Schlumberger

NOTICE TECHNIQUE MA - 28

MAGNETOPHONES : F 240 A

NOTICE TECHNIQUE MA - 28

MAGNETOPHONES : F 240 A

F 241 A

F 243 A

SOMMAIRE	Page
AVERTISSEMENT	1
1 - GENERALITES	1
2 - CARACTERISTIQUES TECHNIQUES	2
3 - FONCTIONNEMENT ELECTRONIQUE	3
3 - 1 Principe	3
3 - 2 Comparateur de phase et commande d'asservissement	3
3 - 3 Générateur de référence "Qx"	4
3 - 4 Circuit de sélection de synchronisation	4
4 - FONCTIONNEMENT ELECTROMAGNETIQUE	4
5 - IMPLANTATION PARTICULIERE	5
6 - NOMENCLATURE DES PIECES ET CIRCUITS SUPPLEMENTAIRES OU DE REMPLACEMENT	6
6 - 1 Nomenclature Bloc correcteur enregistrement	8
6 - 1 - 1 Nomenclature plaquette asservissement	9
6 - 2 Nomenclature Bloc correcteur lecture	10
6 - 2 - 1 Nomenclature Plaquette correcteur de standard	11
6 - 3 Nomenclature plaquette synchronisation	12
6 - 4 Nomenclature plaquette comparateur	13
6 - 4 - 1 Nomenclature circuit diviseur	16
6 - 5 Nomenclature plaquette redresseur	18
6 - 6 Nomenclature plaquette à quartz	1 9
6 - 7 Nomenclature circuit de sélection de synchronisation	21

NO.	TICE TECHNIQUE	
N٥	13467 4/4/72	

N٥

	N° SCHEMAS
Principe général F 240 A	710.974
Principe général F 241 A	710.975
Principe général F 243 A	710.976
Principe et branchement	612.690 A
Correcteur variable Enregistrement	302.280
Plaquette asservissement -	6II.409
Correcteur variable Lecture	302.28I
Plaquette correcteur de standard	612.154
Plaquette synchronisation	611.410
Plaquette comparateur	6II.408
Plaquette redresseur	6 1 1.404
Circuit diviseur	614.814
Circuit Pilote (quartz)	6 14.81 5
Circuit de sélection de synchronisation	615.349

NOTICE TECHNIQUE MA - 28

MAGNETOPHONES: F 240 A

F 241 A

F 243 A

ADDITIF AUX NOTICES DES MAGNETOPHONES F 230 - F 212 - F 210

AVERTISSEMENT

Pour tout ce qui concerne les circuits de modulation, d'électro-mécanique et de défilement, se reporter à la notice complémentaire du magnétophone, en se rappelant que la voie gauche correspond à la piste 2,5 mm et la voie droite à la piste 5 mm dans le cas de l'appareil bi-piste ou stéréo-phonique. Dans le cas d'appareil monaural, piste 2,5 mm ou 5 mm en option.

1 - GENERALITES

Le magnétophone F 240 est un appareil mono-vitesse (19 cm/s correspondant à 25 images/seconde) utilisant une bande 16 mm perforée à cabestan lisse avec asservissement des perforations au moyen d'une lampe et d'une cellule photo-électrique.

Pour obtenir le maximum de ses performances de défilement, il est préférable d'utiliser de la bande polyester dite mince, d'épaisseur totale 90 microns.

L'asservissement du défilement de la bande peut se faire, suivant le cas, soit sur la fréquence du secteur, soit sur une tension continue issue d'un compteur à mémoire, soit sur une fréquence de 100-50 ou 25 Hz, issue d'un autre appareil du même type, soit en autonome, ou sur option à partir d'un générateur de précision interne.

NOTICE TECHNIQUE
No 13469 4/4/72

2 - CARACTERISTIQUES TECHNIQUES

Outre les caractéristiques citées dans la notice complémentaire, on trouvera ci-dessous les points particuliers au F 240 du point de vue synchronisation :

- Plage d'accrochage s'asservissement

± 1,5%

- Extension à \pm 2% et \pm 4%

- Tension continue nécessaire de commande "Extérieure"

comprise entre 0 et 12 V

- Impédance

environ 5 $k\Omega$

- Tension nécessaire de commande à 25/50/100 Hz

supérieure à - 4 dB

- Tension de sortie du détecteur de perforations

environ 10 V

- Récurrence

25 Hz

- Piste : Selon le type d'appareil et le bloc porte-têtes, il peut être utilisé :

- la piste centrale de 5 mm
- la piste latérale de 2,5 mm
- les pistes stéréophoniques
- les deux pistes centrale et latérale (dans le cas du bi-piste).

N٥

3 - FONCTIONNEMENT ELECTRONIQUE

3 - 1 Principe

Le circuit d'asservissement est basé sur le principe d'un comparateur de phases délivrant une tension d'erreur destinée à modifier le circuit initial d'asservissement du magnétophone (voir (voir Notice complémentaire).

Considérons le contacteur de synchronisation S 215 à 6 positions :

1°) Position "Autonome": le magnétophone défile à sa vitesse nominale de 19 cm/s, en l'absence de commande extérieure pour les modèles F 241 A et F 243 A.

Position "Extérieur": le magnétophone défile à la vitesse que lui impose une tension continue issue d'une commande extérieure (compteur à mémoire).

- 2°) Position "Secteur": le magnétophone défile à sa vitesse nominale corrigée par l'écart qui pourrait exister entre la fréquence du secteur et la fréquence des perforations à un multiple de 25 Hz près.
- 3°) Position "Qx": même fonctionnement qu'en 2°). Le secteur est remplacé par un générateur de p écision interne.
- 4-5-6°) Positions "25 50 100 Hz": même résultat que précédemment mis à part que les fréquences: 25 50 100 Hz sont connectées à la place du secteur.

Ces fréquences de commande, mis à part le 50 Hz secteur, sont connectées sur la prise J6.

NOTA: Le F 240 ne possède pas la position "Qx" et les positions autonome et extérieur sont séparées.

3 - 2 Comparateur de phase et commande d'asservissement (Nomenclatures 510.084 et 511.085 - Schéma 612.690)

Le circuit de comparaison de phase se compose essentiellement d'une bascule bi-stable commandée d'une part par la récurrence des perforations (25 Hz), et d'autre part par la récurrence de la tension dite "pilote" nominalement de 25 Hz.

Selon l'écart de phase existant entre ces deux récurrences, la sortie de la bascule fournira des créneaux de récurrence 25 Hz mais de largeur variable.

Après intégration de ces créneaux dans le circuit 5II.085, on obtient une tension moyenne dépendant directement de l'écart de phase, et corrigeant le circuit initial d'asservissement de vitesse du magnétophone (voir notice complémentaire).

Les fréquences d'attaque du comparateur sont obtenues d'une part par détection optique des perforations et mise en forme (Trigger), d'autre part, selon le cas (secteur 100 Hz - 50 Hz - 25 Hz) par mise en forme et division par 2 ou 4 éventuellement.

NOTA: Dans le cas du fonctionnement en "Extérieur", la tension continue de commande est appliquée à la place de la tension moyenne issue du circuit intégrateur (5II.085).

3 - 3 Générateur de référence "Qx"

Ce générateur de précision qui n'existe que sur option dans les modèles F 241 A et F 243 A fonctionne à partir d'un diapason de fréquence 1600 Hz ramené à 50 Hz après divisions successives de 2 en 2 cinq fois. (On peut disposer à volonté des fréquences 50 Hz ou 100 Hz par déplacement du câblage du connecteur).

La précision de fréquence est de l'ordre du 1 x 10 -5.

3 - 4 Circuit de sélection de synchronisation

Ce circuit offre les possibilités suivantes, dans le cas où l'on synchronise l'appareil par une source extérieure, par exemple une recopie de bande 6,25 : lorsqu'il y a interruption de signal de synchronisation, on a le choix de basculer automatiquement en fonctiennement autonome, ou bien de bloquer le moteur pilote.

Ce choix se fait à l'aide d'un inverseur situé sous la platine mécanique près du moteur latéral droit, marqué A M.

4 - FONCTIONNEMENT ELECTROMECANIQUE

Le fonctionnement mécanique est identique à celui du F 200, mis à part le système de freinage suivant :

Du fait de la reversibilité de sens d'enroulement de la bande (couche magnétique intérieure ou extérieure), le freinage de la bande s'effectue électriquement. Un détecteur de sens de rotation (S 217), placé sur l'axe du moteur auxiliaire droit, commute du courant continu sur l'un ou l'autre des moteurs de bobinage selon le sens de rotation de ceux-ci.

Ce courant continu est issu du redresseur 5II.09I et est commuté par les relais K104 et K105.

