
GIGAOHMMÈTRE

MG 2 A

NOTICE TECHNIQUE

Ce document comprend 31 pages numérotées et datées, conformément au présent tableau INDEX DES PAGES Pages Edition Pages Nº Edition Date ou N° MàJ Date ou Nº M à J Pages I à V Originales Pages 1 à 25 Originales Planche I Originale

GIGAOHMMÈTRE MG 2 A*

OHMMÈTRE STATIQUE A TENSIONS CONSTANTES

50 V - 250 V - 500 V

IMPORTANTE GAMME DE MESURES 30 k Ω A 1 T Ω

18 CALIBRES

* MODÈLE ADOPTÉ PAR L'ARMÉE DE L'AIR

Le GIGAOHMMETRE MG2A est un mégohmmètre électronique à lecture directe, spécialement conçu pour la mesure des résistances et isolements élevés, pouvant atteindre 1 million de mégohms (ou 1 téraohm), sur circuits capacitifs ou non. Entièrement transistorisé, l'appareil fonctionne sur piles ou réseau, et délivre trois tensions de mesure, de valeur constante : 50 V - 250 V - 500 V.

Suivant le cas, l'une de ces tensions est appliquée à l'élément en essais, le courant résultant, directement fonction de la résistance du circuit parcouru étant alors mesuré, puis traduit après amplification par un indicateur galvanométrique gradué en $M\Omega$ et $G\Omega$.

Des circuits annexes de : garde, constante de temps, décharge automatique, etc... complètent l'appareil.

CHAUVIN ARNOUX

190, rue Championnet 75890 PARIS Cedex 18 - Tél. 627 73-89 \pm - Télex 28589

CARACTÉRISTIQUES TECHNIQUES

	Tensions	GAMMES									
	50 V	30 kΩ-1 MΩ 0,3 - 10 MΩ 3 - 100 MΩ 30 MΩ-1 GΩ 0,3 - 10 GΩ 3 - 100 GΩ									
GAMMES DE MESURE	250 V	0,3 - 10 ΜΩ 3 - 100 ΜΩ 30 ΜΩ-1 GΩ 0,3 - 10 GΩ 3 - 100 GΩ 30 GΩ - 1 ΤΩ									
	500 V	0,3 - 10 ΜΩ 3 - 100 ΜΩ 30 ΜΩ-1 GΩ 0,3 - 10 GΩ 3 - 100 GΩ 30 GΩ - 1 ΤΩ									
PRECISION	± 1,5 % c	la valeur mesurée entre les points d'échelle 3 et 30. le la longueur d'échelle (110 mm) pour les autres points, étant utilisé en position horizontale.									
INFLUENCE DE LA POSITION	< ± 2,5	% de la longueur d'échelle, lorsque l'appareil est utilisé en position verticale .									
RESISTANCE INTERNE		100 Ω à 10 M Ω suivant la gamme utilisée, valeur toujours inférieure à 0,4 % de la résistance minimale mesurable.									
INTENSITE MAXIMALE DANS LE CIRCUIT DE MESURE		e entre 8,5 nA et 1,7 mA, suivant la gamme utilisée, pour la résistance minimale mesurable. e entre 10 μA et 8 mA en cas de court-circuit de la charge.									
TEMPS DE CHARGE SUR CIRCUITS CAPACITIFS	100 GΩ	re de 1,2 à 15 secondes par μ F suivant la gamme utilisée, sauf pour les gammes élevées (50 V) et 1000 G Ω (250-500 V) où les temps sont plus longs. Mais dans ce cas, une charge ut s'obtenir au préalable en utilisant une gamme inférieure.									
SECURITES	• par f	uirdimensionnement des principaux composants. iusible cartouche 0, 12 A, lorsque l'appareil est alimenté par le secteur. pranchement accidentel sur 220 V alternatif, pendant quelques instants, ne provoque aucune nalie dans le fonctionnement de l'ensemble.									
		s chaque mesure, par décharge automatique du circuit essayé.									
DOMAINE DE TEMPERATURE	- 20 à +	50°C, avec influence ≤ 0,1 % par °C.									
	Circuit d	ant : — un réglage du zéro électrique, à vérifier avant chaque série de mesures. — un calibrage du gain de l'amplificateur, à vérifier périodiquement. e garde it de garde relié à la douille — G, évite toute erreur de mesure due aux influences de surface rre, et permet aussi de définir et de localiser la mesure dans le cas d'un câble à conducteurs									
CIRCUITS ANNEXES	Ce circui de lectur sur la li	tabilisateur de lecture t à deux constantes de temps (2 secondes et 15 secondes) a pour but d'éliminer les instabilités e lorsqu'on opère sur des résistances élevées, et de minimiser l'effet des interférences parasites gne mesurée, en particulier lorsqu'on opère sur un câble multiple, dont certains éléments rester en service (téléphonie).									
	Ce dispo	le décharge automatique ositif assurant la sécurité de l'opérateur est constitué par un circuit résistant incorporé, quement mis en service à la fin de chaque mesure.									
	Circuit de contrôle de l'alimentation										
		noin néon s'allumant dès l'établissement de la tension de mesure. arge fictive incorporée, contrôlant le bon état des piles ou de l'alimentation secteur.									
ALIMENTATION		es : par 2 piles 4,5 V, type normalisé 3R12, montées en série, soit : 9 V. teur : par module amovible 120 - 220 V, 45 à 400 Hz, consommation 8 VA environ.									
ACCESSOIRES	 Le GIGAOHMMETRE MG2.A est normalement livré avec : Un module alimentation secteur 120-220 V, directement interchangeable avec les piles. Un cordon d'alimentation secteur, nº 133, L = 1 m. Un cordon spécial "gardé", nº 132, L = 1 m, destiné à la mesure des résistances très élevées, supérieures à 1000 MΩ. Un cordon rouge avec fiches banane, nº 96, L = 1 m, pour les valeurs inférieures à 1000 MΩ. Un cordon noir avec fiches banane, nº 93, L = 1 m, pour les valeurs inférieures à 1000 MΩ. Un adaptateur coaxial pour montage des cordons nº 93 et 96 ci-dessus. Une mallette de transport avec casier spécial pour module d'alimentation et cordons, celle-ci étant pourvue par ailleurs d'une courroie pour transport à main. 										
PRESENTATION		il est présenté dans un boîtier antichocs, étanche, de forme parallélépipédique, deux tons : is clair, avec fenêtre panoramique de lecture, et courroie de transport.									
ENCOMBREMENT - MASSE		seul, sans mallette de transport : 172 x 227 x 113 mm - 2,120 kg. avec mallette de transport et accessoires : 250 x 250 x 140 mm - 4,200 kg.									

TABLE DES MATIERES

INDEX DES PAGES, FEUILLES ET PLANCHES	Pages
TABLE DES MATIERES	I
FICHE D'IDENTIFICATION	III-IV
COMPOSITION DE L'UNITE COLLECTIVE	V.
CHAPITRE I - INTRODUCTION	
I - DESCRIPTION GENERALE	1 - 2
II - CARACTERISTIQUES TECHNIQUES	3 - 4
CHAPITRE II - MISE EN OEUVRE	
I - CONTROLES PRELIMINAIRES	5
II - MESURES	6
III - PARTICULARITES	6 & 8
CHAPITRE III - PRINCIPE ET FONCTIONNEMENT	
I - PRINCIPE	9
II - FONCTIONNEMENT	10à14
CHAPITRE IV - MAINTENANCE	15 à 19
CHAPITRE V - NOMENCLATURE	21 à 2 7
PLANCHE I - SCHEMA ELECTRIQUE DE L'APPAREIL	PI

Numéro de catalogue

CLM - 100

(1)

ENSEMBLE DE MESURE GIGAOHMMÈTRE MR-PR-2 B

Numéro de nomenclature

(2)

Equipement :APPAREIL DE MESURE

Constructeur: CHAUVIN ARNOUX

Type:

672606-94AC

(6)

