INTRODUCTION Many thanks to all of you who read Secret CB. We appreciate all the letters and helpful hints. Starting with this issue, the donor of any helpful hints appearing in Secret CB will receive one free complimentary copy of the issue in which it appears. Please send a signed statement that we may use your information in any issue of Secret CB. Also any radio information that is similar we will acknowledge the one that is postdated first. Now for some plain talk about these new 40 channel radios. The new Cobra GTL AM series radios will be difficult to modify. Specifically, Cobra 19 GTL, 21 GTL, 25 GTL, 89 GTL, and 1000 GTL. These are very fine radios but extensive modification will be required to modify these radios. Also any radios with similar chassis will produce the same results. The Cobra 2000, President Grant, and Dak X seem to be some of the leading and most popular radios. These are single sideband radios and I am sure they speak for themselves. Many techs do not understand that some radios are the same. Look carefully at the PLL sections and you will note many radios use the PLL O2A chip, although they might be under another brand name. Keep the letters coming and thanks again for reading Secret CB! Sincerely, Rod Johnson # **TABLE OF CONTENTS** | PHASE LOCK LOOP XTAL CROSS REFERENCE | 1- 2 | |--|-------| | 11 METER CONVERSION FOR FT-901 | 3–12 | | THINGS YOU CAN BUILD | | | Test Tone | 13 | | Signal Locator | 14 | | Grounding your rig | | | Grounding your rig | 0-17 | | SPECIFIC RADIO TUNE-UPS | | | Audiovox MDU 6000 | 18 | | Channel Master CB6 | 18 | | Chrysler Models 4048706/8077 | 18 | | Clarion TC-203E | 18 | | Cobra 89/1000/87/148GTL and 78X | | | Colt 485/222 | | | Craig L102/L101 | 20 | | Delco 80BCB2 | 20 | | | | | Fanon 10-40 | 20 | | Gemtronics GTX-77/66 | 21 | | General Electric 3-5814B/3-5804B | 21 | | MODIFICATIONS | | | | 20 | | 10-Turn POT | 22 | | Kit for C.A.P. channels | 23 | | OOPS, we goofed. Corrections on previous volumes | 24 | | Ranger T 4012 with MB8709 chip 2 | | | Sears Roadtalker 40 | | | Golden Eagle Mark III | 28 | | Browning Eagle IV 2 | 29-30 | | Thumbwheel 200 channel conversion | 31–34 | | Pace 8092, Nesco 1249 and Halicrafters | 35–39 | | | | | REDCO APPLICATION AND TROUBLESHOOTING GUIDE | ŀ0−52 | | SPECIAL SECTION ON LINEAR AMPLILFIERS | 53–63 | | SLIDE INFORMATION ON NEW CHASSIS, ETC. | | | Application on new President Washington, McKinley, 140/142 GTL | 64 | | Cybernet chassis slide as applied to some JC Penney, Sears Roadtalker | 65 | | Super Clarifier Helpful Hints | 66 | | | | | MAKING THE PRESIDENT BASE WITH 8719 CHIP READOUT DIRECT EVEN IN RECEIVE MODE | 67 | | NEW PRODUCT | | | Secret CB looks at Redco's DX-50 signal master | ¦8_7∩ | # PHASE LOCK LOOP XTALS CROSS REFERENCE GUIDE ``` HY-GAINS, MIDLAND 13-830, 13-857B, 13-882C, 13-888B and all other 23 channel radios with a Cybernet O2A chip. Replaces 11.806 xtal. XTAL 11.505 . . . 26.065 thru 26.355 mhz 11.605 . . . 26.365 thru 26.655 mhz 11.705 . . . 26.665 thru 26.955 mhz ``` HY-GAIN II, PEARCE SIMPSON TIGER 40A and all other 40 channel radios with a Cybernet 02A chip and an 11.806 xtal. Replaces ``` 11.806 xtal. XTAL 11.505 . . . 26.065 thru 26.505 mhz 11.655 . . . 26.515 thru 26.955 mhz 11.955 . . . 27.415 thru 27.855 mhz ``` 11.905 . . . 27.265 thru 27.555 mhz COBRAS, TEABERRYS, REALISTICS, PRESIDENTS and all other 40 channel radios with a Uniden 858 chip and a 36.570 xtal. Replaces 36.570 xtal. ``` XTAL 36.120 . . . 26.515 thru 26.955 mhz 37.020 . . . 27.415 thru 27.855 mhz ``` BROWNING BARON, COBRA 132 XLR, 135 XLR, TRAM D-62 and all other 40 channel radios with a TC5080P chip and a 17.056 or a 17.0555 xtal. Replaces 17.056 or 17.0555 xtal. ``` XTAL 16.515 . . . 26.065 thru 26.505 mhz 16.815 . . . 26.465 thru 26.905 mhz 16.865 . . . 26.565 thru 27.005 mhz 17.265 . . . 27.365 thru 27.805 mhz 17.315 . . . 27.465 thru 27.905 mhz 17.365 . . . 27.565 thru 28.005 mhz ``` COBRA 140 GTL, 142 GTL, PRESIDENT McKINLEY, WASHINGTON, ADAMS, MIDLAND 78-900 and all other 40 channel radios with a Uniden 8719 chip and an 11.1125 xtal. Replaces 11.1125 xtal. ``` XTAL 10.700 . . . 25.725 thru 26.765 mhz 10.850 . . . 26.175 thru 26.615 mhz 11.000 . . . 26.625 thru 27.065 mhz 11.250 . . . 27.375 thru 27.815 mhz 11.300 . . . 27.525 thru 27.965 mhz 11.400 . . . 27.825 thru 28.265 mhz ``` #### PHASE LOCK LOOP XTAL CROSS REFERENCE GUIDE CONTINUED: COLTS, GEMTRONIX, GTX-77, G.E. SUPER BASE, SSB 3-5825A, 3-5875A, HY-GAIN V SSB, MIDLAND 78-892, 79-892, PALOMAR SSB 2900, RCA 14T302, SBE LCBS-4 and all other 40 channel radios with a Cybernet 02A chip and 1 10.0525 xtal. Replaces 10.0525 xtal. XTAL 9.940 . . . 26.515 thru 26.955 mhz 10.165 . . . 27.425 thru 27.865 mhz PRESIDENT GRANT, (NEW) COBRA 2000 GTL and all other 40 channel radios with a Uniden 8719 chip and an 11.325 or an 11.3258 xtal. Replaces 11.325 or 11.3258 xtal. XTAL 11.000 . . . 25.995 thru 26.435 mhz 11.050 . . . 26.145 thru 26.585 mhz 11.150 . . . 26.445 thru 26.885 mhz 11.200 . . . 26.595 thru 27.035 mhz 11.450 . . . 27.345 thru 27.785 mhz 11.495 . . . 27.475 thru 27.915 mhz 11.500 . . . 27.495 thru 27.935 mhz 11.505 . . . 27.505 thru 27.945 mhz 11.600 . . . 27.795 thru 28.235 mhz 11.640 . . . 27.915 thru 28.355 mhz 11.650 . . . 27.945 thru 28.385 mhz NOTE: Cobra AM GTL series radios will not track on receive by changing PLL xtal alone. ### 11 METER CONVERSION FOR FT-901 1 Order three crystals from your favorite parts place. FREQUENCY #1 40.387500 MHZ (for 26,000 to 26,500 MHZ) #2 40.987500 MHZ (for 26.500 to 27.000 MHZ) #3 41.487500 MHZ (for 27.000 to 27.500 MHZ) #4 41.987500 MHZ (for 27,500 to 28,000 MHZ) Type HC-25/u 1-LOAD CAPACITANCE 30pf 25 ohm or less 2-SERIES RESISTANCE 7pf or less 3-STATIC CAPACITANCE 4-CALIBRATION TOLERANCE .001 .003 from -30° C to $+60^{\circ}$ C 5-TEMPERATURE TOLERANCE 6-AT CUT NOTE: These factors are identical to the YAESU FT 101B crystals except for frequency. 2-Remove the top and bottom shell of unit. Install 40.4875 crystal where 10A crystal is, install 40.9875 where 10B is, install 41.4875 crystal where 10C is and install 41.9875 where 10D is. Inside view of crystal box showing the installation of the new 11 meter crystals and the old crystals that were removed. 3-Connect a sensitive RF voltmeter or scope to pin #16 on the connector block in front of crystal box and put band switch to 10A and adjust the coil next to the 40.4875 crystal to maximum output on the voltmeter. Install cover to adjacent coils, then bare wire from pin #16 to connect probe. This photo shows the coils that are to be adjusted and their placement. This photo shows the close-up view of pin #16 and the connection of the scope probe for the alignment of the coils. 4-Remove counter box in back of display unit. The PLL unit must be removed first to allow the counter unit to be removed. Notice the colored wires soldered in the circuit board next to the two integrated circuits Y7 and Y4. Remove the blue, violet, grey, and white wires from the circuit board and re-connect them as shown, using silicon diodes in series. As a note of interest these wires are switched to ground by the channel selector switch to change the left most three digits on the display. Only one wire is used for each position. 10A is the BLUE wire, 10B is VIOLET, 10C is GREY, and 10D is WHITE. Normally 10A is 28.0 + VFO. 10B is 28.5 + VFO, 10C is 29.0 + VFO, and 10D is 29.5 + VFO. After rewiring and adding diodes, the new ranges are: 10A = 26.0 + VFO (BLUE) 10B = 26.5 + VFO (VIOLET) 10C = 27.0 + VFO (GREY) 10D = 27.5 + VFO (WHITE) The wiring changes only effect the display and not the frequency. The display only measures the VFO frequency, adds three digits to this count to show the band. 5-In changing VCO frequency, the crystal frequency is mixed with the VFO frequency and is used to control the VCO frequency. A single VCO range is controlled by two consecutive bands. In other words, band 10A and 10B controls a VCO range of 1 MHZ, 10C and 10D controls another range of 1 MHZ. The VCO adjustment is very critical as lock frequency is approached. Once the lock is attained, an adjustment of only 1/10 of a turn may make the VCO fall out of adjustment, so proceed slowly. Connect a frequency counter of pin #2 on the plug under the chassis, directly under the VCO unit. (Do not remove cover of VCO). Place band switch to 10A and VFO dial to 000. This is the view of bottom chassis under the VCO unit. Connect probe to pin #2 of terminal block to adjust AB and CD of VCO. This photo shows the PLL Box that must be removed before the counter box may be removed. This photo shows the view of chassis where the PLL Unit and the counter unit were removed. his photo shows the inside view of the frequency counter unit efore modification. nside view of counter unit with the diodes installed. View of bottom of counter p/c board after modification. Diode wires must be trimmed close. View of frequency counter board installed in radio. Modification completed, note short leads on diodes. - (a) Put band switch to 10B and tune coil next to 40.9875 crystal to maximum. - (b) Put band switch to 10C and tune coil next to 41.4875 crystal to maximum. - (c) Switch to 100 and peak coil next to 41.9875 crystal to maximum. - (d) At least .3 volts RMS should be noticed on pin 16 on all four bands. - (e) Flip channel selector from 10A thru 10D and make sure all crystals are still oscillating. This photo shows the crystal box and the position of the coils to be tuned. Do not remove cover of VCO unit to adjust. Make the adjustments with a small non-metallic tool. With an insulated tool, adjust 10A and 10B to read 34.9875 MHZ on counter, switch to 100 and if counter does not display 35.4875, slightly readjust 10A and 10B. When switch is rotated from 10A to 10B, an instant lock on 10A of 34.9875 and on 10B of 35.4875 should be measured on the
