

DEPARTEMENT AUDIO PROFESSIONNEL

Nos appareils et leurs caractéristiques sont susceptibles d'être modifiés sans avis préalable.

Our equipments and their specifications are subjet to change without notice.

Magnétophones à bande perforée DS16 & 17,5 Notice d'exploitation

MC 1082 / 21 133

3ème édition

DS 16 & DS 17,5

Manuel d'exploitation

	SOMMAIRE	Page
1	GENERALITE Vue générale	5 6
2	DESCRIPTION	7
2 - 1	Platine centrale	7
2 - 2	Platines auxiliaires	7
	Vue platine centrale Vue platine auxiliaire Vue tiroir modulation	8 9 10
2 - 3	Tiroir modulation	1 1
2 - 4	Tiroir coupleur à mémoire	1 1
2 - 5	Tiroir alimentation	1.1
2 - 6	Pédale	1 1
	Vue tiroir coupleur à mémoire Vue tiroir alimentation Vue passe-boucle	12 13 14
2 - 7	Passe-boucle	15
2 - 8	Codeur optique	15
	Vues de machines diverses	16
3	DIFFERENTES CONFIGURATIONS	17
3 - 1	Machines de base	17
3 - 2	Options	18
4	CARACTERISTIQUES	19
4 - 1	Caractéristiques électriques	19
4 - 2	Caractéristiques mécaniques	19
	Vue descriptive Schéma synoptique Vue tiroir d'électronique	20 21 21
5	FONCTIONNEMENT	23
5 - 1	Fonctionnement électronique (modulation) Synoptique modulation	23
5 - 2	Fonctionnement mécanique Vue platines de défilement Vue des galets	25 26 28
5 - 3	Fonctionnement électromécanique Synoptique logique machine Synoptique boucles d'asservissement (/1) Principe électromécanique (/1) Principe électromécanique (/s)	29 30 31

Page 3 21 134

) -	4	Coupleur a memoire	33
		Synoptique anticoincidence	35
		Synoptique comptage/décomptage	36
		Synoptique détecteur de sens	36
		Synoptique commande d'asservissement	37
		Synoptique général coupleur à mémoire (/1)	
		Synoptique général coupleur à mémoire (/s)	
6		INSTALLATION	39
6 -	1	Caractéristiques des signaux d'interface	39
6 -	2	Précautions d'installation	39
6 -	3	Mise en place du codeur optique	39
6 -	4	Couplage avec pilote	39
6 -	5	Raccordement extérieur	39
7		UTILISATION	41
7 -	l	Chargement de la bande	41
7 -	2	Chargement d'une bande sans fin	41
7 -	3	Verrouillage du noyau	41
7 –	4	Nettoyage	41
7 –	5	Changement du type de bande	41
7 –	6	Incidents en cours d'utilisation	. 42
8		ENTRETIEN	42

1. GENERALITES

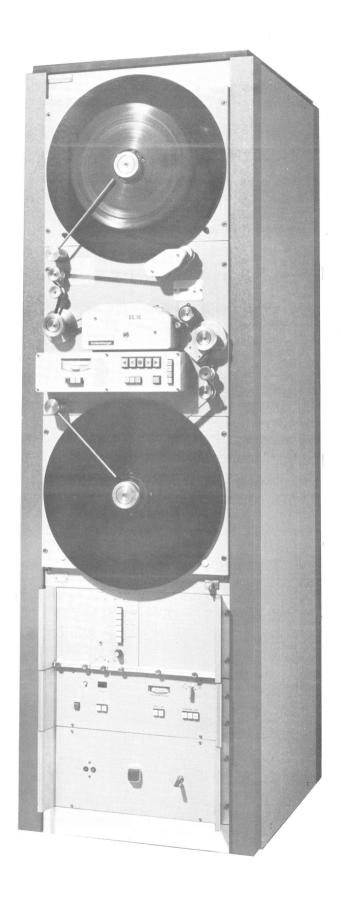
Le magnétophone DS 16 est un appareil enregistreur -lecteur pour bandes magnétiques perforées de 16 mm. Il est mono-vitesse, 19,05 cm/s.

Le magnétophone DS 17,5 reçoit de la bande magnétique perforée 17,5 mm et fonctionne à 47,5 cm/s.

Dans ces machines, la bande est entraînée par un cabestan lisse à grande plage de variation de vitesse qui la pilote constamment quelque soit le mode de fonctionnement (défilement avant ou arrière, vitesse nominale ou accélérée, ralentissement ou accélération).

La vitesse et le sens de défilement de la bande sont détectés par un galet à picots équipé d'un dispositif photo-électrique.

Le cabestan asservit le défilement de la bande par détection de déphasage entre la fréquence des perforations et une fréquence de référence qui peut être :


- . le secteur,
- . un générateur interne de haute précision
- . un signal de synchronisation externe de 100, 50 ou 25 Hz.

Ce magnétophone peut être aussi couplé à une autre machine à 24 ou 25 Hz (suivant réglage) à un projecteur ou une autre DS 16 par exemple.

Il est en effet conçu pour être utilisé en système de mélange et de post-synchronisation pour le cinéma.

Il peut composer des bancs de recopie aussi bien à lecteur asservi qu'à enregistreur asservi.

Le couplage avec le pilote et l'asservissement du défilement de la bande entièrement électroniques permettent de maintenir le couplage en défilement rapide avant ou arrière jusqu'à 2m/s (version /s).

Page 6 21 096

Schlumberger

Vue générale General view

2. DESCRIPTION

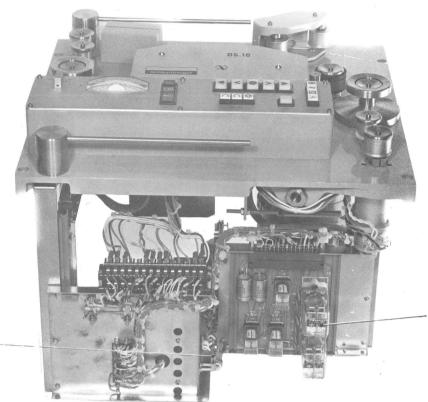
La machine se présente sous la forme d'une baie 17" X 36 U comprenant trois platines mécaniques dans la partie supérieure et trois tiroirs pour l'électronique.

La cinématique se compose de deux platines porte-bobine recevant l'une la bobine débitrice, l'autre la bobine réceptrice et situées de part et d'autre d'une platine centrale de défilement.

La partie inférieure de la baie comprend les tiroirs d'électronique :

- un tiroir pour la modulation (4U)
- un tiroir pour la synchronisation et le couplage (3U)
- un tiroir pour l'alimentation de l'ensemble (4U)
- une face avant (IU) comportant des blocs à douilles destinés à isoler la machine de l'installation.

Une pédale de déblocage du frein des moteurs auxiliaires (permettant un chargement aisé de la bande) ainsi qu'une enceinte (option ampli de repérage) complétent la baie.


2.1. Platine centrale

La platine centrale de défilement comporte tous les galets de guidage, le moteur cabestan, le bloc porte-têtes, deux détecteurs de tension de bande permettant d'équilibrer à tout moment les tensions de bande de part et d'autre du cabestan, le galet détecteur de perforation et, en option sur les DS 16 seulement, un dispositif de pré-lecture 4 secondes avant la lecture principale.

C'est elle également qui supporte le boitier de commande de défilement et de mode de fonctionnement.

2.2. Platines auxiliaires

Les deux platines de moteur auxiliaire ne se différencient entre elles que par la possibilité sur la platine supérieure (débitrice) d'inverser le sens de rotation du moteur, pour débiter de la bande bobinée avec sa couche magnétique à l'intérieur ou à l'extérieur.

- CARTE RELAIS Relay board

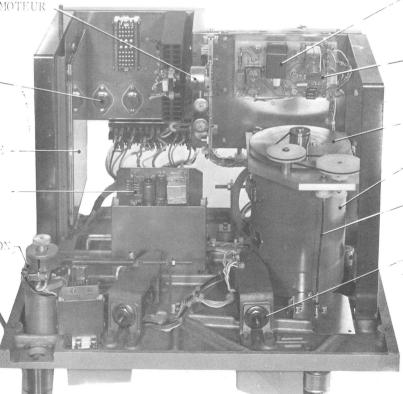
RESISTANCE DE _ COURT CIRCUIT MOTEUR Motor strapping resistor

ASSERVISSEMENT MOTEUR CABESTAN

Capstan motor control

TRANSTSTORS — COMMANDE MOTEUR Motor control

transistor


LOGIQUE COMMANDE -Control Logic

COMMUTATION DES

Heads switching

DIRECTION TENSION DE BANDE

Tape tension detector

COMPTEUR HORAIRE Horal meter

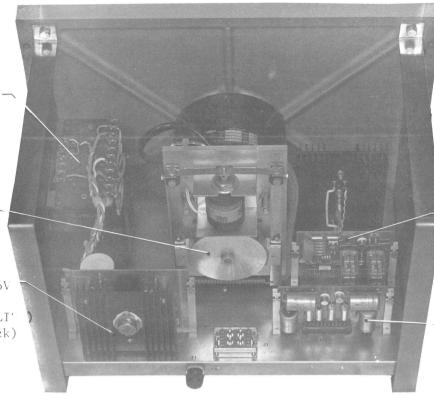
ARRET AUTOMATIQUE Automatic stop

ROUE PHONIQUE Phonic wheel

MOTEUR CABESTAN Capstan motor

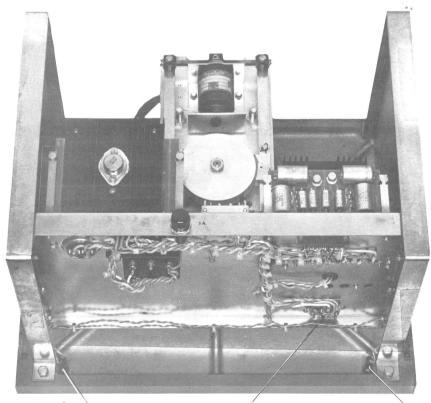
FLEXIBLE COMPTEUR DE DEFILEMENT Counter flexible

ELECTROECARTEUR
DE BANDE
Tape
electrolift


Page 8 21 098

Schlumberger

PLATINE DE DEFILEMENT Transport deck TRANSFORMATEUR — D'ALIMENTATION Power supply transformer


ELECTRO FREINTElectro brake

ALIMENTATION 26V Power supply (Voir TIROIR ALI' (See supply rack)

CIRCUIT
COMMAND MOTEUR
Motor control
board

-ALIMENTATION ± 10V Power supply

SEULEMENT SUR

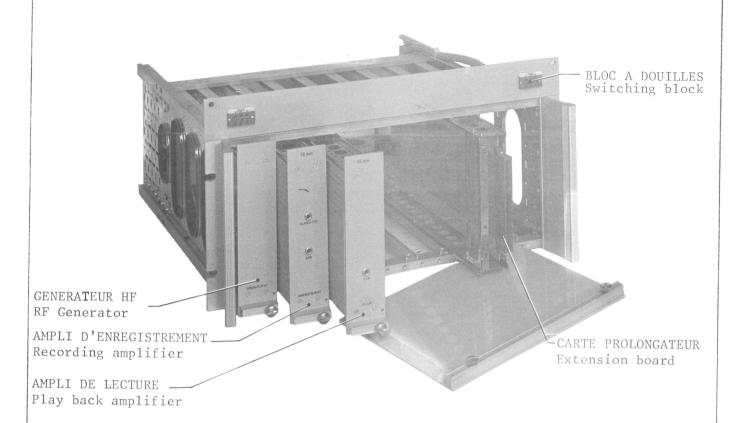
PLATINE SUPERIEURE :

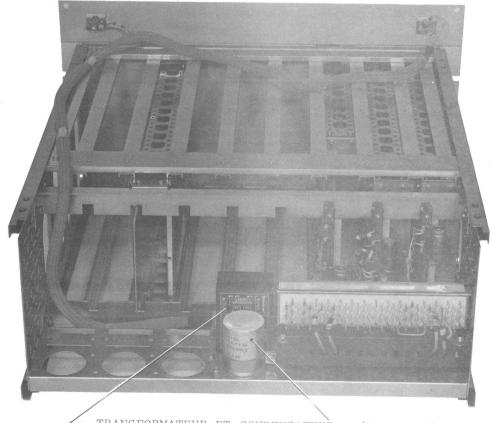
Only on upper deck:

- VOYANT DROIT

Right light

ZRELAIS INVERSEUR


Reversing relay


VOYANT GAUCHE Left light

Page 9 21 099

Schlumberger

PLATINE AUXILIAIRE Auxiliary deck

TRANSFORMATEUR ET CONDENSATEURS
Transformer and Capacitor

(Sortie ligne)
(line output)

Page 10 21 100

Schlumberger

TIROIR MODULATION Modulation rack

2.3. Tiroir modulation

Ce tiroir reçoit les modules "modulation" de la machine :

- Générateur HF
- Amplificateur d'enregistrement
- Amplificateur de lecture
- Amplificateur de prélecture (identique à l'ampli de lecture)
- Amplificateur de repérage (sur option)

Le nombre de ses modules est essentiellement variable suivant les versions.

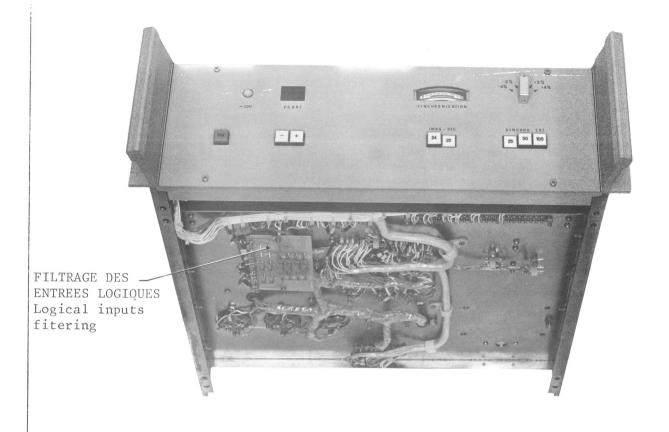
2.4. Tiroir coupleur à mémoire

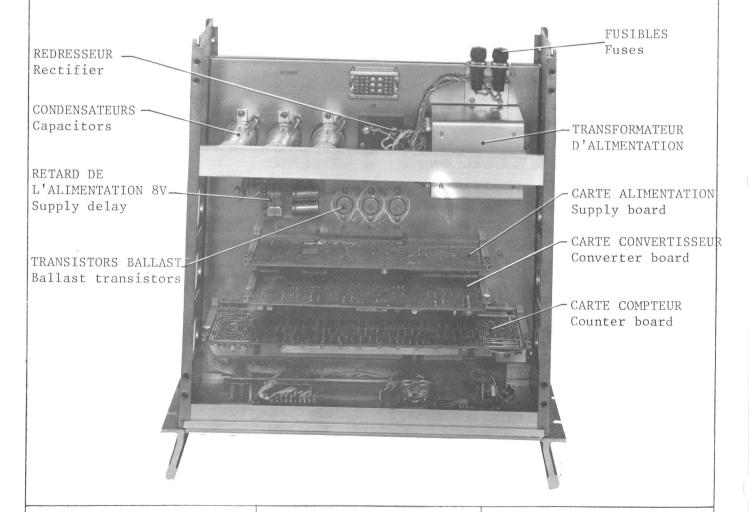
L'électronique de synchronisation et de couplage est regroupée dans ce tiroir.

Sa face avant comporte les sélecteurs de fréquences de synchronisation 25, 50 ou 100 Hz (avec possibilité d'un décalage de ± 4 %), les poussoirs permettant une synchronisation à 24 ou 25 images par seconde et un indicateur d'accrochage du synchronisme.

Elle comporte aussi des organes de contrôle du fonctionnement en mode couplé (affichage de la valeur du compteur de décalage d'image) et poussoirs de décalage manuel (ces poussoirs existent aussi sur la platine de défilement).

2.5. Tiroir alimentation

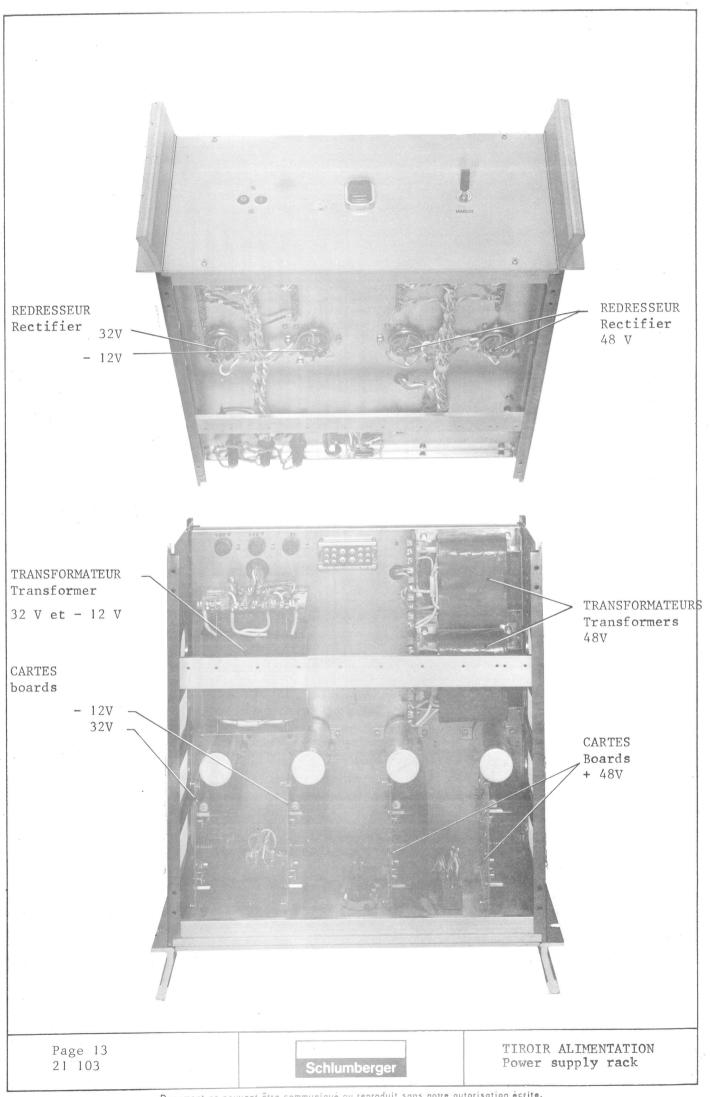

Le tiroir alimentation regroupe les alimentations stabilisées nécessaires au fonctionnement des circuits électroniques et électromécaniques de la machine.

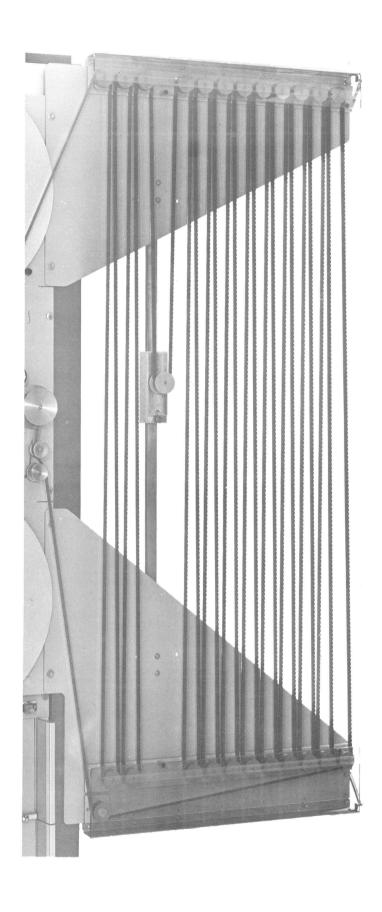

L'interrupteur général, un voyant secteur et un disjoncteur de protection de la machine sont accessibles sur sa face avant.

2.6. Pédale

Le chargement des bandes est facilité par une commande au pied des freins des moteurs auxiliaires. Lorsque la pédale est appuyée, les portes-bobine sont libérés en rotation.

Page 11 21 138


Schlumberger


TIROIR COUPLEUR A MEMOIRE

Memory coupler rack

Page 12

21 102

Page 14 21 104

Schlumberger

Passe boucle Endless loop device

2.7. Passe-boucle (option)

Ce passe boucle pour bande perforée 16mm, ou 17,5 mm, permet le défilement sans fin d'une séquence de 30 métres maximum, ce qui donne les durées suivantes :

2 minutes 30 secondes en 16 mm

1 minute en 17,5 mm

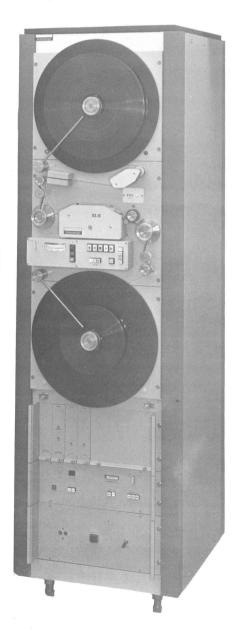
Il se compose de 3 parties :

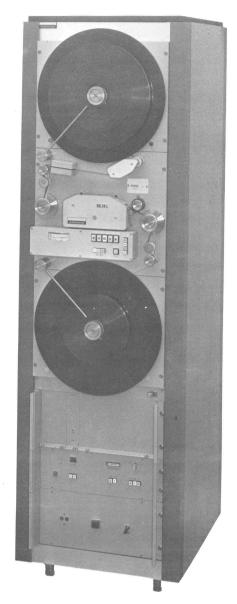
une platine porte galets supérieure une platine porte galets inférieure une glissière avec son galet tendeur.

2.8. Codeur optique (option)

Le codeur optique permet le couplage de machines DS16 ou DS 17,5 à une machine pilote (télécinéma, projecteur, simulateur de projecteur etc...)

L'axe du pilote utilisé doit avoir une vitesse de rotation de 25 tr/s ou 24 tr/s.


Le codeur génére deux impulsions décalées, grâce à un axe supportant deux disques perforés (1 trou en 16 mm et 4 trous en 35 mm) et tournant dans un dispositif à deux photo-transistors.


Pour piloter plus de 4 machines, un amplificateur d'adaptation est rajouté.

Page 15 21 139

DS 16
ENREGISTREMENT LECTURE
ET PRELECTURE 1 PISTE

Recording play-back and pre-play one track

DS 16
LECTURE SEULE 1 PISTE
Only play-back
one track

3. DIFFERENTES CONFIGURATIONS

Les magnétophones DS 16 et DS 17,5 existent sous diverses formes qui différent entre elles par les points indiqués ci-dessous :

3.1. Machines de base

DS 16 Lecture seule 1 piste

- Bloc porte-têtes : tête de lecture seulement (pleine piste)
- pas de commutateur de modulation et pas de carte de commutation de têtes
- 1 vumètre
- carte pre-amplificateur de lecture câblée pour l seule voie
- tiroir de modulation : un amplificateur de lecture seulement

DS 16 Lecture seule 2 pistes

- bloc porte-têtes : tête de lecture 2 pistes
- pas de commutateur de modulation, pas de carte de commutation de têtes
- 2 vumètres
- carte pré-amplificateur de lecture câblée pour deux voies
- tiroir de modulation : 2 amplificateurs de lecture

DS 16 Enregistrement et Lecture 1 piste

- bloc porte-têtes : 1 tête d'effacement, 1 tête d'enregistrement, 1 tête de lecture (pleine piste)
- 1 commutateur de modulation qui permet de choisir entre l'enregistrement, la lecture synchrone et la lecture normale.
- 1 carte de commutation de têtes
- 1 vumètre
- 1 commutateur de vumètre (lecture, enregistrement, H.F.)
- 1 carte pre-amplificateur de lecture câblée pour 1 voie
- tiroir de modulation : I amplificateur de lecture, l amplificateur d'enregistrement, l oscillateur HF

DS 16 Enregistrement et Lecture 2 Pistes

- bloc porte-têtes : 1 tête d'effacement, 1 tête d'enregistrement, 1 tête de lecture (2 pistes)
- 2 commutateurs de modulation qui permettent de choisir entre l'enregistrement, la lecture synchrone et la lecture normale.
- 2 cartes de commutation de têtes
- 2 vumètres
- 2 commutateurs de vumètres (lecture, enregistrement, H.F.)
- l carte pré-amplificateur de lecture câblée pour deux voies
- tiroir de modulation : 2 amplificateurs de lecture, 2 amplificateurs d'enregistrement, 1 oscillateur HF pour deux voies

DS 16 Enregistrement lecture et Pré-lecture 1 piste

Dans cette version la DS 16 permet une pré-lecture de la bande quatre secondes avant la lecture normale au moyen des élements suivants :

- 1 tête de pré-lecture (pleine piste)
- 1 carte pré-amplificateur de pré-lecture câblée pour 1 voie
- 1 amplificateur de lecture supplémentaire dans le tiroir de modulation

DS 16 Enregistrement Lecture et Pré-Lecture 2 Pistes

- 1 tête de pré-lecture 2 pistes
- 1 carte de pré-amplification de lecture câblée pour 2 voies
- Tiroir de modulation : 2 amplificateurs de lecture supplémentaires

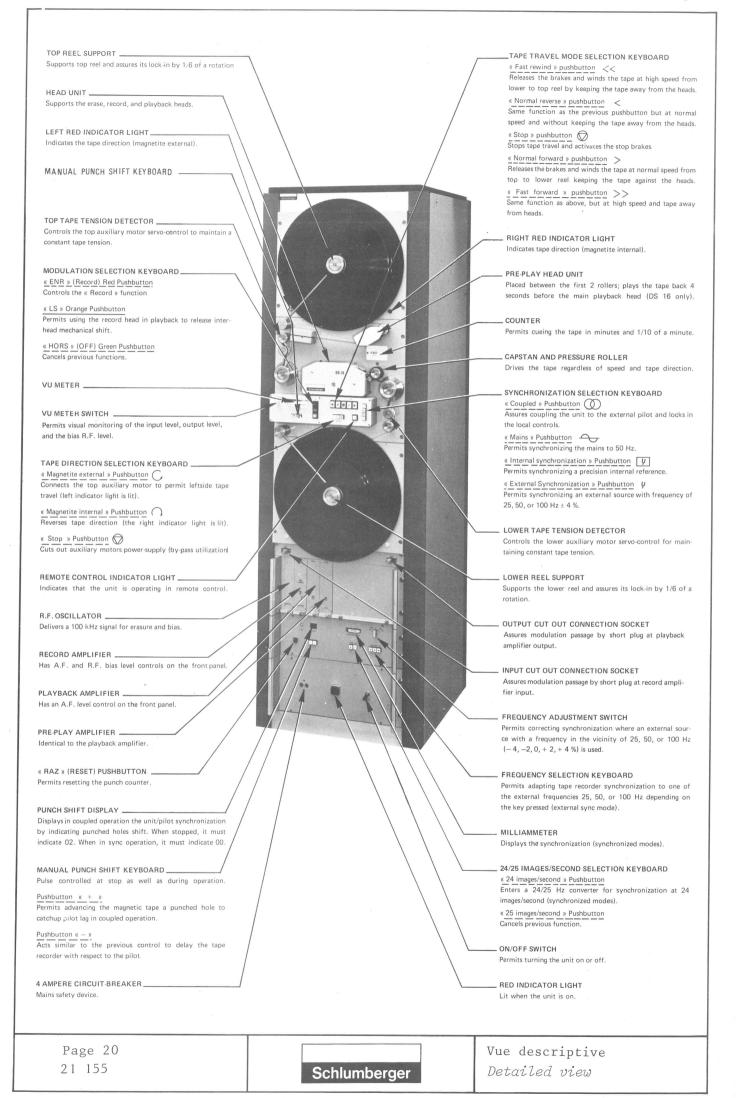
DS 17,5 Lecture seule | Piste

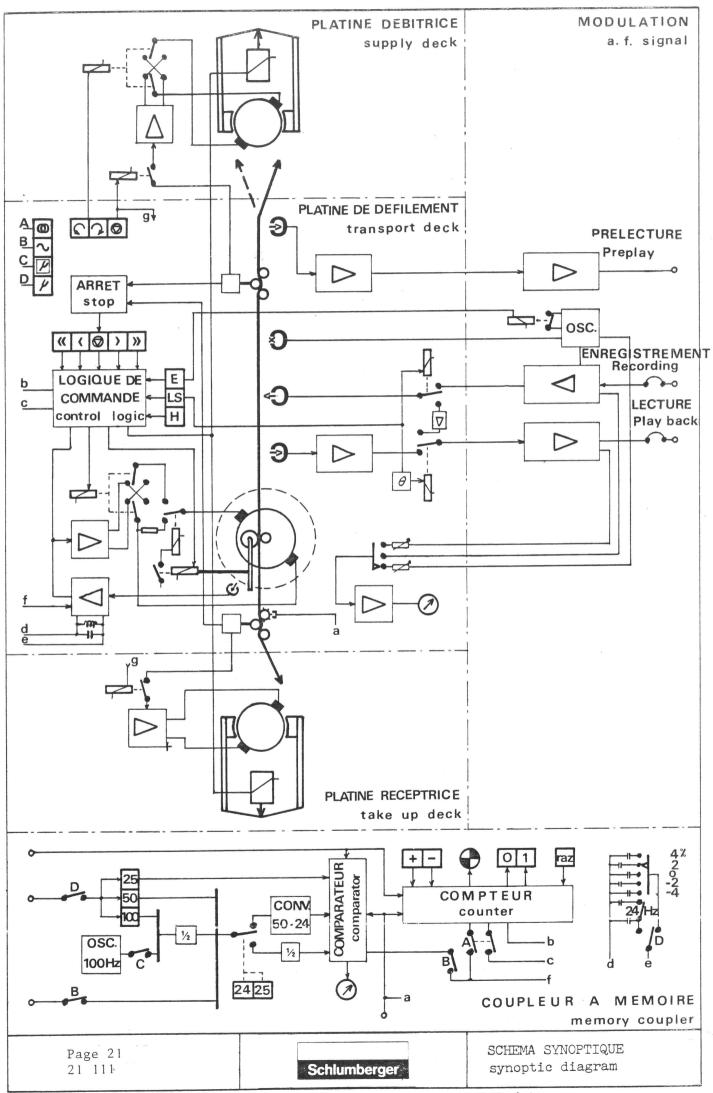
DS 17,5 Lecture seule 2 Piste

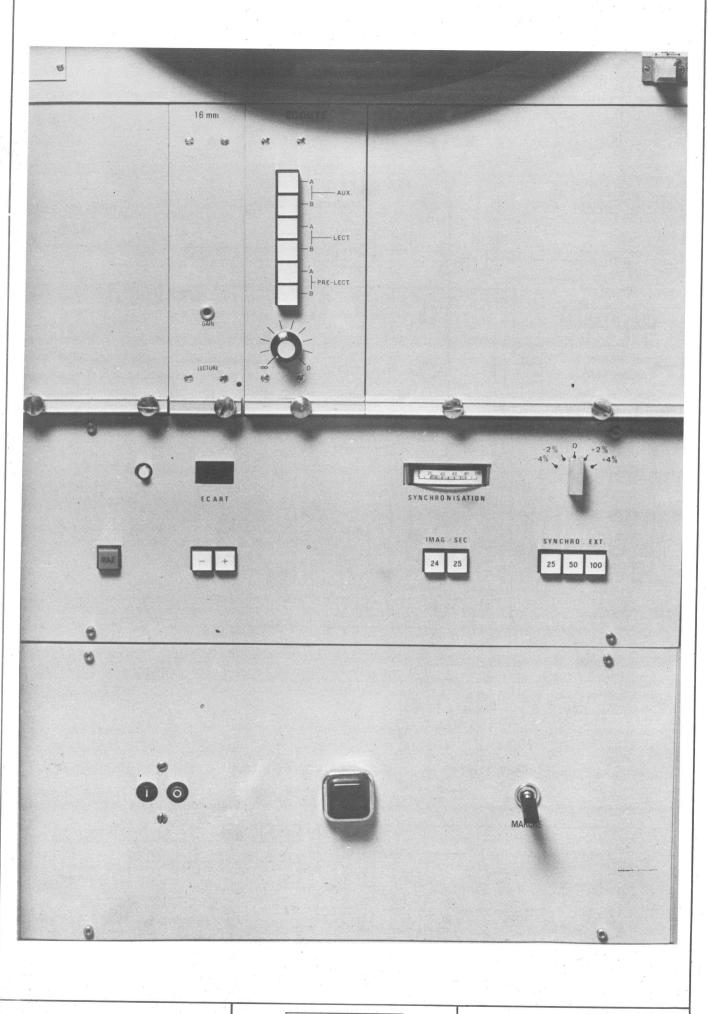
DS 17,5 Enregistrement et Lecture 1 Piste

DS 17,5 Enregistrement et Lecture 2 Pistes

Ces machines sont similaires aux DS 16 correspondantes mais reçoivent de 1a bande 17,5 mm.


