## THE AI46C RECEIVER MAINS SUPPLY: 200-250 volts, a.c. 50-60 c/s. WAVE RANGES: Medium: 187-560 metres Long: 1000-2000 metres Intermediate Frequency: 465 Kc/s VALVES: Mazda: 10C1, 10F9, two 10LD11, two PEN45, UU6 SCALE LAMPS: Two $6 \cdot 2$ volts, $0 \cdot 3$ amps (M.E.S.) Speech Coil Impedance: 3 ohms EXTENSION LOUDSPEAKER: 3 to 7 ohms CABINET DIMENSIONS: $32\frac{1}{4}$ in. high, 26 in. wide, 9 in. deep at base TOTAL WEIGHT: 35 lb. Consumption: 62 watts RELEASED: September 1949 PRICE: £28 12s. 9d. plus P.T. Fig. 1. Rear view of the complete receiver ## **ELECTRICAL NOTES** A conventional superhet type circuit is used in the r.f. and i.f. sections of the receiver, but in the a.f. sections special measures have been taken towards securing high quality reproduction. The local oscillator circuit. On the medium wave band L6 is the tuned winding, L5 is the coupling winding, and C17 is the series padding capacitor. On the long wave band L6 and L5 in series form the inductor in a Colpitts type circuit, and C19 in series with C17 form the padding capacitor as well as one arm of the split capacitor. The other arm of the split capacitor is formed by C5, C7, C8, and C18 in parallel. In later receivers the oscillator coil and circuit were modified to improve the medium wave band coverage and to simplify the adjustment of the oscillator coil cores. (See modifications under the heading "The Oscillator Circuit" on page 17.) The automatic gain control (a.g.c.) circuit. Delayed a.g.c. is incorporated, a small delay voltage being provided by R13 and R14 in series. Fig. 2 The a.f. circuits. The a.f. amplifier consists of a IOLDII valve (V<sub>3</sub>), a self-balanced phase-reversing valve (V<sub>4</sub>) which is also a IOLDII, and two PEN<sub>45</sub> valves (V<sub>5</sub> and V<sub>6</sub>) operated in "Class AB<sub>1</sub>" push-pull. Voltage feedback is applied from a tertiary winding on the output transformer (T<sub>2</sub>) to the cathode of V<sub>3</sub>. The values of R17, R18, and R19 have been chosen so that the inputs to V5 and V6 are equal and of opposite phase, and so that the stage gain of V4 remains constant under widely varying conditions (including valve replacement). The constant stage gain is achieved by applying heavy negative feedback from anode to grid of V4 via R18. In order to secure Class AB<sub>1</sub> operation of V5 and V6, their control grids are biased slightly more negatively than for Class A operation (see Fig. 2). This means that, on a strong signal, the valve does not run into grid current but a portion of the —ve going half cycles of signal to each valve are suppressed. Due to push-pull working, however, the output to the loudspeaker is quite linear (Fig. 3) and even order harmonics are Fig. 3 argely cancelled. Additionally, due to the reduced standing anode current in V5 and V6 an appreciable economy in power supply components has been achieved. It should be noted that the anode current supply to V5 and V6 increases when the sound output is increased above a certain level. The application of negative voltage feedback over the whole amplifier results in considerably reduced output impedance, which increases the damping of the loudspeaker, reduces the loudspeaker bass resonance and improves the reproduction of transients. Adjustable tone correction at the high frequency end of the audio spectrum is achieved by varying the shunt capacitance in V3 anode circuit and in the main feedback circuit. The volume control is partially tone compensated to take account of the fact that at low volume levels the human ear is less sensitive to the lower frequencies. The compensation is achieved because the volume control (R11), C27, and R10 effectively form a potentiameter across the feedback resistor R14 (see Fig. 4) R13 being by-passed by the 50 $\mu$ F. capacitor C32. At the lower frequencies the impedance of C27 is high so that chang- Fig. 4 ing from high to low volume produces little change in feedback. At the higher frequencies the impedance of C27 is low so that changing from high to low volume increases the