counter. If VFO is not exactly on 000, the counter will show a little high or a little low. This is not important, but the basic lock up at 35.4 and 35.9 is. Next, switch to 10C and adjust 10C and 10D to 35.9875. Then switch to 10D and slightly touch up for 36.4875. Switch back and forth between 10C and 10D and watch counter for lock up. #### SUMMARY | BAND | CRYSTAL
USED | COLOR OF DISPLAY CONTROL WIRE | FREQ. RAN | IGE | | | |--------------------------|--|--------------------------------------|--|--------------------------------------|--|--| | 10A
10B
10C
10D | *40.9875 40.4875
*41.4875 40.9875
*41.9875 41.4875
*41.9875 41.9875 | | 26.000 to 26
26.500 to 27
27.000 to 27
27.500 to 28 | 7.000
7.500 | | | | BAND | VFO DIAL at | | VFO DIAL at 500
VCO FREO. (pin 2) DISPLAY | | | | | 10A
10B
10C
10D | 34.9875
35.4875
35.9875
36.4875 | 26.000
26.500
27.000
27.500 | 35.4875
35.9875
36.4875
36.9875 | 26.500
27.000
27.500
28.000 | | | Note: While tuning VCO adjustments, the display will remain the same since it measures the VFO instead of the VCO. The VCO must be in lock or, the display will be in error. View of unit after modification completed. Note counter display of 26.500 MHZ. Reinstall all covers the Modification is now complete. # SECRET CB TEST TONE #### PARTS: One 555 IC timer Two 1K ohm ½ watt 10% One 500K ohm POT or trim tabs One 20 ohm POT Two 1N4001 One .02 pf 16 volts One 10 f 16 volts One 9 volt battery One Battery Connector One SPST normally off push button switch One small box Install all parts on vector board and mount in small box. You may use trim tabs or external controls. If you build two of these units you will have a two tone generator. Mount in the same box. This unit is good for 100HZ to 20 HZ. ## "SECRET CB" ERRONEOUS SIGNAL LOCATOR ## SECRET CB'S REPORT ON LOW COST AMATEUR CONVERSION FOR 10 METERS Recently, an amature friend of our's commented on the high price of 10 meter gear. And, I told him he did not have to use the high price commercial equipment. I told him I could get him on the air with a \$150.00 or less. He told us this was not possible to do. So, a friendly wager was made for a case of our favorite beverage. The first step we took was to go out to the local Flea-market. We found a Cobra 138 XLR. After much haggling over the price, it was purchased for \$50.00. The unit had a bad final, which cost \$9.35 to replace. Three crystals (11.8858, 11.8850, & 11.8842), three super diodes, and a switch kit were purchased for another \$60.00. This brought the price of the radio and modification up to \$119.35. The kit came with all instructions for installation, which we bought from our favorite part's and accessories dealer. Installation took approximately one hour to complete. The new frequency coverage on the radio was from 27.855 to 29.845. in 10 KHz steps to cover 10 M + MARS. The installation of the super diodes gave us the slide + 8KHz from center channel. So my friend with his new 10 Meter Amateur SSB radio spent \$119.35 and approximately $1\frac{1}{2}$ hours to convert and aline his radio. WE GOT A CASE OF OUR FAVORITE BEVERAGE!! NOTE: This modification may be performed only by a holder of a valid Radio Amateur License or a holder of a Radio Telephone Second Class or higher for a licensed amateur. ********************* Here is a quick test set for checking wires for SHORTS, OPENS, or GROUNDS. Tape a resistor and LED to the 9V battery. You can put the whole thing in a pill container and you have a sharp little test set. - 1/Radials must be at least 16 feet long and no longer than 36 feet. - 2/Radials must be just below the surface of the ground or on top. Use a lawn edger to cut groves. - 3/The wire I use is electric fence wire from Sears. This is the most economical. - 4/You need 120 radials at the least. (The more the better up to 360). - 5/All radials are brought up out of the ground around the antenna and soldered to the ground ring. - 6/The radial ring is $\frac{1}{2}$ inch copper tubing. (Approximately 6 in. of the ground). - 7/Your ground can be put next to your tower and #13 solid wire run to your station. - 8/Lightning arestor must be put on the coax feed line, as it leaves you. ### GROUND YOUR RIG A good ground is the most important thing you can do for your station. First for safety and second for good performance. First dig your hole and set your bottom rods. Solder them together with #10 wire, use three strands. Cover the bottom of the hole with gravel and sprinkle with rock salt and crushed charcoal. Install an old radiator in the hole. You may use black plastic or tar paper on the sides to keep the dirt from filling in the gravel. Install more gravel. Run a hose to the next old radiator. Then poke the radiator full of holes. Solder the ground to each unit. Bring ground wire to the top of the ground and tie it to radial ring. Fill with water as often as needed. Add salt once a year. ## SPECIFIC RADIO TUNE-UPS #### AUDIOVOX MDU 6000 Adjust L202 for maximum RF power output channel 19 R279: Adjust for maximum modulation R281: Modulation 50% set so all led's are on R257: Squelch range adjustment R236: S level indication adjust #### CHANNEL MASTER CB6835 VR6: Adjust for maximum modulation VR7: RFPO meter adjustment VR1: AGC adjust VR3: SQ range VR4: S Meter VR10: RF gain range adjust Adjust L905 for maximum RFPO on channel 19 #### CHRYSLER MODELS 4048076/8077 AM/FM CB Adjust VR251, 252 for maximum modulation VR201: RF power meter adjust VR302: AGC VR303: SQ range VR301: S meter VR305: Audio gain #### CLARION TC-203E Adjust: L203 for maximum RF power output on channel 19 Adjust: VR201 for maximum modulation on chip D205 #### COBRA 89GTL, 1000GTL VR6: Adjust power maximum modulation VR5: Modulation meter adjust VR4: RF power meter adjust VR1: IF gain adjust VR3: Squelch range adjust VR2: S meter Adjust L13 for maximum RF output on channel 19 #### COBRA 78X Adjust L15 for maximum RF output on channel 19 VR6: Adjust for maximum modulation RF power meter adjust VR5: IF gain adjust VR7: VR3: Squelch range adjust VR4: S meter adjust #### COBRA 87GTL Adjust L13 for maximum RFO @ channel 19 VR6: Adjust for maximum modulation VR4: RF meter adjust #### COBRA 148GTL Carrier balance SSB VR4: Drive bias-Adjust for 25ma on channel 19 USB VR9: Final bias-Adjust for 50ma on channel 19 USB SSB ALC VR11: AM power adjust VR10: RFPO meter VR6: Adjust L38 for maximum RFPO on channel 19 AM *See information in Volume 5 of Secret CB on MB8719 chip to expand channel slider. #### COLT 485 RV8: SSB AGC RV9: AM SQ range RV10: SSB SQ range RV6: AM S meter SSB S meter **RV7**: RV3: Power meter *See Volume 3 of Secret CB for expanding channels on PLL 02A chip. Adjust T12 for maximum on USB 19 RV2: SSB power RV4, RV5: Balance VR4: AM power RV12: Adjust for 100% modulation Adjust T4, T5, T11, T6, L7, L11, L13, for maximum power channel 19 USB #### COLT 222 Adjust L306 for maximum power on channel 19 RV201: Adjust for maximum modulation RV202: Power meter adjust RV101: Squelch range adjust RV103: S meter adjust #### CRAIG L102 Adjust L311 for maximum RF power R415: Squelch range R376: S meter R348: Adjust for maximum modulation R308: RF power meter adjust R501: SWR meter adjust #### CRAIG L101 Adjust L308, L309 for power maximum RF power output channel 19 R226: Adjust for maximum modulation R319: RF meter adjust R501: LED brightness adjust- DIM on #### DELCO 80BCB2 Adjust L4, and L9 for maximum RF power output on channel 19 RV2: Adjust for maximum modulation RV1: Squelch range adjust #### FANON 10-40 AM/FM/CB Adjust L8 for maximum AM power on channel 19 VR4: Adjust for 100% modulation VR6: RF meter adjust VR1: AGC range VR14: RF gain range VR2: SQ range VR5: S meter #### GEMTRONICS GTX-77 RV8: SSB AGC RV9: AM SQ range RV10: SSB SQ range RV6: AM S meter RV7: SSB S meter Adjust T4, T5, T11, T6, L11, L7, L13 for maximum RF output channel 19 USB. Adjust RV11: SSB Mic Gain RV12: AMC adjust RV4, RV5: SSB balance adjust RV2: SSB power adjust RV3: Power meter VR4: AM power *See Volume 3 of Secret CB for additional channel expansion on PLL 02A chip. #### GEMTRONICS GTX-66 RV2: Adjust power maximum modulation RV4: RF power meter adjust RV1b: Squelch range adjust RV3: S meter adjust Adjust L7 for maximum RF power output *See Volume 3 of Secret CB for additional channel expansion on PLL O2A chip. #### GENERAL ELECTRIC 3-5814B Adjust L7, L11, L12 for maximum RF output on channel 19 RV1: SQ range RV3: S meter RV2: Adjust for maximum modulation RV902: RF power meter adjust RV 901: Modulation meter adjust RV501: A.W.I. adjust *See Volume 3 of Secret CB for channel expansion information on PLL O2A chip. #### GENERAL ELECTRIC 3-5804B Adjust L903 for maximum RF power VR8: Adjust for maximum modulation VR6: RF power meter adjust VR5: AGC adjust VR1: RF AGC adjust VR4: Squelch range VR7: S meter # IF YOUR CLARIFIER IS TOO SENSITIVE INSTALL A 10-TURN CONTROL YOURSELF # INSTRUCTIONS - (OBTAIN STYLE X-1 POT FROM YOUR FAVORITE PARTS PLACE. - 2) WIRE IN AS YOU WOULD WITH THE OLD CONTROL. - 3. STYLE MAY VARY WITH MANUFACTURE. REALLY MAKES A SMOOTH CLARIFIER. ADD OR MODIFY OLD KNOB TO FIT. DO NOT MOUNT RELAY ASSEMBLY OVER I INCH FROM ORIGINAL XTAL LOCATION. KEEP LEADS SHORT! # INSTRUCTIONS! - () REMOVE XTAL II. 3258 FROM PC BOARD AND INSTALL ON BLANK CONTACTS AT POINT A." - 2) INSTALL RELAY ASSEMBLY AS SHOWN AT POINT C. ## RANGER T 4012 WITH MB8709 CHIP #### CHANNEL EXPANSION AND MODIFICATION: - 1-Lift anode side of D209 from PC Board. - 2-Cut D206. - 3-Replace D205 with a super diode. - 4-Replace RV205 with a 20K ohm POT. - 5-Connect one side of new RV205 to 8 volts regulated pin #3 of IC5 and the other side to PC Board ground. Connect the wiper of RV205 to the anode side of D207. Install a 5.6K ohm across cut to pin