Le contacteur S 216 permet l'inversion de ortation des moteurs auxiliaires selon le sens de chargement de la bande.

5 - IMPLANTATION PARTICULIERE

- Circuit de référence de vitesse (5II.093)

Ce circuit se trouve placé mécaniquement sur le même support que le correcteur d'enregistrement.

- Circuit de changement de standard (5II.092)

Ce circuit se trouvant placé sur le même support que le correcteur de lecture permet un changement de standard d'enregistrement en 100 μs ou 50 μs .

Normalement câblé en 50 μ s, il suffit de se reporter aux indications portées sur le schéma de principe 7IO. 974 pour effectuer la modification.

- Circuit comparateur : se trouve à la place du circuit de référence de vitesse (sous la platine, entre les deux moteurs latéraux) du magnétophone de base.
- Le contacteur de synchronisation occupe la place du contacteur de vitesse du magnatophone de base.
- Le circuit de générateur de précision "Quartz" est enfichable dans les appareils monopistes dans le panier de cartes.
- Le circuit sélecteur de synchronisation de trouve fixé entre les deux moteurs latéraux sur le dessus de la platine mécanique.

LEGENDE DU CONE DE NOTRE SOCIETE / POUR LES COMPOSANTS ELECTRONIQUES

Code	Composant	Tolérance	W	Constructeur	Type
C 103	Résistance fixe miniature couche carbone couche oxyde métallique	5%	I/4	L.C.C. SOVCOR	RBX 001 S0 7
C 106	Résistance fixe couche carbone couche oxyde métallique	5%	I/2	L.C.C. SOVCOR	RBX 003 C 20
C 108	Résistance fixe couche carbone	1%	1/2	SFERNICE	RSI
C 109	Résistance fixe isolée couche c arbo ne	1%	I/8	L.C.C SOVCOR	RMX 012 S0 7
C 111	Résistance fixe couche carbone	5%	I	L.C.C.	RSX 005
C 201	Condensateur mylar métallisé	10%		L.C.C.	STEAFIX T P
C 202	Condensateur mylar métallisé	10%	÷	L.C.C.	STEAFIX I A
C 205	Condensateur au tantale sec polarisé	20%	-	AIR TRONIC SPRAGUE FIRADEC	ATRG 150D SI
C 211	Condensateur polycarbonate métallisé	2%	:	L.C.C.	STEAFIX KEF
C 221	Condensateur électrochimique polarisé	-10% +50%		SIC SAFCO	PROMISIC CI
C 222	Condensateur électrochimique polarisé	-10% +50%		SIC SAFCO	PROMISIC M
C 223	Condensateur électrochimique polarisé	-10% +50%		SIC SAFCO	PROMISIC 0-15 modèle
C 226	Condensateur électrochimique polarisé	-10 % +50%		SIC SAFCO	FELSIC
C 231	Condensateur dielectrique verre-mica	5%		SOVCOR	CYFM
C 241	Condensateur céramique à coeffi- cient de température non défini	10%		L.C.C.	DI
C 251	Condensateur au polycarbonate	10%		EUROFARAD	PMA 64
C 252	Condensateur au polycarbonate	5%		EUROFARAD	PMA 64
C 253	Condensateur au polycarbonate	5%		EUROFARAD	PMR 64
NOTICE	TECHNIQUE Société d'Ins	trumontation			REVISION

N° 09976 16/9/70

Société d'Instrumentation
Schlumberger

REVISION No

6 - NOMENCLATURE DES PIECES ET CIRCUITS SUPPLEMENTAIRES OU DE REMPLACEMENT

epère	Nbre	Désignation	Valeur ou caractéristiques	Type et constructeur
•	1	Galet entrée		SIS 510.835
	ı	Galet compteur		SIS 510.840
	1	Galet enrouleur		SIS 510.841
	1	Galet régulateur		sis 510.842
	1	Moteur pilote	·	SIS 510.843
	1	Galet presseur		SIS 510.845
	1	Plaquette	compa ra teur	SIS 5II.084
	1	Plaquette	diviseur	SIS 512.493
*	1	Plaquette	synchro	SIS 5II.085
	. 1	Plaquette	Quartz	SIS 512.498
	1	Plaquette	sélection	SIS 512.634
	1	Bloc-têtes	comprenant	
			Tête Lecture L 27	SIS 510.858
			Tête Enregistrement ENR 27	SIS 510.857
			Tête Effacement EFF 27	SIS 510.859
			Support cellule pour bande 16 mm	sis 510.588
			Moteur côté gauche	
	1	Support bobine		SIS 413.722
	1	Adaptateur		SIS 413.723
		As e emblage	·	SIS 413.724
			Moteur côté droit	
	1	Moyeu tambour		SIS 413.790-414.106
	1	Support ressorts		SIS 413.79I
٠.	1	Rondelle assise		SIS 413.792
-]	1	Rondelle réglage		SIS 413.793
	1	Roulement	25 x 42 x 9	ADR Y-25-ZZ
	1	Contre plateau	de freinage	SIS 413.794
	1	Pied de	positionnement GP 2 x 10	sis v 180
	1	Friction		SIS 413.795
	1	Support bobine	•	SIS 413.722
	•		•	

NOTICE TECHNIQUE
No 13474 4/4/72

Schlumberger

REVISION No

Repère	Nombre	Désignation	Valeur ou Caractéristiques	Constructeur et Type
	1	Compteur	horaire miniateure 50 c.p.s. 220 V - 9999 H avec bride de fixation type A	SARCEM Type CS-1000
	1	Condensateur	antiparasitage 630 V 47000 pF	LCC STEAFIX GA
	1	Support relais		SIS 414.126
1	2	Support relais	avec étrier de verrouillage	MTI EX3
	2	Relais	48 V continu	MTI EP.3 EX
	1	Condensateur	100 µF 63 V	CGC CO-21
	1	Condensateur	160 μF 63 V	CGC CO-21
-	1	Résistance	10 $k\Omega$ avec pattes de fixation PS 6	ALTER V.N.C. 10-52
	1	Microcontact	unipolaire 2 positions	CROUZET 319 C
	1	Condensateur	0,1 μF 160 V.	C 251
	2	Microcontact	sans levier	CROUZET 5142
	1	Contacteur	2 positions-2 galettes-6 circuits par galette	MAB (plan 414.152)
	1	Commutateur	4 circuits-5 positions - 2 galettes non c.c. suivant plan SIS 414.153	JEANRENAUD MAB
,	1	Lampe	3 W à baïonnette 48 V	MAZDA
	1	Compteur	D T 4 1731 M.R.A.	LOEWE FRANCE
	1	Pignon compteur		SIS 412.989
	1	Flexible compteu	r	SIS 412.99I
	1	Condensateur	1200 µF 63 V	C 226
	1	Correcteur	lecture	SIS 511.092
	1	Correcteur	enregistrement	SIS 511.093
	1	Condensateur	1500 μF 100 V avec collier type Al à 2 pattes	C 226
	1	P la quette	redresseur	SIS 511.091
TR7	1	Transformateur		SIS P.17610
3116-117	2	R és istance	4,7 kΩ	C 103
2120-121	2	Condensateur	5.110 pF 160 V	C 211

Ce document ne peut être communiqué ou reproduit sans notre autorisation écrite.

moc....6 6,2

مر/2/_خم

MT-A4869

6 - 1 NOMENCLATURE BLOC CORRECTEUR ENREGISTREMENT (Nomenclature 511.093)

Nombre	Designation	Valeur ou Caractéristiques	Constructeur et Type
1	Commutateur	1 section - 5 positions	JEANRENAUD Type SB
		relais 12 cosses à 30 mm	
		Axe Ø 4 Lgr St suivant plan SIS 104.322	
		Sur pistes 2,5 et 5	
		4	C 211
			C 211
			C 211
2	Condensateur	16900 pF 160 V	C 211
1	Plaquette	asservissement	SIS 511.086
·			
			(°
	•		
	e e		
·			
	2 2 2	Condensateur Condensateur Condensateur Condensateur Condensateur Condensateur	l section - 5 positions 2 circuits + 1 section relais 12 cosses à 30 mm Axe Ø 4 Lgr St suivant plan SIS 104.322 Sur pistes 2,5 et 5 Condensateur

Ce document ne peut être communiqué ou reproduit sans notre autorisation écrité.

875**7**59

0.2820

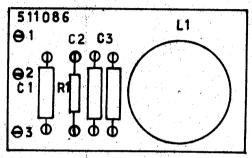


Schéma implantation composants

	Panha-	AP	h	I	
	Repère	Nbre	Désignation	Valeur ou caractéristiques	Constructeur et type
	Cl	1	Condensateur	3320 pF 160 V	C 211
	C2-C3	2	Condensateur	10000 pF 160 V	C 211
-	Ll	1	Self		SIS P 15840
_	Rl	1	R ésis tance	75 kΩ	C 103
					0 109
Ž.					· · · · · · · · · · · · · · · · · · ·
		gar y			

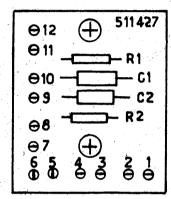
Ce document ne peut être communiqué ou reproduit sans autorisation écrite.

