Service • Information

Scan by Daniel Doll

Technische Daten TECHNICAL DATA

Stromversorgung:

POWER SUPPLY:

Verbrauch:
POWER CONSUMPTION:
Bestückung:
SOLID STATE DEVICES:

Kreise:

CIRCUITS:

ZF-Kreise:

IF-CIRCUITS:
Wellenbereiche: RANGES:

Verstärkungsregelung:

AVC:
Antennen:
ANTENNAS
ANTENNAS:

Anschlußbuchsen:
INPUT JACKS:

Klangregelung:

SOUND CONTROL:
Gegenkopplung:
NEGATIVE FEEDBACK:

Lautsprecher:
 SPEAKER:

Max. Ausgangsleistung:

MAX. OUTPUT:

Gehäuse:

CABINET:

Besonderheiten:
SPECIAL FEATURES:

5 Monozellen je 1,5 V
bzw. Autobatterie 6 oder 12 V bzw. Nordmende-Netzgerät $7,5 \mathrm{~V}$

70 mA bei 50 mW Output
(Sinuston 1 kHz)
11 Transistoren, 5 Ge-Dioden,
2 Si-Dioden, 1 Se-Diode
7 AM - davon 2 veränderbar durch C
13 FM - davon 2 veränderbar durch L
$5 \mathrm{AM}-460 \mathrm{kHz}$
$10 \mathrm{FM}-10,7 \mathrm{MHz}$

UKW	$87 \ldots$	104 MHz	
MW	$515 \ldots$	1650 kHz	
LW	$145 \ldots$	260 kHz	
KW	$7 \ldots$	18 MHz	
49-m-Band	5,95	\ldots	$6,2 \mathrm{MHz}$

wirksam bei AM auf 2 ZF -Stufen und zusätzliche Dämpfungsdiode
Ferritantenne für MW und LW
Teleskopantenne für UKW und KW Rahmenantenne für 49-m-Band
für TA/TB (genormt),
1 Außenlautsprecher/Kopfhörer,
Autohalterung, Autoantenne,
externe Stromversorgung max. 7,5 V
Höhenregler und Baßschalter
wirksam vom Ausgangsübertrager auf die Basis des Treibertransistors
permanent dynamisch, $13 \times 18 \mathrm{~cm}, 4,5 \Omega$

2 W , bei Autobetrieb 4 W

Breite: 295 mm
Höhe: 190 mm
Tiefe: $\quad 93 \mathrm{~mm}$
Kunststoff, gepolstert
5 Wellenbereiche. Gespreiztes 49-m-Band. Duplexantrieb AM-FM. Mesa-Transistoren im UKW-Baustein. Stabilisierte Arbeitspunkte der Transistoren. Ständige Kontrolle der Batteriespannung durch Anzeigeinstrument. Permanente Skalenbeleuchtung bei Anschluß des Nordmende-Netzgerätes oder der Autohalterung 969.181 A.

5 flashlight cells of 1,5 V each
resp. car battery 6 or 12 V
resp. external power supply unit, $7,5 \mathrm{~V}$
70 mA at 5 mW output
($1 \mathrm{kc} / \mathrm{s}$ sine)
11 transistors, 5 Ge-diodes,
2 Si-diodes, 1 Se -diode
7 AM; 2 variable by C
13 FM; 2 variable by L
5 AM - $460 \mathrm{kc} / \mathrm{s}$
$10 \mathrm{FM}-10,7 \mathrm{Mc} / \mathrm{s}$

FM	87	\ldots	$104 \mathrm{Mc} / \mathrm{s}$
AM	515	\ldots	$1650 \mathrm{kc} / \mathrm{s}$
LW	$145 \ldots$	$260 \mathrm{kc} / \mathrm{s}$	
SW	7	\ldots	$18 \mathrm{Mc} / \mathrm{s}$
49 m band	5,95	\ldots	$6,2 \mathrm{Mc} / \mathrm{s}$

effective on AM at 2 IF-stages
and additional damping diode
ferrite antenna for AM and LW telescope antenna for FM and SW loop antenna for 49 m band
for phono/tape recorder (standardized)
1 external speaker/earphone,
car bracket, car antenna,
external power supply, 7,5 V max.
treble control and bass switch
effective from output transformer to base of driver transistor
permanent dynamic, $13 \times 18 \mathrm{~cm}, 4,5 \Omega$