#8. Install a SPDT Center Off toggle switch as show. #### POWER RV8 maximum, RV3 maximum. Adjust +2 and +3. Adjust T5, L3, and L6 for maximum. Deflection on a peak reading meter with 1000 HZ tone. # SWITCH UP | 12 | 27,425 | 20 | 27,525 | |----|--------|------------|--------| | 13 | 27.435 | 21 | 27.535 | | 14 | 27.445 | 22 | 27,545 | | 15 | 27,455 | 2 3 | 27.575 | | 16 | 27.475 | 24 | 27.555 | | 17 | 27,485 | 25 | 27.565 | | 18 | 27.495 | 26 | 27,585 | | 19 | 27.505 | 27 | 27.595 | # CENTER NORMAL SWITCH DOWN | 1 | 27.605 | 11 | 27,725 | 21 | 27.855 | 31 | 27,955 | |----|--------|----|----------------|----|--------|----|--------| | 2 | 27.615 | 12 | 27.745 | 22 | 27.865 | 32 | 27,965 | | 3 | 27.625 | 13 | 27,755 | 23 | 27.895 | 33 | 27,975 | | 4 | 27.645 | 14 | 27.765 | 24 | 27.875 | 34 | 27,985 | | 5 | 27.655 | 15 | 27,775 | 25 | 27,885 | 35 | 27,995 | | 6 | 27.665 | 16 | 27,795 | 26 | 27,905 | 36 | 28.005 | | 7 | 27.675 | 17 | 27.805 | 27 | 27,915 | 37 | 28.015 | | 8 | 27.695 | 18 | 27.815 | 28 | 27,925 | 38 | 28.025 | | 9 | 27.705 | 19 | 27.825 | 29 | 27,935 | 39 | 28,035 | | 10 | 27.715 | 20 | 27. 845 | 30 | 27.945 | 40 | 28,045 | | | | | | | | | | ### CORRECTIONS FOR VOLUME 5 Page 28-#2 should be Q405 (not 0405) Page 20-should be pin #10 and #11 (not 9 and 10) Page 19-#4 should be S5 (not 55) ********************* # SWITCH WIRING DIAGRAM FOR SEARS ROADTALKER 40 (ssb) MODEL #934-3826-0700 NOTE: PIN #5 and #9 are blank before modification. VCO adjustment is necessary. # SWITCH POSITION | CH. FREQ. <th< th=""><th>11</th><th>A''</th><th>11</th><th>В''</th><th>''A</th><th>& D''</th><th>''B</th><th>& D''</th><th>**</th><th>C''</th><th>**]</th><th>D''</th></th<> | 11 | A'' | 11 | В'' | ''A | & D'' | ''B | & D'' | ** | C'' | **] | D'' | |--|-----|--------|-----|-----------------|-----|--------|-----|--------|-----|--------|-----|--------| | 2 26,330 2 26,650 2 27,615 3 26,335 3 26,655 3 27,625 4 26,345 4 26,665 4 27,645 5 26,350 5 26,670 5 27,655 6 26,370 8 26,690 7 27,675 8 26,370 8 26,690 9 27,705 10 26,380 10 26,700 10 27,715 11 26,385 11 26,700 10 27,715 12 26,395 12 26,555 12 26,715 12 27,425 12 27,745 12 26,380 10 26,700 10 27,745 11 27,725 12 26,380 12 26,555 12 26,715 12 26,875 12 27,455 14 26,705 11 27,725 12 26,400 13 26,565 14 26,725 14 26,885 14 27,455 15 27,745 | CH. | FREQ. | | 3 26,335 3 26,655 3 27,625 4 26,350 5 26,670 5 27,655 6 26,355 6 26,670 5 27,665 7 26,360 7 26,680 7 27,675 8 26,370 8 26,690 8 27,695 9 26,375 9 26,695 9 27,705 10 26,380 10 26,700 10 27,715 11 26,385 12 26,555 12 26,715 12 27,425 12 27,745 12 26,395 12 26,555 12 26,715 12 26,875 12 27,425 12 27,745 12 26,400 13 26,565 14 26,725 14 26,880 13 27,455 12 27,745 14 26,405 14 26,570 15 26,730 15 26,890 15 27,475 16 26,425 17 26,585 17 26,745 17< | 1 | 26.325 | | | | 26.645 | | | | | 1 | 27,605 | | 4 26,345 4 26,665 4 27,645 5 26,350 5 26,670 5 27,655 6 26,355 6 26,675 6 27,665 7 26,360 7 26,680 7 27,675 8 26,375 9 26,695 9 27,705 10 26,380 10 26,700 10 27,715 11 26,385 11 26,705 11 27,725 12 26,395 12 26,555 12 26,715 12 26,875 12 27,745 13 26,400 13 26,560 13 26,720 13 26,880 13 27,445 14 27,745 14 26,405 14 26,565 14 26,725 14 26,885 14 27,445 14 27,765 14 26,410 15 26,565 15 26,730 15 26,885 14 27,455 15 27,775 16 26,410 16 26, | | | | | | | | | | | | 27.615 | | 5 26,350 5 26,670 5 27,655 6 26,355 6 26,680 7 27,665 8 26,370 8 26,690 8 27,695 9 26,375 9 26,695 9 27,705 10 26,380 10 26,700 10 27,715 11 26,385 12 26,555 12 26,715 12 26,875 11 27,725 12 26,395 12 26,555 12 26,715 12 26,875 12 27,425 12 27,745 12 26,395 12 26,555 12 26,715 12 26,875 12 27,425 12 27,745 12 26,400 13 26,560 13 26,725 14 26,880 13 27,455 15 27,765 15 26,410 15 26,570 15 26,730 15 26,890 15 27,455 15 27,775 16 26,420 16 26,580 < | | | | | | | | | | | 3 | 27,625 | | 6 26.355 6 26.675 7 26.680 7 27.665 8 26.370 8 26.695 9 26.375 9 26.695 9 27.705 10 26.380 10 26.700 10 27.715 11 26.385 11 26.705 11 27.725 12 26.395 12 26.555 12 26.715 12 26.875 12 27.425 12 27.745 13 26.400 13 26.565 14 26.565 14 26.720 13 26.880 13 27.425 12 27.745 14 26.405 14 26.565 14 26.730 15 26.885 14 27.455 15 27.775 16 26.410 15 26.570 15 26.730 15 26.890 15 27.455 15 27.775 16 26.425 17 26.585 17 26.745 17 26.990 15 27.455 15 27.775 16 | | | | | | | | | | | | 27,645 | | 7 26.360 7 26.680 8 26.975 8 26.690 8 27.695 9 26.375 9 26.695 9 27.705 10 26.380 10 26.700 11 27.715 11 26.385 12 26.555 12 26.715 12 27.425 12 27.745 13 26.400 13 26.560 13 26.720 13 26.880 13 27.455 12 27.745 14 26.405 14 26.560 13 26.720 13 26.880 13 27.455 12 27.745 15 26.410 15 26.570 15 26.730 15 26.880 16 27.475 16 27.475 16 26.580 16 26.744 16 26.900 16 27.475 16 27.475 16 27.475 16 27.475 16 27.475 16 27.475 16 27.475 16 27.475 16 27.475 16 27.475 16 27.475 | | | | | | | | | | | | | | 8 26.370 8 26.695 9 27.695 9 27.705 10 26.380 10 26.700 10 27.715 11 26.705 11 27.715 11 26.385 11 26.705 11 27.725 12 26.395 12 26.555 12 26.715 12 26.880 13 27.425 12 27.745 13 26.400 13 26.565 14 26.725 14 26.880 13 27.435 13 27.755 14 26.405 14 26.565 14 26.725 14 26.885 14 27.445 14 27.765 15 26.410 15 26.570 15 26.730 15 26.890 15 27.455 15 27.775 16 26.425 17 26.585 17 26.745 17 26.890 15 27.455 15 27.775 16 26.425 17 26.585 17 26.745 17 26.890 15 27.455 17 <td></td> | | | | | | | | | | | | | | 9 26.375 9 26.695 9 27.705 10 26.380 10 26.700 10 27.715 11 26.385 11 26.705 11 27.745 12 26.395 12 26.555 12 26.715 12 26.875 12 27.425 12 27.745 13 26.400 13 26.560 13 26.720 13 26.880 13 27.435 13 27.755 14 26.405 14 26.560 15 26.730 15 26.880 15 27.455 14 27.775 15 26.410 15 26.570 15 26.730 15 26.890 15 27.455 15 27.775 16 26.425 17 26.580 16 26.740 16 26.990 16 27.475 16 27.775 17 26.425 17 26.595 19 26.755 19 26.915 19 27.505 19 27.825 18 26.430 18 | | | | | | | | | | | | | | 10 26.380 10 26.700 11 27.715 11 26.385 12 26.555 12 26.705 12 27.425 12 27.725 13 26.400 13 26.560 13 26.720 13 26.880 13 27.435 13 27.755 14 26.405 14 26.565 14 26.725 14 26.885 14 27.445 14 27.765 15 26.410 15 26.570 15 26.730 15 26.890 15 27.455 16 27.775 16 26.420 16 26.580 16 26.740 16 26.900 16 27.475 16 27.795 17 26.425 17 26.585 17 26.745 17 26.905 17 27.485 17 27.805 18 26.430 18 26.590 18 26.750 18 26.910 18 27.495 18 27.815 19 26.435 19 26.505 19 26.75 | | | | | | | | | | | | | | 11 26.385 12 26.555 12 26.715 12 26.875 12 27.425 12 27.425 12 27.745 12 26.395 12 26.560 13 26.720 13 26.880 13 27.435 13 27.755 14 26.405 14 26.565 14 26.725 14 26.885 14 27.445 14 27.765 15 26.410 15 26.570 15 26.730 15 26.890 15 27.455 15 27.775 16 26.420 16 26.580 16 26.740 16 26.900 16 27.475 16 27.795 17 26.425 17 26.585 17 26.750 18 26.900 16 27.475 16 27.795 18 26.430 18 26.590 18 26.750 18 26.915 19 27.505 19 27.805 19 26.435 19 26.595 19 26.755 19 26.915 19 | | - | | | | | | | | | | | | 12 26.395 12 26.555 12 26.715 12 26.875 12 27.425 12 27.745 13 26.400 13 26.560 13 26.720 13 26.880 13 27.435 13 27.755 14 26.405 14 26.565 14 26.730 15 26.885 14 27.455 14 27.775 16 26.420 16 26.580 16 26.740 16 26.900 16 27.475 16 27.775 17 26.425 17 26.585 17 26.745 17 26.905 17 27.485 17 27.805 18 26.430 18 26.590 18 26.750 18 26.910 18 27.475 16 27.785 18 26.435 19 26.595 19 26.755 19 26.915 19 27.505 19 27.825 20 26.455 20 26.755 19 26.915 19 27.505 19 27.825 | | | | | | | | | | | | | | 13 26.400 13 26.560 13 26.720 13 26.880 13 27.435 13 27.755 14 26.405 14 26.565 14 26.725 14 26.885 14 27.445 14 27.765 15 26.410 15 26.570 15 26.730 15 26.890 15 27.455 15 27.775 16 26.420 16 26.580 16 26.740 16 26.900 16 27.475 16 27.775 17 26.425 17 26.585 17 26.745 17 26.905 17 27.485 17 27.805 18 26.430 18 26.595 19 26.755 19 26.915 19 27.505 19 27.825 20 26.445 20 26.605 20 26.765 20 26.915 20 27.525 20 27.845 21 26.450 21 26.610 21 26.770 21 26.915 22 27.535 21 | | | 19 | 26 555 | | | 10 | 26 975 | 10 | 97 495 | | | | 14 26.405 14 26.565 14 26.725 14 26.885 14 27.445 14 27.765 15 26.410 15 26.570 15 26.730 15 26.890 15 27.455 15 27.775 16 26.420 16 26.585 17 26.745 17 26.900 16 27.475 16 27.775 17 26.425 17 26.585 17 26.745 17 26.905 17 27.485 17 27.805 18 26.430 18 26.590 18 26.750 18 26.910 18 27.495 18 27.815 19 26.435 19 26.595 19 26.755 19 26.915 19 27.505 19 27.825 20 26.445 20 26.605 20 26.765 20 26.915 20 27.525 20 27.845 21 26.450 21 26.615 22 26.775 22 26.935 22 27.535 21 | | | | | | | | | | | | | | 15 26.410 15 26.570 15 26.730 15 26.890 15 27.455 15 27.775 16 26.420 16 26.580 16 26.740 16 26.900 16 27.475 16 27.795 17 26.425 17 26.585 17 26.745 17 26.905 17 27.485 17 27.805 18 26.430 18 26.590 18 26.750 18 26.915 19 27.855 19 26.435 19 26.595 19 26.755 19 26.915 19 27.505 19 27.825 20 26.445 20 26.605