feedback. The nett result is that changing from high to low volume causes a relative increase in the lower frequency response of the whole amplifier. The gramophone circuit. This is specifically designed for use with a crystal type pick-up and for reproducing standard 78 r.p.m. type records. An extra position on the wave band switch brings the gramophone circuits into use when required and the record player can be left permanently connected to the receiver. The two leads from the crystal itself should be connected to sockets "P" and "U" while the screening braid, which must be completely insulated from the pick-up leads and from the metal work of the record player, should be connected to socket "C". If the hum level is above normal, reversing the mains supply connections or the connections to the "P" and "U" sockets may be helpful. The power supply circuits. An auto transformer supplies the different voltages which are required and half wave rectification is used for the high tension d.c. supply. The heater of the rectifier (V7) is supplied from a small separate winding on this transformer. #### WARNING - 1. As the chassis of this receiver is connected to one side of the supply mains appropriate care should be exercised at all times. - 2. The chassis inter-connecting plugs should not be extracted while the receiver is operating, because the output valves (V5 and V6) may be damaged. ### MECHANICAL NOTES To remove the chassis from the cabinet. First remove the cabinet back and then the control knobs. Disconnect the 4 pin plug and the 8 pin socket from the power unit and free the leads from the cleats. Disengage the drive cord from the pointer carrier and unscrew the two chassis fixing bolts. Ease the chassis gently from the cabinet until the clearance is sufficient to allow the removal of the pilot lamps from the scale supports. To remove the tuning scale. Take off the two front control knobs (52278) and felt washers (34592), unclip the two scale retaining springs (54158) and lift the scale clear of the scale supports. To remove the tuning pointer. Remove the tuning scale as described above. Hold the pointer firmly at the bottom and pull directly away from the cabinet. To refit the tuning pointer. The pointer (51634) fits into a holder (50045) which is mounted on a carrier (54393) as shown in the Cord Drive diagram on page 5. The carrier is attached to the pointer drive cord, and slides on the guide rail (50040). When replacing the pointer and holder, it should be pushed on to the carrier as far as it will go. The cabinet. The cabinet (52298) is supplied with six back mounting brackets (57341) already fitted. The speaker baffle is not removable and when the speaker fabric needs renewing, a replacement speaker fabric (1829/10) can be supplied separately on request. The loudspeaker (52243) is fitted to the cabinet by means of four wood screws (102405). A mounting ring (54251) is placed between the loudspeaker and the baffle The pilot lamps. To ensure the maximum scale illumination, it is important that the lamp filaments should be in line with the slots in the scale supports. For this reason, Philips lamps (16880) (6.2 volt 0.3 amp) are specified, as they are made to close mechanical tolerances and the filament assumes the correct position when the lamp is pushed fully into the scale support. The rubber grommet (42842) which surrounds the lamp holder ensures a secure mounting for the pilot lamp but care should be taken when inserting the lamps as the glass may be broken if too much pressure is used. ### CORD DRIVE To replace the drive cord (Spec. 936), tie one end of a 40 in. length to the spring (47478) and hook the spring on to the tuning drum (48189) as shown in the diagram. Pass the cord around the pulleys in the direction shown by the arrows, with the eyelet (15628) threaded on to the cord between the two lower pulleys. Make one turn around the tuning drum and tie the free end of the cord to the spring, with the spring extended as far as possible. Turn the tuning drum until the gang capacitor plates are fully meshed (check