Nationalité : FRANCAISE

	NUMÉRO	COMPOSANTS PRINCIPAUX	QUANTITÉ		MENSIO n centimètre		POIDS
DE	NOMENCLATURE			Largeur	Profond.	Hauteur	kg
6625 6625	5 14 279 2984 5 14 279 2989	(8) GIGAOHMMETRE MG 2 A Alimentation secteur 120-220 V Mallette de transport avec courroie	1 1 1	17,2 12,3 25	22,7 2,15 25	11,3 7,4 14	2,120 0,470 1,350
	=		1				
	F.		:				

ENCOMBREMENTS ET POIDS	AVEC TOU	S LES COM	POSANTS		
	LARGEUR cm	PROFOND.	HAUTEUR cm	VOLUME m³	POIDS kg
Nu	25	25	14	0,009	4,160
Avec emballage aérien			-		
Avec emballage maritime					

	CARACTÉRISTIQUES TECHNIQUES
(9) GAMMES PRECISION	$30k\Omega$ à 100 $G\Omega$ en 6 calibres sous 50 V 0,3 MΩ à 1000 $G\Omega$ en 6 calibres sous 250 V 0,3 MΩ à 1000 $G\Omega$ en 6 calibres sous 500 V + 1,5 % de la longueur d'échelle (L.échelle = 110mm)
TENSION DE MESURE	50 V, 250 V et 500 V (-0-5%)
TEMPS DE CHARGE	Sur circuit capacitif: 1,2-12-120s/ μ F env.st cal., V = 50 V 1,5-15-150s/ μ F env.st cal., V = 250 ou500
POSITION D'EMPLOI	Horizontale
INFLUENCE DE LA POSITION	± 2,5 % de la longueur d'échelle, appareil vertical.
SECURITES	a) de l'appareil: -statique par éléments surdimensionnés, une tension de 220 V ~ pouvant être appliquée entre les bornes de mesure (+T et-L), pendant 10 secondes, sur un calibre quelconque -Par fusible "lent"0,12 A avec alimentation secteur.
	b) <u>de l'Utilisateur:</u> -Aprés chaque mesure par décharge automatique du circuit essayé.
CIRCUITS ANNEXES	Circuit de tarage, circuit de "garde", circuit de décharge automatique.
ALIMENTATION	-9 V "continu" assuré par 2 piles plates de poche, standard120 - 220 V, 45 à 400Hz, par module alimentation incorporable.
CONSOMMATION	100 à 250 mA suivant calibres, avec 300mA max. lorsque la résistance mesurée correspond à une valeur nulle.
,	CARACTÉRISTIQUES TACTIQUES
(10)	- Essai et vérification d'isolement de câbles de Télécommu- nications sous 250 ou 500 V.
	- Vérification d'isolement à bord d'aéronef avec tension d'essai de 50 V (-0 - 5%).

Nº du marché: 72/81007 du 5.04.72

Clauses techniques nº 2194bis/ Série du 9.08.72

Date de mise en service: 1973

Prix: 2.450 F HT

au5.04.72

Documentation technique:

9413 A

COMPOSITION DE L'UNITE COLLECTIVE

	Numéro de	FABRICANT		DESIGNATION COMPLETE	Quantité par unité	Prix	Observations
	Nomenclature	Raison Sociale	Référence		collective	HT	
6	6625 14 279 2984 6150 14 279 2983 6625 14 279 2988 6625 14 279 2986 6625 14 279 2985	CHAUVIN ARNOUX	672606=94 670333=73 670339=90 522613=00 521673D00 521673A00	GIGAOHMMETRE MG 2 A ALIMENTATION SECTEUR 120V -220V CORDON ALIMENTATION CORDON SPECIAL "GARDE" CORDON ROUGE AVEC FICHES BANANE CORDON NOIR AVEC FICHE BANANE	1 1 1 1	2450	Avec 2piles non montées (4,5V) et 1 fusible de rechange incorporé pour alimen- tation sec- teur.
1	5935 14 279 2987 6625 14 279 2989	11	522614 - 00 670260A00	ADAPTATEUR COAXIAL MALLETTE DE TRANSPORT AVEC COURROIE	1		

NLM-335

GIGAOHMMETRE TYPE MG 2 A

CHAPITRE I

I - DESCRIPTION GENERALE-

Le GIGAOHMMETRE MG 2A est un appareil électronique à lecture directe, portatif, spécialement conçu pour la mesure des résistances et isolements très élevès, compris entre $30k\Omega$ et $1.000G\Omega$,*sous trois tensions différentes : 50, 250 et 500 V, dans les conditions suivantes:

 $30k\Omega$ à 100 $G\Omega$ en 6 calibres sous 50V.

0,3 M Ω à 1000 G Ω en 6 calibres sous 250 V.

0,3 M Ω à 1000 G Ω en 6 calibres sous 500 V.

L'appareil est normalement alimenté par 2 piles de 4,5 V, modéle standard, type GP7 ou PRIMA, auxquelles peut être substitué un module d'alimentation secteur surmoulé, 120 - 220 V, 45 à 400 Hz, dans le cas des mesures de longue durée.

* Rappel d'unités : 1 G Ω = 1.000 M Ω = 10 $^9\Omega$

Outre les circuits classiques d'ohmmétre électronique, le GIGAOHMMETRE est équipé :

- d'un circuit de contrôle de piles et de tarage
- d'un dispositif de garde, éliminant toute erreur de mesure dûe aux influences de surface ou de terre.
- d'un adaptateur de constante de temps à 2 ou 15 secondes, suivant le type de mesure effectué.
- d'un circuit de décharge automatique, assurant la sécurité de l'opérateur lors des mesures sur circuits capacitifs.

L'ensemble est présenté dans un boitier en matière moulée gris clair, antichoc, formé de 2 parties, réunies par un joint d'étanchéité.

.../...

Chaque appareil est livré avec :	
- 1 Cordon coaxial "gardé", longueur 1m, nº 132	réf : 522613-00
- 1 Adaptateur coaxial	réf : 522614-00
- 1 Cordon rouge, 1m, avec fiches banane, nº 96	réf : 521673D00
- 1 Cordon noir, 1m, avec fiche banane nº 93	réf : 521673A00
- 2 Piles 4,5 V, standard	réf : GP7 LECLANCHE ou "PRIMA"WONDER
- 1 Alimentation secteur I20-220 V 45 à 400Hz	réf : 670333-73
- 1 Cordon, 1m, pour alimentation secteur ci-dessus n° 133	réf : 670339-90
- 1 Fusible de rechange 0,12 A	réf : 522313J00
- 1 Documentation Technique	réf : 9413 A
- 1 Malette en texon noir, avec courroie de transport et mode d'emploi incorporé dans le couvercle	réf : 670260A00

CALIBRES	Tension de mesure 50 V	Tension de mesure 250 ou 500 V			
OADIDABO	30kΩ - 1MΩ 0,3 MΩ - 10 MΩ 3 MΩ - 100 MΩ 30 MΩ - 1 GΩ 300 MΩ - 10 GΩ 3 GΩ - 100GΩ	$0,3 \text{ M}\Omega - 10 \text{ M}\Omega$ $3 \text{ M}\Omega - 100 \text{ M}\Omega$ $30 \text{ M}\Omega - 1 \text{ G}\Omega$ $300 \text{ M}\Omega - 10 \text{ G}\Omega$ $3 \text{ G}\Omega - 1000\text{ G}\Omega$ $30 \text{ G}\Omega - 1000\text{ G}\Omega$			
PRECISION	+ 1,5% de la longueur d horizontale	'échelle, en position			
LONGUEUR D'ECHELLE	110 mm				
INFLUENCE DE LA POSITION		a longueur d'échelle, lorsque pareil est en position verticale			
	sous 50 V	sous 250 ou 500 V			
RESISTANCE INTERNE*	100Ω sur 30kΩ-1MΩ 1kΩ sur0,3MΩ-10MΩ 10kΩ sur 3MΩ -100MΩ 100kΩ sur 30MΩ - 1GΩ 1MΩ sur 300MΩ - 10GΩ 10MΩ sur 3 GΩ - 100GΩ	100 Ω sur0,3 MΩ-10 MΩ 1kΩ sur 3MΩ-100 MΩ 10kΩ sur 30MΩ- 1GΩ 100kΩ sur300MΩ -10GΩ 1MΩ sur 3GΩ - 100GΩ 10MΩ sur30GΩ - 1000GΩ			
Domaine de température	-20°C à + 50°C, avec in longueu	fluence (0,1%°C, de la d'échelle			
Temps de charge sur circuits capacitifs	$-1,5-15-150s/\mu F$ en	mesure = 50V			
Sécurités	a) de l'appareil - Statique par éléments surdimensionnés, un tension de 220V " alternatif" pouvant être appliquée pendant 10 secondes sur un calibre quelconque. - Par fusible "lent"0, 12 A avec alimen-				
	tation secteur. b) de l'Utilisateur				
		e, par décharge auto-			