20 26.765 20 26.925 20 27.525 20 27.845 21 26.450 21 26.610 21 26.770 21 26.935 22 27.545 22 27.855 22 26.455 22 26.615 22 26.770 21 26.935 22 27.545 22 27.855 | | | | | | | | | | | | | | 16 26.420 16 26.580 16 26.740 16 26.900 16 27.475 16 27.795 17 26.425 17 26.585 17 26.745 17 26.905 17 27.485 17 27.805 18 26.430 18 26.595 19 26.755 19 26.915 19 27.505 19 27.825 20 26.445 20 26.605 20 26.765 20 26.925 20 27.525 20 27.825 21 26.450 21 26.610 21 26.775 21 26.935 21 27.525 20 27.845 21 26.450 21 26.610 21 26.775 22 26.935 22 27.545 21 27.855 22 26.455 22 26.615 22 26.775 22 26.935 22 27.545 22 27.865 23 26.470 23 26.630 23 26.790 23 26.950 23 27.575 23 | | | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | 18 26.430 18 26.590 18 26.750 18 26.910 18 27.495 18 27.815 19 26.435 19 26.595 19 26.755 19 26.915 19 27.505 19 27.825 20 26.445 20 26.605 20 26.765 20 26.925 20 27.525 20 27.845 21 26.450 21 26.610 21 26.770 21 26.935 22 27.545 22 27.865 22 26.455 22 26.615 22 26.775 22 26.935 22 27.545 22 27.865 23 26.470 23 26.630 23 26.790 23 26.950 23 27.575 23 27.865 24 26.460 24 26.625 25 26.785 25 26.945 25 27.565 25 27.885 26 26.475 26 26.635 26 26.795 26 26.955 26 27.585 26 | | | | | | | | | | | | | | 19 26.435 19 26.595 19 26.755 19 26.915 19 27.505 19 27.825 20 26.445 20 26.605 20 26.765 20 26.925 20 27.525 20 27.845 21 26.450 21 26.610 21 26.770 21 26.930 21 27.535 21 27.855 22 26.455 22 26.615 22 26.775 22 26.935 22 27.545 22 27.865 23 26.470 23 26.630 23 26.790 23 26.950 23 27.575 23 27.885 24 26.460 24 26.620 24 26.780 24 26.940 24 27.555 24 27.875 25 26.465 25 26.625 25 26.785 25 26.945 25 27.565 25 27.885 26 26.475 26 26.955 26 27.595 27 27.915 28 26.48 | | | | | | | | | | | | | | 20 26.445 20 26.605 20 26.765 20 26.925 20 27.525 20 27.845 21 26.450 21 26.610 21 26.770 21 26.930 21 27.535 21 27.855 22 26.455 22 26.615 22 26.775 22 26.935 22 27.545 22 27.865 23 26.470 23 26.630 23 26.790 23 26.950 23 27.575 23 27.895 24 26.460 24 26.625 25 26.785 25 26.940 24 27.555 24 27.875 25 26.465 25 26.625 25 26.785 25 26.945 25 27.565 25 27.885 26 26.475 26 26.575 26 26.955 26 27.585 26 27.595 27 27.905 27 26.480 27 26.800 27 26.960 27 27.595 27 27.995 | | | | | | | | | | - | | | | 21 26.450 21 26.610 21 26.770 21 26.930 21 27.535 21 27.855 22 26.455 22 26.615 22 26.775 22 26.935 22 27.545 22 27.865 23 26.470 23 26.630 23 26.790 23 26.950 23 27.575 23 27.895 24 26.460 24 26.620 24 26.780 24 26.940 24 27.555 24 27.875 25 26.465 25 26.625 25 26.785 25 26.945 25 27.565 25 27.885 26 26.475 26 26.635 26 26.795 26 26.955 26 27.585 26 27.905 27 26.480 27 26.800 27 26.960 27 27.595 27 27.915 28 26.495 30 26.810 30 27.945 30 27.945 31 26.500 31 26.82 | | | | - | | | | | | | | - | | 22 26.455 22 26.615 22 26.775 22 26.935 22 27.545 22 27.865 23 26.470 23 26.630 23 26.790 23 26.950 23 27.575 23 27.895 24 26.460 24 26.620 24 26.780 24 26.940 24 27.555 24 27.875 25 26.465 25 26.625 25 26.785 25 26.945 25 27.565 25 27.885 26 26.475 26 26.635 26 26.795 26 26.955 26 27.585 26 27.905 27 26.480 27 26.800 27 26.960 27 27.595 27 27.915 28 26.495 28 26.805 28 26.965 29 27.935 30 26.495 30 26.815 30 27.945 31 26.500 31 26.825 32 27.965 33 26.515 34 </td <td></td> | | | | | | | | | | | | | | 24 26.460 24 26.620 24 26.780 24 26.940 24 27.555 24 27.875 25 26.465 25 26.625 25 26.785 25 26.945 25 27.565 25 27.885 26 26.475 26 26.635 26 26.795 26 26.955 26 27.585 26 27.905 27 26.480 27 26.800 27 26.960 27 27.595 27 27.915 28 26.485 28 26.805 28 27.925 29 27.935 30 26.495 30 26.815 30 27.945 31 27.945 31 26.500 31 26.820 31 27.955 32 27.965 33 26.510 33 26.835 34 27.985 35 27.995 34 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 39 26.540< | 22 | 26.455 | 22 | 26.615 | | | | | | | | | | 25 26.465 25 26.625 25 26.785 25 26.945 25 27.565 25 27.885 26 26.475 26 26.635 26 26.795 26 26.955 26 27.585 26 27.905 27 26.480 27 26.800 27 26.960 27 27.595 27 27.915 28 26.485 28 26.805 28 26.960 27 27.595 27 27.915 29 26.490 29 26.810 29 27.935 30 26.495 30 26.815 30 27.945 31 26.500 31 26.820 31 27.955 32 27.965 32 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.535 36 26.850 37 28.015 39 26.540 39 26.860 39 </td <td>23</td> <td>26.470</td> <td>23</td> <td>26.630</td> <td>23</td> <td>26.790</td> <td>23</td> <td>26.950</td> <td>23</td> <td>27.575</td> <td>23</td> <td>27.895</td> | 23 | 26.470 | 23 | 26.6 3 0 | 23 | 26.790 | 23 | 26.950 | 23 | 27.575 | 23 | 27.895 | | 26 26.475 26 26.635 26 26.795 26 26.955 26 27.585 26 27.905 27 26.480 27 26.800 27 26.960 27 27.595 27 27.915 28 26.485 28 26.805 28 27.925 28 27.925 29 26.490 29 26.810 29 27.935 30 26.495 30 26.815 30 27.945 31 26.500 31 26.820 31 27.955 32 26.505 32 26.825 32 27.965 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 <td></td> <td>26.460</td> <td>24</td> <td>26.620</td> <td></td> <td></td> <td>24</td> <td>26.940</td> <td>24</td> <td></td> <td>24</td> <td>27,875</td> | | 26.460 | 24 | 26.620 | | | 24 | 26.940 | 24 | | 24 | 27,875 | | 27 26.480 27 26.800 27 26.960 27 27.595 27 27.915 28 26.485 28 26.805 28 27.925 29 26.490 29 26.810 29 27.935 30 26.495 30 26.815 30 27.945 31 26.500 31 26.820 31 27.955 32 26.505 32 26.825 32 27.965 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 28 26.485 28 26.805 28 27.925 29 26.490 29 26.810 29 27.935 30 26.495 30 26.815 30 27.945 31 26.500 31 26.820 31 27.955 32 26.505 32 26.825 32 27.965 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 29 26.490 29 26.810 29 27.935 30 26.495 30 26.815 30 27.945 31 26.500 31 26.820 31 27.955 32 26.505 32 26.825 32 27.965 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | 27 | 26.640 | | | 27 | 26,960 | 27 | 27.595 | | | | 30 26.495 30 26.815 30 27.945 31 26.500 31 26.820 31 27.955 32 26.505 32 26.825 32 27.965 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 31 26.500 31 26.820 31 27.955 32 26.505 32 26.825 32 27.965 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 32 26.505 32 26.825 32 27.965 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 33 26.510 33 26.830 33 27.975 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 34 26.515 34 26.835 34 27.985 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 35 26.520 35 26.840 35 27.995 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 36 26.525 36 26.845 36 28.005 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 37 26.530 37 26.850 37 28.015 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 38 26.535 38 26.855 38 28.025 39 26.540 39 26.860 39 28.035 | | | | | | | | | | | | | | 39 26,540 39 26,860 39 28,035 | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | ### 10 METER BROWNING GOLDEN EAGLE MARK III MOD #### PARTS LIST: - (1) One switch kit with xtals - (2) Adjustable slider coil 1-Turn the unit upside down and remove the bottom cover from transmitter. Locate CR6, CR5, and CR4. Remove them from the set one at a time; so you will not mix them up. Then install them on the switch. You must use a heat sink on the xtal leads so you will not damage the xtals. Install them as per 2-Mount your new switch in a convenient position thru the front panel. FIGURE #2 3-Mount the new slider coil in the ground side of the VFO capacitor on the front panel. The coil may be adjusted for the best slide. 4-Peak up +6 for best results overall. This is the 5KHZ mixer. FIGURE #3 5-You may change L5 and L7 for best slider results. The new channel will be from channel 1, (27,265) to channel 23, (27,555). THIS COMPLETES THE MODIFICATION. REINSTALL IN CABINET. # BROWNING EAGLE IV MODIFICATION - 1. Remove up down stops - a. IC 503/C disconnect one input jumper from select bank. - b. IC 503/d disconnect one input jumper from select bank. - 2. Change scan rate function pot to slide transmitter - a. Remove wires from R601 and move to terminal strip installed near R601. - b. Substitute 47K fixed resistor for R601. - c. Build circuit shown on terminal strip added in B1. d. Install varactor diode in oscillator with associated components. #### 3. PLL Extension - a. Disconnect point "H" (IC 106/6) from ground and add diode and resistor; duplicate A to G nodes. - b. Add wires from "H' (via feed through cap) to IC 410/11. - c. Install
full feature ROM in place of original IC 410. - d. Install circuit shown ICIOT IOK PIN3 PIN3 NPN SWITCH 2N3904 ETC Circuit recognizes greater than 7 (HEX) and switches IC 107/3 low to add 256 to required division. - e. As a note: all empty rom addresses will inhibit numerical display and transmitter key relay. - f. Adjust C122 while monitoring T.P. (1.5 3.5V) with Voltmeter; and output BNC to frequency counter. Select lowest frequency required. Lowest frequency in full feature ROM is 26.885 output. (Note most receivers will only go down to 26.925). Power up observe counter and voltmeter. If counter is stable PLL is locked. Voltmeter should read +1.5v. If greater than 1.5v touch up C122 to read +1.5v. (Do not make extreme changes to up C122 to read +1.5v. (Do not make extreme changes to C122 as "lock range" is narrow). Step channel address upwards noting voltage moving upwards with each step and counter stable adding 10KHZ with each step. Top channel address 27.605 output. Voltmeter should read +3.5 volts. If PLL unlocks along the way. Power down and start over bringing lowest selection to +1.35V and repeat, etc. NOTE 1: Output refers to corresponding xmit output, not OSC output NOTE 2: If additional \(\Delta \) is needed, parallel MV2111 with IN 914s. NOTE 3: For 5 KC jump feature wire a switch between IC 410/4 and C619. # THUMBWHEEL 200 CHANNEL CONVERSION AS APPLIED TO 858 CHASSIS NOTE: THUMB WHEEL SWITCHES CAN SOMETIMES BE FOUND SURPLUS. SURPLUS THIS SWITCH WAS 8,50. NEW THEY RUN AROUND 17 TO 20 APPROX. THIS MOD. IS NOT AS HARD AS NOTE: YOU MAY USE EXISTING SWITCH ON RADIO. BE CAREFUL - THIS CAN GIVE YOU TROUBLE IF YOU ARE NOT USED TO USING AN EXISTING N.B. SWITCH ETC. A MINI TOGGLE WILL DO TUST FINE. #### 200 CHANNEL FREQ. CONVERSION CHART | 001 = 26.065
002 = 26.075
003 = 26.085
004 = 26.095
005 = 26.105
006 = 26.115
007 = 26.125
008 = 26.135
010 = 26.155
011 = 26.165
012 = 26.175
013 = 26.185
014 = 26.195
015 = 26.205
016 = 26.215
017 = 26.225
018 = 26.235
019 = 26.245
020 = 26.255
021 = 26.265
022 = 26.275
023 = 26.285
024 = 26.295
025 = 26.305 | 026 = 26.315
027 = 26.325
028 = 26.335
029 = 26.345
030 = 26.355
031 = 26.365
032 = 26.375
033 = 26.385
034 = 26.395
035 = 26.405
036 = 26.415
037 = 26.425
038 = 26.435
040 = 26.455
041 = 26.465
042 = 26.475
043 = 26.485
044 = 26.485
044 = 26.495
045 = 26.505
046 = 26.515
047 = 26.525
048 = 26.535
049 = 26.545
050 = 26.555 | 051 = 26.565
052 = 26.575
053 = 26.585
