

OPERATING MANUAL for DATRON MODEL 1030 True RMS DIGITAL VOLTMETER

METEOR CLOSE

NORWICH AIRPORT INDUSTRIAL ESTATE NORWICH NR6 6HQ ENGLAND

OPERATING MANUAL for DATRON MODEL 1030 True RMS DIGITAL VOLTMETER

.

Instrument Designed and Manufactured by:-

DATRON ELECTRONICS LTD., METEOR CLOSE, NORWICH AIRPORT INDUSTRIAL ESTATE, NORWICH, NR6 6HQ. Telephone: 0603 412126 850001 Issue 2

.

CONTENTS

Sect	ion	Title	Page
1	GENEI	RAL INFORMATION	1
	1.1	FEATURES	1
	1.1.1	Options	
	1.2	MECHANICAL DESCRIPTION	
	1.3	ELECTRICAL DESCRIPTION	
	1.3.1	High Stability Preamplifier	
	1.3.2	Bandlimit Filter	
	1.3.3	RMS to DC Conversion	
	1.3.4	Integration	
	1.3.5	Analogue to Digital Conversion	
	1.4	SPECIFICATION	7
	1.4.1	Specification Verification	9
2	ΙΝΥΤΑ	LLATION AND OPERATION	. 10
<u></u>	110111		. 10
	2.1	UNPACKING AND INSPECTION	10
	2.2	INSTALLATION	10
	2.2.1	Voltage Tappings	10
	2.2.2	Supply Lead and Earthing	11
	2.2.3	Input Connections	11
	2.3	CONTROLS	12
•	2.4	OPERATION	,14
	2.4.1	Using the GUARD Terminal	14
	2.4.2	Special Notes: AC Coupling	17
3	OPTIO	NAL REMOTE OPERATION	18
	3.1	OPTIONS (BO1) and (BO1a) : 1-2-4-8 BCD OUTPUT	
	3.1.1	Description	
	3.1.2	Connections	
	3.1.3	Examples of BCD Coding	
	3.1.4	Control Lines	
	3.1.4.		
	3.1.4.	8 8	
	3.1.4.	6	
	3.1.4		
	3.1.4.	Č Č	
	3.1.4		
	3.2	OPTIONS (BO2) and (BO2a) : THREE STATE LOGIC OUTPUT	
	3.3	OPTION (P01): REMOTE PROGRAMMING	
	3.3.1	Description	
	3.3.2	Method of Operation	
	3,3,3	Pin Connections	
	3.3.3.		
	3.3.3		-
	3.3.4 3.3.5	Characteristics of Use	
		11511111115 11111120111111	

C O N T E N T S (continued)

Section	Title		
4 TECHNIC	CAL DESCRIPTION	26	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3 4.3.1 4.3.2	GENERAL A.C. TO D.C. CONVERTER. Preamplifier and Scaling True RMS Converter. Switching and Optional Power Supply ANALOGUE-DIGITAL DISPLAY Analogue Section Digital Section.		
5 SPECIFIC	CATION VERIFICATION	43	
5.1 5.2 5.3 5.4 5.5 5.6 5.7	DESCRIPTION INSTRUMENT REQUIREMENTS PROCEDURE A.C. PERFORMANCE. PROCEDURE D.C. PERFORMANCE. PROCEDURE L.F. PERFORMANCE. PROCEDURE BANDLIMIT FILTER USING A TRANSFER STANDARD.	43 44 46 46 46	
6 MAINTE	NANCE	. 48	
6.1 6.1.1 6.2 6.2.1 6.2.2 6.2.3 6.2.3	GENERAL Removal of covers – access to components. ROUTINE CALIBRATION. General Test Equipment. Procedure Zero Adjustment.	. 48 . 49 . 49 . 49 . 49 . 50	
6.2.3.2 6.2.3.3 6.2.3.4 6.2.3.5 6.3	D.C. 'Turnover' CalibrationFull Scale CalibrationA-D Converter Calibration	. 50 . 51 . 51 . 51	
6.3.1 6.3.1.1 6.3.1.2 6.3.1.3	 A-D Board - Procedures following repair Integration Period Calibration Zero Calibration Full Scale Calibration 	. 53 . 53 . 53 . 53	
6.3.1.4 6.3.1.5 6.3.2 6.3.2.1 6.3.2.2 6.3.2.2	Overload check	· 54 · 54 · 54 · 54	

-

.

C O N T E N T S (continued)

Section			Title	
7	OTHER OF	PTIONS		56
			OUTPUT	
8	COMPONE	ENT LISTS		
	409106	A.C. to	D.C. Converter Board	
	409109/	A Analog	to Digital Converter Board	
	400025	Display	Board	
	400348		otion BO1	
	400058		otion BO1a	
	400349		otion BO2	
	400023	-	Detion BO2a	
	409117		Programming Option PO1	
			Time Options	
		Delay 1		
9	BOARD L	AYOUTS A	AND CIRCUIT DIAGRAMS	
	409106	/439105	A.C. to D.C. Converter Board	
	409109	A/439106	Analog to Digital Converter Board	
	400025	/430006	Display Board	
		/430348	BCD Option BO1	
		/430042	BCD Option BO1a	
		/430349	BCD Option BO2	
		/430002	BCD Option BO2a	
	409117	/430001	Remote Programming Option PO1	

APPENDICES

COMPONENT LISTS CIRCUIT DIAGRAMS

ILLUSTRATIONS

Figure

Title

Page

1	Simplified Block Diagram 4
2	Functional Diagram, Analogue/Digital Convertor
3	Mains Transformer Tappings 10
4	Guard Terminal Connections14
5	" "
6	" "
7	" "
8	" "
9	" "
10	COMMAND & PRINT COMMAND Waveforms
11	" " (delayed)
12	" " (")
13	Option (P01), Simplified Circuit 24
14	Analogue to D.C. Convertor, Block Schematic
15	Simplified Diagram of Preamplifier and Scaling
16	Further Simplification of Preamplifier and Scaling 28
17	Simplified Diagram of Precision Rectifier
18	Simplified Diagram of $\frac{1}{2}$ -wave Rectifier
19	Simplified Diagram of L. F. Filter 33
20	Dual-Slope Integrator Switching35
21	Integrator Timing Diagram 36
22	Block Diagram, Digital Section 39
23	Counter Sequence Summary 42
24	Analogue Output / Rear Input Connections 56

SECTION 1

GENERAL INFORMATION

1.1 FEATURES

Model 1030 Digital RMS Voltmeter utilizes an entirely new type of True Root Mean Square sensing circuit for the accurate measurement of both sinusoidal and non-sinusoidal waveforms. The circuitry was developed to overcome the shortcomings of thermal r.m.s. to d.c. convertors, by directly computing the true r.m.s. value of an input waveform. It offers the user significant advantages over currently available instruments in several important areas of measurement. Among these is its accuracy at extremely low frequencies even with high crest factor signals, its exceptionally rapid response and its accuracy over a wide dynamic range of input signals.

The utilization of all-electronic circuitry enables the Model 1030 to operate over a frequency range of 0.01 Hz to 1 MHz, displaying either the Root Mean Square or the Mean Square value of the input waveform. It opens new fields of measurement capability, in control engineering, noise and vibration studies and in any application involving complex or distorted waveforms.

Reading indication is by means of an integrating analogue to digital convertor equipped with highly-efficient cold-cathode seven-segment displays. These are mounted behind a polarising filter to provide high visual contrast under all normal lighting conditions.

1.1.1 <u>Options</u>

A number of optional facilities may be specified at the time of ordering to extend the versatility of the Model 1030.

- (A01) Analogue Output gives a 1-volt d.c. full-range output for any full-range input.
- (R01) Rear input terminals may be specified as an alternative to the normal front-panel terminals.
- (D01) A fourth display digit may be specified to give improved resolution when operating at a low percentage of full-scale input.
- (F01-F04) A number of alternative integration response times are available, see SPECIFICATION, Section 1.4.
- a) -j Combinations of normal mode and LF mode filters.
- (BO1 and BO1a) Electrically isolated BCD outputs give remote indication of reading, range and function in 1-2-4-8 TTL compatible code, from a 50-way rear-panel connector. External hold command and print facilities are provided for readings at up to 20 per second.
- (BO2 and BO2a) At small additional cost to Option (B01) the Systems user may include the added versatility of 3-state logic. In effect, this means that a single line on the 50-way connector may be grounded to disable the BCD output completely. When multiplexing is used on logic highways, the Model 1030 may be left permanently connected to the system bus-bars without interfering with other peripherals.
 - (P01) Isolated remote programming enables all ranges and functions to be selected from a remote point using TTL logic levels.

1.2 MECHANICAL DESCRIPTION

Although Model 1030 quite legitimately claims its place amongst precision laboratory instruments, it is housed in a robust heavy-gauge aluminium case designed to withstand the rough knocks of industrial usage. The handle-pivots are fitted with latch mechanisms enabling the carrying handle to be used as a prop-stand to cater for a convenient viewing angle.

A rack-mounting conversion kit is available to permit the Model 1030 to be permanently installed as part of a system.

The detachable supply-lead provided, comprises two metres of 3-core P.V.C. sheathed cable in accordance with BS 6500, permanently moulded to a fully-shrouded 3-pin cable socket. The complete cable assembly complies with the requirements of CEE Publication 22 and IEC 320.

All components, including those of the power supply, are mounted on two rigidly-supported circuit boards. The components used are all of the nature and quality necessary to ensure long and trouble-free service despite arduous use.

1.3 ELECTRICAL DESCRIPTION

The instrument comprises a precision wideband preamplifier with a selectable low-pass bandlimit filter, an r.m.s. computation section, a two-speed selectable 3-pole integration filter and an analogue-to-digital convertor/display device. A simplified block diagram, Fig.1, illustrates the functions of the various sections.

1.3.1 High Stability Preamplifier

The preamplifier combines excellent d. c. performance $(2 \mu V/^{\circ}C, 2 pA/^{\circ}C)$ with low noise and a bandwidth in excess of 3 MHz. The very low offset drift overcomes the necessity for a.c. coupling after the preamplifier when measuring on low ranges, resulting in only one d.c. blocking capacitor at the input. This arrangement allows the measurement of a.c. voltages with up to 1 kV of d.c. bias even on the 10 mV range. All switching is by means of front panel push buttons or, when Option P01 is incorporated, by applying TTL levels to the appropriate isolated programming lines.

1.3.2 Bandlimit Filter

The preamplifier is followed by a low-pass filter which can be switched into circuit to reject high frequencies, a feature particularly useful in noise measurement. The filter has a single pole (-6 dB/octave) and is normally -3 dB at 10 kHz, giving an equivalent rectangular bandwidth for Gaussian noise of 15.7 kHz. Non-standard frequencies may be specified at the time of ordering.

FIG.1

1.3.3 RMS to DC Conversion

The RMS Module utilizes all solid-state circuitry to overcome the shortcomings of thermal r.m.s. to d.c. convertors with their inherent limited dynamic range. The output waveform from the preamplifier is, first full-wave rectified by a precision rectifier circuit, and then applied as one input, Vin, of the RMS Module. In this unit the square of the input voltage Vin is computed relative to a second input Vf, to produce an output Vo.

Output voltage Vo takes the following form: $Vo = \frac{Vin^2}{Vf}$

The output is averaged in the Integration Filter to give: $\overline{Vo} = \frac{\overline{Vin^2}}{Vf}$

In the r.m.s. mode the feedback loop is closed so that: $\overline{Vo} = Vf$

The averaged output therefore comprises:

$$\overline{\text{Vo}} = \frac{\text{Vin}^2}{\text{Vo}}$$

--- 0

This is the same as:

$$\overline{\mathrm{Vo}} = \sqrt{\mathrm{Vin}^2}$$
 i.e. the r.m.s. of Vin.

From the foregoing explanation it will be appreciated that, in the r.m.s. mode, the second input Vf is the overall output voltage, thus scaling the squarelaw circuitry to the r.m.s. signal level, without explicitly generating the square of the input waveform either thermally or electronically. Herein lies the key to the wide dynamic range of Model 1030.

In the Mean Square mode the feedback loop is broken, and the second input Vf is derived from a separate mean square reference voltage.

-4-

1.3.4 Integration

The integration filter is a 3-pole active device having two switch-selectable (or programmable) response modes, for which various Options may be ordered allowing the user to choose the best low-frequency capability or response time for his own application. If, for example, accurate measurement of a signal with significant components at 0.1 Hz is required, then Option F02 is necessary and the D. C. COUPLED response time will be 150 seconds. Additionally, it may be desirable to select this low-frequency Option to take advantage of the longer effective integration time, thereby reducing statistical errors in noise measurement.

Model 1030 has an effective integration time for noise measurements, equal to its response time. An alternative requirement may be to select an integration-filter Option to minimize response time when a rapid read rate is required. The filter normally settles to $\pm 0.1\%$ within 15 cycles of its lowest-frequency capability.

1.3.5 Analogue to Digital Conversion

The choice of circuit used for conversion of the analogue output signal \overline{Vo} , obtained from the RMS Module, to digital form was governed, amongst other factors, by considerations of common-mode rejection. The phenomenon of common mode and the necessity for its rejection is a well understood fact of life in the field of low-level d. c. measurement. By using Guard Shield techniques, any common mode error voltages can be greatly reduced, and the remaining superimposed a.c. waveform totally rejected by resorting to a technique similar to the commonly used dual-slope integration method of analogue-to-digital conversion.

Fig. 2 shows a simplified functional diagram of the convertor section. The purpose of this part of the circuit is to convert the input signal \overline{Vo} into a time-period directly proportional to the input voltage. The 1-volt FR signal is first amplified to give a 5-volt FR signal. This is applied via electronic switching, controlled by timing pulses, to resistor R connected to the virtual-earth input of a very high-gain integration amplifier. Capacitor C always starts the integration period from a state of zero change, and now commences to charge up at a rate proportional to the input voltage. The signal integration period lasts for exactly 20 msec, during which time capacitor C acquires a charge proportional to \overline{Vo} .

At the end of 20 msec, resistor R is disconnected from the incoming signal and transferred to an accurate 5-volt reference source of opposite polarity to that of the input signal. The length of time it takes to discharge capacitor C to zero volts is directly proportional to the state of charge acquired during the signal integration period which, in turn, is proportional to the input voltage \overline{Vo} . The instant that the voltage across capacitor C reaches zero is signalled by a pulse from the Null Detector, and fed as a strobe pulse to the display circuitry. The same pulse is used to disconnect the reference voltage, and reset the circuit ready for the start of the next timing pulse.

In the unlikely event of capacitor C acquiring a reverse charge during the signal integration period, the Null Detector incorporates a polarity-sensing circuit; this ensures that the reference potential is always of the correct polarity to discharge capacitor C and eliminates all possibility of 'lock-up'.

۱

1.4 SPECIFICATION

Ranges:	10.00 mV, 100.0 m	nV, 1.000 V, 10.00 V	, 100.0 V, 1000 V.		
Overrange:	100% (i.e. 1999 Full Scale on all ranges except 1000 V. (Maximum input 1000 V).				
Accuracy:	Subject to frequency, Sinewave less than 10	90 days duration at $25^{\circ}C \pm 5^{\circ}C$, less than 90% RH. Subject to frequency/voltage limitation: Sinewave less than 10^{8} Volt Hertz. e.g. 100 volt @ 1 MHz add 1.5 ppm/volt above 300 volts			
	<u>Ranges</u> 100 mV – 1000 V: 10 mV (>100 µV):	<u>Up to 5 kHz</u> 0.1%R <u>+</u> 0.05% FS* 0.2%R <u>+</u> 0.1% FS	<u>5 kHz to 30 kHz</u> 0.2%R <u>+</u> 0.1% FS 0.5%R <u>+</u> 0.1% FS		
	<u>Ranges</u> 100 mV - 1000 V: 10 mV (>100 µV):	<u>30 kHz to 100 kHz</u> 0.3%R <u>+</u> 0.2% FS 3.0%R <u>+</u> 0.2% FS	<u>100 kHz to 300 kHz</u> 2.0%R <u>+</u> 0.3% FS (Typ. 5% to 500 kHz)		
	<u>Ranges</u> 100 mV – 1000 V:	300 kHz to 1 MHz 3.0%R <u>+</u> 2% FS	*For option D01 read .02% FS		
Temperature Coefficient:	One tenth of accuracy	y rating per °C $\pm 3 \mu$ V/°C	2		
Internal Noise:	It is impossible to zero the lowest ranges on a 1030 due to internally generated noise. This noise is from two sources as follows:- 1. MAINS LINE FREQUENCY common mode noise generated in the mains transformer and coupled to guard. The effect of this noise is com- pletely removed if Guard is referred to true earth through any impedance less than about 1 Megohm. The standoff error due to this source may be up to about 120 microvolts. 2. Wideband random noise in the input stage of about 80 microvolts reducing to less than 30 microvolts when bandlimit is depressed, which represents a noise level of $0.3\mu V / \sqrt{Hz}$ The effect of both these noise sources is that it is impossible to reach zero on the lowest ranges. It should be noted however, that because the instru- ment is true RMS the noise does not normally upset the accuracy because considering a signal S and the noise level N, then the RMS is given by: $RMS = \sqrt{S^2 + N^2}$ Suppose the signal is only 300 microvolts and the wideband internal noise is 80 microvolts $RMS = \sqrt{90000 + 6400}$				
		= 310.5μ volts 10.5 μ volts or .05%FS.			
<u>Crest Factor</u> :	5:1 at full range in $2.5:1$ at 100% over Holds over entire f	range.			
<u>Common Mode</u> <u>Rejection</u> :	Greater than 90 dB fr	om d.e. to 50 Hz.			

