
"TRADER" SERVICE SHEET

HANNAN KANTAN KANTAN CANAN MAKAMBARATA CATAMBAN HATAMAN KANTAN MAKAMAN MAKAMAN MAKAMAN MAKAMAN MAKAMBAN MAKAMB

620

ESIGNED to operate from 110 V
AC or DC mains, the Belmont 530
is a 4-valve (plus rectifier) 2-band
superhet midget. The heater ballast
resistance is in the line cord, and an
additional line cord is supplied for use
with 220 V mains. The speaker unit plugs
into the chassis deck like a valve, and is
held there by two spring clips.

As the receiver is an American model, release date and price are not quoted.

CIRCUIT DESCRIPTION

Aerial input via isolating condenser C1 and coupling coils L1, L2 to single tuned circuit L3, L4, C19 preceding heptode tole (V1, American 6A7) which operates as frequency changer with electron coupling.

Oscillator grid coils L5 (MW) and L6 (LW) are tuned by C21. Parallel trimming by C22 (MW); series tracking by C23. (LW) and special design of C21. Reaction from anode by coils L7, L8, with stabilising resistance R3 connected between them.

Second valve (V2, American 6D6) is a variable-mu RF pentode operating as intermediate frequency amplifier with tuned-primary, tuned-secondary trans-

BELMONT 530 AC/DC MIDGET

former couplings G24, L9, L10, C25 and C26, L11, L12, G27.

Intermediate frequency 456 KC/S.

Diode second detector is part of double diode triode valve (V3, American 75), the two diode anodes being strapped together. Andio frequency component in rectified output is developed across load resistance R6 and passed via IF filter C8, R7, C9, AF coupling condenser C10 and manual volume control R8 to CG of triode section, which operates as AF amplifier.

Provision for connection of gramophone pick-up across C10, R8. DC potential developed across R6 is tapped off and fed back via R7, R4 as GB to IF valve, giving automatic volume control. Screen voltage for V1 and GB voltage for V3 triode are obtained from an HT potential divider R9, R10, R11, and the positive potential thus applied to V2 is counterbalanced by the drop along R5 in V2 cathode lead.

Resistance-capacity coupling by B12, C12 and R13 between V3 triode and pentode output valve (V4, American 43). Fixed tone correction by C13.

When the receiver is operated from AC mains, HT current is supplied by voltage-doubler type rectifying valve (V5, American 2525), which, with DC mains, behaves as a low resistance. One section is used to supply HT current to the receiver and the other to provide a separate supply to energise the speaker field winding L15. The receiver supply is smoothed by iron-cored choke L16, in the negative HT lead to chassis, and the electrolytic condensers C15, C16.

Valve heaters, tegether with line cords ballast resistance R15, are connected in series across 110 V mains input circuit. An additional line cord containing R16 may be connected for operation from 220 V mains.

COMPONENTS AND VALUES

	Values (ohms)	
R1	VI GB resistance	300
$\mathbf{R2}$	VI osc. CG resistance	10,000
$\mathbf{R3}$	Oscillator reaction damp-	
	ing	3,750
R4	V2 CG decoupling	250,000
R5	V2 fixed GB resistance	250
R6.	V3 diode load	250,000
R 7	IF stopper	50,000
R8	Manual volume control	500,000
$\mathbf{R9}$) V1 SG HT feed and V3 (7,500
R10	triode GB potential	10,000
R11) divider (200
R12	V3 triode anode load	100,000
R13	V4 CG resistance	300,000
R14	V4 CG decoupling	250,000
R15.	Heater circuit ballast	145
R16	High voltage ballast	260

† Measured value.

	CONDENSERS	Values
C1	Aerial isolating condenser	0.001
C2	"Top" coupling	Very low
C3' C4	V1 cathode by-pass V1 osc. CG condenser	0·05 0·00025
C5	V1 SG decoupling	0.00023
C6	V2 CG decoupling	0.03
Č7	V2 cathode by-pass	0.05
čs		0.0005
Č9	IF by-pass condensers {	0.0005
Č10	AF coupling to V3 triede	0.01
ČĨĨ	V4 CG decoupling	0.1
Č12	V3 triode to V4 coupling	0.91
C13	Fixed tone consector	U-025
C14*	Speaker field HT smooth	
	ing	5.0
C15*	} HT smoothing condensers {	7.0
C16*		18.0
C17	Mains RF by-pass	0.1
C18‡	Aerial circ. LW trimmer	·
C19†	Aerial circuit tuning	<u> </u>
C20‡	Aerial circ. MW trimmer	
C21†	Oscillator circuit tuning	
C22‡	Osc. circ. MW trimmer	, —
C23‡	Osc. circ. LW tracker	
	1st. IF trans. pri. tuning	
C24‡		
C241 C251 C261	1st. IF trans. sec. tuning 2nd IF trans. pri. tuning	

termedate required required to the set, and Rr6 is in an additional line cord. A diagram of the speaker plug is inset with the valve diagrams.

OTHER C	OMPONENTS Approx. Values (ohms)
10	31.0 3.0 3.0 21

* Tapped at 400 O from chassis.

VALVE ANALYSIS

Valve voltages and currents given in the table below are those measured in our receiver when it was operating on AC mains of 235 V, using the additional line cord.

The receiver was tuned to the lowest wavelength on the MW band, and the volume control was at maximum, but there was no signal input.

