for milli. Unless completely understood, it may be advis-
able to write out the prefix and unit—for example, megahertz
or milliampere. Another source of confusion is the use of m for
micro. In this case, when denoting capacity, common usage
has determined it to mean miero. By the same token, when
used with amperes it is understood to mean milli.

In some ealeculations it is necessary to convert from one

prefix to another. This involves moving the decimal point a
certain number of places. Figure 1-1 is useful for this purpose.

Notice that the calibration is reversed from our usual method
of counting. The numbers are progressively smaller as we

move toward the right. For instance, to convert 0,05 uF to pF,
we start at micro (10-%) and move to pico (10-12), a move of
six places to the right—to a smaller unit. The decimal point,
therefore, would be moved six places to the right, so that

B g 8 3
S O O O (O | = 5 S 0 0 e
1073 O O R P e e
101230100 10%10% 107 108 10% 10% 10% 10 10} 10100 10 it 1o B0 T Bl 6 gt 12

2

— KIiLO
HEKTO
MICRO

2
|
|

L BASIC
UNIT

:
|

=t CENTI
=t MILLI
— PICO

Figure 1-1. Relative volues of multiple and submultiple prefizes.
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0.05 uF would become 50,000 pF. When a quantity is expressed
in smaller units, the number of these units becomes greater.

Using the chart, convert 3,000 kHz to MHz as follows: Mov-
ing from kilo to mega, move 3 units to the left. Hence, 3,000
kHz becomes 3 MHz (after the decimal point has been moved
to the left). Without the chart, the conversions are made by
using powers of 10, For example, 3,000 kHz is 3,000 x 10* Hz.
Since a megacyele is 10" we can change the 10* to 10% but the
decimal point must be moved three places to the left (to com-
pensate for the changed power of 10). To change 0.05 uF to pF,
we change the power of 10 from 10-° to the smaller 1012,
To compensate, the 0.05 is changed to 50,000, a larger number.

In a few cases a combination of prefixes may be used. Kilo-
megahertz (10%) is used in connection with super high fre-
quencies. :

17
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CHAPTER 2

BASIC ALGEBRA

In a sense, algebra can be considered as arithmetic ex-
pressed on a general rather than specific basis. For example,
2 amps multiplied by 3 ohms equals 6 volts. This is Ohm’s law
expressed in terms of those specific values. If we say that
E =1 x R, we are using an algebraic expression to give the
relationship of voltage, current, and resistance for all values.
Electronics formulas are algebraic expressions showing how
some value varies with respect to others. Thus, our prime
concern in studying algebra is to be able to manipulate these
formulas in such a way that we can solve for any circuit
characteristic.

Algebra is different from arithmetic in two ways. First,
algebra can include negative numbers, a concept usually not
considered in arithmetic. Second, algebra makes use of literal
numbers (letters) in place of actual numerical values, al-
though numbers can also be used. The use of literal numbers
limits what can be done in a given problem; hence most alge-
braic expressions are more involved than their arithmetical
counterparts. We can say that 2 plus 3 equals 5, combining the
separate numbers. But we cannot combine @ and b unless we
know the specific value of each,

NEGATIVE NUMBERS

In arithmetic we normally use zero to indicate a complete
lack of whatever we are numbering. If we have zero dollars,
we have no dollars. And, in a practical sense, it is difficult
to imagine having less than zero of anything. But if we con-
sider zero as merely a reference point on a number scale, we
can go in either direction from that reference. Voltage meas-
urements illustrate our point. If we call chassis ground zero
volts, we can have either a positive or a negative potential
with respect to that reference. A reading of —10 volts does
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not indicate “less than nothing"; it only indicates that the
potential is 10 volts negative with respect to whatever we are
calling zero.

Temperature measurements also illustrate this point; a read-
ing of zero or below does not mean there is no temperature.
The measurements are taken with respeet to what has been
arbitrarily set up as zero on the temperature scale, and nega-
tive readings are opposite in direction from positive readings.
Thus, the use of positive and negative numbers gives us a
mathematical means of expressing direction as well as quan-
tity in our electronics calculations. We have already used posi-
tive and negative voltages as one example. Phasing in AC
circuits, and measurement of sound levels, also make use of
these ideas.

Direction is illustrated by Figure 2-1, which is a numbered
scale extending from zero in both directions. On the scale, +2
and —2 are both separated from zero by the same amount, but
in different directions. However, +2 and —2 are 4 units apart

on the number scale. The absolute value of a number is its
L " | T
1 ] | | I ] |
o R ag =] O « » =3 W 5

|
1
= |
Figure 2-1. Scale showing both the positive and the negative direction from
a zero point.

i | i
] I I

value, neglecting the sign; both +2 and —2 have absolute
values of 2.

In algebra, a negative number is noted by placing a nega-
tive sign in front of the number; for example —2, —3a, —4x®,
etc. In combining numbers, the signs must be considered part

of the operation, as evidenced by the four examples listed
below:

443=17

4-3=1

3—4=-1
—3—-4=-17

The positive sign indicates that the quantity is added; the
negative sign, that it must be subtracted. When numbers are
added the result is called the sum. When subtraction is per-
formed the result is the difference.

19



We also use other signs of operation. If we wish to indicate
that a and b are multiplied together, it can be shown as a X b,
a+ b, or simply ab—all three methods signifying multipli-
cation. When negative numbers are involved, parentheses are
used to show multiplication, (—3) (—2) for example. Other-
wise this might be read as —3—2, or —5. In expressing arith-
metic numbers, all of these methods are valid except one.
The symbols 2 x 3, 2 - 3, (2)(3) would all express multipli-
cation of 2 times 3, but 23 would be read as twenty-three.
With literal numbers, though, the latter method is all right,
as with ab. Similarly 2% is usually considered to be 2 +
rather than 2 times %. The result obtained when numbers are
multiplied is called the produet.

Dividing a by b ¢can be shown by a = b or a/b, the latter
being used almost exclusively in algebraic operations. Thus in
these examples,

¢ & axr' 3
> 3 5’ @

the numerator is divided by the denominator. Multiplication
and division are inverse processes. If we multiply a number
by 3 and then divide the result by 3, we obtain the original
number. Multiplving a number by 15 is the same as dividing
by 3, so that a/3 is the same as a X . The result of dividing
one expression by another is called the quotient.

Zero can be added, subtracted, or multiplied. But we cannot
divide by zero because the answer would have no meaning.
We can divide into zero; as an example, 0/3 is still zero.
Any number multiplied by zero produces a product of zero.

TERMINOLOGY

Arithmetic uses only constents—that is, numbers which
have specific, unchanging values. For example, 5 always has
a value of 5. Algebra uses constants, but it also uses variables.
Consider the formula for inductive reactance, X; = 2«fL. 2=~
has the same value (6.28) in every problem, so it is a constant.
But f and L may be assigned any wvalues, which makes the
value of X, dependent upon them. These are variables because
their values vary from problem to problem. In any given in-
stance, however, each variable will have a specific value.
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An algebraic expression is a mathematical statement in-
cluding both literal and arithmetic numbers grouped accord-
ing to algebraic standards. Some examples are:

& +y12ﬂ'_ b,I!f, ‘_Sﬂ-r’rb and x= + y:.

A term is a number, or the product or quotient of several
numbers. Examples are 3a, b, ry, a/b, ete. In the expression
2a + b, there are two terms, 2a and b; and in any expression
of two or more terms, each term is separated from its adjacent
terms by either a plus or minus sign.

Terms which contain the same letters are called like terms
or similar terms (for example, 2a and —3a, r* and 2z2, 2ab
and 3ab, etc.). Unlike terms have different literal numbers:
2a and 3b are unlike terms. An expression containing only one
term is called a monomial. A two-term expression is a binomial,
and one including three terms is a trinomial. The word poly-
nomial is often used to describe an expression which containa
two or more terms.

An algebraic term consists of several parts—namely the
base, the coefficient, and the exponent. In the term 3% 2 is
the base, 3 is the coefficient, and 2 is the exponent. The 22
indicates that x is used as a factor twice, or = times =z.
The coefficient tells us how many of these z* terms we have.
Actually, 3 is the coefficient of z2, and x* is the coefficient of 3.
But popular usage describes the number as the coefficient—
3 in this case.

Whenever the number in front of the letter is omitted, the
coefficient is assumed to be 1. The term x actually means 1z,
and ab means lab. Similarly, omission of the exponent also
indicates 1. The term a actually means la!, the ones being
implied.

Coefficients, bases, and exponents can be either literal or
arithmetic numbers. In ab® all three components are literal.
In 32° only the base is literal. The term base sometimes indi-
cates the combination of base and exponent, but this should
cause no difficulty.

When numbers are multiplied together to give a product,
each of the numbers is called a factor. In 2 x 3 x 4 = 24,
the 2, 3, and 4 are factors and the product is 24. Similarly a,
b, and ¢ are factors of abe, and each factor can be considered
the coefficient of all the other factors.
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COMBINING TERMS

Addition and Subtraction

Algebraic terms can be added or subtracted as long as
their bases (including the exponents) are the same. For in-
stance, 2a + 3a = Ha. Here the numerical coefficients are com-
bined. The base remains the same, the reason for which can
be seen from a simple analogy. If we add 2 tubes and 3 tubes,
the sum is 5 tubes. Similarly, adding a's in the first example
produces the result of 5a.

In combining terms the signs must be considered, as indi-
cated by the following examples:

1. bz —2r =3z
—2A4 — 34 = —54
3y — Ty = —4y°
3b* + 2b* = bb*
—ab + 2ab = ab

s RN

When the signs are alike, add the numerical quantities and
affix the same sign. When the signs are different, subtract
the smaller number from the larger and use the sign of the
larger, as in examples 1, 3, and 5 above.

Terms with unlike bases (or exponents) cannot be combined
algebraically. For example:

3a + 2b=3a + 2b
4r* — 32 = 4x= — 3x
2a*b + 3ab® = 2a*b + 3ab?

An analogy of this would be the attempt to add 3 resistors
and 2 capacitors. The combined reszult is still 3 resistors and
2 capacitors.

Using the same rules, expressions involving more than two
like terms can be combined. Add all the positive terms to-
gether, and then all the negatives. Finally, combine by the
rules given previously. As an example:

da —2a+a—3a—a=+ba—6a=—a

If two or more bases are involved, the terms with like bases
are combined as previously shown. The combined result con-
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tains as many ferms as there are different bases, unless a
coefficient turns out to be zero. An example of this type is:

a—2b—2a+3b—4de=—a+b—4ec

Multiplication and Division

When multiplying algebraic terms, the sign, coefficient, and
exponent of the various terms must all be considered. The pro-
duet of two terms having like signs, either positive or negative,
is always positive,

3x4=+12; (-2)(-3)=+6

Parentheses are used in the latter example in order not to
confuse the problem with —2 —3, an addition problem. When

the multiplied terms have unlike signs the product is always
negative.

(2) (—=8) = —8, and (—4) (3) = —12

The exponent of a product is the sum of all exponents of
the factors having like bases:

- KR LR o
a*+b*+a-b=a*b
The coefficient of the product is the value of all separate
coefficients multiplied together, as in the following examples:
(a) (3a) = 3a*
(2a) (3b) = 6ab

(Yex) (3y) = %xy

Notice that all coefficients are multiplied, even when the
separate factors have unlike bases.

In raising a number to a power, the coefficient is raised to
that power and the exponents are multiplied by the order of
the power:

(2z)* = 42 (3a*r)3 = 27a%x®
{_Eﬂbﬂ}ﬂ — gﬂi‘bi {_2{1}3 _— _SEE

Taking the root of an expression involves the opposite op-
eration from raising a number to a power. Take the indicated
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root of the coefficient; then divide the exponent by the order
of the root. This is illustrated in the next four examples:

V2x2 = 1.414x /8" = 222
V16a*h' = 4ab* W—2Ta® = —8a

When multiplied by an expression having two or more terms,
a monomial is multiplied by each of the other terms separately
as in:

2a (3a—4b) = 6a*—8ab

and :
—3a(a® + 2b — 4¢) = —3a* —6abd 4+ 12ac

If the monomial factor is positive, the signs of the terms in
the product will be the same as those within the parentheses.
If the monomial is negative, as in the second example, then
all signs change. Placing parentheses around the binomial
indicates that the entire quantity within the parentheses is
multiplied by the monomial. For example, 2a(3e—4b) =
6a*—8ab. But Za'3a—4b = 60°—4b. Using the parentheses
changes the problem in such cases,

A binomial can be multiplied by another binomial in any
of several ways. Two are illustrated, both multiplying (2a+0)
and (3a—2b). The first method has the entire problem set up
on the same line, and the separate multiplications are all made
as indicated below. Then the like terms are combined, in this
case —4dab and +3ab:

(2a-+h ! (3a—2b)
6a:—4ab+3ab—2b* = 6a*—ab—2b*

Or we can solve the problem in much the same way as in
arithmetical multiplication:

20+ b
Ba—2b_
6a* + 3ab

— 4ab — 2bh*
6a* — ab — 2b*

The latter method is probably easier for expressions in-
volving more than two terms. For instance, multiplying
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3a*—2ab+b* by a—b, the problem would be set down in this
manner:

=—2ab+hb*
a—b
3a*—2a*b+ab*
—3a*b+2ab*—b*

3a*—ba*b+3ab*—bh3

Notice that all terms in the trinomial are first multiplied by @,
giving 3a"—2a*b+ab*. Then each of the three terms is multi-
plied by —b, the terms with like bases being placed under those
in the first step. Finally the two are added.

In some electronics equations a binomial quantity must be
squared by one of the methods just illustrated, However, a
special formula that can be applied to squaring a binomial is
expressed as follows:

(a+b)* = a*+2ab+b?

There are three terms in the product. The first is equal to
the square of the first term of the binomial. The second term
is twice the product of the two original terms, and the third
term is the sgquare of the second term of the binomial. The
numerical coefficients follow the same rules. For example:

(2e4+y)= = dx*+4xy+y*
(3a+4b)* = 9a*+24ab+ 1652

Dividing algebraic expressions also involves the signs, ex-
ponents, and coefficients, and they must all be considered in
order to arrive at the correct quotient. As to signs, the same
rules apply as for multiplication. When the numbers to be di-
vided have like signs, the quotient is positive, When the signs
are opposite, the quotient is negative:

—6

6_ = 16 3
gt Tg==2 =% op=ne

The exponent of the quotient is obtained by subtracting
the exponent of the divisor from the exponent of the number
being divided, assuming like bases. This is shown in the fol-
lowing :
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] 4
E-.:]{ ﬁ:af'? i: a“
I“ ml- ﬂ;."l

Notice that a negative or zero exponent can appear in a
quotient. A term having a negative exponent is equal to the
reciprocal of that term with a positive exponent of the same
numerical value:

o 1
T i= E‘_—E

#F

m-

= 44

This can be verified by multiplying numerator and denomi-
nator by the same term with a positive exponent, as follows:

gt oA at 1
1 ¥ ozt g2
and:
1l - at

x—% ¥ g0

Any number, arithmetical or literal, raised to the zero
power has a numerical value of 1. This can be shown by
assuming that any quantity divided by the same quantity has
a value of 1:

H] l-l.tﬁ

= gi—d =l =]

i
.—ﬂ.-ﬁ =102 =]10"=1

] B

Thus we can assume that any expression raised to the zero
power is equal to 1.

The numerical coefficient of a quotient is found by dividing
the numerical coefficient in the numerator by the one in the
denominator.