2 W , at car operation 4 W
width: 295 mm
height: 190 mm
depth: 93 mm
plastic
5 ranges. Spread 49 m band. Duplex tuning AM-FM. Mesa transistors in FM-tuner. Operating points of transistors stabilized. Battery test by indicator. Dial permanently illuminated by connection of a Nordmende power supply unit or of the car bracket 969.181 A.

Zf-Nf-Leiterplatte - IF-AF-Printed circuit board

(Schaltteilseite - Component side)

Anschlüsse Autoeinschub
to contact strip for car operation

Zf-Nf-Leiterplatte - IF-AF -Printed circuit board

(Lötseite - Soldered side)

UKW-Baustein - FM-Tuner 580.065.29
(Schaltteilseite - Component side)

Vorkreis-Osz.-Leiterplatte -RF-Osc.-Printed circuit board (Ansicht von oben - Top view)

Autovorkreis-Leiterplatten - Printed circuit of RF-Stage (car operat.)

Abgleichvorschrift

Batteriespannung 7,5 Volt.

Arbeitspunkteinstellung

Taste U-FM gedrückt. Lautstärkeregler zudrehen, kein Eingangssignal. Ruhestrom der Endstufe mit R 181 auf 6 mA einstellen. (Meßpunkt 1). Arbeitspunkt des Transistors 6 (AF 126) mit R 119 auf 1,3 mA einstellen. Entspricht 1,3 V über R 120 (Meßpunkt 2).

ZF-Abgleich \quad AM - $460 \mathbf{k H z}$

Taste M gedrückt, Drehko herausgedreht, Bandbreitentaste in Stellung schmal (nicht gedrückt), Lautstärkeregler voll aufgedreht. Meßsender mit 460 kHz auf Ferritstab einstrahlen lassen. Bandf́ilter F 205 bis F 209 auf maximalen Output abgleichen. Abgleich wiederholen.

FM $\mathbf{- 1 0 , 7} \mathbf{~ M H z}$

Taste U-FM gedrückt, Zeiger auf Endanschlag 104 MHz , FM-Vorstufe außer Betrieb gesetzt, indem Anschlußpunkt 6 der FM-Tuner-Leiterplatte von Pkt. 3 auf Pkt. 7 gelegt wird. Taste FM-AFC nicht gedrückt.
Abgleich mit Wobbelmeßplatz
Wobblerausgang mittels Klemmvorrichtung nach Skizze am UKW-Tuner anschließen. Sichtgeräteeingang wie folgt anklemmen: Masse an Pki. 3, Abnahme für Durchlaßkurve an Pkt. 4, Abnahme für S-Kurve an Pkt. 5. L 60, L 61 und F 201-203 sowie Primärkreis von F 204 auf maximale und symmetrische Durchlaßkurve abgleichen (L 60, L 61 inneres, F 201 bis F 204 äußeres Maximum). Mit Sekundärkreis von F 204 S-Kurve einstellen. Hochohmiges Drehspulinstrument bzw. $\mu \mathrm{A}-\mathrm{Meter}$ über $100 \mathrm{k} \Omega$ an die Punkte 5 und 6 legen $100 \mathrm{k} \Omega$ direkt an Punkt 5). Mit Sekundärkreis von F 204 auf Nulldurchgang des μA-Meters abgleichen. Mit R 142 beste Linearität und AM-Unterdrückung fein einstellen. Abgleich von R 142 und Sekundärkreis F 204 wiederholen bis Optimum erreicht. Die Eingangsspannung ist für das Gerät so zu wählen, daß bei der S-Kurve an den Wendepunkten noch ein Rauschen sichtbar ist.

