

NORDMENDE

GLOBETROTTER 808
 Scan by Daniel Doll

Technische Daten / TECHNICAL DATA

Stromversorgung:

POWER:

Verbrauch:
CONSUMPTION:

Bestückung:
SOLID STATE DEVICES:
Kreise, gesamt:
TOTAL-CIRCUITS:
ZF-Kreise:
IF CIRCUITS:

Wellenbereiche:

 RANGES:
Antennen:

ANTENNAE:
Anschlußbuchsen: SOCKETS:

Klangregelung:

TONE CONTROL:
Lautsprecher:
SPEAKER:
Ausgangsleistung:
POWER OUTPUT:

Besonderheiten:

SPECIAL FEATURES:

Gehäuse:
CABINET:

1. 6 Monozellen je $1,5 \mathrm{~V}$ IEC R 20
2. eingebautes Netzteil $110 / 220 \mathrm{~V} \sim$
3. externe Stromversorgung $12-14 \mathrm{~V} \cong$
4. einlegbarer Akku $8 \mathrm{~V} / 2,6 \mathrm{Ah}$
ca. 16 W bei Netzbetrieb und max. Output (1 kHz)
ca. 100 mA bei 50 mW Output (Sinuston
1 kHz, FM-Batteriebetrieb)
37 Transistoren, 37 Dioden,
2 Gleichrichter, 1 IC
9 AM , davon 3 veränderbar durch C
9 FM, davon 3 veränderbar durch Dioden
12 AM bei Bands, davon 3 veränderbar durch C
6 AM - 460 kHz
$6 \mathrm{FM}-10,7 \mathrm{MHz}$
KW-Bänder: 2 AM-Kreise zusätzlich

UKW	87,5 ... 108 MHz	KW 1	1,6	4,2 MHz
MW	515 ... 1650 kHz	KW 2		$11,0 \mathrm{MHz}$
LW	145 ... 420 kHz	KW 3	10,8	$19,0 \mathrm{MHz}$
10-, 11	13/15-, 16-, 19-, 20-,	5-, 31	40/41	49-,

75/80-m-Band

Ferritantenne für M und L
Teleskopantenne für KW-Bereiche und UKW
Genormte TA/TB-Buchse, Außenlautsprecher, Ohrhörerbuchse,
2 Antennenbuchsen FM, AM,
Externe Stromversorgung 12-14 V \cong
Höhenregler, Tiefenregler
(Klang-Netzwerk vor Lautstärkeregler)
$1 \times$ perm. dyn., $128 \times 174 \mathrm{~mm} ; 4 \Omega$ (Mittel-/Tiefton)
$1 \times$ perm. dyn., $57 \mathrm{~mm} ø ; 8 \Omega$ (Hochton)
Batteriebetrieb: 2 W Musik/2 W Sinus
Netzbetrieb: 7 W Musik/4 W Sinus
11 gepreizte KW-Bänder, 3fach-Abstimmung, Kontrolle der Batteriespannung, Abgestimmte HF-Vorstufe für KW-Bänder, Eingebautes Netzgerät 110/220 V ~, Bandbreitenschalter auf AM, Automatische Frequenzkorrektur (AFC) bei FM, Einschaltbarer Produkt-Demodulator zum Empfang von Einseitenband-Sendungen.
Automatische ZF-Verstärkungsregelung, mit Kipphebelschalter umschaltbar auf Handregelung. 2 Koaxantennenbuchsen für UKW und alle anderen Bereiche. Antennentrimmer zur Langdrahtantennenanpassung bei BANDS. Taste zum Umschaltung des LW-Vorkreises von Fe-Antenne auf extern anschließbare Peilsonde für Funknavigation. Einschaltbare Rauschunterdrückung (Squelch) verhindert Störgeräusche bei der Abstimmung zwischen den Stationen. In zwei Stufen ausziehbare Teleskopantenne für UKW und KW-Bereiche. Gewindelöcher im Gehäuseboden zur Befestigung im Cockpit. Geeignet für einseitigen Funkverkehr auf seegehenden Sportbooten.