Ba® _ —83% _ " —12a _ . 4a
5y~ OB R 85 - h

Division involving polynomials can be performed by long

division just as in arithmetic. Each part of the problem must
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be arranged so that its terms are in ascending or descending
powers of some literal number. An example follows:

2a°—3ab+36°
a+2b)2a*+a*b—3ab?+b*
2a'+4a=b
—3a*b—3ab*
—3a*b—6ab*
3ab*+b*
3ab*4+-6b%

—5b% is the remainder.

@ (of the expression a + 2b) will divide into 2a® (of the ex-

pression 2a*+a*b—3ab*+b*) 2a* times (E-EE = 2a* }. As in regu-
lar long division, this answer is placed over the term 2a® and
the divisor a+2b is multiplied by it. This equals 2a*+4ab?,
which is placed under the first two terms and subtracted from
them. a*b—4a%b equals —3a?b. Bringing down the third term in
the expression gives —3a2b—3ab. a can be divided into (—3a*Dh),
—3ab times. The result is placed at the top as part of the
answer and is multiplied by a+2b. This gives —3a*bh—6ab?,
which is placed under like terms and subtracted. —3ab*—
(—6ab?*) equals +3ab®* Bringing down the last term we now
have 3ab*+b* a divided into the first term of this expression
equals 3b2. This is placed with the answer as the final term
and multiplied by a+2b to give 3ab*+6b*. Placing under like
terms and subtracting, we have a remainder of —5b%,

If the two expressions are exactly divisible, there will be
no remainder, as shown in the next problem:

a+ b

a— b)a* —b*
a*—ab

+ab —b=

4ab —b*

Notice that there is no term containing ab in the dividend, so
a zero is substituted. Therefore, when subtracting, change the
gign of the subtrahend and add. Changing —ab to +ab and
adding it to 0 is equal to +ab.



FACTORING

In some instances it is desirable to break down a mathemati-
cal expression into its various fundamental elements—that is,
to obtain the basic elements which, when multiplied together,
give the original expression. This is called factoring. As an
example, the number 75 can be factored into 5x5x3, the lowest
whole numbers (omitting 1) which will give a product of 75
when multiplied. Other examples are:

48 =2 % 2x2x2%x3
210 =2 x 8 xbx"T
102 =2 %3 x 17

Numerous factoring forms are used for algebraic quan-
tities, but we will consider only the one used to any extent
in basic electronics formulas. This method is referred to as
removing a monomial factor. An example is given here:

ac+ab=a(c+ b)

A factor can be removed from the expression only if it ap-
pears as a factor in each term. ab + ae¢ + bd is not factorable,
since no one factor appears in all three terms. Numbers can
also be factored if they are factors of each term, such as the

following:

2zy + 2zz=2z(y + z)
3a*b — 6a*c = 3a*(b—2¢c)
—15ab—5a*b = —bab (3+a)

This form of factoring will be used to a limited extent in
some of the calculations in later chapters. Each factoring
problem can be checked by multiplication. In the first example,

multiplying out 2z (y+2), gives a product of 2xy+2xz, the orip-
inal quantity.

EQUATIONS

An equation is a mathematical statement that two expres-
sions are equal to each other. 3+2 = 5 is an equation, but not
of the type we have in mind. Electronica equations (often
called formulas) are stated in terms of literal and arithmetical
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numbers giving the relationships between them. F = IR is an
equation; so is X, = 2«fL. Most of the time we are interested
in solving the equation—that is, finding the values of the lit-
eral numbers which make the equation hold true.

In the formula, X, = 2-fL,, if we are given the values of
frequency and inductance, we can multiply them together, and
then multiply by 2= to obtain the value of X, (inductive re-
actance). Suppose, however, that frequency and inductive re-
actance are given and we must solve for inductance. Then the
equation must be solved for L.

A large portion of practical mathematics consists of work-
ing with equations in order to solve for one of the component
parts of the equation. The ideas illustrated here will be neces-
sary tools in most of the remaining chapters. In this chapter
we are using simple literal numbers such as a, &, ete., but in
actual electronics equations, literal factors often use subscripts
(as R,, R, ete.) to distinguish between various components.
Subscripts are numbers or letters written under and slightly to
the right of the symbol. They play no mathematical part in the
solution of the equation, as do exponents, but are used solely
for identification. Even though the literal parts may be iden-
tical (R; and R, for example), they are not like terms.

There is one basie rule in working with equations—yvou must
do nothing to destroy the equality existing between the two
sides. Simply stated, whatever is done to one side of an equa-
tion must also be done to the other side. Consider the equation
3x—3 = r4+1. There is only one value of x which will make
this statement true. Solving the equation consists of deter-
mining this value mathematically. In order to do this we must
isolate x on one side of the equation and the numerical value
on the other. Our manipulations are of several types, but we
must always do the same to both sides of the equation. We can
perform virtually any mathematical operation except dividing
by zero—which is never possible anyway.

Let’s solve the equation previously given:

3r—3 = x+1
If we subtraet x from both sides we obtain:
dr—3—x=ax+l—x

Collecting terms:



2r-3=1
Then we add 3 to both sides and again colleet terms:

2x—3+8 = 148
2r=4
Dividing both sides by 2, we obtain:
r=2

This should be the solution for our equation, but let's check it
by substituting 2 for z in the original:

%

3x—3 = x+1

3(2)-3=2+1
6—3 =38
3=3

Since the two sides are equal, our solution must be correct.

This is the general idea for solving almost any type of equa-
tion, except that additional steps sometimes must be included
in the process. Keep in mind that nothing should be done which
will disturb the equality of the equation. We can add a quan-
tity to or subtract it from both sides. We can multiply or
divide both sides by some quantity. We can raise both sides
to some power, or take a root of both sides. Always remem-
ber, the same operation must be performed on both sides.

Literal Equations

Most electronics formulas contain more than one unknown,
These are often called literal equations, and they may or may
not contain constant terms. The X, formula and Ohm’s law
previously given are examples of literal equations. In solving
this type the rules already given are followed. Instead of a
definite numerical answer, however, the solution also contains
literal terms or factors. Let’s solve one to see what we mean.
Solve for x in this problem :

ar—b=c¢
Add b to both sides:

ar—b+b=ec+0
ar=c¢+b
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Divide both sides by a:

ax e+ b
a a
€+
2= b
i

Literal equations, in which the wanted factor appears in
more than one term, pose an additional problem not encoun-
tered previously in this chapter. Let's try one to illustrate the
point, solving for a:

ac — be = ad

Collect all the terms containing a on one side by subtracting
ad and adding be to both sides:

ac — be — ad + be = ad — ad + be

ac — ad = be
Then we factor ¢ out of the left side:
alc—d) = be

Next we divide both sides of the equation by (¢—d), the coef-
ficient of a:

a{e—d) be

c—d  c—d
o=t
c—d

Fractional Equations

In general, whenever an equation contains one or more frac-
tions, the solution is simplified if we rid the equation of the
fractions. The following equation illustrates the procedure:

§—1:2m+4

To eliminate the denominator, multiply both sides of the
equation by 3, making sure to multiply every term:

i—x—S=Em+12

r—3=6x+ 12
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Collecting terms:
—dxr = 1b

Multiplying both sides by —1, we obtain:
bx = —15

Then dividing by 5 we get the solution:
xr=-—3

This answer can be proven as shown:

Substituting —3 for x in% —1 = 244

"—3—1:2(~3)+4
—1-1=—-6+4
—2_—_9

If several denominators occur in the same equation, it is
usually advisable to find the least common denominator (LCD)
and use it for the entire equation. From that point the solu-
tion follows the same pattern as in the previous equation.
Let’s try one of this type:

@ X
9 + 3= g 2
The LCD of 2 and 3 is 6. So the entire equation is set over

a denominator of 6:

3z +18 2¢—12
6 6

If both sides are then multiplied by 6, the problem is no
longer fractional, but can be expressed in straight-line form:

Sz + 18 =2z — 12

Collecting terms:
x=-—30

Which is proven as follows:

T g_T_
3 +8=5-2
-30 , o —30 _
=S 8= 2
~15+8=-10-2
—-12=-12

Equations With Radicals

Many calculations in electronies include either the square or
square root of one or more quantities. For example, power
equals the square of the current multiplied by the resistance
(P = I’R). In this equation we must express the wanted factor
with an exponent of 1. For example:

2x* =50
If we divide both sides by 2 the result is:
x*=2b
Taking the square root of both sides we find:
r=>5H

Actually, 1/25 is either plus or minus 5, because either one
squared gives a product of 25. In practical problems, however,
the negative may have no practical meaning. Hence we use
the positive value, which is known as the principal root.

The following equation has a square root in the original
problem :

vVaR =86

If we are to solve for R, then we must eliminate the radical.
This is done by squaring both sides:

3R = 36
Or:
R=12
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CHAPTER 3

OHM'S LAW

In all probability, the formula used most often in electronics
calculations is Ohm’'s law, which expresses the relationship of
voltage, current, and resistance in electrical circuits. It can
be expressed in any of the three forms shown below :

E=IR
E

I=p

r-E

All three of these circuit characteristics are expressed in
basi¢c units—volts, amperes, and ochms.

SERIES CIRCUITS

Ohm'’s law holds true for the entire circuit or for individual
portions of a circuit. Let's refer to Figure 3-1, to illustrate this.

Rl
b
FL ZR1-18D

: i Figure 3-1. Series-connected
I?\rT resistances illustroting Ohm's-

| R? low calculations.

The total resistance in the circuit is 18 + 6, or 24 ochms. Circuit
current is:

I=

_12
T 24

= (.5 ampere

| By
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Multiplying current by resistance gives voltage, as shown
in the next calculation:
E=1IR
=06 x 24
= 12 volts

If we caleulate the voltage drop across each resistor, their
sum should equal the applied voltage. In the diagram, E, is

the voltage drop across R,, and E, is the drop across R..
Therefore:

E,=IxR,
=0.5 x 18
= 9 volts

E,=Ix R,
=0b5x 6
= 3 volts

and ;

E=9+3
= 12 volts

PARALLEL CIRCUITS

Ohm'’s law also holds for parallel circuits like that of Figure
3-2. The total resistance in the circuit is:

_ R, xR,
‘T R+ R,

_36x12
36+ 12

_ 432
48

= 9 ohms

R

Figure 3-2. Parallel resistances illus-

trating Ohm's-law calculations. %y Rl 3360 n2%120

—phrp—
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I, is the current through R; and I, is the current through K, :

=1
'_R,
_ 36
~ 36
= 1 ampere
Ii=%
_ 36
— 12
= 3 amperes
If=1 + 3
= 4 amperes

We can check this by multiplying the total current and total
resistance, the latter being 9 ohms:

E=fr * jl'-E-‘r
=4x9
= 836 volts

Several basic facts can help us in Ohm's-law caleulations:

1. In a series circuit, the current is the same through all
parts of the circuit. The individual voltage drops add
up to the applied voltage.

2. In a parallel circuit, the voltage is the same across all
components. The current through the individual compo-
nents may be different, but the sum of these currents
equals the total

3. Current in a circuit is directly proportional to the ap-
plied voltage, and inversely proportional to the resist-
ance, As ecircuit resistance is increased, the current is
is decreased and vice versa.

4. The voltage drop across an individual circuit component
is directly proportional to both current and resistance.
As either or both are inereased, the voltage drop also
increases and vice versa.

I

SERIES-PARALLEL CIRCUITS

Circuits where both parallel and series resistances are pres-
ent are a little more complicated, but the same basic method
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is used for solution. Let’s put these ideas to use in solving
several problems.

1. Solve for the applied voltage (E) of the combination
circuit shown in Figure 3-3.

#e

. o

Figure 3-3, Series-porallel resistance 40 '

combination illustrating Ohm's-law _..,ﬂ,..__
calculations. 3

:
Al

By remembering that the voltage drops across parallel re-

sistors are the same, we can solve for total circuit current.
The voltage across R, is:

EH*':IJKR:
=3 32

= 6 volts

The current through R, iz found by dividing resistance into
the voltage drop:

The current through R, is 5 amps, being the total of I,
and [,. Voltage across R, is:

EE] - I.l X le
=H ¥ 4
= 20 volts

The applied voltage, then, is the sum of the two separate
voltages:

E,=6+20
= 26 volts
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2. With 200 volts applied, the current through a resistor
is 2 amperes. What is the current if the resistance is doubled?

As long as current and resistance are inversely proportional,
we could set up a formula where I, is the original current
and I, the final current. The original resistance (R,), by Ohm’s
law, is 100 ohms:

F P .
h R
I.E, = I.'R-I
I R,
Ii — _j'z'r'
2 x 100
200
= 1 ampere

We could also reason out the answer by assuming that when
the resistance is doubled, the current is halved. Therefore the
current drops from 2 amps to 1 amp.

3. How is the current of a circuit affected if the voltage is
doubled and the resistance halved? By reasoning the problem
in two separate steps, we find that the current is quadrupled.
If the voltage is doubled, the current islalsﬂ doubled. Then
halving the resistance doubles the current again.

As we shall see in later chapters, Ohm's law can also be
used for calculations in circuits containing AC as well as DC,
For AC, however, inductance and capacitance may enter into
our problem, Ohm’s law will still apply, however, since it
states the basic relationships between voltage, current, and
circuit opposition to electron flow.

In the last chapter, conductance was determined by G =
One form of Ohm's law states:

=z,
R

E
B=7
80,
X 1
E E
therefore
I
=z
38

POWER

The power in a circuit is measured in watts and can be cal-
culated from three different formulas, all based on Ohm’s law.
The first of these is:

P=F xI

where,

P is the power in watts,
E is the voltage in volts,
I is the current in amperes,

By making Ohm’'s-law substitutions, we can obtain the other
two forms:

Substituting IR for E:

P=IR x1I

= 2R
T
Or substituting i for I:

B E

P—E:-:E
. i
" R

The formula for solving a given problem depends on what
was given originally in the problem. For example, if current
and resistance were given, then P = I“R is the logical formula
to use, These formulas can be used for calculating the power
in an entire cireunit or in individual components. Several prob-
lems will illustrate how.

1. In the circuit of Figure 3-1 the total power dissipated can
be calculated from any one of the three formulas. Voltage is
12 volts, resistance 24 ohms, and current 0.5 ampere.

P[zE-}{I
=12x 0.5
= 6 watts

Or:
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Py=1%R
=0.5"x 24
= ).25 X 24
= 6 watts

Or:

P;=F

i
— 24
_ 144
24
= 6 watts

Power dissipated by R, is:

Pj =J% % R;
=0.52x 18
= 4.5 watts

And in R*:
Pl = IE b4 R'
=0.5x% 6
= 1.5 watts

The total power is the sum of the two individual powers,
4.5 + 1.5 = 6 watts.

2. What is the total power dissipation in a circuit (Figure
3-4A) composed of a 50-ohm, 10-watt resistor connected in
series with a 100-ohm, 10-watt resistor, if the latter is dissi-
pating 10 watts?

The 10-watt ratings mean that each resistor can safely dis-
sipate 10 watts and presumably no more. But don't jump to
conclusions—the answer is not 20 watts. As long as the re-
sistors are in series, the current through them is the same.
The power dissipation is direetly proportional to the resist-
ance: so if the 100-ohm resistor is dissipating 10 watts, the
50-ohm resistor will be dissipating 5 watts, for a total of
15 watts. This is the maximum, above which the 100-ohm re-
sistor will burn out. If both resistors had the same resistance

S | PAT 10N
10 WATTS

1008

00g BISSIPATION
A, S 1000 00 %
T T oW 10w

500

o

(A) Resistance in series. (B) Resistance in parallel.