3.2. Options


- . Version/S : Défilement rapide en mode couplé (utilisation pour télécinéma)
- . Amplificateur de repérage (et son enceinte)
- . Codeur optique (pour couplage avec un projecteur)
- . Passe-poucle


4. <u>CARACTERISTIQUES</u>

4.1. Caractéristiques électriques

```
Niveau d'entrée
                                            + 12 dB (autres niveaux sur option)
                                            ≥ 10 KΩ
Impédance d'entrée
                                           ≤ 1 KΩ
Impédance de source
Niveau de sortie
                                            + 12 dB (autres niveaux sur option)
                                            ≤20 Ω
Impédance de sortie
                                            ≥200 Ω
Impédance de charge
Distorsion harmonique
                                            <2 % à la fréquence de référence
(au niveau nominal de sortie)
                                              non pondéré > 58 dB
Rapport signal/bruit (ENR + LEC)
                                                  pondéré > 60 dB
Rapport signal/bruit (LEC)
                                                           > 70 dB
                                              > 70 dB
Effacement
Courbe de réponse à ± 1 dB
                                              60 à 10000 Hz
                    a + 1, - 4 dB
                                              40 à 15000 Hz
Alimentation
                                              secteur 220 V, 50 Hz (autres tensions
                                              sur option)
                                              45 W
  consommation mini (machine à l'arrêt)
                                              300 W
  consommation movenne (ENR)
  consommation maxi
                                              380 W
  stabilité secteur
                                              ± 7 %
                                              0 <T<50°C
Température fonctionnement
4.2.
          Caractéristiques mécaniques
Diamètre maximum des bobines
                                              420 mm
Largeur bande magnétique
                                               16 mm (machine DS 16)
                                              17,5 mm (machine DS 17,5)
                                              900 m (épaisseur 140 μm)
Longueur maximum bande magnétique
                                              1200 m (épaisseur 90 μm)
                                              par bouton poussoir à impulsions
Commandes locales
                                              invalident les commandes locales
Télécommandes
Vitesse de défilement
                                              19,05 cm/s (DS 16)
                                              47,5 cm/s (DS 17,5)
Fluctuation de vitesse suivant les
                                              < \pm 0.06 \%
normes CCIR
Temps de démarrage
                                              < 1 s
Marche rapide à vitesse constante dans
les deux sens
                                                2 m/s
Tension mécanique de la bande
Cotes d'encombrement : largeur
                                              0,3 N
0,545 m
                        Profondeur
                                              0.670 m
                                              1,825 m
                        Hauteur
                        Largeur avec
                                              1,100 m
                        passe-boucle
Poids (configuration moyenne)
                                              180 kg
```


Page 22 21 112

Schlumberger

Tiroirs d'électronique Chassis of electronics

5. <u>FONCTIONNEMENT</u>

5.1. Fonctionnement électronique (modulation)

5.1.1. Chaîne d'enregistrement

La chaîne d'enregistrement se compose d'un transformateur d'entrée de rapport 4/1 (abaisseur de 12 dB), d'un ajustage de gain de + 6 dB à - 12 dB autour de la valeur nominale qui est à - 15 dB en cet endroit, d'un amplificateur d'adaptation et de la tête d'enregistrement.

L'amplificateur d'enregistrement comporte deux étages d'amplification (circuit en couche mince CM 241), de part et d'autre d'un correcteur permettant d'obtenir la préaccentuation nécessaire pour la vitesse de défilement.

Une commutation par strap permet de changer de standard. (Voir la description de ce circuit). La correction d'aigus est ajustable pour compenser les variations d'efficacité de la tête d'enregistrement.

Un circuit résonnant élimine le court-circuit de la fréquence de polarisation dans l'étage final d'amplification. La fréquence de polarisation est appliquée par un amplificateur recevant à son entrée le signal issu de l'oscillateur 100 KHz.

Cet amplificateur accordé délivre un niveau de sortie de + 16,5 dB envoyé d'une part à la tête d'effacement accordé série, et d'autre part à un transformateur qui élève ce niveau à + 35 dB et l'envoie à la tête d'enregistrement via un potentiomètre permettant le réglage de la polarisation.

5.1.2. Oscillateur HF

L'oscillateur pilote délivre une fréquence de 100 KHz à un niveau de - 6 dB.

Ce signal est commuté par des photo-résistances commandées par un relais de l'amplificateur d'enregistrement.

5.1.3. Chaîne de lecture

La chaîne de lecture se compose d'une tête de lecture suivie d'un préamplificateur de tête, d'un gain de 30 dB, attaquant l'amplificateur de lecture, via un circuit de commutation de tête.

Le premier étage de cet amplificateur a un gain de 25 dB.

Il attaque un réseau passif de correction correspondant au standard CCIR (une commutation par strap permet de changer de standard). Il est aussi muni d'un réseau permettant de corriger les défauts de tête aux fréquences élevées.

Un atténuateur permet un réglage de niveau entre + 6 dB et - 12 dB. Ce réglage est accessible en face awant du tiroir.

Le second étage a un gain de 20 dB permettant d'attaquer un amplificateur de ligne délivrant un niveau de + 22 dB sur une charge de 600Ω . (autres valeurs sur option).

5.1.4. Circuit commutation de têtes

Ce circuit permet de commuter la tête d'enregistrement soit sur l'amplificateur d'enregistrement, soit sur l'amplificateur de lecture afin de l'utiliser en tête de lecture pour relire la bande en synchromisme avec l'enregistrement.

Dans ce dernier cas, un étage amplificateur de gain 40 dB permet d'adapter le signal fourni par la tête d'enregistrement au niveau d'entrée de la chaîne de lecture.

Deux relais assurent cette commutation. Ils sont retardés, l'un par rapport à l'autre de façon à ne pas faire apparaître de bruit de commutation dans la chaîne de lecture.

5.1.5. <u>Chaîne de pré-lecture</u> (DS 16 seulement)

Une tête de pré-lecture est disposée 4 secondes en amont de la tête de lecture normale. Elle alimente après pré-amplification un amplificateur identique à celui utilisé en lecture normale.

5.1.6. Vu-mètre

Un amplificateur permet après commutation de contrôler au vu-nètre les niveaux de modulation d'entrée enregistrement, de sortie lecture et polarisation HF.

Les différents gains sont étalonnés en usine. Toutefois, un potentiomètre permet de recaler l'indication 0 vu correspondant à la valeur optimum de polarisation HF dans le cas d'un changement de type de bande.

5.1.7. <u>Amplificateur de repérage</u> (option)

Grâce à son sélecteur d'entrée à poussoirs, cet amplificateur peut transmettre au haut-parleur de repérage, et pour les deux voies ou l'une d'entre elle au choix :

- la sortie Lecture
- la sortie pré-lecture
- l'entrée enregistrement.

Page 24 21 144

5.2. Fonctionnement mécanique

5.2.1. <u>Défilement</u>

La platine de défilement est constituée d'une pièce de fonderie rigide stabilisée thermiquement. Cette pièce comporte trois points d'appui en saillie formant un plan de référence pour le bloc porte-têtes. Les têtes sont ainsi rigoureusement positionnées par rapport aux portes-bobines, galets et cabestan . Des galets définissent le guidage en hauteur de la bande grâce à leurs flancs en céramique.

5.2.2. Mécanisme du cabestan

Le cabestan se compose du moteur pilote, d'une roue phonique en fer doux et d'un axe revêtu de chrome dur sur lequel est appliquée la bande. L'ensemble étant monté puis rectifié en usine, il est très important de ne pas essayer de dissocier l'assemblage. Le moteur est équipé de balais doubles d'une durée de vie telle qu'ils ne nécessitent aucun entretien. L'ensemble est fixé par 4 vis sur la platine. Son démontage exige un réglage de la pression du galet presseur sur le cabestan. Dans les versions /S une génératrice est couplée à l'axe moteur pour son asservissement. Les dentures de la roue phonique permettent la détection de la vitesse de rotation par l'intermédiaire de capteurs magnétiques.

5.2.3. Galet presseur

Il est commandé par un électro-aimant qui doit toujours travailler en butée. La force d'appui du galet presseur est vérifier par la profondeur d'écrasement du caoutchouc, sur le cabestan.

5.2.4. Galets d'enrouleurs

Les galets enrouleurs ont pour rôle le ramener approximativement à hauteur normale une bande bobinée à une hauteur différente.

5.2.5. Galet d'entrée

Grâce à l'inertie qu'il présente, le galet d'entrée isole les têtes de l'ensemble de déroulement en filtrant les vibrations mécaniques de la bande.

5.2.6. Galet de sortie

Il comporte des picots éliminant tout glissement par rapport à la bande et entraîne un disque permettant le comptage des perforations avec déduction logique du sens de défilement.

5.2.7. Galets guide

Leurs flancs de céramique determinent avec précision la hauteur de la bande. Ils sont montés sur les bras de régulation de tension de bande.

Page 26 21 116

Schlumberger

Platines de défilement Transport decks

5.2.8. Compteur horaire

Le compteur est actionné à l'aide d'un flexible et d'un jeu de pignon par le moteur cabestan. Il est gradué en dixièmes de minute et détermine le temps de défilement de la bande que ce soit à la vitesse normale ou à la vitesse rapide (il décompte ce temps lors des marches arrières).

5.2.9. Moteurs auxiliaires

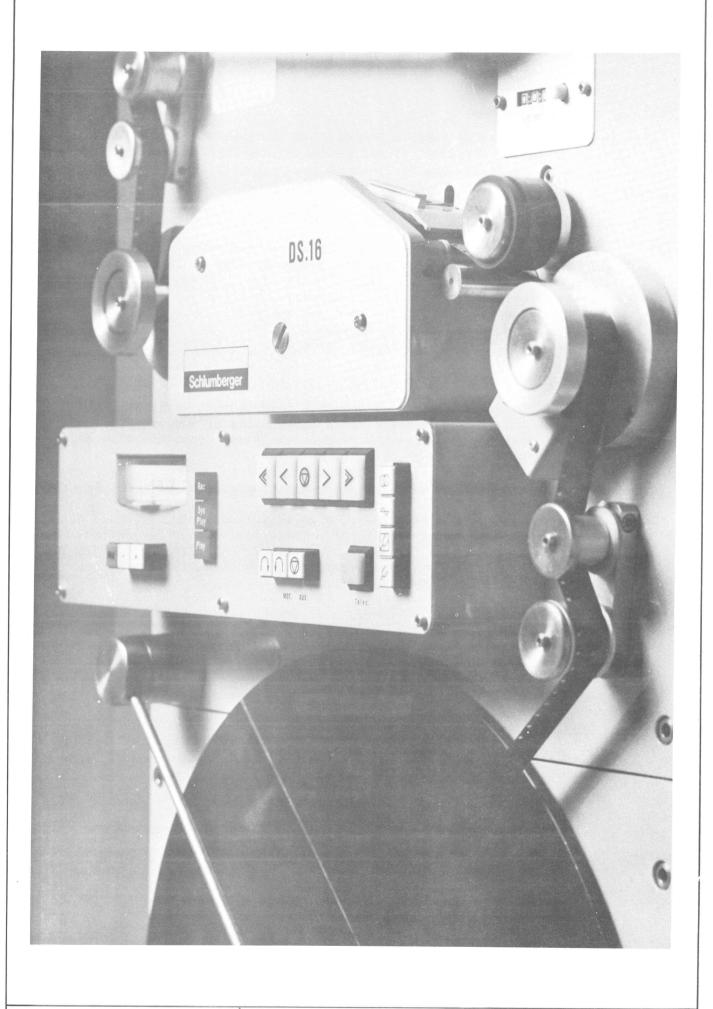
Les moteurs auxiliaires sont à courant continu et ne nécessitent pas d'entretien spécial. Leur axe est équipé du côté de la face avant d'un porte-bobines avec verrouillage 1/6e de tour et à son autre extrémité d'un dispositif de freinage. Ce frein de maintien est actionné par électro-aimant. Il est déblocable par une pédale pour faciliter les opérations de chargement de la bande. Un adaptateur permet l'utilisation de tous les types de noyaux.

5.2.10. Bloc porte-têtes

Le bloc porte-têtes forme un ensemble indépendant, enfichable et verrouillable à l'aide d'une vis à fente pièce de monnaie et d'un ressort assurant une pression contrôlée. Il est constitué d'un bloc de fonderie stabilisé thermiquement.

Il peut être échangé en cours d'exploitation par un autre du même type.

Il porte les têtes d'effacement, d'enregistrement et de lecture ainsi que deux guide -bandes. Les guide -bandes sont assemblés, calibrés en hauteur et en largeur avec précision. Il est recommandé de ne pas les démonter sans raison majeure, toutefois, une rondelle en stéatite cassée peut être remplacée sans ajustage.


La tête d'effacement est montée directement sur le bloc par une vis centrale. Sa durée de vie est de plusieurs milliers d'heures. Les têtes d'enregistrement et de lecture sont montées par l'intermédiaire de semelles en H déformables permettant un réglage stable d'azimut.

La tête de prélecture est indépendante du bloc porte-têtes.

5.2.11. Ecarteurs de bande

Ils entrent en fonction automatiquement à travers la commande logique lorsque la machine est en défilement rapide (avant ou arrière).

Page 27 21 146

Page 28 21 118

Schlumberger

Vue des galets Roller view

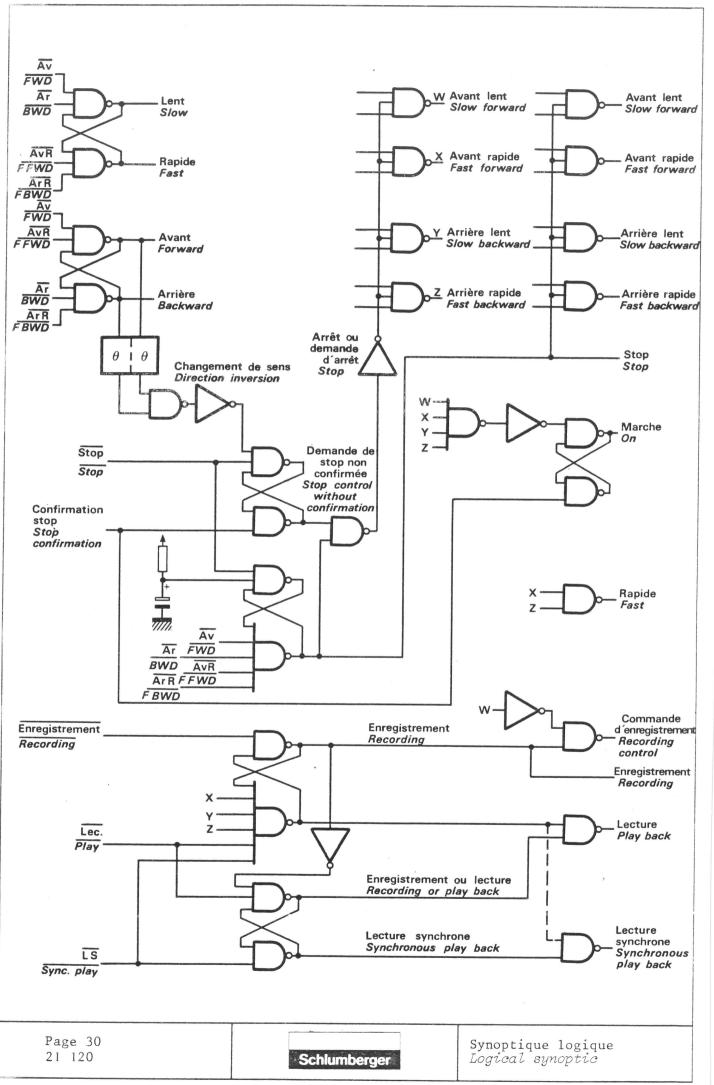
5.3. Fonctionnement electromécanique

5.3.1. Régulation de tension de bande

Les deux systèmes haut et bas de régulation de tension de bande sont identiques. Les capteurs de tension de bande sont constitués par des bras tendeurs situés sur la platine centrale de défilement. Ces bras comportent une palette de fer doux se déplacant devant une cellule magnétorésistante. Chaque bras tendeur est équilibré à tout moment par deux forces :

- la tension de retenue de la bande créée par le moteur auxiliaire correspondant proportionnellement aux informations délivrées par le détecteur de tension de bande.
- la tension d'un ressort étalonné en fonction de la tension de bande désirée

Par ces systèmes, cette tension est maintenue constante quelque soit le diamètre des galettes de bande à débiter.


Les systèmes haut et bas étant identiques, si l'on écarte le galet presseur du cabestan, la bande s'immobilise. C'est une vérification de la régulation de tension de bande.

5.3.2. Commandes de fonction

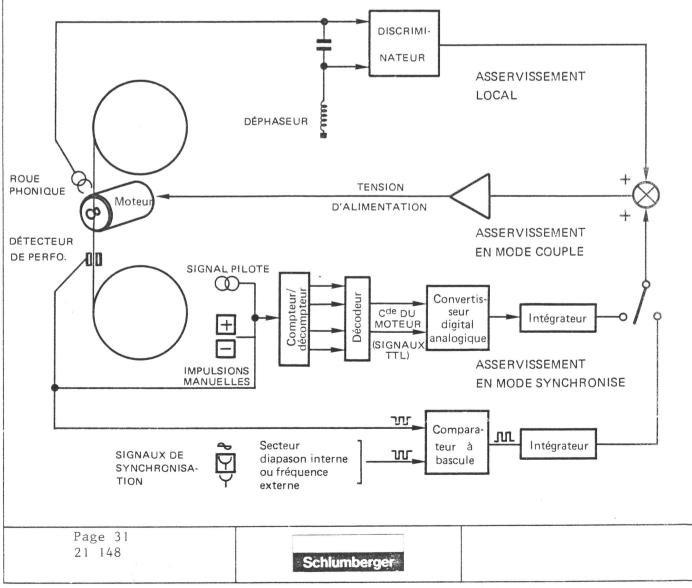
Les fonctions de défilement ainsi que celles d'enregistrement, de lecture synchrone ou de lecture normale sont élaborées par une logique assurant les sécurités de manœuvre.

Cette logique reçoit d'une part les commandes locales (poussoirs fugitifs du panneau de commande) et d'autre part les télécommandes ainsi que l'ordre de verrouillage des commandes locales.

Page 29 21 147

5.3.3. Chaîne d'asservissement

L'asservissement du moteur cabestan à courant continu comprend trois boucles dont l'une agit toujours. L'une des deux autres est choisie en fonction du mode de fonctionnement désiré.


La première constitue un asservissement local permettant de réguler la vitesse du moteur à une vitesse proche de celle effectivement désirée.

Elle comporte une roue phonique solidaire du moteur qui délivre un signal sinusoïdal. Un discriminateur crée une tension d'erreur par comparaison de ce signal avant et après passage dans un circuit déphaseur.

La fréquence d'accord de ce circuit LC déphaseur détermine la vitesse du moteur.

Elles est ajustable d'une part pour permettre un fonctionnement à 24 ou 25 images par seconde, d'autre part pour fixer la vitesse du moteur à une vitesse différente de sa vitesse nominale (± 4 % au maximum).

Synoptique des diverses boucles d'asservissement (versions/1)

Un amplificateur différentiel, dont l'une des entrées reçoit une tension de prépositionnement et l'autre la tension issue du discriminateur, commande l'amplificateur continu alimentant le moteur cabestan par une carte de relais de commutation. (La tension de prépositionnement permet d'avoir une tension de démarrage à la vitesse zéro).

Ces relais de commutation commandent le changement de sens de rotation, le freinage du moteur par bouclage sur lui-même, la commande de vitesse rapide et un retard de la commande dans le cas d'un changement de sens de défilement.

Dans les versions /s, le moteur cabestan est complété par une génératrice délivrant une tension proportionnelle à sa vitesse de rotation.

Lorsque la machine est utilisée en mode couplé et qu'elle défile à une vitesse différente de la vitesse nominale (moins de 22 ou plus de 28 Hz) la tension fournie par cette génératrice est utilisée en contre-réaction dans la boucle d'asservissement propre au mode couplé.

Circuit de comptage des perforations

Un système optique couplé à un disque solidaire du galet de sortie permet un double comptage des perforations (avec déduction logique du sens de défilement).

Le signal issu de ce système optique est mis en forme avant exploitation par le coupleur à mémoire.

Arrêt automatique

L'absence de tension de bande libère les bras tendeurs qui envoient alors une impulsion calibrée par un monostable sur l'entrée STOP de la logique de commande qui arrête la machine.

Dans les versions /S, cette impulsion agit directement de l'alimentation de la logique en mode couplé (réarmement par poussoir RAZ)

Page 32 21 149

5.4. Coupleur à mémoire

Le coupleur à mémoire est destiné à assurer le défilement synchrone ou couplé de la bande, selon le mode de fonctionnement sélectionné.

Deux boucles d'asservissement servent à corriger les effets de glissement de la bande et à assurer la synchronisation. Ces boucles partent toutes deux du lecteur de perforation.

Si aucune des touches de fonctionnement synchrone ou couplé n'est enfoncée, le défilement de la bande libre de toute correction de vitesse n'est régulé que grâce à la roue phonique du cabestan, et au circuit d'asservissement associé.

Différence entre DS 16 et DS 17,5

Un diviseur par 4 est mis en place dans les DS 17,5 (carte convertisseur) pour effectuer une conversion nombre de perforations-nombre d'images (4 perforations par image sur film 35 mm).

5.4.1. Fonctionnement synchronisé

La première de ces boucles permet un fonctionnement en mode synchrone avec, soit le secteur, soit un diapason interne, soit un signal de synchronisation externe de 25, 50 ou 100 Hz. De plus, un convertisseur 50/24 Hz permet de synchroniser le défilement à une cadence de 24 images par seconde.

Une bascule compare les signaux de synchronisation et ceux du lecteur de perforation. Cette bascule se positionne à l'chaque fois qu'arrive une impulsion du lecteur de synchronisation et passe à 0 dès qu'arrive une impulsion du lecteur de perforation. Le signal obtenu passe à chaque image à l'pendant un temps qui est fonction du décalage de phase entre la synchronisation et le défilement réel. Ce signal est intégré pour générer une tension d'erreur que l'on injecte dans la boucle d'asservissement locale du moteur cabestan.

Un indicateur galvanomètrique visualise la stabilité de synchronisation de phase. Toute variation rapide de l'aiguille indique un décrochage du comparateur de phase.

Un commutateur manuel à cinq positions permet de rattraper un écart de -4%, -2%, ou +2%, +4% de la fréquence de synchronisation.

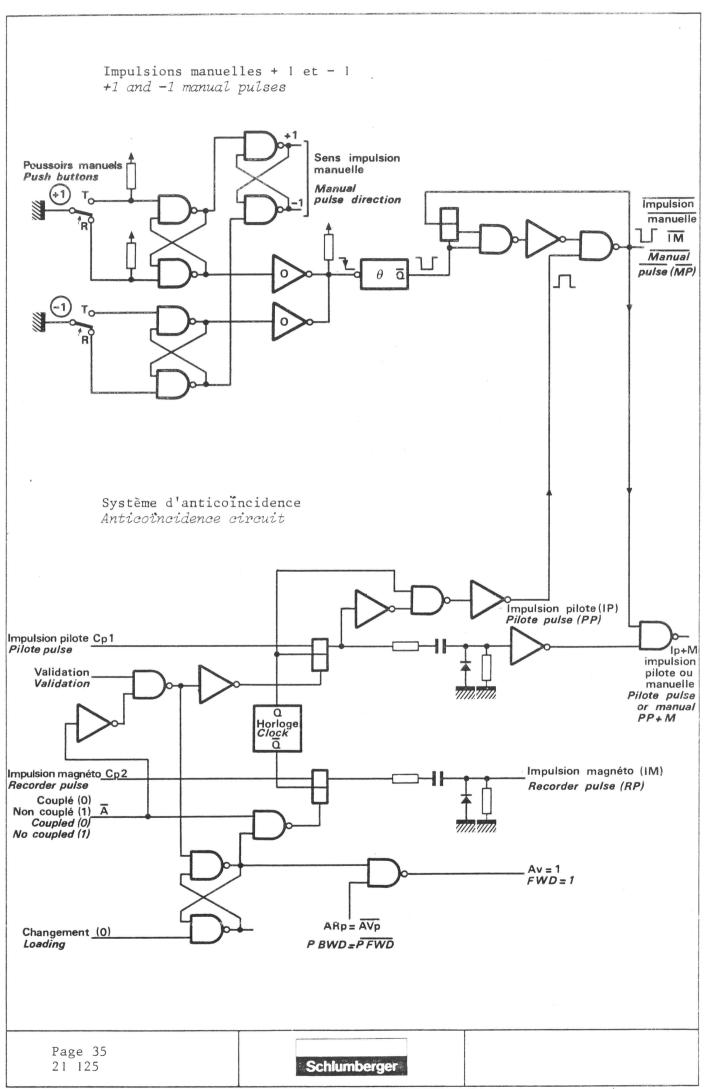
Les sources de synchronisation peuvent être les suivantes :

- le secteur 50 Hz (après division de la fréquence par 2)
- un diapason interne de fréquence 1600 Hz (après division à 100 Hz)
- une source extérieure de fréquence 25, 50 ou 100 Hz ± 4 %.

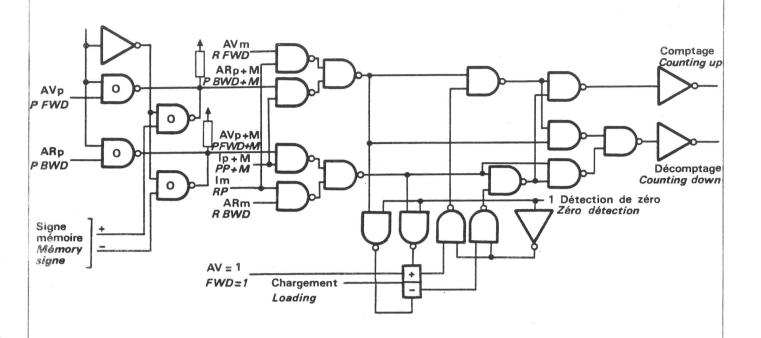
5.4.2. <u>Fonctionnement couplé (versions/1)</u>

La seconde boucle d'asservissement est utilisée pour synchroniser la machine avec un pilote en mode couplé. Elle compare les signaux du lecteur de perforation avec ceux du pilote en les totalisant dans un compteur/décompteur. La valeur affichée au compteur détermine une tension d'erreur appliquée au moteur cabestan. Le compteur oscille entre 0 et 1 à la cadence de 25 Hz en défilement normal.