Breite 400 mm / Höhe 250 mm / Tiefe 120 mm

1. 6 Mono cells of $1,5 \mathrm{~V}$ each IEC R 20
2. built-in power unit 110/220 $\mathrm{V} \sim$
3. external power supply $12-14 \mathrm{~V} \cong$
4. accum. $8 \mathrm{~V} / 2,6 \mathrm{Ah}$
approx. 16 W with operation from built-in power
supply unit and max. output (1 kHz)
approx. 100 mA at 50 mW output (1 kHz sine,
FM-battery operation)
37 transistors, 37 diodes,
2 rectifiers, 1 IC
9 AM, 3 variable by C
9 FM, 3 variable by diodes
12 SW-Bands, 3 variable by C
$6 \mathrm{AM}-460 \mathrm{kHz}$
6 FM - $10,7 \mathrm{MHz}$
SW-Bands: 2 additional AM circuits
 -m-band

Ferrite antenna for M and L
Telescopic antenna for SW, SW Bands and FM
Standard PU/TR socket, external speaker socket, ear phone socket
2 antennae sockets (AM, FM)
External power supply $12-14 \mathrm{~V} \cong$
Bass and treble controls (tone network before the volume control)
$1 \times$ perm. dyn., $128 \times 174 \mathrm{~mm}: 4 \Omega$ (mid/bass)
$1 \times$ perm. dyn., $57 \mathrm{~mm} \varnothing ; 8 \Omega$ (high)
Battery operation: 2 W music/2 W rms
Mains operation: 7 W music/4 W rms
11 bandspread SW bands, 3 -fold tuning, battery test, Selectively tuned RF stage for SW bands, Built-in power unit $110 / 220 \mathrm{~V} \sim$, Bandspread switch for AM, Automatic frequency control (AFC) for FM, Switchable product demodulator for reception of single side band transmissions.
Automatic IF amplification control (AGC) switchable to manual control with a toggle switch. 2 coaxial antenna sockets for FM and all other ranges. Antenna trimmer for long wire antenna matching when switched to BANDS. Key for switching the LW RF stage from ferrite antenna to an externally connected direction finding sonde for radio navigation. Switchable noise suppression (Squelch) prevents interference noise when tuning between stations. Telescopic antenna which can be extended in two stages for FM and SW ranges. Threaded holes in cabinet base for securing in cockpit. Suitable for one way radio telephony traffic on seagoing sports boats.

Width $400 \mathrm{~mm} /$ Height 250 mm / Depth 120 mm

Ausbauanleitung

1. Öffnen des Gerätes

1. Batterien und Netzkabel entfernen.
2. Kreuzschlitzschrauben auf der Rückwand (drei Stück) und auf der Bodenseite (drei Stück) herausdrehen.
3. Rückwand abnehmen.

2. Ausbau des Chassis

1. Tragegriff senkrecht stellen und durch Druck nach unten lösen. Griff entfernen.
2. Schrauben (A) des Tragegriffs herausdrehen
3. Knebel, Einstellknöpfe und die Tasten „Batterie und Beleuchtung" abziehen.
4. Die sechs Chassisschrauben (B) herausdrehen.
5. Nun läßt sich das Chassis aus dem Gehäuse nehmen.

3. Ausbau der Leiterplatte ZF/NF

1. UKW- und LW-Peiltastenknöpfe abziehen.
2. Seilrad des AM-Drehkos abziehen und um 180° gedreht auf den Zapfen am Chassisrahmen stecken.
3. Muttern der Potis abschrauben.
4. Die neun Befestigungsschrauben (C und D) herausdrehen.
5. Netzteil herausziehen (Lasche im Boden des Chassisrahmens herunterdrücken).
6. Rot/schwarze Zwillingsleitungen zum Hochtonlautsprecher Skalenbeleuchtung und Abstimminstrument ablöten.
7. Kabel zum Antennentrimmer C 101 und zur Teleskopantenne ablöten.
8. Antennenplatte aus der Halterung ziehen (Lasche im Chassisrahmen herunterdrücken) und blau-weiße Zuleitung zur LWTaste (Schaltkontakt a2) ablöten.
9. Zuleitung zum Poti für Abstimmspannung (R 662) ablöten (rosa, grünes und graues Kabel).
10. Grüne, rote, grün-weiße Leitungen, graues abgeschirmtes Kabel und schwarze Masseleitung von der KW-Zentrale auf der Leiterplatte HF-Tastensatz ablöten.
11. Leiterplatte ZF/NF herausziehen und um 90° nach unten klappen.