Intensité maximale débitée dans le circuit extérieur	Comprise entre 10µA et 8 mA suivant calibre
Tension minimale d'alimen- tation	7,5 V en charge, pour un fonctionnement normal
Influence aux champs extérieurs	0,5% de la longueur d'échelle pour un champ de 5 x 10-4 T (5 gauss)
Circuits annexes	-Tarage - Contrôle piles - Garde - Décharge automatique- Visualisation lumineuse de bon fonctionnement.
Transistors utilisés	Appareil: 1 x SFT 244 (Q1) 4 x BC 253 B (Q2-4-6-7) 2 x 2N 2926 (Q3-Q8)- Point jaune 1 x U 235 (Q5) 1 x BC 173 C (Q9) Alimentation statique: 1 x 2N 4921 (Q1A)
Alimentation	- sur piles : 2x4,5 V standard, type " GP7" LECLANCHE ou "PRIMA" WONDER. - sur secteur: 120-220V 45 à 400Hz, par module incorporable, consommation 8VA environ.
Encombrement - Masse	Appareil: 172 x 227 x 113 2,120 kg Mallette: 250 x 250 x 140 1,350 kg

^{*} Aux valeurs de résistance interne figurant dans le tableau, il convient d'ajouter celle du convertisseur qui peut atteindre 3.000 Ω max.

CHAPITRE II

MISE EN OEUVRE

I - CONTROLES PRELIMINAIRES (cf Fig. 1)

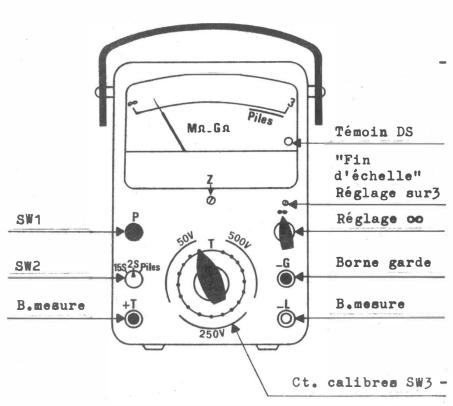


Fig.1 : Face avant de l'appareil

- Au repos, cordons non branchés, l'aiguille doit se trouver sur le repére es, sinon agir sur la vis centrale noire Z.
- S'assurer du bon état des piles en mettant le commutateur SW2 sur "PILES" et en appuyant sur le poussoir "P" (SW1), l'aiguille doit venir se positionner à l'intérieur de la zone "PILES", le témoin néon DS ne devant pas s'allumer.

Dans le cas où celle-ci n'atteint pas la zone, changer les 2 piles disposées au dos de l'appareil (cf fin du CHAPITRE).

Nota : Pour ce contrôle la position du commutateur de calibres SW3 n'a pas d'importance.

vérifier le tarage de l'appareil en mettant SW2 sur
"'2s" et SW3 sur le calibre
choisi, puis s'assurer,
aprés appui sur "P", que
l'aiguille indique ex
dans le cas contraire, agir
sur le potentiomètre expour
obtenir cette déviation.

Positionner ensuite SW3 sur T (TARAGE), et contrôler aprés appui sur "P" que l'aiguille dévie à fond à droite, au point d'échelle 3, sinon régler le potentiomètre "FIN D'échelle" pour obtenir cette valeur.

Au cours des opérations de tarage, vérifier simultanément que le témoin DS s'allume.

NOTA: L'opération de vérification du tarage de l'appareil s'effectue dans toutes les conditions: bornes de sortie libres, ou en cours de mesure avec une résistance ou un circuit présent à ses bornes.

II - MESURES -

L'appareil ayant subi positivement les contrôles préliminaires, et aprés avoir vérifié que le circuit à mesurer n'est pas sous tension :

- Mettre SW2 sur 2S
- Mettre SW3 sur le plus bas calibre (cf "ATTENTION" ci-aprés)
- Relier les cordons de mesure de l'appareil, en tenant compte de la polarité de sortie + T et L, et en utilisant pour cette dernière le cordon coaxial fourni.
- Relier les cordons au circuit à mesurer, en tenant compte éventuellement de la polarité + T et - L, le + T se trouvant au + tension de mesure.
- Appuyer sur "P" et situer la valeur de R sur l'échelle.
- Relâcher " P" et repasser sur le calibre initialement choisi au cours de l'opération de tarage ou sur celui qui paraît le mieux adapté à la valeur de R localisée ci-dessus.
- Appuyer sur "P" et lire directement la valeur de R sur l'échelle en appliquant le coefficient multiplicateur correspondant.
- Relacher "P".
- Lorsque l'on opére sur circuits capacitifs, attendre quelques instants avant de débrancher le circuit mesuré, celui-ci se déchargeant automatiquement sur la base de 15 millisecondes par microfarad chargé.

ATTENTION :

- Cette manoeuvre permet de vérifier s'il n'y a pas d'anomalies sur le circuit mesuré, et en particulier si celui-ci n'est pas le siège d'une tension alternative dangereuse (220V).
- Dans un tel cas, où, pour une cause indéterminée le circuit mesuré est mis sous tension pendant la mesure, il est alors constaté une déviation brutale de l'aiguille vers la droite.
- Dans les mêmes conditions, mais appareil au repos, la même anomalie donne une réaction identique.
- Débrancher alors l'appareil et vérifier à nouveau l'état de la ligne par les moyens usuels.

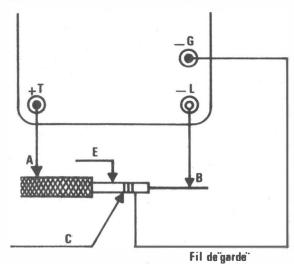
III- PARTICULARITES

But et rôle des accessoires et circuits annexes

Cordon "gardé" nº 132

Ce cordon à relier dans la majorité des cas à la borne -L, a pour but d'éliminer la présence des tensions induites dans le câble par effet d'antenne, et de supprimer toute instabilité de lecture. Toutefois, jusqu'à 1.000MΩ, les cordons normaux rouge et noir, peuvent être utilisés sans inconvénient avec l'adaptateur coaxial.

Circuit de constante de temps


Pour les mesures d'isolement sur câbles ou lignes de télécommunications présentant une capacité non négligeable ou une certaine diaphonie, un commutateur SW2, à 3 positions : 15s - 2s - Piles, a été prévu et permet d'adapter la constante de temps de la mesure à la nature du circuit à tester.

En fonctionnement normal, celle-ci est de 2 secondes, et peut être portée à 15 secondes dans les cas délicats (instabilité de lecture), ce qui a pour effet d'atténuer les oscillations de l'aiguille dues aux tensions parasites induites dans la ligne, et de rendre la lecture plus facile.

Circuit de "garde"

Lorsque l'on effectue une mesure d'isolement sur un câble, il est nécessaire de s'affranchir de certaines influences (extrémité, terre, rayonnement...), en "gardant" les circuits mesurés.

Pour cela, l'on effectue le montage de la Fig 2, la borne - G de l'appareil servant de "garde" au câble mesuré.

- A/ Gaine métallique de protection
- E/ Enrobage isolant
- B/ Ame du câble

Fig.2 : Mesure d'isolement" gardée"

Ce montage permet ainsi d'éliminer les courants secondaires
susceptibles de se développer
seulement le long de la portion
isolante E, en particulier si
celle-ci est courte et si son
état hygrométrique est défectueux.