054 = 26.595
055 = 26.605
056 = 26.615
057 = 26.625
058 = 26.635
059 = 26.645
060 = 26.655
061 = 26.665
062 = 26.675
063 = 26.685
064 = 26.695
065 = 26.705
066 = 26.715
067 = 26.725
068 = 26.735
069 = 26.735
070 = 26.755
071 = 26.765
072 = 26.775
073 = 26.785
074 = 26.795
075 = 26.805 | 076 = 26.815
077 = 26.825
078 = 26.835
079 = 26.845
080 = 26.855
081 = 26.865
082 = 26.875
083 = 26.885
084 = 26.905
085 = 26.905
086 = 26.915
087 = 26.925
088 = 26.935
090 = 26.955
091 = 26.965
092 = 26.975
093 = 26.985
094 = 26.995
095 = 27.005
096 = 27.015
097 = 27.025
099 = 27.045
100 = 27.055 | |--|--|--|--| | 101 = 27.065
102 = 27.075
103 = 27.085
104 = 27.095
105 = 27.105
106 = 27.115
107 = 27.125
108 = 27.135
109 = 27.145
110 = 27.155
111 = 27.165
112 = 27.175
113 = 27.185
114 = 27.195
115 = 27.205
116 = 27.215
117 = 27.225
118 = 27.235
119 = 27.245
120 = 27.255
121 = 27.265
122 = 27.275
123 = 27.285
124 = 27.295
125 = 27.305 | 126 = 27.315
127 = 27.325
128 = 27.335
129 = 27.345
130 = 27.355
131 = 27.365
132 = 27.375
133 = 27.385
134 = 27.395
135 = 27.405
136 = 27.415
137 = 27.425
138 = 27.445
140 = 27.455
141 = 27.465
142 = 27.475
143 = 27.485
144 = 27.495
145 = 27.505
146 = 27.505
147 = 27.525
148 = 27.535
149 = 27.545
150 = 27.555 | 151 = 27.565
152 = 27.575
153 = 27.585
154 = 27.595
155 = 27.605
156 = 27.615
157 = 27.625
158 = 27.635
159 = 27.645
160 = 27.655
161 = 27.665
162 = 27.675
163 = 27.685
164 = 27.705
165 = 27.705
166 = 27.715
167 = 27.725
168 = 27.735
169 = 27.745
170 = 27.755
171 = 27.765
172 = 27.775
173 = 27.785
174 = 27.795
175 = 27.805 | 176 = 27.815
177 = 27.825
178 = 27.835
179 = 27.845
180 = 27.855
181 = 27.865
182 = 27.875
183 = 27.885
184 = 27.905
185 = 27.905
186 = 27.915
187 = 27.925
188 = 27.935
190 = 27.955
191 = 27.965
192 = 27.975
193 = 27.985
194 = 27.995
195 = 28.005
196 = 28.015
197 = 28.025
198 = 28.035
199 = 28.045 | #### EXTENSION OF FREQUENCY COVERAGE ON PACE 8092 #### PURPOSE: The purpose of this modification is to provide additional 40 channel segments either above or below the original 40 CB channels. #### PROCEDURE: The basic modification of the 8092 simply requires the replacement of crystal Y2. The original frequency of Y2 is 12.25MHz which provides frequency coverage from 26.965MHz to 27.405MHz. The frequency scheme behaves as follow: Output frequency = (Y2 crystal frequency x 3) + .91MHz - 10.695MHz (At channel 1) For original crystal: $(12.25 \text{MHz} \times 3) + .91 \text{MHz} - 10.695 \text{MHz} = 26.965 \text{MHz}$ To choose another frequency segment, the frequency of Y2 must be calculated.Y2 = Output frequency (at CH-1) + 10.695 - 0.91 + 3 So, for example, if the channels directly above the CB band were desired (i.e. Ch-41, 42, etc.), the frequency of Y2 would be calculated as: $Y2 = 27.415 \text{MHz} + 10.695 \text{MHz} - 0.91 \text{MHz} \div 3 = 12.40 \text{MHz}$ Replacement of Y2 with a 12.40MHz crystal will result in coverage of the segment 27.415MHz to 27.855MHz. If it is desired to have both the original 40 channels and an additional 40 channels, it is possible to use the PA-CB slide switch on the front panel as a frequency selection switch. To accomplish this, the switch must be disconnected from the original circuitry and the circuitry hard-wired for CB operation. After the switch has been cleared, it is possible to use two of the three poles of the switch for crystal switching. The best way to mount the switching system is to mount components on a small perf-board. Since crystal frequencies are not always exact, tuning of each crystal is required. Therefore, the original tuning coil L34 should be shorted, and two additional 10uH coils (one for each crystal) are needed. The resultant schematic will be; The circuit board should include the two crystals and two coils. The coil-crystal combinations are wired to the throws of the PC-CB switch. The wipers of the switch should be wired to the original Y2 mounting holes in the 8092 circuit board. The added circuit board should be installed as close to the PA-CB as possible and with wire as short as possible to minimize frequency variations caused by stray inductance. Once the circuit is installed, the exact operating frequency must be adjusted. This can be done by transmitting and adjusting the two added coils for exact frequency. If the frequency will not adjust high enough, perform the following modification: Remove C143 (10pF) and reposition it so it is wired in parallel with C146 (22pF). This will bring the frequency up several KHz. Readjust added coils for exact frequency. Using the previous example, the PA-CB switch will now select channels 1 through 40 and 41 through 80 in the two positions of the switch. When this modification is performed along with the transmitter slider modification, continuous coverage between channels 1 and 80 is possible. #### SLIDER INSTRUCTIONS - 1-Cut foil to disconnect R309 and R404 from RB (X-on schematic and parts locator). - 2-Install uA 78L82, or equivalent, voltage regulator between ON/OFF switch and R309/404 junction. (See drawing on parts locator) - 3-Bridge the junction CR49/R161/R162 to ground as shown. The above will enable the clarifier to work on transmit (slider). In order to slide more than the standard clarifier range, it is necessary to make the following modifications and adjustments. - 1-Remove C143 (10 or 15 pf). - 2-Short (bridge) C146 (22pf), Make the following slider frequency
adjustments after the frequency modification is done. - 1-Turn clarifier to maximum position fully clockwise. - 2-Connect dummy load to antenna jack. - 3-Connect frequency counter to dummy load (radio in AM mode) and key transmitter. - 4-Adjust L34 for channel frequency (Fo plus 10 KC). - 5-Turn clarifier to maximum negative, fully counterclockwise. - 6-Adjust R308 for Fo minus 10 KC (if 10 KC cannot be reached, adjust for lowest frequency possible). - 7-Repeat steps 5 thru 7 (if minus 10 KC cannot be reached and equal sliding is desired, adjust L34 to accomplish this, i.e., +9.5 KC and -9.5KC). - 8-Check Fo and if needed touch-up R309 to obtain the correct channel frequency. #### NESCO 1249 CHANNEL CONVERSION - 1-For increase in modulation remove Q201 from PC Board. - 2-For best power band adjust L406 & L401 for maximum output while set for channel 10. Be sure to check for forward MOD. - 3-Frequency MOD as shown. NOTE: Pin 3 is connected to pin 16 On foil side of the PC Board pin 3 must be cut free. | HIGH FREQUENCIES | | LOW FRE | QUENCIES | LOW | FREQUENCIES | |--|--|---|---|--|--| | SW1 & SW2 | ON | SW2 OFF | SWI ON | SW2 | OFF SW1 ON | | CHANNEL | FREQUENCY | CHANNEL | FREQUENCY | CHANNEL | FREQUENCY | | 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 27.425
27.435
27.445
27.455
27.475
27.485
27.505
27.525
27.525
27.535
27.545
27.575
27.565
27.585
27.595 | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 26.645 26.665 26.665 26.685 26.705 26.715 26.735 26.745 26.755 26.765 26.785 26.795 26.805 26.835 | 17
18
19
20
21
22
23
24
25
26
27 | 26.845
26.855
26.865
26.885
26.995
26.905
26.935
26.915
26.925
26.945
26.955 | ADDENDUM TO FREQUENCY MOD FOR HALICRAFTERS The addition of SW-3 will give: (SW-1 ON, SW-2 OFF, SW-3 ON) | CHANNEL
1 | FREQUENCY 27.285 | CHANNEL
21 | FREQUENCY | |--------------|------------------|---------------|------------------| | 2 | 27.285
27.295 | 21
22 | 27.535
27.545 | | 3 | _ | | • | | | 27.305 | 23 | 27,575 | | 4 | 27.325 | 24 | 27,555 | | 5 | 27.335 | 25 | 27 .5 65 | | 6 | 27. 345 | 26 | 27, 585 | | 7 | 27.355 | 27 | 27.595 | | 8 | 27.375 | 28 | 27,285 | | 9 | 27.385 | 29 | 27,295 | | 10 | 27.395 | 30 | 27.305 | | 11 | 27.405 | 31 | 27,315 | | 12 | 27.425 | 32 | 27,325 | | 13 | 27.435 | 33 | 27,335 | | 14 | 27.44 5 | 34 | 27.345 | | 15 | 27.455 | 35 | 27.355 | | 16 | 27.475 | 36 | 27.365 | | 17 | 27.485 | 37 | 27,375 | | 18 | 27,495 | 38 | 27,385 | | 19 | 27,505 | 39 | 27,395 | | 20 | 27.525 | 40 | 27.405 | #### NOTE 1 With SW-1 ON, SW-2 ON and SW-3 ON, channel positions 1-27 will give frequencies from 27.885 thru 28.195. #### NOTE 2 You must use double pole switch for SW-3 in order to maintain normal operation. # REDCO APPLICATION AND TROUBLE SHOOTING GUIDE #### REDCO UFO APPLICATIONS | MODEL | TYPE | PLL CHIP USED | DIGI-SCAN REQUIRED | |--|--|---|---| | PRESIDENT | | | | | Adams Andrew J (old) Dwight D (old) Grant (old) Honest Abe John Q Madison Old Hickory Teddy R Washington Zachary T Washington (new) Zachary T Dwight D Grant McKinley Andrew J | S
A
A
S
A
A
S
A
A
S
A
A
S
A
A
S
A
A | 858
858
858
858
858
858
858

858
858 | RDS-1, UFO RDS-6, UFP N/A N/A RDS-5, UFO RDS-6, UFO | | Thomas J
Veep
Madison | A
A
S | 2816
9109
8719 | N/A
N/A
RDS-5 | | COBRA | | | KD2-2 | | 21 GTL
21 XLR
25 GRL
29 GTL
29 XLR
32 XLR
77 XLR
78 XLR
87 GTL
89 GTL | A
A
A
A | TC9106
858
TC9106
UPD2816
858
5080
858*
858*
2816
2816 | N/A RDS-1*, UFO N/A N/A RDS-1*, UFO N/Z UFO UFO N/A N/A | | 132 XLR
135 XLR
138 XLR
139 XLR
140 GTL
142 GTL
158 GTL
1000 GTL
2000 GTL | 555555555555555555555555555555555555555 | TC5080P
TC5080P
858
858
8719
8719
8719
2816
8734 | UFO-T UFO-T RDS-1, UFO RDS-1, UFO RDS-6, UFO RDS-6, UFO RDS-5, UFO N/A RDS-5, UFO | | MODEL | TYPE | PLL CHIP USED | DIGI-SCAN REQUIRED | |--|----------------------------|---|---| | COURIER | | | | | Caravelle 40-D
Conquerer 40-D
Gladiator
Spartan
Centourian | A
S
S
S | 5104
SM5104
858
858
858 | N/A
N/A 10
RDS-1, UFO10
RDS-1, UFO10
RDS-1, UFO | | FANNON | | | | | Fanfare 350-F | s | 858 | RDS-1, UFO | | HY GAIN | | | | | 623, 623A | S | Descrete | UFO ³ | | MIDLAND | | | | | 78-976
78-999
79-893
79-892
79-900
76-863
78-892 | S
S
S
S
A
S | PLL-02
PLL-02
858
PLL-02
8719
PLL-02