4. Ausbau der KW-Zentrale

1. Skalenseil für Trommelskala abnehmen.
2. Transparente Skalenabdeckung durch Herausdrehen der zwei Schrauben entfernen.
3. Je zwei Schrauben auf der Oberseite (E) und auf dem linken Chassisrahmen herausdrehen.
4. Schrauben für Achslager des Trommelschalters herausdrehen.
5. Schraube für Trommelskala lösen.
6. Kabel ablöten (s. Pos. 10 Ausbau der Leiterplatte ZF/NF).
7. KW-Zentrale nach links herausziehen.

Dismantling instructions

1. Opening the receiver
2. Remove the batteries and mains cable.
3. Remove the Philips head screws from the rear cover and the base plate (six in all).
4. Take off the rear cover.

2. Taking out the chassis

1. Set the carrying handle to the vertical position and release it from the side screws by pressing downwards. Remove the grip.
2. Remove the carrying handle screws (A).
3. Take off the adjustment knobs, the Jack-switch knob and the buttons "Battery and Illumination".
4. Remove the six chassis screws (B).
5. The chassis can be withdrawn from the casing

3. Removal of the IF/AF printed circuit board

1. Remove the FM and Peil knobs.
2. Remove the drive cord wheel of the AM variable capacitor, turn it through 180° and place it on the pivot on the chassis frame.
3. Unscrew the nuts on the potentiometers.
4. Remove the nine securing screws (C and D).
5. Remove the power unit (depress the plastic catch at base of chassis frame).
6. Unsolder the twin red/black leads to the high tone loudspeaker, scale illumination and tuning instrument.
7. Unsolder the cables to the antenna trimmer G 101 and telescopic antenna.
8. Pull the antenna p.c.b. out of the holder (depress the plastic catch in the chassis frame) and unsolder the blue-white lead to the LW push-button (switch contact a2).
9. Unsolder the leads to the tuning potentiometer R 662 (pink, green and grey cables).
10. Unsolder the green, red, green-white leads the grey screened cable and the black earth lead which run from the HF key-set p.c.b. to the SW-turret.
11. Pull out the IF/AF p.c.b. and swing it under by 90°.

4. Removal of the SW-Turret

1. Remove the drive cord for the drum scale.
2. Remove the transparent scale cover by taking out the two screws.
3. Remove the two screws each from the upper and left hand chassis frame.
4. Remove the retaining screws for the axle of the drum switch.
5. Loosen the screw for the drum scale.
6.
7. Take the SW-turret out from the left

Seilführung Trommelskala - Cord drive for drum scale

Seillänge von Öse zu Öse ca. 1650 mm
Cord length approx. 1650 mm .

Leiterplatte KW-Oszillator
P.C.B. SW oscillator

Gedruckte Seite - Printed side

Leiterplatte Vorkreis und Mischer P.C.B. RF and Mixer

Gedruckte Seite - Printed side

Abgleich-Lageplan KW-Band Alignment position plan SW-Bands

Abgleichvorschrift für KW-Bänder

	Lautstärkeregler aufdrehen, Meßsender ($\mathrm{fe}=2 \mathrm{MHz}$) über 10 nF anklemmen an Punkt (k). Mit L 168 2,46 MHz -Oszillator auf Maximum einstellen. Danach F 007 und F 006 auf maximalen Output abgleichen Meßsender über 20 pF an Teleskopantenne anschließen. Teleskopantenne eingeschoben.
Eichung:	49-m-Band einschalten. Drehko ganz eindrehen Meßfrequenz (Quarz) $=\mathbf{5 , 8 6} \mathbf{~ M H z}$. L 873/874 au Maximum. Meßfrequenz (Quarz) $=\mathbf{6 , 1} \mathbf{M H z}$. Drehko so weit her ausdrehen, bis $\mathrm{fe}=\mathbf{6 , 1} \mathbf{~ M H z}$ empfangen wird.
	Achtung! Die so gefundene Drehkostellung wird beim Abgleich sämtlicher Bereiche benötigt und darf nicht verändert werden! Skalenzeiger auf Eichmarke $\mathbf{6 , 1} \mathbf{~ M H z}$ justieren.
Abgleich:	Die Oszillatorspulen O, Zwischenkreisspulen Z und Vorkreisspulen sind in den nachfolgenden Bereichen mit den jeweils angegebenen Spulen L .../... auf Maximum einzustellen; HF-Pegel dabei ständig reduzieren, damit Optimum einwandfrei gefunden werden kann.