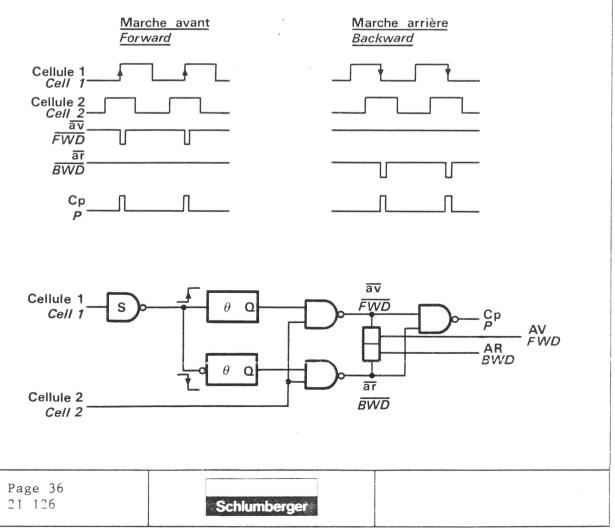
Le compteur de type décimal (Capacité 10⁶) reçoit à chaque instant une impulsion du pilote en comptage, puis, une impulsion du magnétophone appliquée en décomptage. L'addition donne 0 et le cycle recommence. Par ailleurs, des impulsions manuelles peuvent être introduites pour décaler le magnétophone par rapport à son pilote, perforation par perforation, en avant ou en arrière.

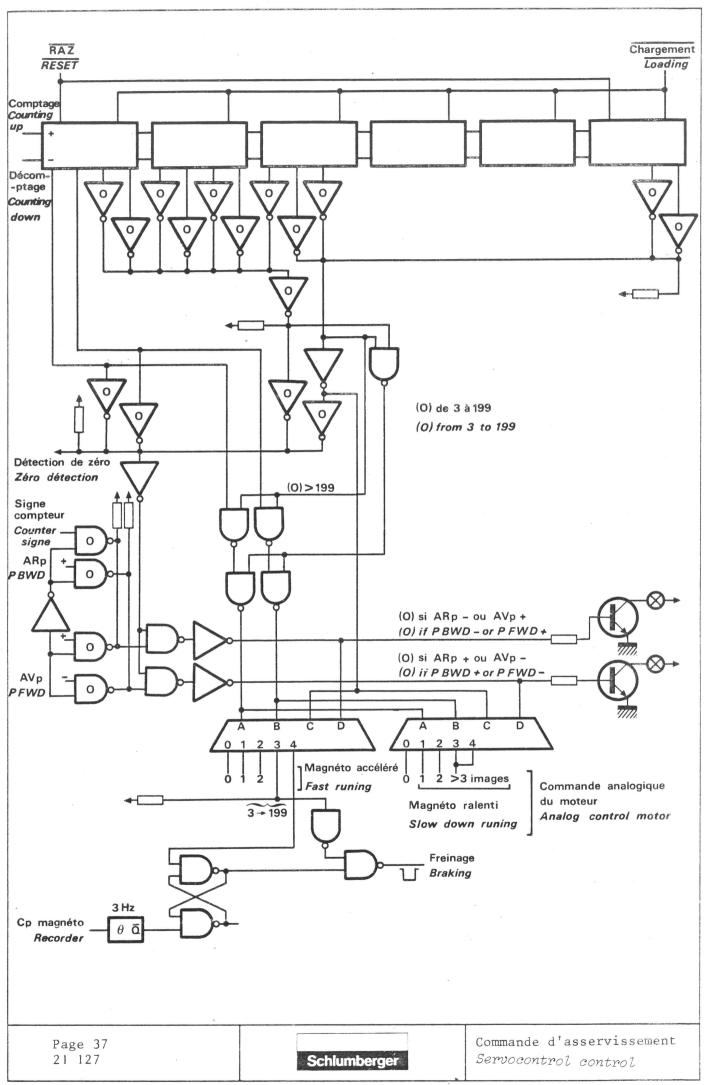

Les informations issues du pilote, du détecteur de perforations du magnétophone et des poussoirs de décalage manuel sont traités par un circuit d'anti-coıncidence et de sélection pour créer les impulsions de comptage et de décomptage finalement appliquées au compteur :

SELEC	TEUR	Information
Signe compteur	Information reçue	Transmise au compteur
+ - - + + -	Avance pilote Avance manuel Avance magnéto Arrière manuel Avance magnéto Arrière manuel Avance pilote Avance manuel	Comptage "" Décomptage "" ""


Le compteur est suivi d'un système de décodage en deux temps, fonctionnant de la manière suivante :

- Lorsque le contenu du compteur est compris entre 0 et 3 cette valeur est directement transmise par le pré-codage après conversion en binaire
- Lorsque l'état du compteur est compris entre 4 et 199 le pré-codage indique la valeur 3 en binaire au décodage final
- Lorsque l'état du compteur est supérieur ou égal à 200 le pré-codage indique la valeur 4 en binaire au décodage final.


Celui-ci transforme ces informations en valeurs décimales de 0 à 4. Il les affecte du signe généré précédemment pour commander le compteur et les applique au convertisseur numérique-analogique.



Sélecteur comptage décomptage Counter/down counter selector

Détecteur de sens Direction detector

La courbe de conversion du CNA est donnée par le tableau suivant :

Défilement	Position de la bande par rapport au pilote en nombre d'images	Codage	Tension d'erreur
Marche rapide	≥200 - 199 à - 3	- 4 - 3	+ 30 V + 10 V
Referrerssement	- 2	- 2	+ 8 V
Zone de fonction- nement normal	- 1 O	- 1 0	+ 7 V + 6 V
Arrêt	+ 1 + 2	1 2	+ 4 V O
Recherche et	+ 3	3	2 V
Retour arrière	+ 4	4	- 2 V

Une visualisation à deux chiffres indique l'état des poids faibles du compteur et deux voyants + et - le signe, un troisième voyant indique un dépassement au delà de 99.

5.4.3. Fonctionnement couplé (versions/S)

Les versions/S permettent de suivre une machine pilote, sans le retard des versions/l dans le cas de l'avance rapide.

Le signal pilote reçu de l'extérieur est appliqué à un amplificateur accordé sur une fréquence de 25 Hz. A la sortie de celui-ci, un trigger détecte les signaux d'amplitude suffisante (compris approximativement entre 22 et 28 Hz) et commande en conséquence un jeu de relais .

Lorsque la fréquence pilote est dans cette plage, la machine fonctionne sensiblement comme dans les versions/l. En dehors de cette plage (machine très ralentie ou, au contraire en défilement rapide), les relais commutent une boucle asservissement différente.

Dans cette boucle, la tension d'asservissement est composée à partir de la tension de sortie, du CNA et de la tension fournie par la génétrice couplée au moteur cabestan.

INSTALLATION 6.

Caractéristiques des signaux d'interface 6.1.

Secteur:

Tension

220 V 50/60 Hz (autres tensions sur option)

Stabilité en tension

± 7 %

Puissance maximum

380 VA

Télécommandes :

. niveaux

TTL

. Durée minimum

10 ms

Synchro:

. Fréquence

25, 50 ou 100 Hz

+ 6 dB . Niveau

Couplage:

. fréquence

24 ou 25 Hz TTL

. niveau

. diagramme des temps Voie 1

Voie 2

Modulation

en entrée : niveau nominal

O à + 12 dB (réglage en face avant du

module enregistrement

Impédance de source≤ 1 KΩ 10 dB

Surcharge

en sortie : niveau nominal

O à + 12 dB (réglage en face avant du

module lecture)

Impéd.de charge

≥ 200 Ω

Surcharge

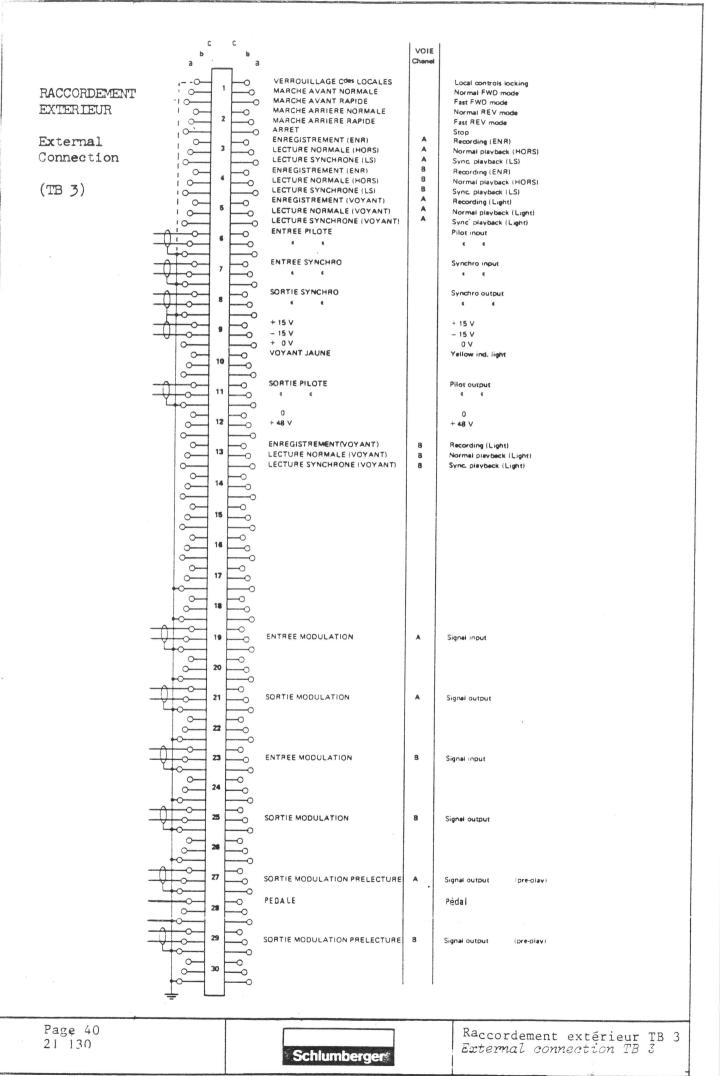
10 dB

Précautions d'installation 6.2.

Lors du branchement de la ligne pilote, s'assurer que le sens de défilement de la machine correspond au sens de défilement du pilote (avantarrière). Au besoin, croiser le sens de branchement des fils sur la réglette de raccordement (TB 3 - 6C et 6b)

6.3. Mise en place du codeur optique (option)

Etablir le couplage mécanique avec le projecteur pour une vitesse de rotation de l'axe du codeur optique de I500 tours par minute (25 images/s) ou 1200 tr/minute (24 images/ secondes).

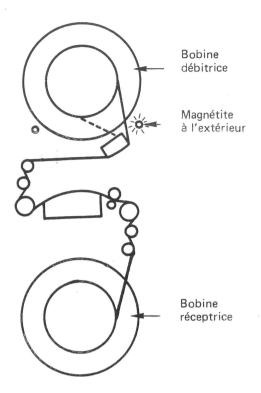

6.4. Couplage avec pilote 24 ou 25 Hz

S'assurer que la machine est bien ajustée pour la fréquence de couplage utilisée.

6.5. Raccordement

Le raccordement au secteur est effectué sur une barrette à 3 cosses (le fil violet correspond à la masse).

Page 39 21 153


7. UTILISATION

7.1. Chargement de la bande

La bande doit être chargée côté perforé à l'opposé de la platine mécanique sur les DS 16 et contre la platine mécanique sur les DS 17,5.

Selon que l'on utilise la bande bobinée avec la magnétite à l'extérieur ou à l'intérieur on doit sélectionner le sens de déroulement de la bobine supérieure par l'intermédiaire du clavier correspondant.

IL EST ABSOLUMENT IMPERATIF AVANT
DE FAIRE DEFILER LA BANDE DE S'ASSURER QUE LE VOYANT ROUGE CORRESPONDANT
AU COTE DE SORTIE DE BANDE EST ALLUME.

7.2. Chargement d'une bande sans fin

Il est impératif pour le bon fonctionnement du passe-boucle et l'obtention des caractéristiques optimales de défilement de respecter le chargement normal de la machine et de stopper les moteurs latéraux à l'aide du poussoir "coupure moteurs latéraux".

Une fois la boucle mise en place, positionner le galet tendeur sur sa glissière pour que les bras tendeurs de la machine soient verticaux, de façon à respecter la tension de bande correcte.

7.3. Verrouillage du noyau (n'utiliser que des bandes polyester)

La machine peut être équipée de deux types différents de porte bobines permettant l'utilisation de tous les noyaux standards.

7.4. Nettoyage

Nettoyer les têtes avec un chiffon doux imbibé d'alcool, à chaque utilisation.

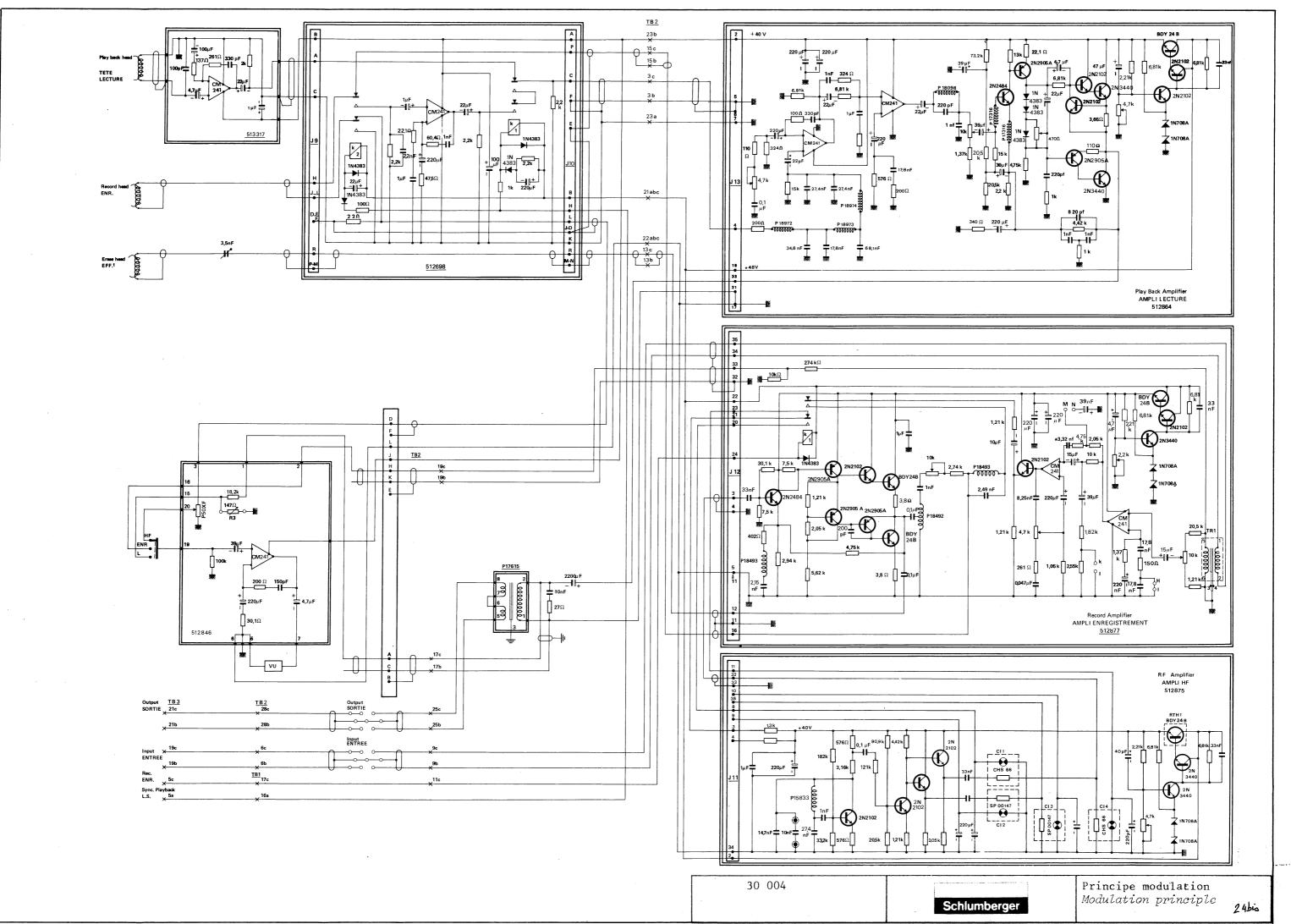
7.5. Changement du type de bande

- Régler le courant de polarisation HF, suivant les indications données par le fabricant de la bande (réglage par tourne-vis sur la face avant de l'amplificateur d'enregistrement par application d'une modulation à 10 KHz).
- Régler le gain de l'amplificateur d'enregistrement (réglage par tournevis en face avant) en appliquant une modulation de 500 Hz au niveau nominal à l'entrée d'enregistrement (sur le bloc à douilles d'entrée par exemple) pour obtenir le même niveau de sortie lecture.

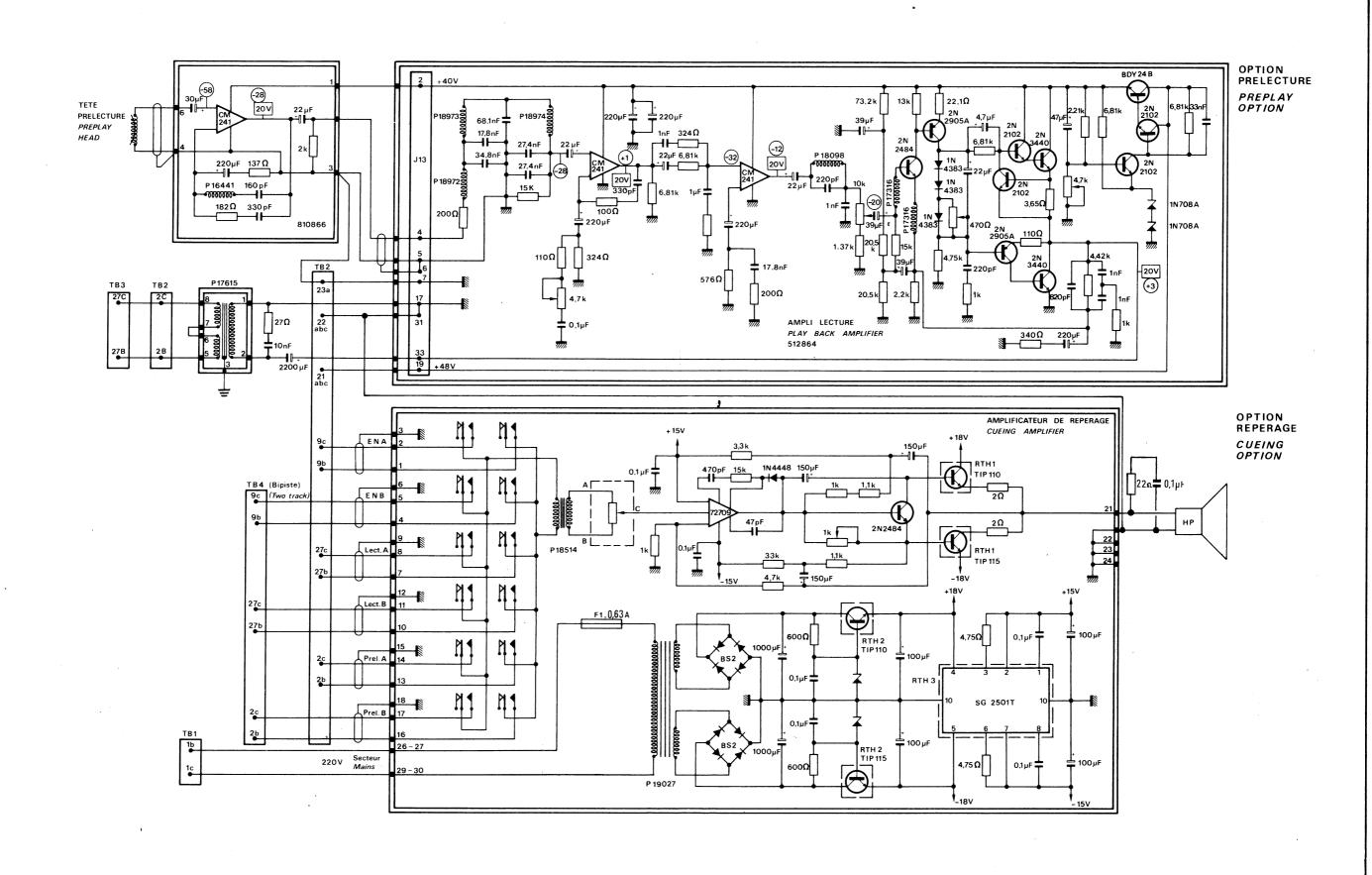
Page 41
21 154

Schlumberger

- Ajuster éventuellement le zéro HF du vu-mètre (réglage par tourne-vis sur le côté du boitier de commande).


7.6. Incidents en cours d'utilisation

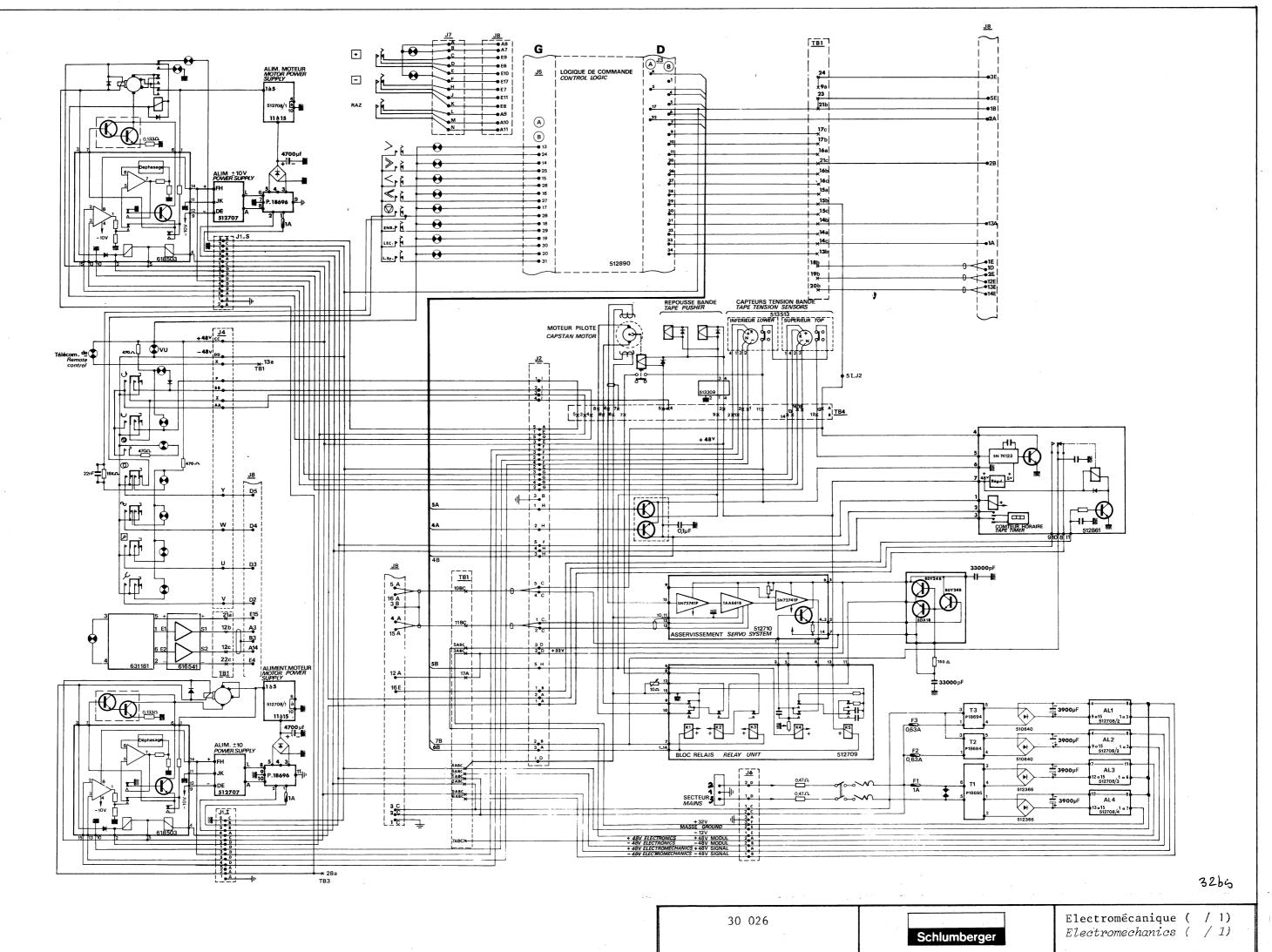
- Remontée du bruit de fond : démagnétiser les têtes
- Défaut sur la modulation : le bloc de têtes, les amplificateurs de lecture et d'enregistrement ainsi que les oscillateurs sont enfichables par l'avant (changer le module incriminé).
- Défaut sur le défilement : une immobilisation de la machine est à prévoir pour toute intervention concernant son fonctionnement logique et électromécanique (aucun réglage accessible en face avant).