PLL-02 | RDS-02, UFO RDS-02, UFO RDS-1, UFO RDS-02, UFO RDS-6, UFO N/A 2 xtals RDS-02, UFO | | BOWMAN | | | | | CB-950 | S | PLL-02 | RDS-02, UFO | | PALOMAR | | | | | SSB-500
SSB-500
4100 | S
S
A | 145106
7120
02A | UFO ⁴
UFO
N/A 2 xtals | | TEABERRY | | | 1 | | T Command
Stalker 101
Stalker 102
Stalker 1 & 2 | . A
S
S
S | 858
858
858
Descrete | UFO, RDS-1 RDS-1, UFO RDS-1, UFO UFO | | REALISTIC | | | | | TRC-449
TRC-455
TRC-458
TRC-457
TRC-57 | 8888 | 858
858
858
858
Descrete | RDS-1, UFO RDS-1, UFO RDS-1, UFO RDS-1, UFO UFO | | ROBYN | | | | | SB-505
SB-510D | S
S | 8719
858 | 11,1125, RDS-6, UFO
RDS-1, UFO | | MODEL | TYPE | PLL CHIP USED | DIGI-SCAN REQUIRED | |---|------------------|-----------------------------------|---| | ROBYN
SB-505
SB-510D
SB-520D | S
S
S | 8719
858
858 | 11,1125, RDS-6, UFO
RDS-1, UFO
RDS-1, UFO | | SEARS
663.38060600
934.38110700
934.38270700
934.28360700 | A
S
S
S | 858
SM5104
SM5104
SM5104 | RDS ₅ 1, UFO ¹ 5
UFO
UFO
UFO | | RCA
14T-303 | A | PLL-02 | N/A 2 xtal | | NDI
PC200
Johnson 9740 | s
s | NDC-40013
NDC-40013 | uro ⁶
uro ⁶ | | COLT
1200
390
485 | s
s | PLL-02
PLL-02
PLL-02 | RDS-02, UFO
N/A 2 xtal
RDS-02 | | GEMTRONICS
6TX-77 | S | PLL-02 | RDS-02, UFO | | JC PENNEY
981-6247
981-6241 | s
s | 02A
SM5104 | RDS-02, UFO
UFO | | PACE
1000NC | s | 40013 | UFO | | LAFAYETTE
SSB-140 | S | PLL-02 | RDS-02, UFO | | TRAM
D-62
D-80
D-64
D-300 | S
S
S | 5080
8719
NDC40013
8719 | UFO-T
RDS ₆ 5, UFO
UFO
RDS-5, UFO | | BROWNING
Baron
Mark IV | S
A | TC5080P
145106 | UFO ₇ T
UFO | | SBE
27CB
39CB
40CB | 8
8
8 | Descrete
Descrete
Descrete | UFO9
UFO9
UFO | | SCOTT
Dak 10 | S | PLL-02 | RDS-U2, UFO | #### REDCO UFO APPLICATIONS TYPICAL PROBLEMS ENCOUNTERED WITH 8719 & 8734 SYNTHESIZERS: - 1. DOWN MIXER OUTPUT SIGNAL (TP-10) - The Uniden 8719 & 8734 chassis have been found to have a relatively large difference in the amplitude of the down mixer signal available on TP-10. The UFO picks up this signal on Coax #1, amplifies the signal and compares it with an internal reference. Problems are encountered when the UFO does not get enough drive from the radio. This can cause an "out of lock" condition, and in this state the radio would be on some random frequency dependent only upon the FCO adjustment and not the UFO. To determine if an "out of lock" condition is caused by lack of drive, follow the procedure outlined on TA-002. A minimum of 3v peak to peak signal is required on Pin 2 for proper UFO operation. If the "out of lock" condition is caused by low drive, it can be cured by one of the following methods: RADIO MODIFICATION - a. Install a resistor from the base of TR-20 or Pin 10 of VCO chip to ground. This will improve the radio's gain by approximately 30%. #### UFO MODIFICATION b. Short the capacitor (.01uf) connecting the amplifier to Pin 2 of the PLL chip. Remove the 4.7k resistor to the right of the .01uf cap previously mentioned and replace with a 68k resistor. Modification b. has been put into production of all new UFO's being manufactured as of 5-5-79. #### 2. VCO ADJUSTMENT For maximum range and a clean sounding radio it is highly recommended the VCO be aligned in the following manner: (Note: Us a non-metallic alignment tool) - a. Set UFO to 28,000 MHz. - b. Turn the VCO adjustment to a point where the radio is near 27.950. - c. Align the VCO slug very slowly until the VCO just locks at 28,000 and do not turn the VCO past this point. Other alignment procedures may cause loop filtering adjustments to be very critical and the radio may not be
clean over a wide range of frequencies. #### 3. LOOP FILTERING The addition of a variable loop filter on 8719 & 8734 radios is occasionally a necessity. A variable loop filter allows the technician to vary the loop filtering and make up for variables present in synthesizer circuits of radios. Symptoms of the loop filtering being incorrect may be: distorted SSB, warble on SSB, difficult to clarify SSB, or, in extreme cases, squeal on AM and bleedover may be present. In most cases the problems described above are most easily cured by the addition of a variable loop filter consiting of a variable resistor (usually a trimpot) in series with an electrolytic capacitor. Values of 10uf & 10k have been used here at the factory quite successfully. This loop filter is added between TP9 and ground. Better results can be achieved by removing the capacitors inside the UFO which normally compose the loop filters. These capacitors are identified in the programming section of the instruction manual as they are removed for 858 installations. The loop filter is aligned for best SSB clarity, If the resistance of the trimpot is too low, the radio will warble on higher frequencies; and, if the resistance is too high bleedover may be experienced on lower frequencies. REDCO DIGI-SCAN 6 # UFO INSTALLATION TO BROWNING MARK IV A - 1. Do not remove 145106 PLL chip. - 2. Connect the center of Coax 1 to the Junction of R-708 and R-709. - 3. Remove R-715 and C-734. - 4. Connect the center of Coax 2 to TP-3. - 5. Install a 10uf cap and 10k pot in series from TP-3 to ground. - 6. Remove loop filtering capacitors in UFO as in 858 installation. - 7. Cut the foil trace connecting to Pin 8 of the 145106 chip. - 8. Connect the foil trace that was connected to Pin 8 to an 8v source. PROGRAM CODE: B B W W B B B B W W # UFO INSTALLATION TO REALISTIC TRC 57 - 1. Hook center of Coax 1 to TP-4 (Junction R321 and R322), - 2. Remove the 10k resistor connecting to TP3. - 3. Hook center of Coax 2 to TP3. - 4. Add a 10uf electrolytic cap and a 10k pot in series from TP3 to ground. - 5. Align VCO for maximum range (L11) - 6. Remove final RF amp. PROGRAM CODE: W B B B W W B W B B B B W W ### UFO INSTALLATION TO #### HY-GAIN 623-A - 1. Remove VCO shield (L-603). - 2. Replace 330pf cap (C634) with 100 pf. - 3. Remove R-308. - 4. Hook center of Coax 2 to the side of R-308 that goes to the connector (VCO control). - 5. Hook center Coax 1 to Pin 1 of IC 301. - 6. Install a 10uf electrolytic cap and a 10k pot in series from the center of Coax 2 to ground. - 7. Remove V-501. PROGRAM CODE; BBBW WBWB BBBB WW #### UFO INSTALLATION TO #### NDI-PC200 APPLICATIONS: Chassis using 40013 synthesizer Chip examples: Tram D64, Pace 1000B, and Johnson 4740. #### INSTALLATION: - 1. Connect the center of Coax 1 to Pin 2 of the 40013 PLL chip. - 2. Remove R-03 (1k). - 3. Connect center of Coax 2 to the Junction R-02 and R-04. - 4. Change 10.000 crystal Y1 to 10.240 MHz. - 5. Remove CR-03. - 6. Apply power and adjust L-5 for correct AM frequency. - 7. Adjust L-6 for correct LSB frequency. - 8. Remove Q705. PROGRAM CODE: B B B B W B W W B B B B B B NOTE: Part designations above refer to NDI-PC200. Part designations for Tram D64 are as follow: R-03 - R-903, R-02 - R-902, R-04 - R-904, CR-03 - CR-903, PROGRAM CODE: D-64 B B W B B B W B W W W WW NOTE: USB will be 5 kc below the frequency display. #### TROUBLESHOOTING AN OUT OF LOCK CONDITION The following flow chart describes troubleshooting an out of lock condition. Align the VCO for an operating frequency about 200 KHz above the UFO setting. Program UFO correctly. As the VCO is adjusted through the frequency displayed by the UFO, the voltage on Coax #2 should change its logic state. OUT OF LOCK: In an "out of lock" condition varying the UFO frequency setting will not change the radio frequency. A voltage measurement on the TP-2 will quickly determine a locked or unlocked condition, Ov for locked, 5v for unlocked. LIMITED RANGE: An "out of lock" condition at the top or bottom end of the band. WARBLE: A warble is detected on SSB. This can cause SSB comnunications to be distorted or difficult to clarify. RADIO OFF FREQUENCY BY A MUTIPLE OF 5KHz: Radio in lock but the operating frequency is constantly off by some multiple of 5KHz. RECEIVES 2 OR MORE CHANNELS AT ONCE: When receiving, the same incoming signal can be heard on several frequencies. WILL NOT LOCK WHEN POWER IS RESET: A radio may function normally after re-alignment, but, when the power is turned off and then turned on again, it may not relock. The reason this condition can exist is as follows: Power is first applied and the UFO circuitry has no input on Coax 1 because the VCO has not begun to oscillate. The UFO senses the lack of input and puts out a high (5v) state on Coax #2. The VCO then oscillates at its maximum frequency, and because of inherent design its amplitude decreases at higher frequencies; therefore, the down mixer output is low and the UFO cannot get enough drive from the radio on Coax #1. The PLL chip does not get enough drive and the loop is unable to recover. The problem is solved by increasing the gain of the down mixer or input amplifier or re-adjusting the VCO coil to a point where the VCO will not run as high in frequency. Use the VCO alignment suggested later in this text. LOOP FILTERING: The addition of a variable loop filter on radios is occasionally a necessity. A variable loop filter allows the technician to vary the loop filtering and make up for variables present in synthesizer circuits of radios. Symptoms of the loop filtering being incorrect may be: distorted SSB, warble on SSB, fifficult to clarify SSB, or, in extreme cases, squeal on AM and bleedover may be present. In most cases the problems described above are most easily cured by the addition of a variable loop filter consisting of a variable resistor (usually a trimpot) in series with an electrolytic capacitor. Values of louf and lok have been used here at the factory quite successfully. This loop filter is added between the center of Coax #2 and ground. Better results can be achieved by removing the capacitors inside the UFO which normally compose the loop filter. These capacitors are identified in the programming section of the instruction