Figure 3-4. Circuits illustrating total power dissipation.

and the same wattage ratings, then the power would be added
directly, resulting in 20 watts in this problem.

Connecting the two resistors in parallel (Figure 3-4B) pro-
dues the same total power dissipation, 15 watts, as when they
are in series. In parallel, however, the 50-ohm unit will dissi-
pate twice the power of the 100-chm resistor. The reason is
that twice as much current will flow through the 50-ohm unit
as flows through the 100-ohm unit.

3. A 100-ohm resistor is carrying 50 mA of current. What
minimum power rating should it have?

=N
= (0.056)* x 100
= 0.0025 x 100
= 0.25 watt

4, A 200-ohm resistor is dissipating 12 watts. What is the
voltage across the resistor?

E* = PR

E =\/PR
= /12 x 200
= /2,400
= 49 volts

5. What is the effect on power dissipation if the current
in a circuit is doubled?
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Since P = I’R, doubling the current increases the power
by the square of 2, or 4. So the power dissipation is quad-
rupled.

Power is the rate at which energy is dissipated in a cireuit,
the basic unit being the watt. Energy involves power and the
time while this power is being used. Its practical unit is the
watt-hour or kilowatt-hour (kWh).

Energy = Watts x Hours

As an example, a receiver is rated at 120 volts and 1 ampere.
How much energy is used if the receiver is played 12 hours?

P=FExI
= 120 x 1
= 120 watts
therefore,
Energy = 120 watts x 12 hours
or

= 1,440 watt-hours, or 1.44 kWh
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CHAPTER 4

RESISTANCE

Resistance is the opposition to the flow of current in an
electrical circuit. The basic unit of measurement is the ohm.
One ohm is the amount of resistance which allows a current
of one ampere to flow when one volt is applied. In a con-
ductor, the resistance is directly proportional to the length
and inversely proportional to the square of the diameter.

Resistance of a length of wire can be determined by the
formula:

where,

K is a constant which is the resistance of a mil-foot of wire.
A mil-foot is a section of wire having a diameter of 1 mil
(.001 inch) and a length of 1 foot,

L is the length of wire in feet,

d? is the diameter (in mils) squared.

For copper, the resistance of a mil-foot is 10.4 ochms. Other

materials have values which vary inversely with the conduc-
tivity of the material. (See Table 4-1.) Thickness of a wire

Table 4-1. Resistivity Constant of Different Metals
at o Temperature of Approximately 68° F.

Material Ohms per Mil-Foot
Aluminum 12.3
Copper 10.4
Iran 72 to B4
Lead 125
Michrome S50
Platinum &6
Silver 9.9
Tungsten 33
Ling 36.7
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is often expressed in terms of its eircular-mil area, which is
determined by squaring the diameter (expressed in mils).
Suppose a copper conductor is 12 feet in length and has a

diameter of 5 mils. What is its resistance and circular-mil
area’

KL 104x12 1248
R = g = £z = 55 = 4.99 ohms

Circular-mil area = 5* = 25 circular mils

Another length of wire has a resistance of 100 ohms. If the

length and diameter are both doubled, what is the new resist-
ance?!

For problems of this type the formula below can be used:

R, L,xd#
Rg_Lr; bt d-_gi

Not knowing the length and diameter we can assume any

values and the result will be the same. Let's assume them
to be 1. Therefore:

100 1 x2°
R, 2x12
100 4
Ry
4R, = 200
R, = 50 ohms
If both diameters are the same, the formula reduces to:
|
Re La
If both lengths are the same, the formula ecan be written as:
R, d;2
R, dg2

SERIES RESISTORS

Resistors connected in series are added directly. This can
be expressed as:

Ri=R,+R,+R,+ ...
where,
R, is the total resistance in ohms,
K, R, and R, are the individual resistances in ochms.
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Rl R 6]
SRy (S ¥ —) Y —
_ , 710 aq 1000
Figure 4-1. Finding the total resist-
ance of resistors in series.
O Ry o
RpeRL 482 +R3

As an example, suppose that resistances of 27, 47, and 100
ohms are connected in series, as shown in Figure 4-1. The total
resistance will be:

B, =27+ 47 + 100
= 174 ohms

PARALLEL RESISTORS

When two or more resistors are connected in parallel, the
total resistance is less than the smallest resistor of the group.
If all the parallel resistors have the same value, the total can
be found by:

sz

Zl=

where,

E, is the total resistance in ohms,
R is the resistance of one resistor in ohms, :
N is the number of equal-value resistors connected in par-

allel.
Figure 4-2. Finding the total  F - R23 1007 o - Rag1000
resistance of two or more equal T 2 ?

resistors in parallel.
RO0F ONE RESISTOR)

RN museEr o RE51STORS)
As shown in Figure 4-2, four resistors, each 100 ohms, are
connected in parallel. The total resistance is:
R 100

R,!:P'—J T= 25 ohms

Il

When two resistors (whatever their value) are connected in
parallel, the total resistance can be calculated by the “product-
over-the-sum"” method, as shown next:
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R, R,
R, + R,

where,
R; is the total resistance in ohms,
R; and R, are the resistances connected in parallel.

i . ReZ800 Figure 4-3. Finding the total re-
T Rl 2 200 sistance of two unequal resistors
in parallel.

R Fllflfl?
Figure 4-3 illustrates an example where a 20-ohm and a 60-
ohm resistor are connected in parallel, The total resistance is:

_ RiR,
R“‘R.+R;
20 % 60
‘720 + 60
1,200
-~ 80
= 15 ohms

R

Another arrangement of this formula works this way:
Divide the smaller resistance into the larger, add 1 to the
answer, and divide the larger resistance by the result. Ex-
pressed as a formula it becomes:

K,

7= R, (where R, is larger than R.)
i A1 |
K,

Reworking the same problem, 20 (R,) can be divided into
60 (f2,) 3 times. Adding 1 gives 4. Dividing 4 into 60 gives
a resultant resistance of 15 ohms, the same as obtained before.

The reciprocal formula works for two or more resistors in
parallel, and is stated as follows:

AR W

R, R 2. 'R-;—F...

where,
R, is the total resistance in ohms,
R, R, and K, are the parallel resistances in ohms.
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Figure 4-4. Finding the total resist-

R2 340
T
ance of parallel resistors by the re- T mlm i H}}-&n

ciprocal formula.
et
Hence, 2, 4, and 6-ohm resistances connected in parallel
(Figure 4-4) would be calculated like this:

1 r B L/ |
E-2Ti%%

1 6+3+2

% 12

1 11

n 12

R,z-}—%ﬂr 1.09 ohms

In some problems the total resistance and one of the indi-
vidual resistance values may be given, and we must solve for
the other. As illustrated in Figure 4-5, the total resistance of

Figure 4-5. Finding the value of an & .gm RI < UNKNOWN
unknown resistance when the total ! E?Efﬂﬁ
and the other resistonce volues are ?
known. R2ARY
TR

two units connected in parallel iz 8 ohms, One of the resist-
ances 18 24 ohms. What i1s the other? First we must transpose
pur basic formula, assuming R, to be the unknown:

R, R,
2+ B,
R; B+ R By=081; R,

R,Bi—R, R, =—R. R,
Rr [rRr = R:.-;' — _‘Rﬂ R.!

R, =-

R e ""“.Iri?-..ffr __R-_JE(_
 Ry—R: R,—R,
24x8_192_ .,

R,= 54— 8 1E~1_uhms
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The FCC examinations very often contain a problem like
this: Draw a schematic diagram showing how to connect three
equal resistors to give a total which is 1% times the resistance
of one. This would be drawn as shown in Figure 4-6. Substitute
a value for R and see if it works out. Once you understand the
principles of series and parallel resistances, many such prob-

R
Rl
s Figure 4-6. A circuit in which all re-
B sistors are of equal value and the to-
§ tal resistance is 1%2 times the volue
of a single resistor.
0 Ry O

lems can be solved by simple reasoning. In this case, you know
that placing all three resistors in series would result in a total
resistance three times the value of one. Placing them in par-
allel would result in a total resistance less than the value of
any one. Obviously, then, at least one of the three equal re-
sistors must be series-connected ; the additional one-half value
then means the two remaining resistors are in parallel.

CONDUCTANCE

Conductance is the ability of a material to carry current,
It can be thought of as being inversely proportional to re-
sistance. As resistance decreases, more current can be carried.
We say the conductance is increased. If resistance were in-
creased, the conductance would decrease. The basic unit of
conductance is the mho, which is the conductance that exists
with a resistance of 1 ohm. (Mho is ohm spelled backward!)
Conductance may be calculated by:

i |
=
where,

( iz the conductance in mhos,

R is the resistance in ohms,

A e¢ireuit having a resistance of 20 ochms has a conductance
of 0.05 mho:
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o [
G = =90 .05 mho
With the conductance given, the resistance can be found by:
1
=

A circuit having a conductance of 2 mhos has a resistance
of 0.5 ohm:
LRl
=N 0.5 ohm

Notice that whenever the resistance is larger than 1 ohm,
the conductance will be smaller than 1 mho. Conversely, if
the resistance is smaller than 1 ohm, the conductance will be
larger than 1 mho.

R =

G =



CHAPTER 5

AC AND AC CIRCUITS

Most commercial electricity is AC (alternating current).
So are the signals which occur most often in electronics.
Alternating current is so named because it alternately flows
in first one direction, and then reverses and flows in the other
direction. This is caused by the voltage alternating between a
positive and a negative polarity at a definite rate. The basic
AC waveform is the sine wave shown in Figure 5-1. All other
AC waveforms are composed of sine waves of various fre-
quencies and amplitudes added together. The term sine wave
was adopted because in the generation of a complete cyele, the

L.OT

0.7
0.8t

Figure 5-1. One cycle of a sine

waove, showing the relationship

between the various values of o
current or voltoge.

L s .
L R .

K —
:-—AHEFerm .-..-. ALTERNAT 0N -1|
' 1 CYOLE————

-
i

instantaneous amplitude at any time is equal to the maximum
amplitude multiplied by the sine of the angle through which
the generating conductor has moved during that period. By
plotting a graph of the sine values at a number of different
angles, a sine wave is formed. The complete sine wave is a
evele, each half being called an alternation,

The amplitude of a sine wave varies continuously, the mag-
nitude at any instant of time being known as the instantane-
ous value., The peak value is the maximum reached at any
point during a complete cycle. With a sine wave, this maxi-

50

mum is reached at 90° and again at 270°, each having oppo-
site polarity from the other. The mathematical relationship
between the peak and the instantaneous values of voltage can

"'_'., % E. }imné‘i

where, £ ’
e is the insfan 'neuua amplitude in volts,
E, is the imum amplitude in wvolts,

L:

@ is the an
caleulated.

Several examples are given, and these can be verified by
reference to Figure 5-1. Using a maximum value of 100 volts:

le at which instantaneous voltage is being

At 0% e=100xsgin 0°=100x0 = 0 wolts
At30%, e=100 x 8in30° =100 x 0.5 = B0 wolts
At 456%, e = 100 X 8in 45° = 100 x 0.707 = T0.7T volts
At 607, e = 100 x 8in 60° = 100 x 0.866 = B86.6 volts
At 90° e= 100 % 8in 90° = 100 % 1 = 100 wolts

These values are repeated during the remainder of the first
alternation, but in reverse order. Then the same values occur
during the second alternation, but with opposite polarity.
The same relationship exists for current, as given by the next
formula:

i=1, xsinf
where,

i is the instantaneous current in amperes,

I,,._ is the maximum current in amperes,

A is %‘he angle at which instantaneous current is being cal-
culated.

Because of the nature of inductance and capacitance, there
may often be a phase difference between the voltage and the
current in AC circuits. That is, the voltage and current maxi-
mums may not occur at the same instant, as they do in com-
pletely resistive circuits. A large number of the caleulations
found in later chapters are concerned with the problems of
phase and changing values of AC waveforms.

AVERAGE VALUES

In some calculations we are interested in the average value
of an AC waveform. Actually, the average amplitude of a
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complete cycle is zero, because the amplitudes in the positive
direction equal those in the negative direction. For a single
alternation, however, the average amplitude is equal to 0.637
of the peak (maximum). This could be shown by adding a
large number of instantaneous values, equally spaced across
the half-cvele, and then dividing by the number of values used.
As a formula:

E,.,=0.637T x E,,
where,

E .. is the average amplitude of one alternation in volts,
E, i3 the maximum amplitude in volts.

Average current of one alternation can be obtained in the
same way—by multiplying the maximum by 0.637. It should
be stressed that this relationship holds true only for sine
waves., Any other waveform will have a different average
value. One example is a square wave; here the average and
peak values are the same.

EFFECTIVE VALUES

With DC, the amplitudes of the voltage and current remain
constant, and a certain current (say, 1 ampere) gives a cer-
tain heating effect. An AC wave with a peak current of 1 am-
pere, will not produce as much heating as DC, because in AC
the amplitude is less than the peak most of the time. The ef-
fective value of AC is the equivalent DC value which produces
the same heating effect. The effective value can be calculated
by taking the square root of the average of all instantaneous
values squared. Average is also referred to as mean, so the
effective value is also called the root-mean-square (rms) value.
The rms value for a sine wave can be found by :

E. . =0707T % F.
where,
E... is the rms or effective voltage,
E, is the maximum amplitude in volts.

Effective current is found in the same way—by multiplving
the maximum current by 0.707. Again it should be stressed
that this relationship holds true for a gine wave only, not for
any other waveshape.

52

So for sine-wave calculations we have three different volt-
age or current values which may be of interest to us—peak,
average, and rms. In some instances the peak-to-peak voltage
also may be indicated. Numerieally, this is the over-all change
of voltage or current from maximum to maximum,—it is equal
to twice the peak value.

Table 5-1 gives the relationships between the various values,
which can be used in converting from one to another.

Table 5-1. Sine Wave Value Conversions

TO OBTAIN

GIVEN Avg = Rms = Pk = PtoP =

Peak 0.637 X Pk 0.707 X Pk 2 X Pk

Peak to Peak | 0.3185 X PtoP | 03535 X PioP | 0.5 X Pkto Pk

Rms 0.9 ¥ Ems 1.47 ¥ Rms 2,82 ¥ Bmas

Average 111 X Avg 1.57 X Avg | 3.14 X Avg

AC CIRCUITS

With purely resistive circuits the use of alternating current
poses problems no different from those when DC is used. All
the Ohm’s-law relationships hold, just as for DC, as well as
the various formulas for determining power. However, in
many cases, the R in the various formulas must be replaced
by X, X, or impedance (Z), the latter representing the com-
bined resistance and reactance in a circuit. In order to make
the various values comparable to DC, the rms values of the
AC is expressed unless otherwise indicated. Thus if we say
the line voltage is 115, we are implying the rms value. Simi-
larly, AC power of 100 watts is understood to have been calcu-
lated from the rms values of voltage and current.