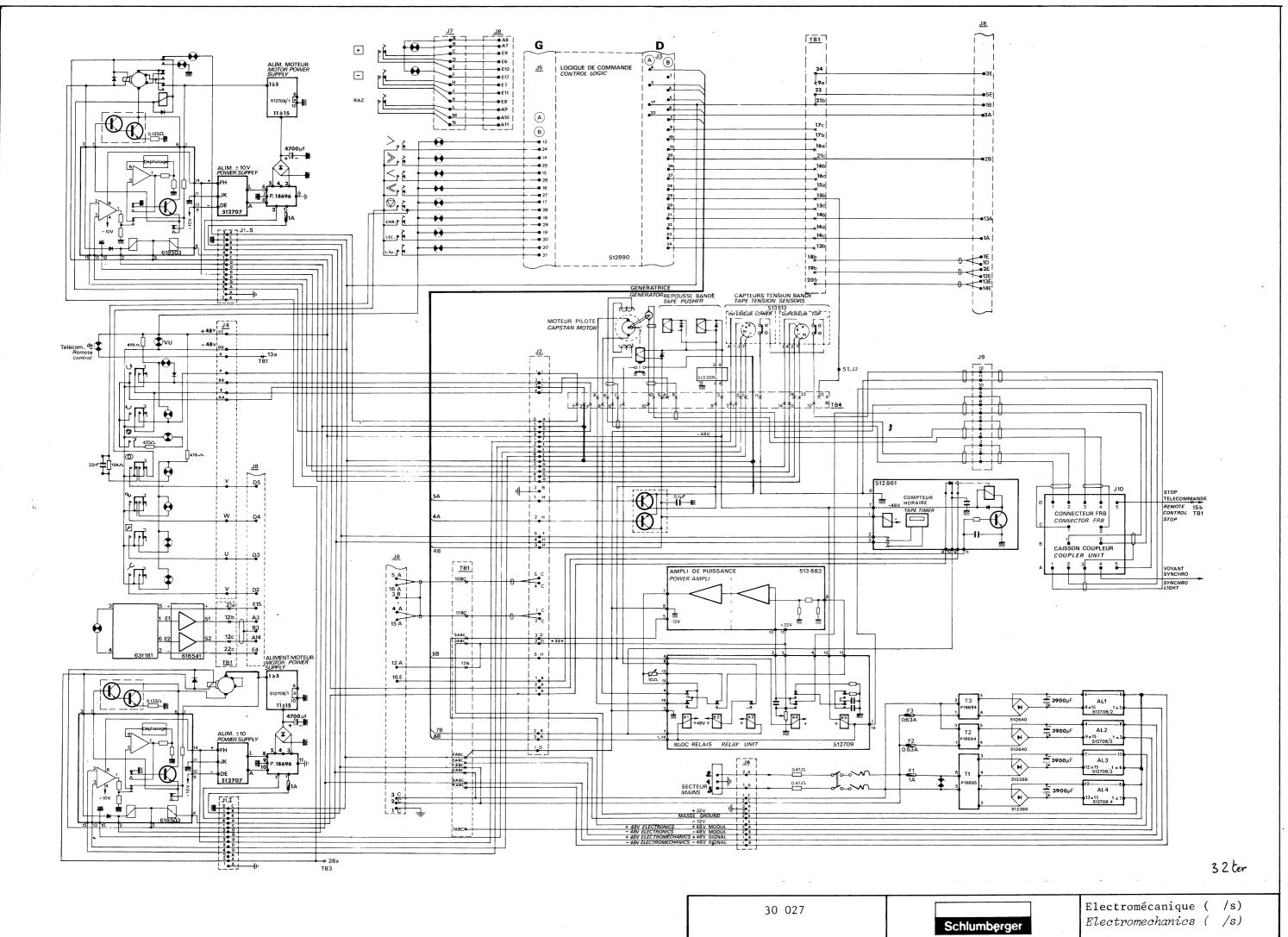

8. ENTRETIEN

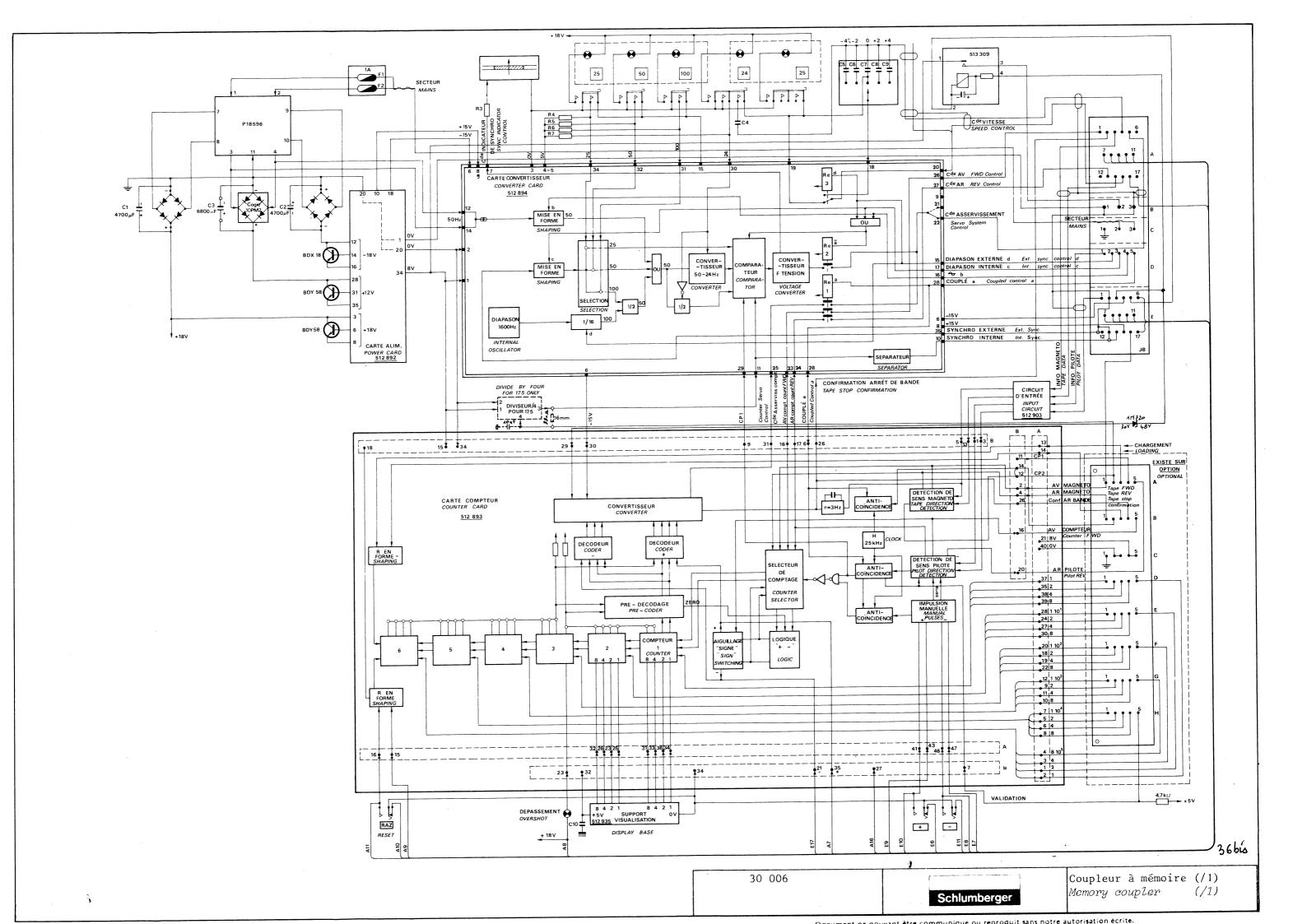
Indépendament des opérations de maintenance électronique (voir la notice de maintenance), l'entretien de la mécanique des DS 16 et des DS 17,5 est particulièrement réduit :

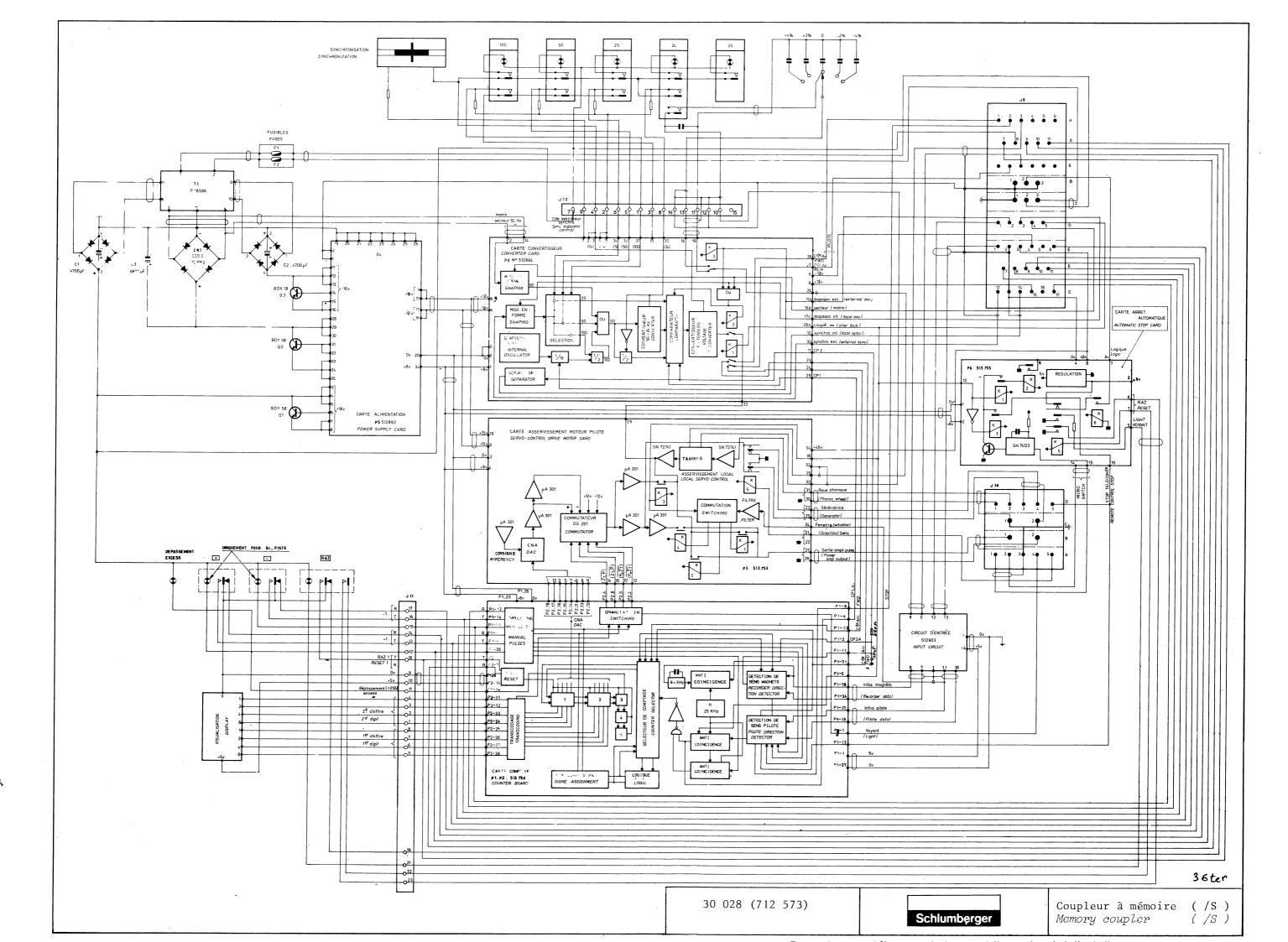
- Nettoyage des galets de guidage et du galet presseur, nettoyage de l'axe du cabestan.
- Vérification du bon fonctionnement des freins d'arrêt (les 2 mâchoires doivent être totalement dégagées du tambour en fonctionnement normal).
- Transmission du compteur mécanique (nettoyage et graissage des poulies et nettoyage des courroies avec de l'alcool).
- Vérification du bon fonctionnement des écarteurs de bande (nettoyage et graissage des glissières).
- Démagnétisation des têtes.

Description of the second state of the second




24ter


30 031


Schlumberger

Prélecture et repérage Preplay and cueing

38000 F

COMPTEURS
Schlumberger

DEPARTEMENT AUDIO PROFESSIONNEL

Nos appareils et leurs caractéristiques sont susceptibles d'être modifiés sans avis préalable.

Our equipments and their specifications are subjet to change without notice.

Magnétophones à bande perforée DS16 & 17,5 Notice de maintenance

MC 1083 / 21 261

Plusalta frue

MAGNETOPHONES A BANDE PERFOREE

DS 16 ET DS 17,5

NOTICE DE MAINTENANCE

Cette notice constitue un complément à la notice d'exploitation permettant de mener à bien les opérations de maintenance.

TABLE	DES MATIERES	Page
1.	REGLAGES DE MAINTENANCE	7
1.1.	Réglages mécaniques	9
1.2.	Réglage des têtes	9
1.3.	Réglage des sous-ensembles	1.1
1.4.	Réglage de la vitesse en fonction des différents modes de synchronisation	1 1
1.5.	Réglage électrique de la tension de bande	13
2.	DOSSIER DES SOUS ENSEMBLES	15
2.1.	Platine centrale de défilement	17
	Version /s	17
	Version / I	18
	Préamplificateur tête de lecture	19
	Commutation des têtes	20
	Amplificateur de VUmètre	22
	Détecteur de perforations	23
	Mise en forme détecteur perforations	24
	Asservissement moteur cabestan (version /1)	26
	Relais de commande moteur cabestan	28
	Amplificateur de puissance (version /s)	30

Page 3 21 262

	BOILTEL de Commande		31
	Logique de commande		32
	Arrêt automatique		33
	Capteur de tension de bande		34
2.2.	Platine auxiliaire		35
	Commande moteur auxiliaire		36
	Alimentation + 10 V moteur auxiliaire		38
2.3.	Tiroir modulation		39
	Amplificateur d'enregistrement		40
	Oscillateur HF		42
	Amplificateur de lecture		44
	Amplificateur de repérage (option)		46
	Réglette TB 2		47
2.4.	Tiroir coupleur à mémoire		49
	Version /S		49
	Version /1		50
	Filtrage des entrées logiques		51
	Convertisseur	*	52
	Arrêt automatique (version /S)		53
	Compteur (version /S)		54
	Diviseur par 4 (DS 17,5)		55
	Compteur (version /1)		56
	Retard alimentation		57
	Alimentation + 15 V, $-$ 15 V et + 8 V		58
	Asservissement (version /S)		60
	Distributour d'impulsion (option)		63

Page 4 21 362

2.5.	Tiroir alimentation	65
	Alimentation + 48 V, + 32 V, - 15 V ou + 26 V	66
	Réglette interne TB 1	68
2.6.	Raccordement extérieur (Réglette TB 3) .	69
3.	LISTE DES PIECES DETACHEES	7 1
	Code des composants utilisés	75

Page 5 21 363

REGLAGES DE MAINTENANCE Page 7 21 263 Schlumberger

1.1. REGLACE MECANIQUE

Les réglages sont effectués en usine à l'aide d'un outillage spécialisé. Cependant, à la suite d'un changement de pièces mécaniques (galets, guides, axes, etc...) il est nécessaire de recaler l'élément remplacé:

Pression du galet presseur

La pression optimale du galet presseur sur le cabestan correspond à un écrasement de 4/IO de millimètres. Elle est réglable par rotation de l'excentrique située à la base de l'axe du galet presseur.

Hauteur des Galets

Il est possible de retrouver le réglage initial du défilement, lors du remplacement d'un axe de galet en observant la position de la bande sur les divers galets. La gorge des galets étant plus large que la bande, cette dernière doit se situer en défilement normal dans l'axe des gorges. La bande ne doit pas être contrainte latéralement.

Ressort de tension de bande

Dans le cas d'un changement des ressorts de tension de bande, il est possible sans utilisation de l'outillage spécialisé, de retrouver le réglage correct au moyen d'une ficelle fixée au porte-bobines supérieur et empruntant le trajet normal de la bande.

Un poids ou un dynamomètre tirant la ficelle verticalement avec une force de 300 grammes, doit amener le bras-tendeur à la verticale. Ce réglage est lié au réglage électronique du détecteur de tension de bande.

Le deuxième bras est ensuite réglé par rapport au premier par équilibrage des couples latéraux.

1.2. REGLACE DES TETES

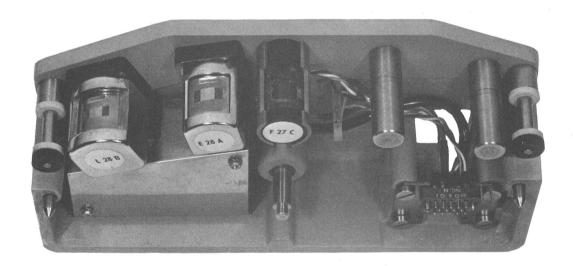
Tête d'effacement

Ajustage de l'accord : Observer à l'oscilloscope ou au voltmètre électronique la tension aux bornes de la tête d'effacement.

Ajuster C de manière à obtenir le maximum de tension correspondant à la résonnance LC (IIO Volts efficaces à IOO KHz)

Orientation: Orientation de la tête de façon à obtenir le maximum d'effacement d'une bande enregistrée à 80 Hz. La mesure s'effectue à l'aide d'un analyseur de fréquence. La valeur d'affaiblissement doit être supérieure à 70 dB.

Page 9 21 264


Schlumberger

MAINTENANCE

Tête d'enregistrement et de lecture

Réglage d'azimut : agir sur les 2 vis de réglage de façon simultanée pour ne pas contraindre anormalement le socle. Ce réglage s'effectue à l'aide d'une bande étalon d'azimut pour la tête de lecture. Pour la tête d'enregistrement, il suffit d'enregistrer du 10 kHz. La lecture simultanée permettra le réglage de la tête d'enregistrement. Ne jamais retoucher le réglage de la tête d'enregistrement, avant vérification du réglage de la tête de lecture.

Perpendicularité : ce réglage est effectué en usine. En aucun cas, on ne doit démonter les têtes de leur socle d'azimutage.

Page 10 21 265

1.3. REGLAGE DES SOUS-ENSEMBLES

La façon de procéder est indiquée pour chacun d'eux au chapitre où ils sont décrits, à la suite de leur schéma de principe, nomenclature, et implantation.

1.4. REGLAGE DE LA VITESSE EN FONCTION DES DIFFERENTS MODES DE SYNCHRONISATION

I) Réglage de vitesse en position autonome

Se reporter aux indications relatives à l'asservissement du moteur cabestan 512 710

A l'aide du noyau de réglage de LI, ajuster la vitesse de façon à obtenir par la méthode stroboscopique (par observation des perforations par un éclairage au néon) IO raies de glissement en arrière du sens de défilement pendant 20 secondes. (soit une fréquence de défilement des perforations de 24,875 Hz ou - 0,5 %)

NOTA: On peut effectuer cette mesure à l'oscilloscope par comparaison de fréquence avec le secteur (soit un glissement de 200 ms en 40 secondes).

2) Réglage de vitesse en position synchronisation externe

Vérifier au préalable la vitesse en position autonome Injecter un signal de IOO Hz en synchro-externe sinusoïdal de + IO dB

Positionner les claviers de sélection sur synchro externe et 100 Hz.

Régler la fréquence du générateur à IOO Hz juste Vérifier qu'à l'aide du potentiomètre R.I8 du circuit convertisseur 5I2 894 on observe un signal stable sur la résistance R.I4

Régler la fréquence du générateur à IO2 Hz (+ 2 %) Tourner R.I8 à la limite de stabilité de ce signal

Vérifier qu'une variation de la fréquence de commande de ± 4 % est rattrapable par la manoeuvre du commutateur.

Vérifier également le fonctionnement des deux autres positions 25 et 50 Hz

Page 11 21 266

Schlumberger

MAINTENANCE

3) Vérification en position synchro-interne et secteur

Vérifier au préalable la vitesse en position autonome L'indicateur visuel doit indiquer une stabilité de fonctionnement dans la plage rouge du cadran. (environ 45).

4) Vérification du fonctionnement en 24 images/seconde

Même observation que précédemment Si besoin est, ajuster la valeur de la capacité C4 du clavier de commutation 24 Hz.

5 Fonctionnement en position couplée

Rôle de R I9 (carte compteur)

Après vérification de la bonne forme des signaux pilote, opérer comme suit après avoir enlevé les relais K 2 des circuits de commande des moteurs latéraux pour éviter l'impulsion de démarrage.

- a) la machine étant découplée
- b) le pilote fonctionnant
- c) le compteur étant remis a zéro
- d) on couple la machine

Le rattrapage du synchronisme doit s'effectuer le plus rapidement possible (2 à 3 secondes) sans aucun dépassement + sur l'indicateur numérique par l'action du potentiomètre de règlage R 19.

Rôle de R 20 (carte compteur)

La machine étant couplée, le pilote averti, règler R 20 de façon qu'ayant avancée à la main la bande de + 20 images, celle-ci revienne le plus rapidement possible à + 2 images sans retour en avant de la bande.

Rôle de R 7 (carte compteur)

La machine défilant en "couplé" le signal observé sur R 7 à l'aide d'un oscilloscope doit donner un rapport cyclique de I/6 environ entre 0 et - 1 image.

L'aiguille du milliampèremètre doit être stable entre 80 et 90

<u>Vérification</u>: le potentiomètre R 7 doit permettre la variation du synchronisme de - l à + l image. Si cela n'est pas possible, il faut refaire les règlages précédents.

Page 12 21 267

Schlumberger

MA TNTENANCE

1.5. Réglage électrique de la tension de bande

Observer la tension entre la masse et la sortie du circuit intégré de l'amplificateur de commande moteur auxiliaire (R7) et tenir le moteur auxiliaire bloqué.

- a) Régler R4 afin d'obtenir entre les 2 positions extrêmes du bras une variation de tension de l'ordre de 3 V.
- b) Régler RI du détecteur de tension de façon à avoir sur R7 de la carte 513 482 une tension de OV quand le bras est à l'extérieur et 3V quand le bras est à l'intérieur.
- c) Vérifier que dans la position bras extérieur le moteur n'est pas alimenté et que le collecteur Q1 (carte 513 482) est à \simeq 26 V.
- d) Vérifier que dans la position bras intérieur, le moteur est alimenté au maximum et que le collecteur de QI est à \simeq 2V.
- e) Vérifier que lorsque le bras est dans la position verticale, la tension sur Ql est de l'ordre de 20 V, et que les tensions de bande en haut et en bas sont équilibrées. Pour cela, enlever le galer presseur.

2. DOSSIER DES SOUS ENSEMBLES

Les versions /l et les versions /S des DS16 et DS 17,5 présentent des différences au niveau des tiroirs suivants :

- Platine centrale de défilement
- Tiroir coupleur à mémoire

Se reporter aux nomenclatures d'ensemble correspondantes.

Page 15 21 269

2.1. Platine centrale de défilement

A. Platine centrale (Version /s)

Elle est équipée des cartes suivantes :

-	1	circuit	préampli tête de lecture	513	317
_	1	circuit	commutation de tête	512	698
-	1	circuit	ampli de vumètre	512	846
_	1	circuit	détecteur de perforation	513	687
_	1	circuit	mise en forme	513	296
-	1	circuit	relais de commande moteur	512	709
_	1	circuit	ampli de puissance	513	683
_	1	boitier	de commande	512	62,3
_	1	circuit	logique de commande	512	890
_	1	circuit	arrêt automatique	512	861
_	1	circuit	retard d'alimentation	513	314

NOMENCLATURE ELECTRIQUE COMPONENT LIST

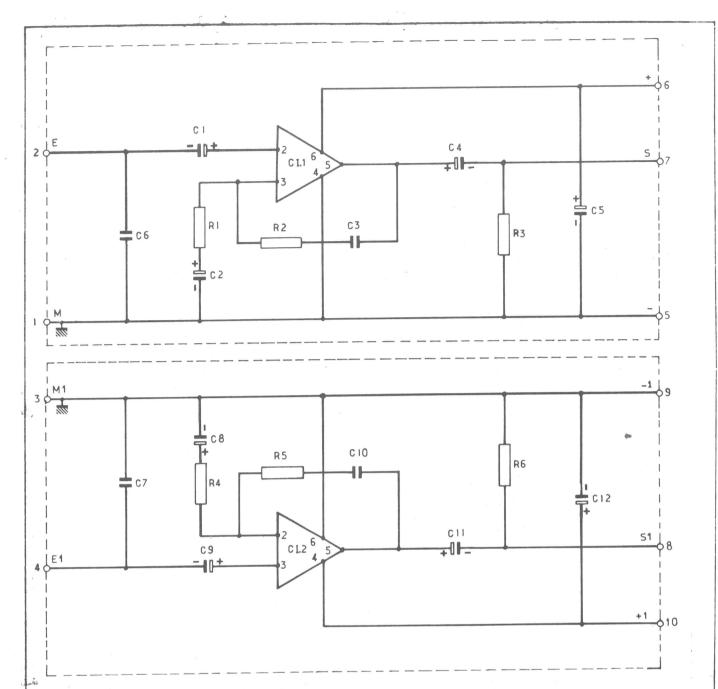
513 758

Repére Index	Qte Qty	Composant Component	Référence Reference	Repère Index	Qty Qty	Composant Component	Référence Reference
Q1 Q2 J2	1 1 1 1	Connecteur Transistor Transistor Embase R. 150 Ω ±10%	FRB K15.508FST BDY 24 B BDY 24 B FRB 810 877 SFERNICE RBA 1370 M	C3 J15	2		SFERNICERBA 150 AM CGE214.7314 2 C 251 MOLEX 1625.12.P.
	age 21 270	17	Schlumb	erger			•

B. Platine centrale (version /1)

Elle est équipée des cartes suivantes :

-	1	circuit	préamplificateur de tête	513	317
-	1	circuit	commutation de tête	512	698
-	1	circuit	ampli de vumètre	512	846
-	1	circuit	détecteur de perforations	513	687
	1	circuit	de mise en forme.	513	296
-	1	circuit	asservissement cabestan	512	710
	l	circuit	relais de commande moteur	512	709
-]	boitier	de commande	512	623
-	1	circuit	logique de commande	512	890
	1	circuit	arrêt automatique	513	317
-	1	circuit	retard d'alimentation	513	314

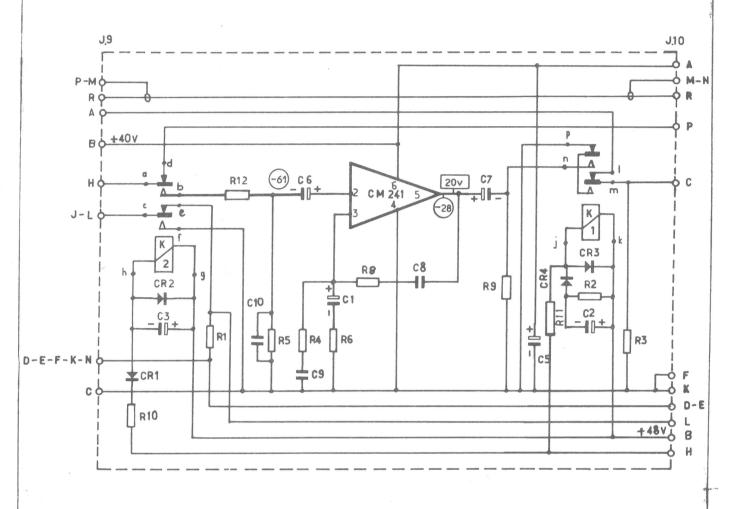

		NOME	NC	LATI	URE	ELE	CTR	IOUE
--	--	------	----	------	-----	-----	-----	------

COMPONENT LIST

513 316

Repère Index	Qte Qty	1	Component	Caractéristiques Specifications	Référence Reference
		Minurupteur type 83.132.0 avec 1e- vier type 54A rayon = 35,75			CROUZET
	1	Compteur rapport		38,5/104 433.3.966	ENM

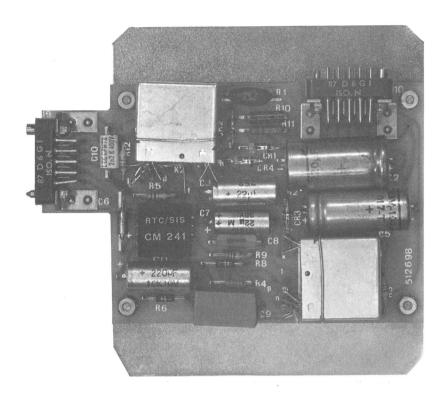
Page 18 21 271



Dans les machines équipées d'une seule piste, seul le 2ème amplificateur (constitué par CI 2) est câblé.

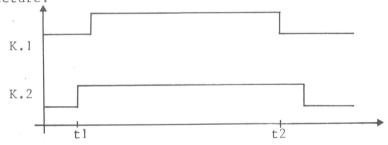
513-317

Playback head preampli.


REPERE index	QTE qty		COMPOSANT component	REFERENCE reference	REPERE index	QTE qty	1	COMPOS ANT component	REFERENCE reference
RI R2 R3 R4 R5 R6 CI C2 C3		R R R R C C	191 Ω 26T Ω 2KΩ 191 Ω 26T Ω 2 kΩ 10 -47 μF 10 - 100 μ F 300 - 330 p F 35 - 22 μF 50 - 1 μF F	C 103 C 103 C 103 C 103 C 103 C 103 C 205 C 205 C 205 C 231	C6 C7 C8 C9 CIO CII CI2 CI I CT 2	I I I I I	C C C C C C C C C C C C C C C C C C C	300 - 100 pf 300 - 100 pF 10 - 100 μ F 10 - 4,7 μ F 300 - 330 pF 35 - 22 μ F 50 - I μ F CM 241	C 231 C 231 C 205 C 205 C 231 C 205 C 205
	ge 19	C	50 - I μF F	C 205			PRE	AMPLI TETE DE LE	CTURE

512 698

REPERE index	QTE qty		COMPOS ANT component	REFERENCE reference	REPERE index	QTE qty	COMPOS ANT component	REFERENCE
RI	I	R	$2,2\Omega \pm 5\%$	GEKA	C2	I	C 220 µF - 63 V	COGECO
R2	I	R	2,2 kΩ	C 103	C3	I	C 50 V - 22 µF	C 205
R3	I	R	2,2 kΩ	C 103	C5	I	C 100 µF - 63 V	COGECO
R4	I	R	22,I Ω	C 109	C6	I	C 50 V - I µF	C 205
R5	I	R	IOO kΩ	C 103	C7	I	C 35 V - 22 µF	C 205
R6	I	R	27 Ω	C 109	C8	I	C InF	C 23I
R8	I	R	60,4 Ω	C I08	C9	I	C I µF - 63 V	C 252
R9	I	R	2,2 kΩ	C 103	CIO	I	C2200 pF -160 V	C 202
RIO	I	R	ΙΟΟ Ω	C 108	CII	I	Circ. CM 24I	
RII	I	R	I $\mathbf{k}\Omega$	C 108	CRI à CR4	4	Diodes IN 4383	
RI2	I	R	15 $k\Omega$	C 103	KI-K2	2	Rel. Zettler AZ	210/105/1
CI	I	C	10 V 220 ^μ F	C 205				
	Page 21 27			Cablum	nherger		COMMUTATION DES TEX	TES


Document ne pouvant être communiqué ou reproduit sans notre autorisation écrite.

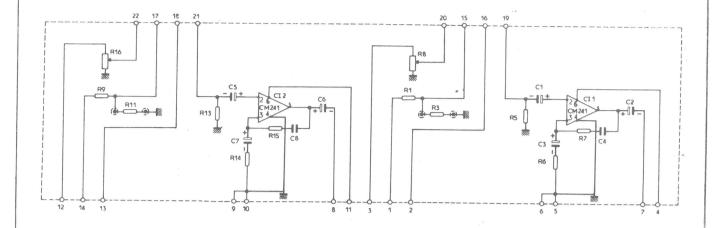
Dans les versions de DS 16 ou DS 17,5 bi-piste, 2 circuits de commutation de têtes identiques sont utilisées, fixées ensemble par des colonnettes. Dans les versions à lecture seule, ce circuit est remplacé par une carte d'interconnexions (811 298).

Rôle du circuit : permet le branchement de la tête d'enregistrement sur la chaîne lecture par l'intermédiaire d'un amplificateur d'adaptation de gain.

Rôle des relais K.1 et K.2 : éviter un parasite de commutation sur la chaîne de lecture.

t 1 = ordre de passage en lecture sur tête ENR

t 2 = ordre de passage en lecture normale


Soit au temps t 1 : le relais K.2 commute la tête ENR sur l'amplificateur, ensuite K.1, la chaîne de lecture sur cet amplificateur.

Au temps t 2 : le relais K.l commute la chaîne de lecture normale puis K.2 commute la tête d'ENR sur la chaîne d'enregistrement.