75/80-m-Band

Bereich 3,48 ... $4,06 \mathrm{MHz}$
Abgleichfrequenz $3,78 \mathrm{MHz}$

49-m-Band

Bereich 5,86 ... 6,3 MHz
Abgleichfrequenz 6,1 MHz
41/40-m-Band
Bereich 6,9 ... $7,41 \mathrm{MHz}$
Abgleichfrequenz $7,17 \mathrm{MHz}$
31-m-Band
Bereich 9,4 ... 9,86 MHz
Abgleichfrequenz $9,65 \mathrm{MHz}$

25-m-Band

Bereich 11,59 ... 12,07 MHz
Abgleichfrequenz $11,85 \mathrm{MHz}$

20-m-Band

Bereich 13,88 ... 14,44 MHz
Abgleichfrequenz $14,18 \mathrm{MHz}$
19-m-Band
Bereich 14,92 ... 15,58 MHz
Abgleichfrequenz $15,3 \mathrm{MHz}$
16-m-Band
Bereich 17,6 ... 18 MHz
Abgleichfrequenz $17,82 \mathrm{MHz}$

13/15-m-Band

Bereich 20,82 ... 21,92 MHz
Abgleichfrequenz $21,42 \mathrm{MHz}$
11-m-Band
Bereich 25,35 ... 26,4 MHz
Abgleichfrequenz $25,9 \mathrm{MHz}$

10-m-Band

Bereich 26,8 ... 29,9 MHz
Abgleichfrequenz $28,45 \mathrm{MHz}$

O L 871/872
V L 811/812
L 841/842
O L 873/874
$\checkmark \quad$ L 813/814
L 843/844
L 875/876
$\vee \quad L 815 / 816$
Z L 845/846
L 877/878
$\checkmark \quad$ L 817/818
Z L 847/848
O L 879/880
\checkmark L 819/820
Z L 849/850
O L 881/882
V L 821/822
Z L 851/852
O L 883/884
\checkmark L 823/824
Z L 853/854
O L 885/886
V L 825/826
Z L 855/856
L 887/888
V L 827/828
Z L 857/858
O L 889/890
V L 829/830
Z L 859/860
O L 891/892
\checkmark L 831/832
Z L 861/862

Bei Spiegelfrequenz-Kontrolle beachten:

Im 40- und 19- ... 10-m-Band schwingt der Oszillator unterhalb der Empfangsfrequenz, in den übrigen Bändern oberhalb der Empfangsfrequenz.

XI XIX VIII VII VI V IV III II I

I \cdots IV

V $\cdots \mathrm{XI}$

L	Vorkreise pre stage circuits																				
	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831
	426.360	424.360	424.361	424.361	424.362	424.362	424.363	424.363	424.364	424.364	424.365	424365	424.368	424.366	424.367	424.367	424.368	424.368	424.369	424.369	424.370

3 or 10 V .