Whenever inductance or capacitance, or both, are used in
an AC circuit the relationships assumed for DC are not quite
true. The reason is the phase difference between current and
voltage. For purely resistive AC circuits, even this causes no
problem since the current and voltage are in phase (See Figure
9-2A). In an inductance the current lags the voltage by 90°
(Figure 5-2B) ; for capacitance the current leads the voltage
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(C) Purely capacitive circuit.
Figure 5-2. Phase relationship between current and voltage.

by 90° (Figure 5-2C). This can be remembered by thinking of
the basic properties of L and C. Since an inductor opposes a
change of current, the current does not reach maximum until
after the voltage—hence the lagging action of the current.
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Since a capacitor opposes a change of voltage, the current
maximum precedes the voltage—hence the leading current in
a capacitive circuit.

When resistance and reactance are both contained in a ecir-
euit, the phase angle is between 0° and 90°. The exact angle
depends on the relative values of resistance and reactance.
Because of this phase difference, resistance and reactance
cannot be added directly in a series or parallel circuit. Rather
we must add these quantities vectorially (at different angles)
and use the results in our Ohm’s-law calculations.

SERIES CIRCUITS

In any series cireuit the current is the same in any part of
the circuit—whether AC or DC, resistive or reactive. This
fact gives us our starting point for calculations involving the

R ! R ic
O ——— T —o O ——o

(A) Resistance and (B) Resistance and
inductive reactance. capacilive reactance.

Figure 5-3. Reactive circuits.

RL and R(C circuits of Figure 5-3. For absolute values of eir-
cuit characteristics, both circuits are treated alike. The only
difference is that in Figure 5-3A the current lags the applied
voltage by the phase angle 6. For Figure 5-3B the current leads
the voltage. So the formulas to be given apply equally to
either ecircuit, except that we will express the formulas in
terms of the inductive circuit of Figure 5-3A. To apply them
for the capacitive circuit of Figure 5-3B, simply insert X, into
the formulas in place of X, each time it appears:

Z=\EET X =ET%.
E,=/E:2+FE:2=1x2Z
E.=I%R
E.=1xX;

1 Xy _ E,
# = are tan R —mtanE
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where,

Z is the impedance in ohms,

R is the resistance in ohms,

X, is the inductive reactance in ohms,

E, is the applied voltage in wvolts,

I is the circuit current in amperes,

E. is the voltage across the resistance in wvolts,
E; is the voltage across the inductance in volts,
# is the phase angle in degrees.

AK{ ﬁq
R B
(A) Impedance triangle. (B) Vaoltage triangle,

Figure 5-4. Triongles used for solving certain A C problems.

These formulas can be referred to the impedance and volt-
age triangles given in Figures 5-4A and B, which apply only
to series circuits. Notice that X; and R are drawn 90° out of
phase, with # representing the angle between the applied
voltage E, and the current I. Impedance Z is the hypotenuse
of the triangle. The current is not labeled, but can be assumed
to be on the same line with R and F,. Also the voltages across
R and X; are drawn 90° out of phase, with E, being the
hypotenuse of the triangle. Impedance is always larger than
either R or X,, and applied voltage is always larger than
either E, or E,. Let's try some problems, to see how these
calculations would be used.

In an RL series circuit, R is 4 ohms, X; is 3 ohms, and the
applied voltage is 10 volts. Find the impedance, current, phase
angle, F,, and E,.

Z=\/REFX2=\/FF T3 = /25 =5 ohms
by Ohm's law,
N e

= E=?=2amp¢rea

H=amtan%=arctan%=3ﬁ.9"
EF.=1IXR=2x4=8volts
E,=1%X;=2»x8=86volts

As a check, let's solve for F,, using E, and F,:
E,=+EZ+E:Z=+/8+62=/100= 10 volts
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Bear in mind that what we have worked out for the RL
circuit also holds for an RC circuit with the same wvalues
(except that X, is 3 ohms, instead of X,). Even the phase
angle is the same, except the current is lagging by 36.9° in
the RL circuit, but leading by the same angle for the RC
network.

All these formulas can be transposed to solve specific prob-
lems, a few of which are given next:

1. In a series RC circuit, R is 5 ohms and the impedance
18 9 ohms. Solve for X, :

Z=+/R*+ X7
Z?=R*+ X}
Xz=g2—-R?

X.=\/Z:=—R*=+/9"— 5= /b6 = 7.48 ohms

2. Applied voltage is 36 and E, is 20 volts. Solve for EF; in
this series RL circuit:

E,=\Ef+E;
EZ=Ej?+ E?
E2=E2—E?

E,=\E:?—E?=,/36— 20 = /896 = 29.93 volts
3. In a series REC circuit, the phase angle is 30° and X, is
10 ohms. What is the resistance?

@ = arc tan if
taking the tangent of both sides:
tan 8= xif
tan 30° = ]k_ﬂ
D774 = %1
= 7o = 17.32 ohms

S0 far we have considered RL and RC series circuits, but

not those containing R, L, and C, as shown in Figure 5-5.
Actually the addition of the extra component does not make
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too much difference in our caleulations, except that the effec-
tive reactance in the circuit is the difference between X, and
X.. Using this, the impedance of the circuit is:

Z=+R*+ (X, —X.)?
Or, if X. is larger than X, , then:

Z=~R*+ (X.— X,)2

Figure 5-5. Circuit containing series-
connected resistance, inductance,
and capacitance.

[ 5]

R L
o AR 1A

-
b

Similarly, the other formulas are based on the difference
between the two reactances:

EI‘I = ."-,/"'_-E'Ir:I + {EL T -E'T-t-}ﬂ|

And:
= d

@ = arc tan XLT

When X, is larger than X, the reactive parts of the formulas
are interchanged:

Suppose that in a series RCL circuit, B = 50, X, = B0, and
X, = 60. What is the impedance?

i= V’k_a + {fx. = f}z
= v/b*+ (B — 6)2
= /25 + 4 = 5.39 ohms
To find the phase angle,

e XL _-I:
@ = arc t.an—-R—

= arc tan %— =21.8°

The inductive reactance is larger than the capacitive reac-

tance. Hence the total circuit acts inductively and the current
lags the applied voltage.

If 20 volts is applied to the above circuit the current will be:
(= E
B
_Sugh; .
T e 3.71 amperes
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E.=IxR

=3.T1 X 5 = 18.55 volts
EL = I )4 XL

= 3.T1 x 8 = 29.68 volts
E.=Ix X,

= 3.71 x 6 = 22.26 volts

Notice that E, and E, are both larger than the applied voltage.
But since they are 180° out of phase, the total reactive voltage
is 29.68 minus 22.26, or 7.42 volts. By adding E, of 18.565 volts
and E, of 7.42 volts vectorially, we should obtain the applied
voltage:

E.=\EXZ+E}?
E,=+/18.55% + 7.42*

= 1/344.1 + 55.06

= 1/399.16 = 19.98 volts

There is a difference of 0.02 volt because various calcu-
lations in the total problem have been rounded off.

If you must solve a series RCL circuit for X; or X., there
may be two possible answers. As an example, suppose the
impedance of a series circuit is 10 ohms, resistance is 8 ohms,
and capacitive reactance is 10 ohms. Solve for inductive re-
actance. In the solution we will use the symbol X to indicate
the difference between the reactances:

X=\Z*-R*= 10— 8
=1/100 — 64 = /36 =6

The total reactance is 6 ohms, and as X, is 10 ohms, then
X, could be either 4 ohms or 16 ohms, producing a capacitive
circuit in the first example and an inductive circuit in the
second. In some problems, one value of reactance may turn
out to be negative. This is an impossible situation, since only
the positive value of reactance can produce a valid result.
To illustrate, suppose that in the previous problem X, = 4
ohms. Then for a reactance difference of 6 ohms, X; must be
either —2 ohms or 10 ohms, the first answer of which is im-
possible to attain. So only the 10-ohm answer would be valid.
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PARALLEL CIRCUITS

When E, L, and C are connected in parallel as in Figure 5-6,
the voltages across all three components are the same, just as
in any other parallel arrangement. The currents in the differ-
ent branches are not necessarily the same, however, nor at the

Iz
Figure 5-6. Circuit containing paral-
in gm lel-connected resistance, inductance,
Tm and capacitance.
o

same phase angle, Current in each branch can be determined
by Ohm’s law—dividing the resistance, or reactance, into the
applied voltage. Then the currents can be added vectorially
to caleulate the total current /,, in Figure 5-6, The impedance
of a parallel RLC circuit cannot be calculated by the formula
Z=+vVR+ (X.— X,)%, as was done for series circuits, but
must be calculated by other means.

Several formulas ean be used to caleulate impedanee of this

circuit directly, but they are lengthy and often difficult to
remember. As an example:

L RX,X,
VX X2+ (RX, — EX,)?

Phase angle can be calculated by:

RX.— RX,
), 5

@ = arc tan

Here is a method of calculating impedance which can be
remembered much more easily: Find the total circuit eurrent;
then divide it into the voltage. Using the R and X values given
in Figure 5-6, let’s calculate the impedance by the current
method. Applied voltage is not given in the problem; so we
can assume one in order to find the currents. The impedance
will come out the same no matter what voltage is assumed.
For this problem, 12 volts is a good choice because B, X, , and

X, all divide into it a whole number of times, Then the cur-
rents are as follows:

o
Ir-ﬁ——g—--'iampa
_E _12 _
L.—I,:-T—Samps
E 12
f”___X;,_—ﬁ = 2 amps

Since I. and I; are 180° out of phase with each other, the
total reactive current is 3 minus 2, or 1 ampere. This is the
current I, in Figure 5-6. Since this reactive current is 90° out
of phase with the resistive current (4 amps), they must be
added as shown:

Li=vVI2+I2=~v4#+ 18

— /17 = 4.12 amps
Impedance is then determined by Ohm's law:

E
i
ebdidl11
=413 = 2.91 ohms
Suppose we use 24 volts as the applied voltage? We obtain

the same result:
i
2= T

24

This is classed as a capacitive circuit because capacitive cur-
rent is larger than the current through the inductance.

.
o

Figure 5-7. Resistance and inductance wns i
in parallel. 1

i

If the parallel cireunit contains only one reactance, the prob-
lem is worked the same way but is simplified. An example is
the eircuit in Figure 5-7, where R is 50 ohms and X, is 100
ohms. If we assume an applied voltage of 100, then:
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N
1. i
100
50 2 amps
And:
_E
Ip= X,
. T
T
Then:
L=VETT
=+/6=2.24 amps
And:
K
s
100
) 44.6 ohms

Note that these parallel circuits cannot be calculated like
resistors in parallel because of the phase differences involved.
Neither can we add the oppositions vectorially as we did for
series circuits, although we ean add the currents by that
method. For series circuits, the phase angle was determined
by the relative values of reactance and resistance. For parallel

circuits we use the reactive and resistive currents. For ex-
ample, in Figure 5-6:

8= arc tani—’

= arc tan '-}= 14°
For Figure 5-7:

# = arc tan r

= arc tan :?1— = 26.6°

AC POWER

As indicated at the beginning of this chapter, AC values
are normally stated in rms values unless otherwise indicated.
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Power, which is calculated from rms values, is usually re-
ferred to as average power. When AC is applied across a re-
sistance only, the voltage and current are in phase. So F x I,
I*’R, or E*/R can all be used to caleculate power in the circuit.
In this reapect AC circuits are very similar to DC as long as
rms values are used. This calculated power gives the amount
dissipated by the purely resistive circuit.

However, when an AC circuit also contains reactance—
either inductive or capacitive, or both—the power calculations
will be altered. Circuit resistance dissipates power because in
a resistance the voltage and current are in phase. Circuit re-
actance returns power to the line because of the 90° phase
difference between voltage and current. This results in cer-
tain relations which may be confusing. In a series cireuit com-
posed of resistance and reactance, multiplying the applied
voltage by the circuit current gives a certain result called
apparent power (P,). This value is greater than the power
dissipated by the resistor, called true power (P,). To distin-
guish it from true power, the apparent power is usually ex-
pressed in volt-amperes, which are numerically the same as
watts. The ratio of true power to apparent power is called
the power factor (PF):

where,

PF is the power factor (always between 0 and 1),
P, is the true power in watts,
P, is the apparent power in volt-amperes.

Power factor of a series circuit can also be expressed in
terms of ecircuit opposition and phase angle, as shown next:

PFZE-‘—'EI]EE

where,

PF is the power factor,

R is the circuit resistance in ohms,
Z is the circuit impedance in ochms,
# is the phase angle in degrees,

These relationships are the same because in the standard
impedance triangle (see Figure 5-4A) the cosine of the phase
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angle is equal to R divided by Z. Let's solve for the power
relationships in the series circuit of Figure 5-8:

Z=\/R*+ (X;,— X): =3+ (6-2)°

= /2b = 5 ohms
E
i
_ 20 _
e 4 amps
Bo=Ex1
= 20 % 4 = B0 volt amperes
Pir=IP%R
= 4* x 3 = 48 watts
_dh
PP = P
48 3
=80 5 Y
We can check this result with the other formulas:
R
PF = 7
3
=g = 0.6
X
g = arc tan B
= arec tan 1.88 = 53.1°
PF =cos @

= ¢08 53.1° = 0.6004

This latter result is extremely close, considering that we
determined @ only to the nearest tenth of a degree. For series
RL or RC circuits, the calculations are the same except that
we need to consider only one reactance—the total to be used.

32 Zi1) it
W] eut B Rasiatense; Midwchanon;
ond capacitance in series.
) 2V o

Figure 5-8 is an inductive circuit because X, is larger than X..
Current lags the applied voltage, so the power factor can also
be termed “a lagging power factor.” In a few instances, power
factor may be expressed as a percentage, in which case 0.6
would be the same as 60%. Power factor of a purely resistive
circuit is 1; for a purely reactive circuit, it is 0.

For parallel circuits the idea is the same except that the
methods of calculation vary slightly. The P,/P, relationship
still holds, as well as cosine #. But for parallel circuits the
angle is figured from the current, which is inversely propor-
tional to impedance. Therefore, instead of RE/Z, power factor
in parallel circuits is ecaleulated by Z divided by R. Let's use
Figure 5-6 and illustrates power factor for parallel circuits,
assuming an applied voltage of 12 volts. From our previous
calculations, /, = 4.12 amps and Z = 2.91 ohms.

Po=1 I,
= 12 x 4.12 = 49.44 volt amperes
And:
Po=KExl
=12 x 4 = 48 watts
Therefore:
P,
P = P_n
o A8 .
=goag -~ ¥
Checking:
pp=2
R
291
=<5 = 0.97

Previously it was found that the phase angle for this circuit
is 14°, So:

PF =cos @
= ¢os 14° = 0.9703
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CHAPTER &

FREQUENCY

As defined in the preceding chapter, a cycle of alternating
current consists of two successive alternations, one positive
and one negative. We can express the duration as the number
of cycles which ocecur in one second. This is called the fre-
guency of the AC wave and it is always expressed as a certain
value in hertz (cycles per second). Commercial AC power is
usually supplied at 60 hertz, which means that sixty cycles
occur during each second, each cycle lasting 1,th of a second.

Normally, DC is considered as having a frequency of zero
hertz. On the other hand, various types of radiation extend
into the millions-of-hertz region or beyvond. Names are given
to some frequency ranges—for example the audio range, which
extends up to about 20,000 hertz ; or the ultrasonic range, start-
ing at about that point and extending to several hundred kilo-
hertz. Broadcast and communications stations are assigned
frequencies beginning at 10 kilohertz and extending up to
30,000 megahertz, The Federal Communications Commission
(FCC) has established the following frequency-range desig-
nations:

Very low frequencies (VLF') —Below 30 kHz.

Low frequencies (LF) —30-300 kHz.