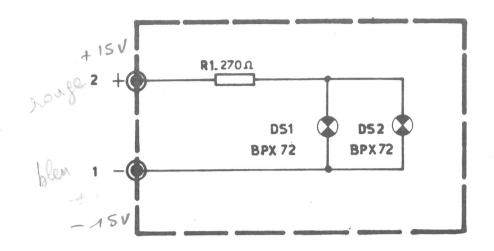
Page 21 21 274

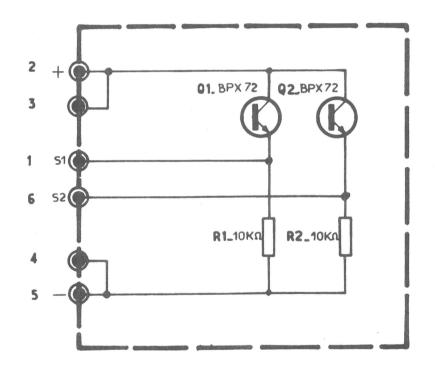
Schlumberger

COMMUTATION DES TETES 512.698

Ce circuit permet d'adapter le vumètre aux différents points de mesure et tests.

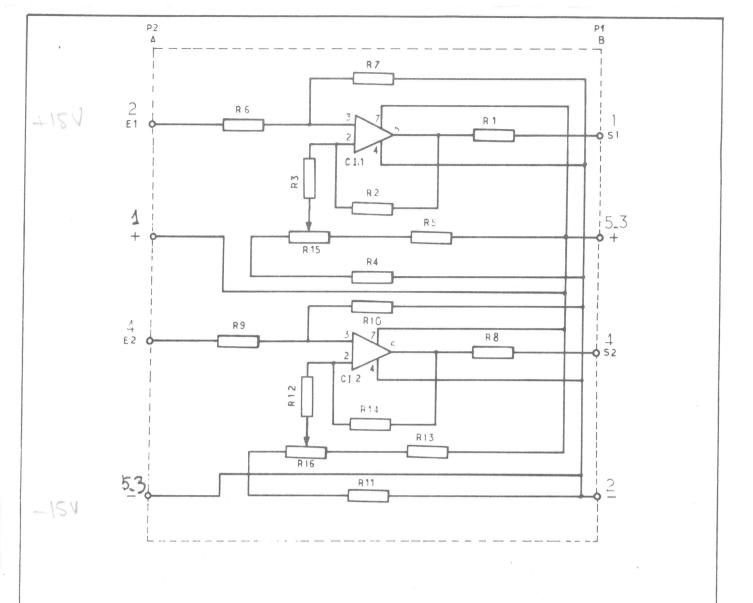
Rôle de R.8 et R.16 : permet de tarer la valeur de la prémagnétisation pour l'indication "0" vu en fonction de la bande utilisée.


Les résistances R.3 et R.4 ou R.II, R.I2 permettent de rétablir le niveau normal dans le cas d'une machine réglée à + 6 dB au lieu de + I2 dB


Le gain de la chaîne (module CM 24I) est de 42 dB (- 38 à + 4 dB)

Dans les machines équipées d'une seule piste, seul le premier amplificateur (constitué par CI I) est câblé.

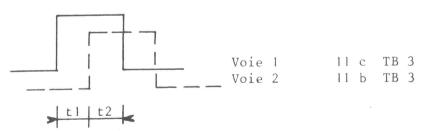
512 846


REPERE	QTE		COMPOSANT	REFERENCE	REPERE	QTE	COMPOSANT REFERENCE
index	qty		component	reference	index	qty	component reference
O.T.		~	70 70				
CI	I	C	10 39 µF	C 205	R6	I	R 30, I KΩ C 109
C2	I	C	50 4,7 µF	C 205	R7	I	R 200 Ω C I09
C3	I	C	IO 220 μF	C 205	R9	I	R 18,2 KΩ C 109
C4	I	C	I50 pF	C 23I	RIO	I	R
C5	I	C	IO - 39 μF	C 205	RII	I	R 147 Ω C 109
c6	I	C	50 - 4,7 μF	C 205	RI2	I	R
C7	I	C	IO - 220 μF	C 205	RI3	I	R 100 KΩ C 109
C8	I	C	300 - I50 pF	C 23I	RI4	I	R 30, I KΩ C 109
RI	I	R	18,2 KΩ	C I09	RI5	I	R 200 Ω C I09
R2	I	R			R8	I	P 4700 Ω P50XF SFERNICE
R3	I	R	I47 Ω	C I09	RI6	I	Ρ 4700 Ω
R4	I	R			CII	I	IC CM 24I
R5	I	R	IOO K U	C I09	CI 2	I	IC CM 24I
	,						
Pa	ge 22		1.		7	h	ALCO T DO THE ACTION
21	-						AMPLI DE VU-METRE
21	413			Schlum	berger		Vumeter amplifier 512.846

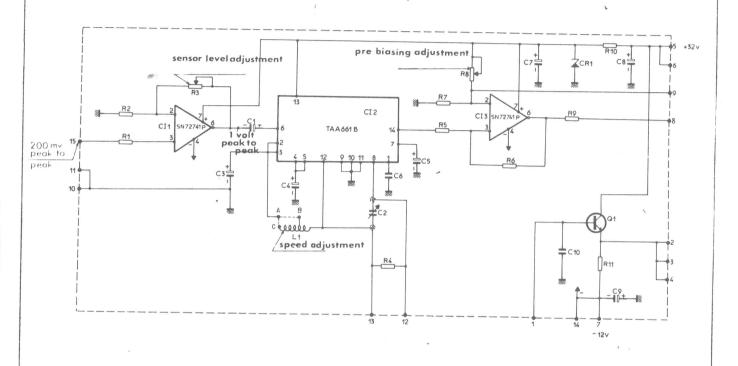
513 687

				R.				
REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	
C 106	2	lampe Canetti résistance	240 2700	С3	2 2	résistances SOVCOR transistor BP x 72		
Page 23 21 276 (631 181)			Schlumberger			Détecteur perforations Funch sensor		

513 296


REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	REPERE index	QTE qty	COMPOSANT component	REFERENCE reference
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12		R 100 Ω R 221 KΩ R 100 Ω R 1 kΩ R 1 kΩ R 100 Ω R 182 kΩ R 100 Ω R 100 Ω R 182 kΩ R 1 kΩ R 1 kΩ	C 103 C 109 C 103 C 109 C 103 C 109 C 103 C 103 C 109 C 109	R13 R14 R15 R16 IC1 & 2 P1 P2	1 1 1 2 1 1 2	R 1 kΩ R 221 kΩ Pot. 10 kΩ Pot. 10 kΩ IC μΑ 741 ou SFC Conn. mâle OEC Conn. femelle OEC Entretoise JEANRENAUD	SN 72741 P S5 MCI cc/5
Page 24 21 277 (616 541)			Sch	lumberger	l-management.	Mise en forme détecteur de perforations	

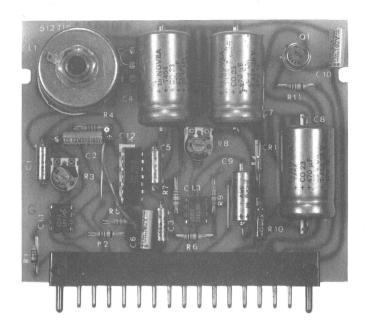
Document ne pouvant être communique ou reproduit sans notre autorisation écrite.


Rôle de R.15 et R.16 : réglage des seuils de déclenchement des circuits intégrés 741 P.

Régler les potentiomètres de façon à obtenir la même largeur de signaux sur les deux sorties S1 et S2.

NOTA : L'observation peut se faire sur les points || b et || c de la réglette TB 3.

Décalage en marche avant



Versions DS 16 : C2 = 16 200 pFDS 17,5 : C2 = 28 700 pF

REPERE	QTE	COMPOSANT	REFERENCE	REPERE	QTE	COMPOS ANT REFERENCE	
index	qty	component	reference	index	qty	component reference	
RI	I	RΙKΩ	C 109	С 3	I	C 39 µF C 205-IO	
R2	I	IkΩ	C 109	C 4	I	C 470 µ 25-30VNOVEA T 454	
R3	I	P IO $k\Omega \pm 20 \%$	VA 05 H	C 5		C 39 µF C 205-IO	
R4	I	R 36 kΩ	C 109	C 6	I	C 100000 pF C 201-160	
R5	I	470 Ω	C 109	C 7	I	C 470 µ25-30VNOVEA T 454	
R6	I	20 kΩ	C I09	C 8	I	C 470 µ25-30VNOVBA T 454	
R7	I	IkΩ	C I09	C 9	I	C 22 µF C 205-35	
R8	I	$P = 2,2 k\Omega$	VA 05 H	C IO	I	C 100000 pF C 201-160	
R9	I	R $4,7 \text{ k}\Omega$	C 103	QI	I	T 2 N 3440	
RIO	I	R 470Ω SFERNICE	4 x 10	LI	I	Self P 15839	
RII	I	R IO kΩ	C 109	CI-I	I	CI SN 72741 P	
CRI	I	Zener BZ x 85 CI	Sescosem	CI-2	I	CI TAA 661 B	
CI	I	C 39 µ F	C 205-IO	CI-3	I	CI SN 7274I P	
C2		C		-			
	Page 26 21 279 ASSERVISSEMENT (/1)						

Schlumberger

MOTEUR CABESTAN Capstan motor slaving

A - Réglage des capteurs de la roue tachymétrique

Observer à l'oscilloscope simultanément les deux signaux délivrés par les capteurs.

Ces deux signaux doivent avoir la même amplitude et la même phase.

Ce réglage s'effectue en déplaçant les capteurs.

Le niveau des deux capteurs en série doit être de 200 mV crête à crête.

Rôle de R 3 : détermine le gain de l'étage amplificateur CII. Régler R3 de façon à obtenir au - de CI ou à l'entrée du discriminateur l'Volt sinusoïdal crête à crête.

Rôle de R 8 : réglage de la prépolarisation de la chaîne de commande du moteur.

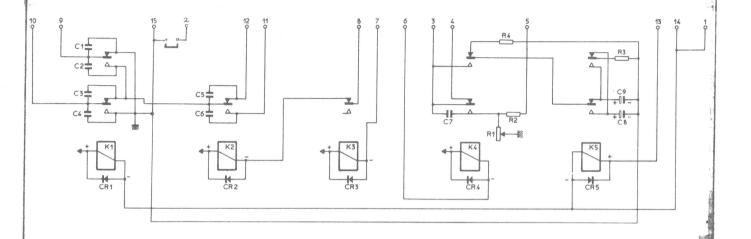
B - Méthode de réglage de prépolarisation

Sans bande et sans galet presseur, le moteur étant commandé en défilement normal () le potentionètre R8 étant en rotation maximum, le moteur tourne à la vitesse maximum dans le sens "avant".

Tourner alors R8 vers le minimum jusqu'à ce qu'il arrive à sa vitesse nominale (bruit caractéristique).

- . Mesurer alors la tension sur R7, soit VI (par exemple II volts)
- . Tourner alors le potentiomètre R8 vers le minimum avant changement de sens du moteur
- . Bloquer le moteur (en tenant la roue tachymétrique à la main)
- . On ressent une vibration. Régler alors R8 jusqu'à disparition de cette vibration.
- . Mesurer la tension sur R7 soit V2 (par exemple 9 volts).
- . Régler finalement R8 pour obtenir aux bornes de R7 une tension

$$V = VI + V2$$

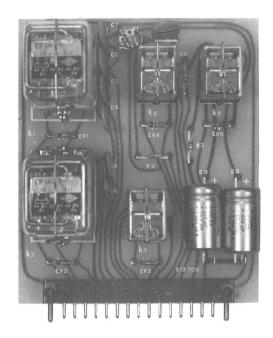

par exemple : V = II + 9 = 10 Volts

Vérification : le moteur cabestan, toujours dans les conditions précédentes doit répondre à une demande de ralentissement dans le cas d'un passage :

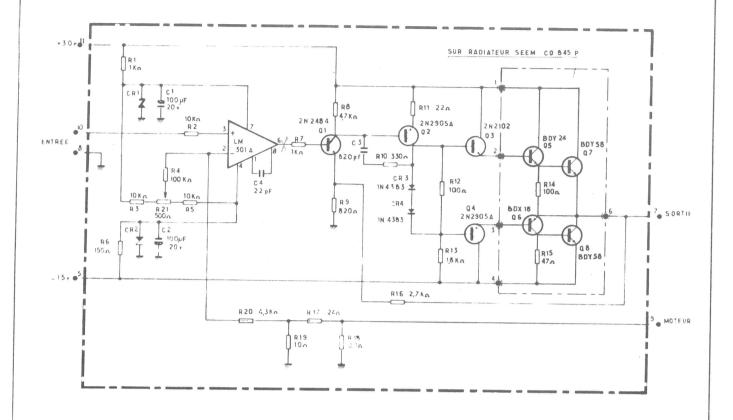
>>

sser encore

Nevisah -


Versions/1 : R1 = 47 k Ω , R2 = 4,7 k Ω , strap câblé

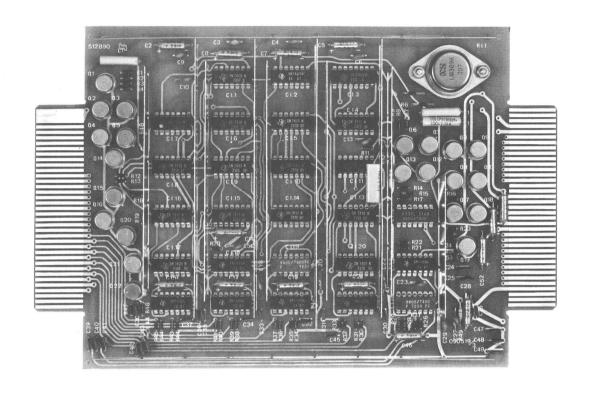
Versions/s : R1 = 100 Ω , R2 = 2,7 $k\Omega$, strap non câblé.


512 709

REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	REPERE index	QTE qty		REFERENCE reference
RI R2 R3 R4 CI à C7 C8 - C9	I I I 7 2	Pot. OHMIC R. R. 100 Ω R. 100 Ω C. 250 V 10000 pF C 25-30 V 470 μF	VA05H C 103 C 109 C 109 LCCCIX615 NOVEAT454	CRI-CR5 KI - K2 K3 - K4 K5	5 2	D IN 4383 Rel. MTI 48V conti avec socle MTIEXC3 Rel. 2500 Ω VARL Rel. CEB 47	EP` 3EX 2 RT type VP2
Page 21-2			Schlumberger			RELAIS DE COMMANDE MOTEUR CABESTAN Capstan motor relay	rs .

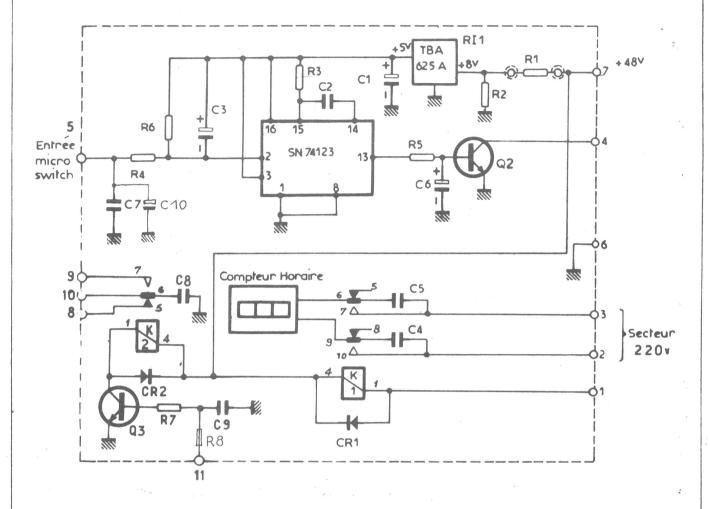
Document ne pouvant être communiqué ou reproduit sans notre autorisation écrite.

- K.1 : Inverseur de rotation du p\u00edlote. Command\u00e9 par l'information sens issue de la logique
- K.2 : Mise en marche du cabestan. Au repos le moteur est court-circuité par la résistance à collier de 10Ω (sous le châssis central), la valeur est d'environ 7Ω . Commandé par le contact de l'électro-presseur à condition que le relais K.3 soit au repos.
- K.3 : Interdit la fonction de K.2 entre les moments suivants : demande de STOP et confirmation d'arrêt de la bande.
- K.4: Détermine la vitesse de défilement.
 Au repos: vitesse nominale.
 Au travail: vitesse rapide
 Dans ce dernier cas, on polarise l'amplificateur de commande du moteur par la résistance R.1. Le réglage de R.1 est tel qu'on obtient environ 10 fois la vitesse nominale de 19.05 cm/s.
- K.5: Retarde la mise en vitesse rapide du moteur pilote grâce aux constantes de temps C9/C8 et l'impédance de charge vue du point 3.
 - R.3 servant à décharger C8 et C9
 - K.5 est commandé par la demande de sens issue de la logique.


 $\underline{\text{Rôle de R21}}$: Réglage à zéro du courant dans le moteur pour une tension nulle à l'entrée.

REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	REPERE index	QTE qty	COMPOSANT component	REFERENCE reference
R1 R2 & R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15	1 R 2 R 1 R 1 R 1 R 1 R 1 R 1 R 1 R 1 R	10 kΩ 100 kΩ 10 kΩ 150 Ω 1 kΩ 4,7 kΩ 820 Ω 330 Ω 22 Ω 100 Ω	SO 102 C 111 SO 102 C 111 RWM 5.26 SFERNICE RWM 5.26 SFERNICE SO 102 SO 102 SO 102 SFERNICE SO 102	R21 C1 & C2 C3 C4 CR1 & 2 CR3 & 4 Q1 Q2 Q3 Q4 Q5 Q6 Q7 & Q8 IC1	1 2 1 1 2 2 1 1 1 1 2 1 4 1 1 4 2 2	P 500 Ω 10% C 100 μF 20v C 1,47 nF 160v C 22 pF 300v Zener BZx55 C12 D 1N 4383 T 2N 2484 T 2N 2905A T 2N 2102 T 2N 2905A T BDY 24B T BDX 18 T BDX 18 T BDY 58 IC LM 301 AH Cosse MFOM N° 5- Plot V 286 Cale transistor Rel. équerre 1842	SO 341 SO 205 C 211 C 231 SESCOSEM T 301 METALLO
Pag 21	e 30 283	631 993		umberger		Ampli de puissand Power amplifier	ce (/s)

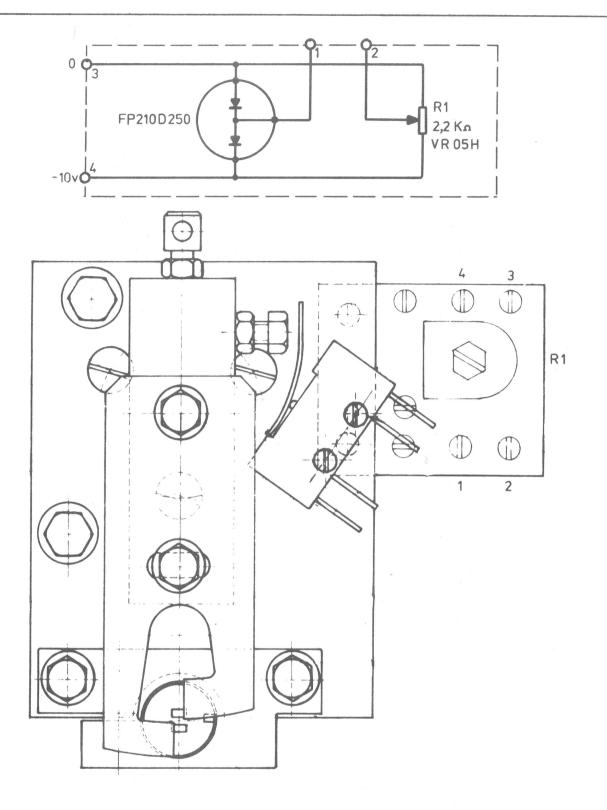
L'equipement du boitier de commande peut varier suivant les versions et les options.


Il comporte au minimum les éléments de la nomenclature type ci-dessous, mais dans des quantités qui peuvent être différentes.

REPERE indes	QTE qty	COMPOSANT component	REFERENCE reference	REPERE index	QTE qty	COMPOSANT component	REFERENCE reference
S10 S12 R1-R2 J4	5 9 1 1 1 S1	bouton poussoir A.E.I. avec calotte A.E.I. lampe A.E.I.48V 20 mA Vu-metre METRIX voyant A.E.I. calotte A.E.I. commutateur JEAN RENAUD clavier J.RENAUD clavier J.RENAUD suivant plan résistances 4x10 470 \(\Omega \) connecteur SOGIE	418 987 SFERNICE	R3 CR1 J5 R4 C1 S13 S14 J6	1 1 1 1 1 1 1	ampoule BA connecteur R 10K0 C 22nF 160 commutateur J.RENAUD commutateur J.RENAUD	MFOM 4MFB 14B 95 48V 3W FRB KF/74/254/B E/D/T/ C 103 V C 202 418 701
	Page 21 28		Schlumberger			Boitier de c	ommande

REPERE	QTE	COMPOSANT	REFERENCE	REPERE	QTE	COMPOSANT	REFERENCE	
index	qty	component	reference	index	qty	component	reference	
R1 à R48	48	R 1 kΩ C3	sovcor	C27-C29	2	C 820 pF 500 V	C 241	
R49	1	470 Ω	C103	C30-C45	5	10000 pF	Service Control of the Control of th	
C1 & 55	2	C 0,1 µF 160V	C2O2	C4.6	1	39 µF 10V	C 205	
C2 & 54	2	39 μF 10V	C205	C47-C49	3	C10000 pF		
C3 & 4	2	820 pF 500V	C241	C51-52	2	39 µF 10V	C 205	
C5	1	39 µF 10V	C205	C53	1	10000 pF		
C6	1	820 pF 500V	C241	Q1-Q22	22	T 2N 2102		
C7 & 8	2	39 μF 10 V	C205	R1 1	1	ICLM 309 k		
C9 & 10	2	820 pF 500V	C241	C1 1	1	SN 7440 N	TEXAS	
C11-C12	2	0,1 µF 160V	C202	C1 2	1	SN 7400 N	TEXAS	
C13	, 1	820 pF 500V	C241	C1 3	1	SN 74123 N	TEXAS	
C14-C15	2	39 µF 10V	C205	C1 4	1	SN 7410 N	TEXAS	
C15	1	820 µF 500V	C241	C1 5	1	SN 7430 N	TEXAS	
C17	1	39 µF 10V	C205	C1 6	1	SN 7410 N	TEXAS	
C18	1	820 pF 500V	C241	C1 7	1	SN 7404 N	TEXAS	
C19	1	39 µF 10V	C205	C1 8	1	SN 7410 N	TEXAS	
C20	1	820 pF 500V	C241	C1 9	1	SN 7400 N	TEXAS	
C21	1	39 µF 10V	C205	C1 10	1	SN 7430 N	TEXAS	
C22-C23	2	820 pF 500V	C241	Ĉ1 11	1	SN 7404 N	TEXAS	
C50	1	820 p 500V	C241	G1 12	1	SN 7400 N	TEXAS	
C24-C26	3	10000 pF		C ₁ 13	1	SN 7410 N	TEXAS	
C28	1	39 μF 10V	C205	C1 14	1	SN 7430 N	TEXAS	
C117àC126	10	. SN 7400 N	TEXAS	C115-C116	2	SN 7410 N	TEXAS	
	Page	32						
	21 28		Schlumberger			LOGIQUE DE COM Control logic 512.890	IANDE	

Document ne pouvant être communiqué ou reproduit sans notre autorisation écrite.


Fonctionnement : les deux contacts de fin de course des bras capteurs de tension de bande permettent de déclencher l'arrêt de la machine par l'intermédiare du circuit monostable 74.I23.

Sur une coupure des contacts montés en série, on obtient une impulsion déterminée par R3; C2 qui commande la fonction logique STOP. Il ne se passe rien lors de la fermeture de ces contacts.

Rôle du relais KI. sert à brancher le compteur horaire, lors de l'alimentation de l'électropresseur, information issue de la carte logique.

Dans les versions/S les composants marqués * ne sont pas câblés

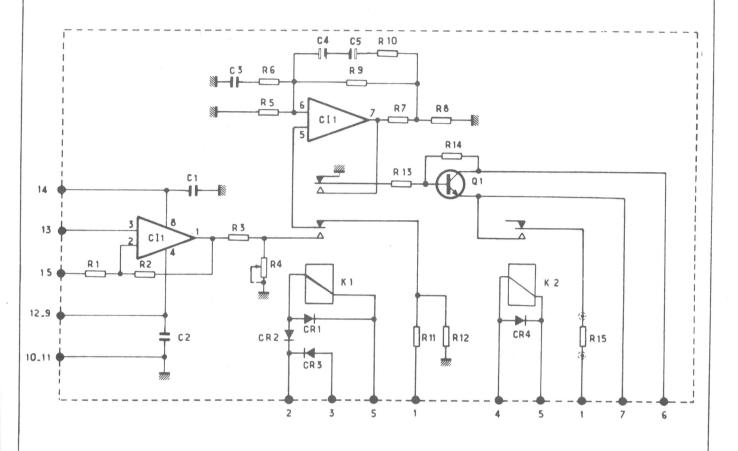
				pas cables			
REPERE indes	QTE qty	COMPOSANT component	REFERENCE reference		QTE qty	1	REFERENCE reference
RI 7 R2 7 R3 8 R4 8 R7 R8 CI 8 C2 C3 8 C4 C5 C6 8 C10	I I I I I I I I I I I I I I I I I I I	R 820 Ω R 470 Ω R 100 Ω R I KΩ R 2400 Ω R 5,1 KΩ C IO 39 μF C O,I μF C I5 V 3,3 NF 250 V IO NF 50 V O,I μF	C I03	C7 * C8 C9 CRI.CR2 KI.K2 RTI Q2.Q3 *	I I I 2 2 I I I 2	I60 V 0,I μF 63 V I μF 56 μF IN 4383 2500 Ω TBA 625 A 2N 2I02 Compteur horaire 220 V 50 Hz Isolateur SN 74 I23 Etrier pour relais Varlay	C 202 C 251% C 251 CEB 47 CEM mini. T 301 C 420 ET
Page 33 21 286			Schlumberger			ARRET AUTOMATIQUE Automatic stop	512.86T

Vérifier que la palette à un déplacement symétrique autour de la cellule et que, lorsque l'on applique 10 V aux bornes de la cellule (3 et 4), en obtient des tensions symétriques en son point milieu (1) pour des positions extrêmes du bras (3,5 à 4 V et 6 à 6,5 V).

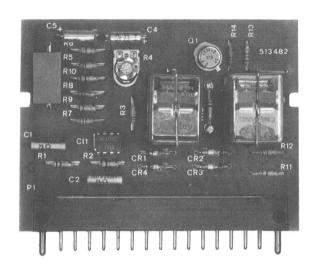
Page 34 21 287 (214 121)

Schlumberger

Capteur tension de bande Tape tension sensor

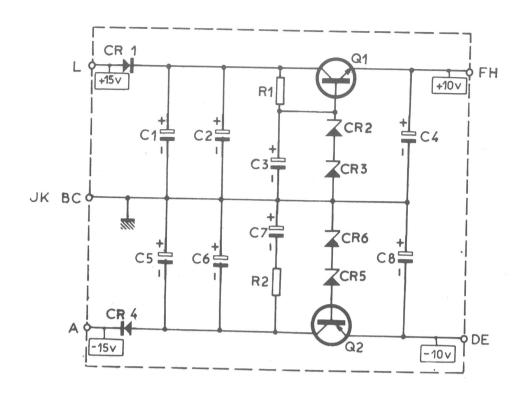

2.2. Platine moteur auxiliaire

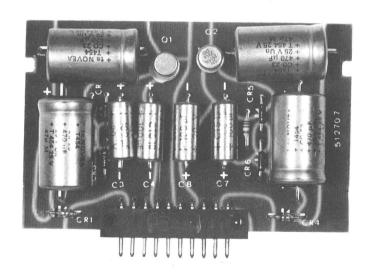
Elle comporte :


-	1	carte	commande moteur auxiliaire	513	482
-	1	carte	alimentation + 10 V	512	707
_	1	carte	alimentation 26 V (voir tiroir alimentation)	512	708

 $\frac{\text{REMARQUE}}{\text{les composants marqués }(\textbf{x})}: \text{Seule la platine supérieure comporte}$

Repère Index	Qte Qty	Composant Component	Référence Reference	Repére Index	Qte Qty	Composant Component	Référence Reference
开开来	1 2 2 1	Relais MTI Diode Voyant Lampe T8K 60 V 20 mA R. RLP6 0,1330 2% Connecteur FRB Connecteur FRB	EP 3 EX 1N 4383 SIEMELEC Lilliput SFERNICE K15.508.FFT K10.400.FFT		1 1 1 1 1 1 1 1 1 1	Transistor embase FRB L.E. pont mono moulé C. 40 . 4700 µF Porte fusible 23 312 Fusible D8TD/IA Transformateur	2 CM.I.AMTG FOPM2 COGIE C 226 CEHESS
Pag 21	e 35 288		Schlumbe	erger			



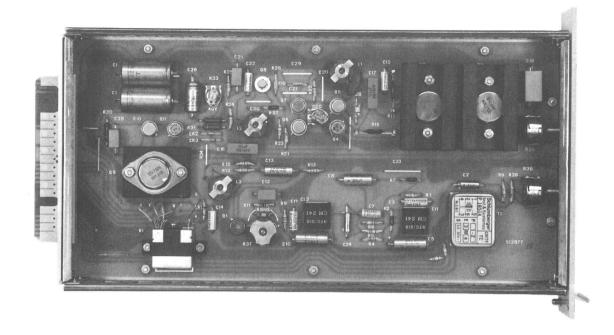

-	r						T	
REPERE	QTE	COMPOSANT	REFERENCE	REPERE	QTE	COMPOSANT	REFERENCE	
index	qty	component	reference	index	aty	component	reference	
RI	I	R IO KΩ	C 103	RI2	I	R I.8 KΩ	C 103	
R2	I	R 10 KΩ	C 103	RI3	I	R 5,1 K Ω	C 103	
R3	I	R 100 KΩ	C 103	RI4	I	R IOO KN	C 103	
R4	I	R 47 KΩ	OHMIC	RI5	I	R 400 k Ω	C 105	
R5	I	R IOO KΩ	C I03	CRIA4	4	D IN 4383		
R6	I	R 4.7 KΩ	C I03	QI	I	T 2N 3440		
R7 R8	I	R 2 KN	C I03	CI&2	2	C I60 I0000 pF	C 50I	
R9	I	R 8.2 KΩ	C I03	C3	I	C 63 I µF	C 25I	
RIO	I	R 510 KΩ R 20 KΩ	C I03	C4&5	2	C I5 V 22 μF	C 205	
RTT	T	R 200 KΩ	C 103	KI &K2	2	Rel. VP 2 2 RT	VARLEY	
WILL	1	V 500 VI	C 103	CII	I	IC SN 72558 P		
P	age 3	6				COMMANDE MOTEUR AUXILIAIRE		
2 1	289	(618 503)	Schlumberger			Auxiliary motor control		
			Gornar	inder ger			,	

Rôle des relais K.1 et K.2 (constante de temps)

- a) Relais K.1 : commandé par une fonction de défilement issue de la carte logique exécute le branchement du moteur latéral.
- b) Relais K.2 : commandé par la fonction "STOP" du temps de l'impulsion de commande au temps d'arrêt de la bande.
 - Il sert à envoyer une impulsion sur le moteur qui retient la bande.