En l'absence de C, constitué simplement par quelques spires de fil autour de E, l'appareil mesure alors le courant d'isolement I normal entre A et B, plus un courant parasite secondaire i1 dû seulement à la partie défectueuse E, alors que le reste du câble est en bon état. On obtient donc pour un défaut mineur, une lecture d'isolement défectueux, ce qui peut conduire à entreprendre des travaux hors de proportion, eu égard aux vraies dispositions à prendre.

Lorsque l'anneau de garde est en place, cet inconvénient disparait, car le courant parasite il est dérivé par C sur G, lequel est électriquement relié en amont du dispositif de mesure.

Le courant parasite i1 ne participe donc plus à la mesure, seul I, correspondant à l'isolement <u>réel</u> du câble, étant alors mesuré.

Circuit de décharge automatique

Dans le cas où l'appareil doit opérer sur élément capacitif, laissant ainsi une charge en place aprés chaque essai, il est prévu un circuit de décharge automatique, entrant en action dés que le poussoir P est relâché, ce circuit permettant à la capacité correspondante de se décharger, sur la base de $0.015 \text{ s/}\mu\text{F}$.

Il y a donc lieu, après une telle mesure, de laisser l'appareil relié au circuit mesuré pendant un moment, afin que l'élément capacitif perde sa charge complètement.

Remplacement des piles et du fusible

L'accès à ces éléments s'effectue en dévissant les 4 vis centrales retenant le couvercle amovible de la face arrière.

Le remplacement des piles dont les polarités sont repérées sur le fond du boitier, ne pose aucun problème, il en est de même pour le fusible, du type cartouche, qu'il suffit de déviser.

Alimentation secteur

Dans le cas de mesures prolongées, il peut être monté à la place des piles, une alimentation secteur 120 - 220 V 45 à 400Hz; le remplacement des piles par cet accessoire ne pose aucun problème particulier, celui-ci venant se loger normalement à la place de celles-ci, un détrompeur mécanique permettant par ailleurs, la mise en place du module d'alimentation d'une seule manière.

Il suffit alors de brancher le cordon d'alimentation secteur sur la prise disposée à la partie supérieure de l'appareil, la sélection de tension s'effectuant en inversant, aprés l'avoir dévissée, la prise mâle d'alimentation, le chiffre de la tension à utiliser apparaissant à l'extérieur de celle-ci.

Dans ce cas d'alimentation, s'assurer que le fusible cartouche 0,12 A, disposé sur la face Arrière au-dessus des piles, est bien en place, chaque appareil étant livré avec un fusible de rechange disposé au dos, sous la rainure inférieure du logement des piles.

ATTENTION: En cas d'arrêt prolongé de l'appareil, il est recommandé d'enlever les piles.

CHAPITRE III

PRINCIPE - FONCTIONNEMENT

I - PRINCIPE -

L'ensemble opére à partir d'un convertisseur de tension continue C permettant d'élever la tension des piles : 9 V, à trois valeurs de tension différentes : 50, 250 ou 500 V suivant le cas.

L'une de ces tensions est ensuite appliquée à la résistance \underline{Rx} à mesurer, laquelle est montée en série avec un diviseur résistant étalon \underline{R} , aux bornes duquel est branché un amplificateur de mesure \underline{A} .

Un courant, fonction de Rx, traverse l'ensemble, et détermine aux bornes du diviseur étalon une tension qui est le reflet de la valeur de Rx, laquelle est ensuite amenée à une valeur convenable par l'amplificateur A, et traduite en Ω par un galvanomètre M.

Des circuits annexes de TARAGE et de DECHARGE AUTOMATIQUE, non représentés sur la figure, complètent l'ensemble.

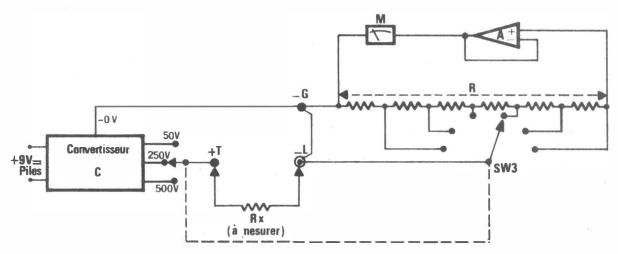


Fig.3 :Schéma de principe du GIGAOHMMETRE MG 2 A

II - FONCTIONNEMENT-

Le GIGAOHMMETRE MG 2A peut se décomposer en 3 circuits principaux qui sont:

- L'alimentation
- L'amplificateur de mesure
- Les circuits annexes

a) Alimentation

L'alimentation est constituée à la base par deux piles plates de 4,5 V montées en série, lesquelles peuvent être remplacées par un bloc "secteur" 120 V - 220 V, 45 à 400 Hz pour les mesures de longue durée.

Celles-ci délivrent la tension nécessaire à un convertisseur équipé :

- D'un transistor oscillateur Q1, fonctionnant entre 6 et 12 kHz suivant calibres.
- d'un ensemble de transformation redressement (T1-CR1) avec témoin de bon fonctionnement : DS.
- d'une chaîne de régulation Q2 Q3 Q4, référencée à la diode Zener CR4Z.
- d'un circuit annexe CR2Z, délivrant une tension stabilisée de 33 V, destinée en partie à l'alimentation de l'amplificateur de mesure.

L'ensemble alimentation - régulation fonctionne de la manière suivante:

Un oscillateur à transistors Q1 travaillant à une fréquence comprise entre 6 kHz (50V), 9kHz (250V) et 12 kHz (500V) environ voit son circuit d'entretien (base) asservi par l'intermédiaire d'un amplificateur Q3 - Q4, à la différence de tension Δ V existant entre la fraction de la tension de mesure issue des diviseurs R12 à R18 et la tension de référence de la diode Zener CR4Z (33V).

Une tension d'erreur Δ V apparaît donc sur la résistance R15 laquelle commande l'amplificateur transistorisé à 3 étages (Q4 - Q3 - Q2).

Le gain global de l'ensemble, qui est d'environ 10.000, assure par la modification de la résistance apparente de Q2 et par voie de conséquence du courant de base de Q1, le contrôle du régime de fonctionnement de l'oscillateur, celui-ci délivrant alors une tension de sortie plus ou moins importante. Cette tension est ensuite redressée par CR1, filtrée C3, visualisée DS, et amenée à la valeur convenable de 50V,250 ou 500 V suivant la position du commutateur de calibres SW3.

On notera dans cet étage le rôle particulier des composants suivants :

- C4 : Filtrage anti-oscillations
- C5 : Assure une régulation de tension synchrone dans le cas des mesures sur circuits capacitifs.
- C6 : Agit en temporisateur, assurant ainsi à la mise sous tension une croissance progressive de la tension de mesure.
- C7: Filtrage complémentaire au niveau du 50 V, afin de réduire au maximum la résiduelle alternative sur la diode Zener CR4Z.
- CR3: Protection base-émetteur Q4
- CR2Z : Permet d'obtenir une tension de 33V, destinée à alimenter l'amplificateur de mesure.
- CR5Z: Délivre une tension stabilisée de 5,1 V pour l'alimentation des diodes CR6 CR7 de l'espace base émetteur de l'étage à courant constant Q9.

Améliore la régulation en fonction de l'état des piles.

R3-C2: Circuit RC jouant le rôle d'une force électromotrice d'appoint, celui-ci se chargeant par le courant de base de Q1 lorsque ce transistor conduit, et alimentant Q2 lorsque Q1 est bloqué.

Pour un régime établi, la tension aux bornes de ce circuit est pratiquement constante durant une période, et s'oppose à la tension induite par L1 aux bornes de L2, la tension résultante déterminant la valeur du courant de base de Q1, et de par la même le transfert d'énergie de la source d'alimentation au circuit de mesure.