Input Impedance:	1 MΩ shunted by 20 p (50 pF, Option R01)		
<u>Maximum Input</u> <u>Voltage:</u>	Signal Hi to Signal I A.C. Coupled: 1500 D.C. Coupled: 1500	Lo: 1000 volts peak. O V pk, 20 Hz to 100	
	Signal Lo to Guard: 25	60 volts.	
	Guard to Earth: 500	0 volts peak.	
<u>Integration Filter</u> <u>Response</u> :		acy down to the lowe D.C. COUPLED is a	est specified selected below 30 Hz.
	<u>Lowest</u> * <u>Specified</u> <u>Frequency</u>	<u>Settling Time</u> <u>to 0.1% of</u> <u>Final Value</u>	Accuracy Degradation
NORMAL:	40 Hz	300 msec	
LF MODE:	1 Hz	15 sec	
Option F01: Option F02:	10 Hz 0.1 Hz	1.50 sec 150 sec	+0.1% FS
Option F02:	0.01 Hz	1500 sec	$\pm 0.5\%$ FS
Option F04:	350.0 Hz	50 msec	
Filter Combinations	FILTER COMBINATIONS		Normai LF Mode
	A 40 Hz 1 Hz	F	1 Hz 0.01 Hz 0.1 Hz 0.01 Hz
	B 40 Hz 10 Hz C 10 Hz 1 Hz D 10 Hz 0.1 Hz	H H	350 Hz 40 Hz 350 Hz 10 Hz
	E 1 Hz 0·1 Hz	J	350 Hz 1 Hz
	* Multiply Lowest S asymmetrical wave	Specified Frequency forms.	by 2 for grossly
	·		
<u>Bandlimit Filter</u> :		ency response to 10 gular bandwidth, 15.	kHz (-3 dB <u>+</u> 0.5 dB). 7 kHz.)
<u>Options</u>	Other filter frequen are available.	ncies within the band	100 Hz to 100 kHz
<u>Mean Square</u> :		Mean Square value of twice the appropriate	f the input waveform. e r.m.s. error.
D.C. Coupled:	Button Depressed:		
	Responds to the tru waveforms thus:	e r.m.s. value of th	ne d.c. and a.c.
	$\sqrt{\mathrm{AC}^2 + \mathrm{I}}$	$\overline{\mathrm{DC}^2}$	
	input waveform only L. F. Response: No Ot Note: The max. inp	e r.m.s. value of th y. ormally -3 dB at 0.8 ther Options availabl out voltage when a.c	8 Hz (0.1% at 30 Hz)

Reading Rate:	Interna	l: 3 readings	s/sec.			
BCD Output:	and Fun code. Ex	Options (BO1, BO1a, BO2, BO2a): Reading, Range and Function. $1-2-4-8$ +ve True, TTL compatible code. External hold command and print facilities are provided for readings at up to 20 per second.				
<u>Remote</u> <u>Programming</u> :	-		0	nge or function +ve True, TTI		le
Power Supply:	Specify	205-255 V, $105-127$ V, 48 to 440 Hz. Specify line frequency and voltage when ordering. Consumption: Approximately 10 VA.				
Operating Temperature:	0°C to	+50 ⁰ C.				
Storage Temperature:	-25°C t	o +70°C.				
<u>Dimensions</u> :	Height:	90 mm (3.5")	Width:	224 mm (8.8")	Depth:	330 mm (13")
Weight:	4 kg (8.8	B lb) net				
Shipping Weight:	4.6 kg (1	0 lb) gross.				
Panel Mounting:		al hardware is al mounted in		enable the instr 19" rack.	ument	

1.4.1 Specification Verification

A checking routine to ensure that the instrument is working within its specified accuracy is given in Section 5, SPECIFICATION VERIFICATION. The checking procedures given are suitable for incoming inspection purposes, or for use as a periodic check of instrument calibration. Full calibration procedures are given in Section 6, MAINTENANCE.

-9-

SECTION 2

INSTALLATION AND OPERATION

2.1 UNPACKING AND INSPECTION

Every care is taken in the choice of packaging materials to ensure that your new instrument will reach you in an unblemished factory-fresh condition. There is, however, an economic limit to the degree of packaging/protection it is desirable to provide, and our level of protection is more than adequate to cater for all the normal hazards of road or rail transport. Special export packaging is provided for overseas orders.

Should your instrument have been subjected to excessive mishandling in transit the fact will probably be visible as external damage to the shipping carton.

Unpack the instrument and carefully examine the exterior for damage to case, panels, push buttons, terminals, etc. If any damage is found, notify the Carrier immediately.

2.2 INSTALLATION

Unless otherwise specified at the time of ordering, the instrument is normally despatched ready for immediate use with 205 to 255 V, 48 to 440 Hz supplies.

2.2.1 <u>Voltage Tappings</u>

To make the instrument suitable for operation from supplies in the range 105 to 127 V, 48 to 440 Hz, it is necessary to alter the connections to the primary windings of the mains transformer. Remove the top cover (See Section 6.2.) and note the tags mounted on the printed circuit board adjacent to the toroidally-wound mains transformer. To gain access to these tags it is desirable to remove the four screws securing the rear panel, and to ease the panel away from the instrument as far as the wiring will permit. For 240-volt operation the two primary windings are series-connected by linking the 'start' (Red) of one winding to the 'finish' (Brown) of the other.

Remove the link and reconnect the two windings in parallel so that the incoming supply is applied across the 'start' and 'finish' of both windings as shown in Fig. 3. i.e. Red should be joined to Black to form the Live input; Brown should be joined to Orange to form the Neutral input.

2.2.2 <u>Supply Lead and Earthing</u>

As already described in Section 1.2. the 2-metre supply lead is permanently fitted with a moulded-on 3-pin socket. This fits the receptacle at the rear of the instrument and should be pushed firmly home. The cable conforms to the colour code specified in BS 4410, viz. Brown = Live

Blue = Neutral Green/Yellow = Supply Earth

When connecting the supply lead to a suitable plug, it is strongly recommended that the instrument case should be earthed via the Yellow/Green earth wire; this should be connected to the supply-line earth by using a 3-pin plug. If the plug used incorporates a cartridge fuse, this should be replaced by one of low-current rating, say 1 or 2 amperes.

It should be noted that although it is recommended that the instrument case should be earthed, none of the front-panel terminals are connected to the case. This enables measurements to be made on circuitry floating at a considerable level above earth potential, (See Section 2.2.3).

In these circumstances it should be remembered that the internal guard shields can be elevated to dangerous potentials. For this reason it is safest to disconnect not only the supply mains, but also the signal input leads, before removing the instrument covers.

2.2.3 Input Connections

Three signal input terminals are located on the front panel marked respectively Hi, Lo and Guard. These terminals may be used as 'binding-posts', or connection may be made using 4 mm banana plugs. The terminals are mounted on standard $\frac{3}{4}$ " spacing between centres, enabling double or triple banana-plug adaptors to be used.

Note: The following input voltages must not be exceeded under any circumstances:-

Signal Hi to Signal Lo:	1000 volts peak.
D.C. Coupled:	1500 V pk, d.c. to 100 kHz.
A.C. Coupled:	1500 V pk, 20 Hz to 100 kHz.
Signal Lo to Guard:	200 volts peak.
Guard to Earth:	500 volts peak.

Full details of the recommended methods of making connection between the input terminals and the circuit under test are given in Section 2.4.1.

2.3 CONTROLS

ON/OFF A push button switch with alternate ON/OFF action is mounted at the left of the display above the input terminals. It completely isolates the mains supply live from the instrument, with the exception of the mains fuse and socket, which remain live unless the supply-lead is disconnected.

> Although no 'Supply On' pilot light is fitted, the circuit is so arranged that when the mains transformer is energized, at least one part of the display will always be glowing, even when no numerals are visible.

RANGE INDICATIONImmediately to the right of the numeric display, four indicatorLIGHTSlights are fitted to illuminate one of the following legends:-

v	mV	$\underline{V2}$	$\underline{mV^2}$
v	111 V	FR	FR

The legends are necessary in order that the numeric display can be interpreted correctly as being either volts or millivolts.

 $\frac{V^2}{FR} \quad \text{or} \quad \frac{mV^2}{FR} \quad \text{are illuminated only when the instrument is} \\ \text{operating in the Mean Square mode to enable} \\ \text{the decimal point position to be established;} \\ \text{it would otherwise be 'off the screen'.} \end{cases}$

PUSH BUTTONS

A row of eleven push buttons, each clearly marked as to its function, are the only operational controls. Lest there be any confusion regarding these markings, it should be understood that the labelled function or range becomes effective when the button is depressed. i.e. A TRUE RMS display is obtained when the MEAN SQUARE button is <u>not</u> depressed.

RANGE

The six push buttons at the left of the row are marked:-

 1 kV
 100 V
 10 V
 1V
 100 mV
 10 mV

 corresponding to full-range displays of: 1000. V
 100.0 V
 10.00 V
 100.0 mV
 10.00 mV

<u>Overrange</u> is signified by a 1 being illuminated at the left of the normal display. 100% overrange permits a maximum display of 1999 except on the 1 kV range which is 1000 max.

<u>Overload</u>. Above 100% overrange of 1999 the display blanks out (apart from the decimal point) until a less sensitive range is selected.

••••	REMote PROGramme	This button is effective only when Option (P01) is fitted. With the button depressed, the Range and Function may be remotely programmed using +ve True TTL Compatible logic. See Section 3.2. The range-indication lights function normally showing whether volts or millivolts are being dis-
		played.
	DC COUPLED	When this push button is <u>not</u> depressed, the input to the instrument is a.c. coupled via a d.c. blocking capacitor. The instrument responds to the a.c. component of the input signal only, with a low-frequency response of -3dB at 0.8 Hz. See Section 2.4.2.
		<u>Button Depressed</u> : Shorts out the blocking capacitor so that the instrument responds to both the d.c. and a.c. components of the input signal thus:-
		$\sqrt{AC2 + DC2}$
	BAND LIMIT	Depressing this button introduces a single-pole (-6 dB/Octave) low-pass filter to reject high frequencies. Normally, the filter is -3 dB at 10 kHz giving an equivalent rectangular noise bandwidth of 15.7 kHz. Note: An alternative filter frequency may have been fitted by request.
-	LF MODE	Under normal conditions, with this push button <u>not</u> depressed, the lowest measurement frequency for symmetrical waveforms* is 40 Hz, with a settling time of 300 msec.
_		<u>Button Depressed</u> : Extends the lowest measurement frequency for symmetrical waveforms* to 1 Hz, with a settling time of 15 seconds.
		*Note: For details of asymmetric waveforms and alternative filter frequencies, see Section 1.4, Specification.
_	MEAN SQUARE	With the MEAN SQUARE button depressed the instrument responds to the True Mean Square of the input waveform instead of the True RMS value. To enable the decimal point to appear on the display, the numerical indication is, in fact either $\underline{V2}$ or $\underline{mV2}$ as indicated by the range indication lights. FR FR
~	mV NULL	This is a screwdriver-operated preset control to enable the instrument to be adjusted for minimum output indication with zero input signal applied to the most sensitive range. To adjust mV NULL, strap all three input terminals together and connect them to true earth. Select the 10 mV range and note the offset reading in the last window of the

input terminals Select the 10 mV range and note the offset reading in the last window of the display due to internally-generated thermal noise. Select BAND LIMIT to exclude the high-frequency noise, and note Then adjust mV NULL to obtain the the reduced readout. lowest possible readout figure. It will not be possible to

mV NULL (continued)	reduce the readout to zero, and an indication of 2 to 3 in the last window is quite normal for a correctly adjusted instrument. (This becomes 20 - 30 when D01 is fitted.)
FUSE	The supply to the mains transformer primary windings is protected by a 20mm x 5mm glass cartridge, anti-surge type fuse; 160mA rating for 230V operation and 250mA rating for 115V operation.

2.4 OPERATION

Assuming that you are going to use the Model 1030 for the first time, it is strongly recommended that, before switching on, you should:-

- 1) Check that the instrument is correctly adjusted for the particular mains supply to which it is to be connected. Within each of the two major voltage ranges no fine tapping adjustments are required. See Section 2.2.1.
- 2) Connect the supply lead if in doubt see Section 2.2.2.
- 3) Switch ON the supply and, while allowing a minute or so for the internal circuits to stabilize, read Section 2.2.3 and Section 2.3 to familiarize yourself with the maximum safe input voltages, and the functions of the various push buttons.

2.4.1 Using the GUARD Terminal

If you are not familiar with the use of GUARD terminal techniques, to minimize the unwanted effects of common-mode voltages, the following comments may prove helpful.

For a start it should be understood that there are many measurements on the laboratory bench, where the use of the GUARD terminal is not necessary. In instances where the connecting leads are short, the GUARD terminal is usually strapped to the L_0 terminal as shown.

The disadvantage of the simple arrangement in Fig. 4 is that the connecting leads form a loop. If a stray alternating magentic field from the mains transformer of a neighbouring instrument passes through the loop it will behave as a single turn secondary winding, and unwanted a. c. voltages will be induced into the measuring circuit.

SHORT Unbal source on testbench, WISTED with stray a.c PAIR magnetic field Logd Fig. 5 -0 Hi Unbal source $\infty \infty \infty$ on testbench 'floating'above SHORT LEADS earth potential OGd RESISTANCE (LOW OR HIGH VALUE) ACROSS WHICH COMMON MODE ≩ VOLTAGES COULD BE PRESENT Fig. 6 Balanced source ОН (Earthed or floating) $O \mid c$ Lo O Gd Fig.7 ÷

Fig. 5 is a better arrangement, where the twisted pair reduces the loop area and adjacent twists of the wires produce cancellation of any induced voltages.

When making measurements on an unbalanced source, (still using short leads) where the source is 'floating' above earth potential, as shown in Fig. 6, then the GUARD terminal may be connected to the Lo (N) terminal of the source. This applies whether the resistance R is very low (earth circuit impedance) or deliberately of a high value as in the case of floating sources. The advantage gained is small in this instance, because the resistance of the connecting leads is low.

The same comments apply with balanced sources on the testbench. The GUARD connection should, in most instances, be connected to the same point as the Lo terminal, whether the centre tap is earthed or floating.

The GUARD terminal is of greatest benefit when the source to be measured is some distance away from the measuring instrument. A screened twisted-pair cable (Duradio Type) with an insulated outer jacket should be used. At low frequencies a screened twin microphone cable is suitable, but it is important to choose a type with low capacitance per foot. Suitable types are listed below; the r.f. types are, in general, more expensive and less flexible, but they have merit for high-performance semi-permanent measuring lines.

MICF	OPHONE	CABLE			R.F. CABLE		
Mfr.	Туре	pF/ft	O/D''	Mfr.	Type	pF/ft	0/D''
Suhner	G03939	20	.197	Suhner	G05730	16.2	.292
Suhner	CB04730	59	.228	Suhner	G05770	16.2	.292
Transradio	MC 02-A	35	.187	B.I.C.C.	T3121	18.0	.228
Transradio	MC 02-D	40	.150	B.I.C.C.	T3249(DR68)	16.0	. 265
B.I.C.C.	9442Y	36	.244	B.I.C.C.	T3078	16.0	.265

Fig. 8 shows the recommended method of connecting to a remote unbalanced source. In the example illustrated, one side of the source is bonded to an earthed screen, and the bonding point would probably form the best place to connect the cable braid (guard).

If, however, the remote source is balanced, or is 'floating' above the potential of the surrounding earth screen (or chassis) then the GUARD connection should be made to the Lo side of the source and not to the earth screen, Fig. 9.

Finally, having decided upon the most suitable method of connection for making a particular measurement, check that the proposed method does not involve exceeding the maximum input voltage ratings of the instrument.

Signal Hi to Signal Lo:1000 volts peak.D.C. Coupled:1500 V pk, d.c. to 100 kHz.A.C. Coupled:1500 V pk, 20 Hz to 100 kHz.Signal Lo to Guard:200 volts peak.Guard to Earth:500 volts peak.

-16-

2.4.2 Special Notes: AC Coupling

When using the instrument in its a.c. coupled mode, the user should have an understanding of certain basic theoretical problems which are not shortcomings of the instrument but fundamental to any a.c. coupled circuit.

AC coupling in the Model 1030 is by means of a single 0.22 μ F capacitor in series with the input resistance of 1 Mohm. This means that there is an input time constant of 0.22 seconds, giving a frequency response of -3 dB at 0.8 Hz, equivalent to -0.1% at 30 Hz.