manual as they are removed for 858 installations. The loop filter is aligned for best SSB clarity. If the resistance of the trimpot is too low, the radio will warble on higher frequencies; and. if the resistance is too high, bleedover may be experienced on lower frequencies. GROUND CONNECTIONS: For proper operation the UFO must have a good ground loop to the radio. Best results are achieved by connecting the shields near the VCO and connecting the black wire to a ground near the voltage regulator. BROKEN PC PADS: The pads under the PLL chip are sometimes damaged during chip removal. The 8v source is connected through one of the pads and the circuit must be complete through the pad to attain a locked condition on 8719 installations. #### REDCO MODEL MARK IV The REDCO MARK IV RF Monitor is a high quality instrument for measuring Standing Wave Ratio (SWR), Transmitted power and percent modulation. REDCO'S MARK IV is designed by Redco/Conductron for CB and Ham radio applications. Power scales are factory calibrated at 26MHz, (if desired the three power scales can be individually calibrated for any frequencies between 1Mhz and 250Mhz.). The SWR and Modulation functions are broad-band and will operate from 1Mhz to 250Mhz. #### THE MARK IV FEATURES: RF power scales of 0-10, 0-100, 0-1000 watts, 5% accuracy SWR scale displays SWR and percent reflected power. Modulation displayed in % and decibels (-21db to +3db) Precision 6-inch D'Arsonval multiscale meter, 5ua, 2% accuracy Directional forward power/reflected power discrimination= 30db (i.e. 1000 times) Completely passive, requires no external power source Inline operation. Will not disturb the tuning of your antenna system. Draws negligible power. Uses standard UHF coaxial connectors. REDCO'S Digi-Scan systems are manufactured as receiving systems only, and to use them for transmission in the United States is in direct violation of the Federal Communications Commission. #### REDCO MODEL MARK V REDCO'S MARK V wattmeter is a 3 meter system to allow continuous monitoring of RF Power, SWR and modulation. For accuracy and reliability a calibrated dial on the front panel can be set to any frequency from 3 Mhz to 250 Mhz. A frequency selector switch is provided to allow you to set your dial on any frequency you would like to operate within the spectrum frequencies of 50, 100, 150, 200, and 250Mhz. A special channel provided for CB operating frequencies. Only REDCO/CONDUCTRON could design and manufacture such a technological breakthrough in the wattmeter field. #### FEATURES: - 1-The ultimate broad band from 3Mhz to 250Mhz, AM, CW, SSB operations - 2-A passive system, no external power required - 3-Unique solid state design provides negligible insertion loss 100%. Modulation readout extends from -20db to +3db. Modulation is a function of voice level. (This level can be adjusted to read 100% for best communication transmission). - 4-Standing Wave Ratio readout is indicated on the SWR meter by means of a unique design balanced breech circuit, termination 50 Ohms (forward and reflected power ratio). - 5-MARK V is simple to connect to your transceiver system by 2 coaxial connectors, and is inserted between the antenna and transmitter. #### SPECIFICATIONS: | Frequency range************************************ | |---| | Power************************************ | | ENVELOPE POWER (SSB) | | Power consumption************************************ | | Modulation************************************ | | SWR************************************ | | to 1:3 and over | | Meter movement*********************************** | | of 2% accuracy | | Factory
calibrated********************************from 3Mhz to 250Mhz | | Accuracy************************************ | | Size************************************ | # SPECIAL SECTION ON LINEAR AMPLIFIERS #### PDX-400 - 1. Turn the unit upside down with the front toward you. - 2. Remove the insulated wire and the 5pf disc capacitor that is connected between the VFO (SO-239) and pin #2 of the oscillator tube socket. - 3. Remove the 470K two watt resistor that is connected between pin #1 of the oscillator tube socket and the first lug of the five lug terminal strip. - 4. a. Disconnect the brown wire from pin #10 of the antenna relay. - b. Solder the loose end, just removed from pin #10, to pin #6 of the antenna relay; the wire should be as short as possible. - 5. Solder a piece of #18 or larger copper wire between the VFO (SO-239) and pin #10 of the antenna relay; the wire should be as short as possible. - 6. Starting at the bottom of the driver stage tank coil (at the tune control on the right hand end) bridge solder (going from right to left) across two air gaps of the coil. This will be done on the interior (bottom) of the coil. - 7. Turn the unit right side up, with the front toward you. - 8. Starting at the bottom of the final stage tank coil (at the load control on the left hand end) bridge solder (going from left to right) across two air gaps of this coil. Solder from the end of the 90 degree bend across one air gap to the first full turn and from the first full turn across the second air gap to the second full turn. This will be done on the interior (bottom) of this coil. - 9. Unit is now ready to load. #### D & A 250 MAVERICK - 1. Turn the unit upside down with the front toward you. - 2. Remove the insulated wire and 5 pf disc capacitor that is connected between the VFO input SO-239 and pin #2 of the oscillator tube socket. - 3. Remove the 470K two watt resistor that is connected between pin #1 of the oscillator tube socket and the first lug of the five lug terminal strip. - 4. a. Disconnect the brown wire where it is connected to the second lug of the five lug terminal strip. - b. Solder the loose end to the VFO input SO-239. (Wire should be cut as short as possible). - 5. Starting at the top of the driver stage tank coil, (load control or left hand end) bridge solder (going from left to right) across two air gaps of this coil. Solder from the end of the coil across one air gap to the first full turn and from the first full turn across the second air gap to the second full turn. - 6. Turn the unit right side up, with the front toward you. - 7. Starting at the bottom of the final stage tank coil, (load control or left hand end) bridge solder (going from left to right) across two air gaps of this coil. Solder from the end of the 90 degree bend across one air gap to the first full turn and from the first full turn across the second air gap to the second full turn. This will be done on the interior (bottom) of this coil. - 8. Unit is now ready to load. #### MACO #### THE DUSTER 300, 750, & 1000 TRANSMITTER Remove transmitter board as follows: - 1. Remove capacitor at relay board. - 2. Remove jack from front panel with wire attached. - 3. Remove wire from bilateral switch on front panel, - 4. Remove board with attached parts. - It is rumored that the factory will swap transmitter boards for a 2057 tube. To get unit to Transmit do the following: - 1. Remove insulating sleeve from between the SO-239 (radio) connector, where the cap was removed, and the relay board. - 2. Solder center of the SO-239 to pad on the relay board. #### MACO 75 - 1. First change tube to 2057 and then remove bottom, - 2. Take out and throw away brown wire connected to 10K resistor which runs from relay to PC board. - 3. Take out, turn around, and re-install the glass diode on the foil side of the PC board. - 4. Two wires going to the relay are reversed, they are the coax and the yellow wire going to the purple coil. Remove and reverse and reconnect. - 5. Replace the bottom and key the radio, whistle, and tune front control for maximum. - NOTE: Dead key, no modulation should be 4-6 watts, if more adjust pot on bottom for this output. NOTE ON MACO 75's: #### With Bilateral Not Connected - 1. Take off the jumper from across the lugs on the rear relay. - 2. Connect the red wire to bottom empty pin on the stand by switch. - 3. The black wires on bilateral board must be connected. Connect the wire directly below the red wire to the relay lug nearest the antenna connector. This lug had the jumper on it originally. - 4. The other black wire goes to the other lug on the relay nearest radio connector. This had the other end of the jumper on it. - 5. The wire with the green choke goes to the same relay lug as black wire, nearest radio connector as in (4). - 6. This connects the Bilateral. #### With Bilateral Connected, But Not Operational - 1. Take off the jumper from across the lugs on the rear relay. - 2. This enables the Bilateral. It is essential that the Maco 500 be tuned and operated properly! Failure to do so will damage this product and is not covered by warranty! #### DO'S - 1. Do tune side control in the low position for maximum while whistling. - 2. Do tune front load and tune controls for maximum in the HI position, while whistling. #### DO NOT - 1. Retune side control after it is once set! - 2. Do not detune the front for any reason, always set for maximum. - 3. Do not for any reason operate in SSB position on Maco 500 with radio on AM, this product has special circuitry for SSB, which if operated with radio in AM will destroy the driver tubes. Repeat, with radio in AM the 500 must be in AM. - 4. Do not drive with over four watts AM under any conditions. If you overdrive, it is at your peril. If this was a 750 we would sell it at the 750 price! CONVERSION: Instructions same as Maco 300. Later versions will be the same instructions as 750. TUNING: If you are not familiar with the front tuning, it is done as follow: 1. Turn the front load control all the way to the left; key, whistle and set tune for maximum