this by inspection) then clamp the eyelet on to the drive cord approximately $1\frac{1}{2}$ in. from the right-hand lower pulley. The eyelet serves as a datum point for calibration purposes and is referred to in the alignment instructions. Fig. 5. The cord drive 6 Fig. 6. Underneath view of the Receiver Chassis. The top view is on page 12. ## CIRCUIT ALIGNMENT (The Alignment Table is on page 9) The chassis of this receiver is connected directly to one side of the mains supply and, before attempting any circuit adjustments, every precaution should be taken to minimize the possibility of receiving an electric shock or damaging the instruments being used. All of the trimmers can be adjusted without removing the receiver chassis from the cabinet, but in case it is necessary to adjust the oscillator and aerial trimmers when the cabinet or tuning scale is not available, a 6-inch rule may be used as a scale. The traverse of an eyelet, which is fixed on the drive cord, from the position which it occupies when the ganged capacitor is fully meshed, is quoted in the "Circuit Alignment Table". When making this check remember that the ganged capacitor rotor will turn slightly beyond the fully meshed position. The coil cores must be adjusted with a thin non-metallic screwdriver, shaped to fit the core slots (a thin plastic knitting needle can be shaped for the purpose). A metal screwdriver is unsuitable, as it will affect the inductance of the coils and may also cause damage to the cores. With the volume control at maximum, make all adjustments to give maximum audio output; this output should not be allowed to exceed 1.2 volt as measured with a low reading alternating voltage meter connected across the loudspeaker speech coil. If difficulty is experienced due to interaction between the medium and long wave sections of the oscillator coil, restart the adjustments with each oscillator coil core set at $\frac{1}{2}$ in. from the end of the coil former. Commence with adjustments (e) and (g) in the alignment table and repeat these until the calibration is correct at the two wavelengths concerned. Then proceed according to the table. Before making any calibration adjustments with the receiver chassis mounted inside the cabinet, make sure that when the gang capacitor vanes are fully meshed, the tuning pointer is beneath the spot on the tuning scale near the "550 metres" graduation. The fully meshed, or maximum capacitance condition of the ganged capacitor is most easily checked with the blade of a small screwdriver. The blade should be inserted through one of the inspection holes in the capacitor cover and placed gently against the edges of the fixed plates near to the spindle; the spindle may then be turned until the rotor blades just touch the blade of the screwdriver. PLEASE USE THE PARTS LIST WHEN ORDERING Fig. 7. The diagram of the top of the receiver chassis is on page 13 ### CIRCUIT ALIGNMENT TABLE Read "Circuit Alignment" before attempting any adjustments. It should be noted that in the receivers having the modified oscillator circuit, the positions of the oscillator coil windings and cores are interchanged as compared with the arrangement in the early models shown in the diagram facing this page. L15 and L16 relate to those chassis having the modified oscillator circuit. | CIRCUIT | SIG. GEN.<br>FREQUENCY | SIG. GEN.<br>TERMINATION | CONNECT SIG.<br>GEN. TO | RECEIVER<br>WAVE<br>BAND | RECEIVER<br>SCALE<br>SETTING | TRAVERSE | NOTES | ADJUSTMENTS | |-----------------|------------------------|--------------------------|-------------------------------------|--------------------------|------------------------------|----------|------------------------------------------------------------------------|----------------------------------------------------------------------------| | 2nd i.f.t. | 465 Kc/s | Via 0·1 μF.