This time constant also has a finite settling time, and if d.c. bias voltages are applied to the input of the instrument when it is switched to AC COUPLED, they may take up to 1.5 seconds to settle out regardless of integration filter mode.

If high-accuracy AC COUPLED measurements have got to be made at frequencies below 30 Hz, then it will be necessary to switch to DC COUPLED, and to a.c. couple externally with a value of capacitor greater than $0.22 \,\mu$ F. The working voltage and leakage of the external capacitor should be carefully checked for suitability. At high d.c. voltages the onset of Partial Discharge phenomena within the capacitor could cause erroneous readings, and the inception voltage for the capacitor (if quoted) should be considerably higher than the applied d.c. Partial Discharge noise occurs at a much lower voltage than corona discharge, and the possibility should not be ruled out if the d.c. exceeds about 800 volts.

SECTION 3

OPTIONAL REMOTE OPERATION

3.1 OPTIONS (BO1) and (BO1a) : 1-2-4-8 BCD OUTPUT

3.1.1 Description

Options (BO1) and (BO1a) enable full Binary Coded Decimal outputs describing Reading Range and Function to be obtained from a 50-way Amphenol 'MICRO-RIBBON' Connector (J5) mounted on the rear panel. The outputs are isolated from true earth and also from the signal input terminals.

Whilst it is recommended that the output digital common be referred to true earth, the input terminals may be floated as high as 500 volts relative to true earth and digital common.

The 50-way connector (J5) also provides various control lines and flags, enabling complete external control of the Analogue to Digital convertor. All levels are TTL compatible, with a fan-out of 4.

3.1.2 <u>Connections</u>

The table below (and on the following page) lists the various functions of the pins on connector J5. BCD output numbers are given magnitudes that assume operation on the 1 V Range. Bar notation indicates that a low level (less than 0.4 V) is 'active' or 'enables' the described state.

e.g. \overline{mV} means that pin 32 is low (less than 0.4 V) when the instrument is operating in either of its two permitted millivolt conditions: 10 mV or 100 mV

<u>J5 Pin No</u> .	Function		Ţ	<u>)escri</u>	pti	on			
1	2 x 10-4	BCD	Outpu	t No.	(0	Optio	n D01	onl	y)
2	4 x 10-4	**	11	*1	(**	11	11)
3	8 x 10-4	,,	**	**	(**	11	**)
4	1 x 10-4	*1	**	**	(• •	**	**)
5	2 x 10 ⁻³	**	**	**					
6	4 x 10 ⁻³	* *	* *	**					
7	8 x 10 ⁻³	**	**	11					
8	1 x 10-3	**	**	11					
9	2×10^{-2}	**	**	**					
10	4 x 10-2	**	**	**					
11	8 x 10-2	**	**	11					
12	1×10^{-2}	11	11	11					
13	2×10^{-1}	**	**	11					
14	4×10^{-1}	**	• •	11					
15	8 x 10-1	••	11	,,					
16	1×10^{-1}	**	11	11					
17	OVERLOAD	Indic	ates s	ignal	gre	ater	than	199	9(9)
18	1 x 10 ⁰		Outpu						

<u>J5 Pin No</u> .	Function		Description
19	*		
20	*		
21	*		* Used for programming Ranges and Functions
22	*		when Option (P01) is fitted.
23	*		
24	*		
25	*		
26	Not used		Do not connect
27	Not used		Do not connect
28	MEAN SQUARE		'0' indicates MEAN SQUARE: '1' = RMS
29	DC COUPLED		'0' indicates DC COUPLED: '1' = AC COUPLED
30	BAND LIMIT		'0' indicates BAND LIMIT: '1' = WIDEBAND
31	LF MODE		'0' indicates LF MODE: '1' = NORMAL
32	$\overline{\mathrm{mV}}$		'0' indicates mV: '1' indicates Volts
33	Not used		Do not connect
34	RANGE A)	Decimal Point Coding
35	RANGE B)	(Range). (See following
36	RANGE C	· ·	tables)
37	RANGE D)	(Option BO1 and BO2 only)
38	Not used		Do not connect
39	Digital COMMON		'0' state reference
40	HOLD		Input control line
41	COMMAND		11 11 11
42	PRINT INHIBIT		11 11 11
43	SIG. INTEGRATE		Output " flag
44	DELAY		Input '' line
45	PRINT COMMAND		Output '' flag
46	*		
47	*		* Used for programming Ranges and Functions
48	*		when Option (P01) is fitted.
49	*		
50	*		

1030 Range Coding for Options BO1a and BO2a

	Pin 34 (A)	Pin 35 (B)	Pin 36 (C)	BCD Output
Range				
10mV	1	0	0	1
100mV	0	1	0	
1V	1	1	0	
10V	0	0	1	
100V	1	0	1	
1000V	0	1	1	

1030 Range Coding for Options BO1 and BO2

Range	Pin 34 (A)	Pin 35 (B)	Pin 36 (C)	Pin 37 (D)
10mV	1	0	1	1
100mV	1	1	0	1
1V	0	1	1	1
10V	1	0	1	1
100V	1	1	0	1
1000V	1	1 .	1	0

-19-

3.1.3 Examples of BCD Coding

Suppose the following pins of J5 are in a '1' state (greater than 2.4 V):-

3 - 5 - 6 - 9 - 12 - 15 - 16

this gives a reading of:-

<u>Pins</u>

 $8 \times 10^{-4} = .0008 \text{ (Option D01 only)}$ $6 +2 \times 10^{-3} + 4 \times 10^{-3} = .006$ $12 +2 \times 10^{-2} + 1 \times 10^{-2} = .03$ $16 +8 \times 10^{-1} + 1 \times 10^{-1} = .9$ TOTAL = .9368

Now suppose that Option BO1a is fitted and that pins 32, 35 and 36 are in a low or 'O' state (less than 0.4V):

Pin 32 low, indicates that the instrument is measuring mV.
Pin 35 and 36 low, indicate that the decimal point is one place to the right ie. 10.00(0)

The reading is therefore 9.368 millivolts.

Alternatively, mV may be interpreted as 'divided by 1000' giving:-

<u>. 9368 x 10</u> 1000 =. 009368 volts

If pin 28 had been held at '0', then the output would have been:-9.368 $\frac{(mV)^2}{FR}$ (FR = Full Range)

Alternatively when pin 28 is held at '0' the weighting of pins 32, 34, 35, 36 and 37, may be regarded as squared, giving:-

$$\frac{.9368 \times (10)^2}{(1000)^2} \quad \text{volts}^2$$

or 00009368 V²

Pins 29, 30 and 31 are merely flags indicating a particular measurement mode, and do not affect interpretation of the BCD number. Pin 17, OVERLOAD, indicates when the input signal is too high for a particular range. BCD numbers may be present even when pin 17 is in a '1' state but <u>they must not be taken as valid</u> though they will be accurate for numbers only slightly in excess of 1999(9).

3.1.4 Control Lines

Pins 40 to 45 are control lines, enabling the user to control the instrument remotely when it is used in conjunction with other equipment as part of a test system. The control input lines float to a '1' or high state if open circuit, and can be held to a '0' or low state by connecting them to pin 39, digital COMMON. 3.1.4.1 <u>Print Command</u>: Pin 45, <u>PRINT COMMAND</u> falls from a '1' to '0' state at the end of each measurement cycle, when the new reading has been transferred to the storage registers and is available at the pins of J5 in the form of steady BCD output information.

The falling voltage step available at pin 45 can thus command an external reading device to take note of the BCD output or, alternatively, the '1' state can be used to inhibit scanning of the BCD information. Since the reading is stored, it is available at any time except when new information is being transferred. Pin 45 is in the '1' state for approximately 5mS during which time the update of data occurs.

A logic low on pin 42 PRINT INHIBIT prevents the PRINT COMMAND edge from occurring on pin 45, thus making it easy to stop external printers etc. Pin 45 is forced to a low state in this condition.

3.1.4.2 <u>Signal Integrate</u>: Pin 43 exhibits a high state flag while the analogue to digital convertor is acquiring its information. It is made available because its falling edge represents the earliest time at which new signal information may be applied to the input terminals without disturbing the reading in hand. It can thus be used to operate a signal scanner, for example, at the highest possible speed for fully accurate information. The falling edge can also be used to command the instrument, via its delayed command facility, at the same time. See Section 3.4.1.5.

3.1.4.3 <u>Hold Reading</u>: Pin 40, <u>HOLD</u>, may be externally held in a low state if it is desired to the stop the instrument from reaching its normal free-run mode. When pin 40 is taken low the instrument will complete any reading in progress, followed by storing and displaying it until pin 40 is taken high or released, or until an external read command is applied.

3.1.4.4 <u>Read Command</u>: A falling edge on pin 41, <u>COMMAND</u>, instructs the instrument to take one reading immediately if, and only if, pin 40 HOLD is already held low. The instrument inhibits commands that are applied before conversion in progress is complete. Fig. 10 shows the relationship of <u>COMMAND</u> and <u>PRINT COMMAND</u> to the integration cycle.

Fig.10

* Note: Minimum COMMAND pulse width is 2 microseconds.

3.1.4.5 <u>Delayed Command</u>: If pin 44, <u>DELAY</u> is held at logic '0' while an external command is applied, then the command will be automatically delayed by a period of time equal to the settling time of the integration filter. This delay is automatically adjusted depending on whether NORMAL or LF MODE is selected by the front panel push button, or by optional remote programming.

Provided pin 44 is held low, this means that the instrument can be commanded at the same instant that new signal information is applied to the front panel terminals. A particularly useful example of this is where the Model 1030 is used in conjunction with a signal scanner, the same command being used for stepping or switching the scanner, as for commanding a reading to be taken, Fig. 11.

Fig.11

For maximum read rate in a closed-loop system, the command could be the falling edge of pin 43, SIGNAL INTEGRATE, Fig. 12.

3.1.4.6 <u>'0' State Reference</u>: All digital outputs and command lines are referred to digital COMMON on pin 39. Maximum fan-in is two TTL loads, minimum fan-out capability is 4 TTL loads.

3.2 OPTIONS (BO2) and (BO2a) : THREE STATE LOGIC OUTPUTS

Options (BO2) and (BO2a) are 3-state (or (Tri-state'*) versions of Options (BO1) and (BO1a) respectively. The basic difference is that upon application of a logic low to pin 42, PRINT INHIBIT, all active BCD and control lines are inhibited. The output lines are forced to a 'third' state which is a very high impedance OFF state.

The instrument can therefore be permanently connected to logic highways or bus-bars in a system and then, by the application of a single logic '0' to pin 42, electrically disconnected at will. Another example would be where the BCD outputs of several instruments are connected in parallel to a printer: a simple single-pole switch could be used to select the outputs from a particular instrument for printing.

3.3 OPTION (P01): REMOTE PROGRAMMING

3.3.1 <u>Description</u>

Option (P01) enables all Ranges and Functions of the Model 1030 to be remotely programmed via the 50-way Amphenol connector provided. All the programme lines are electrically isolated from both earth and signal input terminals by means of opto-electronic isolators. It is recommended that the programme common (digital COMMON) be referred to earth in the measurement system; the signal input terminals are then able to float ± 500 volts peak relative to earth and digital COMMON.

3.3.2 Method of Operation

The optional Programme Board mounts on top of the front-panel bank of push-button switches, making connection to certain of the contact pins. In the basic instrument, signal switching is accomplished by the push buttons, which apply +15 volt levels to appropriate parts of the analogue circuitry to operate switches. These are either field-effect transistors or, where high signal voltages could be present, relays. See Drawing No. 439105, Sheets 1, 2 and 3.

Similarly, digital switching is accomplished by the push buttons which apply digital COMMON to appropriate parts of the circuitry to operate the decimal points and Function lights on the display.

Operation of the REM PROG push button disconnects both the +15 volt and digital COMMON lines from the rest of the switches, the lines being routed instead into the Programme Board mounted on top of the switches. See Drawing No. 409117. Remote programming is achieved by connecting the appropriate lines (output contacts of the push button switches), via connector J5, to digital COMMON. This lights up the selected Function lights and decimal point directly

* Trade mark: National Semiconductor Inc.

and by-passes the push button switches. The digital signal is also responsible for signal switching using opto-electronic isolators.

Fig. 13 shows a simplified version of the circuit in which the digital signal excites a light-emitting diode. The diode is encapsulated with, and optically coupled to a photo-transistor. Light from the diode turns on the photo-transistor and pulls its emitter up to +15 volts to supply the signal switching voltage. It should be noted that since all lines are buffered there is a maximum fan-in of one per line.

3.3.3 <u>Pin Connections</u>

The following tables give the pin connections on connector J5 used for programming: the full listing of all pin connections is given in Section 3.1.2.

3.3.3.1 <u>Range Connections</u>: The table below shows the required states necessary to programme the six voltage ranges. Pins 46 - 47 - 48 - 49 position the decimal point and achieve the necessary signal switching, while pin 20 calls up mV. The table shows the <u>only</u> permitted states for each range.

<u>Pin No</u>	<u>10 mV</u>	<u>100 mV</u>	<u>1 V</u>	<u>10 V</u>	<u>100 V</u>	<u>1 kV</u>
20	0	0	1	1	1	1
48	1	1	Ο	1	1	1
47	О	1	1	Ο	1	1
46	1	О	1	1	0	1
49	1	1	1	1	1	0

3.3.3.2 <u>Function Connections</u>: In this table the '0' states select the required Function. X indicates that the pins may be in either state, depending upon other Functions selected for the same measurement.

<u>Pin No</u>	DC CPLD	BANDLIMIT	LF MODE	MEAN SQUARE
21	Ο	Х	X	х
22	X	0	Х	Х
23	Х	Х	О	Х
19	Х	Х	Х	0

3.3.4 Characteristics of Use

As described in Section 3.2 a Range or Function is called up by connecting a logic low (less than 0.4 V relative to digital COMMON) to the appropriate line. If any line is not connected, it will float to a logic high or '1' state.

The table in Section 3.3.3.1 must be adhered to if sensible results are to be obtained. Damage is unlikely to occur if forbidden codes are programmed: for example, all lines high will place the instrument in its 1 volt analogue range, but no decimal point will be illuminated.

The table in Section 3.3.3.2 indicates Function programming, and since all Functions may usefully be employed simultaneously, any combination of codes is valid.

It should be noted that the codes for both programming and BCD output have been made identical to facilitate system checks.

3.3.5 <u>Remote Indication</u>

An output code appears on pin 24 of J5, to indicate whether or not the front panel REMOTE push button is depressed. A '1' on pin 24 indicates that the instrument is switched to REMOTE for programming via connector J5, a '0' that it is switched for local operation via the front panel push buttons.

This code can be usefully employed to provide a safety inhibit in systems use. If pin 24 is connected to pin 42 PRINT INHIBIT, then it will inhibit print commands if the Model 1030 is inadvertently, or intentionally, switched for local operation. If Option (B02) is fitted, then all output lines as well as programme lines would be disabled under this condition.

SECTION 4

TECHNICAL DESCRIPTION

4.1 GENERAL

The internal circuits of Model 1030 are divided between two printed-circuit boards. The first printed board (Drawing No. 409106) is concerned with A.C. to D. C. Conversion and includes the preamplifier, scaling circuits, and the r.m.s. convertor. The second board (Drawing No. 409109) is concerned with Analogue to Digital Conversion and produces the BCD output together with drive for the 7-segment display devices. In the Model 1030, the regulated power supply components are mounted on the second board.

For the purposes of explanation the two boards will be described separately, and each board further sub-divided according to the various functions involved.

4.2. A.C. TO D.C. CONVERTOR (Assembly Drawing No. 409106)

Fig. 14 Schematic diagram of A.C. to D.C. Convertor

-26-

4.2.1 <u>Preamplifier & Scaling</u> (Circuit Diagram No. 439105 Sheet 1)

The simplified diagram, Fig. 15, shows the essential features of the preamplifier and scaling circuit. For the purposes of explanation the same symbols are used (black triangular contact normally 'made', white triangular contact normally 'open') regardless of whether the switching is accomplished electronically (f. e. t.) or by means of relay contacts. In Fig. 15 all switching is shown in the 1 V RANGE position.

The various switching combinations for the different ranges are as follows:-

VOLTS RANGE	OVERALL VOLTS GAIN	RELAY K2	FET Q12	FET Q13	FET Q14	FET Q17
10 mV 100 mV 1 V 10 V	100 (+40 dB) 10 (+20 dB) 1 (0 dB) 0.1 (-20 dB) 0.01 (-40 dB)	9 - 8 9 - 8 9 - 8 9 - 8 9 - 8 9 - 10	OPEN OPEN OPEN CLOSED	OPEN OPEN CLOSED CLOSED CLOSED	OPEN CLOSED OPEN OPEN OPEN	CLOSED CLOSED OPEN OPEN OPEN
100 V 1 kV	0.001 (-40 dB) 0.001 (-60 dB)	9 - 10 9 - 10	OPEN CLOSED	CLOSED	OPEN OPEN	OPEN

Although the reader could, no doubt, puzzle out the different circuit configurations on each range; it will be quicker to simplify the circuit still further, and to show separate drawings for each RANGE setting as shown in Fig. 16.