REPERE Ind e x	QTE qty	COMPOSANT component	REFERENCE reference		QTE qty	COMPOSANT component	REFERENCE feference
R1 & 2 Q1 Q2 CR1 CR2 & 3 CR4	1 T 2N 2102 1 T 2N 2905 A C3 6 1 D 1N 4383 C5 8		C3 & 4 C5 & 6	2 2 2 2 2	D 1N 708 A C 470 μF25VT454 C 20 V 100 μF C 470 μF25VT454 C 20 V 100 μF	C 205	
Page 38 21 291			Schlumberger			ALIMENTATION ± MOTEUR AUXILIAI Power supply	

Document ne pouvant être communiqué ou reproduit sans notre autorisation écrite.

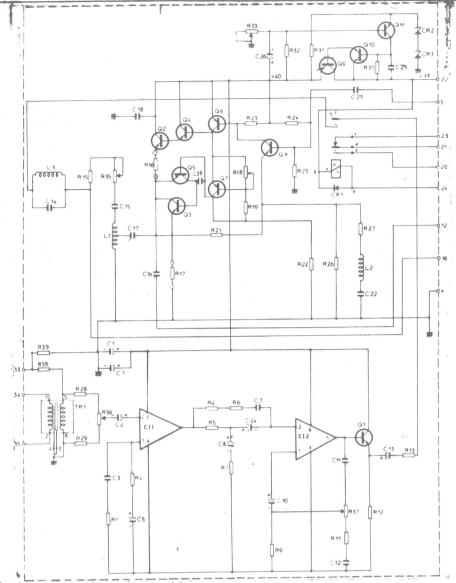

2.3. Tiroir modulation

Il est susceptible, suivant les options, d'être équipé des modules suivants

-	module	ampli d'enregistrement	512	876
-	module	amplificateur HF	512	874
	module	ampli de lecture	512	868
-	module	ampli de repérage	513	634
-	prolong	gateur de module	512	873

513 346

		\$	+	.	,		
REPERE index	QTE qty		REFERENCE reference	REPERE index	QTE qty		REFERENCE reference
Jl à J4 Tl Cl	4	connecteur FRB transformateur condensateur avec collier de fixa- tion 40-2200	KF/74/254/B/ E/D/2/T P 17615 C 226	C2 R1 TB1 C3 à C5	1 1 1 3	condensateur 160-10nF résistance 27 réglette POUYI condensateur CGC 100 63V	
1	Page 39						



REPERE	QTE		COMPOSANT	REFERENCE		ОТЕ		COMPOSANT	REFERENCE
index	qty	_	component	reference	index	qty		component	reference
R1	1	R	150Ω	C 109	C6				
R2	1	R	1370Ω	C 109	C7	1	C	160 1470 pF	C. 211
R4	1	R	2050Ω	C 109	C8	1	C	20 39 μF	C 205
R5	1	R	10000Ω	C 109	C10	1	C	10 220 μF	C 205
R6	1	R	4750Ω	C 109	C11	1	C	160 8250 pF	C 205
R7	1	R	4.42kΩ	C 109	C12	1	C	160 0.047 μF	C 252
R9	1	R	1050Ω	C 109	C13	1	C	50 10 F	C 205
R11	1	R	261Ω	C 109	C14	1	C	160 2.49 µF	C 211
R12 & 13	2	R	1210Ω	C 109	C15	1	C	160 1000 pF	C 211
R15	1	R	1,5 kΩ	C 109	C16 & 17	2	С	160 O.1 µF	C 253
R16 & 17	2	R	3.80 1W	GEKAMI	C18	1	C	63 1 μF	C 252
R18	1	P	$2.2k\Omega$	OHMIC	C20				
R19	1	R	2050Ω	C 109	C21	1	C	160 0.033 µF	°C 252
R21	1	R	4750Ω	C 109	C22	1	C	160 2150 pF	C 211
R22	1	R	5620Ω	C 109	C24	1	C	20 15 μF	C 205
R23	1	R	7500Ω	C 109	C25	1	C	160 0.033 μF	C 252
R24	1	R	30100Ω	C 109	C26	1	C	63 47 μF	COGECO
R25	1	R	7500Ω	C 109	C27				
R26	1	R	2940Ω	C 109	C28	1	C	300 200 pF	C 231
R27	1	R	402Ω	C 109	C29				
R28	, 1	R	20500Ω	C 109	C30				
R29		R	1210Ω	C 109	C1 1 & 2	2	С	Couche mince CM241	
R30 & 31		R	6.81 kΩ	C 108	L1	1	S	P 18 492	
R32		R	2.21 k Ω	C 108	L2 & 3	2	S	P 18 493	
R33	1	P 2	2.2kΩ	OHMIC	CR1	1	D	IN 4383	
R34					CR2 & 3	2	D	IN 708 A	
R35 & 36		Р	10kΩ P 50 XF	SFERNICE	Q1	1	T	2N 2102	
R37		Ρ	4.7kΩ P 50 J2F	SFERNICE	Q2 & 3	2	Τ	BDY 24 B	isc.
R38		R	274kΩ	C 109	Q4	1	Τ	2N 2102	
R39		R	lOkΩ	C 109	Q5 à 7	2	Τ	2N 2905	
C1		C	63 220 μF	COGECO	Q8	1	Т	2N 2484	
C1		С	63 220 μF		Q9	1	Т	BDY 24 B	
C2		С	20 15 _μ F	C 205	Q10	1	Т	2N 2102	
C3	1	C	160 17800 pF	C 211	Q11	1	Т	2N 3440	
C4					K1	1	R	210/105/19GN	ZETTLER
C5	1	С	10 220 μF	C 205	TR1	1	TR	P 18 514	
Pa	ge 4	Ω							

Page 40 21 293

Schlumberger

AMPLIFICATEUR D'ENREGISTRE-MENT / Recording amp.

A - Réglages en courant continu

- I) Avant mise sous tension mettre R33 en position médiane et R20 au maximum
- 2) Régler R33 pour obtenir + 40 volts au + de C26
- 3) Régler si nécessaire la valeur du point milieu au collecteur Q3 (+20V)
- 4) Régler R20 de façon à obtenir un courant de repos supérieur de ImA du courant minimum total

B - Réglages en alternatif

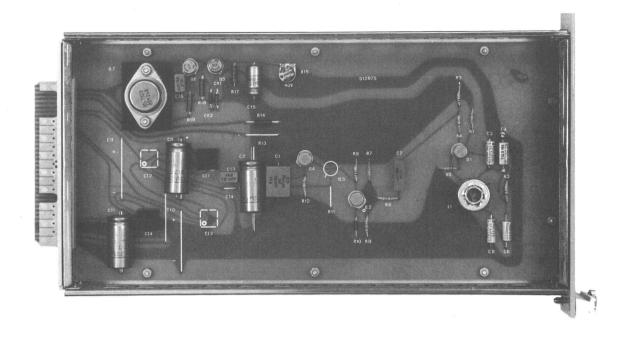
R36 : Réglage du niveau d'enregistrement (après étalonnage de la chaîne lecture)

R37 : Réglage du niveau d'aigus permettant de compenser les variations d'efficacité de la tête d'enregistrement (après étalonnage de la chaîne de lecture)

R35 : Réglage de prémagnétisation, selon la bande magnétique utilisée L3/CT4 : Circuit de blocage H.F. Régler le noyau de L3 de façon à obtenir le maximum d'efficacité du circuit (minimum de H.F. observé sur RT3)

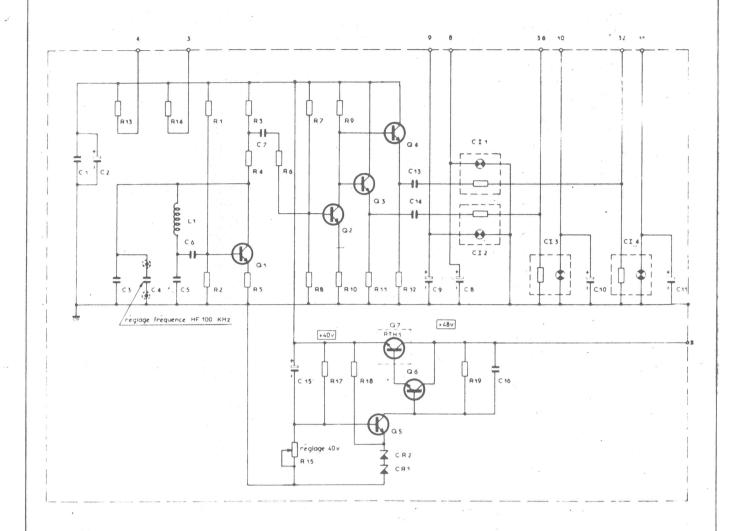
C - Rôle de KI

Branchement de la chaîne d'enregistrement sur la tête. Commande dans le circuit oscillateur H.F. le branchement de la H.F., K.I est alimenté par la carte logique.


D - Changement de standard de préaccentuation des aigus

50 μs : Relier h à j et k à l, déconnecter m et n T00 μs : Relier m et n, déconnecter hj et kl

Page 41 21 294


Schlumberger

AMPLIFICATEUR D'ENREGISTREMENT 512.877

QTE	COMPOSANT	REFERENCE	REPERE	QTE	Π	COMPOSANT	REFERENCE
qty	component	reference	index	qty		component	reference
1	R 182 kΩ	C 109	C5	1	С	160 27.4 nF	C 211
1	R 33.2 kΩ	C 209	C6	1	C	160 1 nF	C 211
1	R 576 Ω	C 109	C7	- 1	C	160 O,1 μF	C 253
1	R 3.15 $k\Omega$	C 109	C8	1	C	63 220µF	COGECO
1	R 576 Ω	C 109	C9 & 10	2	C	63 220µF	COGECO
1	R 121 $k\Omega$	C 109	C11	1	C	63 220µF	COGECO
1	R 90.9 $k\Omega$	C 109	C12	1	C		
1	R 20.5 $k\Omega$	C 109	C13	1	C	160 33 nF	C 253
1	R 4.42 kΩ	C 109	C14	1	C	160 33 nF	C 253
1	R 1.21 $k\Omega$	C 109	C15	1	С	63 47 μF	COGECO
1	R 2.05 $k\Omega$	C 109	C16	1	С	160 33 nF	C 253
1	R 2.05 $k\Omega$	C 109	CR1 & 2	2	D	IN 708 A	
1	R 1300 Ω	C 108	Q1 & 2	2	Т	2N 2102	
1	R 1300 Ω	C 108	Q3	1	T	2N 2102	
1		OHMIC	Q4	1	T	2N 2102	
1		C 108	Q5 & 6	2	Т	2N 3440	
2	R 6.81 $k\Omega$	C 108	Q7	1	Т	BDY 24 B	
1	C 63 IµF	C 252	L1	1	S	P 15 833	
1	The second secon	COGECO	C1 1	1	CI	CHS66 (721)	ACOVA
1	C 160 14.7 nF	C 211	C1 2&3	2	CI	CHS66 (721)	ACOVA
1	C 160 10 nF	C 202	CA 4	1	CI	CHS66 (721)	ACOVA
ge 42					Т		
295							
	qty 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	qty component 1 R 182 kΩ 1 R 33.2 kΩ 1 R 576 Ω 1 R 576 Ω 1 R 121 kΩ 1 R 90.9 kΩ 1 R 20.5 kΩ 1 R 4.42 kΩ 1 R 2.05 kΩ 1 R 1.21 kΩ 1 R 2.05 kΩ 1 R 2.05 kΩ 1 R 2.05 kΩ 1 R 2.05 kΩ 1 C 63 1μF 1 C 63 220 μF 1 C 160 10 nF	qty component reference 1 R 182 kΩ C 109 1 R 33.2 kΩ C 209 1 R 576 Ω C 109 1 R 576 Ω C 109 1 R 576 Ω C 109 1 R 121 kΩ C 109 1 R 90.9 kΩ C 109 1 R 20.5 kΩ C 109 1 R 1.21 kΩ C 109 1 R 2.05 kΩ C 109 1 R 2.05 kΩ C 109 1 R 1300 Ω C 108 1 R 1300 Ω C 108 1 R 2.21 kΩ C 108 2 R 6.81 kΩ C 108 1 C 63 220 μF C 252 1 C 160 14.7 nF C 211 1 C 160 10 nF C 202	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

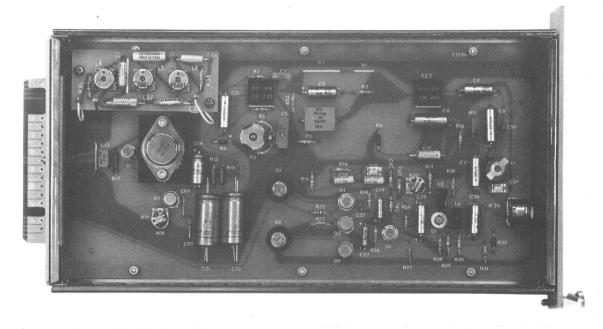
Document ne pouvant être communiqué ou reproduit sans notre autorisation écrite,

Dans les machines équipées d'une seule voie, le transistor Q3 et les circuits de sortie associés ne sont pas câblés.

Réglages en courant continu

Régler R.I5 de façon à obtenir au + de C2 après régulation du 48 volts d'alimentation 40 Volts.

Réglages en courant alternatif


Ajuster le circuit L I/C 4 de façon à obtenir IOO KHz + 0,5 % mesuré sur le collecteur de Q2.

Rôle des cellules photo-resistantes CI_- CI_- CI_- CI_4: sert aux enchaînements progressifs de commutation de H.F.

Page 43 21-296

Schlumberger

OSCILLATEUR HF. 512.875

REPERE	QTE		COMPOSANT	REFERENCE	REPERE	QTE	Τ	COMPOSANT	REFERENCE
index	qty		component	reference	index	qty		component	reference
R1	1	R			C8 & 9	2	С	10 220 µF	C 205
R2	1	R	$6.81 \text{ k}\Omega$	C 109	C10	1	C	500 220 pF	C 241
R3	1	R	110 Ω	C 109	C12	1	C	160 17800 pF	C 211
R4	1	R	324 Ω	C 109	C13	1	C	160 33 nF	C 253
R5	1	P	4.7 $k\Omega$ LIN	SFERNICE	C14	1	C	63 47 µF	COGECO
R6	1	R		C 109	C16	1	C	300 820 pF	C 231
R7	1	R	100 Ω	C 103	C17	1	C	20 39 µF	C 205
R8	1	R	200 Ω	C 109	C18	1	C	160 I nF	C 211
R10	1	R	576 Ω	C 109	C19	1	C	160 1000 pF	C 211
R11	1	R	340 Ω	C 109	C20	1	C	300 1000 pF	C 231
R12	1	R	6.81 kΩ	C 108	C21&22	2	C	63 220 μF	COGECO
R13	1	R	2.21 kΩ	C 108	C23	1	C	500 220 pF	C 241
R14	1	R	6.81 kΩ	C 108	C24	1	C	16 22 μF	C 205
R15	1	R	$1 k\Omega$	C 109	C25&26	2	C	20 39 μF	C 205
R16	1	R	4.42 kΩ	C 109	C27	1	C	50 4.7 μF	C 205
R17	1	R	$4.75 \text{ k}\Omega$	C 109	C29	1	C	35 22 μF	C 205
R18	1	R	2.21 kΩ	C 109	CR1 à 3	2	D	IN 4383	0 203
219	1	R	$1 \text{ k}\Omega$	C 109	CR4 & 5	2	D	IN 708 A	
20	1	P	470 Ω	OHMIC	Q1 & 2	2	T	2N 2102	
R21	1	P	$4.7 \text{ k}\Omega 20\%$	OHMIC	03	1	Т	2N 2102 2N 3440	
R22	1	R	110 Ω	C 109	04	1	T	2N 2905 A	,
R23	1	R	3.65 Ω	C 109			T	2N 2903 A 2N 2102	
R24	1	R	20.5 kΩ	C 109	Q5 Q6	1 1	T		
R25	1	P	10 kΩ LOG	1			1	2N 2905 A	
R26	1	R	6.81 kΩ	SFERNICE	Q7	1	T	2N 2484	
27	1			C 109	Q8	1	Т	2N 3440	
28	- 1	R	22.1 Ω	C 109	Q9	1	Т	2N 2102	
29	1	R	$20.5 \text{ k}\Omega$	C 109	Q10	1	T	BDY 24 B	
1	1	R	15 k Ω	C 109	C1 &2	2	IC	CM 241	
30	1	R	13 kΩ	C 109	L1	1	S	P 18098	
.31	1	R	73.2 kΩ	C 109	L2 & 3	2	S	P 17316	
32	1	R	1.37 kΩ	C 109	R34	- 1		15 kΩ	C 103
.33	1	R	$6.81 \text{ k}\Omega$	C 109	R35	1	R	200 Ω	C 103
1	1	C	1.5 0.0		C28&30	2	С	160 27400 pF	C 111
2	1	C	10 220 μF	C 205	C31	1	С	160 68100 pF	C 111
3 & 4	2	С	35 22 µ₹	C 205	C32	1	С	160 34800 pF	C 111
5	1	С	160 O.1 μF	C 253	C33	1	C	160 17800 pF	C 1111
6	1	C	63 1 μF	C 252	L4	1	S	P 18972	
7	1	C	500 330 pF	C 241	L5	1	S	P 18973	
					L6	1	S	P 18974	
	L							AMPLITATE OF THE STATE OF THE S	I DOMINE
Pag 21	e 44 297			Schlum	berger			AMPLIFICATEUR DE Play back amplit	

Schlumberger

Play back amplifier

Réglages en continu

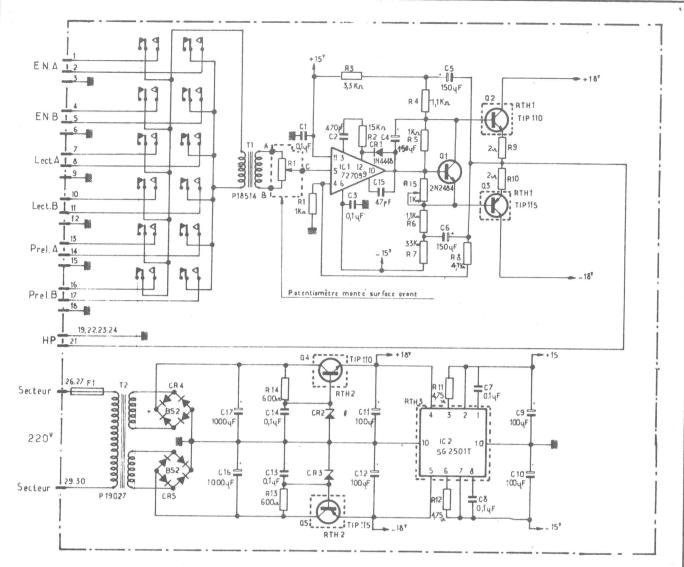
- T) S'assurer que R2I est en position médiane avant la mise sous tension 2) Régier R2I de façon à obtenir + 1 O Volts au + de CT4
- 3) Réglage au courant de repos de l'amplificateur de sortie à l'aide de R20

Ce courant doit correspondre à une augmentation de 2 mA en parlant de la consommation minimum

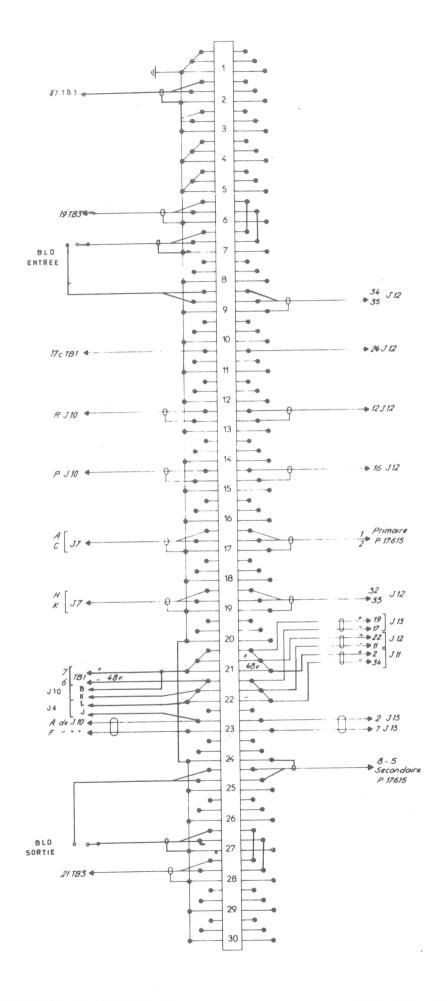
Réglages en courant alternatif (lecture d'une bande étalon)

R5 : Potentiomètre de réglage d'aigus R25 : Potentiomètre de réglage de gain

Accorder le filtre LI/CIO sur la fréquence d'effacement


Changement de standard

		R6	R I	CI
DS 17,5 DS 16 DS 16	50s 70 :.s 140 µs	24,9 0 45,3 60,4 0 430 —	324 - 12 324 - 13	1000 pF 1000 pF


Page 45 21 298

Schlumberger

AMPLIFICATEUR DE LECTURE 512.864

REPERE	QTE Qty	COMPOSANT Component	REFERENCE Reference	REPERE Index	QTE Qty	COMPOSANT Component	REFERENCE Reference
R1 R2 R3.R7 R4.R6 R5 R8 R9.R10 R11.R12 R13.R14 R15 C1.C3.C7 C8.13.14 C9 à C12 C15 à C18 C16.C17	3 3 2	R. 1 kΩ R. 1,5 kΩ R. 3,3 kΩ R. 1,1 kΩ R. 1 kΩ R. 4,7 kΩ R. 2 Ω R. 4,75 Ω R. 600 Ω R. 1 kΩ C. 63 V 0,1 μF C. 20 V 100 μF C. 300 V 47 pF C. 25 V 1000 μF C. 1 kΩ Clavier 811 499	1 1	CR1 CR2 CR3 CR4 CR5 Q1 Q2.Q4 Q3.Q5 IC1 IC2 RTH1 & RTH2 T1	1 1 1 1 2 2 1 1 2	Diode Diode Zener 18 V Diode Pont redresseur BSB2 Diode Transistor Transistor Transistor Transistor Radiateur Transformateur Transformateur Fusible 0,63 A Entretoise ECIIOT Support TO18.5 TE	P
Page 21 29		(630 513)	Schlum			Amplificateur repo	Érage

Page 47 21 300 (618 369)

Schlumberger

Réglette TB 2 TB 2 Connecting strip

2.4. Tiroir coupleur à mémoire

A. Tiroir coupleur à mémoire (versions/S)

Ce tiroir comporte :

	1	circuit d	'entrée		513	903
-	1	carte con	vertisseur		512	894
-	1	carte arr	êt automatique		513	755
-	1	carte com	pteur (/S)		513	754
-	1	carte div	iseur par 4 (DS 17,5)		513	310
-	1	carte ret	ard d'alimentation		513	314
-	1	carte ali	mentation + 15 V, - 15 V et + 8	V	512	892
_	1	carte d'a	sservissement		513	753

513 752

REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	REPERE	QTE qty	COMPOSANT component	REFERENCE reference
	1 2	porte fusible porte fusible	313 438 23 312	S4	1	Commutateur JEAN RENAUD	418 700
		CEHESS			1	circuit indi-	512 935
F1-F2	2	fusible CEHESS		** 106		cateur numérq	12 7 5
Ј8	1	embase FRB	LEJ8/005/T	V 186		Entretoise	L3 X 5
J14		embase FRB	LEJ6.1AM.	V 111	2	Vis	F3 90.3X15
			2CM.1AM.TG	V 156		Rondelle	AZ3
T1	1	transformateur		V 161	2	Ecrou	H3
CR1		Pont COGIE mono moulé	10 PMZ		1,	Voyant RUSSENBERGER	LS7DS bl.opale
C1	1	condensateur	40.4700			Metre METRIX	Profil 48
C2	1	condensateur	40.4700	-		100 μA cadran	
С3	1	condensateur	25.6800			de 0 à 100	-
	2	pont redresseu	r 510.640			plage rouge	418 734
Q1-Q2	1	transistor		V 186	2	Entretoise	T3x12
		SESCO	BDY 58		1	commutateur	
Q3	1	transistor	BDX 18			JEAN RENAUD	418 729
		SESCO		V 186	2	Entretoise	T3x8
J6	1	connecteur FRB	K15.508/FST	R1	1	R 200K Ω	C 103
Jl à J5	5	connecteur FRB	K35.Z.254.	R2	1	R $2K\Omega$	C 103
		BE.F.F.T.		R3			SP00160
J11-j12	2	connecteur	1625.24.R	R4	1	R 4,7KΩ	C 103
		MOLEX		R5	1	R 4,7KΩ	C 103
S1	1	commutateur	418728	R6	1	R 4,7KΩ	C 103
		JEAN RENAUD	*	R7	1	R 4,7KΩ	C 103
SZ	1	commutateur	418 702	R8	1	R 4,7K Ω	C 103
		JEAN RENAUD		C4-C5		SP 00160	
S3	1	commutateur		C6-C7		SP 00160	y =
		JEAN RENAUD	418 701	C8-C9		SP 00160	
				C10	1	C 0,1µ F 160V	
				P11-P12	2	Connecteur	1625-24-P
						MOLEX	
Pag	e 49						

Page 49 21 301

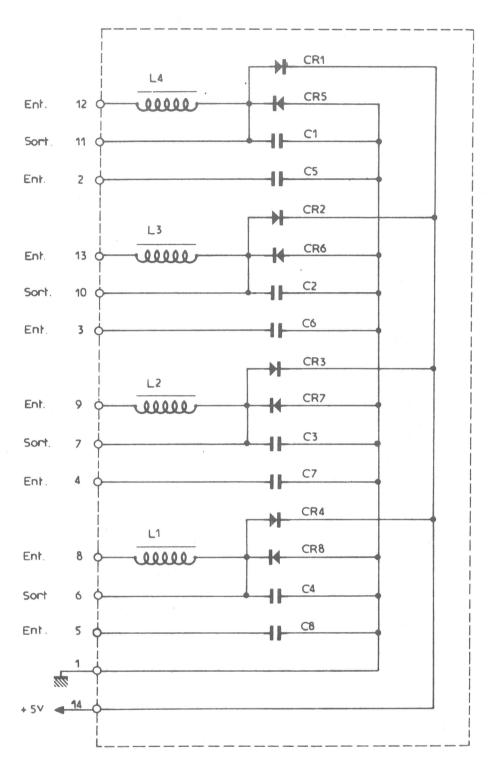
Schlumberger

Tiroir coupleur à mémoire (version /1)

Ce tiroir comporte :

-	1	circuit d'entrée	512	903
***	1	carte convertisseur	512	894
	1	carte diviseur par 4 (DS 17,5)	513	310
-	1	carte compteur (/1)	512	893
-	1	circuit retard d'alimentation	513	314
	1	carte alimentation + 15 V. → 15 V et + 8 V	512	892

		C4	. C5	C6	С7	C8	С9	R3
DS 1		160.1000 pF 300. 680 pF		2,49 nF	1000 pF + 820 pF	1000 pF	390 pF	160 kΩ C103
DS I	17,5	160.3320 pF		9,53 nF + 270 pF		6,49 nF	5,11 nF	220 kΩ C103


NOMENCLATURE ELECTRIQUE

512 899

Repère Index	Qte Qty	Composant Component	Référence Reference	Repère Index	Qte Qty	Composant Component	Référence Reference
	-			1	-	· · · · · · · · · · · · · · · · · · ·	
	2	Porte fusible	CEHESS	S2	1	Contacteur	JEANRENAUD
			23 312				418 702
	2	Fusible CEHESS	D8TD/1A	S1	1	Contacteur	JEANRENAUD
J8	1	LEJB/OO5/T					418 728
T 1	1	Transformateur	P 18 596		1	Cir.Ind.Num.	512 935
CR I	1	Pont mono moulé	COGIE		1	Voyant RUSSENE	
			10PM2		1	Lampe micro mi	dget
C1.C2	2	C. 40-4700	C 226			28 V 20 mA.	
С3	1	C. 25-6800	C 226		1	Vumètre METRIX	418 734
	2	Pont redresseur	S10640		1	Commutateur	JEANRENAUD
Q1.Q2	2	Transistor SESCO	BDY 58				418 729
Q3	1		BDX 18	C10	1	C. 160 O,1 μF	C 251
	3	Connecteur FRB K35/2		R1	1	R. 200 kΩ	C 103
	1	Connecteur FRB K47/2	2/254/BEFF/T	R2	1	$R. 2 k\Omega$	C 103
S4	1	Contacteur	JEANRENAUD	R4àR8	5	$R. 4,7 k\Omega$	C 103
			418 700				
S3	1	Contacteur	JEANRENAUD				
		,	418 701			* ×	4
						7	
				ľ	<u> </u>		
	Page.	50					
	21 30	2	Cablumbana				1

21 302

Schlumberger

C5 à C8 non câbles no wirci

REPERE index	QTE qty	COMPOSAN'	REFERENCE referende	REPERE index	QTE qty	COMPOSANT component	REFERENCE reference
CRI CR2 CR3 CR4 CR5 CR6 CR7 CR8 CI	I	D IN 914 C IO nF 160 NC IO nF 160 NC	 C SII C SII	C3 C4 C5 C6 C7 C8 L1 L2 L3 L4	I I I I I I I	C IO nF I60 V 5 % C IO nF I60 V 5 % C 10 nF I60 V 5 % C 10 nF 160 V 5 % C 10 nF 160 V 5 % C 10 nF 160 V 5 % Self 5I \(\mu \)H	C 2II C 253
Page 51 21 303			Schlum	berger		FILTRAGE DES ENTRE LOGIQUES Logical inputs fil	512 903

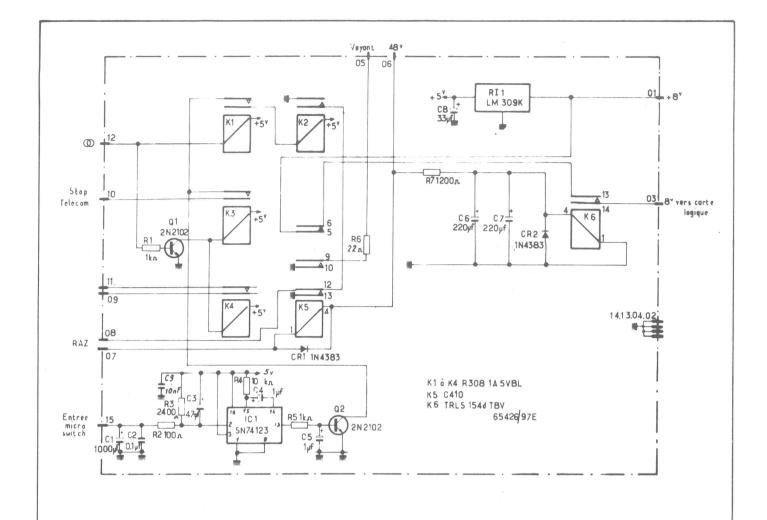
Decument on pouvoit être communiqué fu reproduit sans notre autorisation écrité.