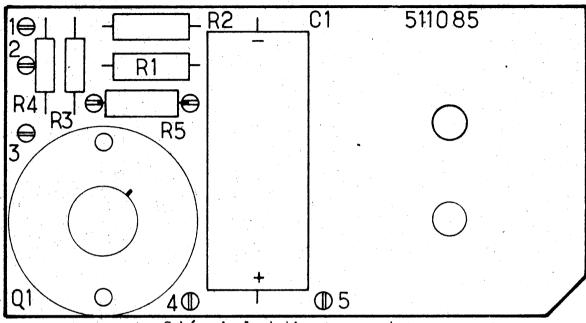
SOCIÉTÉ SCHLUMBERGER D'INSTRUMENTATION SCHLUMBERGER

6 - 2 NOMENCLATURE BLOC CORRECTEUR LECTURE (Nomenclature 511.092)

			,		
ĺ	Repère	Nombre	Désignation	Valeur ou Caractéristiques	Constructeur et Type
	S1 05	1	Commutateur	l section - 5 positions 2 circuits + 1 section relais 12 cosses à 30 mm Axe Ø 4 Lgr Std suivant plan SIS 104.322	JEANRENAUD Type SB
				Sur pistes 2,5 et 5	·
	C24	2	Condensateur	61900 pF 160 V	C 211
	C25	2	Condensateur	38300 pF 160 V	C 211
	C26	2	Condensateur	5110 pF 160 V	C 211
	C27	2	Condensateur	7870 pf 160 V	C 211
		1	Plaquette	correcteur de standard	SIS 511.427

Ce document ne peut être communiqué ou reproduit sans notre autorisation écrite.




Schéma implantation composants

Repère	Nbre	D ési gnati on	Valeur ou caractéristiques	Constructeur et type
C1-C2	2	Condensateur	2150 pF 160 V	C 211
R1-R2	2	Résistance	30 kΩ	C 103
	\ \			

Ce document ne peut être communiqué ou reproduit sans notre autorisation écrite. SOCIÉTÉ D'INSTRUMENTATION

SCHLUMBERGER

6 - 3 NOMENCIATURE PLAQUETTE SYNCHRONISATION 5II.085/1

C - 1- L		المناج فالملام المساجات	
Sonema	J.mp	± anta tion	composants

Repère	Nbre	Désignation	Valeur ou caractéristiques	Constructeur et type
Cl	1	Conden sat eur	100 µF 40/75 V	MINISIC INDUST.
Q1	1	Transistor		5 N 5105
RTH1	1	Radiateur		SEEM CO 180 B
Rl	1	Résistance	10 Ω	C 106
R2	1	Résistance	330 Ω	C 106
R3	1	Résistance	56000 Ω	C 103
R4	1	Résistance	3900 Ω	C 103
R5	1	Résistance	120 Ω	Q 106
	_			,
				1
				•
	•			
		•		
NOTIC	E TECHN	110115	Société d'Instrumentation	REVISION

Schlumberger

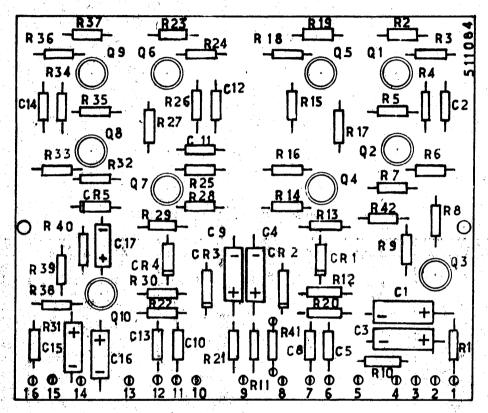


Schéma Implantation composants

Repère	Nbre	Désignation	Valeur ou caractéristiques	Constructeur et type
C1	1	Condensateur	4,7 μF 50 V	C 205
C2	1	Condensateur	100000 pF 160 V	C 505
C3-C4	2	Condensateur	4,7 μ F 50 V	C 205
c5-c6	2	Condensateur	220 0 pF 160 V	C 202
C9	1	Condensateur	4,7 μ F 50 V	C 205
C10	1	Condensateur	2200 pF 160 V	C 202
C11-12	2	Condensateur	6800 pF 160 V	C 202
C13	. 1	Condensateur	2200 pF 160 V	C 202
C14	.1	Condensateur	6800 pF 160 V	C 202
C15à17	3	Condensateur	4,7 μF 50 V	C 205
CR1à5	5	Diode		1 N 914
		•		

Ce document ne peut être communiqué ou reproduit sans notre autorisation écrite.

4 NOMENCIATURE PLAQUETTE COMPARATEUR 5II.084 (suite)

Repère	Nombre	Désignation	Valeur ou Caractéristiques	Constructeur et Type
Qlà10	10	Transistor		2 N 5105
R1	1	Résistance	2,2 kΩ	C 103
R2	1	Résistance	30 kΩ	C 103
R3	1	Résistance	4,7 kΩ	C 103
R4	1	Résistance	30 kΩ	C 103
R5	1	Résistance	330 Ω	C 103
R6	1	Résistance	4,7 kΩ	C 103
R7	1	Résistance	5,6 kΩ	C 103
r8	1	Résistance	11 kΩ	C 103
R9	1	Résistance	3,3 kΩ	C 103
R10	1	Résistance	30 kΩ	C 103
R11	1	Résistance	2,2 kΩ	C 103
R12	1	Résistance	30 kΩ	C 103
R13-14	2	Résistance	4,7 kΩ	C 103
R15-16	2	Résistance	30 kΩ	C 103
R17	1	Résistance	47 Ω	C 103
R18-19	2	Résistance	4;7 kΩ	C 103
R20	1	Résistance	30 kΩ	C 103
R21	1	Résistance	2,2 kΩ	C 103
R22	1	Résistance	30 kΩ	C 103
R23-24	2	Résistance	4,7 kΩ	C 103
R25-26	2	Résistance	30 kΩ	C 103
R27	1	Résistance	47 Ω	C 103
R28-29	2	Résistance	4,7 kΩ	C 103
R30	1	Résistance	30 kΩ	C 103
R31	1	Résistance	2,2 kΩ	C 103
R32-33	2	Résistance	4,7 kΩ	C 103
R34	1	Résistance	30 kΩ	C 103

Ce document ne peut être communiqué ou reproduit sans autorisation écrite. notre

59/1, 0

9-020

Z

6 - 4 NOMENCIATURE PLAQUETTE COMPARATEUR 511.084 (2ème suite)

Repère	Nombre	Désignation .	Valeur ou Caractéristiques	Constructeur et Type
R35	. 1	Résistance	330 Ω	C 103
R36-37	2	R ésista nce	4,7 kΩ	C'103
F38-39	2	R és istance	30 kΩ	C 103
R40	1	Résistance	5,6 kΩ	C 103
R41	1	Résistance	30 kΩ	C 103
R42	1 1	Résistance Circuit	2,2 kΩ diviseur	C 103 SIS 512.493

Ce document ne peut être communiqué ou reptoduit sans notre autorisation écrite.