Then, having grasped the basic essentials, reference should next be made to Circuit Diagram No. 439105, Sheet 1, for a more detailed explanation.

Resistors R1 - R4, in a series-connected chain, have a total value of 990 kohm, permanently connected to the Hi input terminal. Four separate resistors are used in order to provide the best possible voltage coefficient of resistance for optimum accuracy on the high-voltage ranges. The input resistor chain is frequency corrected by components C1, C2 and R115.

A 1 kV d.c. working polycarbonate capacitor is used for the d.c. blocking capacitor, C4. Relay K1 by-passes C4 via contacts 9 - 10, 6 - 7, when the

Fig. 16

instrument is switched to the DC COUPLED mode. The relay is energized via switching-transistor Q1 which is, in turn, voltage controlled from the front-panel push button or by external command, Option (P01). Diode CR1 across the relay coil suppresses switching voltage surges due to the inductance of the coil.

The input signal is applied to the gate of dual field-effect transistor Q4A via 10 kohm resistor R8 and normally-closed relay contacts K2 9 - 8. Input resistors R1 - R4 (990 kohm) plus R8 (10 kohm) form the 1 Mohm input resistor shown on the 10 mV - 10 V simplified diagrams. A slight error, due to R9/11 (1 Mohm) in parallel with R8, is corrected by reducing the gain of the amplifier fractionally below unity. Frequency correction is applied across R8 by components C8, R7.

On the 100 V and 1 kV RANGE positions, relay K2 is energized via switching transistor Q2; contact 9 is connected to 0 V, converting R8 into the shunt arm of a 'divide by 100' input attenuator in which R1 - R4 forms the series arm. With the circuit in this configuration, resistors R9/11 provide the 1 Mohm input resistor necessary to define the gain of the preamplifier. Components C5, C6 and R10 give frequency correction. In the event of gross over-voltage a protection network of four diodes, CR4 - CR7 provides a shunt path for the signal, and protects the gate of the input FET Q4A.

-28-

Dual FET Q4A/Q4B is connected as a balanced long-tailed pair, and is of a type specially chosen for its low noise and close matching of both electrical and thermal characteristics. The two halves are direct coupled to dual transistor Q5A/Q5B and the two halves of the circuit balanced by FSV (Factory Selected Value) resistors R21 and R30.

To correct for long-term slight changes in the balance of the preamplifier. resistors R152, R153 and the mV NULL control are connected across the drain resistors R16 and R26 of Q4A and Q4B.¹ FSV resistors R17 and R25 are chosen to give a balanced state with the mV NULL control in its mid-position. Cascaded balanced pairs of direct-coupled transistors Q6 - Q7, Q8 - Q9, Q32 - Q33 are driven from the collectors of Q5A and Q5B, the final output at TPI being produced This part of the circuit is quite conventional by complementary pair Q10 and Q11. Transistors Q6 and Q7 are and may be dismissed with relatively few comments. a selected matched pair, cemented together with cyanoacrylate adhesive so as to be in thermal contact with each other. Q32 and Q33, although not specially matched, Forward voltage drop across the pair are cemented together for the same reason. of series-connected diodes, CR14 and CR15, is used to forward-bias the complementary output transistors, Q10 and Q11 to prevent crossover distortion.

FSV resistor R154 is selected during manufacture for best flatness of response at 1 MHz on the 1 V RANGE, and resistor R22 serves a similar function on the 10 V RANGE when it is switched into circuit by transistor Q3.

The rest of the circuit is devoted entirely to switching the appropriate feedback networks into circuit, in accordance with the control voltages originating from the RANGE switches, or from remote TTL commands when Option (P01) is fitted. Field-effect transistors are used for the feedback switching, Q13 being connected so that it is permanently conducting on all ranges except 10 mV and 100 mV, when it is turned off by switching transistor Q15.

On the 1 V RANGE the feedback path is via FET Q13, through R40 - R38 (1 Mohm) to the gate of input FET Q4A. The feedback resistance of 1 Mohm in conjunction with the 1 Mohm input resistor chain, R1 - R4, R8, defines the gain of the preamplifier at unity. Capacitors C14, C15 and preset capacitor C16 provide frequency correction, and preset resistor R40 enables the overall gain to be adjusted to exactly unity.

On the 10 V and 1 kV RANGES, when the amplifier gain requires to be reduced to 'divide by 10', switching FET Q12 is turned on, either via logic diode CR11, or via CR10. Resistor network R36, R37, R39 is thus connected in parallel across the 1 Mohm feedback resistor, reducing the combined value to 100 kohm and defining the gain at 'divide by 10'. Capacitor C17 and preset capacitor C18 provide frequency correction, and preset resistor R39 permits precise gain adjustment.

Reference to the simplified diagrams shows that the difference between the 1 V and 100 V RANGES is effected by relay K2 operating on the 100 V RANGE and introducing a 'divide by 100' attenuator at the input of the preamplifier ... the latter having a gain of unity as already described. Relay K2 is also energized on the 1 kV RANGE when the preamplifier is switched to 'divide by 10', giving an overall gain of 'divide by 1000'.

Later versions connect to Q4B gate.

On the 10 mV and 100 mV RANGES Q12 is not conducting, so the basic feedback resistor is 1 Mohm. Q17 conducts and Q13 is turned off on both mV RANGES, and reference to Fig. 15 shows how this introduces a 10 kohm shunt resistor R68 into the feedback loop. When Q14 is not conducting on the 10 mV range, the feedback is attenuated due to a 990 kohm series resistor R59/R60 and the 10 kohm shunt resistor R68. This reduces the negative feedback, and the gain of the preamplifier increases to x 100. R60 provides fine-gain adjustment, and capacitors C22, C23 together with preset capacitor C24, frequency correction.

Q14 conducts only on the 100 mV RANGE, connecting a resistance of 100 kohm, R65/R66. in parallel with R59/R60. This gives an effective series-arm value of 90 kohm which, in conjunction with 10 kohm shunt arm, R68, reduces the feedback and increases the gain of the preamplifier from $x \mid to \mid x \mid 10$. R66 is a preset resistor for precise gain adjustment on the 100 mV range, and frequency correction is provided by C25, C27 and preset capacitor C26.

Field-effect switching transistors Q13 and Q14 are controlled by switching transistors Q15 and Q16 respectively. Q15 and Q16 are, in turn, controlled by three logic diodes CR17, CR18 and CR19. Switching FET Q17 is controlled C21 is a frequency-correction feedback directly via logic diodes CR17 and CR18. capacitor, connected in such a manner that the feedback signal through it depends upon the voltage gain selected.

4.2.2True RMS Convertor

(Circuit Diagram No. 439105, Sheet 2)

The output signal from TP1 of the preamplifier divides into three routes immediately it enters the True RMS Convertor circuit shown on the extreme Each of the three paths has its own singleleft-hand side of the circuit diagram. pole RC bandlimit filter comprising a permanently-connected series resistor and The three transistors concerned are Q18, a transistor-switched shunt capacitor. Q19 and Q20, and their respective filter components are R71/C29, R78/C30 and It will be noted that the time constants are all the same, R86 - 87 - 91/C31. producing a -3 dB roll off at 10 kHz in each of the three routes.

Reference to Fig. 14 shows that, following the bandlimit Precision Rectifier The basic rectifying filter, the signal passes into a precision rectifier. technique is shown in Fig. 17.

Conventional rectifier circuits using diodes, produce waveform distortion at low amplitudes due to the inherent non-linearity of diode forward conduction in the threshold region. The rectifier circuit used in the True RMS Convertor overcomes this problem, by incorporating the diodes within the feedback loop of amplifier M1. A simplified version of the circuit is shown in Fig. 18.

Input is applied via a 2 kohm resistor R to the inverting input of M1. During a negative $\frac{1}{2}$ -cycle of the input waveform, the positive output voltage at TP3 drives diode CR26 into conduction and the output waveform developed across load resistor R100, is fed back to the inverting input via a 2 kohm resistor, thus defining the gain of the amplifier at unity. CR26 is part of the feedback loop so that the diode offset voltage is effectively divided by the amplifier open-loop gain. Putting it even more simply, when the diode is reluctant to conduct (at the start and finish of the half-cycle) the amplifier gain rises in direct proportion, to provide a compensating effect.

During a positive $\frac{1}{2}$ -cycle of the input waveform, the negative output voltage from M1 drives diode CR27 into conduction, by-passing the feedback resistor and reducing the gain to zero.

Referring back to the circuit diagram, it will be seen that the signal is applied to the inverting input (pin 2) of M1 via the network R86/R87/R91/R92. The first three resistors, forming part of the bandlimit filter, add up to 1 kohm and, together with R92 (1 kohm), form the 2 kohm series input resistor for M1. R91 provides a small range of adjustment to enable the amplitude of the half-wave rectified output to be set to the precise level required. Reverse-connected shunt diodes CR22/CR23 provide overload and lock-up protection at the input of M1, and normally do not conduct.

Transistor Q23, driven by the output of M1, is connected in the common-base configuration and provides a non-inverting current source for driving diodes CR26, CR27 and TP3. The d.c. offset at TP3 due to Q23 is reduced to zero by preset resistor R94. R100 forms the load resistor for CR26 as already described, and R101 is the 2 kohm feedback resistor. The half-wave rectified output at the junction of R100/R101 passes through R81 (10 kohm) and combines with the original input signal at pin 2 of the Summing Amplifier, M2. The unrectified input signal passes through R78/R80 (20 kohm) so the peak amplitude is reduced to half that of the rectified waveform, see Fig. 17. The resultant full-wave rectified signal appears in inverted form (negative going) at TP4.

Mention has been deliberately omitted of the function of transistors Q21 and Q22, because their description was not essential to a basic understanding of the Precision Rectifier circuit. Their purpose is to speed up the turn-on time of CR26 and CR27 which, for the same reason, are Schottky hot-carrier types. High-frequency components of the input waveform are taken from the inverting input of M1 and routed via a 100 pF capacitor, C34, to the base of transistor Q21. The fast edges of the input waveform are amplified and inverted by Q21/Q22 and, appearing at TP3, are applied to diodes CR26 and CR27 to 'shock' them into the shortest possible switching times. When low frequencies only are present, the route through Q21/Q22 ceases to have any effect.

<u>**R.M.S.**</u> Module Before proceeding into a detailed description of the rest of the circuit, the reader is referred back to Section 1.3.3, so as to refresh his memory regarding the underlying principles of r.m.s. generation used in the instrument.

The RMS Module is a current-operated device containing an arrangement of closely-matched and thermally stable monolithic circuitry which exploits the logarithmic characteristics of diodes and transistors to perform the function:-

> $\frac{I_9^2}{I_7} = I_{14}$ (Where the suffix numbers represent the pin numbers of the RMS Module.)

The negative-going full-wave rectified signal at TP4 is connected to pin 4 of the RMS Module, M3, and reference to the simplified diagram Fig. 17 shows that (via pin 9) M3 is included in the feedback loop of Summing Amplifier, M2, so that the feedback current I_9 is a function of the output voltage appearing at TP4. M2 therefore provides voltage-to-current conversion to drive pin 9 of the RMS Module. CR24 by-passes the feedback loop and reduces the gain of M2 to zero in the event of a positive-going signal appearing at TP4.

The current output from pin 14 of M3 (equal to $\frac{I_{92}}{I_7}$ flows into the inverting input of high-gain amplifier M4, arranged as a current-to-voltage convertor. Output voltage from M4 is passed through a 3-pole active filter, comprising M6 and its associated circuit, to obtain the Average Value rather than the true Integral. (This simplifies the circuitry whilst still enabling the instrument to achieve its full accuracy.)

<u>L. F. Filter</u> The active filter is basically a Bessel Function device giving an attenuation of -60 dB at the lowest specified frequency. The response settles to within 0.1% of its final value within a period corresponding to fifteen cycles of the lowest specified frequency. Switching of the three sets of time constants to provide NORMAL and LF MODE operation is achieved by field-effect transistors Q25, Q26 and Q27, controlled by switching transistor Q24.

With all FET switches conducting, the circuit is in the NORMAL mode and the lowest specified frequency is 40 Hz with a settling time of 300 msec. LF MODE opens all the switches and, for a standard instrument (See Options F01, F02, etc.), the lowest specified frequency becomes 1 Hz with a settling time of 15 seconds. For satisfactory operation of the active filter, it is essential that the circuit loading of its output should be minimal; it is therefore followed by a buffer stage, M7, arranged to have a very high input impedance.

Fig. 19

Buffer Stage To achieve the desired order of buffering by M7, particularly at very low frequencies, an additional transistor, Q28, is fitted. Q28 acts as a compensator for the input offset and bias current of M7, which it tracks with temperature to a high degree of matching. FSV resistor R147 and preset resistor R148 in the emitter circuit of Q28 provide adjustment for correct settingup of the compensation at very low frequencies, while preset resistor R144 provides the fast adjustment. Positive-going output from M7 is routed in two directions ... through switching-FET Q31, to complete the feedback path in the RMS mode and via TP5 and tags T6/T7 to drive the Analogue to 10-volt Zener diode CR34 is a protection device only, and Digital Convertor. prevents negative-going output or excessive positive excursions; the normal signal level at TP5 is +1 volt FR.

<u>RMS/MEAN SQUARE Switching</u> In the RMS mode, output from M7 passes through switching FET Q31, which is in its normally-on state. Operation of the MEAN SQUARE switch S11 (or the application of a control voltage when Option P01 is fitted) drives the base of switching transistor Q29 positive, and turns FET Q31 off. The same control voltage switches FET Q30 into conduction. When Q30 is turned on, an accurately-adjusted +1 volt d.c. reference, obtained from the slider of R138, is applied to the input of M5 instead of the normal +1 V FR feedback signal from M7 via Q31.

<u>Voltage/Current Convertor, M5</u> Feedback voltages from M7 (or the MEAN SQUARE reference voltage) are applied to the input, pin 2, of M5 via resistors R116/R117. Output from M5 passes into the RMS Module via pins 8, 16 and 13, and feedback current flows back to the input of M5 via pin 7 of M3. Because the input of M5 is a virtual-earth point, the current I_7 is defined solely by the fixed value of R116/R117 and the signal voltage.

Knowing that the RMS Module performs the function:-

 $\frac{I_{92}}{I_{7}} = I_{14}$

-33-

If the value of R116/117 is adjusted during manufacture so that $I_{14} = I_7$ then:-

$$I_{14} = \frac{I_{92}}{I_{14}} = \sqrt{I_{92}}$$

Looking at the voltage equivalents of these currents, the output voltage Vo at TP5 is proportional to the averaged value of I_{14} and the input current to M3, I_{0} is proportional to Vin, therefore:-

$$\overline{\text{Vo}} = \sqrt{\text{Vin}}$$

Considering the few remaining components yet to be described, preset resistor R113 adjusts the offset voltage of M5, and all the other components and signal paths are associated with the requirements of the RMS Module. It is unfortunate that, for reasons of commercial security, a detailed modus operandi of the RMS Module cannot at this stage be disclosed. Sufficient information has, however, been given to enable the reader to gain a general understanding of the workings of the RMS conversion circuit.

4.2.3 <u>Switching and Optional Power Supply</u> (Circuit Diagram No. 439105, Sheet 3.)

The diagram shows the push button switch connections and is largely self explanatory. The top row of contacts carry the d.c. control signals for the various ranges and modes of operation. The lower rows of contacts, connected to J1 are concerned with remote readout of range and function, decimal point selection and, in the case of Option P01, remote control of range and function.

At the bottom-left of the diagram, the power-supply circuit shown is applicable to Model 1110 RMS Convertor only. Power supply components for Model 1030 True RMS Voltmeter are included on the Analogue to Digital Convertor board (Drawing No. 409109) which is not, of course, included in the former instrument.

Transformer T1-1 is of toroidal construction with a split primary, comprising two 115-volt windings intended for either series or parallel connection, depending on the supply voltage. An earth screen is interposed between primary and secondary windings to minimise electrostatic coupling and, completely separate from the earth screen and isolated from the windings, a further electrostatic screen is fitted to act as a Guard Shield.

Three secondary windings are provided, each with its separate full-wave bridge rectifier and solid-state regulator. Outputs from the regulators are: -15 V - 0 - +15 V and a separate +5 V supply. The solid-state regulators **a**re worthy of special mention; they are Motorola Types MC7805 and MC7815, both being capable of delivering a 1-ampere fully-regulated output at their respective voltages. They are in the form of very compact units and feature foldback current limiting, and thermal shut-down protection; this makes them virtually short-circuit proof.

4.3 ANALOGUE-DIGITAL DISPLAY (Assembly Drawing No. 409109)

4.3.1 <u>Analogue Section</u>: (Circuit Diagram No. 439106, Sheet 2.)

Before proceeding into a detailed description of the circuit, the reader is referred back to Section 1.3.5 and Fig.2, to refresh his memory regarding the principles of dual-slope integration. The two-way switches shown in Fig.2 are, in fact, flip-flop circuits and diode-logic, used to switch field-effect transistors. A more realistic representation of the circuit is given below in Fig.20, which is shown in the RESET state, waiting for a SIG. pulse.