I) Rôle de R.I9 : Réglage du convertisseur 24/25 Hz

Observer le signal en 8 de CI I3 (sortie Q du compteur de phase réalisé par le circuit 7474)

Régler R.19 de façon à obtenir un signal de rapport cyclique voisin de I. (en réalité ou ajuster la fréquence de l'oscillateur à 600 Hz).

2) Rôle des relais K.I, K.2, K.3

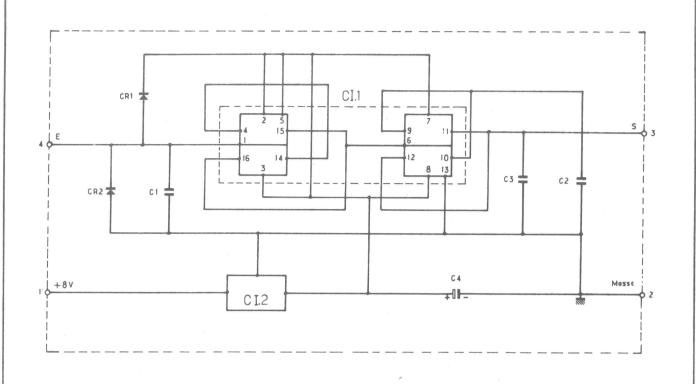

K.I: commandé par la fonction couplée, permet le raccordement du circuit compteur à l'asservissement du moteur pilote

K.2: commandé par les fonctions B-C et D. Il permet le raccordement du circuit convertisseur à l'asservissement du moteur pilote

K.3: commandé par la fonction D. Il sert à mettre en service le commutateur de rattrapage de vitesse (modification du circuit de référence d'asservissement).

DS I6 : $R28 = 2 k\Omega$ CR7 = MZ 8 A DS 17,5 : R28 = néant CR7 = Strapp

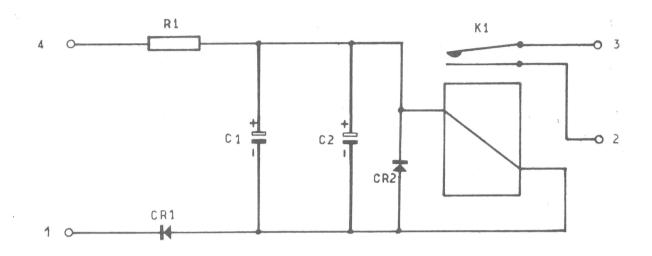
		0111 - 11	2 0 11			0111 - 15 02 44 51	7
1 1	QTE qty	COMPOSANT component	REFERENCE référence	REPERE index	QTE qty	COMPOSANT component	REFERENCE reference
R7 R9 R10 R11&12 R13 R14 R15&16 R17 R18&19 R20 R21&22 R23 R24&25 R26 R27 R29à32 R1 I C2 C4 C5 C6&C7 C8	2	R 10 kΩ R 100 Ω R 470 Ω R 100 Ω R 270 Ω R 30 kΩ R 10 kΩ R 1 kΩ R 1 kΩ R 4.7kΩ R 10 kΩ R 100 Ω R 1 kΩ R 330 Ω P 3 kΩ IC LM 309 K C 0.I μF C 160 10 nF C 63 220 μF C 35 I μF C 6 180 μF C 160 2,2 μF C 50 15μF C 50 15μF C 500 820 pF	C 103 C 253 C 201 C 205 C 205	CI7 CI8 CI9 C20 CRIÀCR6 CR7 CR8 CR9 TI KI K2 K3 Q1.Q2.Q3 Q7 CI I CI 2&3 CI 4 CI 5 CI 6 CI 7 CI 8 CI 9&10 CI II CI I2 CI I3&14 CI I3	111161111111111111111111111111111111111	C TO 39 µF C 160. 0,047µF C 160. 0,047µF C 160. 0,047µF D 1N 914 D 1N 914 D 1N 914 Tr P 18 665 R 250/I 3A 5V BL R 308 IA 5V BL R 796 IC 6V BL T 2N 2102 T 2N 2102 ICSN 7410 N IC SN 7400 N IC SN 7404 N IC SN 7404 N IC SN 7404 N IC SN 7492 N IC SN 7490 N IC SN 7493 N IC SN 7493 N IC SN 7474 N IC SN 7274I N Osc. diapason 104 I600 BI 9	C 205 C 253 C 253 C 253
	Page 21 3		Schl	umberger		CONVERTISSEUR 512.894	



513 755

			1					1
REPE	RE	QTE	COMPOSANT	REFERENCE	REPERE	QTE	COMPOSANT	REFERENC
inde	ex	qty	component	reference	index	qty	component	referenc
and the second second						1 3	•	
R1		1	R 1 K Ω	so 102	Q1	1	transistor	2N 2102
R2		1	R 100 Ω	SO 102	Q2	1	transistor	2N 2102
R3		1	R 2 400 Ω	SO 102	RM	1	régulation intégrée	LM 309 K
R4		1	R 10 Ω	SO 102		2	isolateur	T 301
		1	$R 1 K \Omega$	SO 112	CR1	1	diode	1N 4383
R5		1	R 1 K M	SO 102	CR2	1	diode	1N 4383
R6 R7		1	R 1 200 Ω	C 111	K1	1	relais TCEI CLS	308 1A
C1		1	C 1000 µ F25v		K2	1	relais TCEI CLS	308 1A
-		_		C 253	K3	1	relais TCEI CLS	308 1A
C2		1	C 0,1 µF 160v	C SO 205	K4	1	relais TCEI CLS	308 1A
C3		1 1	C 4,7 µF 10v C 1 µF 35v	C SO 205	K5	1	relais C 410 V 23	154
C4		_		C SO 205	К6	1	relais TRLS 154 d	TBV 65426
C5		1	C 1 µF 35v C 220 µF 63v	C COGECO	10		Telais indo 154 d	97 E
C6		1		C COGECO	MK 111	1	support relais	VP4 C1
C7		1	C 220 µF 63v		MK 111	1	support relais	VP4 C1
C8		1	C 33 µF 10v	C SO 205	IC1	1	circuit intégré S2	203 SN 74
C9		1	C 10 µF 63v	LLC UAZ 905	101	1	circuit integre 32	123 N
				20%	P1	1	connecteur FRB K15/50	
				i	V 186	2	· ·	L3.3
					V 100	2	entretoise	. C. CLI
	Page	53	(631 089)			7	Arrêt automatique	(/s)
	21 3						Automatic stop	(/s)
				Schl	umberger			, /0/

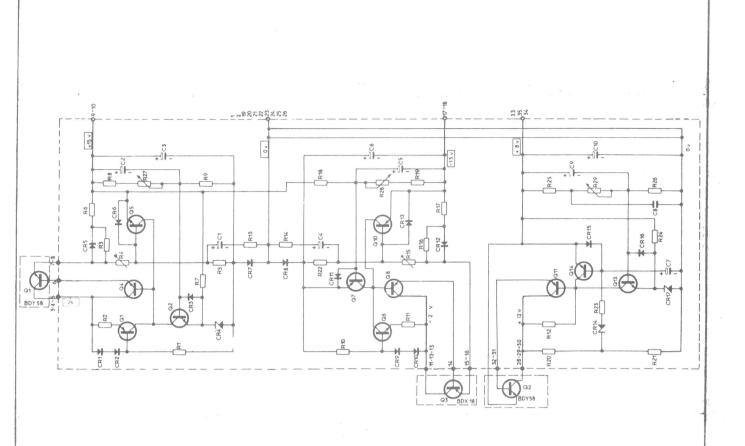
REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	REPERE index	QTE qty		REFERENCE reference
R1-R2-R17 R3 à R5 R6-R9-R15 R7-R13- R8-R39-R47 R10-R11 R12-R18- R19 à 33 R14-R38 R16-R34 à	3 3 2 3 2	R 1KΩ R 2KΩ R 4,7KΩ R 100KΩ R 270 Ω R 30K Ω R 10KΩ R 2KΩ	S0 102 S0 102 S0 102 S0 102 S0 102 S0 102 S0 102 S0 102 S0 102	IC9-IC32 S11-14- 18-21-31 35-36 S12-20- S33 IC 13-15 IC 16-34 IC 17	2 7 3 4 1	circ.intégré S2 203	SN 7403 SN 7400 SN 7404 SN 74 123
R37 R40 à R42 R43 à R46 R48 C1-C4-C9 C10-C11 C18-C19 C2-C3-C5 à C8-C12-C20 à C24-27 à	5 3 4 1 7	R 4,7KΩ R 10K Ω R 4,7K Ω R 100 Ω C 33 μF 10V C 10nF 63V	SO 102 SO 102 SO 102 SO 102 SO 205	IC22 à 26 IC 27 à IC 29 IC 30 IC 37	3 1 1	circ.intégré S2 203 circ.ntégré S2 203 circ.intégré S2 203 circ.intégré	SN 74 193 SN 74 185 SN 7420 SN 7474
11-R12 C1 à IC4 C5 à IC7	1 37 4 4 2 4 3	C 0,1µF 63V Fekelec 0,22µ F 40 C 4,7µ F10V 10 n F-63V 33µ F 10V Transistor Régulation inté- grée circuit intégré S2 203 circuit intégré S2 203 circuit intégré S2 203 circuit intégré	C 253 V ATR/D.10% SO 205 LC UAZ 905 SO 205 2N 2484 LM 309K SN 7405 SN 7400 SN 7474	CR1 à CR3 L1 à L4 P1 et P2	3 4 2	S2 203 diode self connecteur FRB K 35/2/	1N 4448 P 17 316 254/BPMC/T


Document ne pouvant être communique ou reproduit sans notre autorisation écrite.

REPERE Index	QTE Qty	COMPOSANT Component	REFERENCE Reference
C1.C2.C3 C4 CR1.CR2 CI.1 CI.2	3 1 2 1 1	C. 500 - 220 pF C. 50 - 1 µF Diode Circuit intégré Integrated circuit Circuit intégré " " Isolateur CI2 Insulator	C 241 C 205 IN 914 SN 7476 DN TBA 625A T 301
Page 55 21 307		Schlumberger	Diviseur /4 (DS 17,5) /4 divider (DS 17,5)

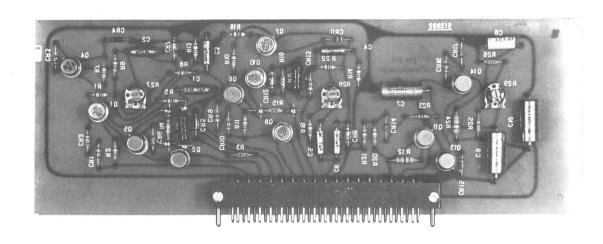
	R2	R3	R6	R8	RII	C27
DS 16	4,3 kg	3 kΩ	30 kΩ	430 🔝	2 kQ	15 μF
DS 17,5	l kΩ	620 Ω	3 kΩ	3,9 kΩ	3 kΩ	15 μF

J12 073								
REPERE index	QTE qty	COMPOSANT component	REFERENCE reference		QTE qty		COMPOSANT component	REFERENCE reference
RI R2&3 R4 R5 R6 R7 R8 R9 R10 R11 R12&13 R14 R15 R16 R17&18 R19 R20 R21 R22&23 R24&25 R26 R27 R28&29 R30 R31à33 R34 R35 R36&37 R38 R39 R40 R41&42 R43&44 R45 R46 R47&48 R49 R50à53 R54à57 R58 R59 R60 C1 C2& C4 C5 C6&C7 C21à24 C3.C7	12111111121112111221121311211122112134111111242	R 2 KN R Voir tableau R 2 KN R IO KN R Voir tableau P 2.2 KN R Voir tableau R 560 N R I KN R Voir tableau R IO KN R IOO N R IOO N R I KN R 2 KN R 4.7 KN R 2 KN R 10 KN R 2 KN R 10 KN R 1 KN R 2 KN R 10 KN R 1 KN R 2 KN R 10 KN R 2 KN R 10 N R 4.7 KN R 2 KN R 100 N R 1 KN R 270 N R 100 N R 100 N R 4.7 KN R 2 KN R 100 N R 100 KN R 270 N R 100 N R 100 KN R 100	C 103 C 103	C8 C9 &10 C11 C15 C16 C17à20 C25 C26 C27 C28à30 C31 CR1à 5 CR6 CR7à10 L1à4 Q1&2 Q3 Q4 Q5 Q6 Q7à9 Q10 C1 I C1 2 C1 5à8 C1 9 C1 10&11 C1 12à1 C1 14 C1 15 C1 16 C1 17&18 C1 19à21 C1 22 C1 23&24 C1 25 C1 26 C1 27 C1 28 C1 29 C1 30 C1 31 C1 32 C1 39&40	111231211111162	C C C C C C C C C C C C C C C C C C C	SN 7413 SN 7474 SN 74123 SN 7400 SN 74192 SN 7400	C 205 UAZ 905 C 205 UAZ 905 C 205 UAZ 904 C 205 UAZ 905 C 205
	age 5		Schlum	berger _:		COMP'	TEUR (/5)	3



Permet le retard de l'alimentation en + 8 volts du circuit logique. Le relais K.I est commandé par le 48 V de l'alimentation signalisation. Ce retard permet lors de la mise sous tension de l'appareil de positionner d'abord l'électromécanique avant l'apparition éventuelle d'une fonction de défilement.

Ce circuit est aussi utilisé pour le retard des électroécarteurs de bande. Dans ce cas : Rl = 100Ω (SFERNICE 4 X 10).


CI et C2 = I00 μ F CRI = IN 4383

				,				
REPERE index	QTE qty	COMPOSAN componer		11	QTE qty		COMPOSANT component	REFERENCE reference
RI CI C2	I	R I200 Ω C 63 - 220 μ		CRI CR2 KI	I	D D R	STRAPP I N 4383 TRLS 154 d	rbv6542697
Page 57 21 309			Schlur	mberger		CIR	CUIT RETARD D'	ALIMENTATION

į										
	REPERE	QTE		COMPOSANT	REFERENCE	REPERE	QTE		COMPOSANT	REFERENCE
	index	qty		component	reference	index	qty		component	reference
	CRIA 3	7	D	IN 914		RI7	I	R	0.5 Ω RPL3	SFERNICE
	CR4	3 I	D	IN 708 A	.3.	RI8	Ī	R	I.5 kΩ	C 109
-	CR5	I	D	IN 4383		RI9-20	2	R	I kΩ	C I09
-	CR6	Ī	D	IN 914		R2I	I	R	2 kn	C 109
1	CR7-8	2	D	IN 4383		R22	I	R	7.5 kn	C 109
	CR9-II	2	D	IN 914		R23	Ī	R	4.70 kΩ	C 103
	CRI2	Ī	D	IN 4383	1, 1	R24	I	R	390 Ω 0.5 W	
1	CRI4	I	D	IN 708 A		R25	I	R	47 Ω	C 103
-	CRI3	Ī	D	IN 914	× = :	R26	I	R	392 n	C I09
-	CRI5-16	2	D	IN 914		R27-28	2	P	2.2 kΩ VA05H	
-	CRI7	Ī	D	IN 708 A		R29	I	P	100 Ω VA05H	
	RI	I	R	7.5 kΩ	C I09	CIA6	6	C	4.7 µF 50 V	
	R2	I	R	I kΩ	C I09	C7	I	C	100 HF 20 V	- 1
	R3	I	R	5.76 B	C I09	c8	I	C	10 nF 160	C 202
2	R4	I	R	357 Ω	C I09	C9-I0	2	C	150 µF 15 V	1
	R5	I	R	7.5 kΩ	C I09	QI	I	T	2N 2905 A	
1	R6	I	R	0.5 ΩRL		92	I	T	2N 2102	
-	R7	I	R	6.8I kn	C I09	Q446	3	T	2N 2102	
	R8-R9	2	R	I k Ω	C I09	Q7	I	T	2N 2905 A	
NAME OF TAXABLE	RIO	I	R	7.5 k n	C I09	ର୍ଥ	I	T	2N 2905 A	
and the same of th	RII	I	R	I k Ω	C 109	QIO	I	T	011 000F A	
-	RI2	I	R	390 00.		QII	I	T	2N 2102	
-	RI3-14	:2	R	I.5 $k\Omega$	C I09	QI3	I	T	SN SIOS	
1	RI5	I	R	68I n	C I09	QI4	I	T	SN SIOS	
	RI6	I	R	5.76 Ω	C I09	C11	1	С	0,1 μF	
		age 58	8			1			LIMENTATION	
	21	1 310			Schlum	perger		+	15V, - 15V, + 8V	
					Germann	301901 ——————————————————————————————————		P	ower supply	

Document ne pouvant être communiqué ou approduit nons notre autorisation ácrite.

Ce circuit comporte 3 alimentations dont les ballasts sont situés sur le châssis du caisson coupleur.

Elles alimentent le circuit compteur, le convertisseur, la carte logique et la carte comptage perforation.

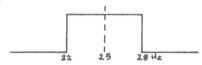
soit:	+ 15 Volts	- 15 Volts	+ 8 Volts
Carte compteur		х	х
Carte convertisseur	х	x	х
Carte logique			х
Carte comptage	x	Х	
Réglag e	R.27	R.28	R.29

Page 59 21 311

Schlumberger

ALIMENTATION +15V, -15V, +8V

512.892


Carte asservissement 513 753 (version /s seulement)

- a) <u>Réglage du C.N.A.</u>: Ay/50 53/8
 - Régler la tension de consigne à 4 V à l'aide du pot R42
 - Régler la tension de sortie de IC7 pour avoir OV quand le mot d'entrée est nul à l'aide du pot R40
 - Régler de la même façon IC6 à l'aide du pot. R 33
 - Vérifier les tensions suivantes :

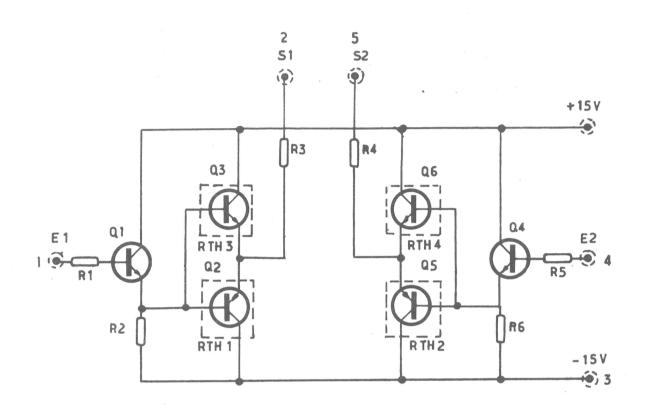
128 + 2 V 255 + 4 V

Régler R27 pour que, lorsque le mot est à 0, la tension sur R55 et R54 soit sensiblement nulle.

b) <u>Réglage de la fenêtre</u>

- Attaquer l'entrée pilote avec un signal carré TTL entre 22 et 28 Hz
- Vérifier en sortie l de IC3 que l'accord est bien à 25 Hz régler le potentiomètre R10 afin de faire déclencher le trigger entre 22 Hz et 28 Hz.
- Vérifier sur 4 de IC 10 le signal logique suivant :

c) Réglage de l'asservissement local :


- Régler R3 afin d'obtenir sur le moins de C11 un signal de 1 V crête à crête.
- Régler R8 de la même façon que pour les versions /1
- Régler la vitesse à 0,5 % de Vn à l'aide de C14
- En position "couplé" régler le potentiomètre R17 de façon à ramener le pleurage dans la limite de tolérance (en défilement et lors de l'envoi d'impulsions manuelles de décalage).

Régler R21 pour qu'en défilement normal (position "couplé") le galvanomètre fasse apparaitre une valeur voisine de 80.

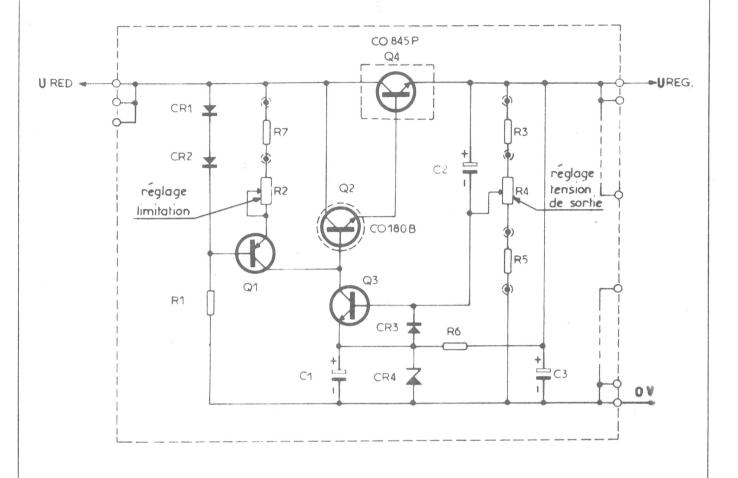
Page 61 21 313

Schlumberger

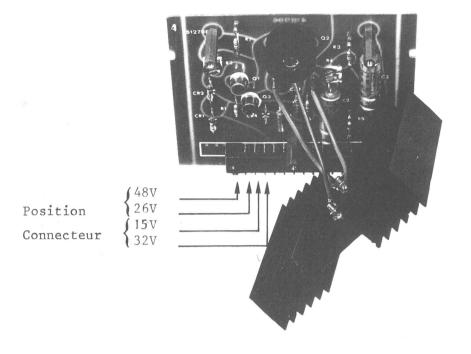
REPERE index	QTE qty	COMPOSANT component	REFERENCE reference	REPERE index	QTE qty	1	REFERENCE
R1 & R2 R3 R4 R5 R6 & R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 & 20 R21 R22 R23 & 24 R25 & 26 R27 R28 R29 & 30 R31 & 32 R33 R34 R35 R36 & 37 R38 R39 R40 R41 R42 R43 R445 R46 R47 R48 R49 & 50 R51 R52 R53 R54 R55 R56 R57 R58 & 59 R60 & 61 R52 R63 R64 R65 R66 R67	1 1 1	R 1 kΩ P 10 kΩ 10% R 4,7 kΩ R 10 kΩ R 1 kΩ P 5 kΩ 10% R 5,1 kΩ P 5 kΩ 10% R 5,1 kΩ R 10 kΩ R 100 kΩ R 10	SO 112 SO 341 SO 102 SO 112 SO 341 SO 102 SO 112 SO 102 SO 102	R68 & R69 C1 C2 & 3 C4 C5 C6 C7 & 8 C9 C10 C11 C12 C13 C14 C15 C16 C17 & 18 C19 C20 C21 C22 C23 C24 C25 C26 Cd1 CR1 CR2 CR3 CR4 CR5 CR6 CR7 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC14 L1 K1 K2 K3 K4 K5	1 1 1 1 1 1	R. 36 Ω C 38,3 nF 160v C 33 μF 10v C 22 pF 300v C 0,22 μF 160v C 22 pF 300v C 22 pF 300v C 22 pF 300v C 33 μF 10v C 33 μF 10v C 33 μF 10v C 16,2 nF 160v C 33 μF 10v C 34,8 nF 160v C 34,8 nF 160v C 470 μF 25v C 0,22 μF 160v C 22 pF C 100 μF 20c C 33 μF 10v C 100μ F 20c C 33 μF 10v C 100μ F 20v C 33 μF 10v C 10 nF 63v D 1N 4448 D 1N 44	SO 205 C 231
21	e 62 314.		Schlu	mberger		Asservissement m	oteur (/s)

513 416

REPERE	QTE	COMPOSANT	REFERENCE	REPERE	QTE	COMPOSANT	REFERENCE
Index	Qty	Component	reference	Index	Qty	Component	Reference
R1 R2 R3&R4 R5 R6 Q1.Q3	1 1 2 1 1	R. 1.3 kΩ R. 1 kΩ R. RWM 4.10 100 Ω R. 1,3 kΩ R. 1 kΩ Transistor	C 103 C 103	Q4.Q6 Q2.Q5 RTH1 RTH2 RTH3 RTH4	2 2 1 1 1	Transistor Transistor Radiateur pour Q2 Radiateur pour Q5 Radiateur pour Q3 Radiateur pour Q6	11 11
Page 63 21 315 (617 202)			Schlum	nberger		Distributeur d'im Pulse dispatchina	


2.5 Tiroir alimentation

Ce tiroir comporte:


- 1 circuit alimentation 15 V	512 708/3
- 1 circuit alimentation 32 V	512 708/4
- 1 circuit alimentation 48 V	512 708/2

512 900

REPERE index	QTE qty	COMPOSANT composant	REFERENCE reference	REPERE	QTE qty	COMPOSANT composant	REFERENCE reference
C1 à C4 R1-R2 T2-T3 T1	4 4 2 2 2 2 1 3		1	F2 F3 S2 DS1	1 1 1	fusible CEHESS fusible CEHESS stop circ. plage 4 à 6A voyant LABINAL cabochon carré coul.rouge ampoule néon inter.COMEPA embase FRB LEJ	D8TD/O,63 KB2
i	Page 6 21 316		Schlumb	erger			

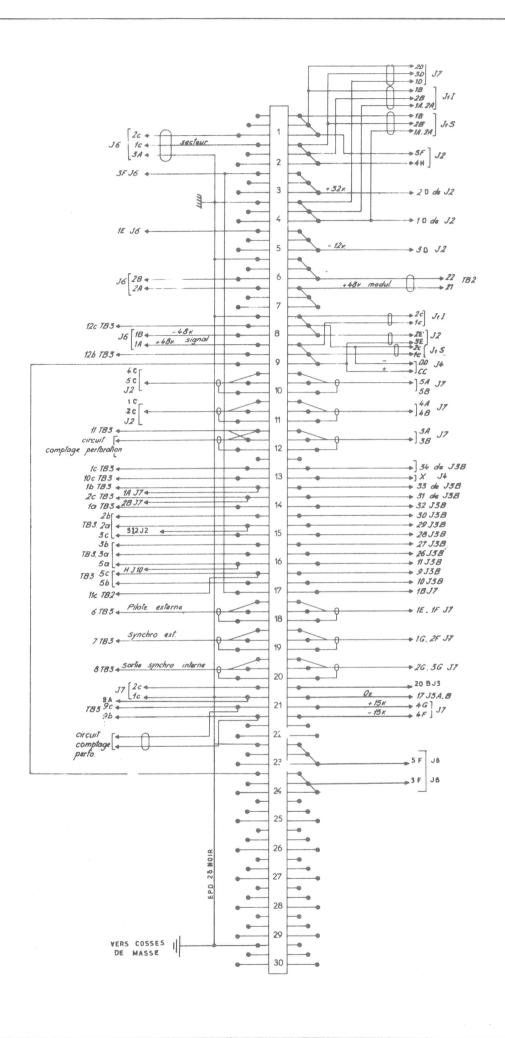
REPERE index	QTE qty		COMPOSANT component	REFERENCE reference		QTE aty	l	COMPOSANT component	REFERENCE reference
RI R2 R3 R4 R5 R6 R7 QI	I I I I I	R P R P R R	IO KΩ 4.7 KΩ+20% 2.2 KΩ+20% 2 KΩ 7.5 KΩ 330 Ω 2N 2905 A		Q2 Q3 Q4 CI C2&3 CRIA3 CR4	I I I 2 3 I	T 2 C C C D	2N 3440 2N 2102 2N 3773 39 µFIOV 47 µF63V IN 4383 IN 708 A	C 205 C 223
	ge 66 317			Schlun	nberger			ENTATION r supply	

Ce circuit est utilisé pour fournir plusieurs tensions d'alimentations (versions +48, +32 ou - 12V dans le tiroir alimentation, version +26V dans les platines moteur auxiliaire).