Abgleich mit Meßsender

L 61 (UKW-Tuner) Gewindekern aus Spulenrohr entfernen. Sekundärkreis F 202 stark verstimmen Herausdrehen des Gewindekernes. R 142 auf Mitte des Drehbereiches einstellen. Anschluß des Meßsenderkabels über $0,1 \mu \mathrm{~F}$ parallel zu C 111 an Pkt. 7. Senderfrequenz $10,7 \mathrm{MHz}, 22,5 \mathrm{kHz} \mathrm{Hub}$.
F 204 und F 203 sämtliche Kreise auf max. Output trimmen. Meßsenderkabel abklemmen und über Symmetriertrafo (siehe Skizze) an die Tastensatzkontakte U a5 und U b5 (Punkt 8) anschließen. F 202, F 201 sämtliche Kreise und Primärkreis F 203 auf max. Output trimmen. Symmetriertrafo abklemmen. Hochohmiges Drehspulinstrument bzw. uA-Meter über $100 \mathrm{k} \Omega$ an die Punkte 5 und 6 legen ($100 \mathrm{k} \Omega$ direkt an Punkt 5). Ohne Eingangssignal L 60, L 61 (inneres Maximum) und Primärkreis F 201 (äußeres Maximum) auf maximales Rauschen abgleichen sowie Sekundärkreis F 204 auf Nulldurchgang des $\mu A-M e t e r s$ einstellen. Meßsender (Kabelabschluß 60Ω) an eingeschobene Teleskopantenne legen. Senderfrequenz ca. $100 \mathrm{MHz}, 22,5 \mathrm{kHz} \mathrm{Hub}$. Senderausgangsspannung so wählen, daß sich ein Signal-Rausch-Verhältnis des Outputs von 100:1 einstellt. Sendermodulation auf AM umschalten. Mit R 142 auf beste AM-Unterdrückung fein einstellen.

HF-Abgleich AM (Kofferbetrieb)

Mittelwelle
Meßsender über Koppelschleife auf Ferritstab einstrahlen lassen. Zeiger bei eingedrehtem Drehkondensator auf Endmarke justieren. Bandbreitenschalter in Stellung schmal (Taste ausgelöst). Senderfrequenz 550 kHz . Zeiger auf Eichmarke 550 kHz . Mit Oszillatorspule L 41 und Vorkreisspule L 21 auf maximalen Output abgleichen. Zeiger auf Eichmarke 1500 kHz . Senderfrequenz 1500 kHz . Mit Oszillatortrimmer C 42 und Vorkreistrimmer C 22 auf maximalen Output abgleichen. Abgleich wiederholen bis Eichung in Ordnung und Optimum erreicht.
Langwelle
Meßsender über Koppelschleife auf Ferritstab einstrahlen lassen. Zeiger auf Eichmarke 210 kHz . Senderfrequenz 210 kHz . Mit Oszillatortrimmer C 45 und Vorkreisspule L 24 auf maximalen Output abgleichen.
49-m-B and
Meßsender über 5 pF an die eingeschobene Teleskopantenne anschließen. Zeiger auf Eichmarke $6,1 \mathrm{MHz}$. Senderfrequenz $6,1 \mathrm{MHz}$. Mit Oszillatorspule L 36 und Vorkreisspule L 15 auf maximalen Output abgleichen.
Kurzwelle
Meßsender über 5 pF an die eingeschobene Teleskopantenne ankoppeln. Zeiger auf Eichmarke $7,5 \mathrm{MHz}$. Senderfrequenz $7,5 \mathrm{MHz}$. Mit Oszillatorspule L 31 und Vorkreisspule L 11 auf maximalen Output abgleichen. Zeiger auf Eichmarke $17,5 \mathrm{MHz}$. Senderfrequenz $17,5 \mathrm{MHz}$. Mit Oszillatortrimmer C 32 und Vorkreistrimmer C 12 auf maximalen Output abgleichen. Abgleich wiederholen bis Eichung in Ordnung und Optimum erreicht.