nordmende
SW-Tuner 589.070

Leiterplatte Reglereinheit P.C.B. Control unit

Pegeldiagramm

 Level diagram| - Meßsender ($\mathrm{fm}=400 \mathrm{~Hz}, \mathrm{~m}=30 \%$) über Einstrahlrahmen: | A LW | $\begin{aligned} & 170 \mathrm{kHz} \\ & 390 \mathrm{kHz} \end{aligned}$ | $\begin{aligned} & 190 \mu \mathrm{~V} / \mathrm{m} \\ & 100 \mu \mathrm{~V} / \mathrm{m} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| MeBsender ($\mathrm{fm}=400 \mathrm{~Hz}, \mathrm{~m}=30 \%$) über 20 pF an eingeschobene Antenne: | A MW | $\begin{array}{r} 555 \mathrm{kHz} \\ 1480 \mathrm{kHz} \end{array}$ | $\begin{aligned} & 80 \mu \mathrm{~V} / \mathrm{m} \\ & 45 \mu \mathrm{~V} / \mathrm{m} \end{aligned}$ |
| - Signal generator ($\mathrm{fm}=400 \mathrm{~Hz}$, $\mathrm{m}=30 \%$) over dummy antenna: | - SI | $\begin{aligned} & 1,7 \mathrm{MHz} \\ & 3,9 \mathrm{MHz} \end{aligned}$ | $\begin{gathered} 10,0 \mu \mathrm{~V} \\ 5,0 \mu \mathrm{~V} \end{gathered}$ |
| Signal generator ($\mathrm{fm}=400 \mathrm{~Hz}$, $\mathrm{m}=30 \%$) over 20 pF to retracted telescopic antenna: | - SIII | $\begin{array}{r} 5,1 \mathrm{MHz} \\ 10,0 \mathrm{MHz} \end{array}$ | $4,0 \mu \mathrm{~V}$ $3,0 \mu \mathrm{~V}$
 $4,0 \mu \mathrm{~V}$ |
| MeBsender ($\mathrm{fm}=400 \mathrm{~Hz}, \mathrm{~m}=30 \%$) an V 101. | | $17,9 \mathrm{MHz}$ | 3,0 0 V |
| Signal generator ($\mathrm{fm}=400 \mathrm{~Hz}, \mathrm{~m}=30 \%$) on V 101 | | | |
| Baßregler und Höhenregler: rechter Anschlag | \square | 80 m | 1,10 $\mu \mathrm{V}$ |
| Bass control: fully clockwise | | 49 m | 0,90 $\mu \mathrm{V}$ |
| Treble control: fully clockwise | | 40 m | 0,90 $\mu \mathrm{V}$ |
| | | 31 m | 0,80 $\mu \mathrm{V}$ |
| Bandwidth: Setting "narrow" | | 25 m | $0,70 \mu \mathrm{~V}$ |
| Meßwerte, bezogen auf 6 dB S/R Verhältnis | ■ | 19 m | 0,60 $\mu \mathrm{V}$ |
| Measured results with reference to | \square | 16 m | 0,60 $\mu \mathrm{V}$ |
| $6 \mathrm{~dB} \mathrm{S/N}$ ratio | \square | 15 m | 0,35 $\mu \mathrm{V}$ |
| | \square | 11 m | 0,32 $\mu \mathrm{V}$ |
| | \square | 10 m | 0,32 $\mu \mathrm{V}$ |
| | Toleranz ± 20 \%
 Tolerance $\pm 20 \%$ | | |

Reglereinheit P.C.B. Control unit
 B 590.024

Gedruckte Seite - Printed side

Leiterplatte HF-Tastensatz - P.C.B. RF key board
Gedruckte Seite - Printed side 590.025

U-FM Bands K 3-SW 3

AM-HF-Abgleich Meßsenderkabel mit R=120 Ω abschlieBen.