Fig. 20 Dual-slope integrator switching

As explained in Section 1.3.5., the input signal is applied to an integrator for a set period of 20 msec, and the charge acquired by the integration capacitor during that time is proportional to the amplitude of the applied voltage. The capacitor is then discharged to zero volts by connecting the Integrator to a precise reference voltage; the length of time the reference voltage has to be applied in order to reach zero volts is measured by the digital circuitry, and is proportional to the amplitude of the input signal.

The sequence of operations is best explained with the aid of a timing diagram.

Fig.21 Integrator timing diagram

Reference to the simplified switching diagram, Fig. 20 shows that the 1-volt FS input signal is amplified to 5-volts FS by M34 and appears in this form at TP3. A signal-integrate period is initiated by the positive-going edge of a timing pulse from the digital part of the circuit being applied to the Sig. Int. Slave F-F comprising Q10 and Q11 so that TP9 is driven positive into the SIG. state.

Apart from its primary function of closing signal-switching FET Q3, the positive SIG. voltage at TP9 changes over the Reset F-F into the $\overline{\text{RESET}}$ state and also inhibits the application of either positive or negative REF voltages by the action of logic diodes CR16/CR17 whose cathodes are taken negative.

When switching FET Q3 is turned on at the start of a signal integrate period, the signal (of some value less than 5 volts) appears at TP6 and is applied to the virtual-earth inverting input of M33 via a series resistor R101. The slope (rate of charging) applied to capacitor C35 is determined by the value of R101 (fixed) or by the voltage of the input signal. The polarity of the charging voltage at the output of M33 (TP7) is greatly amplified by the Null Detector, M32. The Null Detector circuit incorporates clamping diodes CR9/CR10 so that although a large output voltage swing occurs when TP7 departs from zero volts by only a small amount, the output voltage appearing at TP8 is clamped between fixed limits.

Null Detector output voltage at TP8 sets the polarity of the Polarity Sense F-F, attempting to apply a 5-volt reference potential by closure of Q5 or Q6 whose switching action is inhibited by the REF state of switching diodes CR16/CR17. At the end of the 20 msec timing pulse the Sig. Int. Slave F-F changes over. TP9 goes negative to the SIG state, opening Q3 and, at the same moment, switching diodes CR16/CR17 allow either Q5 or Q6 (as determined by the state of the Polarity Sense F-F) to close.

In the Model 1030, where the input signal is always positive, it is Q5 which closes. This applies a -5 volt reference to the Integrator to discharge the The reference-integration period required for discharging the capacitor capacitor. to zero volts will always be less than 20 msec (except with a FS input signal when it will equal 20 msec), and the instant of zero-crossing is sensed by the Null An output pulse of about 1 msec duration appears at TP8, and the pulse Detector. leading edge is fed as a SIG. STROBE OUTPUT, via pulse transformer TR3, to the Null Detect Latch in the digital part of the circuit. The pulse at TP8 changes over the Polarity Sense F-F and also drives the Reset F-F into its RESET state. Switching diodes CR19/CR20 inhibit further reference voltage being applied by opening Q5 (Q6), and the switching FET Q4 is turned on, closing the feedback loop so that C35 assumes a state of zero charge. The circuit is thus reset, ready for the next timing pulse.

A further look at the Timing Diagram Fig. 21 shows first a positive-going input signal, followed by a negative-going signal of smaller amplitude. Note the difference in the REF. INT. period. As used in the Model 1030, the +5-volt reference is only included as a safety precaution so that, in the event of a spurious negative signal, the Integrator would not lock up. For this reason the +5 V reference is simplified for the Model 1030 and the regulation circuit comprising M35 is omitted.

<u>Power Supply Unit</u> The mains transformer and power supply components are mounted near the rear of the Analogue-Digital Display board. Transformer TR1 is of toroidal construction with a split primary comprising two 115-volt windings. These are intended for either series or parallel connection, depending on the supply voltage. An earth screen is interposed between the primary and secondary windings to minimize electrostatic coupling; this is grounded to supply-line earth. Completely separate from the earth screen, and isolated from all the windings, a further electrostatic screen is fitted to act as a Guard Shield.

Three secondary windings are provided, each with its separate full-wave bridge rectifier and solid-state regulator. Outputs from regulators M38 and M39 provide a -15 V - COMMON - +15 V d.c. supply, while an 8 volt r.m.s. winding is used with rectifier W1 and regulator M37 to give a separate +5 V line. The regulators used are Motorola Types MC7815 and MC7805. Apart from the difference in regulated output voltage, they are all capable of delivering a 1-ampere output, with foldback current limiting and thermal shut-down protection built in. No damage results to them even under short-circuit conditions.

4.3.2 Digital Section

(Drawing No. 439106 Sheet 1)

The simplified block diagram given below illustrates the general arrangement of the digital circuitry.

The repetition frequency with which digital measurements are made is determined by the Read Rate Astable. Its output is gated to allow HOLD, COMMAND or DELAY to be introduced by the Delay Monostable. DELAY applies to external command only and is only brought into operation by applying a zero to the Delay pin of the BCD connector (Option B01). The

-39-

appropriate delay period is then automatically selected to allow a delay equal to the settling time of the analogue circuitry, depending upon whether it is switched to NORMAL or LF MODE.

At any time following a STROBE pulse from the Null Detector, the Command Enable F-F is in a state to permit a COMMAND to be fed into the Control Logic Upon receipt of a COMMAND pulse the Control Logic clears the Stores circuits. and sets all the decade counters to:-

999901

Note: In this, and all subsequent explanations, the least significant figure is shown on the left.

Output from the 500 kHz Clock is then admitted to the four cascaded decade counters M17 - M18 - M19 - M20 followed by two binary counters, Overrange The first clock pulse admitted to the decade counters changes and Overload. their state to:-

000011

The change in state of the Overrange binary counter creates a pulse which is fed, via the Control Logic, to the Signal Integrate Enable F-F. This generates the leading edge of a flat-topped pulse at time t_1 . After 10000 clock pulses the Overrange binary counter changes state again when all the digits revert to zero, and:-

(de	cimal)	(binary)
	0000	11
Plus:	0000	1
Equals:	0000	0 0

Signal Integrate Enable returns to its original state at time t₂, having generated a precise SIG. INTEGRATE pulse of exactly 20 msec duration. This pulse determines the signal integration period as explained in Section 4.3.1.

The count (standing at 000000 at time t2) proceeds in an uninterrupted manner during the REF. INTEGRATE period until the Null Detect Latch operates and (via the Strobe Monostable and Logic Circuitry) stops further clock pulses from reaching the decade counters. At the same moment, the Strobe Monostable pulse is made available as a PRINT command. Depending upon the state of the count at the instant of STROBE, any one of three conditions can occur:-

	(decimal) ¦ (binary)
If less than full-range count: The 7-segment displays fed from the decade counters will be illuminated.	
<u>If more than full-range count:</u> The 7-segment displays fed from the decade counters, plus the overrange	

figure 1 will be illuminated.

OVERLOAD state and no digits are illuminated.

In the OVERLOAD condition the Control Logic circuits inhibit the Command Enable F-F and the Signal Integrate Enable F-F so that no further counts take place until the overload is removed.

On the following page the above sequence is summarized in tabular form for quick reference, see Fig.23.

COUNTER SEQUENCE SUMMARY

(X = Undefined Digit)

1	Least Signi	ficant			Most	Significant
	<	DEC	ADES ———		BINA Overrange	RY> Overload
Initially	Х	Х	X	X	X	X
COMMAND sets to	;	'='	'=¦	۲¦		1
TIME t ₁ (COMMAND +1 clock pulse) Start of SIGNAL INTEGRATE	0				1	{
TIME t ₂ (20 msec later) i.e. 10000 clock pulses End of SIGNAL INTEGRATE Start of REF. INTEGRATE		[]	0	[]		
Null Detects at end of REFERENCE INTEGRATE	Option (D01)					
<full range<="" td=""><td>X</td><td>X</td><td></td><td>X</td><td></td><td></td></full>	X	X		X		
>Full Range	X	X	X	INATED X		
Overload	X	Х	X	Х		1

-42-

$S \to C T I O N - 5$

SPECIFICATION VERIFICATION

5.1 DESCRIPTION

The following steps form a routine for checking that the instrument is working within its specified accuracy where the intention is not to re-calibrate internally. It is thus useful for incoming inspection or routine calibration checks. Full internal calibration is described in Section 6, MAINTENANCE.

It is recommended that due to the wide measurement capability of the instrument, only those aspects of the Specification relevant to normal use be verified. This saves considerably in both time and calibration equipment, particularly where high-frequency response up to 1 MHz is not required for the intended application. For general-purpose measurements, the whole procedure should be followed to verify the entire Specification. Space is provided to tick against each step checked.

5.2 INSTRUMENT REQUIREMENTS

For verifying the d.c. performance, a d.c. voltage source is required capable of producing approximately 1 volt.

For verifying the a.c. performance, a precision a.c. voltage source of high amplitude resolution and enough ranges to cover the user's requirements (10 mV to 1000 V for full performance check) and a wide enough frequency response to exceed the user's requirements (40 Hz to 1 MHz for full performance check) is needed. Accuracy should be three times better than the accuracy being verified. Alternatively, an a.c. voltage source of suitable capability but low accuracy may be used in conjunction with a thermal transfer standard of suitable range and accuracy (as above) with a precision d.c. voltage source for comparison purposes.

Examples: AC Calibrated Voltage Source: Fluke Model 5200A (5205A *) ⁺Hewlett Packard Model 745A (746A *)

- * The number in parenthesis above, represents a 1000 volt amplifier only, and thus can be dispensed with if voltages greater than 100 V are not to be measured.
- [‡] For tests up to 100 kHz only.
- Note: If the performance of the 1, 10 and 100 volt ranges is found to be well within Specification it is extremely unlikely that the 1 kV range will be out of calibration. The 1 kV range uses only components previously checked for the above ranges, and cannot be calibrated separately.

Non-calibrated AC Voltage Source:Optimation Model AC104Thermal Transfer Standard:Fluke Model 540B

5.3PROCEDURE A.C. PERFORMANCE Turn on the instrument to be checked and also the calibration instrument to 5.3.1be used, and allow at least 1 hour to warm up, preferably 2 hours. 5.3.2 Switch instrument to 1-volt range and ensure that all other push buttons Connect Signal Lo to Guard with the link provided or with are out. (Signal Lo should always be connected to Guard via a low wire. impedance, preferably at the signal source when very long leads are being used.) Always connect Signal Lo to the earthy side of the source. 5.3.3 To check the 1 V range, apply 1.0000 volts at about 420 Hz from the calibrated a.c. source and ensure that the instrument reads: 1.000(0) V \pm .002 (.0014) V (Brackets here and below indicated reading where fourth digit Option D01 is fitted.) This check, if passed, indicates that most of the instrument is working correctly. If it is failed by more than about 1% then it is likely that there is a fault rather than a calibration error. 5.3.4 Switch to 10 V range. Apply 10.000 volts at about 420 Hz. Reading is: $10.00(0) \pm .02$ (.014) V 5.3.5 Switch to 100 V range. Apply 100.00 volts at about 420 Hz. Reading is: 100.0(0) + .2 (.14) V 5.3.6 Switch to 1000 V range. Apply 1000 volts (if available *) at about 420 Hz. Reading: 1000. (0) ± 3 (2.4) V 5.3.7 Switch to 10 mV range. Apply 10.000 mV at about 420 Hz. Reading is: 10.00(0) +.04 mV 5.3.8 Switch to 100 mV range. Apply 100.00 mV at about 420 Hz. Reading is: 100.0(0) + .2 '(.14) mV 5.3.9 Switch to 1 V range. Leave signal at 100.00 mV. Reading is: $.100(0) \pm .001$ (.0005) V 5.3.10 Leave on 1 V range. Apply 10.000 mV at about 420 Hz. Reading is: . 010(0) <u>+</u> . 001 (.0004) V 5.3.11 Switch to 10 V range. Leave signal at 10.000 mV. Reading is: $.01(0) + .01 (.004) V \dots$ 5.3.9, 5.3.10 and 5.3.11 check basic instrument linearity.

* See also Note, Section 5.2.

Apply 1.0000 volts at about 420 Hz. 5.3.12 Switch to 1 V range. Switch to MEAN SQUARE. Reading is: $1.000(0) \pm .004 (.0028) \frac{V^2}{2}$ FR Apply 0.5000 volts at about 420 Hz. Reading is: Leave on 1 V range. $.250(0) \pm .003$ (.0018) $\frac{V^2}{FR}$ These two measurements check the MEAN SQUARE capability and are also an indication that the square law circuitry (which defines RMS response) is working correctly. 5.3.13 Release MEAN SQUARE button. Repeat steps 5.3.3 to 5.3.8 inclusive at a frequency of about 30 kHz and check against readings below:-1 V range, 1.0000 volts, 30 kHz input. Reading: 1.000(0) <u>+</u> .004(0) V 10 V range, 10.000 volts, 30 kHz input. Reading: $10.00(0) \pm .04/0) V^{-}$ 100 V range, 100.00 volts, 30 kHz input. Reading: 100.0(0) <u>+</u> .4(0) V 1 kV range, 1000.0 volts, 30 kHz input. Reading: 1000. (0) ± 5.(0) V 10 mV range, 10.000 millivolts, 30 kHz input. Reading: 10.00(0) + .07(0) mV 100 mV range, 100.00 millivolts, 30 kHz input. Reading: $100.0(0) \pm .4(0) \text{ mV}$ 5.3.14 Repeat steps 5.3.3 to 5.3.8 inclusive at a frequency of 100 kHz and check against the readings below: 1 V range, 1.000 volts, 100 kHz input. Reading: 1.000(0) <u>+</u> .007(0) V 10 V range, 10.00 volts, 100 kHz input. Reading: 10.00(0) <u>+</u> .07(0) V 100 V range, 100.0 volts, 100 kHz input. Reading: 100.0(0) + .7(0) V 1 kV range, 1000 volts, 100 kHz input. Reading: 1000. (0) \pm 8.(0) V²..... 10 mV range, 10.00 millivolts, 100 kHz input. Reading: 10.00(0) <u>+</u> .34(0) mV 100 mV range, 100.0 millivolts, 100 kHz input. Reading: 100.0(0) <u>+</u> .7(0) mV

ot sj T	Repeat steps 5.3.3, 5.3.4, 5.3.5 and 5.3.8 with an input frequency of 1 MHz. Note that the calibration of the 1 kV range, is not specified at 1 MHz due to the maximum input limitation of 10 ⁸ Volt-Hertz. THIS MUST NOT BE EXCEEDED. The calibration of the 10 mV range s not specified at 1 MHz
1	V range, 1.00 volts, 1 MHz input.
	Reading: 1.000(0) ± .070(0) V
1	0 V range, 10.0 volts, 1 MHz input.
	Reading: 10.00(0) <u>+</u> .70(0) V
1	00 V range, 100 volts, 1 MHz input.
	Reading: 100.0(0) + 7.0(0) V
1	.00 mV range, 100 millivolts, 1 MHz input.
	Reading: 100.0(0) + 7.0(0) mV

5.3.16 The above steps check the overall frequency response of the instrument and, as noted previously, can be curtailed when certain frequencies or ranges will never normally be used.

5.4 PROCEDURE D.C. PERFORMANCE

To check the d.c. performance of the instrument, after having checked the a.c. performance as described in Section 5.3, it is only necessary to check that it responds equally to positive and negative signals as follows:-

Switch to the 1 V range, DC CPLD (coupled). Apply approximately 1 volt d. c. with positive to Hi and negative to Lo, and note the reading.

Reverse the connections and check that the same reading, within \pm . 002 V, is obtained.

5.5 PROCEDURE L. F. PERFORMANCE

To check the low-frequency performance, a low-frequency function generator or oscillator is necessary. e.g. KDP Electronic Systems, Type 301. The Function Generator should be set to deliver a sinewave output, since this is the worst case for this test, and DC OFFSET should be switched out.

Maintain the Model 1030 settings as above. Apply approximately 1 volt 420 Hz sinewave from the Function Generator and set its output to approximately 1 volt. Change frequency to the Lowest Specified Frequency (depends on the Option fitted) for the NORMAL mode.

After settling check that the run-around is less than \pm . 001(0).

Switch to LF MODE and change the frequency to the Lowest Specified for LF MODE (again this depends on the Option ordered).

-46-

After settling check that the run-around is less than $\pm .001(0)$.

<u>Notes</u>: If non-standard integration filters are fitted, the details are recorded on the rear panel. The Specification section lists the relevant Lowest Specified Frequencies and additional % FS errors for each Option. Standard is as follows:-

NORMAL (button not depressed)....40 Hz.LF MODE (button depressed)....1 Hz.

5.6 PROCEDURE BANDLIMIT FILTER

To check the BANDLIMIT filter, set the Model 1030 to its 1 V range ... all other buttons should be out. Set the Function Generator to give a 1.000 volt reading on the Model 1030 at 10 kHz...or alternate BANDLIMIT frequency, if specially ordered and supplied.