HF-Abgleich FM

Meßsender ($\mathrm{Ri}=60 \Omega$) über Autoantennenbuchse V 17 (Pkt. 9) anschließen. Zeiger an den Anschlag 87 MHz drehen und auf Endmarke justieren. Senderfrequenz 87 MHz . Mit Oszillatortrimmer C 51 auf maximalen Output abgleichen. Zeiger auf Eichmarke 96 MHz . Zwischenkreistrimmer C 31 auf maximalen Output abgleichen. Zeiger auf 88 MHz . Senderfrequenz 88 MHz . Abgleichstellung von Zwischenkreistrimmer C 31 kontrollieren: Ergibt sich hierbei nur eine kleine Änderung des maximalen Outputs, ist der Abgleich in Ordnung. Läßt sich der Output beträchtlich erhöhen, muß ein ausführlicher Abgleichvorgang wie folgt durchgeführt werden: Zeiger an den rechten Anschlag 87 MHz drehen und auf Endmarke justieren. Zeiger auf linken Anschlag ($104,5 \mathrm{MHz}$). In dieser Stellung Variometer-Kerne entsprechend Skizze justieren, Zeiger auf Anschlag 87 MHz . Senderfrequenz 87 MHz . Mit Trimmer C 51 auf maximalen Output abgleichen. Zeiger auf Eichmarke 96 MHz . Senderfrequenz 96 MHz . Nit L 51 auf maximalen Output abgleichen. Abgleich bei 87 MHz mit C 51 wiederholen. Bei 88 MHz mit Zwischenkreistrimmer C 31 und bei 96 MHz mit Zwischenkreisspule L 31 auf maximalen Output abgleichen. Abgleich bei 88 MHz mit C 31 wiederholen.
HF-Abgleich AM (Autobetrieb) Abgleich ohne Autohalterung.
Kontakt Aut a5 mit Aut a6 (V6) verbinden. Outputmeter an Lautsprecherbuchse $V 31$ anschließen $(4,5 \Omega)$. Umschalter Koffer-Auto in Stellung „Auto" festlegen.
Vorabgleich des AM-Variometers
(Nur erforderlich, wenn das Variometer ausgewechselt oder verstellt worden ist).
Antennentrimmer C 5 heißes Ende und Leitung zu Pkt. 10 ablöten. Sender über Hilfsantenne 16/185 pF (Skizze) an den Pkt. 10 anschließen. Bei 550 kHz mit Variometerspule 153 (Punkt 11) auf Maximum abgleichen. Bei 1500 kHz mit Abgleichspule L 30 auf Maximum abgleichen. Ursprünglichen Schaltungszustand wieder herstellen.
Mittelwelle
Senderanschluß über Kunstantenne $16 / 60 \mathrm{pF}$ (Skizze) an Kontakt 1 und 4 der Steckerleiste V 19 anschließen. Bei 550 kHz mit Antennentrimmer C 5 und bei 1500 kHz mit Abgleichspule L 30 aut Maximum abgleichen. C 5 zuerst abgleichen. Abgleich wiederholen.
Langwelle
Senderanschluß wie MW. Bei 210 kHz mit Vorkeisspule L 26 auf Maximum abgleichen.
49 m und $\mathrm{S} W$
Nur Funktionskontrolle, kein Abgleich.

Hilfsantenne 1 für AM-Variometer-Abgleich
Dummy antenna 1
for AM-Variometer-Alignment

Eingangsübertrager 522.070.13
Input transformer 522.070.13

Hilfsantenne 2 für Abgleich der Autovorkreise

Dummy antenna 2 for alignment of RF-stages (car operation)

Ausgangsübertrager 522.071.13
Output transformer 522.071.13

Diffusor mit Eichmarken

Diffusor with gauge marks

Seilführung für FM -Antrieb

Cord drive for FM

Seilführung für AM -Antrieb

Cord drive for AM