- R5 : Détermine le courant de la diode Zener CR5Z.
- R10 : Sert de ballast de sécurité en cas de court-circuit brutal de l'alimentation.

b)Amplificateur de mesure

- Il est constitué par un amplificateur différentiel à double gain (1 ou2) équipé de:
- 1 Transistor double à effet de champ Q5A Q5B, canal N, servant respectivement à la mesure, et à l'asservissement du circuit de sortie au circuit d'entrée.
- 2 Transistors Q6 Q7 montés en amplificateur intermédiaire.
- 1 Transistor Q9 monté en équilibreur, à courant constant, alimenté par la diode Zener CR5Z.
- 1 Transistor Q8 monté en adaptateur de sortie (collecteur commun).

Pour les calibres opérant sur 50 et 500 V, l'ensemble constitue un amplificateur à gain unité, et délivre en sortie une intensité de 480μA sur 350Ω, pour une tension d'entrée max de 80mV pour les calibres opérant sur 250 V, ou 160mV, sur les autres calibres, 50 et 500 V, le potentiométre R21R (Fin d'échelle) accessible de l'extérieur, permettant d'agir sur le gain lorsque le commutateur de calibre SW3 est mis en position "TARAGE": T

Par contre, sur 250 V, un pont diviseur R49 - R49R - R50, branché sur l'émetteurdu transistor de sortie Q8, est mis. en service, et modifièle taux initial de contre réaction (bouclage direct, sortie - entrée donnant un gain unité), pour obtenir dans ce cas précis un gain 2, ajustable par R49R.

L'entrée de l'amplificateur (Q5A) est branchée en permanence aux bornes du diviseur d'entrée R37 à R42, lequel est mis en série avec la résistance Rx à mesurer. Celui-ci est donc traversé par un courant fonction de cette résistance, et c'est la tension développée en tout ou partie sur le diviseur précité qui est amenée à un niveau convenable par l'amplificateur, de manière à actionner le galvanomètre de sortie M, branché à la sortie du transistor Q8.

Quant aux éléments Q5B et Q7, ils sont excités directement à partir du circuit de sortie Q8, et asservissent de ce fait la sortie à l'entrée, de manière à conserver un gain unité constant, ou un gain de 2, comme décrit ci-dessus dans le cas des calibres opérant sur 250 V.

Le réglage du zéro électrique s'effectue par R25P, accessible de l'extérieur, ce réglage ayant pour but de mettre en équilibre les courants de repos de Q5A - Q5B - Q6 et Q7.

Par ailleurs l'on notera que les circuits d'entrée de ces transistors sont affranchis des parasites extérieurs par la présence de filtres RC (R19 - C8, R20 - C9, R27 - C18), lesquels sont entourés d'une ligne de garde portée au potentiel de sortie de Q8. Ceci permet alors d'avoir une "garde flottante", présentant en permanence, par rapport au circuit d'entrée, un équilibre potentiel constant.

Rôle particulier des composants suivants:

C10 : Atténue l'amplitude de la déviation du galvanomètre au moment de l'utilisation.

C13 : Découplage anti-oscillations pour le circuit de contre réaction

C14 : 11 11 11 11 11

c) Circuits annexes

Circuit de tarage de l'appareil

Il est constitué par les résistances R43 - R44T ajustées à $3M\Omega \pm 0.2\%$, lesquelles servent de résistance étalon, l'amplificateur mesurant alors la tension aux bornes de R37 - R38, l'aiguille du galvanomètre devant alors se positionner sur le chiffre 3, à droite du galvanomètre.

Dans le cas contraire, le potentiomètre R21R, "FIN D'échelle", accessible de l'extérieur, permet d'ajuster ce réglage.

Circuit de tarage PILES

Il est constitué par les résistances R 35 - R36 R35 sert de charge à l'alimentation 9V, et R36 de résistance additionnelle au galvanomètre mesurant l'intensité débitée dans le circuit, l'aiguille de ce dernier devant se positionner sur la zone noire "PILES", à droite du cadran.

Ce test correspond à un débit de piles équivalent à 300mA environ de charge, soit la charge maximale en fonctionnement avec bornes d'entrée en court-circuit, il s'effectue avec le commutateur SW2 en position "PILES", poussoir P enfoncé.

Circuit de constante de temps

Ce circuit consiste à mettre en parallèle sur l'entrée de Q5A un condensateur supplémentaire C12, dont l'action "intégrante" élimine les parasites "courts" susceptibles d'être engendrés par diaphonie lors de mesures sur câbles de télécommunications ou circuits capacitifs, ceux-ci entraînant alors des fluctuations de lecture gênantes pour l'opérateur.

Circuit de garde

Comme décrit au Chapitre II, ce circuit élimine, par retour en amont du circuit de mesure, les courants de surface susceptibles de se développer dans les différents circuits, à cause d'isolements imparfaits.

Dans le GIGAOHMMETRE, le circuit essentiel à "garder" est l'entrée de l'amplificateur, matérialisée par la borne - L, laquelle est entourée d'un anneau métallique de sécurité relié à la borne -G, et au - HT (cf. Fig.3).

Par ailleurs, le poussoir de mise en service SW1 voit son armature métallique de fixation également "gardée" et maintenue en permanence au - HT par la résistance R45, ceci évitant toute surprise de ce côté, eu égard à la présence des liaisons directes de ce poussoir avec l'entrée de l'amplificateur.

On notera par ailleurs, la mise au - HT des principales liaisons blindées.

Circuit de décharge automatique

Il est assuré par la résistance R33 lors du relâchement du poussoir P, celle-ci étant branchée entre le + HT et le - par l'intermédiaire du commutateur de calibres SW3 et du poussoir précité.

Alimentation secteur

Ce circuit étant surmoulé n'appelle aucun commentaire particulier, sa consommation est de 8 VA environ, la protection de l'appareil étant dans ce cas assurée par un fusible "lent" de 0,12 A incorporé.

CHAPITRE IV

MAINTENANCE

Le souci de maintenance, qui a prévalu au cours de l'étude de cet appareil afin de le rendre aisément réparable, a amené à le réaliser sous forme de modules préréglés. Les interventions nécessaires consistent donc au remplacement de ceux-ci, aucun réglage n'étant à refaire aprés ces opérations à l'exception toutefois du circuit C, disposé au bas de l'appareil, sur lequel il faut reprendre le gain de l'amplification pour les calibres correspondant à la tension 250 V. Les réglages suivants, effectués en usine, sont donnés à titre d'information dans l'ordre chronologique.

A - Vérification du circuit de TARAGE

Vérifier au pont de mesure que R43 + R44T = $3 M\Omega + 0.2\%$.

B - Vérification de la consommation de l'appareil en régime de court-circuit

- Enlever les piles.
- Mettre le commutateur de fonction SW2 sur 2 s.
- Mettre le commutateur de calibres SW3 sur une position Ω quelconque correspondant à la tension de mesure 500 V.
- Alimenter extérieurement l'appareil par une source de 9 V "continu ", et monter en série avec l'alimentation un milliampèremètre continu 300mA, chute de tension 0,05 V classe 1,5.
- Court-circuiter les bornes + T et G.
- Appuyer sur le poussoir \underline{P} et s'assurer que la consommation ne dépasse pas 300mA.
- Dans le cas contraire, agir sur R1R pour obtenir cette valeur.
- Nota: * Cette caractéristique n'est évidemment pas impérative et l'on peut utiliser un appareil à chute de tension supérieure, il conviendra alors de majorer d'autant la source d'alimentation 9V.

.../...

C -1-Vérification du générateur de tensions

Appareil remis en état normal, alimentation initiale 9 V conservée, procéder de la manière suivante :

Contrôle 500 V

- Laisser le commutateur SW2 sur 2 s et SW3 sur une position quelconque des calibres "500 V".
- Brancher un voltmètre numérique "continu" calibre 500 V, classe 0,2, entre les bornes + T et G, le + T représentant le point chaud.
- Appuyer sur P (SW1) et vérifier que la tension stabilisée délivrée est de 480 V + 0,2 %.
- Dans le cas contraire, agir sur R13P pour obtenir cette valeur.

Contrôle 250 V

- Laisser le commutateur SW2 sur 2s, et mettre SW3 sur une position quelconque des calibres "250 V".
- Conserver le montage du voltmètre numérique, mais calibre 250 V, ou le plus proche.
- Appuyer sur P, et vérifier que la tension stabilisée délivrée est de 240 V + 0,2 %.
- Dans le cas contraire, agir sur R132-P pour obtenir cette valeur.