AM	Taste Key	Meßsender-Anschluß Generator connection	Frequenz des Meßsenders und Zeigerstellung Frequency of generator and pointer position	Osz. osc.	Vorkreis bzw. Zwischenkreis RF or Intermediate cct. respectively	Bemerkung Remarks
			$\begin{gathered} \mathrm{MHz} \\ \mathbf{0 , 1 4 5} \end{gathered}$			Zeiger-Endmarke Pointer end mark
Langwelle Long wave $145-420 \mathrm{kHz}$	L	Mit Koppelschleife auf Ferritstab einstrahlen Radiate to ferrite antenna/ over a coupling coil	$\begin{aligned} & \mathbf{0 , 1 6 0} \\ & 0,390 \\ & 0,160 \\ & 0,390 \end{aligned}$	$\begin{aligned} & \text { L } 186 \\ & \text { C } 186 \end{aligned}$	$\begin{aligned} & \text { L } 128 \\ & \text { C } 128 \end{aligned}$	Abgleichfolge beachten! Observe alignment sequ.! Abgleich wiederholen bis keine Verbesserung erzielt wird Repeat alignment until no further improvement is achieved Äußeres Maximum Core upper maximum
Langwelle Long wave	$\stackrel{\mathrm{L}+}{\text { Peilen }}$	Meßsender über 51 pF an V 101	$\begin{aligned} & 0,160 \\ & 0,390 \end{aligned}$		$\begin{aligned} & \mathbf{L} 127 \\ & \text { C } 127 \end{aligned}$	
Mittelwelle Medium wave $515-1620 \mathrm{kHz}$	M	Mit Koppelschleife auf Ferritstab einstrahlen Radiate to ferrite antenna over a coupling coil	$\begin{aligned} & 0,555 \\ & 1,480 \\ & 0,555 \\ & 1,480 \end{aligned}$	$\begin{aligned} & \mathrm{L} 181 \\ & \mathrm{C} 181 \end{aligned}$	$\begin{aligned} & \text { L } 116 \\ & \text { C } 116 \end{aligned}$	
Kurzwelle 1 Short wave 1 $\mathbf{1 , 5 8}-4,2 \mathrm{MHz}$	KW 1 SW 1	über 20 pF an V 100 over 20 pF to $\vee 100$	$\begin{aligned} & 1,7 \\ & 3,9 \\ & 1,7 \\ & 3,9 \end{aligned}$	$\begin{aligned} & \mathrm{L} 166 \\ & \mathrm{C} 166 \end{aligned}$	$\begin{aligned} & \mathrm{L} \text { 106, L } 136 \\ & \mathrm{C} \text { 106, C } 136 \end{aligned}$	
Kurzwelle 2 Short wave 2 4,1-11 MHz	KW 2 SW 2	über 20 pF an V 100 over 20 pF to $\vee 100$	$\begin{array}{r} 5,1 \\ 10,0 \\ 5,1 \\ 10,0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{L} 171 \\ & \mathrm{C} 171 \end{aligned}$	$\begin{gathered} \text { L 107, L } 137 \\ \text { C114 } \\ \hline \end{gathered}$	
Kurzwelle 3 Short wave 3 10,8-19 MHz	$\begin{aligned} & \text { KW } 3 \\ & \text { SW } 3 \end{aligned}$	über $\mathbf{2 0} \mathrm{pF}$ an V 100 over 20 pF to $\vee 100$	$\begin{aligned} & 11,5 \\ & 17,9 \\ & 11,5 \\ & 17,9 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { L } 167 \\ & \text { C } 169 \end{aligned}$	L 108, L 138	$\xrightarrow[\text { L }]{\stackrel{L}{2} 108}$ lower maximum

FM-HF-Abgleich
Outputmeter parallel zum Lautsprecher.
Vor Abgleich Zeiger justieren auf Endmarke $=0 \mathrm{~mm}$
(linker Anschlag)
FM-Meßsenderkabel mit $R=60 \Omega$ abschließen.

FM-RF-Alignment
Connect output meter parallel to loudspeaker. Before alignment set pointer to the end mark $=0 \mathrm{~mm}$ (left hand stop).
Terminate generator cable with $\mathrm{R}=60 \Omega$.
Ontor

Frequenz Frequency	Abstimmspannung Tuning voltage	Oszillator Oscillator	Vorkreis RF stage	Bemerkung Remarks
$\begin{array}{r} 87,3 \mathrm{MHz} \\ 108,5 \mathrm{MHz} \end{array}$	$\begin{gathered} 2,2 \mathrm{~V} \pm 0,01 \mathrm{~V} \\ 22 \mathrm{~V} \pm 0,1 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{L} 51 \\ & \mathrm{C} 51 \end{aligned}$		L 51 unteres Max. lower max.
$\begin{array}{r} 89 \mathrm{MHz} \\ 106 \mathrm{MHz} \end{array}$			$\begin{aligned} & \mathrm{L} 21, \text { L } 31 \\ & \mathrm{C} 21, \mathrm{C} 31 \end{aligned}$	L 21 unteres Max. lower max. L 31 oberes Max. upper max.

Im Bedarfsfall: Einstellung der Eckfrequenzen L 51, C 51.
Achtung: Auch bei einer nur kleinen Frequenzkorrektur des Oszillators, müssen - wegen der hohen HF-Selektion - alle anderen Abstimmkreise ebenfalls nachgeglichen werden.
Note: Even when only a small frequency correction of the oscillator is necessary, all other tuned circuits must be aligned. This is due to the high RF selectivity.