<br>capacitor | C4 (test point 7) on gang capacitor | М | 500 metres | 0·93 in. | Unscrew secondary core (top of can) to fullest extent before adjusting | (a) L11 (pri) under chassis<br>(b) L12 (sec) top of can<br>DO NOT READJUST | | ıst i.f.t. | | | | | | | | (c) L9 (pri) under chassis<br>(d) Lro (sec) top of can<br>DO NOT READJUST | | Medium<br>Waves | 600 Kc/s<br>(500 m.) | Via Dummy<br>Aerial | Aerial Socket | М | 500 metres | 0·93 in. | Repeat these adjustments until the optimum calibra- | (e) M.W. osc. coil (L6 or L16)<br>(f) M.W. Ae. coil (L2) | | Long<br>Waves | 158 Kc/s<br>(1900 m.) | | | L | 1900 metres | 0·73 in. | tion is obtained (see "Circuit Alignment") | (g) L.W. osc. coil (L5 or L15)<br>(h) L.W. Ae. coil (L4) | | Medium<br>Waves | 1363 Kc/s<br>(220 m.) | | | M | 220 metres | 3·49 in. | | (i) M.W. osc. trimmer (C7)<br>(j) M.W. Ae. trimmer (C6) | | Long<br>Waves | 300 Kc/s<br>(1000 m.) | | | L | 1000 metres | 3·77 in. | | (k) L.W. osc. trimmer (C8) | INTER CHASSIS CONNECTIONS, VIEWED FROM BENEATH POWER PACK CHASSIS A 500 ohm/volt meter was used for taking the voltage readings; the receiver was switched to the medium wave band and operating under "no signal" conditions. In those cases where the resistance of a coil is omitted, the value is less than one ohm. The wave range switch is shown in the long wave position. Fig. 9. Top view of the receiver chassis. The underneath view is on page 6. | С | | | 21 20 37 | 14 13 | 8 | 5 7 6 4 | С | |-------|-------|--------|----------|-------|--------|------------|-------| | L | | | 12 11 | 10 9 | | 5 <b>6</b> | Ĺ | | R | II | | | | | | R | | MISC. | S2 V4 | V3 PLI | ∨2 | | V) PL2 | | MISC. | Fig. 10. Diagram of the top of the receiver chassis. The diagram of the underneath of the receiver chassis is on page 8. | С | | | | · | 38 39 | | С | |-------|------|-------|----|------|-------|------|-------| | L | | | | 7 8 | 13 | | L | | R | | | | | | | R | | MISC. | T.2. | V5 V6 | ٧7 | F.I. | | T.I. | MISC. | Fig. 11. Diagram of the top of the power unit. The diagram of the underside of the power unit is opposite. Note: For Socket A, read Plug A. | С | 41 40 | | | 47 | | | 38 39 43 | | С | |-------|-------|-------|-------|----------|----------|----|----------|--|-------| | L | | | | | | | | | L | | R | | 23 24 | | 25 26 36 | 33 34 22 | | | | R | | MISC. | | | V5 V6 | | ٧7 | FI | | | MISC. | Fig. 12. Diagram of the underside of the power unit. The diagram of the top of the power unit is opposite. Note: For Socket A, read Plug A. ## MODIFICATIONS Component lay-out. The mechanical disposition of the components was slightly modified in later receivers. I.f. feedback and whistles. C33 was not fitted in some early receivers. It reduces certain whistles caused by i.f. feedback when the receiver is tuned to stations operating on frequencies which are harmonics or subharmonics of the i.f. The i.f.t. cans. These were increased in length in later receivers. In case a replacement can or assembly is required, the correct length of can should be quoted when ordering. A long can will foul the back in an early receiver and may cause the "live" chassis to be exposed. Hum with gramophone pick-up. C31 was changed to 0.01 $\mu$ F. in later receivers to reduce hum. Distortion with gramophone pick-up. A 6 $\cdot$ 8 M $\Omega$ resistor (R38) is connected between the P and U gramophone pick-up sockets in later receivers to provide a leakage path for the electrostatic charge which may build up across the crystal. This charge tends to bend the crystal (piezo-electric effect) causing it to operate on a non-linear portion of its characteristic, resulting in distorted reproduction, and loss of bass. To use a magnetic type gramophone pick-up. The gramophone circuits can be modified if required for use with the E.M.I. record player, or any other record player fitted with a similar type of pick-up and having a speech coil impedance of 1 to 5 ohms. This modification entails the replacement of the existing pick-up input circuit by a pick-up transformer and a modification to the feedback circuit to provide bass compensation. In playing desks already incorporating a pick-up transformer, this component must be disconnected and the pick-up leads brought out for direct connection to the transformer which is mounted in the receiver. This circuit cannot be adapted for pick-ups of higher impedance. Parts required. - 1—Assembly of pick-up transformer (Part No. 50904). - 1—Insulated screened lead 6 in. long. - 1—Resistor 10 K $\Omega$ $\pm$ 20 per cent $\frac{1}{4}$ W. (Part No. 27077). - 1—Capacitor 0.05 $\mu$ F. $\pm$ 20 per cent 350 v. (Part No. 41403). - 1—Capacitor 0.005 $\mu$ F. $\pm$ 25 per cent 500 v. (Part No. 41409). Tinned copper wire, 23 SWG. 14/36 V.I.R. flex. 1/22 V.I.R. single wire. I m.m. sleeving. 