Contrôle 50 V

- Laisser le commutateur SW2 sur 2s, et mettre SW3 sur une position quelconque des calibres "50 V".
- Conserver le montage du voltmètre numérique, mais calibre 50 V, ou le plus proche.
- Appuyer sur P et vérifier que la tension stabilisée délivrée est de 48 V + 0.2 %.
- Dans le cas contraire, agir sur R17P pour obtenir cette valeur.

2-Vérification du fonctionnement de la régulation

L'appareil étant remis dans l'état normal, alimenté sur source continue extérieure <u>variable entre 7 et 10 V</u>, procéder de la manière suivante :

Contrôle 500 V (-0, - 5%)

- Mettre le commutateur de calibre SW3 sur x0.1 M Ω 500 V.
- Laisser SW2 sur 2s .
- Brancher une résistance de $300k\Omega$ \pm 2% 1 W entre les bornes + T et L.
- Brancher un voltmètre numérique, classe 0,2, calibre 500 V, entre les bornes + T et G.

- Appuyer sur \underline{P} , et faire varier la tension d'alimentation entre 7,5 et 10 V.
- Au cours de cette excursion, s'assurer que la variation constatée sur le 480 V est < 1%.

Contrôle 250 V (- 0, - 5%)

- Mettre le commutateur de calibres SW3 sur x 0,1 M Ω 250 V.
- Conserver les mêmes dispositions que ci-dessus, mais passer sur calibre 250 V, ou le plus proche au voltmètre numérique.
- Refaire les mêmes opérations, et s'assurer que la variation constatée sur le 240 V est < 1%.

Contrôle 50 V (- 0, - 5%)

- Mettre le commutateur de calibres SW3 sur x 0,01 MQ 50 V.
- Conserver les mêmes dispositions que ci-dessus, mais passer sur calibre 50 V au voltmètre numérique.
- Refaire les mêmes opérations et s'assurer que la variation constatée sur le 48 V est < 1%.

D - 1 - Vérification de l'Amplificateur de mesure

L'appareil étant remis dans son état normal, alimenté sur source continue extérieure 9V, procéder de la manière suivante :

- Laisser SW2 sur 2s.
- Mettre le commutateur de calibres SW3 sur une position Ω quelconque.
- Monter en série entre CR2Z et R22 R23 R24 un microampèremètre continu $300\mu\text{A}$, chute de tension 0,05 V, classe 1,5 ou 2.
- Appuyer sur P et lire la consommation de l'amplificateur qui doit être de $150\mu A$.
- Dans le cas contraire, agir sur R31R pour obtenir cette valeur.
- Nota: Le Microampèremètre se branchera facilement entre les deux cossescourt-circuitées par un fil et disposées sur le circuit imprimé supérieur, celles-ci se trouvent au milieu et en bas du circuit, au dessus du galvanomètre, il suffira d'enlever le court-circuit et de brancher l'appareil à la place.

2 - Vérification de la plage de réglage du zéro électrique

L'appareil étant remis dans son état normal, alimenté sur source continue extérieure 9 V ou sur piles, procéder de la manière suivante :

- Laisser SW2 sur 2s.
- Mettre le commutateur de calibres SW3 sur x 0,1 M Ω 500 V .

- Appuyer sur P et agir sur toute la course de R25P (potentiomètre co), on devra obtenir une excursion symétrique minimale de ± 10mm environ autour du point co, l'amplitude "droite" étant seulement contrôlable dans la totalité de la valeur annoncée, la déviation gauche se trouvant limitée par la butée mécanique de l'aiguille.

Dans le cas contraire, agir sur R25R jusqu'à obtenir ce résultat, la résistance R26T pouvant même être mise en court-circuit au cas où l'action de R25R resterait insuffisante.

 Vérifier que le zéro électrique (co) est conservé lorsque l'on passe SW3 sur x 0.01 MΩ = 50 V.

3-Vérification du gain de l'amplificateur

L'appareil étant utilisé dans les mêmes conditions qu'en D2

- Mettre le commutateur de calibres SW3 sur x 0,1 M Ω 500 V.
- Appuyer sur P, et régler le zéro électrique avec R25P (ed
- Passer SW3 sur T (TARAGE) et avec le potentiomètre R21R (Fin d'échelle) se régler sur la valeur 0,3 M Ω , à droite du cadran.

Cas du remplacement du circuit C disposé au bas de l'appareil

Le remplacement de ce circuit impliquant systématiquement de réajuster le gain pour les calibres correspondant à la tension 250 V, il faut aprés avoir effectué les contrôles précédents D1 - D2- D3:

- Mettre l'appareil dans les mêmes conditions qu'en D2
- MettreSW3 sur x $1M\Omega$ 250 V.
- Brancher entre les bornes de mesure + T L, une résistance de 3MΩ + 0,1 %.
- Appuyer sur P et régler R49R pour amener l'aiguille du galvanomètre en Fin d'échelle sur 3.

E - Vérification générale

Avec une boîte de résistances appropriées, vérifier le fonctionnement de l'appareil sur tous les calibres, pour les trois tensions de mesure prévues, et s'assurer que l'ensemble reste dans les limites des caractéristiques annoncées.

F - Vérification du fonctionnement sur alimentation secteur

Remplacer les piles par le module d'alimentation et mettre le cordon d'alimentation en place.

S'assurer que la prise mêle d'alimentation est sur position 120 V et alimenter l'appareil pour cette tension (45 à 400 Hz).

Procéder aux essais de réglage du zéro électrique avec R25P (), du gain de l'amplificateur avec R21R (Fin d'échelle) et des tests prévus en E.

Faire de même sur 220 V, sans oublier d'inverser la partie amovible de la prise d'alimentation.

- Nota: a) A vide, alimenté sous 120 V, la tension de sortie continue délivrée par le module est comprise entre 8,8 et 10,2 V.
 - b) A pleine charge, sous 300 mA, la variation de la tension continue de sortie doit être < 7% par rapport à a).

DEMONTAGE ET REMONTAGE DE L'APPAREIL -

L'appareil étant composé de deux blocs, il suffit pour l'ouvrir et avoir accès aux circuits électriques :

- d'enlever le couvercle mobile de la face arrière en dévissant les 4 vis centrales.
- D'enlever les piles.
- De dévisser les 6 vis à tête monofente apparaissant à la vue de l'opérateur.
- De séparer doucement la face avant de la face arrière, leur écartement étant limité par les deux fils d'alimentation solidaires de la face arrière.

Opérer en sens inverse pour le remontage.

CHAPITRE V

ARTICLES DE NOMENCLATURE

Symbole Circuit	Réf FAB	n° OTAN	Code OTAN FAB	DESIGNATION	Qté	OBSERVATIONS
C1	HE2500-10	5910-14-	F 6202	CONDENSATEUR, FIXE, ELECTROLYTIQUE 2500 µF - 10 V	1	
DS	MN 50	6240-14-	F 0885	LAMPE, A FLUORESCENT	1	
	6 7 0200 - 26	5970-14-286-5670	F 6115	ISOLATEUR, MANCHON pour douille Ø 4 mm	2	
	6 7 020 1- 26	5970-14-286-5669	F 6115	ISOLATEUR, MANCHON pour fiche coaxiale	4	
F1	D1TD0-12	5920-14-218-8890	F 0240	FUSIBLE, A CARTOUCHE O,12 A, fusion retardée	1	
М	670346=15	6625=14-286-5678	F 6115	GALVANOMETRE 480 μA - 30Ω, complet, étalonné, avec cadran indicateur	1	
	2722	5935-14-	F 2001	CONNECTEUR ELECTRIQUE, EMBASE 5 contacts "mâle", fixe, alimentation secteur	1	
PS	670333-73	5625=14=279=2984	F 6115	ALIMENTATION amovible, surmoulé, 120-220V 50Hz	1	
R25P	P50A6P AP310322A 470UM	5905-14-	F 1621	RESISTANCE VARIABLE étanche, $4700 \pm 20\%$ 0,75 W, axe \emptyset 6mm, $1 = 18,5$ mm, méplat 5,5 mm	1	
1						