Switch to BANDLIMIT and check that the reading is $.707(0) \pm .042(0)$.

5.7 USING A TRANSFER STANDARD

Where a precision calibrated a.c. source is called for in the foregoing tests, and is not available, an uncalibrated source covering the required ranges can be used instead. It must be calibrated for each setting, using an alternative measuring device, which will almost certainly need to be a Thermal Transfer Standard together with a precision d.c. comparison source.

Care should be taken using such an instrument because its input impedance is likely to be low, whereas the Model 1030 is high. Shielded cables should therefore run from the signal source to the thermal transfer standard and then, from the same terminals of the thermal transfer standard, to the Model 1030. The Model 1030 reading should only be noted whilst the transfer standard is switched to the A.C. position; this ensures that the Model 1030 reading is taken with the transfer standard loading the signal source.

The transfer standard, in conjunction with a function generator, may also be used for further verification of the RMS response of the Model 1030. Measurements as above should be made on, say, the 1 V range using the function generator as the signal source. The conditions in Section 5.3.3 should be met for sine, square or triangle inputs, provided they have first been adjusted to exactly 1.0000 volts r.m.s. using the transfer standard.

If all the checks given in Sections 5.3 to 5.6 are made, and met by the Model 1030, this confirms that it is within its calibration specification.

SECTION 6

MAINTENANCE

6.1 GENERAL

It is strongly recommended that you should become familiar with the principles described in Section 4... TECHNICAL DESCRIPTION ... before commencing with the adjustment or replacement of component parts of the instrument. The Circuit Diagrams and Component Lists show all the electrical components contained in the instrument, together with their values and significant ratings.

The instrument uses solid-state devices which, despite their inherent long-term reliability and mechanical ruggedness, are susceptible to damage by overloading, reversed polarity, and excessive heat or radiation. Avoid hazards such as reversal of d.c. supply polarity, prolonged soldering, strong r.f. fields or other forms of radiation, the use of high voltage insulation testers or accidentally applied short circuits.

Regular maintenance of the instrument will enable the user to have confidence in measurements made as well as ensuring the highest accuracy possible.

Normally this will consist of checking the calibration at or before the end of the guaranteed specification validity period and adjusting where necessary.

Section 1.4.1 details a routine for checking the instrument is working within its specified accuracy and may be used as the first stage of an instrument maintenance procedure.

Any readings found to be grossly out of specification should be treated with suspicion as they may indicate a fault.

A routine calibration procedure is given in Section 6.2.

Following repair or component replacement the procedures in Section 6.3.2 relevant to the repaired part should be carried out prior to performing a full routine calibration.

In case of difficulties, or for general advice on servicing your instrument, do not hesitate to write or telephone our Service Department. Always mention the type number and serial number of your instrument (For the address and telephone number, see the front of this handbook).

6.1.1 REMOVAL OF COVERS ... ACCESS TO COMPONENTS

To gain access to the interior of the instrument, remove the four screws securing the top cover . . . two screws at each end. The cover may now be lifted clear of the instrument. Removal of the bottom cover is achieved in an identical manner.

It will be noted that, with both covers removed, the instrument is still fully capable of being operational; it may be inverted with no danger of component damage, and full mechanical rigidity is maintained during servicing operations.

-48-

When working on the instrument with its covers removed, it should be remembered that the supply-mains connections are not the only source of potential hazard; if the input terminals are still connected to an external circuit, the guard shields could be elevated to a dangerously high voltage.

6.2 ROUTINE CALIBRATION

6.2.1 General

The following section details a calibration procedure which should be carried out at the end of the Specification Validity period, or when the instrument is found to be out of specification.

After repair or replacement of components a full recalibration should be carried out consisting of the part of Section 6.3.2 applicable to the repaired circuitry followed by the routine calibration detailed here.

Before commencing calibration allow the instrument to stabilize for a minimum of 2 hours. Remove the covers but leave the guard shields in position for calibration.

6.2.2 Test Equipment

A.C. Calibrator

e.g. Hewlett Packard, Model 745A/746A. Fluke, Model 5200/5205.

D.C. Digital Voltmeter: Accuracy 0.01% with $10\mu V$ resolution

e.g. Datron 1045, 1041, 1055, 1051.

20 MHz Oscilloscope: with Hi Z probe (10 Mohm, shunted by 10 pF or less).

- D.C. Voltage Source: about 10 volts.
- Function Generator: With good squarewave at 100 kHz, and calibrated sinewave output at 1 MHz. Accuracy 1.5%. (This last capability will not be required if already provided by the A.C. Calibrator.)
- e.g. KDP Electronic Systems, Model 301 V-F Instruments, Model VFG 1500

Calibrated Source: Of about 5:1 crest-factor pulse train, at 1 volt r.m.s.

The last two items should be calibrated against a thermal transfer standard. If they are stable, this need not be done each time a 409106 is calibrated, but at periods frequent enough to overcome long-term drift.

6.2.3 Procedure

N.B. All inputs are A.C. sine waves unless otherwise stated.
 All adjustments and test points are on the A.C. to D.C. converter board, 409106, unless otherwise stated.

Select 10V range, apply 0V input, 10mV 400Hz input and 100mV 400Hz input. If the instrument is within specification for these inputs Section 6.2.3.1 of this procedure may be omitted, otherwise complete all sections below.

6.2.3.1 Zero Adjustments

R23

R94

R91

Select 10mV range. Select D.C. coupled and Band Limit. Apply S/C (short circuit) input. Connect DVM to TP7 (Test Point) w.r.t. (with respect to) TP2. Adjust R23, front panel offset adjust, for minimum reading on DVM at TP7.

ii) Switch to the 1 kV range and select MEAN SQUARE, all the other push buttons should be out. Short the input terminals and connect the oscilloscope to TP3, the current source of the half-wave recitfier, the oscilloscope timebase being set to 10 msec/div. and the Y sensitivity to 0.5 V/div. Adjust R94 for zero output, but note that the waveform will appear noisy due to the very high effective gain at this point.

R83 Move the oscilloscope probe to TP4 and adjust R83 to obtain -500 to -700 mV on TP4; once again the waveform will appear very noisy for the reason above.

Re-check and adjust R94/TP3 as above, then re-check and adjust R83/TP4. This process is repeated because the two adjustments are not totally independent of each other. Disconnect the oscilloscope. Turn R83 fully clockwise.

Connect the DVM, switched to its 1 volt range, to output TP5; then adjust R144 R144 to obtain a reading of $-350\mu V \pm 50\mu V$. Release the MEAN SQUARE button and observe the DVM display. (If the 40 Hz NORMAL filter is fitted, connect the oscilloscope to TP5 as well.) On turning R113 clockwise, low-frequency oscillations may be observed at TP5. Adjust to obtain this condition and then turn R113 anti-clockwise until oscillations *just* cease. Depress the MEAN SQUARE button again, and adjust R144 for zero ($\pm 40\mu V$) at TP5; release MEAN SQUARE and check that the reading is very similar. Zero calibration is now complete. If oscillations do not appear, M5 Pin 6 (TP9) may be observed and adjusted for zero volts ± 100 mV using R113. Apply 1 mV R83 @ 420 Hz and adjust R83 for 1.0 mV output.

6.2.3.2 D.C. Turnover Calibration

Switch to the 10V range and select DC CPLD; all the other push buttons should be out. Check that, with the input short circuited, the DVM connected to TP5 reads zero $\pm 200\mu$ V. Then connect a 10 volt d.c. source (approximate only), negative to Hi and positive to Lo, and note the DVM reading. Reverse the 10 volt source and adjust R91 for an identical reading on the DVM. 6.2.3.3 Full Scale Calibration

Set the instrument to its 1V range with all other buttons out. Apply 1.0000 volts r.m.s. at 420 Hz from the A.C. Calibrator. A reading very close to 1.000(0)V should be displayed on the DVM which is still connected to TP5. Note the reading.

Switch to DC CPLD and apply a calibrated 1.0000 volts high crest-factor signal
 to the input; then adjust R74 for an identical reading to that above. Remove the high crest factor and re-apply the sinewave and note the reading if different. Re-connect the high crest-factor signal and re-adjust R74 to agree with the new sinewave reading.

- 6.2.3.4 Analog to Digital Converter Calibration
 - i) Select 1KV range. No other buttons depressed. Apply S/C input. Adjust R75 on A-D converter board, 409109, to give a zero display. Set R75 to the mid-point of its adjustment which gives zero indication.
 - ii) Select 1V range. Apply 1V 400Hz. Adjust R86 on A–D converter board, 409109, until the display reads the same as the DVM which is still connected to TP5 on the AC–DC Board.

6.2.3.5 Full Range Adjustments

Place the upper and lower covers in position but not fastened in place, and allow the instrument to stabilise. Each adjustment should be made as quickly as possible and the covers replaced.

Readings given in brackets thus, 999(9) are applicable to Option D01.

Using the A.C. Calibrator apply the specified input voltages and adjust the associated component until the display is as stated.

420 Hz, 1.0000 volts input. 1 V range: Adjust R40 for $1.000(0) \pm .000(3)$ V. 420 Hz, 10.000 volts input. 10 V range: Adjust R39 for 10.00(0) ± .00(3) V. 100 V range: 420 Hz, 100.00 volts input. Adjust R11 for $100.0(0) \pm .0(3)$ V. 10 mV range: 420 Hz, 10.000 millivolts input. Adjust R60 for $10.00(0) \pm .00(5)$ mV. 100 mV range: 420 Hz, 100.00 millivolts input. Adjust R66 for $100.0(0) \pm .0(3)$ mV. 25 kHz, 1.0000 volts input. 1 V range: Adjust C16 for $1.000(0) \pm .000(5)$ V. 10 V range: 25 kHz, 10.000 volts input. Adjust C18 for $10.00(0) \pm .00(5)$ V. 25 kHz, 100.00 volts input. 100 V range: Adjust C6 for $100.0(0) \pm .0(5)$ V. 10 mV range: 25 kHz, 10.000 millivolts input. Adjust C24 for $10.00(0) \pm .01(0)$ mV. 100 mV range: 25 kHz, 100.00 millivolts input. Adjust C26 for $100.0(0) \pm .0(5)$ mV. 1 V range, MEAN SQUARE: 420 Hz 1.0000 volts input. Adjust R138 for $1.000(0) \pm .000(5) V^2$ FR

The instrument is now fully calibrated.

6.3 REPAIR AND COMPONENT REPLACEMENT

The necessity for integrated circuit or transistor replacement is unlikely and, should such an event occur, the semiconductor failure can often be attributed to component breakdown in the associated circuit.

Apart from the RMS Module (which is obtainable only from Datron Electronics Ltd.) and matched 2N3906 transistors, Q6 and Q7, which are available ready-matched from Datron, all the integrated circuits and other semiconductor devices are standard manufacturers' products, and special selection is unnecessary. The thermal tracking of the two halves of FET Q4A/B is particularly important, to ensure a low order of zero drift with variations of temperature. Thermal balancing of the two halves of the circuit is achieved by selecting associated component values, and is described in Section 6.3.2.2, Zero Drift Compensation. This rather time-consuming procedure is carried out initially during manufacture, and need only be repeated following replacement of Q4A/B.

In certain other cases, following semiconductor replacement, it may be necessary to readjust associated preset components, and full details of recalibration (based upon original factory calibration procedures) are given in this section.

When replacing semiconductor devices take great care to avoid overheating them during soldering . . . each joint being made as rapidly as possible. Although the use of a thermal shunt between semiconductor device and the soldered joint is strongly recommended, it is realised that it is impractical to use one in many instances . . . particularly when unsoldering a multi-lead device from a high-density circuit board. A suction de-soldering tool is recommended to help with component removal.

The following Sections form part of the original factory setting-up procedures for the two printed-circuit boards. During manufacture certain resistors are selected in value (FSV = Factory Selected Value) to accommodate circuit component tolerances, or to bring the desired setting of a preset control to the middle of its adjustment range.

As the values of the FSV resistors have already been correctly chosen to suit your instrument, the methods used for their selection have, in most instances, been omitted. Full details are given for adjusting all the preset components.

Important: In some cases the factory setting-up procedure calls for an initial approximate setting of a preset control, and its final critical adjustment is more fully described in a later Section. The reader is therefore warned *not* to 'follow blindly' all the sequences described, but to read and understand the reason behind each procedure, before embarking upon any actual adjustments on his own account. This approach should minimize the amount of time you spend on recalibration and, in a number of instances, will save you from upsetting preset adjustments which are already correctly set.

Readings given in brackets thus, 999(9), are applicable to Option (D01).

N.B. A routine calibration as detailed in Section 6.2 should be carried out after completion of the following procedures.

6.3.1 A-D Board Procedures following repair or component replacement

Put the instrument into the HOLD mode. This is accomplished by connecting digital COMMON to the HOLD command line. (Link pins 39 and 40 of the BCD output connector J5 if either of the BCD output Options are provided.) Alternatively if BCD facilities are not included, turn the instrument OFF and solder a jumper lead between pin 7 LOWER and pin 6 LOWER of connector J4.

6.3.1.1 Integration Period Calibration: Sense the TTL pulse waveform on TP1, near M20, and adjust preset potentiometer R37 until the period of the waveform is 20.00 ± 0.01 milliseconds, i.e. 50 Hz.

In the U.S.A. and other counries where the supply-mains frequency is other than 50 Hz, the waveform period is set to the nominal mains period. Thus, in the U.S.A. set to 16.67 \pm 0.01 milliseconds, i.e. 60 Hz.

A time interval counter may be used for this procedure or, alternatively, connect TP1 to the A Channel of the dual trace oscilloscope. Set the Y sensitivity to about 5 V/division, and trigger the timebase from this channel. Set the timebase to 10 msec/division. Connect a source of mains supply frequency (simple hum pick-up at a high sensitivity is adequate) to the B Channel, so that the 50 (or 60) Hz waveform is about 2 divisions p-p high on the screen. If the oscilloscope is dual-trace rather than double-beam, switch the time base to CHOP rather than ALTERNATE mode, and adjust R37 until both traces are the same frequency. (Both traces stationary with respect to each other, or less than one period drift in 20 seconds.) It is important, when using this procedure, that the supply-mains frequency is close to nominal and, for this reason, it should not be carried out at times of peak load, particularly in winter. Having adjusted R37, disconnect the oscilloscope probes, etc.

6.3.1.2 Zero Calibration: Remove the HOLD link and let the instrument free run. Short
 R75 together Signal COMMON pin, Analogue COMMON pin and the Signal Input pin on the board.
 Adjust R75 for zero indication on the display.

6.3.1.3 Full-Scale Calibration: Remove the short between the Signal Input pin and COMMON (leaving Signal COMMON and Analogue COMMON shorted together). Adjust the D.C. Calibration Source to 1.0000 volts and connect it between the Signal Input pin and Signal R86 COMMON . . . with the Lo side of the calibration source to COMMON. Adjust R86 until the display reads 1000(0). Reselect R87 if span of R86 insufficient.

6.3.1.4 Linearity and Display Check: Leaving the D.C. Calibrator connected, set it to the following output levels and observe the displayed readings: -

Set calibrator to .999 (.9999) volts and observe reading 999(9)

R37

Set calibrator to .888 (.8888) volts and observe reading 888(8)

Repeat the above check for all digits down to 111(1) and continue through 11(1), 1(1) and (1). Linearity on all steps should be ± 1 least-significant digit.

6.3.1.5 Overload Check: Check that the display blanks out as soon as the input voltage exceeds 1.999(9) volts.

6.3.2 AC to DC Board – Procedures following repair or component replacement

6.3.2.1 General

Check as far as possible that the board is functioning correctly, by applying low frequency signals from the Function Generator and observing the output with the DVM on its 1 V range. Check that all ranges are functioning and that relay K1 operates when the DC COUPLED switch is depressed. Check that MEAN SQUARE is functioning, by applying about 0.5 volts and then switching to MEAN SQIARE; note that the output is approximately squared. Apply an input signal at BAND LIMIT frequency (Standard - 10 kHz) and note that there is a 3 dB fall in output when the BAND LIMIT switch is depressed.

Switch to the 100 V range with all other switches out, and disconnect the Function
R144 Generator. Switch to MEAN SQUARE and observe that the output is near zero. Adjust R144 for the smallest near-zero reading; note the output voltage and its polarity. Select LF MODE and adjust R148 for the same reading as noted above. (For the 0.01 Hz LF MODE, Option F04,
R148 this last adjustment should be amended to read +2.0 mV higher than the NORMAL mode reading;

for 0.1 Hz LF MODE, Option F03, +0.4 mV higher.)

N.B. The settling time for this adjustment is dependant on the L.F. mode filter option fitted.

6.3.2.2 Zero Drift Compensation: This procedure should *only* be carried out following replacement of dual FET Q4A/B.

Switch to the 10 mV range, DC CPLD, short together Hi, Lo and GUARD terminals, and connect the DVM on its 1 volt d.c. range, positive to TP1 (Pre-amplifier output) and negative to TP2 (COMMON). Adjust the mV NULL to its approximate mechanical mid-position and observe the reading on the DVM.