2-Brackets (Part No. 37588). $2-\frac{1}{2}$ in. 6 BA. bolts. 2-6 BA. nuts. 2-6 BA. spring washers. The above items can be had as a kit from Murphy Radio Ltd, Service Department. The circuit changes. In the following notes, tag numbers on the R/C rack have been counted from the waveband switch end of the chassis. The word "lower" refers to the tag strip close to the chassis; "upper" to the tag strip remote from the chassis. It is important to remember that these tag numbers do not correspond with the test point numbers in the diagram of the underside of the receiver chassis on page 8. Fig. 13 - 1. Remove the receiver chassis from the cabinet. - 2. Remove C28, 0.002 $\mu$ F. (P.U. socket "P" to tag 5 upper), and C29, 0.002 $\mu$ F. (P.U. socket "U" to tag 7 upper). - 3. Remove C<sub>30</sub>, 220 pF. (tag 7 upper to tag 7 lower), R<sub>12</sub>, 330 K $\Omega$ (tag 7 lower to tag 5 lower), and R<sub>35</sub>, 2·2 M $\Omega$ (tag 7 upper to tag 5 lower). - 4. Connect in parallel a 10 K $\Omega$ $\frac{1}{4}$ W. resistor and a 0.05 $\mu$ F. 350 v.w. capacitor across tag 7 upper and tag 7 lower. - 5. Disconnect R29, $2.7 \text{ K}\Omega$ , from tag 15 upper and connect this end of the resistor to tag 7 upper. - 6. Connect tag 7 lower to tag 5 upper. - 7. All contacts at the left-hand side of the front wafer of the wave-range switch are connected together. Cut out the centre wire so that the switch is now grouped into two pairs. Connect a wire from the lower (MW/LW) pair of contacts to tag 7 upper. - 8. Connect an insulated screened lead 6 in. long to the gram contact of Sie (rear wafer, test point 36). Note that the screening is later connected to the pick-up transformer but not to the receiver. - Connect a single piece of V.I.R. flex (4½ in.) to the chassis tag under the aerial panel fixing bracket. - 10. Connect twisted flex (6½ in.) to the pick-up sockets "U" (test point 91) and "C" (test point 92). - 11. Connect a 0.005 µF. capacitor between the blank tag on the tone control switch and tag 17 lower. Fig. 14 - 12. Screw the pick-up transformer and bracket to the left-hand front corner post of the cabinet. The top edge of the bracket should be $2\frac{1}{2}$ in. from the top of the corner post. - 13. Replace the receiver chassis and solder the connections to the transformer as shown in Fig. 14. The modified circuit is shown in Fig. 13. Modifications required in the E.M.I. record player. Disconnect the pick-up leads and the output screened lead from the transformer and from the motor frame. Con- nect the pick-up leads to the braid and centre conductor of the output screened lead. The braid must be insulated from the motor frame. The oscillator circuit. This was modified in later receivers to increase the medium wave band coverage at the high frequency end and to reduce inter-action between the medium and long wave sections of the oscillator coil during circuit alignment. The revised circuit and wiring are illustrated in Fig. 15 and Fig. 16 respectively. A tuned grid arrangement with separate coupling coil has been adopted for both wavebands. Fig. 15 Fig. 16 | PART<br>NO. | CIRCUIT<br>NO. | VALUE | TOLERANCE AND<br>REMARKS | |----------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | 23603<br>28165<br>28241<br>28156<br>24677<br>24837 | C42<br>C48<br>C49<br>C51<br>R21<br>R37<br>L14<br>L15<br>L16 | $ 22pF. 330pF. 620pF. 100pF. 220\Omega 560\Omega - 11.5\Omega 4.5\Omega$ | 10% p.s.m. 2% p.s.m. 1% p.s.m. 5% p.s.m. 10% \dagger{4}W. 10% \dagger{4}W. Modified osc. coil | The modified receivers are most easily recognized by a red spot painted on the oscillator