Symbole Circuit	Réf FAB	n° OTAN	CODE OTAN FAB	DESIGNATION	Qté	OBSERVATIONS
	HB1	5920-14-200-4615	F 0115	SOCLE POUR FUSIBLE D1SH23316 - F 0240 - CEHESS	1	
	640 F	5935-14	F 0290	DOUILLE BANANE femelle, Ø 4 mm	2	
	522615=00	5935-14-286-5674	F 6115	CONNECTEUR ELECTRIQUE EMBASE borne coaxiale de mesure, femelle	1	
	522614-00	5935-14-279-2987	F 6115	ADAPTATEUR, CABLE A CONNECTEUR adaptateur coaxial amovible, pour fiche banane Ø 4 mm	1	
SW1	670202=15	5930-14-286-5672	F 6115	COMMUTATEUR, A POUSSOIR de mise en service, spécialement équipé avec résistance de garde R 45.	1	
SW2	522 7 59 - 15	5930-14-286-5673	F 6115	COMMUTATEUR ROTATIF 4 circuits, 3 positions, étanche, spécialement équipé avec condensa- teur de constante de temps C12, repéré : 15 s - 2 s - PILES	1	
SW3	523406=00		F 6115	COMMUTATEUR ROTATIF 3 circuits, 24 positions, pour sélection des calibres.	1	
	670339-90	6150-14-279-2983	F 6115	CABLE EQUIPE, ALIMENTATION ELECTRIQUE	1	
	52261 3- 00	6625-14-279-2988	F 6115	cordon Electrique, Equipe nº 132, couleur gris, longueur 1m, avec 1 fiche mâle droite Ø 4mm, et 1 fiche mâle coudée 90°	1	

Symbole			Code OTAN			
Circuit	Réf FAB	n° OTAN	FAB	DESIGNATION	Qté	OBSERVATIONS
	521673A00	6625-14-279-2985	F 6115	CORDON ELECTRIQUE, EQUIPE n°93, couleur "noir" longueur 1m, avec 2 fiches banane surmoulées, Ø 4 mm	1	,
	521673D00	6625-14-279-2986	F 6115	CORDON ELECTRIQUE EQUIPE n°96,couleur rouge,longueur 1m, avec 2 fiches banane surmoulées, Ø 4 mm	1	
	670328415	6625-14-	F 6115	PLAQUE IMPRIMEE, EQUIPEE type A, circuit principal, étalonné interchangeable	1	,
	670326A15	6625-14-	F 6115	PLAQUE IMPRIMEE, EQUIPEE type B, circuit secondaire, étalon- né interchangeable.	1	ž*
	672809 - 94	6625-14-	F 6115	PLAQUE IMPRIMEE, EQUIPEE type C, circuit tertiaire non étalonné.	1_	Ť
	DW17-5AB	5355-14-	F 0591	BOUTON isolant, noir, avec index repere blanc, pour axe Ø 6mm, pour commutateur rotatif SW2.	1	
	355955296	6625-14-234-9412	F 6115	BOUTON isolant noir, pour axe 6mm, pour potentiomètre de tarage 🗪 R25P	1	
	356885272	6625-14-234-9411	F 6115	BOUTON isolant noir, avec repère blanc, pour axe 6mm, pour commutateur de calibres SW3	7	
	522229ACO	5930-14-286-5675	F 6115	CAPUCHON DE PROTECTION étanche, caoutchouc noir, pour commutateur à poussoir SW1	1	

Symbole Circuit	Réf FAB	n° OTAN	CODE OTAN FAB	DESIGNATION	Qté	OBSERVATIONS
	670256=00	5975-14-	F 6115	POIGNEE cuir noir, pour transport de l'appareil	1	
	356895z00	5340-14-	F 6115	SUPPORT ELASTIQUE rond, caoutchouc noir	8	
	*				- ,	
	-				,	
						et je

L'appareil étant du type "modulaire", son dépannage s'effectue simplement par remplacement de circuits pré-étalonnés, les caractéristiques ci-dessous étant données pour information.

CARACTERISTIQUES	FAB	Réf FAB	OBSERVATIONS
PILES Pile standard 4,5 V ou	LECLANCHE WONDER	GP7 PRIMA	
CONDENSATEURS 2500 μF - 10 V 0,1 μF + 10 % 250 V 0,22 μF + 20 % 630 V 0,22 μF + 20 % 250 V 0,47 μF + 10 % 250 V 4700 pF + 20 % 400 V 0,1 μF + 20 % 250 V 33000pF + 20 % 250 V	S-NOVEA EFCO EFCO EFCO EFCO EFCO EFCO	POMA POMA	- ou PMA - ou PMA - ou PMA - ou PMA - ou C280 COGECC - ou C280 COGECC
DIODES E 8HZ (S) 1N 973 B(33V) Zener (S) TF 1199 (S) BZY 88C(5,1V) Zener (S) 18 P2 (S)	SILEC MOTOROLA TEXAS-I RTC SESCO	E8HZ 1N973 B TF1199 BZY88C 18P2	
VOYANT Témoin lumineux 60 V	L.I.R.E.	MN	
FUSIBLE Cartouche 0,12 A retardé	CEHESS	D1TD0-12	
INDICATEUR GALVANOMETRIQUE Microampèremètre 480μA-30Ω	C.ARNOUX	670346=15	
TRANSISTORS SFT 244 - PNP (Ge) BC 253 B - PNP (S) 2N 2926PJ - NPN (S) U235 double TEC canal N (S) BC 173 C - NPN (S)	SESCO SILICONIX	2N2926PJ U235	
	Pile standard 4,5 V ou CONDENSATEURS 2500 μF - 10 V 0,1 μF ± 10 % 250 V 0,22 μF ± 20 % 630 V 0,22 μF ± 20 % 250 V 0,47 μF ± 10 % 250 V 4700 pF ± 20 % 400 V 0,1 μF ± 20 % 250 V 33000pF ± 20 % 250 V DIODES E 8HZ 1N 973 B(33V) Zener TF 1199 BZY 88C(5,1V) Zener (S) 18 P2 VOYANT Témoin lumineux 60 V FUSIBLE Cartouche 0,12 A retardé INDICATEUR GALVANOMETRIQUE Microampèremètre 480μA-30Ω TRANSISTORS SFT 244 - PNP BC 253 B - PNP (S) 2N 2926PJ - NPN (S) U235 double TEC canal N (S)	Pile standard 4,5 V	Pile standard 4,5 V