6 - 4 - 1 NOMENCIATURE Circuit diviseur 512.493

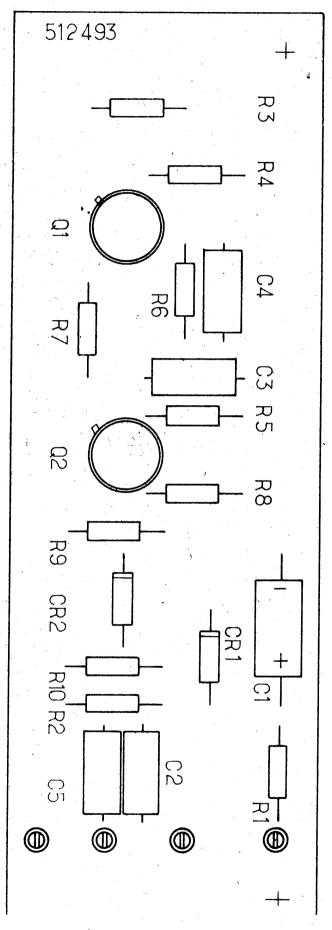


Schéma implantation composants

6 - 4 - 1 - NOMENCLATURE CIRCUIT DIVISEUR 512.493 (suite)

Repère .	Nbre	Désignation	Valeur ou caractéristiques	Type et constructeur
Cl	1	Condensateur	4.7 µF 50 V	C 205
C2	1	Condensateur	2200 pF 160 V	C 505
C3-4	2,	Condensateur	6800 pF 160 V	C 505
C5	1	Condensateur	2200 pF 160 V	C 505
CR1-2	2	Diode		I N 914
Q1-2	2	Transistor	April 1995	5 N 5105
Rl	1	Résistance	2,2 kΩ	C 103
R2	1	Résistance	30 kΩ	C 103
R3-4	2	Résistance	4,7 kΩ	C 103
R5-6	2	Résistance	30 kΩ	C 103
R7	1	Résistance	47 kΩ	C 103
R8-9	2	Résistance	4,7 kΩ	C 103
R10	1	Résistance	30 kΩ	C 103
			•	
				·
				•
	ĺ			
		•		
		•		
				•
·				

No 12723 19/10/71

Société d'Instrumentation
Schlumberger

REVISION

5 NOMENCLATURE PLAQUETTE REDRESSEUR 511.091

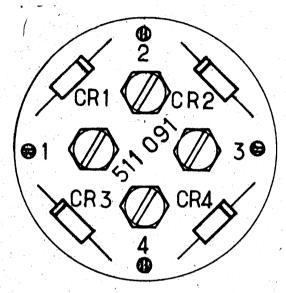
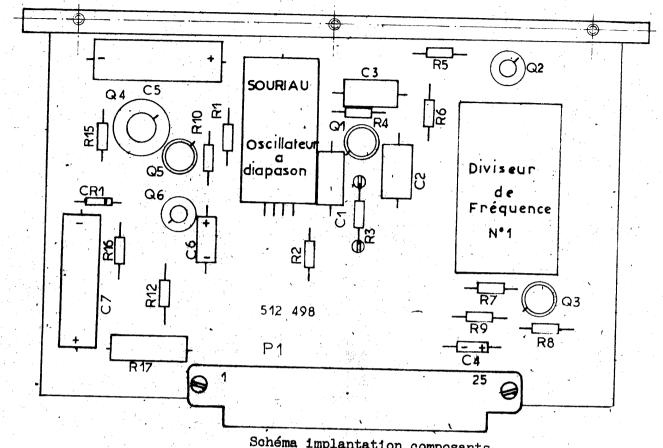



Schéma implantation composants

Rep èr e	Nbre	Désignation	Valeur ou caractéristiques	Constructeur et type
CR1à4	4	Diode		EUROPELEC SD6
	•			
		\$. 		
	,			en e
*.			and the second second	
*				

6 - 6 NOMENCIATURE PIAQUETTE A QUARTZ 512.498

Repère	Nbre	Désignation	Valeur ou caractéristiques	Constructeur et type
C1 à 3	3	Condensateur	'0,1 μF 160 V	C 202
C4	1	Condensateur	3,3 μF 15 V	C 205
C5	1	Condensateur	220 µ F 16 V	C 223
c6	1 ,	Condensateur	15 µF 20 V	C 205
C7	1	Condensateur	68 µF 40 V	C 223
CRI	1	Diode		I N 708 A
?1	1	Connecteur		SOCAPEX 254/25 AM
ध्र	1	Transistor		2 N 2102
2	1	Transistor		2 N 2484
3à5	3	Transistor		2 N 2102
6	. 1	Transistor		2 N 2484
TH 1	1	Radiateur		SEEM CO 180 DIC pr TO
1	1	Résistance	220 kΩ	C 103
2	1	Résistance	10 kΩ	C 103
3	1	Résistance	330 kΩ	C 103
4	1	Résistance	3,3 kΩ	C 103
				0 10)

Schlumberger

4/4/72

6 - 6 NOMENCIATURE PLAQUETTE A QUARTZ 512.498 (suite)

Repère ———	Nbre	Désignation	Valeur ou caractéristiques	Type et constructeur
R5	1	Résistance	220 kn	C 103
R6	1	Résistance	10 κΩ	C 103
R7	1	Résistance	1 kΩ	C 103
R8	1	Résistance	100 Ω	C 103
R10	1	Résistance	2 kΩ	C 103
R12	1	Résistance	4,7 κΩ	C 103
R15	1	Résistance	4,7 kΩ	C 103
R16	1	Résistance	3,3 kΩ	C 103
R17	1	Résistance	560 Ω	C 103
	1	Oscillateur	à diapason 1600 Hz 9 V	SOURIAU 8 DS1 C5 FN
i	1	Diviseur de	n° 1	SCHLUMBERGER
		fréquence		
		• •		
		· · · ·		
		e de la companya de l		
-				
	·	. * *	: :	
			1	
	-		:	

NOTICE TECHNIQUE No 13476 4/4/72

Schlumberger

REVISION

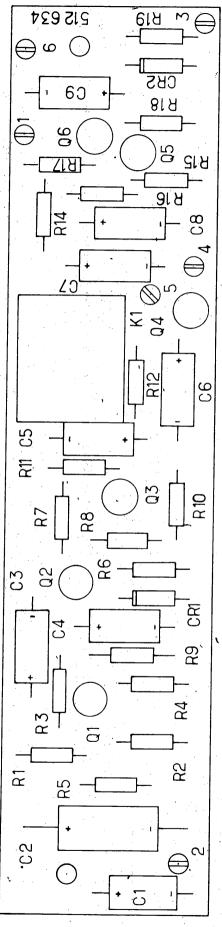
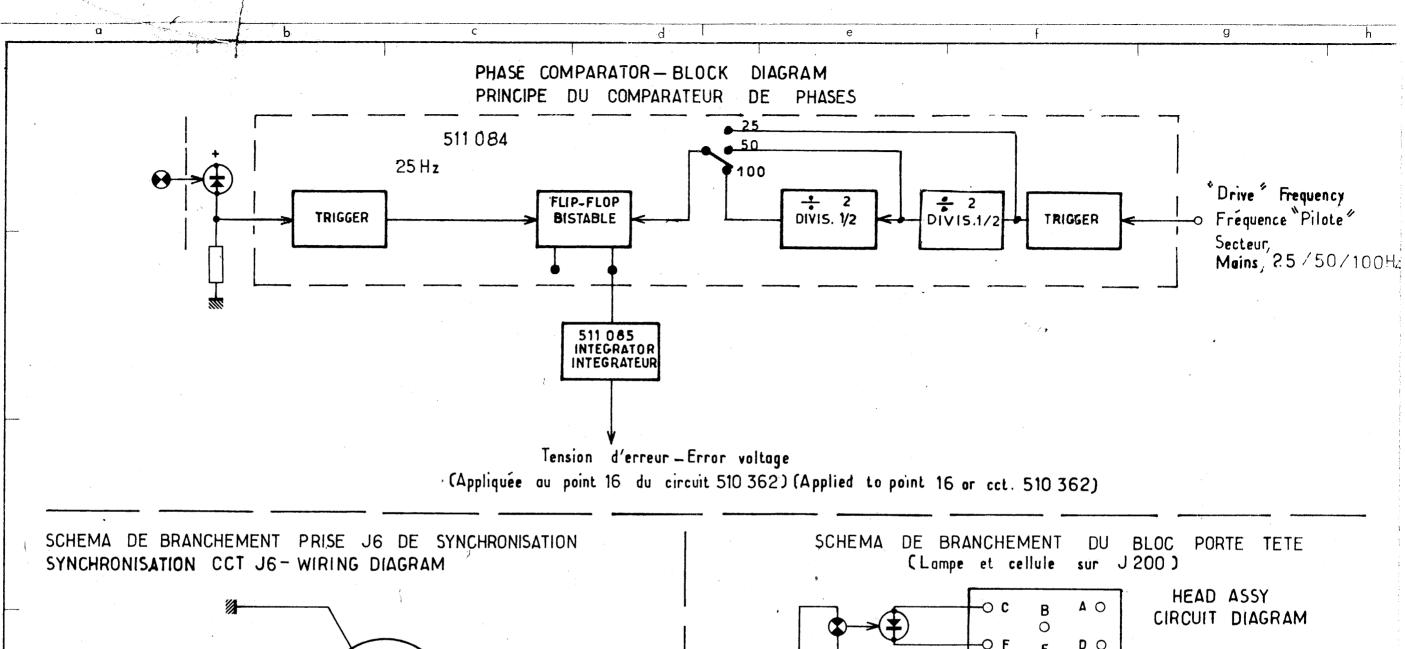
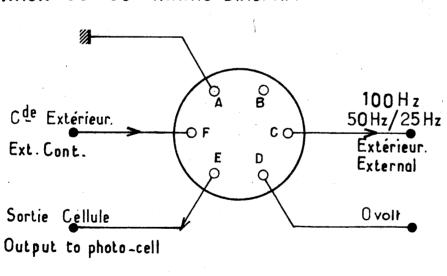