Medium frequencies (MF') —a00-3,000 kHz.

High frequencies (HF') —3,000-30,000 kHz.
Very high frequencies (VHF') —30,000 kHz-300 MHz.
Ultra high frequencies (UHF) —300-3,000 MHz.
Super high frequencies (SHF) —3,000-30,000 MHz,

Extremely high frequencies (EHF)—30,000-300,000 MHz.

WAVELENGTH

wadio waves are assumed to travel through space at ap-
proximately 186,000 miles (300 million meters, or 984 million
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feet) per second. Therefore, each cycle of radio energy occu-
pies a certain distance in space, called wavelength. It is usu-
ally expressed in meters or feet, or for the shorter wave-
lengths, in centimeters or inches. Since the wveloeity is the
same for all frequencies, this means the wavelength of a given
signal depends only on the frequency. The general formula
which follows can be used to solve for wavelength, the symbol
of which is the Greek letter lambda (i) :

A=2

I

where,

A is the wavelength,
v is the velocity of propagation,
f is the signal frequency.

In using this formula, we express frequency in basic units
of hertz. Thus, both wavelength and velocity will be in the
same units of distance. In the next formula, wavelength is
listed in meters and velocity in meters per second.:

300,000,000
A= —
Hz
As an example, a wavelength at 1,600 kHz is:
_ 300,000,000
A 1500,000 — 200 meters

To shorten the formulas, the next two forms may be used,
especially for the higher frequencies:
300,000 _ 300
R ™ : I | s < T
Solving the previous problem with these formulas produces
the same answer, 200 meters. If we wanted the answer ex-
pressed in feet, we could multiply the number of meters by
3.28 (the number of feet in a meter). For the previous prob-
lem the wavelength would be 200 times 3.28, or 656 feet.
We could solve for feet directly by using:

_ 984,000,000 _ 984,000,000

. Hz 1,500,000

= 606 feet

Two other versions of this formula may be used to facilitate
caleulations:
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984,000 _ 984 _ foot

kHz MHz
If wavelength (A) is given in a problem, then the original
formula ean be transposed, giving the results shown next:

A=

ir - =
A= 7 Fans v = Af
Since velocity is a constant, it is of no concern in ordinary
problems. Let's solve a problem, finding the frequency, if the
wavelength of a signal is 40 meters:
300,000,000

i bkt St b S
fr= = 10 7,600,000 Hz or 7.5 MHz

These formulas show that frequeney and wavelength are
inversely proportional to each other. In other words, if the
frequency is doubled, the wavelength is halved. This inverse
relationship can be shown from this formula:

At _ Ty
Ae T
The wavelength at a certain frequency is 60 meters. What
will the wavelength be if the frequency is tripled?

60_3
e |
3A, = 60

As = 20 meters

This formula shows that the inverse proportion holds frue—
gince the frequency was tripled, the wavelength was reduced
to one third its former value.

In some electronics applications we are interested in frac-
tions of wavelengths, such as in finding the length of a half-
wave antenna. The formulas already given can be used to find
a full wavelength, and then multiplied by the proper fraction
to give us the result,

TIME

As previously explained, each cycle occurs in a certain in-
terval, called the period. It can be found from the following:
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1
t==
f

where,

¢ 18 the duration of one cycle in seconds,
f is the frequeney in hertz.

What is the period of a 400-Hz signal ?

L
t= 7300 0.0025 second
For higher frequencies we can use the same formula, stating
frequency in megahertz and time in microseconds. For ex-
ample, what is the period of an 8,000-kHz wave?
i = 3= i 0.125 microsecond
f 8
If the period of a signal is 0.5 microsecond, what is the
wavelength in meters?
This can be solved by two separate problems. First the fre-
quency could be found, and then the wavelength. Or it could
be solved directly by:

A=1v X t=2300 x 0.5 = 150 meters

In some AC formulas, (such as those for reactance) the ex-
pression 2/ often appears. This quantity is called angular
veloeity and is sometimes indicated by the symbol o (omega).
There are 2- radians in each 360°, or a complete cycle. Multi-
plying by the number of hertz gives us the number of radians
covered during each second of time.

What is the angular velocity of a 2,000-Hz signal?

Angular velocity = 2»f = 6.28 x 2,000 = 1,256 radians per
second.
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CHAPTER 7

INDUCTANCE

Inductance opposes any change of current through it. This
opposition is present because the coil develops a counterelec-
tromotive force with a polarity opposite that of the applied
voltage. The basic unit of inductance is the henry, which was
defined in Chapter 5.

Inductance of an individual coil depends on a number of
eoil characteristics—primarily the number of turns, the physi-
cal dimensions, and the permeability of the core. Permeability
(u) is a measure of the ease with which a material can carry
magnetic lines of force. Air has a permeability of 1. Inductance
varies directly with the permeability and directly as the square
of the number of turns. These properties are shown mathe-
matically by the next two formulas, in which the subseript 1
indicates the initial condition and subsecript 2 the same condi-
tion after a change in one of the coil characteristics:

Li _
L! Mp
L:_N:Z
L, N>

where,

L is the inductance of L; and L, (both in the same measure-
ment units),

u is the permeability of the core,

N is the number of turns in the coil.

A coil having an inductance of 2 henrys has its core replaced
by one having a permeability three times as great. What is
the new inductance?

2 _1
Ly 8
L. = 6 henrys

indicating that inductance is directly proportional to the per-
meability of the core.
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A 400-turn coil has an inductanee of 3 henrys. If the num-
ber of turns is increased to 600, what is the new inductance?

3 _ 400
L, 6002
8 _ 2\
7.~ (3)
8 _4
Ly 9
4_L1 = 27
L] == 24‘1
= 6.70 henrys

INDUCTIVE REACTANCE

Inductive reactance (X,) is the opposition offered by the
coil to the flow of AC. It can be determined by this formula:

X, = 2xfL

where,

X, is the inductive reactance in ohms,
f is the frequency in hertz,

L is the inductance in henrys,

2r i8 equal to 6.28 (a constant).

Inductive reactance varies directly with frequency and in-

ductance. If either or both are increased, the reactance will
increase and vice versa,

What is the inductive reactance of a 3-henry coil operating
at 600 kHz?

X, =2xfL
X, =628x6x10°Px 3
= 113 % 10° ohms

We can use the basic equation and solve for either induct-
ance or frequency, as shown next:

X;_zzr_fL
_ Xi_
I=5L
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or.

. ¢
b=a

At 50 kHz a coil has 500 ohms of inductive reactance. What
is the inductance?

X 500 1
2-f  6.28 x 50,000 628

We could solve for frequency in the same manner, by using
the formula already given. As long as X is directly propor-
tional we can use the next two relationships whenever one of
the variables remains constant. With inductance constant:

Iy=

= 0.0016 henry

A _T1

Xi: fs
With frequency constant:

Koy Ly

X Ly

These formulas can be used to solve the following types of
problems:

1. An inductor has a reactance of 400 ohms at 100 kHz.
What is its reactance at 125 kHz?

X _Jf1
X1 [e
400 _ 100
Xzs 125

100 X, = 50,000
Xy = 500 ohms

2. At a given frequency a coil has a reactance of 7,600 ochms,
What will the reactance be if the frequency is quadrupled?

Ko _ 14
Xee [
7,500 1
5. 4

Xy=4 x 7,500
X = 30,000 ohms
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INDUCTOR COMBINATIONS

When series- or parallel-connected coils are physically close
together, the lines of force from each pass through the other,
changing the total amount of inductance., This interaction is
ecalled mufual inductance and is measured in henrys—just like
the self-inductance of a single coil. So, in considering total
inductance of a group of coils, we must take into aecount
whether or not there is mutual coupling between them. With
no coupling, a group of series-connected c¢oils produces a total
inductance equal to the sum of the individual coils.

Ly=Qy 4 Lt Ly+ . &

For example, if three inductances, 2, 3, and 4 henrys, are
series-connected (Figure 7-1A), the total inductance will be:

L;=2+ 3+ 4=09henrys

With mutual coupling, the total inductance of two series-
connected coils is:

Li=L;+ L, = 2M
where,

L; is the total inductance,

L, and L, are the series inductances,

M is the mutual inductance.

If the coils are connected series-aiding (Figure 7-1B), the
2M term is positive and adds to the total inductance. If the
eoils are wound series-opposing (Figure 7-1C), there is at least
a partial cancellation of effective inductance and the 2M term
is negative, decreasing the total. When the coefficient of cou-
pling is known, the mutual inductance can be determined from
the following:

— W .—rﬂw-
L2
i L L2 i} L2
LY e 2H [E] alH
LyeLi i3 Ly=Ll +L2+2M Ly=Ll+L2-2M
LyoH o— - o— i —
(A) No coupling. (B) Series-aiding. (C) Series-opposing.

Figure 7-1. Circuits of series-connected inductances.
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M = K~\/L,L,
where,

M is the mutual inductance,

K is the coefficient of coupling,

L, and L, are the series-connected inductors.

The coefficient of coupling (K) is a decimal indicating the
percentage of the lines of forece passing through the other coil.
It is always equal to 1 or less, thus a K of 80% would be the
same as 0.8, The decimal form will be used in our caleulations.

E=T5%

eI
LpsLL o224

(A) Series-aiding. (B) Series-opposing.

Figure 7-2. Two inductances connected in series to illustrate the effect of
mutual inductance on the tetal circuit inductance.

Suppose a 2-henry and an 8-henry coil are connected series-
aiding with a coefficient of coupling of 75%. (See Figure
7-2A). We can find the mutual induectance by :

M = K~\/L,L,
=0.75V2x8
= 0.75 % 4
= 3 henrys

Li=L;+ L; + 2M
—=248+6
= 16 henrys

[f they are connected in series-opposition (Figure T-2B), the
mutual inductance will remain the same. But the total induct-

ance will now be:
Li=L;+L;,—2M
=2+8—6
= 4 henrys
Where the coupling coefficient is unknown, mutual inductance
can be calculated by:
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Lu — L'h

M= i

where,

M is the mutual inductance,
L. is the total inductance with fields aiding,
L, is the total inductance with fields opposing.

For this, L, and L, can be measured by suitable equipment,
and then M calculated. Reworking the previous problem to
find M, L, = 16 henrys and L; = 4 henrys. Then:

= 3 henrys
The coefficient of coupling can then be solved by:

Inductive reactances in series add directly, just like re-
sistors.

XL: e x]'...: " E xf,: + XLJ

where,

X;: is the total inductive reactance in ohms,
X Xis and X, are the individual reactances in ohms.

Of course if there were mutual coupling, the total reactance
would be either larger or smaller, depending on how the coils
were connected. However, once we know the total inductance,
we can calculate the total reactance by the formula X, = 2=fL.

Inductors can be connected in parallel, but this is seldom
done in actual practice, primarily because the coils may be
relatively expensive and paralleling them merely decreases
the total inductance. So from a practical standpoint it would
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be much better to use a single coil having a smaller value,

Connecting coils in parallel has the same effect on total re-
actance as on total inductance—the total is reduced to a value
smaller than the smallest individual reactance or inductance.

ENERGY AND Q

The energy stored in a coil can be determined from this
formula:

where,

W is the energy, in joules (watt-seconds),
L 1s the inductance in henrys,
I is the current in amperes.

Thus, if 3 amperes flow through an 8-henry coil, the energy
will be:

-T2
T

= 36 joules

We can also use the basie formula and solve for L or I

LI*
w = T
2W = LI?
_2W
= -
1= [2W
L

The @ of a coil is the ratio of the energy stored to that
dissipated; it can be stated as:

X,

Q=7

Té

where,

Q is the figure of merit of the coil (no unit),
X; is the inductive reactance in ohms,
R is the effective resistance in ohms.

A coil which has an X; of 200 ohms and an effective resist-
ance of 40 ohms has a @ of:

The R in the formula includes the ohmic or DC resistance
of the coil, as well as any AC resistance, such as skin effect,
which may be present in the circuit. We shall see in the next
chapter that @ indicates the charge on a capacitor. Hence, the
two uses should not be confused.

TIME CONSTANT

Recall that inductance opposes any change of current
through it. Therefore, when voltage is applied, the current
requires a certain amount of time to reach a maximum. This
time depends on the time constant of the circuit. This time
constant is found by dividing the inductance by the series
resistance.

where,

TC is the time constant in seconds,
L is the inductance in henrys,
R is the resistance in ohms.

A time constant is defined as the time required for the cur-
rent to reach 63.27% of its maximum value. During the next
time constant, the current increases to 63.2% of the differ-
ence remaining (36.89:), or to 86.5%. During the third time
eonstant, the current again increases to 63.2% of the remain-
der (13.5%). So, at the end of the third time constant the
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{A) Current tnerease. (B) Current decrease.

Figure 7-3. Rate of change of current through an inductance and resistance
in series.

current is 95% of maximum. After four and five time con-
stants, the percentages are 98.2 and 99.3, respectively. For
practical purposes the current is assumed to reach its maxi-
mum value in five time constants. Figure 7-3A shows the rate

of current increase from the time voltage is applied, until
the maximum value has been reached. The decrease of coil
current is at the same nonlinear rate and is shown in Figure
7-3B. After one time constant of discharge, the current has
decreased by 63.2%, or to 36.89 of its maximum value, At the
end of each of the next four time constants, the current is
13.5%, 5%, 1.8%, and 0.7%, respectively. A long time con-
stant ecan therefore be obtained by making the inductance
large or the resistance small, or both. The time constant varies
directly with inductance—the delay of current change being
directly proportional to the time constant.

Suppose & 2-henry coil in series with a 1,000-ohm resistor
i1s connected across 200 volts DC. The maximum current will
be 200 = 1,000, or 0.2 ampere, because at the end of five time
constants the current will be limited only by the resistance
in the circuit. The time constant will be:

i%: ~i,—ﬂ2ﬁ= 0.002 second

At 1 time constant, I = 63.2% of 0.2 = 0.1264 ampere
At 2 time constants, I = 86.56% of 0.2 = 0.1730 ampere
At 3 time constants, I = 95% of 0.2 = 0.19 ampere
At 4 time constants, I = 98.2% of 0.2 = 0.1964 ampere
At 5 time constants, I = 99.3% of 0.2 = 0.1986 ampere

TC =
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TRANSFORMERS

Turns and Impedance

In a transformer, the voltage of the secondary can be cal-
culated from the formula:

E.,=E, x N
where,

E, is the secondary voltage,

E, is the primary voltage,

N is the turns ratio (no unit).

The turns ratio (N) in this formula is the number of turns
on the secondary windings, divided by the number on the pri-
mary. In a step-up transformer, N is greater than 1 and the
secondary voltage is higher than the primary voltage. In a
step-down transformer, N is less than 1 and the secondary
voltage is smaller.

A transformer has 200 turns on the primary and 800 on the
secondary. If 115 volts is applied to the primary, what is the
secondary voltage?

800
N=2500
=4
E.=E, %N
E,=116x 4
= 460 volts

In any transformer, the impedance ratio is equal to the
square of the turns ratio:

Z=N*

where,
Z is the impedance ratio,
N is the turns ratio.

Conversely the turns ratio is the square root of the impedance
ratio (N =/Z).

A step-down transformer has a 5-to-1 turns ratio. If the im-
pedance of the primary is 600 chms, what is the secondary

impedance?
Z = N*
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Since:
N=5
Then:
Z =5
=GN

This means the primary impedance is twenty-five times
greater than the secondary. Therefore the secondary imped-
ance is 600 ohms divided by 25, or 24 ohms.