Symbole Circuit	CARACTERISTIQUES	FAB	Réf FAB	Observations
	POTENTIOMETRES Carb-Lin	Military		
R1R R13P R13A-P	50 Ω $+$ 20 % 0, 1 W 47 kΩ $+$ 20 % 0, 25 W 47 kΩ $+$ 20 % 0, 25 W	RTC TRANSCO TRANSCO	E086BC50 E097AC E097AC PR140	*
R17P R21R R25P R25R	$2,2 k\Omega + 20 \% 0, 15 W$ $47 \Omega + 20 \% 0, 3 W$ $470 \Omega + 20 \% 0, 75 W$ $2,5 k\Omega + 20 \% 0, 5 W$ $10 k\Omega + 20 \% 0, 5 W$	RADIOHM MATERA SFERNICE DRALOWID	M3 P50A6P 62WTD=P	
R31R R49R	470 M + 20 % 0, 1 W	DRALOWID RTC	62WTD-P E086BC470	
	RESISTANCES Couche Carbone			
R2	10 Ω <u>+</u> 5 % 0, 25 W	ROSENTHAL	LCA0309	
R3 R4	47 Ω \pm 5 % 0, 25 W 10 kΩ \pm 5 % 0, 25 W 100 Ω \pm 5 % 0, 25 W	ROSENTHAL ROSENTHAL ROSENTHAL	LCA0309 LCA0309 LCA0309	
R5 R6 R7-19-20-45		ROSENTHAL ROSENTHAL ROSENTHAL	LCA0309 LCA0309 LCA0414	
R8 R9 R9A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ROSENTHAL ROSENTHAL ROSENTHAL	LCA0411 LCA0309 LCA0411	
R10 R11=R15 R12	2 MΩ <u>+</u> 2 % 1 W	ROSENTHAL ROSENTHAL DACO	LCA0922 LCA0309 THSA	
R12A R13P R13AP	909 kΩ ± 1 % 0, 25 W cf. Potentiomètres cf. Potentiomètres	ROSENTHAL	SMAO411	
R14 R14A R15	121 k Ω \pm 1 % 0, 25 W 121 k Ω \pm 1 % 0, 25 W id° R11	ROSENTHAL ROSENTHAL	SMA0207 SMA0207	-
R17P	5,62 kΩ + 2 % 0, 5 W cf. Potentiomètres	DACO	THSA	
R19-R20	11,25kΩ <u>+</u> 2 % 1 W id° R7	DACO	THSA	
R21	cf. Résistance couche métal-		,	· = • .
R21R R22 R2 3-R29	cf. Potentiomètres 330 k Ω \pm 5 % 0, 25 W 150 k Ω \pm 5 % 0, 25 W 330 k Ω \pm 5 % 0, 25 W	ROSENTHAL ROSENTHAL	LCA0309 LCA0309	
R24 R25R	cf. Potentiomètres	ROSENTHAL	LCA0309	
R26 R27 R28	$2,2 \text{ k}\Omega + 5\% 0, 25 \text{ W}$ $20 \text{ M}\Omega + 5\% 0, 25 \text{ W}$ $5,6 \text{ k}\Omega + 5\% 0, 25 \text{ W}$	ROSENTHAL ELECTRONIC ROSENTHAL	LCA0309 RA65 LCA0309	
R29 R30	id° R23 8,2 kΩ + 5% 0, 25 W	ROSENTHAL	LCA0309	
R31R R32	cf. Potentiomètres $6.8 \text{ k}\Omega + 5\% = 0.25 \text{ W}$	ROSENTHAL	LCA0309	
R33 R34 R35	6,8 kΩ ± 5% 0, 25 W 10 kΩ ± 5 % 1 W 150 Ω ± 2 % 0,125 W 30 Ω + 5 % 1 W	DRALOWID DACO DRALOWID	SLADO615 THSA	
	JU № ± J 70 W	DKWLOWID	SLAD0615	

Symbole Circuit	CARACTERISTIQUES	FAB	Réf FAB	Observations
R36 R37 R38 R39 R40 R41 R42 R43 R44	20,8 kΩ + 1 % 0,125 W 100 Ω + 0,5 % 0, 25 W 900 Ω + 0,5 % 0, 25 W 9 kΩ + 0,5 % 0, 5 W 900 kΩ + 0,5 % 0, 5 W 900 kΩ + 0,5 % 0, 5 W 9 MΩ + 1 % 0, 5 W 2,98 MΩ + 0,5 % 0, 5 W 10 kΩ + 5 % 0, 25 W ou 22 kΩ + 5 % 0, 25 W ou 47 kΩ + 5 % 0, 25 W ou 56 kΩ + 5 % 0, 25 W ou 1d° R7	DACO DACO DACO DACO DACO DACO ELECTRONIC ELECTRONIC ROSENTHAL	THSA THSA THSA THSA THSA AP1/2 RA70 LCAO309	
R45 R46 R47 R48 R49 R49R	47 kΩ \pm 5 % 0, 25 W 22 kΩ \pm 5 % 0, 25 W 1,3 kΩ \pm 5 % 0, 25 W 1,5 kΩ \pm 5 % 0, 25 W cf. Potentiomètres	ROSENTHAL ROSENTHAL ROSENTHAL ROSENTHAL	LCA0309 LCA0207 LCA0309 LCA0309	
R21	RESISTANCE Couche métallique 287 Ω ± 1 % 0, 25 W	SFERNICE	RCMS-K3	
			, ,	

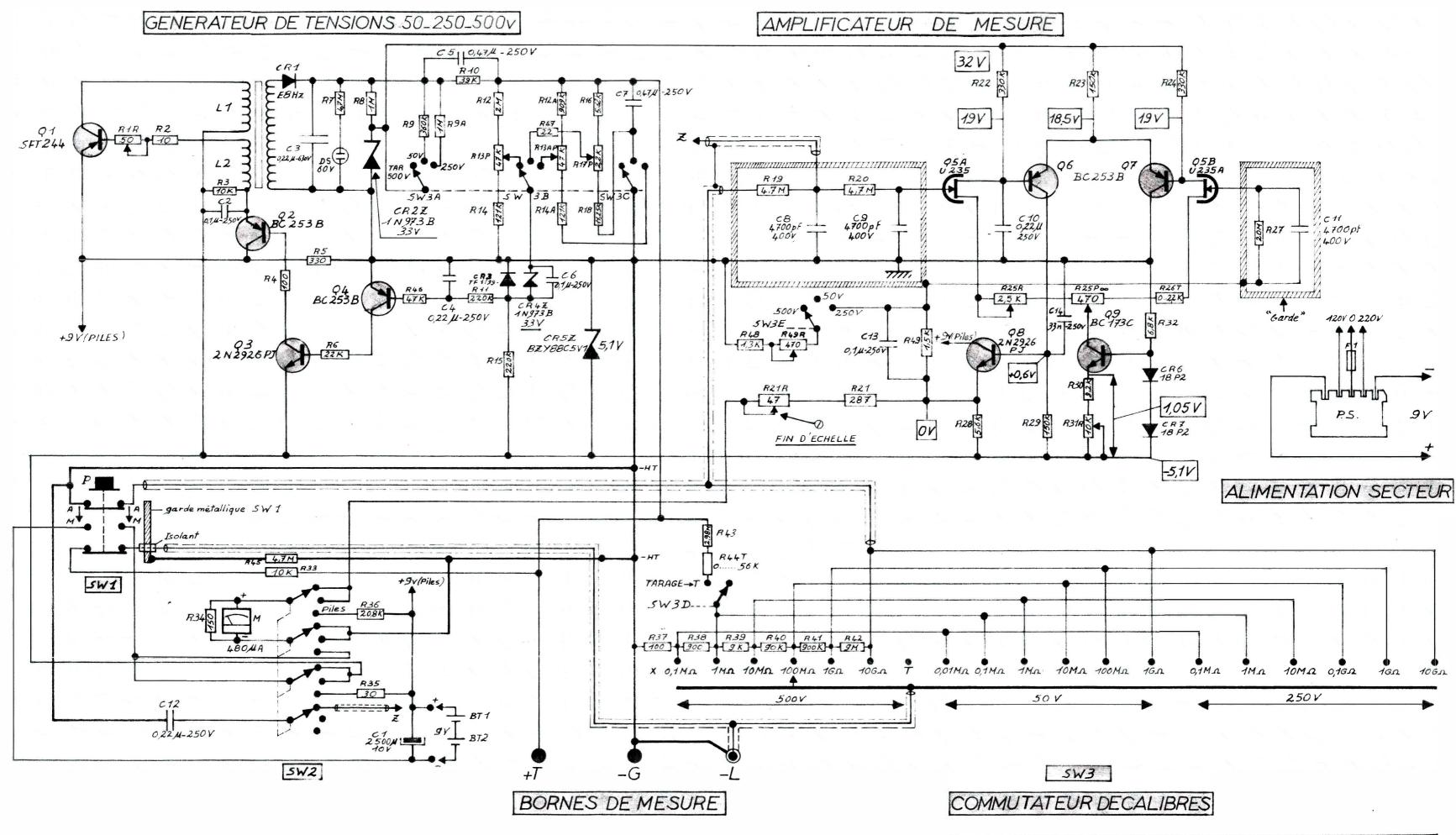


PLANCHE 1
Schema electrique

GIGAOHMMETRE MG2A

NOTA __ le relevé des tensions doit être effectué avecun voltmètre électronique présentant une résistance d'entrée de 100Ma/v. __ Le GIGADHMMETRE à : 5W2sur25. SW3sur un calibre quelconque, sauf position tarage. __ Toutes les tensions sont mesurées par rapport au-HT, sauf celle de 1,05V, prise aux bornes de : R30-R31R.