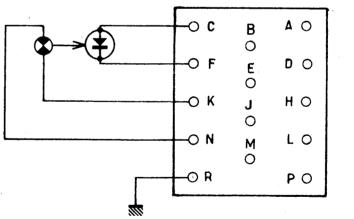
Schéma implantation composants

NOTICE TECHNIQUE
Nº 13477 4/4/72

Schlumberger


REVISION


6 - 7 NOMENCLATURE CIRCUIT DE SELECTION DE SYNCHRONISATION (suite)


Repère	Nbre	Désignation	Valeur ou caractéristiques	Type et constructeur
Cl	1	Condensateur	4,7 μ F 50 V	C 205
C2	1	Condensateur	100 µF 10 V	C 205
C3 à 9	7	Condensateur	4,7 μF 50 V	C 205
CR1-2	2	Diode		I N 914
K1	1	Relais	5800 Ω	SIEMENS V 23154.CO.40 B 104
÷	1	Support		SIEMENS Z 1001
	1	Etrier		SIEMENS Z 1021
Q1à 6	6	Transistor		2 N 2484
R1	1	Résistance	30 kΩ	C L03
R2	1	Résistance	1,5 kΩ	C 103
R3	1	Résistance	13 kΩ	C 103
R4	1	Résistance	2,32 kn	C 109
R5	1	Résistance	680 n	C 103
R6-7	2	Résistance	4,7 kΩ	C 103
R8	1	Résistance	180 Ω	C 103
R9	1	Résistance	30 kΩ	C L03
R10	1	Résistance	5,6 kΩ	C 103
R11-12 R14	3	Résistance	4,7 kΩ	C 103
R15	1	Résistance	5,6 kΩ	C 103
R16	1	Résistance	30 kΩ	C 103
R17	1	Résistance	4,7 kΩ	C 103
R18	1	Résistance	330 Ω	C 103
R19	1	Résistance	4,7 kΩ	C 103
		·	e e	
	·			

NOTICE TECHNIQUE N° 13478 4/4/72

Schlumberger

SYNCHRONIZATION DESIGNATION DIAGRAM PAIL 612

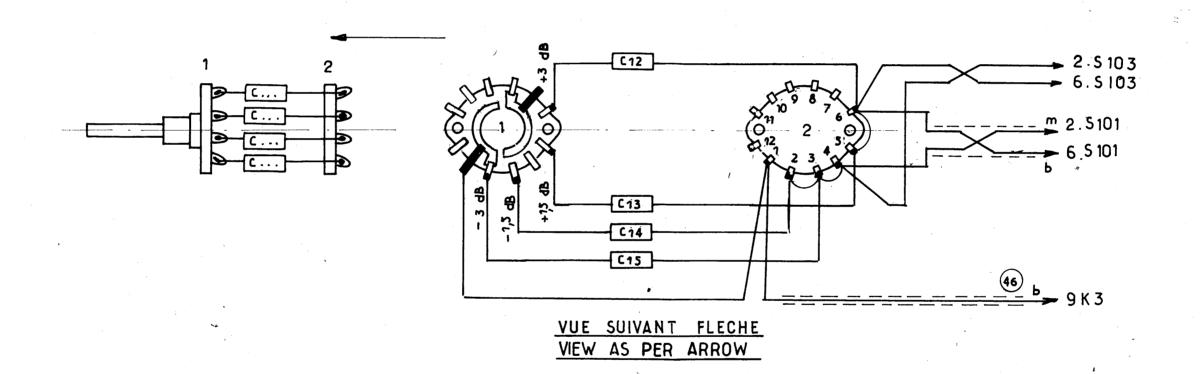

SOCIÉTÉ D'INSTRUMENTATION SCHLUMBERGER

PLANCHE N°_

DESIGNATION: SCHEMA DE PRINCIPE ET

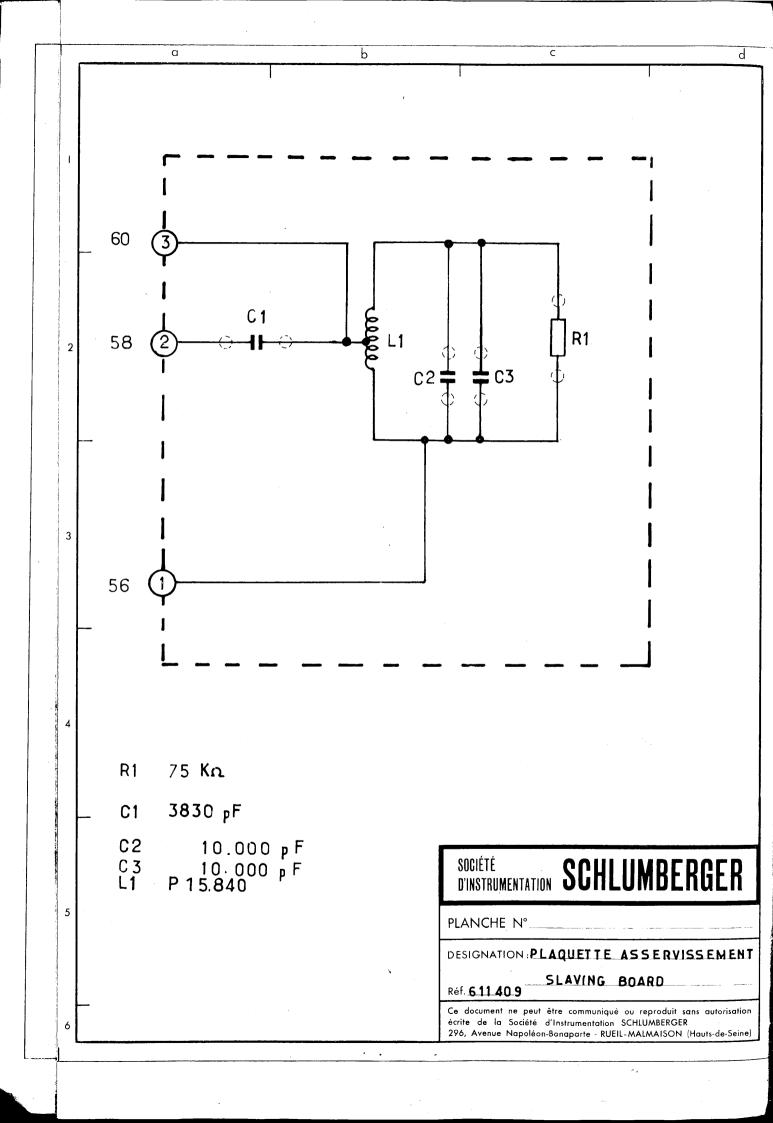
REF. 61 2 6 9 0 A

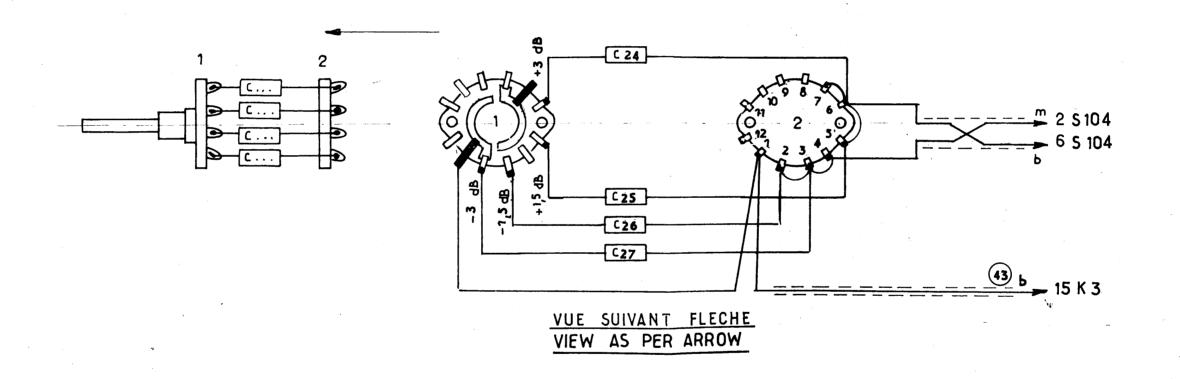
Ce document ne peut être communiqué ou reproduit sans autorisation écrite de la Société d'Instrumentation SCHLUMBERGER 296, Avenue Napoléon-Bonaparte RUEIL-MALMAISON (Hauts-de-Seine)