coil screen. The oscillator coil itself is recognizable because it has six tags. In the unmodified sets the red paint spot is missing and the oscillator coil has only three tags. With an earlier receiver if difficulty is experienced in tuning down to 194 metres, it may be necessary to change to the new circuit arrangement, in which case the items listed below figure 16 will be required. In carrying out the modification C15, C17, C18, C19, R5, and the original oscillator coil (L5, L6), are completely removed, while R31 (the oscillator grid leak) and R27 are repositioned on the chassis as shown in Fig. 16. It should be noted that the medium wave and long wave windings and cores on the new coil are transposed as compared with the original coil. ## AERIAL FILTERS When a receiver is installed close to a powerful medium wave transmitter, an aerial filter may be required to prevent overloading of the frequency changer and to minimize the generation of whistles during reception of the weaker stations. The following approximate figures may be helpful in deciding if a filter will be required at any particular site. Transmitter Power (KW) I 2 IO 60 IOO Fit filter when distance is less than (miles) $1\frac{1}{2} \ 2 \ 3\frac{3}{4} \ 7 \ 9$ Three standard filters are available from Murphy Radio Ltd, Service Department, as follows: Type Frequency Range A 1500-1000 Kc/s (200-300 metres) B 1000-700 Kc/s (300-428 metres) C 700-500 Kc/s (428-600 metres) These may be supplied in single units, or the following double units: AA; BB; CC; AB; AC; and BC. Fitting instructions. The position of the filter is shown in the photograph of the rear of the receiver on page 2. Screw the bracket on to the cross bar, using the two holes provided, with the filter core uppermost. The lead from the filter is plugged into the receiver aerial socket and the aerial is plugged into the filter; a hole is provided in the receiver back to allow for this. Adjusting the filter. Connect a voltmeter between the cathode of V2 and chassis, and switch to the 5 or 10 V. d.c. range. Tune the receiver to the interfering (local) station and adjust the filter core for maximum meter reading. # PARTS LIST (Electrical Components) All resistors are rated at $\frac{1}{4}$ watt and all types of capacitors are of positive temperature coefficient and rated at 350 v.w., unless otherwise stated. The d.c. resistance quoted for the coil and transformer windings is an average figure and should be used as a general guide only; it is omitted where the value is less than one ohm. The coils are supplied without cans or cores, unless otherwise stated. The following abbreviations are used in the table below: | 1 110 10 | /110 44 11. | 8 40010124 | | | | |----------|-------------|----------------------------------|--------|---|----------------------| | -ve | _ | negative temperature coefficient | s.tub. | _ | sealed paper tubular | | cer. | | ceramicon | tub. | | paper tubular | | elec. | | electrolytic | v.w. | | d.c. voltage working | | i.s.tub. | | insulated sealed paper tubular | W. | | wattage rating. | | m.tub. | | metallized paper tubular | w.w. | | wire wound. | | p.s.m. | | protected silvered mica. | | | | | | | 1 | 1 | <u> </u> | 1 | | | |----------------|---------------------------|--------------------|--------------------------------------------|---------------------------------------|--------------------|-------------------------------------------------------------------|-----------------------------------| | PART | CIRCUIT | VALUE | TOLERANCE | PART | CIRCUIT | VALUE | TOLERANCE | | NO. | NO. | | AND REMARKS | NO. | NO. | , , in the second | AND REMARKS | | 53924 | Cı | 450-E | 0/ | <del> </del> | | - - | THE TEMPLES | | 27986/5 | C <sub>2</sub> | 470pF.<br>500pF. | 20% 500 v.w., cer | 41403 | C45 | 0·05μF. | 20% tub. | | 28251 | C <sub>3</sub> | 75pF. | 10% m.m.