output. Then turn load control to the right while whistling, adjust tune for maximum. Continue this adjusting load and tune for maximum output. # 500CX AND 700CX 10 to 11 METER CONVERSION - 1. Remove VFO cover and locate 10 meter VFO coil. Solder a 5 pf NPO capacitor in parallel with the existing 2.5 pf capacitor. - 2. Replace cover and secure the screws. - 3. Using a calibrated source such as a signal generator or crystal controlled CB transmitter and with the tuning dial of the 500CX set to zero, adjust the variable trimmer C-17170, capacitor so that channel #1, (28.020) coincides with this mark. Place signal source on channel #23 and adjust dial of 500CX. It should read approximately 28.350. If proper tracking has not been obtained; remove cover, take out 10 pf NPO and replace with 15 pf NPO capacitor and repeat calibration. - 4. After proper tracking and calibration is obtained, it is suggested that some type of coil dope be applied to the area of the coil and capacitor so that they acquire a measure of mechanical rigidity to reduce possibility of drift. - The following coils will have to be repeaked: L-101, L-203, and L-301. - 5. Set the transceiver on channel #13 and connect dummy load to it. - 6. With the receiver on receive and using the DC scale of a VTVM, connect the negative lead to pin #1 of V-7, the receiver mixer, and the positive lead to ground. Adjust L-101 to the maximum negative DC reading. - 7. Load set using the instructions given in manual for tuning. - 8. Insert approximately 150 MA of carrier by adjusting carrier balance control, and peak L-203 and L-301 for maximum indication on watt meter. - 9. The alignment is now complete, but neutralization will probably be required and this is accomplished by using the method described in the manual for 10 meters excepting that the transceiver dial is set on channel #13. #### RDX-75 - 1. Turn the unit upside down with the front toward you. - 2. Remove the 5pf disc capacitor that is connected between the VFO input (SO-239) and pin #2 of the oscillator tube socket. - 3. Remove the 470K two watt resistor that is connected to pin #1 of the oscillator tube socket and the first lug of the 5 terminal strip. - 4. a. Disconnect the brown wire where it is connected to pin #7 of the antenna relay and reconnect it to pin #4 of the antenna relay. - b. Solder a piece of #18 or larger copper wire from the VFO input (SO-239) to pin #7 of the antenna relay (wire should be as short as possible.) - 5. Starting at the top of the tank coil (load control on left hand end) bridge solder from the end of the coil across one air gap to the first full turn and then across the second air gap to the second full turn. - 6. Unit is now ready to load. #### HDX-50 - 1. Turn the unit upside down with the front toward you. - 2. Remove the 5pf disc capacitor that is connected between the VFO input (SO-239) and pin #2 of the oscillator tube socket. - 3. Remove the oscillator tube, the 6GK6. - 4. a. Disconnect the brown wire where it is connected to pin #7 of the antenna relay and reconnect it to pin #4 of the antenna relay. - b. Solder a piece of #18 or larger copper wire from the VFO input (SO-239) to pin #7 of the antenna relay (wire should be as short as possible.) - 5. Starting at the top of the tank coil (load control on left hand end), bridge solder from the end of the coil across one air gap to the first full turn. - 6. Unit is now ready to load. #### MDX-200 - 1. Turn the unit upside down with front toward you. - 2. Remove the insulated wire and the 5pf disc capacitor that is connected between the VFO input (SO-239) and pin #2 of the oscillator tube socket. - 3. Remove the 470K 2 watt resistor that is connected between Pin #1 of the oscillator tube socket and the first lug of the five lug terminal strip. - 4. a. Disconnect the brown wire where it is connected to the second turn of the oscillator tank
coil. - b. Solder the loose end to the VFO (SO-239); wire should be cut as short as possible. - 5. Starting at the top of the driver stage tank coil, (load control on left hand end) bridge solder (going from left to right) across two air gaps of this coil. Solder from the end of the coil across one air gap to the first full turn and from the first full turn across the second air gap to the second full turn. - 6. Turn the unit right side up, with the front toward you. - 7. Starting at the bottom of the final stage tank coil (load control on left hand end) bridge solder (going from left to right) across two air gaps of this coil. Solder from the end of the 90 degree bend across one air gap to the first full turn and from the first full turn across the second air gap to the second full turn. This will be done on the interior (bottom) of this coil. - 8. Unit is now ready to load. #### PDX-400 LINEAR AMPLIFIER - 1. Turn the unit upside down with the front toward you. - 2. Remove the insulated wire and the 5pf disc capacitor that is connected between the VFO (SO-239) and pin #2 of the oscillator tube socket. - 3. Remove the 470K two watt resistor that is connected between pin #1 of the oscillator tube socket and the first lug of the 5 lug terminal strip. - 4. a. Disconnect the brown wire from pin #10 of the antenna relay. - b. Solder the loose end, just removed from pin #10, to pin #6 of the antenna relay; the wire should be as short as possible. - 5. Solder a piece of #18 or larger copper wire between the VFO (SO-239) and pin #10 of the antenna relay; the wire should be as short as possible. - 6. Starting at the bottom of the driver stage tank coil (at the tune control on the right hand end) bridge solder (going from right to left) across two air gaps of the coil. This will be done on the interior (bottom) of the coil. - 7. Turn the unit right side up, with the front toward you. - 8. Starting at the bottom of the final stage tank coil (at the load control on the left hand end) bridge solder (going from left to right) across two air gaps of this coil. Solder from the end of the 90 degree bend across one air gap to the first full turn and from the first full turn across the second air gap to the second full turn. This will be done on the interior (bottom) of this coil. - 9. Unit is now ready to load. # 10 METER AMATEUR KIT EXPERIMENTER BOARD INFO SHEET #### INSTRUCTIONS: The transistor is pre-cut and pre-tested. You must mount the transistor and solder it in place as shown. If the device is not installed correctly, it will result in immediate destruction of \$19.95. So, it is important to install it right the first time. We have found that when installing the 10 meter unit in the radio you need to have additional sheilding between the amp and the radio component's to prevent feed back. This may be accomplished by using a piece of aluminum foil wrap and inclosing it between a piece of note book paper. Fold the paper in half and insert the foil wrap between the folded paper, tape or staple and insert the shield between the amp and the radio. Fold the excess over the heat sink and tape the foil so it grounds out on the heat sink or the chassis. You must tear the paper off one end so you can expose the foil in order to ground it to the chassis or heat sink. Be sure the paper covers all parts that might short out. See illustration below: # NEW WASHINGTON, PRESIDENT McKINLEY, 140/142 GTL SLIDE MODIFICATION WITH 8719 CHIP # HOW TO MAKE ANY CYBERNET CHASSIS SLIDE AS APPLIED TO SOME JC PENNEY, SEARS ROADTALKER, AND MORE X- DENOTES CUTS NOTE: Shows increased range with super diode. # SUPER CLARIFIER HELPFUL HINTS - (1) Note that parallel capacitors are pulled out when installing super diodes. (See locations A, B, and C). - (2) When installing super diodes, be careful to observe polarity. Use isolated tip soldering iron only! Location of varactor in typical 858 chassis. Note that there are three diodes. All three diodes must be replaced when desiring slide in AM, USB, and LSB. Use super clarifier diodes to improve clarifier range up to 300%. # MAKING THE PRESIDENT WASHINGTON BASE WITH 8719 CHIP READOUT FREQUENCY DIRECT EVEN IN RECEIVE MODE #### **INSTRUCTIONS:** - 1-Obtain the 310-B Glen communications counter from your favorite parts place. - 2-Wire as shown in diagram below. (See pages 12 and 13 in Secret CB volume five for more information on balun). - 3-Counter should readout in receive and transmit mode. (Shows true AM, LSB, and USB offset). ## DX-50 SIGNAL MASTER # DX-50 GREATLY IMPROVES RADIO CAPABILITY ON RECEIVE UP TO 5 S UNITS OR 30DB GAIN #### WHY THE REDCO DX-50? The DX-50 is a must for the avid CB operator who requires a broad-banded receiver. As shown in the chart, a typical CB receiver sensitivity curve is shown by the solid line. It can easily be seen that the receiver sensitivity decreases rapidly outside of the CB band. The dashed line represents the sensitivity curve of the same CB receiver with the DX-50 in line. The Automatic Gain Control (AGC) circuit in the radio tends to average the gain and this is the reason the curve flattens. The AGC circuit will reduce the gain on weaker signals. All things considered, the DX-50 adds the necessary gain to enhance receiver performance over a broad range of frequencies. Along with a 28 db minimum gain factor, the DX-50 carries a 20 db minimum attenuation factor. The attenuator can be used to minimize bleedover and reduce the signal strength of nearby transmitters which would otherwise overdrive the receiver. # DX-50 PERFORMANCE CHARACTERISTICS NORMAL CB OPERATING RANGE GAIN vs. BANDWIDTH EQUIPMENT USED Generator: Hewlett Packard 608F Receiver: Expanded Cobra 2000 GTL 8300 Series Pre-Amp: DX-50, Serial No. 001 TEST CONDITIONS: RF Gain: Maximum Mode: AM Modulation: 30% @400Hz