La position du connecteur, différente pour chaque utilisation, assure le détrompage.

La résistance R 3 du pont de tension d'erreur est différente suivant les tensions à obtenir.

Rôle de R 4 : Réglage de la tension sortie


Rôle de R 2 : Réglage de la limitation en courant

UTILISATION	TENSION	POSITION CONNECTEUR	VALEUR DE R 3	I MAX.	INDICE
Signal-modula- tion + Pilote - Pilote	+ 48V + 32V - 15 V	I 4 3	18 K 10 K 1,6 K	1,8 A 2,5 A 2,5 A	2 4 3
Moteurs auxiliaires	+ 26V	2	8,2 K	2,7 A	1

Page 67 21 318

Schlumberger


ALIMENTATION 512.708

Page 68 21 319 (618 368)

Schlumberger

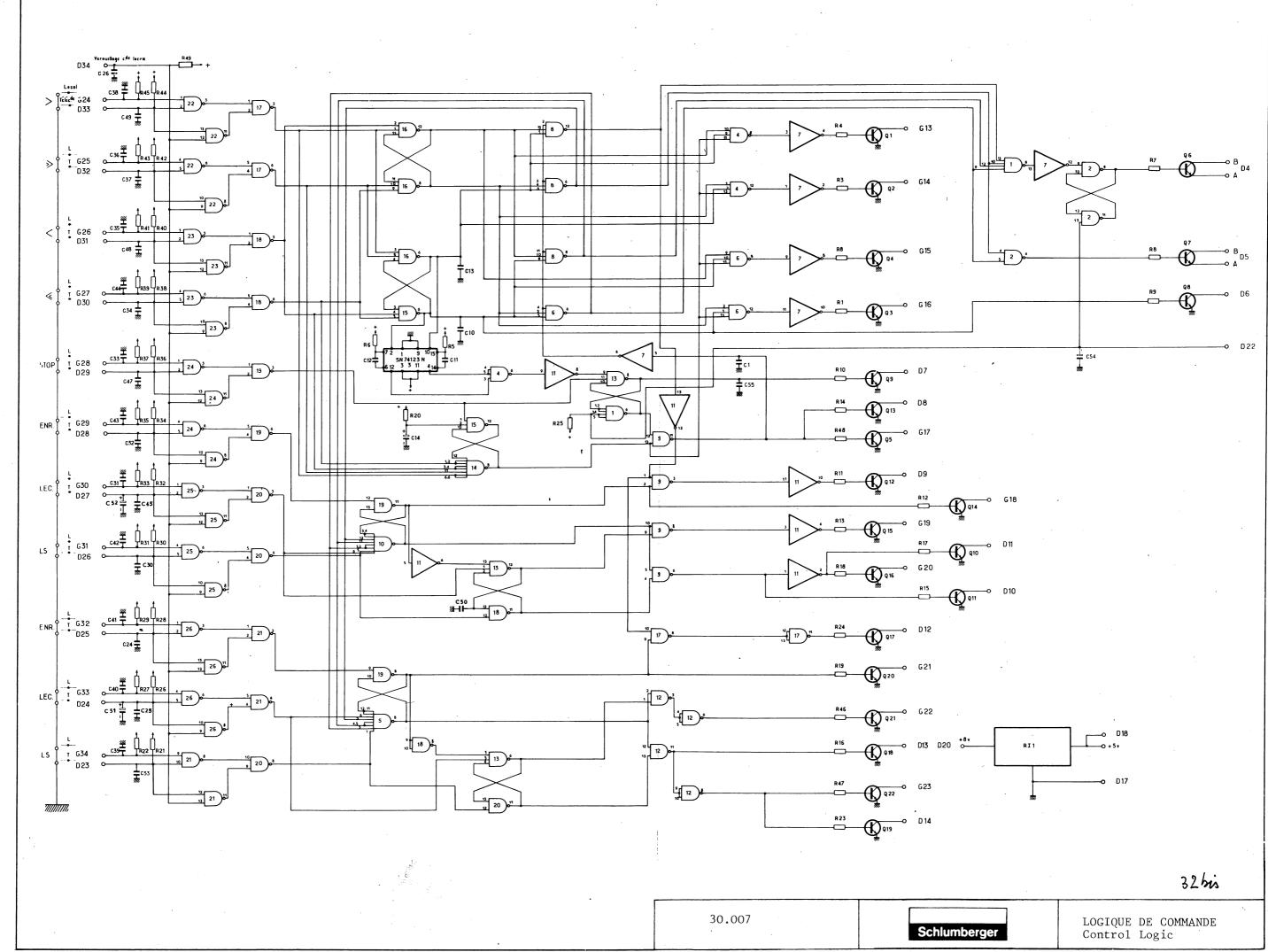
Réglette TB | TB 1 Connecting strip

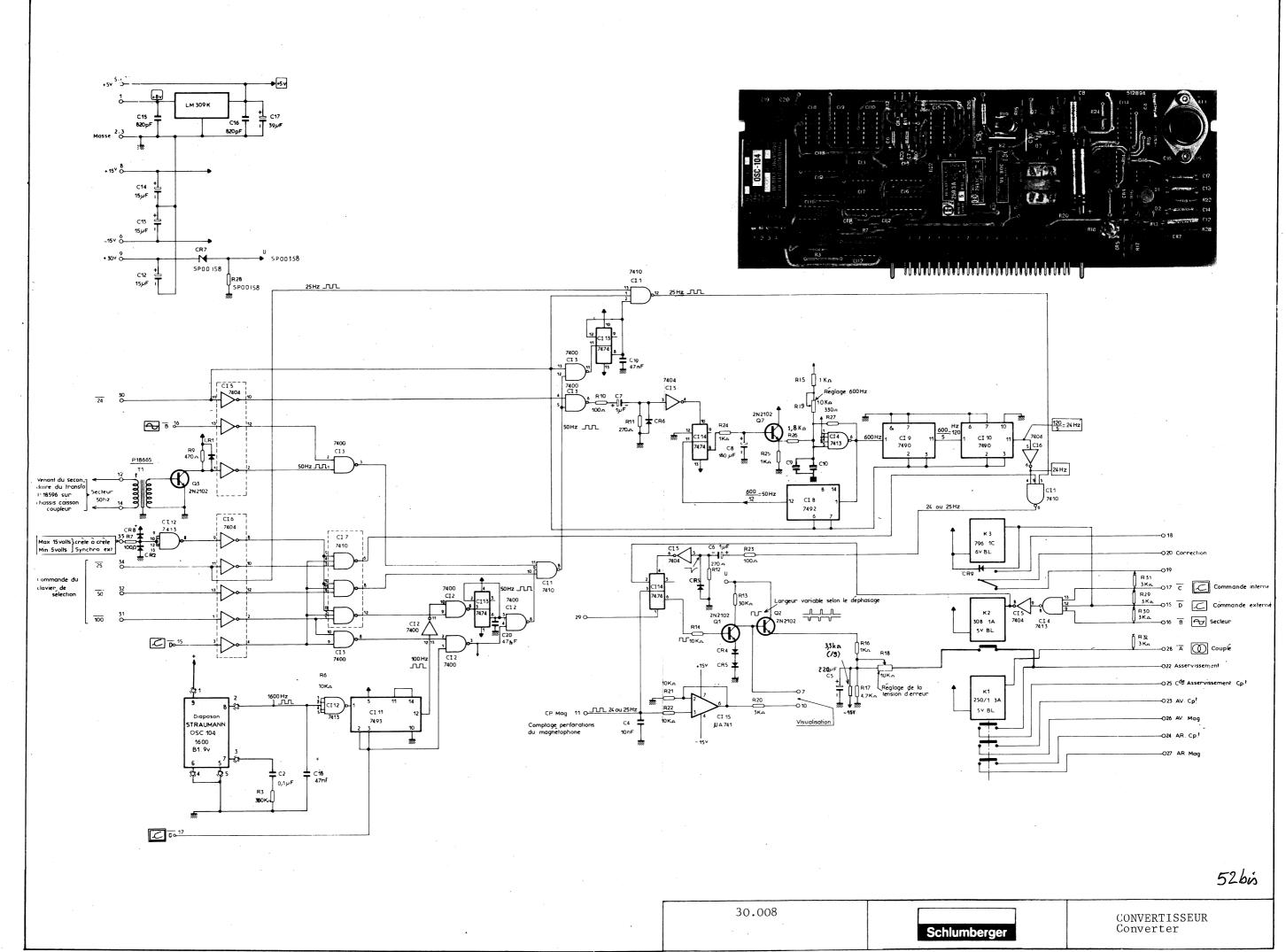
3. LISTE DES PIECES DETACHEES Page 71 21 320 Schlumberger

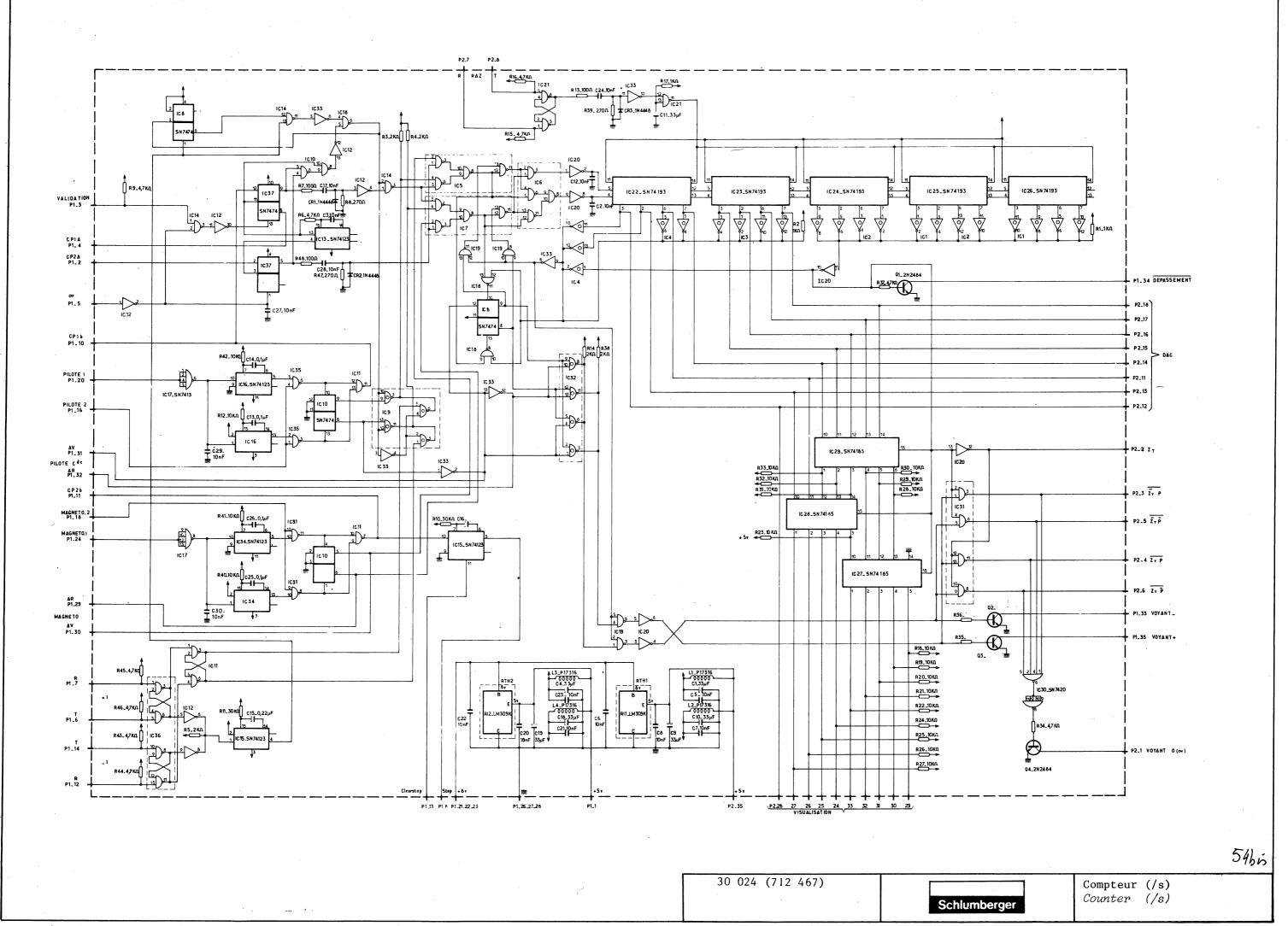
LISTE DE PIECES DETACHEES

Outre les cartes et modules enfichables déjà décrits, ainsi que les composants qui les composent, les pièces référencées ci-après peuvent faire l'objet d'une intervention ou d'un remplacement.

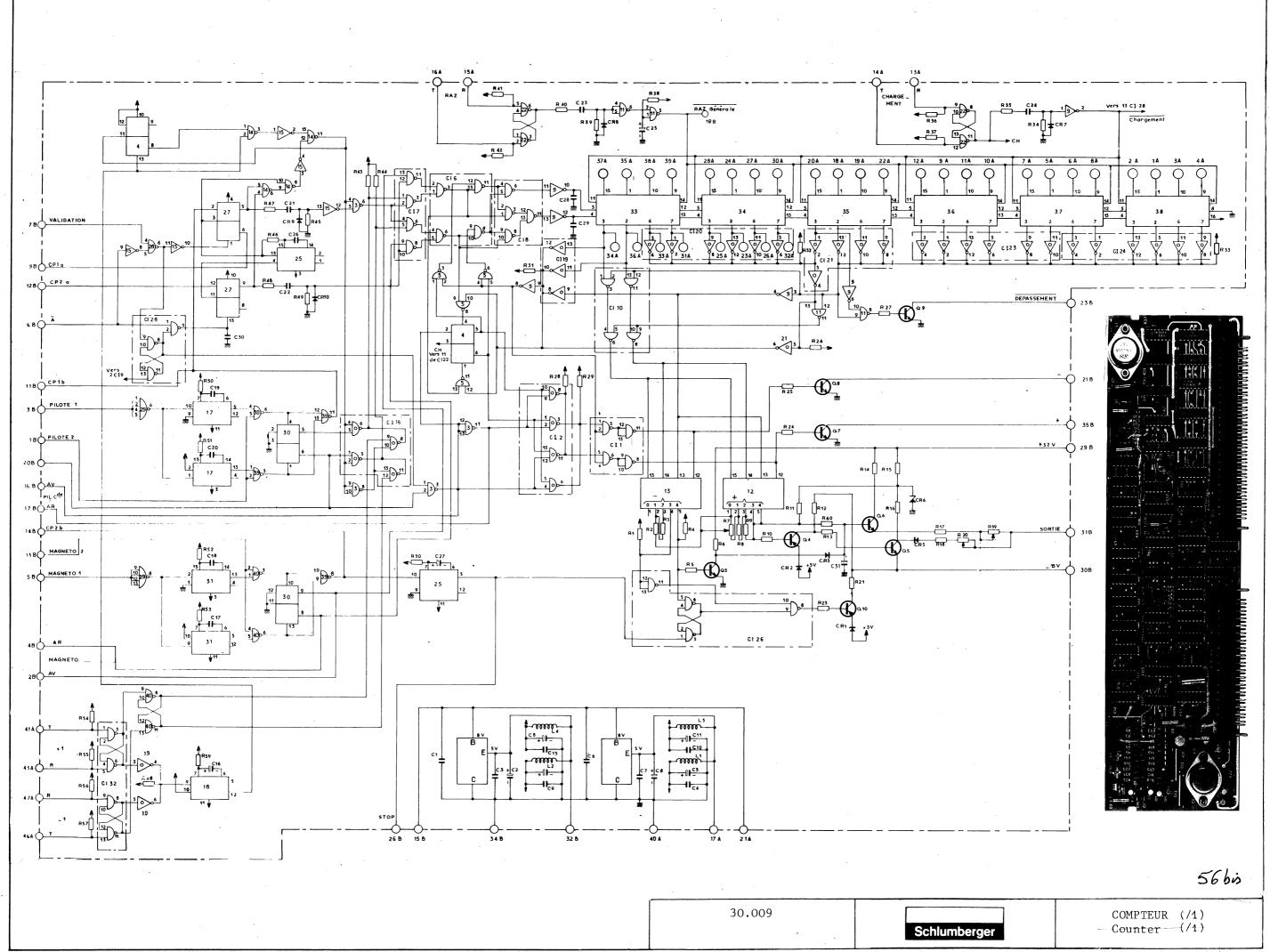
DS 16	DS 17,5	DESIGNATION	REFERENCE
x	x	Ensemble moteur pilote réglé	SIS 512.268
Х	х	Capteur tachymétrique	SIS 416.328
X	х	Roue tachymétrique	SIS 417.96I
X	x	Moteur auxiliaire	SIS 313.950
X	x	Electro presseur réf : MECALECTRO 8 - 19 -11 - 29 PR. 100 % 48 V DC	
x	x	Electro frein réf : MECALECTRO 8 - 13 - 11 - 64 PR. 100 % 48 V DC	
х	x	Electro écarteur réf : MECALECTRO 8 - 11 - 13 - 83 PR. 40 % 48 V DC	
X	ж	Minirupteur CROUZET réf : 83.132.0	
x	x	Relais MTI.EP3 EX 48 V DC	
x	x	Galet presseur	SIS 418.629
x	x	Galet d'entrée	SIS 810.754
х	x	Chapeau du galet d'entrée	SIS 417.730
x	x	Galet de défilement	SIS 417.733
x	х	Galet régulateur	SIS 3II.269
x	x	Détecteur tension de bande avec capteur SIEMENS FP 2I D D 250	SIS 513.5II
x	x	Porte-bobine gros noyau	SIS 512.586
х	х	Porte-bobine petit noyau	SIS 513.468
x	x	Plateau DS I6	SIS 810.690
x		Tête d'effacement F 27 C	SIS 512.70I
х		Tête d'enregistrement E 28 A	SIS 5I2.949
x		Tête de lecture L 28 B	SIS 513.328
	x	Tête d'effacement F 32 C	SIS 512.930
	х	Tête d'enregistrement E 32	SIS 512.93I
	x	Tête de lecture L 32 B	SIS 513.476
x	-	Galet détecteur de perforation	
	x	Galet détecteur de perforation	
x	x	Carte détecteur de perforation	SIS 513.293
x	x	Transistor BPX 70	
x	x	Lampe 28 V 24 mA DYNA 28.312	
	Page 73 21 321		

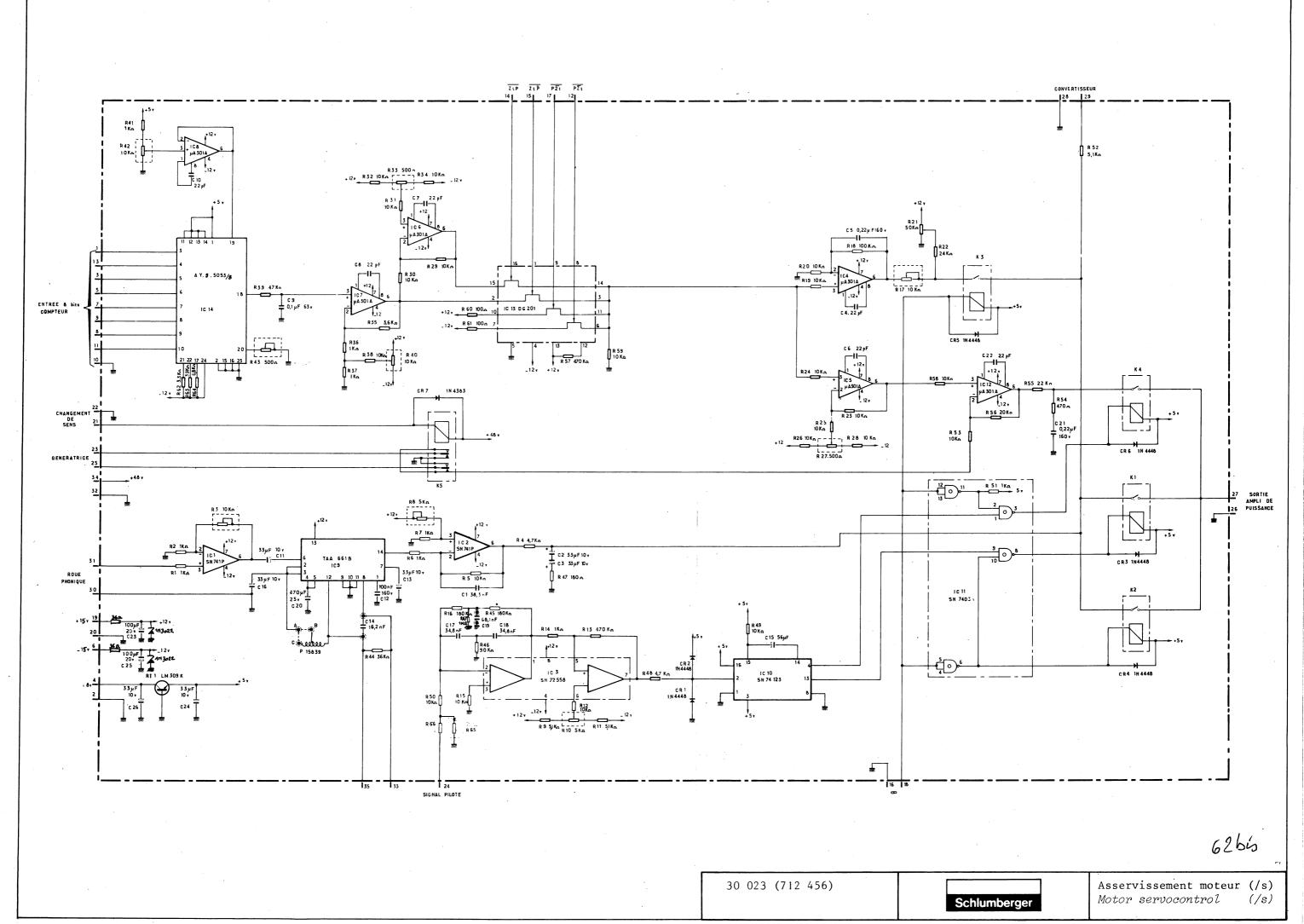

LISTE DE PIECES DETACHEES (suite)


DS 16	DS I7,5	DESIGNATION	REFERENCE
х	x	Redresseur IN 4383	SIS 510.63
x	x	Redresseur IN 5200	SIS 512.89
Х	x	Indicateur numérique HEWLETT PACKARD type 5082.7300.5V.	
X	x	Transformateur d'entrée	P.18.514
ζ	x	Transformateur de sortie	P.17.615
ζ	x	Transformateur alimentation moteur latéral	P.I8.696
ζ	x	Transformateur alimentation chassis coupl.	P.18.596
	x	Transformateur alimentation	P.18.694
X.	x	Transformateur alimentation	P.18.695
x	x	Diapason "STRAUMANN" OSC 104.BI.I.600.9V	
ζ	x	Compteur mécanique E.N.M, 433.3.966.042	
ζ.	x	Vu-mètre METRIX 75 P.R.	
2	x	Indicateur METRIX	SIS 418.73
C	x	Bouton poussoir AEI OII22	
	x	Lampe AEI 912 48 V 20 mA	
	x	Commutateur JEANRENAUD	SIS 418.98
ς	x	Clavier JEANRENAUD	SIS 418.98
4	x	Clavier JEANRENAUD	SIS 418.98
X.	х	Clavier JEANRENAUD	SIS 418.70
c	x	Clavier JEANRENAUD	SIS 418.70
ζ.	x	Clavier JEANRENAUD	SIS 418.702
ζ	x	Clavier JEANRENAUD	SIS 418.72
ζ	x	Clavier JEANRENAUD	SIS 418.55
ζ.	x	Fusible IA.D8TD	
ζ	x	Fusible 0,63 A.D8TD	
ζ.	x	Pédale déblocage de freins	
ζ.	х	Haut-parleur 8 ohms/10W sonophère	AUDAX


Page 74 21 322

	CODE DES COMPOSANT	S UTILISÉS C	ODE FOR E	LECTR	ONIC COMPONENT	rs	
Code	Composant	Component	Tolérance	W	Constructeur	Туре	
S0 101 C 103 S0 102	RÉSISTANCE : couche oxyde métallique couche carbone ou oxyde métallique	RESISTOR: metal oxide film carbon film or metal oxide film	5% 5%	1/8 1/4	SOVCOR COGECO ROSENTHAL L.C.C.	C3 S CR 25 LCA 0207 RBX 0C1	
C 106	couche carbone ou oxyde métallique	carbon film or metal oxide film	5%	1/2	SOVCOR COGECO L.C.C. SOVCOR	S0 7 CR 37 RBX 003 S 20	
C 108	couche métallique	metal film	1%	1/4	COGECO ROSENTHAL SFERNICE SOVCOR L.C.C.	MR 34 SMA 0411 Y RCMS 05K3 NY 5 RMY 25C	
C 109 S0 112	couche métallique	metal film	1%	1/8	COGECO SOVCOR SFERNICE L.C.C.	MR 24 NY 4 RCMS 02 K3 RMY 12C	
C 111	couche carbone ou oxyde métallique	carbon film or metal oxide film	5%	1	SOVCOR ROSENTHAL	C 32S LCA 0617	
C 201	CONDENSATEUR: mylar métallisé	CAPACITOR : metallised mylar	10%		L.C.C. EUROFARAD	STEAFIX P PM 13 B	
C 202 S0 265	mylar métallisé	metallised mylar	10%		L.C.C. PRECIS EUROFARAD GAM EFCO	STEAFIX I A P68 PM 7 MPAT MMP	
C 205 S0 205	tantale sec polarisé	dry, tantalum polarised	20%		AIR TRONIC SPRAGUE FIRADEC PRECIS UNION CARBIDE	ATRG 150D SI TSG 60	
C 211 C 221	polycarbonate electrochimique polarisé	polycarbonate electrochemical polarised	2% 10% +50%		L.C.C. SIC SAFCO	STEAFIX KEI PROMISIC CI	
C 223 SO 223	electrochimique polarisé	electrochemical polarised	-10% +50%		SIC SAFCO MICRO	PROMISIC 0-1 modèle 1 PCT-015	
C 226 S0 226	électrochimique polarisé	electrochemical polarised	-10% +50%		SIC SAFCO PRECIS NOVEA	FELSIC CO 18 CO 18 CO 18	
C 231	verre-mica	glass-mica	5%		SOVCOR PI PRECIS	CYFM CA 10 CA 10	
C 241 C 251 C 252 C 253	ceramique polycarbonate polycarbonate polycarbonate	ceramic polycarbonate polycarbonate polycarbonate	10% 10% 5% 5%		L.C.C. EUROFARAD EUROFARAD EUROFARAD	D I PMA 64 PMA 64 PMR 64	
Code	Composant	Component	Cons	tructeu	r .	Туре	
C401	relais miniature 4 RT	miniature relay	SIE VA ZE	LLER MENS RLEY TTLEF	V23154D VP4.TC.0 AZ.421.5	6.10.2	
C402	relais miniature 4 RT	miniature relay miniature relay	ZE	RLEY TTLEF	AZ.429.5	CB.CBB.47 6.10.2 O.426.B610	
C410 C415	relais miniature 4 RT relais miniature 4 RT	miniature relay	SIEMENS VARLEY ZETTLER BERNIER HALLER DFG SIEMENS VARLEY ZETTLER		VP4.CBB. R AZ421.56 R LI.9.PA.5 2561/250 Bv5506/4 V23154D VP4.CEB	V23154D0.426.B610 VP4.CBB.47 AZ421.56.1.2 L1.9.PA.5 2561/2500Ω/4RT.SP.A2 Bv5506/41/05/240 V23154D0.426.B110 VP4.CEB.47 AZ421.56.1.1	
	20 992	Schlumberg		. the ball			


Andrew State of the State of th



Document ne pouvant être communique ou reproduit sans notre autorisation ècrite.