Efficiency
Neglecting losses, the power in the primary should be equal
to the power in the secondary, or:

E,l,=E,l,

where,

E, and F, are the primary and secondary voltages,
I, and I, are the primary and secondary currents.
Eg, times I, gives the primary power,

E, times I, gives the power in the secondary.

A step-up transformer has a turns ratio of 8-to-1. Primary
voltage is 100, with a current of 2 amperes. What is the sec-
ondary current? Since step-up operation is indicated, the sec-
ondary voltage is 100 times 8, or 800 volts. Then:

El =FEl
_ Eyl,
Io= —E.:“—-
_100x 2
-~ BO0O
= 0.25 ampere

Neglecting losses, notice that the current was stepped down
by the same ratio the voltage was stepped up. The voltage
was increased eight times from primary to secondary. So the
current in the secondary is one-eighth that in the primary.

Efficiency of a transformer is calculated from the formula:

% efficiency = —% *% 100
o)

where,
P, is the secondary power (K, x I.),
P, is the primary power (E, x [,).

Thus, a transformer having 50 watts in the primary and

48 watts in the secondary has an efficiency of :

48
% eff. = =5 X 100

= 96 %
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CHAPTER B8

CAPACITANCE

A capacitor is formed by separating two metallic plates by
an insulating material called a dielectric. When a voltage is
applied across it, a capacitor charges by depositing electrons
on one plate (making that plate negative), and by drawing
electrons from the other plate (making it positive). The num-
ber of electrons which can be stored, with a given applied volt-
age, is a measure of the capacitance of the unit. When the
capacitor is charged, electrostatic lines of force exist between
the plates. Hence the charge is assumed to be stored in the
dielectric material,

A capacitor tends to oppose any change of voltage across it.
Therefore, it takes a certain amount of time to charge to the
applied voltage. Once charged, a potential difference (measured
in volts) exists across the plates. The charge on the capacitor
is a measure of the number of electrons stored—the basic unit
of this charge being the coulomb. (One coulomhb = 6.24 x 10
electrons). There is also a certain amount of potential energy
stored, which is measured in joules.

The basic unit of capacitance is the farad. One farad is the
amount of capacitance which stores one coulomb of electricity
when a potential difference of one volt is applied across the
plates. A farad is much too large for practical work. So ca-
pacitors used in electronic circuits are usually rated in micro-
farads (uF) or picofarads (pF).

FACTORS AFFECTING CAPACITANCE

The capacitance of a parallel-plate capacitor may be found
from this formula:

_ 0.2235KA(N-1)

¢ D

where,
C is the capacitance in pF,
K is the dielectric constant,
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A is the area of one plate in square inches,
D is the distance between plates in inches,
N 1is the number of plates.

We may never use this formula to any great extent, but it
does give us a set of important relationships. It tells us how
the various factors determine the actual amount of capaci-
tance of a given unit. Capacitance varies directly with the
dielectric constant, area of the plates, and the number. Ca-
pacitance also varies inversely with distance between plates
(thickness of dielectric). The dielectric constant is a measure
of the insulating qualities of the dielectric material, compared
with air (which is assumed to be 1). Table 8-1 lists the con-
stants for some of the more common materials. The factor

Table B-1. Approximate Dielectric Constants
of Common Materials

Approximate Approximate
Dialectric Disleciric Dielectric Dielectric
Matarial Constant Matarial Constant
Air 1.0 Paraffin coated
Bakelite 5.0 papet 3.5
Mica 6.0 Glass 8.0
Paper 2.0 Wood 2.0
Fiber 5.0
AL

(N—1), in the formula, represents the number of capacitor
sections—if the capacitor contains five plates there are four
separate dielectric sections, hence four capacitors, all con-
nected in parallel. For a single-section capacitor (two plates),
the N—1 factor can be ignored because it is equal to 1.

In the formula just given, the area and the distance be-
tween plates were expressed in square inches and inches, re-
spectively. With the area in square centimeters and the dis-
tance in centimeters, the numerical factor 0.0885 would be used
instead of 0.2235.

CAPACITIVE REACTANCE

The capacitive reactance (X.,) of a capacitor is the oppo-
sition offered by the capacitor to the flow of AC. It can be
determined by this formula:

B3



1

X, = 92 fC

where,

X, is the capacitive reactance in ohms,
f is the frequency in hertz,

(' is the capacitance in farads,

2= 18 equal to 6.28, a constant.

According to this relationship, the reactance varies in-
versely with frequency and capacitance. If either, or both,
are increased, the reactance will decrease, and vice versa.

What is the reactance of a 0.05-uF capacitor operating at
500 kHz?

Ty |
A =57C
¥ == 1

T B28 x5 x 102 x5 % 10—%
¥ 1 1

c= 157 % 10— 0.157
X.=6.37 ohms

We could solve the basic equation for frequency or capaci-
tance:

O
" 2xfC
2:fCX. =1
s ¥
I =2cx.
T |
CE;

A capacitor has a reactance of 75 ohms at a frequency of
600 kHz. What is the capacitance?

sh
C=5.7xX.
. 1

T B.28B % 6 x 10° x 7.5 x 100
C : N

T 282.6 % 10° 0.2826 x 10"
C = 3.54 x 10~ = 0.00354 uF
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Solving for frequency would involve the same type of sub-
stitution and ealeulation. Going back to the original X_. for-
mula we see that reactance varies inversely with frequency
and capacitance. And from this we can obtain the following
two relationships. With eapacitance constant:

Xus_1i
xr'.‘ .irl

With frequency constant:
X 0
X G

Let's see how these would be used.

1. A capacitor has a reactance of 200 ohms at 500 kHz. What
is its reactance at 400 kHz7

X _Ta
Xa Tt
200 _ 400,000
X., 500,000
200 4
Xa B
4X.: = 1000
X, = 250 ohms

In other words, the reactance goes up by the same ratio that
the frequency goes down.

2. At a certain frequency a capacitor has a reactance of 100
ohms, If the eapacitance is tripled, what is its new reactance?

KXot Ce
Irl G.f
100_3
Ii'l 1

In the above step, no matter what the capacitance values
are, the ratio on the right will be reduced to 3 over 1:

3X..=100
X.s = 33.3 ohms
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SERIES CAPACITORS

When capacitors are connected in series, the voltage rating
of the combination is equal to the sum of the voltage ratings
of all the capacitors. For example, two 450-volt units in series

cl c2 C3 Figure 8-1. Schematic representation
1t i 1% of capacitors in series.

would have a voltage rating of 900 volts. But the series con-
nection causes the total capacitance to be smaller than the
smallest of the group. And as the total capacitance is de-
creased, the ‘total reactance is inereased. For our caleulations

of actual values we will refer to the three-capacitor series cir-
cuit of Figure 8-1.

Total capacitance is calculated in the same way as parallel
resistors, and the formula shown below can be applied for

any number of capacitors.

1

3 1 1
P o R

Gt':
y

where,

C;, Cy and C, are the individual capacitances,
C; is the total capacitance.

If two capacitors are connected in series, the total can be
found by the “product-over-the-sum' method, as shown pre-
viously for two resistors in parallel:

c. = CiCs
e Gy

If all series capacitors have the same value, (C), it can be
divided by the number of capacitors (N).

_C
{:“ —
Sample Problems

1. Three capacitors, each rated at 8 uF, 450 volts, are con-
nected in series. What is the total capacitance and the voltage

rating of the combination?

B

8
Cg = Er: ':'g"l.'}l' 224 ,'.-LF
Voltage rating = 450 % 3 = 1,350 volts.

2. A 4-pF and an 8-uF capacitor are connected in series,
What is the total capacitance?

C.C, 4x8 32

PG AeE g kR

C

3. Three capacitors, 2, 4, and 8 pF, are connected in series.
What is the total capacitance?

1
Ci= 1 X 1 £ 1
Ef E'l! G.T
B 1 e 1
A S S G B R
2 4 B b
) B .
C; —T—Tﬂr 114]‘.&5
B

Capacitive reactances in series are calculated in the same
manner as resistances in series—by adding them directly.
The formula given here holds for any number in series:

xrf=x1'1+xrl‘+xr‘.l+ & a

For example, if three capacitors having reactances of 10,
15, and 20 ohms are connected in series, the total reactance
is 10 + 15 + 20, or 45 ohms.

When voltage is applied across a group of series-connected
capacitors, the circuit becomes a voltage divider. The voltage
drop across each capacitor is then inversely proportional to
its capacitance. As an example, let's use the circuit of Figure
8-2, where the separate capacitors are 2, 4, and 8 uF. Several
methods can be used. Let's examine two of them.

i : 5
i 1% 1
Figure B-2, Capacitors in series, 2 § 8 uF
with an AC voltage applied to
the combination. )
o
210w
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If we let x equal the voltage across C3, then there must be
2r volts across C2, and 4z volts across C1. These three, added
together, equal the supply voltage of 210 volts:

¥+ 2z + 4x =210
Te =210
x = 30 volts

So there is 30 volts across C3, 60 volts across C2, and 120
volts across C1, adding up to a total of 210.

Or we can use this formula, which holds for any number
of capacitors:

where,
E. i3 the unknown voltage across a capacitor,
E, is the applied voltage,
(*, is the total capacitance of the circuit,
C, is the capacitance across which the unknown voltage

E. appears (C, and C; should be expressed in the same
units).

We can use this formula to solve the same problem, except
that we must solve for the voltage across one of the capacitors.
Let's solve for the voltage across C2, the 4-uF unit:

_E,xC,
K= =
il 210 x 1.143 . 240
E 4 4
E. = 60 volts

which is the same answer obtained by the previous method.

PARALLEL CAPACITORS

Capacitors connected in parallel act like a single capacitor
having a larger plate area. This means that capacitors in
parallel add directly, just like series resistors. Any parallel
combination can be solved from this equation:

Ci=C,+Ce+Cs+ . ..
where,

C; is the total capacitance,
C,, Cs, C, are the individual capacitors.

For example, three capacitors, 500 pF, .06 pF, and 1.0 uF,
are connected in parallel. Find the total eapacitance. We could
convert them all to either uF (or pF) and then add as shown
here:

500 pF + .05 puF + 1.0 puF

Converting to pF
0005 pF + .05 pF + 1.0 uF = 1.0505 pF

We can handle the addition in a number of other ways, such
as placing all values in a column:

L0006 pF
06 puF
1.0l

1.0505 uF

Capacitive reactances in parallel are calculated in the same
way as resistors in parallel, using any one of the following

formulas:

X.= %
where,

X, is the total capacitive reactance,
X, is the value of each reactance, )
N is the number of equal reactances in parallel,

Or:

The above formula is used when two reactances, X, ; and X,
are connected in parallel. For any number of two or more, the
reciprocal formula shown next should be used:

1

1 1 1

xr.’l —

We have already performed these calculations a number of
times, so sample problems will be omitted.

The next type of problem often appears in the FCC exami-
nation. We have a number of 8-uF capacitors, each rated at
450 volts. How many would be required to make up a combina-
tion rated at 8 uF and 1,800 volts?
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To obtain the 1,800-volt rating, four capacitors in series
would be required, but the total capacitance of this combi-
nation is only 2 uF. So, to obtain 8 uF we would need four
parallel branches, each containing four capacitors, for a total
of 16 capacitors.

CHARGE AND ENERGY
The charge stored in a capacitor can be calculated by:

Q=CE
where,

Q 18 the charge in coulombs,
C is the capacitance in farads,
E is the applied voltage in volts.

As an example, 250 volts is applied across a 0.05-uF capaci-
tor. The charge is:

@ =CE
Q=5x10"%x%26 % 10*
Q=125 x 10—* coulombs

which could be expressed as 12.5 microcoulombs.

Using the formula @ = CE, solve this problem, being care-
ful not to make a snap judgment as to the answer:

A 0.01-pF capacitor is charged to 200 volts, and the charg-
ing source is disconnected. An uncharged 0.01-uF capacitor
is then connected in parallel with the charged capacitor. What
will the voltage be across the combination ?

The first capacitor was charged to 2 mierocoulombs (@ =
CE) and the charging source was disconnected. Adding the
additional eapacitor doubled the ecapacitance. So, with @ re-
maining the same the voltage is cut in half, to 100 wvolts.
If the source had remained connected, then of course both
capacitors would have charged to the source voltage.

We can rearrange the basic @ = CE formula, if necessary,
to produce these results:

_ @ _Q
G——E E_E.

The energy stored in a eapacitor can be calculated from this
formula:

90

where,

W is the energy in joules,

2 is the charge in coulombs,

C is the capacitance in farads,

E is the applied voltage in volts.

A 0.05-uF capacitor has 200 volts connected across it. How
much energy is stored?

 CE®
==
Bx10-0% (2x10%)2 B x10-%%4x 10
“"r — — =
2 2
0 =g
= 2.0 ‘f.zl_ﬂ_ —=1 % 102 joule
To solve for C or E, with the other factors given:
- CE?
W=
2W = CFE*
So:
2W
C="g=
And:
2W = CE*®
. W
Bh= C
So:
BE= /2W

TIME CONSTANT

When DC is applied across an RC éircuit, the capacitor
requires a certain amount of time to charge to the supply
voltage. This time is proportional to what is called the fime
constant. The time constant is equal to the resistance multi-
plied by capacitance:

T =182x0C
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where,

TC is the time constant in seconds,
R is the resistance in ohms,
C is the capacitance in farads.

The time constant is not the time required for full charge,
but is the time required for the charge on the capacitor to
reach approximately 63.2% of the available voltage. At the
end of one time constant, a capacitor will have charged to
63.2% of the applied voltage. During the next time constant,
the capacitor charges to 63.2% of the remaining voltage
(36.8% ), or to B6.5% . During the third time constant the
additional charge is 63.2% of the remaining voltage (13.5%)
or 95%, etec. Table B-2 shows the percentages of full charge
the capacitor has attained at the end of each time constant,
while Figure B8-3 shows it graphically. For practical consider-
ations the capacitor is assumed to be fully charged at the end
of 5 RC time periods.

Discharge occurs at the same rate. At the end of 1 RC time,
the capacitor has discharged 63.2% of its full charge and has
26.8% left. Table 8-2 also lists the remaining percentages
of voltage at the end of 1 through 5 RC times of discharge.

CAPACITOR VOLTAGE CAPAC ITOR VOLTAGE
"I,IIEE f Ec
o0 T
B Ml |
]: .............. ":l F[:I.I* III_..-"' L b1
DISCHARGE CURRENT 1 e b JI ]
Bi= 5 -
— w = RES ISTOR VOLTAGE
— | g8 sy \SRREEE
iR | -~
kRS 2w ks .
Ea s 1 E 10 Tag B |
3 Ry == S
2 l 10
21
rf-—- - w 30}
. - G§E X I F RES ISTOR VOLTAGE
L o [ é o [ fn 1
'!__._ & 2 ﬁ » i .
CHARGE CURRENT & J
90 : .
1@ _ |
[ ] RN T L 5] R X T
EE K ¥ K = B EE =%
{A) Cireuit. (B) Charge. (C) Discharge.