AM-Abgleichpunkte - Alignment points
 Schaltteilseite - Component side

Abgleichanweisung

Erforderliche Meßgeräte

1. AM-FM-MeBsender	z. B. NM RPS	3302
2. Universal Wobbler	2. B. NM SW	3330
3. Oszilloskop	z. B. NM SO	3311, SO 3312
4. Outputmeter		
5. Hochohmiges Voltmeter	$\mathrm{Re} \geq 10 \mathrm{M} \Omega$	
6. Frequenzzähler	$\begin{aligned} & \text { 2. B. NM DIC } \\ & \text { NM AC } \end{aligned}$	$\begin{aligned} & 3356 \\ & 3358 \end{aligned}$

Ruhestrom-Einstellung

Stromversorgung: Batterieanschluß 9 V
Gerät einschalten und Lautstärkeregler auf Linksanschlag.
Taste U drücken, kein Eingangssignal.
Brücke(a) auttrennen.
Mit Regler R 517 auf 10 mA einstellen.
(Bei Netzbetrieb [18 V] R 517 auf 5 mA einstellen.)
Stromaufnahme bei Batteriebetrieb
AM ca. $75 \mathrm{~mA} / \mathrm{FM}$ ca. 100 mA
Netzteil einstellen
Spannungsversorgung über den Netztrafo herstellen.
Voltmeter an MeBpunkt(b).
Mit Regler $R 614$ auf $4,4 \mathrm{~V}$ einstellen.
$2,2 \mathrm{k} \Omega$ Widerstand von Punkt (C) nach Masse legen.
Mit Regler R 605 muB die Spannung von $9,1 \mathrm{~V}$ eingestellt werden.
Widerstand entfernen.
FM-Spannungsabgleich
FM-Taste drücken. Voltmeter $\mathrm{Ri} \geqq 1 \mathrm{M} \Omega$ an Schleifer des Abstimmpoti R662(e) und Masse anklemmen.
Frequenz des Wandler U 655 mit Frequenzzähler auf 76 ... 78 kHz einstelien.
FM-Zeiger auf linken Anschlag einstellen. Mit Regler R 656 FM-Unterspannung auf $2,2 \mathrm{~V}$ abgleichen.
FM-Zeiger auf rechten Anschlag einstellen. Mit Regier R 657 FM-Oberspannung auf 22 V abgleichen.
Abgleich mehrmals wiederholen. bis die geforderten Spannungswerte stimmen. Den Abgleich stets mit R 656 (2,2 V) beenden.

FM-ZF-Abgleich
Oszilloskop bei $\mathrm{AM}=460 \mathrm{kHz}$ über Höhenabsenkung $1,5 \mathrm{k} \Omega / 4,7 \mathrm{nF}$ anschlließen.

Alignment instructions

Instruments required

1. AM-FM Signal generator
$\begin{array}{ll}\text { 1. AM-FM Signal generator } & \text { i. e. NM RPS } 3302 \\ \text { 2. Universal sweep generator } & \text { i. e. NM SW } 3330\end{array}$
2. Oscilloscope
3. Output meter
4. High resistance voltmeter
5. Frequency counter
$R e \geqq 10 M \Omega$
i. e. NM DIC

Adjustment of quiescent current
Power supply: Battery connected 9 V
Switch on receiver and set volume control fully anti-clockwise.
Depress key U, no input signal
Open circuit bridge (a)
Adjust for 10 mA with R 517
At mains operation [18 V] adjust R 517 for 5 mA .)
Current consumption at battery operation
AM approx. $75 \mathrm{~mA} / \mathrm{FM}$ approx. 100 mA
Power unit adjustment
Power receiver over the mains transformer.
Connct voltmeter to testpoint (b).
Adjust for $4,4 \mathrm{~V}$ with R 614.
Connect a $2,2 \mathrm{k} \Omega$ resistor from point (C) to earth.
The voltage must be adjusted to $9,1 \mathrm{~V}$ with R 605 .
Remove the resistor
FM voltage alignment
Depress the FM key. Connect a voltmeter of $\mathrm{Ri} \geqq 1 \mathrm{M} \Omega$ between the slider of the tuning potentiometer R 662 (e) and earth.
With the frequency counter, set the frequency of the converter $U 655$ to $76 \ldots 78 \mathrm{kHz}$.
Set the FM pointer to the left hand stop. With R 656 align the FM under voltage to $2,2 \mathrm{~V}$.
Set the FM pointer to the right hand stop. With R 657 align the FM over voltage to 22 V .
Repeat the alignment until the voltage values required are attained. The alignment must always finish with adjustment to R 656 (2,2 V).