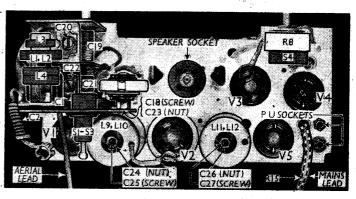
input.
Voltages were measured on the 400 V scale of a model 7 Avometer, chassis being the negative connection.

v	alve	Anode Voltage (V)	Anode Current (mA)	Screen Voltage (V)	Screen Current (mA)
V1	6A7	92 Oscil 76	$\left\{ egin{array}{c} 1 \ 1 \ ator \ 3 \cdot 1 \end{array} \right\}$	46	2.3
V2 V3	6D6 75	92 46	5.2 0.25	$\frac{92}{-92}$	2·0' 5·5
v5	25Z5	921			-

† Either cathode to chassis, DC.

DISMANTLING THE SET

Removing Chassis.—Remove the two control knobs (pull off); remove the ornamental-headed screw and nut holding the top Withe speaker rim to the front of the cabinet; remove the four self-tapping screws holding the chassis to the bottom of the cabinet.


The entire chassis, complete with speaker, may now be withdrawn from the cabinet as a single unit.

now be withdrawn nom-single unit.

Removing Speaker.—Remove chassis;
withdraw V2, V3 and V5 from their sockets;
withdraw III and over the second IF transformer, and, with the thumb and forefinger, grip the two phosphor bronze levers beneath the speaker and lift out the speaker unit.

are should be taken when handling the chassis while the speaker is in its socket, as it is held only by the plug and clips.

Plan view of the chassis. R15 is in the mains lead. C2 consists of a rubber covered wire wrapped round the top cap lead to VI.

GENERAL NOTES

Switches.—S1-S3 are the waveband switches, in single toggle-switch unit mounted on a bracket attached to the gang frame on the chassis deck. On MW (toggle raised) all three switches are closed; on LW (toggle down) they are all \$4 is the QMB mains switch, ganged with the volume control R8.

Pre-set Condensers.—Apart from those mounted on the gang unit, there are three pairs of pre-set condensers, one variable section being fitted on either side of a porcelain mounting forming the main body of the unit in each case; the front section is adjusted by means of a nut, and the other by means of a screw which is concentric with the nut.. C18 and C23 comprise one of these units, C18 being adjusted by the screw, and C23 by the nut.

The other two dual units are the IF transformer tuning condensers, located in the IF units. In each of these the nut adjusts the primary, and the screw the secondary.

Condensers C14, C15, C16.—These are three electrolytics, and they are shown in our under-chassis illustration as we found them in our sample, but the dual block marked "C14, C16" was actually a replacement of British make. The makers' instructions indicate that the three were originally in a single unit, which had four connecting leads: common positive for C15, C16, red; negative of C15, black; common negative of C14, C16, green; positive of C14, yellow. The values given in our table are those quoted by the makers.

L16.—The HT smoothing choke is provided with a tapping for bias purposes for V4. If a tapped replacement choke were not available, an untapped one of suitable DC resistance could be used, and the tapping point could be obtained by shunting across the choke a 400,000 O and a 200,000 O resistance, connected in series, the 400,000 O going to chassis. R14 could then be taken to their junction.

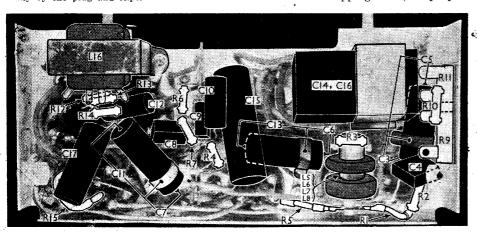
Components in IF Unit.—The makers' instructions indicate that R4, R6, R7 and C8, C9, C10 may be fitted in the L11, L12 IF unit in some chassis. These components were all mounted on a connecting strip running across the underchassis in our sample.

Resistances R1, R5.—These are two short flexible resistances.

R16.—This is contained in an extension line cord lead, which is added to the line cord already attached to the receiver for operation from mains of 200-240 V. A plug and socket union forms the connection. The resistance does not, of course, appear in our chassis illustrations.

Connections.—A four-pin Speaker American valve socket fitted near middle of the chassis deck provides the connections between the speaker and chassis. Its plug is mounted rigidly to the base of the speaker assembly, so that the speaker unit plugs in to the socket like a valve. When the chassis is mounted in its cabinet, the speaker rim is held to the front of the cabinet by a bolt, but when the chassis is withdrawn, care must be exercised to prevent a fracture of the plug, as the speaker is supported solely by the plug and two spring clips. The connections are indicated in our circuit diagram, and a diagram of the plug, viewed from the free ends of its pins, appears on the right of the circuit.

CIRCUIT ALIGNMENT


IF Stages.—Switch set to MW (switch lever raised), and turn the gang to maximum. Connect signal generator leads to control grid (top cap) of V1 and chassis, feed in 456 KC/S (657.9 m) signal, and adjust C24, C25, C26 and C27 for maximum output.

RF and Oscillator Stages.—With aerial lead coiled, transfer signal generator leads to C1 and chassis, via a 0.00025 μF condenser.

MW.—With set switched to MW, turn gang to minimum, feed in a 200 m (1.500 KC/S) signal, and adjust C22 for maximum output. Feed in 215 m (1.393 KC/S) signal, tune it in, and adjust C20 for maximum output while rocking the gang for optimum results. Check response at 250 m, 300 m, 400 m and 500 m (1.200 KC/S, 760 KC/S, 760 KC/S and 600 KC/S), adjusting the slotted end plates of C19 and C21 if necessary.

LW.—Switch set to LW (switch lever down), turn gang to maximum, swing signal generator control will it reconstact with set then addited

turn gang to maximum, swing signal generator control until it resonates with set, then adjust C23 (nut) for maximum output, while rocking the gang for optimum results.

Under-chassis view. RI and R5 are flexible resistances. R9, RII are in a Muter strip.