<br>5% p.s.m. | 41403 | C46 . | 0·05μF. | 20% tub. | | | $\int C_4$ | 540pF. | | 41419 | C47 | 0.01μF. | 25% 1000 v.w. tub. | | | $\int_{0}^{\infty} C_{5}$ | 540pF. | Gang capacitor (ae.) Gang capacitor (osc.) | 28165 | C48 | 330pF. | 2% p.s.m. | | 52302 | C6 | 5-35pF. | Trimmer (m.w. ae.) | 28241 | C49 | 620pF. | 1% p.s.m. | | | $ C_7 $ | 5-35pF. | Trimmer (m.w. osc.) | 28156 | C51 | 100pF. | 5% p.s.m. | | 37480 | C8 | 5-35pF. | Trimmer (l.w. osc.) | 25389 | RI | 77 | 0/ 1**** | | 23966 | C9 | 500pF. | 20% m.m. | 25369<br>24773 | R <sub>2</sub> | 15KΩ | $10\frac{0}{10}$ $\frac{1}{2}$ W. | | 47449 | Cio | 0.01µF. | 25% tub. | 27429 | R <sub>3</sub> | 390 Ω | 10% | | 41419 | CII | 0.01µF. | 25% 1000 v.w. tub. | 27141 | R <sub>4</sub> | 680KΩ<br>22KΩ | 20%<br>20% | | 41403 | C12 | 0.05µF. | 20% tub. | 25677 | R <sub>5</sub> | 82KΩ | 10% ½W. | | 52630 | C13 | 100pF. | 5% p.s.m. | 24773 | R6 | 390 Ω | 10% 2W. | | 52630 | C14 | 100pF. | 5% p.s.m. | 27429 | R <sub>7</sub> | 68οKΩ | 20% | | 52178 | C15 | 100pF. | 20% cer. | 27493 | R8 | $1.5M\Omega$ | 20% | | 52178<br>28243 | Cié | IcopF. | 20% cer. | 27365 | R9 | 330KΩ | 20% | | 28253 | C17<br>C18 | 470pF. | 2% p.s.m. | 27365 | Rio | 330KΩ | 20% | | 28205 | C19 | 150pF. | 1% p.s.m. | 52773 | RII | $iM\Omega$ | Volume control | | 52630 | C20 | 390pF. | 5% p.s.m. | 27365 | R12 | 330KΩ | 20% | | 52630 | C21 | 100pF. | 5% p.s.m. | 25125 | R13 | 3·3KΩ | 10% | | 41403 | C22 | 0.05µF. | 5% p.s.m.<br>20% tub. | 24613 | R14 | 150 Ω | 10% | | 41403 | C23 | 0.05µF. | 20% tub. | 27205 | R15 | 47KΩ | 20% | | 52174 | C24 | 56pF. | 20% cer. | <sup>2</sup> 5573 | R16 | 47KΩ | 10% | | 52178 | C25 | 100pF. | 20% cer. | 29110<br>29111 | R17<br>R18 | 220ΚΩ | 5% high stability | | 52178 | C26 | 100pF. | 20% cer. | 25829 | R19 | 300KΩ | 5% high stability | | 41409 | C27 | 0·005μF. | 25% 500 v.w. tub. | 25084 | R20 | 220KΩ<br>2·2KΩ | 10% | | 41417 | C28 | 0·002μF. | 25% 1000 v.w. tub. | 24677 | R21 | 220 Ω | 10% IW. | | 41417 | C29 | 0·002μF. | 25% 1000 v.w. tub. | 25084 | R22 | 2·2KΩ | 10%<br>10% 1W. | | 23637 | C30 | 220pF. | 10% p.s.m. | 27269 | R23 | 100ΚΩ | 20% | | 41419 | C31 | 0.01μΕ. | 25% 1000 v.w. tub. | 27269 | R24 | 100KΩ | 20% | | 31316 | C32 | 50μF. | +100% -20% 12 | 24749 | R25 | 330 Ω | $10\% \frac{1}{2}W.$ | | 41402 | C33 | 0.02.5 | v.w. elec. | 24749 | R26 | 330 Ω | $10\% \frac{2}{2}W.$ | | 50964 | C34 | 0·02μF.<br>0·01μF. | 20% tub. | 25541 | R27 | 39KΩ | 10% | | 48284 | C35 | 0·05μF. | 25% 500 v.w. s.tub. | 27269 | R28 | 100ΚΩ | 10%<br>20% | | 41404 | C36 | 0·1μF. | 20% 500 v.w. s.tub.<br>20% tub. | 25093 | R29 | 2·7KΩ | 10% . | | 46534 | C37 | 16μ <b>F</b> . | +50% —20% 450 | 24933 | R30 | ıKΩ | 10% | | | 3, | | v.w. elec. | 27205 | R31 | 47 <b>K</b> Ω | 20% | | 46536 | J C38 | 32μ <b>F</b> . | | 25029 | R32 | 1.8KΩ | 10% | | 40530 | ) C39 | 16µF. | } +50% —20% elec. | 24444<br>24444 | R33<br>R34 | 47 Ω | 10% IW. | | 46531 | ) C40 | 50μ <b>F</b> . | ( +50% —20% 25 | 2 <del>7444</del><br>27525 | R35 | $\begin{array}{c c} 47 & \Omega \\ 2 \cdot 2M \Omega \end{array}$ | 10% IW.<br>20% | | 1 | ) C41 | 50µF. | v.w. elec. | 25404 | R36 | 15ΚΩ | 20% | | 23603 | C42 | 22pF. | 10% p.s.m. | 24837 | R37 | 560 Ω | 10% 1W.<br>10% | | 41421 | C43 | 0·05μF. | 20% 1000 v.w. tub. | 27622 | , R <sub>3</sub> 8 | $6.8M\Omega$ | 20% | | 23637 | C44 | 220pF. | 10% p.s.m. | • | | | /U | | | 1 | | | · · · · · · · · · · · · · · · · · · · | | | | | PART | CIRCUIT | RESISTANCE | REMARKS | DAD= | | | | | NO. | NO. | (d.c.) | KENIAKKS | PART | CIRCUIT | RESISTANCE | REMARKS | | | | | | NO. | NO. | (d.c.) | | | 52301 | Į Lī | - J | m.w. aerial coil | | ) LII | 17Ω ( | 2nd i.f.t. with can | | | ) L2 | 2.20 | m.w. actial COH | 52219 | L12 | $17\Omega$ | (see Modifications) | | 52300 | / L3<br> L4 | 33Ω <u>(</u> | l.w. aerial coil | 52272 | L13 | 100Ω | L.f. choke | | ŀ | 1 14 | 23Ω ( | | | (L14 | — ì | m.w./l.w. osc. coil | | 54388 | ) L5<br>) L6 | 3Ω ) | m.w./l.w. osc. coil | 54832 | \ L15 | 11·5Ω } | with core (modi- | | | J L <sub>7</sub> | 1.5Ω | with core (original) | | (L16 | 4·5Ω J | fied) | | 49044 | L8 | 5·5Ω \ | Mains filter | 52271 | Tı { | 53Ω | Total auto wdgs. 1 | | | , £0<br>L9 | 5·5Ω (<br>17Ω ( | 1st i.f.t. with can (see | J/* | | | | | 52219 | Lio | 17Ω | Modifications) | <b>.