$\underset{A M-I F}{A M-Z F}$	TasteBereich Key Range	Zeiger Pointer	Anschluß / Connection		Abgleichpunkte Alignment point max. output	Bemerkung Remarks
			Wobbler Wobbulator	Oszilloskop Oscilloscope		
AM 人 $\mathbf{=} \mathbf{4 6 0} \mathrm{kHz}$ Mittenfrequenz wird durch Resonator F 258 bestimmt Mid frequency is determined by resonator F 258	Bands 0 -Stellung	linker Anschlag left pos.	über 10 nF an Basis V 161 (9) over 10 nF to base of $V 161$	0	$\begin{aligned} & \text { F } 257 \\ & \text { F } 259 \\ & \text { F } 260 \end{aligned}$	Vor Abgleich Kerne F 255 + F 256 herausdrehen. Bandbreite auf „breit" schalten. Auf symmetrische Kurvenform abgleichen. Before alignment turn out the cores of F $255+$ F 256. Switch the bandwidth to wide, align for symmetrical curve shape.
				(1)	$\begin{aligned} & \text { F } 255 \\ & \text { F } 256 \end{aligned}$	Bandbreite auf "schmal" stellen. Nach erfolgtem Abgleich auf breit schalten. Durchlaßkurve muß symmetrisch breit werden. Set the bandwidth to narrow, after completion of alignment switch to wide. The response curve must be symmetrical wide.

BFO-Abgleich

BFO einschalten. BFO-Regler auf „Mitte" stellen.
Mit L 308 Schwebungsnull-Marke auf Kurvenmitte Durchlaßkurve stellen (in Stellung „Breit").
Mit R 302 auf max. Schwebungsamplitude stellen.
Durch Drehen des BFO-Reglers an den linken bzw. rechten Anschlag muß die Schwebugsmarke auf die linke bzw. rechte Flanke der Durchaßkurve rutschen.

BFO-NF-Sinusform

Mit Sender (ca. $10 \mu \mathrm{~V}$) auf max. Output stellen, Modulation abschalten - BFO einschalten und mit BFO-Poti R 3121 kHz Sinus einstellen ($+10 \%$). Mit R 302 auf sauberen Sinus abgleichen.

Handregelung MGC

V 301 einschalten, Signal 1 mV an V 101 über 20 pF, Handregelung (R 221) voll aufdrehen, NF-Sinus an V 598 darf nicht verzerrt sein. Wird der Regler R 221 ganz zurückgedreht, muB der NF-Pegel sich verringern.

Squelch

Squeich-Schalter V 340 einschalten. Sender-Ausgangsspannung (moduliertes Signal) zurückdrehen bis NF-Signal an V 598 schlagartig verschwindet. Sender-Ausgangsspannung wieder vergrößern, NF-Signal muß schlagartig wieder an $V 598$ stehen
Einschaltschwelle mit R 344 einstellen.

Alignment of BFO
Switch on the BFO control to mid-position.
With L 308 bring the zero-beat marker to the centre of the characteristic curve (in the "Broad" position).
Adjust for max. beat amplitude with R 302 .
When the BFO control is rotated to the left and right hand stops respectively, the beat marker must move to the left or right hand flank of the characteristic curve accordingly.
BFO-LF sine shape
With a generator signal (approx. 10 uV) adjust for max. output, switch off the modulation - switch on the BFO and with the BFO potentiometer R 312 adjust for a 1 kHz sine signal ($+10 \%$). Adjust R 302 for a clean sine wave signal.

Manual control MGC
Switch on V 301, signal 1 mV over 20 pF on V 101 , set the manual control fully clockwise (R 221), the LF sine wave on V 598 must not be distorted. When the control is returned to the anti-clockwise position, the LF level must reduce.

Squelch

Switch on the Squelch switch V 340. Reduce the generator output voltage (modulated signal) until the LF signal on $V 598$ suddenly disappears. Increase the generator output voltage again, the LF signal must suddenly appear again on $V 598$.
Adjust the switching-on threshold with R 344.
AM-IF-Alignment

AM-IF-Alignment
Connect oscilloscope for $\mathrm{AM}=460 \mathrm{kHz}$ over de-emphasis $1,5 \mathrm{k} \Omega / 4,7 \mathrm{nF}$