Figure 8-3. Charge and discharge curves of an RC combination, showing
the voltage distribution across the copacitor and resistor at different
RC times. Notice that on discharge, the polarity of voltages across the
resistor is opposite that during charge.
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Table 8-2, Percentage of Voltage Across a Capacitor in an
RC Circuit At the End of Certain RC Time Constants

%% of Applied % of Applied
Mo. of Valtage During Vaoltages During
RC Times Charga Discharge
1 63.2 36.8
2 865 13.5
3 5.0 5.0
4 98.2 1.8
5 9.3 0.7

As R or C, or both, are increased so is the time constant.
This causes the capacitor to take a longer time to charge or
discharge. When charging, the sum of E. and E,, at any in-
stant of time is always equal to the applied voltage. On dis-
charge, at any instant E, and E, are equal, but opposite in
polarity, to each other. Hence their sum is always zero (See
Figure 8-3).

A .05-uF capacitor is connected in series with a 500,000-
ohm resistor. Find the time constant and the voltage across
the capacitor for 1 through 5 time constants of charge. The
applied voltage is 200,

TC=RC=5x10"*x5x 100 =25 x 10—2 second.

For charging:
At 1 time constant, E.= 63.29% of 200 = 126.4 volts
At 2 time constants, E, = 86.59 of 200 = 173 volts
At 3 time constants, E, = 95% of 200 = 190 volts
At 4 time constants, E, = 98.2% of 200 = 196.4 volts
At b time constants, F, = 99.3% of 200 = 198.6 volts
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CHAPTER 9

RESONANCE

Circuits are said to be resonant when the capacitive and
induective reactances in the circuit are equal. This prineiple
is used in many electronics applications. As frequency is in-
creased from zero, the inductive reactance in a circuit also
increases but the capacitive reactance decreases. At some fre-
quency the reactances will be equal—this point being termed
the resonant frequency. As long as this condition occurs at
only one frequency, an LC circuit becomes discriminatory
and its behavior depends on whether the reactive components
are connected in series or in parallel.

SERIES RESONANCE

When X, equals X, in a series LC circuit, the circuit is series-
resonant. However, any circuit contains at least a small amount
of resistance. So, in discussing resonance we must assume that
resistance is also present. We can calculate the resonant fre-
quency by determining that frequency which causes the re-
actances to be equal. The formula is developed as shown:

Since: X=X .

: =afd:
Then: 2xfL = Snfe
And: 422 LC =1

S 1
Ps 4= LC
1

F = onJIC

where frequency, inductance, and capacitance are expressed
in basic units—hertz, henrys, and farads, respectively.
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Suppose that a series circuit, as shown in Figure 9-1 consists
of a 20-chm registor, a 50-uH inductor and a 250-pF capaci-
tor. Solve for the resonant frequency.

f=s
2w/ LC
1
© 6.28v/5 x 10-° x 25 x 10— 11
1
"~ 6.284/125 x 1019
|
T 6.28 x 11.18 x 10"
10
—70.21
= 10#
— 7021 x 10¢
= 1.424 x 10% = 1,424 kilohertz
R
Figure 9-1. A series RLC circuit. L SegpH
T :
it
750 pF

By use of basic algebra we can also solve the resonance
equation for either L or C when freguency is known:

. 1
5 - =
S I=5.vic
Then: 2rfVLC =1
And: 4=2f2LC = 1
1
Thﬁrﬂfﬂrﬂ i L= m
_ 1
Or: o= m

At series-resonance the reactances effectively cancel each
other and the following conditions exist:
1. Circuit impedance is minimum and is equal to the circuit
resistance. Effective reactance is zero.
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2. Current is maximum since impedance is minimum.

3. The phase angle is 0°, and the power factor is 1.

4. Each of the reactive voltages may be much larger than
the applied voltage.

In the circuit of Figure 9-2, solve for Z, I, E., E;, and E.:

Z=NH+ X
= 1/10% + (500-500)% = 10 ohms, the same as R

= i.;ﬂu = 2 amps
B.=TxR

= 2 % 10 = 20 volts, same as E,
E,=1xX,

= 2 x 500 = 1,000 volts
B.=1%X,

= 2 % 500 = 1,000 volts

Previously Q was defined as X;/R so in the circuit of Figure
9-2 the @ equals 50. In a series-resonant circuit the voltage

§3-
:

Fig. 9-2. A series-resonant circuit,

mw

across either reactive component can be found from the for-
mula:

QxEdz-Eﬂ:Er

Therefore in the circuit just discussed, E; or E,= 50 x 20,
or 1,000 volts.

PARALLEL RESONANCE

Several conditions can be used in defining parallel reso-
nance., These are listed as follows:

1. Inductive reactance equals capacitive reactance.
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2. Cirecuit impedance is maximum, resulting in minimum
line current.
3. The circuit will be resistive, having unity power factor.

If a zero-resistance tank circuit could be designed, all these
conditions would occur at the same frequency. However, every
LC circuit has some resistance, mostly in the inductive branch.
Even so, if the resistance is small, all these conditions will
occur at approximately the same frequency. Tank circuits are
usually designed for high @ (having low resistance). Hence
we can use the resonance formula already given for series
circuits:

1

2a/LC

At parallel resonance, the following conditions occur (Fig-
ure 9-3 will be our reference eircuit) :

¥=

1. Circuit impedance between points A and B is marimum;
therefore the line current is minimum.

2. Opposition within the tank is minimum because the effec-
tive reactance is zero. This means the circulating tank
current is maxzimum.

8. The ecircuit acts resistive, the power factor is approxi-
mately 1, and the phase angle is nearly 0°, as long as the
resistance is negligible,

Ll ]

Figure 9-3. A parallel circuit,
illustrating the effect at its ¥
resonant frequency.

Using Figure 9-3 again as our reference, the impedance pre-
sented by the tank at resonance can be considered as:

_ X2 L

4="p-=pn

where all electrical characteristics are stated in basie units.
We could substitute X, for X,, because the basic condition for
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resonance is that the reactances be equal. Impedance can also
be stated as:

Z=X, XQ=X,X@Q

Suppose these conditions exist in our reference cireuit; L =
40 uH, C =80 pF, and R = 10 ohms. Solve for the resonant
frequency and the circuit impedance at resonance:

1
2=\ LC
1

T 6282 X105 X8 x 10-1
1
T 6.281/32 x 10-'*
B 1
~ B6.28 x 5.66 x 10-°
o 1 - i3 —
= oo = 2.81 X 10" = 2.81 MHz
_ b
= RC

f—

Z

B 4%x10-% _ 4x10-8
T 1x10x8x10-11 8x 10—

= (0.5 ¥ 10° = 50,000 ohms

Checking:
X = 2«fL
=628 X 281 x 10% x 4 x 10-"
= T705.9 ohms

Z=Xr %t
= T705.9 x 70.59
= 49,829 ohms

The slight error results from rounding off the resonant
frequency : actually it is slightly higher than 2.81 megahertz.

98

According to the formula, the resonant frequency depends
on the product of L times ¢ and not on the individual values.

In the example problem just worked, the fact that L = 40 uH
and C =80 pF, made this circuit resonant at slightly over
281 megahertz. If instead L =20 puH and C = 160 pF, the
resonant frequency would be the same. In the latter example
we have halved L and doubled C, leaving the LC product at the
game value. In fact many combinations of L and C would pro-
duce the same product and hence the same resonant frequency,
Connecting a resistance across a parallel-LC circuit loads
down that circuit by decreasing the @. This lowers the imped-
ance of the cirecuit, but broadens the band of frequencies the
eireuit can pass. The resistor, however, has no effect on the
resonant frequency.

DECIBELS

The decibel (dB) is the basie unit for measuring the differ-
ence between two levels of sound. It is a nonlinear funetion
based on logarithms, just as human hearing is nonlinear, or
logarithmie, in nature. The human ear cannot determine ac-
tual sound levels, but can detect differences in levels provided
they are not too small.

There is no such thing as zero sound. Hence any absolute
measurement is impossible. Therefore we measure the level
of a particular sound with respect to some other level as a
reference. The decibel, then, expresses numerically the ratio
of a particular sound level to a certain reference level.

Let's see how the fact that our hearing is logarithmic af-
fects our sense of volume. If a sound level is increased from
1 to 2 watts (using an electrical quantity), the difference (or
change) in the level, as interpreted by our ears, will seem to
be the same amount of change as an increase from 2 to 4
watts, or from 5 to 10 watts. The latter ratings are certainly
greater changes in power than our first example and will
sound louder, but in each case the change in levels will seem
identical to our ears. The power was doubled in each of the
examples given and each of these changes is represented
by the same number of decibels. So each change seemed to

be the same, although the difference in power in each example
Was not.



resonance is that the reactances be equal. Impedance can also
be stated as:

Z=X; XQ=X.XQ

Suppose these conditions exist in our reference cireuit; L =
40 puH, C =80 pF, and E = 10 ochms. Solve for the resonant
frequency and the circuit impedance at resonance .

1

2=/ LC
X

T 6284 x10 °x8x 101
1
© 6.281/32 x 101
1
6.28 x 5.66 x 107
1

=L
-~ RC

f=

Z

i’ 4x10-5 _ 4x10-3
T 1IXx10x8X10-1 88X 10-1

= 0.5 % 10° = 50,000 ohms

Checking :
X =2«fL
=628 x 281 x 10% x 4 x 10—5
= T705.9 chms

_ X

_ 705.9
710

Z=X;%xQ
= T705.9 x 70.59
= 49,829 ochms

= T70.59

The slight error results from rounding off the resonant
frequency ; actually it is slightly higher than 2.81 megahertz,
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According to the formula, the resonant frequency depends
on the product of L times C and not on the individual values.

In the example problem just worked, the fact that L = 40 yH
and C=280 pF, made this circuit resonant at slightly over
2.81 megahertz. If instead L =20 uH and C = 160 pF, the
resonant frequency would be the same. In the latter example
we have halved L and doubled C, leaving the LC product at the
same value. In fact many combinations of L and C would pro-
duce the same product and hence the same resonant frequency,
Connecting a resistance across a parallel-LC ecircuit loads
down that circuit by decreasing the ¢). This lowers the imped-
ance of the cirenit, but broadens the band of frequencies the
eireuit can pass. The resistor, however, has no effect on the
resonant frequency.

DECIBELS

The decibel (dB) is the basic unit for measuring the differ-
ence between two levels of sound. It iz a nonlinear funection
based on logarithms, just as human hearing iz nonlinear, or
logarithmic, in nature. The human ear cannot determine ac-
tual sound levels, but can detect differences in levels provided
they are not too small.

There is no such thing as zero sound. Hence any absolute
measurement is impossible. Therefore we measure the level
of a particular sound with respect to some other level as a
reference. The decibel, then, expresses numerically the ratio
of a particular sound level to a certain reference level.

Let's see how the fact that our hearing is logarithmic af-
fects our sense of volume. If a sound level is increased from
1 to 2 watts (using an electrical quantity), the difference (or
change) in the level, as interpreted by our ears, will seem to
be the same amount of change as an increase from 2 to 4
watts, or from 5 to 10 watts. The latter ratings are certainly
greater changes in power than our first example and will
sound louder, but in each case the change in levels will seem
identical to our ears. The power was doubled in each of the
examples given and each of these changes is represented
by the same number of decibels. So each change seemed to

be the same, although the difference in power in each example
was not,



Doubling the power causes the sound to be louder, but defi-
nitely not twice as loud, as might be supposed. This is due to
the logarithmic characteristic, which can be explained in still
another way. A small change of volume may be noticeable at
low levels, but not be noticeable at all for higher levels. As an
example, a change from 1 watt to 2 watts would be noticed
by most people. A change from 19 watts to 20 watts however,
would not be noticed at all, even though the actual change in
power (1 watt) is the same in both instances. Thus we hear
changes with respect to the ratio of the levels involved, rather
than hearing any certain degree of change.

As long as the decibel specifies no definite signal level we
say that it is a relative unit, and the numerical value of these
units depends on the ratio of the two levels—not the numeri-
cal difference between them. The average ear can detect sig-
nal level changes of about 1 dB for a single tone, and about
3 dB for mixed signals such as voice or music.

The original unit used for the measurement of sound was
the bel, the number of bels being equal to the log of the ratio
of the power of two sound sources., This was too large a unit
80 it was divided into ten parts, each called a decibel. Numeri-
cally the number of decibels can be determined by the follow-
ing formula;

dB =10 log :ﬁ-"
!

where P, and P, are the two levels of power, P, being the
larger.

If the impedances across which the signals are measured
are equal, the following relationships for voltage or current
also hold true:

- E,
_ I,
dB = 20 log —
I,

The first two are used to a much larger extent than the
current formula, although the latter is just as applicable.
A couple of problems will illustrate how these formulas are
used.
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1. The input and output signal voltages of an amplifier are
3 and 48 volts respectively. What is the decibel gain?

dB = 20 IGH%

dB = 20 log ;i_g_
dB = 20 log 16

dB = 20(1.2041) = 24.082 dB

The output signal is 24 dB above the input level or, con-
versely, the input level is 24 dB below the output.

2. A transmission line has an input of 1,200 watts and an
output of 1,000 watts. What is the dB loss in the line?

= P,
dB = 10 log P,

b 1200
dB =10 log 1.2

dB = 10(.0792) = 0.792 dB

Notice that in both examples the larger number of the ratio
was made the numerator of the fraction. This was done to
simplify the calculations, because then all the ratios are larger
than 1, giving positive logarithms in all cases.

The subject of decibels is useful in a study of amplifiers,
since they are quite often used in describing amplifier gain or
loss. However, they can be applied to microphones, recorders,
transmitters, filters, attenuation networks, transmission lines,
or any other signal-handling device.

Zero Level

Actual output signal levels of various types of equipment
such as microphones, amplifiers, ete., are often expressed in
dBs. The dB level is rated against some power level as a zero
reference. Various zero references have been used, with 6 milli-
watts probably being the most prevalent. In many usages the
VU (volume unit) is preferred instead of the decibel. It is
exactly the same as the dB except that the VU is always re-
ferred to a specific zero-reference level of 1 milliwatt as read
across 600 ochms. When expressing a certain number of deci-
bels we are not sure what the zero level iz unless it is specified.
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Solving a problem involving the zero level is the same as
already shown except the zero level is one of the figures in the
ratio. For example, if zero decibels is assumed to be 6 milli-
watts, what db level is 600 milliwatts?

dB = 10 mg%

dB = 10 log 100

dB =10(2) = +20dB
Using the same reference, what is the dB rating for 3 milli-
watts?

dB = 10 lngg—,
dB =10 log 2

dB = 10(.301) = —3.01 dB

In the latter solution we set the larger power as the numer-
ator of the fraction, but affixed a negative sign to the answer,
This was necessary because 3 milliwatts is below the zero-dB
reference level. If we invert the ratio, as shown next, the
answer comes out as a negative number:

dB = 10 ]ng%
aB =10 16k:b

dB = 10(.6990—1)
dB = 6.990—10 = —3.01 dB

What VU level is represented by 6 milliwatts? In this prob-
lem zero VU is assumed, as always, to be 1 milliwatt. The
problem is set up as follows:

VU =10 lng;

VYU=10 ]ﬁg%

VU =10(.7782) = 7.7T82VU

Inverse Problems

The same formulas are used for solving inverse dB prob-
lems—rthat iz, when the dB level and one signal level are given
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and we must find the other level. Such solutions all follow a
definite pattern, as shown in the next problem.

An amplifier output-signal voltage is 60 volts and the stage
raises the signal level by 15 dB. What is the input signal?

dB = 20 lﬂg%
g

15 = 20 log %ﬂ_
i

Dividing both sides by 20:

Then:

o= lug%
2

Taking the antilog of both sides:

_ 60
5.62 = o
5.62E, = 60

L HE0.
Ey= 560 10.68 volts

The steps are as follows:

1. Substitute the known values into the proper dB formula,
using 20 as a multiplier for voltage or current, and 10 as
a multiplier for power.