RECORDING VARIABLE

CORRECTOR

WIRING DIAGRAM


A Fig. texte en Finglais

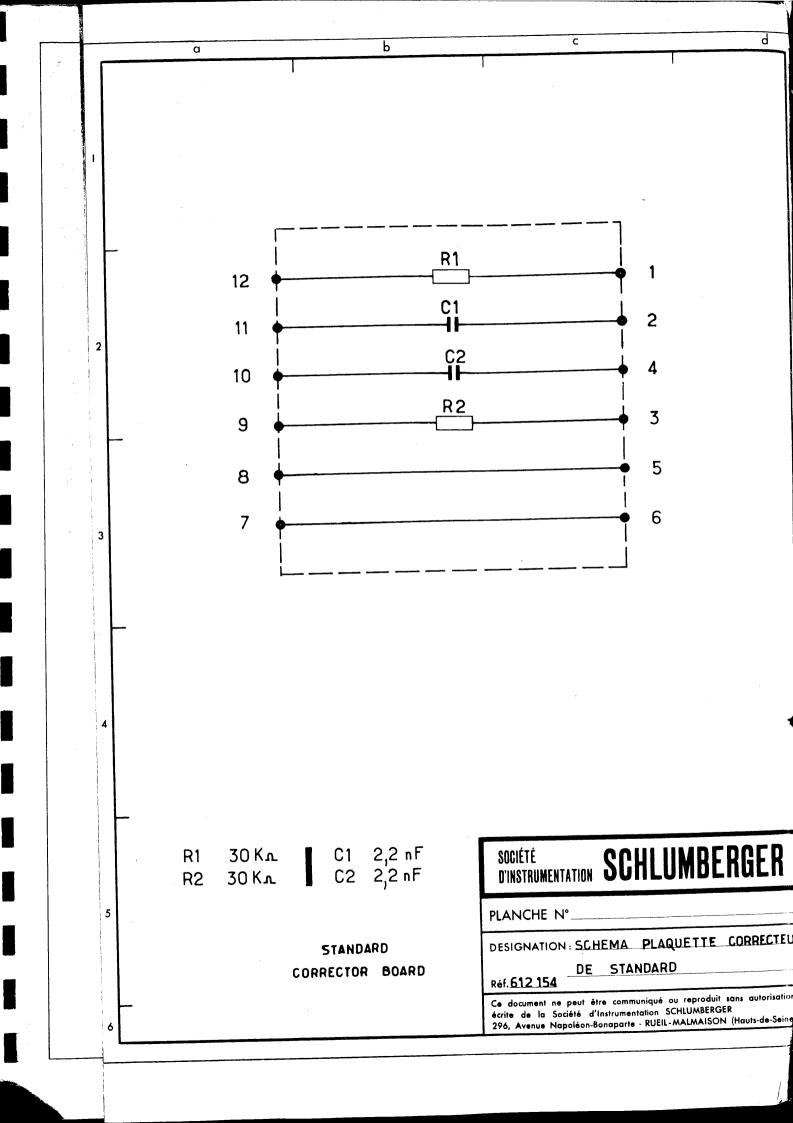

DAY 3142-97-13.12.65

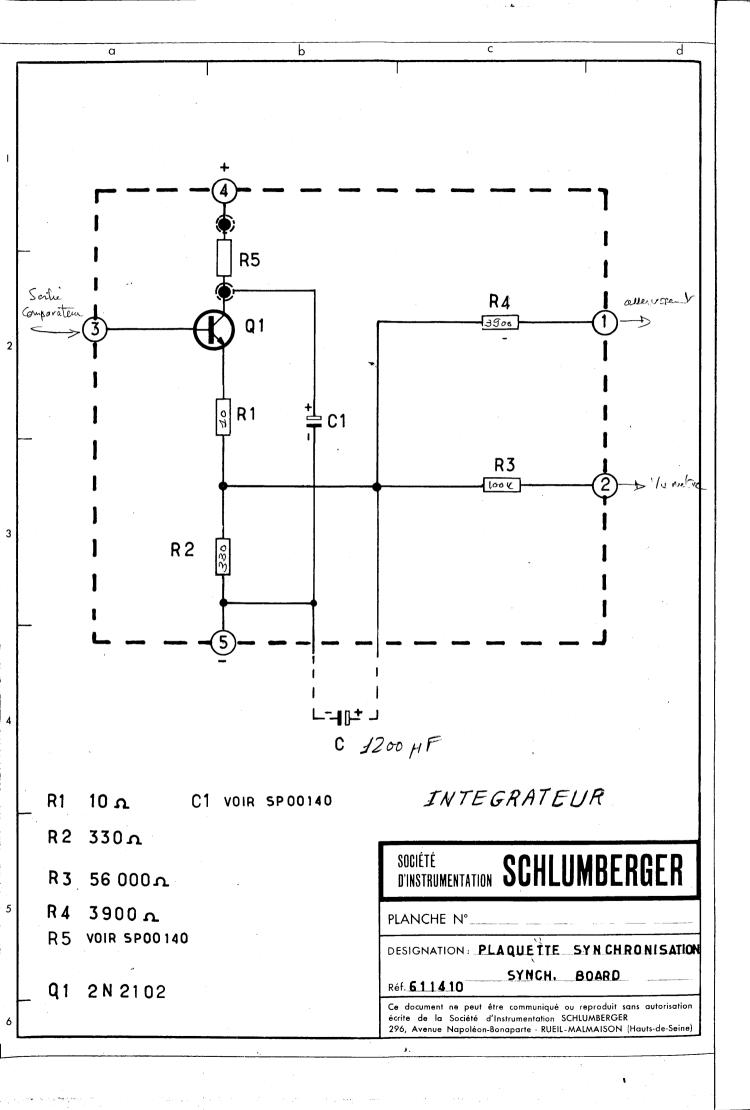
Nº 302280

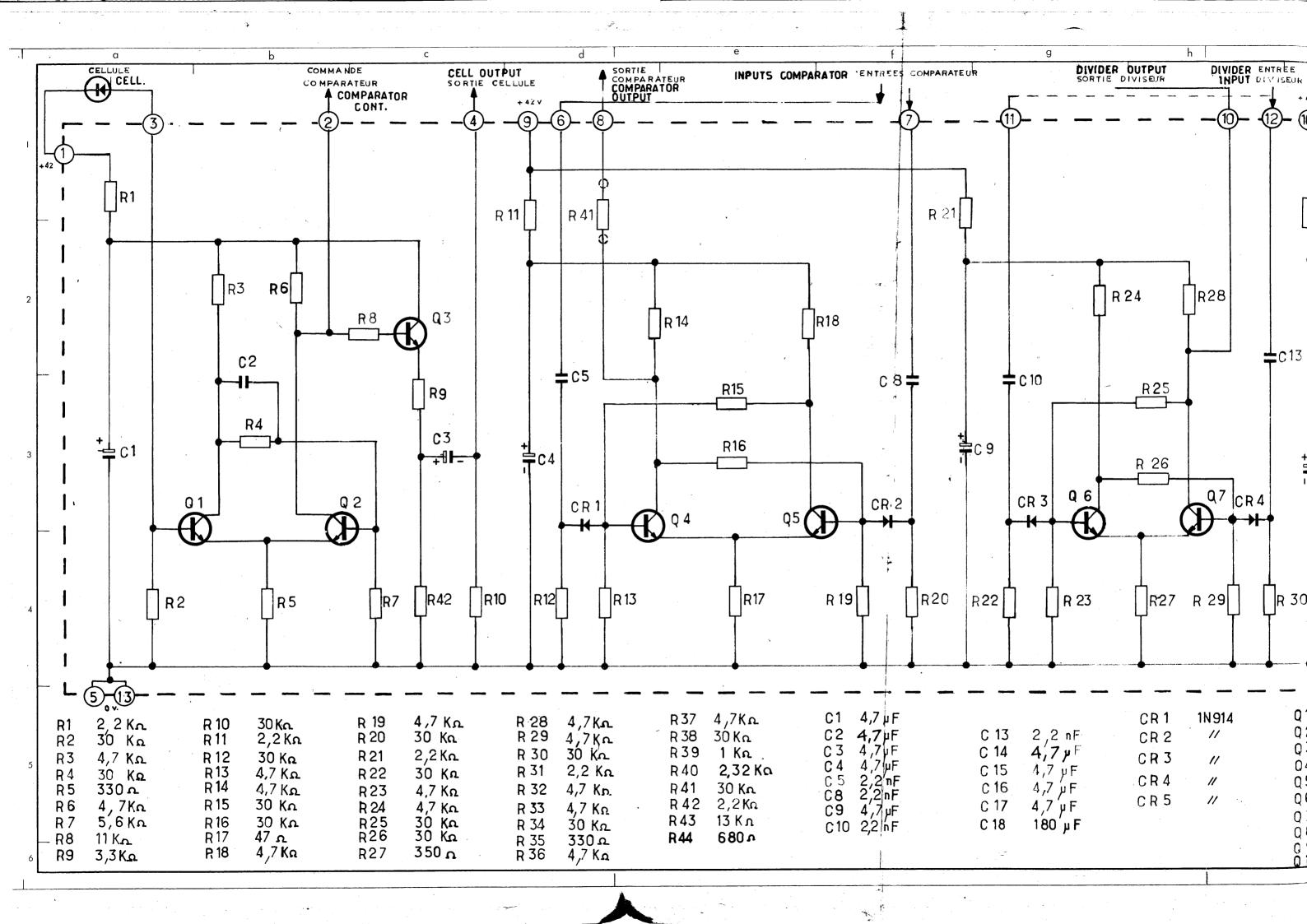
DATE 15.9.65

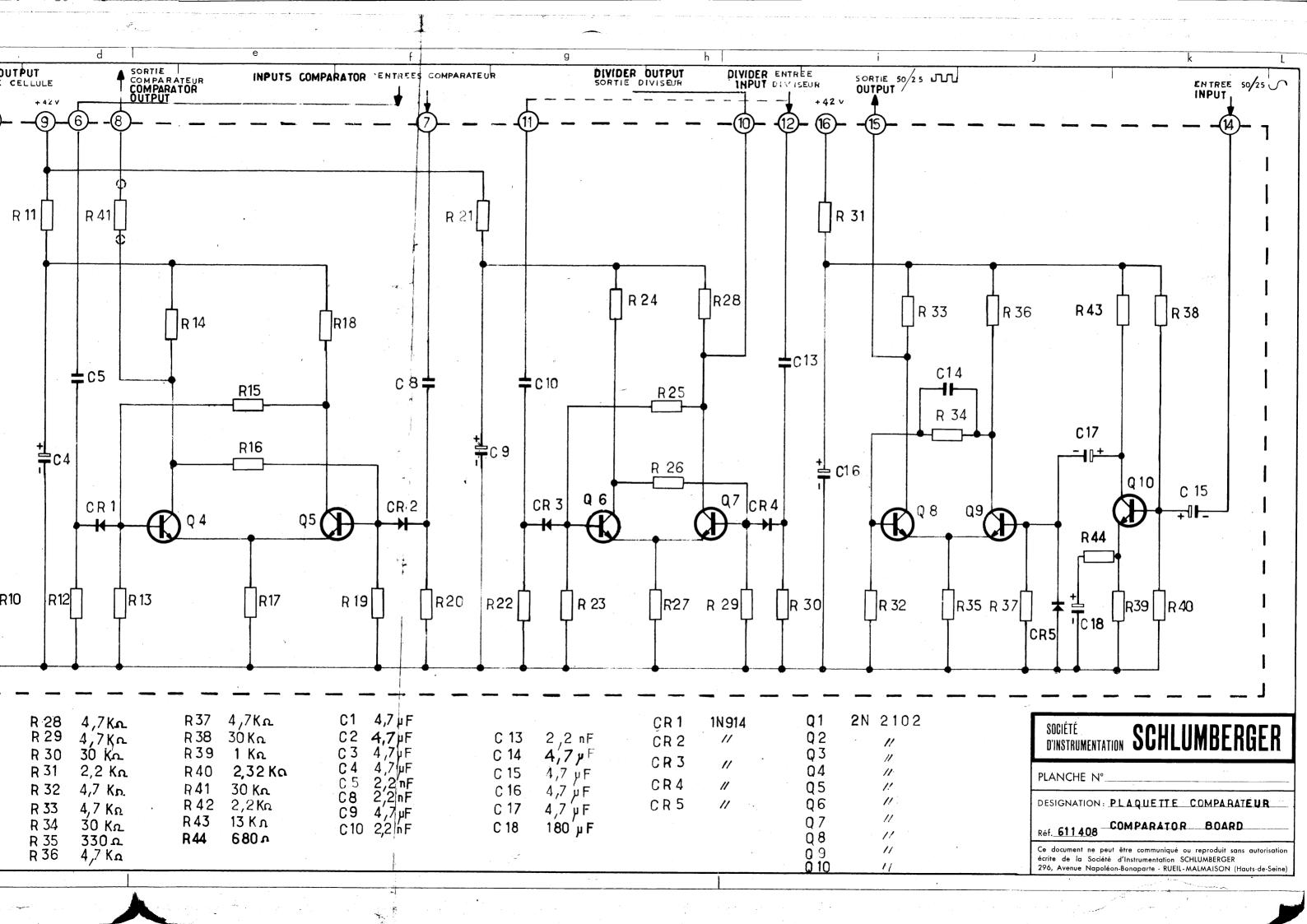
PLAYBACK VARIABLE CORRECTOR

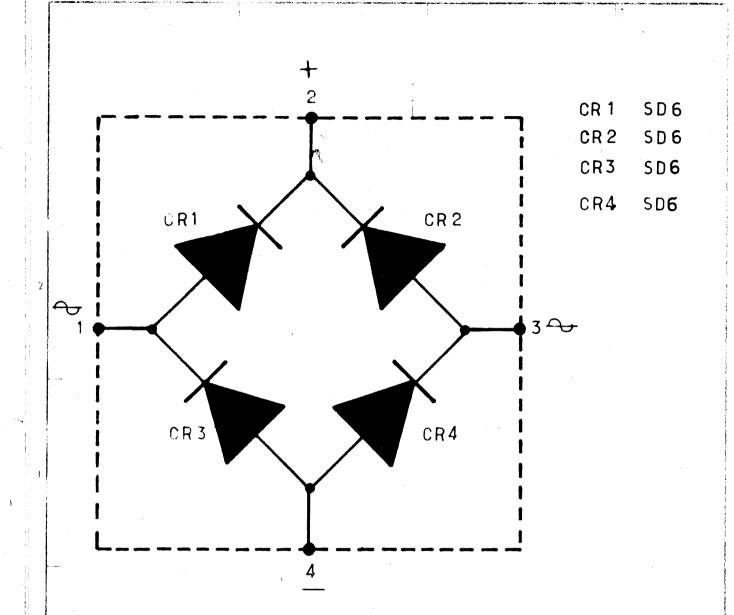