</b> | | 160+210Ω | Pri. | | | , | - / 42 1 | | 52270 | T2 { | | L.s. sec. $\}$ o.t. | | | | | İ | | \ \ | 38Ω | F.b. sec. J | | | | <u>_</u> | <u></u> | | | | l | A146C RECEIVER ## PARTS LIST (Mechanical Components) This list contains only those parts which are not included in the Electrical Parts List; items such as self-tapping screws, bolts and nuts, etc. may be obtained from Murphy Radio Ltd, Service Department. Where more than one item is used per receiver, the quantity is given in brackets after the description. | | | <del> </del> | | <del> </del> | <del></del> | |----------------|-----------------------------|-------------------------------------------------------------|----------------|--------------------------------------------|------------------------------------------| | PART<br>NO. | DESCRIPTION | REMARKS | PART<br>NO. | DESCRIPTION | REMARKS | | 52280<br>52624 | Back<br>Bearing (2) | for cabinet for controls | 48438<br>53601 | Panel, loudspeaker<br>Panel, mains tapping | on power unit | | 57341 | Bracket, mounting (6) | for back | 37974 | Plug, aerial | | | 52288 | Bracket, mounting | for gang capacitor | 37975 | Plug, earth | F T. C | | 38576 | Buffer, rubber (2) | for cabinet | 50096 | Plug (2) | for L.S. | | 52298 | Cabinet | complete | 49301 | Plug, 4 pin | for chassis intercon-<br>necting | | 54393 | Carrier | for pointer | 52264 | Plug, 8 pin | for chassis intercon- | | 32240 | Clamp (2) | for mains lead | | | necting | | 37385 | Clip (3) | for leads | 51634 | Pointer | J | | 52291 | Clip, retaining (2) | for scale | 49593 | Pulley (3) | for cord drive | | 52291 | Clip, retaining | for osc. coil former | .,,,,, | | · · | | 41613 | Clip, spring (3)<br>Contact | for leads<br>for mains tapping panel | 54251 | Ring, mounting | for loudspeaker | | 40134 | Contact, spade | for mains adjustment | 55561 | Scale | printed | | 40135 | Contact, space | 101 mains adjustment | 52366 | Screen | for osc. coil | | Spec. 936 | Cord for drive | 40 in. length | 704041 | Screw, self-tapping | for mains tapping panel | | 52623 | Cover, presspahn | for gang capacitor | 102405 | Screw, wood (4) | for securing loud- | | | Daine muller | for trains onin dla | F0007 | Shirt (a) | speaker | | 47337 | Drive pulley | for tuning spindle | 52281 | Skirt (2) | for tuning knob<br>for chassis intercon- | | 48189 | Drum tuning | for gang capacitor | -52265 | Socket, 8 pin | necting | | 15628 | Eyelet | for drive cord | 37390 | Socket (6) | for AE, E, and PU panel | | 52113 | Fuse, PAK 500 mA. | | 1829/10 | Speaker fabric | II in. by II in. | | | | | 15264 | Speednut (2) | for retaining aerial | | 8608 | Grommet (6) | for chassis mounting | - ' | -1 | coils | | 42842 | Grommet (2) | for lampholders | 52290 | Spindle, tuning | | | 8589 | Grommet (6) | for V <sub>1</sub> , V <sub>3</sub> , V <sub>4</sub> mount- | 54158 | Spring (2) | scale retaining | | | | ing | 47478 | Spring | for drive cord | | 50040 | Guide rail | for pointer carrier | 48193 | Strap, fixing (2) | for mains filter | | 75040 | | | 52276 | Support (2) | for scale | | 48701 | Holder | for fuse | 52289 | Switch | wave band | | 50045 | Holder | for pointer | J , | | | | 30043 | | | 51451 | Valveholder B8A (4) | VI, 2, 3, 4 | | 53555 | Knob, tone | engraved | 3975 | Valveholder BO (3) | V <sub>5</sub> , 6, 7 | | 52278 | Knob, plain (2) | for tuning or volume | 49300 | Valveholder 4 pin | for chassis intercon- | | 53044 | Knob, wave-band | engraved | 49300 | varvenoider 4 pm | necting | | 33044 | Tenes, wave same | Cligitatea | | | necting | | 16880 | Lamp, pilot (2) | 6·2 volt 0·3 amp.<br>Philips | 50042 | Washer, cup shaped (12) | for chassis mounting | | 52323 | Lampholder (2) | for pilot lamps | 47940 | Washer (3) | for gang mounting | | 52243 | Loudspeaker | Tot proc minps | 14983 | Washer (4) | for securing loud- | | 53684 | Nut OBA cropped (2) | for chassis fixing | 52624 | Washer, felt (2) | speaker<br>for control spindles | | 75004 | Tide Oblit Glopped (2) | Tot chaosis manig | 34592 | Washer, felt (2) | for front control knobs | | 1 | | , | 1 74 174 | TY MOLICE, ICIL (2) | TOT TOTAL CONTROL RIVOR |