2. Divide both sides of the equation by either 10 or 20,
whichever is used.

3. Take the antilog of both sides.

4. Solve the equation by the methods described in Chap-
ter 3.

Let's try another problem, using this outline. The numbers
of the various lines correspond to the previous step numbers.
A transmitter output is increased by 20 dB, the original out-
put being 100 watts. What is the new level?

dB = 10 log %
E ]

1. 20=10log 5}‘

103



i P,
2. 20=log 100
Wiy =

4. P, =10,000 watts

Successive Stages

Decibels are additive (or subtractive) when applied to sue-
cessive stages, Consider the block diagram of Figure 9-4, where
the output of the microphone is —50 dB and the volume con-
trol loss is 5 dB, leaving an input to the preamp, of —55 dB.
The preamp gain is 35 dB, so its output is at a —20 dB-level,
while the amplifier adds 25 dB, making its output +5 dB. This

ﬂ}ﬂ -ﬁm 'Et!ﬂ i 5 -‘
} VOLUME L L
MICROPHONE = CONTROL WTEF VR [ L] AMPLIFIER
548 LOSS +35 2508

Figure 9-4. Block diogram of an amplifier, showing
dB losses and gaoins.

makes the total dB gain, from microphone to amplifier output,
o6 dB (36 + 25 — 5). Successive voltage gains, however, are
multiplied as shown previously, so are different from dBs in
that respect.

What is the combined voltage gain of the two amplifiers of
the previous problem?

Since both stages have a total dB gain of 60, the problem
is set up with gain (A4,) being the ratio between the two

voltages.

dB=20]og 4,
60 =20 log A,
3=log A,
Taking the antilog:
A, = 1,000

So the total voltage gain is 1,000, corresponding to a dB
gain of 60.
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CHAPTER 10

BOOK REVIEW QUIZ

CHAPTER 1

State the rule for converting a number larger than 1 to its scientifie
notation form.

State the rule for converting a number smaller than 1 to its scientific
notation form.

Express each of the following numbers in scientific notation form.

a. 285

b. 0.0354

e. 8,200,000

d. 0.000064

e. 3D

In problems 4 through B, express all answers as numbers between 1
and 10, multiplied by a power of 10,

8.2 5% 10° % 6 % 10° =

1.2 3 10" = 24 w 10° =

1942 % 107 x 0.0515 x 10° =

V640,000 =

(2.6 % 10%)* =

Convert b megahertz to kilohertz.
Convert 2.5 microfarads to picofarads.

CHAPTER 2
Xy +4xy —2xy +xy' =
(x—y) (x*4¥) =

— 15x™
— b x'y oy
Factor 9 a’b® 15 a™*

B. By + 16 = 2y + 7. Solve for v.

q-r

N=_25
A+ L

2A*=4 Solve for A.

Solve for L.

8. P= Eﬁt— Solve for E.

P
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CHAPTER 3

. What is the effect on the current in a series circuit if the voltage is

doubled and the resistance halved? What if the voltage is tripled and
the resistance is tripled?

A 20-phm resistor and an 80-ohm resistor are in parallel across a 64-
volt source. What current is drawn from the source?

What is the total current in the cireuit of Figure 10-17 What is the
current through R17

Rl B3 RS

N A R

Lk i R b b

150 800 nBop
- Figure 10-1. Circuit for Question 3.

s
£-120

The resistance of a circuit is halved. What is the effect on power if
the voltage remains the same?

The voltage applied to a circuit is doubled. What effect does this have
on the power dissipated?

A resistor has 25 volts across it and a current of 20 m A through it.
How much power must it dissipate?

A heating device is rated at 120 volts and has a resistance of 20 ohms.
What is its power dissipation?

Two 500-0chm, 10-watt resistors are connected in parallel. What is the
total power-dissipation capability of the circuit?

CHAPTER 4
What is the resistance of a copper wire that has a length of 30 feet
and a diameter of 16 mils?

A conductor has a resistance of 250 chms. If the length iz doubled and
the diameter halved, what iz its new resistance?

If the diameter of a conductor is tripled, how is the resistance
affected?

What is the total resistance of five 2000-ohm resistors connected in
parallel?

A parallel combination of resistors is made up of a 50-ohm, a 150-0hm,
and a 200-ohm resistor. What is the resistance of the combination?

Two parallel resistors have a total resistance of 750 chms. One of the
resistors iz 1000 ohms. What is the value of the other?

. Resistances of 4, 8, and 12 ochms are connected in parallel. What is the

total resistance?
A circuit has a resistance of 250 ochms. What is the conductance?

CHAPTER 5
Convert 117 voits rms to peak volts. | ../

A cireuit contains 3 ohms of resistance, 7 ohms of inductive reactance,
and 5 ohms of capacitive reactance, What is the ecircuit impedance?

The phase angle?
With 24 volts applied to the circuit of Question 2, what will the circuit
current be?

In a series RL circuit, the impedance is 15 ochms and the inductive
reactance is 10 ohms. Find the value of R.

A series LCR circuit has an impedance of 12 ohms, a resistance of
6 ohms, and an inductive reactance of 3 ohms. What is the capacitive
reactance?

A 3-branch parallel circuit has B ohms of resistance, 12 ohms of in-
ductive reactance, and 6 ohms of capacitive reactance. What is the
impedance of the cirenit?

What is the phase angle in the circuit of Question 67

8. If 24 volts is applied to the circuit, what is the current?

o P o

CHAPTER &

A broadeast station has a carrier frequency of 650 kilohertz. What
is its wavelength in meters?

What is the wavelength in feet of a 2200-kHz signal?
A signal has a wavelength of 2 feet. What is its frequency?
What is the period of a 4-megahertz signal?

Each cycle of a certain signal has a duration of 250 microseconds.
What is the frequency?

A signal has a period of 25 nanoseconds. What is the wavelength in
centimeters?

The wavelength of certain X rays is 3 % 10~ millimeters. What is the
frequency in terahertz? (See list of prefixes in Chapter 1.)

CHAPTER 7
The core permeability of a 1-henry coil is quadrupled. What is the
new inductance of the coil?

A 200-turn coil has an inductance of 250 millihenrys. What iz the in-
ductance if the number of turns is inereased to 2507

. What is the inductive reactance of a 250-uH coil to a 300-kHz signal?

Three coils are connected in series, with no mutual coupling. If their
inductances are 1 henry, 500 millihenrys, and 1000 microchenrys, what
is the total inductance of the combination?
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Two coils have a total inductance of 12 henrys when connected series-
aiding and 8 henrys when connected series-opposing. What iz the
mutual inductance between them?

The induective reactance of a coil is 1500 ochms and its effective re-
sistance is 50 ohms. What is its Q?

What is the time constant of a circuit containing a 5-henry coil in
series with 2000 ohms of resistance?

A step-down transformer having a 6-to-1 turns ratio is operated with
a primary voltage of 220 volts. What is the secondary voltage?

CHAPTER 8
If the distance between the plates of a eapacitor iz halved, how will
this affect the capacitance?
A .05-uF capacitor has a reactance of 60 ohms to an applied signal.
What is the frequency of the signal?
At 600 kHz a capacitor has a reactance of 150 ohms, What is the
capacitance?
A 16-uF capacitor is connected in series with a 4-uF unit. What is the
total capacitance of the combination?
Three capacitors, 8, 12, and 16 pF, are connected in series. Find the
total capacitance.

If 300 volts is connected across the series combination in the preced-
ing questions, what is the voltage across the 12-uF capacitor?

Three capacitors having reactances of 12, 24, and 36 ohms are con-
nected in parallel. What is their total reactance?

Four parallel capacitors of equal eapacitance have a total reactance
of 80 ohms. What is the reactance of each?

CHAPTER ¢

. What is the resonant frequency of a series circuit consisting of an

inductance of 100 uH, a capacitance of 300 pF, and a resistance of
10 ohms?

What effect would increasing the resistance in Question 1 have on the
resonant frequency? What effect would it have on the Q7

If 100 volts is applied to the circuit deseribed in Question 1, what
voltage drops would be developed across R, L, and C?

What value of capacitance is needed to resonate with an inductance
of 200 uH at 600 kHz?

. What is the total effective reactance in the tank circuit of a parallel-

resonant cireuit?

. Considering the ecircuit of Question 4 as a parallel-resonant circuit,

find its impedance. The parallel resistance is equal to 10 ohms.
State the formula for the dB ratio between two voltage levels.
What is the zero reference level for the volume unit (VU)?

APPENDIX

FRACTIONAL INCH, DECIMAL,
AND MILLIMETER EQUIVALENTS

Fractional Dacimal Millimeter Fractional Dacimal Millimeter

Inch Inch Equivalent Inch Inch Equivalent
1/64 0.01 54 D394 33/64 05154 13.09%
1/32 00313 0.795 17/32 05313 13.495
3764 0.044%9 1.1 /6 0.5449 13.891
1716 0.0&25 1.587 35/64 0.5425 14.287
5/64 0.0781 1.983 37/64 0.5781 14,683
3,32 0.0%38 2.382 19/32 0.5938 15.082
7/64 0.1094 2,778 39/64 0.4094 15.478
1/8 0.1250 3.175 5/8 0.4250 15.875
9/64 0.1406 3.571 41/64 0.6406 16271
5/32 0.15563 a.970 21/32 0.6563 18670
11/64 01719 4.365 43/64 0.6719 17 0646
3/é 0.1875 4.762 11/16 0.6875 17.4462
13/64 02031 5.158 45/64 0.7031 17.858
7/32 0.2188 5.557 23/32 07188 18.257
15/64 0.2344 5963 47 /64 0. 7344 18.653
1/4 0.2500 &350 /4 0.7500 19.050
17764 0. 2454 &, T s 497564 07656 19.445
9/32 0.2813 7.145 25/32 07813 19.845
19/84 0.2949 7541 51/64 07949 20241
5516 03125 7937 13714 0.8125 20.637
21/64 03281 8.333 E3/64 0.8281 21.033
11/32 0.3438 8.732 27732 0.8438 21.432
23/64 0.3594 9.128 £5/64 0.85%94 21.828
i/a 0.3750 9528 778 08750 22225
25/64 0.3906 B.o21 57764 08904 22,4621
13/32 0.4043 10,320 29/32 0.90463 23.020
27 /64 0.4219 10.71& 59/64 0.9219 23.416
7716 0. 4375 11.113 15714 {0.9375 23812
20/64 0.4531 11.508 61/64 0.9531 24.208
15/32 0.4688 11.907 a1/32 0.9688 24,607
Al /64 0.4844 12.303 63/64 0.9844 25.003
1/2 0. 5000 12.700 1 1.000 25400
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AL
avernge values, B1-E
circuits, G3-54
eflective value, BE-GR
power, G2-63
Addition and subtraction
of nigebraie terma, 22
powers of ten, 8=10
Algebrale sxpression, 21
Algebraie terms
nddition and subtraction, 22
multiplication and diviaion, 23-85
Ampere, 18
Apparent pawer, 63
Average values, AC, 51-62

Huse, 21
Binomial, 21

Capacitanes, 52-93

fuctors ailfecting, E2-83
Capacitive reactunece, E3-85
Capaeitors

paraliel, BR=80

nertes, S6-BE
Charge and energy, 90-91
Cireuits

AC, 580

parallel, 60-62

peries, GO-0E
Coefficient, 21
Combinations, induetive, 73-76
Combining terme, 2227
Conductance, 45-4%
Constants

dielecteie, 53

rexistivity, 43

time, TT-TH, $1-84

Converting numbers to powern of len, 5-4

Coulomb, 13
Cyele, 14

Decibela, 88-101

Dislectric constants, 53
Differenes, 19

Diivinion, powera of ten, 11-12

E

Effective values, AC, 62-51
Efficiency, traneformer, Bl=-81
Energy and Q. 7677
Hauations, 25-31

fractional, 31-3%

literal, 30-41

with radieals, 33
Exponent, 21
Expressjon, algebraje, 21
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INDEX

Facturing, 28
Factlor, power, B3
Factors aiffecting capacitanee, B2-24
Farad, 14
Furmuolas
AC
nvermge value of, 52
effective valae of, B2
peak and instantenous values, 59
enpacitance, 32-83
capacitive reactance, 83-54
charge on a capacitor, 90-01
condiuctanes, 48
deethel, 100
energy, 42
stored in o coil, 78
impedanee
parallel sircunit, B0
series eircult, 55
ratio of a transformer, TH
indoetance, T
Inductive reactance, 71
in series, T6
mutunl inductanes, T4-T5
prarallel
capacitors, 58
reniutors, 45-46
resonanes, 57
period, 6%
power, 48
power factor, 63
Q of neoil, 76-77
rédistance
of wrire, 421
parallel circuits, 36
series circult. 34
series
capReilors, 86
resistors, dd=45
résunance, #4
time constant, T7, F1-02
tranafurmer efliciency, K081
valtage, 356
wavelength, 67
Fractional equations, 31-83
Frequency, G6-60

Henry, 14
Horsepuwer, 14

Inductance, Ti-E1

mutal, TH-T58
Inductive reactance, 71-72
Inductor combinations, T3-76
Inverse problems, 102-104

J
Joule, 14

L

Liambdna, &7

Literal equations, 30-31
Lagging voltage, B4
Leading voltage, 53
Lenxth, units of, 15
Lovel, zero, 101-102
Like terms, 21

M
Mensurement, units of, 15-17
Mhe, 13
Monomial, 21

Multiplication and division of nlgebraic

terma, 33-28
Multiplication, powers of ten, 10-11
Mutynl inductance, 73

Negative numbers, 18-20
Nemxative power of ten, §

o
Ohm, 13
Ohm's law
parallel circuits, 36-36
power, 49-42

series circuit, $4-35
series-paralie]l eircuits, 36-38

F

Parallel

capacitors, 88-60

eireuits, 60-52

Obm's law for, 35.36

reaistors, 45

resonnnee, S6-00
Permenbility, 70
Polvynomial, 21
Pusitive power of ten,
Power

AC, B2-83
and energy, 14
apparent, 63
factor, 63
Obm's law for, 35-42
true, 63
FPowers of ten, 7
mddition nnd subtraction, §-10
diviston of, 11-12
multiplication of, 10-11
recipricals of, 12
squares and square roots of, 12
Prefixes, 1517

Heactanee

capucitive, BE-85

inductive, 71.72
Reactive units, 14-15
Reci powers of ten, 12
Hesistivity conatants, 43
Reristora

parallel, 45

series, 44-46
Resonanes

parallel, 96-09

serien, B4-08
Review guiz, 106-100

Serion
eapacitors, B6-88
circuite, 5559
Ohm's law for, 34-25

~parallel circuit, Ohm's law for, 36-38

resistors, 44-45
resonance, #i-098

Squares and square roots, powers of ten, 12

Succesaive stages. 104
Bum, 18

T
Term. 21

Time eonstant, 77-78, d0-93
Transformer efficiency, 50-81

Transformers, 79-81
Trinomial, 21
True power, 63
Turns and impedance, 79-80
1]
Units
of length, 15
of measurement, 13-17
Unlike terms, 21
v
Yolt, i3
w
Watt, 14
Wati-hour, 14
Wavelongth, 66
z

Zero level, 101-102
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