DAN. 3144 Anglais Made




Nº 302281

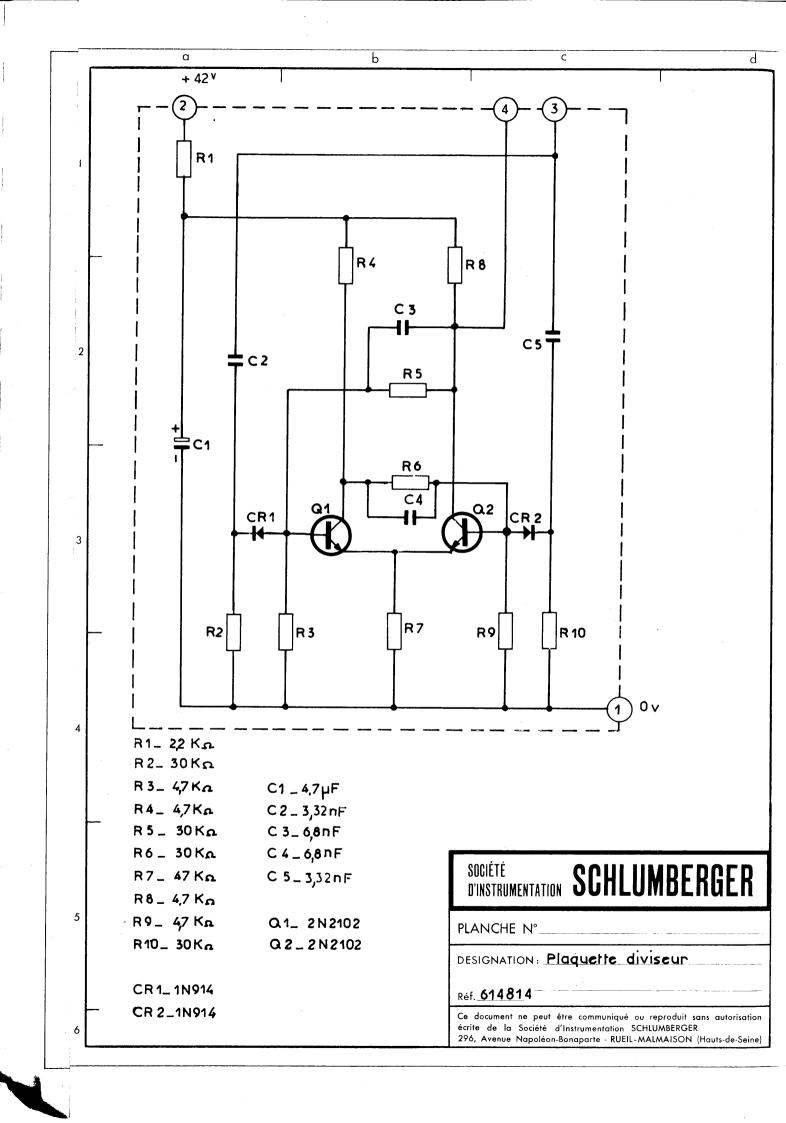

DATE 15.9 65

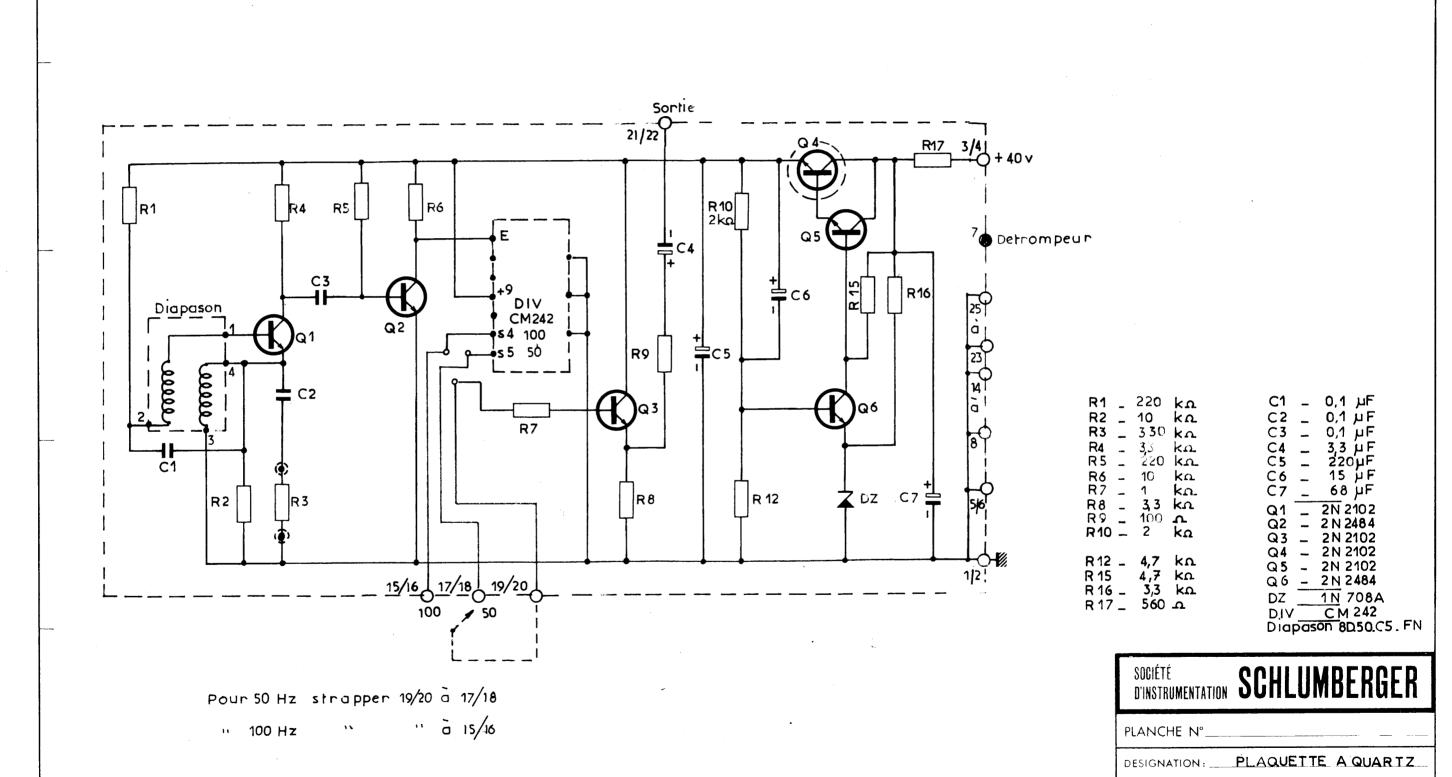

APPAREIL: CORRECTEUR VARIABLE LECT. S105 19 cm


SCHÉMA: DE CABLAGE

SOCIÉTÉ D'INSTRUMENTATION SCHLUMBERGER

PLANCHE N

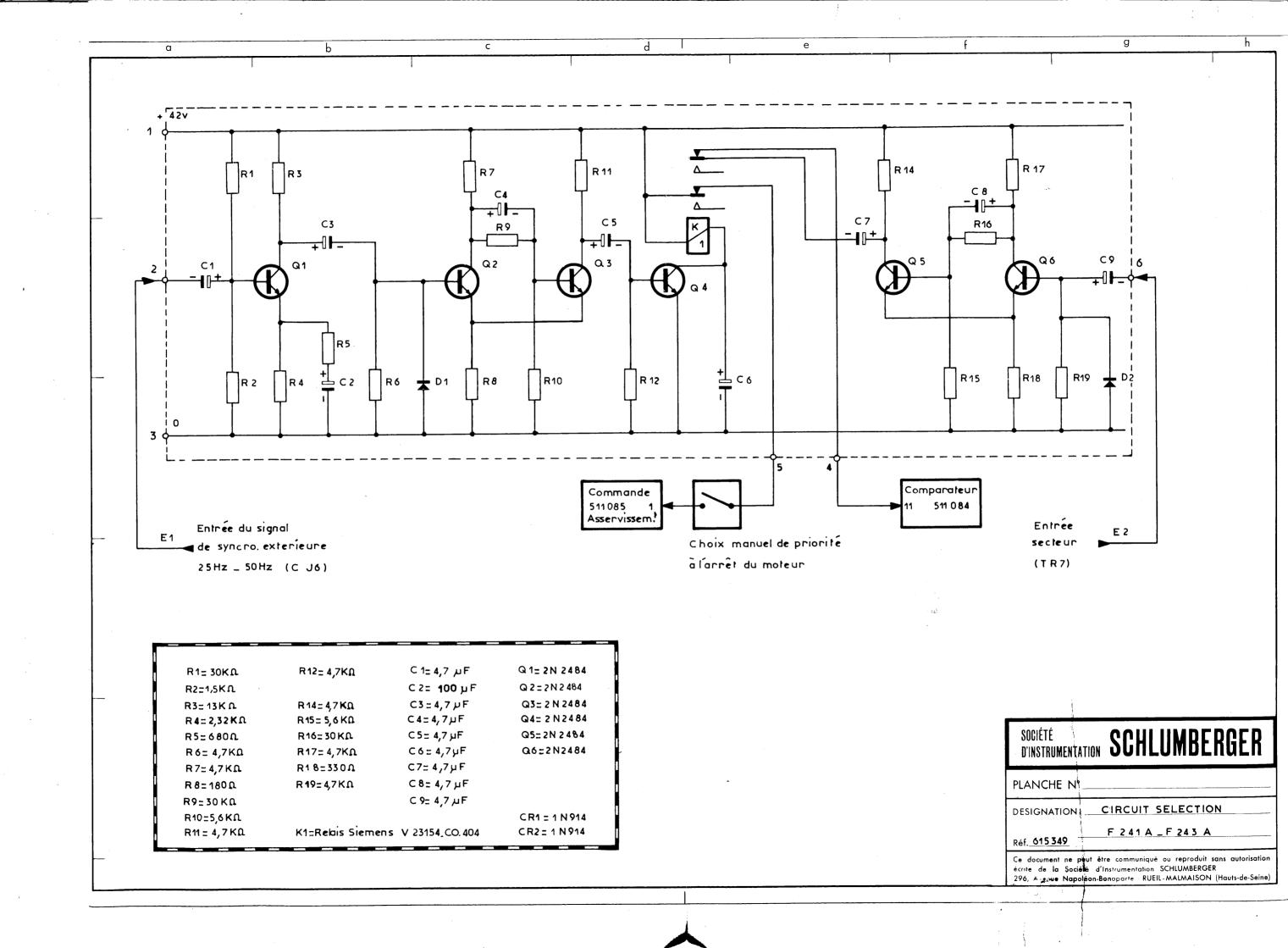

DESIGNATION


PLAQUETTE REDRESSEUR

Ref. 611 404

RECTIFIER BOARD

Ce document ne peut être communique de épite de la Sociéte d'Instrumentation SembUMBERGER 296, Avenue Napoléon Bonoparte (RUIS MALMAISON Hauts de Seme



Réf. 614.815

Ce document ne peut être communiqué ou reproduit sans autorisation

296, Avenue Napoléon-Bonaparte - RUEIL-MALMAISON (Hauts-de-Seine)

écrite de la Société d'Instrumentation SCHLUMBERGER