Select FSV resistor (either R17 or R25) to reduce the DVM reading to less than 20 mV. Do *not* solder in.

Touch a soldering iron (isolated from mains and earth e.g. Weller TCP1/PU1D with TCP1 earth disconnected) to dual FET Q4A/B for a maximum of 2 seconds for thermal settling and observe the relatively steady offset voltage on the DVM. If it has changed by less than 3 mV, no further calibration is required.

If the output voltage has changed by more than 3 mV, note the direction (polarity) of the drift and select an FSV resistor, either R21 or R30, of about 270 ohms to offset the preamplifier output in the same direction as it drifted. After ensuring that Q4 has cooled to about room temperature (if necessary use a chemical freezer spray) re-select FSV resistor R17 or R25 to reduce the output to less than 20 mV as before.

Repeat the above heating process and select different values for R21 or R30. If the drift direction is still the same as previously and greater than 3 mV, reduce the value of the previously chosen FSV; if the drift direction has reversed, increase the value. Allow to cool and repeat the output nulling process by re-selecting R17 or R25.

Repeat the whole process as many times as is necessary, until the drift, when Q4A/B is heated with a soldering iron is less than 3 mV, giving an estimated $2 \mu V/^{\circ}C$ or better. Solder the FSV resistors into position, and adjust the mV NULL control on the front panel until a zero reading is indicated on the DVM, thus zeroing the pre-amplifier. Disconnect the DVM.

Note 1: The dual FET must not be overheated during the above process. Excessive heating will cause gate current drift and affect the zeroing process by giving misleading results.

Note 2: For speed of setting up, preset potentiometers may be substituted for the FSV resistors during the above process. Having found the best settings for minimum thermal drift, their values should be measured and appropriate fixed resistors substituted.

6.3.2.3 Preamplifier H.F. Compensation: Release the DC CPLD switch and connect the Function Generator to the input, leaving the shorting link between Lo and GUARD. Select the 1 V range and adjust the Function Generator at 1 kHz to deliver 2 volts p-p as measured on the oscilloscope. Ensure that the oscilloscope probe compensation is correct and adjust if necessary, check the squarewave shape at 100 kHz and then return to 1 kHz.

Apply 1 V 1 MHz input. Connect DVM to TP7 w.r.t. TP2. Select R154 for reading of 1 V \pm 5% on DVM.

Apply 100 mV 1 MHz input. Ensure DVM connected to TP7 w.r.t. TP2. Select R89 for reading of $100mV \pm 5\%$ on DVM.

SECTION 7

OTHER OPTIONS

7.1 ANALOGUE OUTPUT

The analogue output is presented from the rear panel via a 5-pin 'M' series connector and a fast-acting fuse in the Hi side. It is a 1 volt full range, output for any nominal full range input, with overrange capability to 2 volts. The output impedance is of the order of a few ohms and no more than 5 mA should be demanded.

Note:

Output Lo is connected via a PCB track to Input Lo. DO NOT APPLY VOLTS BETWEEN OUTPUT Lo AND INPUT Lo OR DAMAGE MAY RESULT.

- 7.2 Occasionally it may be more convenient for a user to apply his signal input via the rear rather than the front panel. The spare pins on the analogue output connector can be used for this as follows:-
 - E = INPUT HiD = INPUT LoH = GUARD

Note that since high voltage may be present on the input the connector must be wired with great care to prevent shorting or arcing.

If rear input is ordered then the front input terminals are omitted mainly for safety reasons, and a plate bearing the legend "Rear Input Only" mounted on the front panel.

DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
R1	020 003	249K, 1 W, 1% MF	Welwyn/Holco	4033D	3
R2	050,003	n n	н	=	ŀ
R3	050 003	н н н	=	Ŧ	l
R4	• 050 002	243K, ả w, 1% MF		=	~
R5	000 104	100K, 4 W, 5% Carbon	Mullard	CR25	11
R6	000 332	3K3, 5%, 4 W Carbon	=	F	Ø
R7	000 330	33R, " "	H	E	-
R8	011 002	10K, 1%, _붐 w M F	Welwyn	4033C	Ø
R9	019 763	976K, 1%, ፤ W MF	Ľ	E	3
R10	000 332	3K3, 5%, 4 W Carbon	Mullard	CR25	•
R11	063 503	50K, ³ ^{su} Cermet Pot	Beckman	72P	3
R12	000 104	100K, 5%, <u>4</u> W Carbon	Mullard	CR25	1
R13	000 332	3К3, п п	2	Ŧ	ł
R14	000 224	220K, " "		Ø 11	4
R15	000 183	18K, " "	E	Ŧ	-
R16	070 0 80	6K8, 1%, 4 w ww	Mann	MX125B	2
R17		FSV (530K 5% 4 W Carbon)	Mullard	CR25	1 of Kit
R18	000 272	2K7, 5%, 4 W Carbon	z	=	3
R19	000 105	IM 5% 'AW CARBON	=	.	8
R20	014 708	47R, 1%, å W MF	WELWYN	E	ଧ
R21		FSV (270R $\frac{1}{2}$ W Carbon)	Mullard	CR25	1 of Kit
R22	000 470	47R, 5%, 4 W Carbon	Ξ	=	6
R23	060205	$2 M, \frac{3}{4}$ " IOT Cer Pot	Beckman	7 9P	-
				20.9.76 datron	datron electronics i to
ICC I D I I I I I I I I	FOVE FACTORY	scted value)	DRAWN B	TI	
861 061	254 272		CHECK		.S. PCB ASSY.
REV. 4 REV. 5	REV. 6 REV. 7	REV. 8 REV. 9 REV. 10	REV. 11 REVIZ 13	2.3.77 DRAWING	анеет Z
E.C.O. 29 E.C.O.36	E.C.O. 57 E.C.O. 73	ECO. 80 E.C.O. 83 ECO 84	ECO.124 ECO.152 156 80	АМ. 25 2 NUMBER 409106	or _ 15 _

No. USED Per Assy.			1 OI KIT	1	.1	I	I	1 of Kit	-		S	3		-	-	I	2	I	-	ľ	3	. ∼	R	-		ELECTRONICS LTD.	S, PCB ASSY		or _ 15 -	
MANUFACTURER'S PART No.	ADOF.	(2H)	-	MX1258	CR25	CR25	40330	CR25	4033C	CR25	CR25	-		=	4033C		72P	72P	CR25	-	E		=	=			1030 MATN B.M.S.		409106 - 54 NUMBER	
																									DATE.	DRAWN BY.	СНЕСК	NEXT DRAWING	40	
PRINCIPAL MANUFACTURER	Ac Sheet D	n aarre	: :	=	MULLARD	-	WELWYN	MULLARD	E	ŧ	E	=	E	=	=	=	E	E	=	61	14		•	H				LATEST ISSUE		
DESCRIPTION	OK7 - LIV FOR Parkon	(22/1) Ju car DU	au(()	6K8, 4 W, 1% W.W.	IM , 1/4W, 5% CARBON	3K3, 4 W, 5% Carbon	47R, 8 W, 1% MF	FSV (270R) 5% Carbon	8K2, ả W, 1% MF	220K, 4 W, 5% Carbon	470K, " "	1K5, " "	1K5, " "	8M2, " 10% "	110K, 素 W, 1% ME	976K, 1 4 " "	5K, ³ " Cerm Pot	50К, " "	390R, 1 W, 5% Carbon	47R, " "	2K2, " "	1K, " "	4K7, " "	3К9, и и				SEE SHEET 2 FOR LATE		
DATRON PART No.	000 279				501 000	000 332	014 708		018 201	000 224	000 474	000 152	000 152	000 825	011 103	019 763	063 502	063 503	000 391	000 470	000 222	000 102	000 472	000 392	· · · · ·			REV	E.C.O.	
DESIGNATOR	ROA	1124 DOF	(JU	R26	R27	R28	R29	R30	R31	R32	R33	R34	R35	R36	R37	R38	R39	R40	R41	R42	R43	R44	R45	R46	NOTES.			REV. 4 REV. 5	ECO. 29 ECO.36 1	

_		_				
DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.		No. USED Per Assy.
R47	000 470	47R, 1 W, 5% Carbon	As Sheet 2	CR25		
R48	000 102	1K, " "	=	=		l l
R49	000 101	100R, " "	=	=	•	4
R50	000 101	100R, " "	1			I
R51	000 331	330R, " "	=	E		3
R52	000 100	10R, "` "	E	**		N
R53	000 100	10R, " "	=			Í
R54	155 000	330R, " "	E	H		1
R55	000 223	22К, и и	E	F		ŝ
R56	000 104	100K , " "	=	F		1
R57	000 223	22K, " "	E	=		1
R58	000 122	1K2, " "	X,1	u		-
R59	019 763	976K, 1%, ፤ w mf	E	4033C		1
R60	063 503	50K, ³ 개 Cerm Pot	=	72P		1
R61	000 104	100K, 5%, <u>‡</u> W Carbon	t.	CR25		1
R62	000 332	3К3, " "	E			1
R63	000 104	100K, " "	=	=		1
R64	000 223	22K, " "	E	E		1
R65	019 762	97k6, 1%, 1 w mf	E	123		-
R66	063 502	5K, ³ " Cerm Pot	E	72P		
R67	000 104	100K, 5%, 4 W Carbon	E	CR25		1
R68	011 022	10K2, 1%,	E	40330		-
R69	000 185	1M8, 10%, 4 W Carbon	E	CR25		-
NOTES.			<u> </u>	DATE.	datron electronics LTD.	CTRONICS LTD.
			<u> </u>	DRAWN BY.		
				CHECK	1050 MAIN K.M.S.	. PUB ASSI
L REV		SEE SHEET 2 FOR LATE	LATEST ISSUE	DRAWING REV Z 5	drawing Number 209106	SHEET 4
ECO. 24 ECO 20	ECO.			t		

	-	• •		-	-	
DESIGNATOR	DATRON PART No.	DE SCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.		No. USED Per Assy.
R93	000 152	1K5, 4 W, 5% Carbon	As Sheet 2	CR25		ą
R94	063 205	2M, ³ / ₃ " Cerm Pot	1	72P		1
R95	000 336	33 M, 4 W, 10% Carbon	4	CR25		ł
R96	000 104	100K, 4 W, 5% Carbon	1	=		l
R97	000 124	120K, " "	44	=		4
R98	000 682	6К8, " "		=		I
R99 -	000 221	220R, " "	=	=		B
R100	000 222	2K2, " "	-	=		
R101	012 001	2K, ả W, 1% MF	=	4033C		+
R102	000 471	470R, 4 W, 5% Carbon	-	CR25		~~
R103	000 103	10K, " "	t	=		J
R104	000 682	6К8, " "	2	=	,	l
R105	000 681	680R, " "	=	-		-
R106	000 101	100R, " "	11	=		I
R107	000 153	15K, " "	-	=		ญ
R108	000 272	2K7, " "	4			I
R109	000 108	1R, " "		=		•
R110	000 123	FSV ANT FIT IZK ON ASSY)	1			1
R111	000 222	2K2, 4 W, 5% Carbon	2	CR25		1
R112	000 106	10M, <u>4</u> W, 10% Carbon	=	=		5
R113	* 063 205	2M, ³ , Cermet Pot	E	72P		I
R114	000 223	22K, <u>‡</u> W, 5% Carbon	=	CR25		1
R115	000 332	3K3, " "	н			ſ
			DATE			
* Is skeleton pot	No. 062	205 on early models	DRAWN BY	τ. 		ECTRONICS LTD.
			СНЕСК		1030 R.M.S. MAIN PCB ASSY	IN PCB ASSY
REV. 4 REV. 5	REV.	SEE SHEET 2 FOR LATEST	ST ISSUE			SHEET Ó
ECO.29 ECO.36 ECO.	ECO.			REV # 5	ичивек 409106	or _15

	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.		No. USED Per Assy.
		1:1	-			-
0117 7117	012 202	ZZK, 8 W, 1% MF	As Sheet 2	40350		_ .
<u> </u>	440 028	FOV (IDUK, EW ME)	=	=		-
R118	000 331	<u> 330R, 4</u> W, 5% Carbon		=		1
R119	011 002	10K, 诸 W, 1% MF	ŧ	=		I
R120	000 103	10K, 4 W, 5% Carbon	F	CR25		I
R121	000 104	100K, " "	=	F		l
R122	000 332	3К3, " "	=	-		•
R123	000 224	220K, " "	Ŧ	=		1
R124	000 105	1M, " "	E	E		
R125	000 105	1M, " "	=	I		1
R126	000 153	SK = =	-	2		
R127	000 824	820K	2	*		-
R128	000 113	11K = =	2	"		-
R129	000 624	620K = =	-	=		_
R130	000274	270K • •	*			-
R131	000 412	4KT " "		•		1
R1 32	000 105	1M, <u>4</u> W, 5% Carbon	H	E		
R1.33	000 104	100K, " "	E	E		
R1 34	000 224	220K, " "	E	=		
R1 35	000 332	3К3, " "	=			I
R1 36	000 105	1M, " "	F			
R137	014 701	4K7, 	E	40330		۰. ۲
R138	063 501	$500R, \frac{3}{8}$ " Cermet Pot	F	72P		•
NÔTES.				DATE.		ECTRONICS LTD.
				DRAWN BY.	TITLE	
				СНЕСК	1030 MAIN R.M.S.	S. PCB ASSY
REV.4 REV. 5	REV.	SEE SHEET 2 FOR LATEST	ST ISSUE	NEXT DRAWING		
FU 29 EU 26 EU	FCO			REV # 5	ичнает 409106	or 15

	PART No.		MANUFACTURER	PART No.	Per Assy.
R139	011 002	10K, 3 W, 1% MF	See Sheet 2	40330	1
R140	000 105	1M, 1 W, 5% Carbon	=	CR25	
R141	000 106	10M, " "	E	E	8
R142	000 103	10K, " "	2	E	
R143	011 002	10K, 3 W, 1% MF	=	40330	1
R144	063 104	100K, $\frac{3}{8}$ " Cermet Pot	1	72P	-
R145	000 103	iOK, <u>‡</u> W, 5% Carbon	-	CR25	
R146	011 002	10K, 3 W, 1% MF	-	4033C	I
R147		FSV (680K, ¹ / ₄ W Carbon)	=	CR25	1 of Kit
R148	063 504	500K, $\frac{3}{8}$ " Cermet Pot	Ξ	72P	~
R149	000 476	47M, 4 W, 10% Carbon	Allan Bradley	C810	-
R150	000 103	10K, 5%, <u>4</u> W ^g Carbon	Mullard	CR25	
R151	000 101	100R, " "	=		F
R152	000 474	470k " "	R	-	
R153	000 4 7 4	470k " "	E	E	ł
R154		FSV (12K, 4W Carbon)	H	-	1 of Kit
R155	011 001	1K, ^글 W, 1% MF	Welwyn	4033C	I
R156	090 001	PTC Thermistor	Mullard	VA8650	~
R157-R165	000 103	IO K, 1/4 W, 5% CARBON	MULLARD	CR25	-
NOTES.			DATE.		
			DRAWN BY. CHECK	87. 11	M.S. PCB ASSY
REV. 4 REV. 5	REV.	SEE SHEET 2 FOR LATE	LATEST ISSUE		
ECO. 29 ECO. 36 ECO.	ECO.			REV# 5 NUMBER 409106	0 - 15 -

No. USED Per Assy.	on 801 2			•	3	- 5	2	7	con 801 6	M	=	2			1	ŧ			2	D	son 831 2	2			UCU UL ELECTRONICS LTD.	1030 MAIN R.M.S. PCB ASSY	F	409106 0r 15	
MANUFACTURER'S PART No.	Standard Ceramicon	=	801	PC		VPC 15			Standard Ceramicon	=	=	FKS 2 Min	=			VPC 15		VPC 15	K22E16	F	Standard Ceramicon			•	4				
PRINCIPAL MANUFACTURER	: Erie	-	E.	Facel	Iskra/Suflex	Jackson	Iskra or Suflex	Iskra or Suflex	Erie	Erie		Wima	E	Iskra Suflex	н н	Jackson	Iskra Suflex	Jackson	Union Carbide	1	Erie	Iskra Suflex	и и	DATE	STED	CHECK	CISSUE		
DE SCRIPTION	27pF, 10%, 2KV NI50 Cer Disd	8	220pF Cer Disc	.22mF, 10%, 1Kv Polycarb	22pF, 5%, 160v, PS	15pF Trimmer	15pF, 5%, 160v, PS	1200 PF+22% 63~ Ps.	1KpF, 500v Cer Disc	470 pF, 500v Cer Disc	1KpF, 500v Cer Disc	.015mF Min Polyest	н н	22pF, 5%, 160v PS	15pF, " "	15pF Trimmer	100pF, 5%, 160v PS	15pF Trinner	22mF, 16v Dipped Tant	н н п	22pF, 500v Cer Disc	10pF, 5%, 160v PS	10pF, 5%, 160v PS		(140001) UNTIL STOCK EXHAUSTED		SEE SHEET 2 FOR LATEST		
DATRON PART No.	104 014	104 014		. 120 001	130 025	140 007 *	130 002	130 012	102 102	102 471	102 102	110 015	110 015	130 025	130 002	140 007 *	130 004	140 007 *	150 001	150 001	102 220	130 011	130 011		Use Mullard 80909003 (14		REK	EC.0.	_
DESIGNATOR	C1	C2	C3	C4	C5	c6	c7	CB	C9	C1 0	C11	C12	C13	C14	C15	C16	C17	CIB	C 19	C 20	C21	C22	C23	NOTES.			REV. 4 REV. 5	Eco.36	

DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	URER'S	No. USED Per Assy.
		ſ				
C24	140 007 *	15pF Trimmer	As Sheet 9	VPC 15	-0	
C25	130 006	82pF, 5%, 160v PS	4			~
C26	140 007 💥	15pF Trimmer	L.	VPC 15	2	8
C27 .	130 025	22pF, 5%, 160v PS	=			I
C28	130 012	1200 pf = 22 x 63v PS	=			ł
c29	130 007	3K3pF, " "	5			5
c 30	130 007	ЗКЗрF, " "	H ,			
C31	110 006	.033mF, 10%, 250v PY	Mullard	C280AI	C280AE/P33K	~
C32	102 228	2.2pF Cer Disc MPO	As Sheet 9	861 NPO	0	t
C33	102 1 02	1000þF Cer Disc		801		1
C34	102 47 1	470 PF " "	=	801		
c35	101 103	.01mF, " "	E	801		7
C36	101 103	.01mF, " "	=	=		1
C37	150 002	10mF, 16v	E	K10E16		-
C38	102 102	10000F. Cer Disc	E	801		1
C39	102 330	33ÞF 11 11		801		2
C40	101 103	.01mF " "	E	801	-	1
C41	101 103		F	=		I
C42	101 103		E	=		1
C43	150 010	.33mF, 35 Dipped Tant	=	KR33E35	35	-
C44	102 101	100pF Cer Disc	E	801		6
C45	102 220	22pF " "	Ŧ	831		F
C46	110 0 05	.01mF, 10%, 250v PY	Mullard	0280AE	PIOK	1
NOTES. U	USE MULLARD 80909003	003 (140001) UNTIL STOCK	EXHAUSTED.	DATE.		
				DRAWN BY.		
				снеск	1030 MAIN R.M.S.	.S. PCY ASSY
REV. 4 REV. 5	s Rev.	SEE SHEET 2 For LATE	TATEST ISSUE	NEXT DRAWING		внеет 10
ECO. 29 ECO. 31	36 E.C.D.			REV # 5	ичивек 409106	or _15 _

No. USED Per Assy.		-	i m	I	I	1	8	-	1	8		29		2		-	-		datron electronics LTD.	I R.M.S. PCB ASSY	NEET 1	5
MANUFACTURER'S PART No.	C280AE P47K	MKS	MKS			80	801	C280AE/PIDOK	801	801		1N4148	=	HSCH 1001 / IN6263	IN4148	BZY 88C 5v6	IN5338		Dato	111	DAAWING	REV # 5 NUMBER 409106
PRINCIPAL MANUFACTURER	Mullard		Line Winner			Erie	E	MULLARD	Erie	ERIE		Fairchild	E	Hewlett Packard	Fairchild		Motorola		DATE	DRAWN BY. CHECK	ISSUE NEXT	
DESCRIPTION	.047mF, 10%, 250v FY	2	3.3.F IOW IDAV PY	2	3•3mF	33pF Cer Disc	.01mF " "	0.1 pF 10% 250V POLY	470pF, 500v Cer Disc	IKPF., 500V. CER DISC.	NOT USED	Diode Sil Gen Purp		Diode Sil Hot Carrier	" " Gen Purp	5.6v, 400mW Zener	5.1v, 5W Surm Zener				SEE SHEET 2 FOR LATEST	
DATRON PART No.	110 004	110 008	102 101	110 007	110007	102 330	101 103	110 013	102 471	102 102		200 001	200 001	220 010	200 001	210 056	213 002			,	REV	E.C.O.
DESIGNATOR	C47	C48	C49	c51	C52	C53	055,CS6	c57	C58	C60,C61	c,54,C59	DI-12	D14-25	026-27	D28-32	DI3	D34		NOTES.		REV. 4 REV. 5	ECO. 29 ECO. 36 E.CO.
DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.																	
-----------------------------	--------------------	-------------------------	---------------------------	----------------------------	---------------------------																	
M1	260025	I. TC TMID1	Land 1		υ ·																	
M2	26 0025		National	=																		
M3	290 025 *		Datron	See drawing																		
M5, M6	. 26 0025	LIC IMOI	National		1																	
, <i>L</i> M	290 004	LIC LM312H	National	LM312H RED	ب																	
M4	260025	LIC IMIO1	NATIONAL	[WIO]																		
•																						
5	100 010	עט זאנוע ניט		41 C FD4																		
		NDN		BC18AK	2																	
QAA, QAB	239 024			U401 BLACK	· · ·																	
Q5A, Q5B	249 004	Hi Beta NPN			-																	
Q6, Q7	259 005	Matched Pair 250 004	Datron	Pair 2N3906	1 Pair																	
Q8, Q9	250 004	Sil PNP HF GP		2N3906	5																	
Q10	240 006	Sil NPN HF GP		2N3904	4																	
Q11	250 004	Sil PNP HF GP		2N3906	ł																	
Q12	230 00 3	Fet N. Junct Switch	Teledyne	U1899E/K4093-I8	7																	
Q13	230 003		National	01899E /k4093-k	3-19																	
Q14	230 00 3	Fet N. Junct Switch	Teledyne	U1899E /к4093-19	B																	
Q15, Q16	240 001	Sil NPN GP.		BC184K	1																	
Q17	230 003	Fet N. Junct Switch		U1899E/K4093-18	- 18																	
Q18, Q19, Q	920 240 001	Sil NPN GP		BC184K	I																	
921, 922	250 004	Sil PNP HF GP		2N3906	1																	
NOTES.																						
* In 1110 R 1 May 1140 R	E KIT	tighter Spe			UCUUL I ELECTRONICS LTD.																	
2 May use R		08 or Sel No. 290 007			1030 MAIN R.M.S. PCY ASSY																	
-	Jerea 237 UIU		<u> </u>	NEXT DRAWING DRAWING	12 defet 12																	
REV. 4 REKS	REV.	SEF SHEET D EAR 1 ATCOT																				

DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
923	240 006	SII NPN HF GP		2N3904	1
024	240 001	Sil NPN GP		BC184K	1
Q25, Q26	230 002	Fet N. Junct GP		· U1994E/K4416-18	2
Q27	230 00 3	Fet N. Junct Switch		U1899E/K4093-IB	I
Q28	250 006	Sil PNP Gen Purp T092		BC322	-
Q 29	240 001	Sil NPN GP		BC184K	1
Q30, Q31	230 00 3	Fet N. Junct Switch		U1899E/ K4093-IB	.1
Q32, Q33	240 006	Sil NPN HF GP		2N3904	8
	620 002	PTFE Standoff Terminal	Sealectro	STSM1P47	9
	620 003	PCB Solder Terminal	Harwin	H2105A	6
	60 2 001	FSV Terminal	Molex	02-04-1875	20
J1	605 002	16 Pin DIL Socket	Antiferance		
	614 001	4mm x 3.3mm Rivet Standoff	Harwin	CS2117B	9
	612 00 5	22 mm x M3 Rivet Standoff	Harwin	CS2116	9
	601 002	Connector Terminal	Amp	60803-1	٥
S1 – S6	700 037	Switch Bank 6 x 6 Pole	LIPA & ISOSTAT	CD15	1 Bank
		Interlock		6 x 6 Pole Interlock	
	700 010	SWITCH BUTTON BLACK	LIPA + ISOSTAT		
S7 – S11	700 038	Switch Push On/Off	LIPA & ISOSTAT	CD15	ហ
	613 011	NYLON WASHER			44
NOTES.			рате.	datron electronics LTD.	LECTRONICS LTD.
			DRAWN BY.	717	
			СНЕСК	030	MAIN RHS PCB ASSY
REV. 4 REV S	-	SEE SHEET O FOD 14		DELL 1/5 NUMBER 409106	6 sheet 13
ECO. 29 ECO. 36	ECO.			7	
		_			

				-	-	~
DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	- 	No. USED Per Assy.
	611 004	Screw M3 x 6mm Pozipan	-			Ø
	615 002	Nut M3				5
	613 005	Int Shakeproof Washers M3				4
	900001	CYANDCRYLATE ADHESIVE		1512		A/R
	419 105 - 5	PCB	Datron			
	540 001	24 Tinned CU Wire				A/R
	511 001	7/0.2 PVC 1KU Pink				A/R
	590 001	Hellerman Sleeves 1.5m	Hellerman Electric	H15 x 1	15	10
		x 15mm				
	400 001	Input Cable Assy	Datron	400 001		-
	630 033	1/2 × 28 5WG BRASS STRIP				167 mm
	611006	SCREW POSIPAN M3 X 10				Q
	459110	UPPER GUARD SHIELD				-
	45911	Lower " "				
	590011	BLACK SLEEVING	Hellarman	1415		A/R
	590004	SILICON RUBBER SLEEVE (1.5)				A/R
NOTES.			DATE			
			DRA	BY.		
			СНЕСК	ž	1030 MAIN R.M.S. PCB ASSY	5. PCB ASSY
REV. 4 REV.5	REV.	SEE SHEET 2 FOR	LATEST ISSUE			меет _ 14
ECO. 29 ECO.36	E.C.O.	{ - 		REV #5 "	ичивек 409106	°r - 5

	_	_	_		-	-	_	-	-	 	 	 		 	 		 						
	No. USED Per Assy.	7		4	2														ILICTIONICS LTD	S ASY.		2 LIN 10	
	MANUFACTURER'S PART No.	RIO-E1-L2-53.2K																		1030 MAIN RMS ASSY.		24 140 177 409106	
	MANUF PART N	R10-E	:															D 9 76		N Tel		15 0A1	
•																		DATE 01	DAMAN	CHECK	NECT	V Q	-
																							-
	PRINCIPAL MANUFACTURER	POTTER & BROMFIELD				*																	
	MANUF	Porte	:									 						STUD.					-
		POLE	2		SHER													MOUNTING				+	-
		342 2 4	:	ET	3							-						RELAY MO				_	
	NOI	287	:	BRACKET	SHAKEPROOF	FUL NUT												5					
	DESCRIPTION	Kela	2	RELA	88	8 8												SA T NO					
		-0	3	7	9	, I												DEPEND				-	
	DATRON PART No.	330003	330003	459112	613 006	615 001																	
	₹8	n,	3	4	*	و *				 				 	 	 	 	Aanshu J					
, ,	¥0		-															TUN #			C + 7 *		
	DESIGNATOR	ĸ	ĸх			and an and an and a second						a' 1						NOTES.			SS.		

DESIGNATO.?	DATRON PART No.	DE SCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
-					
R1 _ R28		NOT USED			ſ
ç	CON273	27K 5% HW Carbon	MULLARD	CR25	4
	00010A	100K 5% 14 Carbon	MULLARD	CR25	7
8.33	000103	10K 5% AW Carbon	MULLARD	CR25	9
834	000471	470R 5% 4W Carbon	MULLARD	CR25	5
B 35	000103	10K 5% 4 W Carbon	MULLARD	CR25	1
B36	000471	470R 5% 4W Carbon	MULLARD	CR25	1
B 3.7	063102	1K ^굵 " Cermet Pot	BECKMAN	72P	
B 3.8	018201	8k2 1% k W Metal Film	WELWYN / HOLCO	4033C / H4	2
B30	018201	8k2 1% 4w Metal Film	WELWYN / HOLCO	4033C / H4	B
R40	000102	1K 5% AW Carbon	MULLARD	CR25	3
R41	000103	10K 5% 4W Carbon	MULLARD	CR25	8
R42	000103	10K 5% 4W Carbon	MULLARD	CR25	1
R43	000222	2K2 5% 1W Carbon	MULLARD	CR25	7
RAA	000102	1K 5% 4W Carbon	MULLARD	CR25	3
845	000103	10K 5% 1 W Carbon	MULLARD	CR25	1
516	mm1 03	10K 5% #W Carbon	MULLARD	CR25	5
R47	000103	10K 5% AW Carbon	MULLARD	CR25	1
R48	000331	330R 5% 4W Carbon	MULLARD	CR25	ø
R49	000103	10K 5% 4W Carbon	MULLARD	CR25	1
R50	000154	150K 5% 4 W Carbon	MULLARD	CR25	~
R51	000331	33OR 5% 4W Carbon	MULLARD	CR25	1
R52	000104	100K 5% 4W Carbon	MULLARD	CR25	1
NOTES.			DATE 23	11.73	
			DRA	111	
				TOTO A.D PCB ASST	ASSY
REV. 5 REV. 6	REV. 7 8 9	10 11 12 13 14 15	16 17 18 19 20	12.2 WW 2.2.1	SHEET 2
ECO. 73 ECO. 82	ECO.85 148 195 283	5 283 398 426 387 517 525	548 610 625 642 670	REV NUMBER 409109A	

R53 000103 10K 5% 4W Carbon R54 000103 10K 5% 4W Carbon R55 000103 10K 5% 4W Carbon R56 000103 10K 5% 4W Carbon R57 000223 22K 5% 4W Carbon R59 000223 22K 5% 4W Carbon R60 000331 330R 5% 4W Carbon R61 000331 330R 5% 4W Carbon R63 000331 330R 5% 4W Carbon R64 000331 330R 5% 4W Carbon R65 000331 330R 5% 4W Carbon R65 000331 330R 5% 4W Carbon R64 000331 330R 5% 4W Carbon R65 000331 330R 5%			
000103 10K 5% 4M 000103 10K 5% 4M 000223 22K 5% 4M 000223 330R 5% 4M 000223 330R 5% 4M 000222 22K 5% 4M 000222 23C 5% 4M 000223 330R 5% 4M 000223 320R 5% 4M 0000231 320R 5% 4M </td <td></td> <td>CR25</td> <td>1</td>		CR25	1
Not VSE 000103 10K 5% 4W 000223 22K 5% 4W 000223 22K 5% 4W 000223 22K 5% 4W 000331 330R 5% 4W 000222 22K 5% 4W 000223 22K 5% 4W 000331 330R 5% 4W 000222 2K2 5% 4W 000223 330R 5% 4W 000223 330R 5% 4W 000223 2K7 5% 4W 000223 2K7 5% 4W 011001 1K0 1% 4W 000272 2K7 5% 4W		CR25	ł
000103 10K 5% 4W 000223 22K 5% 4W 000223 22K 5% 4W 000231 22K 5% 4W 000331 330R 5% 4W 000222 2K2 5% 4W 000223 330R 5% 4W 000223 330R 5% 4W 000223 2K2 5% 4W 000223 2K 5% 4W 000223 2K 5% 4W 000223 2K 5% 4W 000223 2K 5% 4W 000233 2K 5% 4W 01			ß
000223 22K 5% Hw 000223 22K 5% Hw 000223 22K 5% Hw 000231 330R 5% Hw 000331 330R 5% Hw 000331 330R 5% Hw 000222 2K2 5% Hw 000223 2K2 5% Hw 000222 2K2 5% Hw 000223 330R 5% Hw 000223 330R 5% Hw 0002331 330R 5% Hw 000331 330R 5% Hw 000331 330R 5% Hw 0003331 330R 5% Hw 0003331 330R 5% Hw 0003331 330R 5% Hw 000333 330R 5% Hw 000223 22K 5% Hw 000223 22K 5% Hw 000233 22K 5% Hw 000233 22K 5% Hw 000233 22K 5% Hw 000233		CR25	P
000223 22K 5% 4W 000231 22K 5% 4W 000331 330R 5% 4W 000331 330R 5% 4W 000222 2K2 5% 4W 000222 2K2 5% 4W 000222 2K2 5% 4W 000223 330R 5% 4W 000223 330R 5% 4W 000222 2K2 5% 4W 000223 330R 5% 4W 000233 320R 5% 4W 000233 22K 5% 4W 000223 22K 5% 4W 010001 1K0 1% 4W 011001 1K0 1% 4W 000272 2K7 5% 4W 000272 2K7 5% 4W	on MULLARD	CR.25	6
000223 22K 5% 4W 000331 330R 5% 4W 000331 330R 5% 4W 000222 2K2 5% 4W 000222 2K2 5% 4W 000222 2K2 5% 4W 000223 2K2 5% 4W 000331 330R 5% 4W 000331 330R 5% 4W 000223 2K2 5% 4W 000331 330R 5% 4W 000333 22K 5% 4W 000223 22K 5% 4W 000223 22K 5% 4W 000223 22K 5% 4W 000233 22K 5% 4W 0000233 22K 5% 4W <	on MULLARD	CR25	. 1
000331 3308 5% 4% 000331 5308 5% 4% 000222 282 5% 4% 000222 282 5% 4% 000561 5608 5% 4% 000551 3308 5% 4% 000331 3308 5% 4% 000331 3308 5% 4% 000331 3308 5% 4% 000331 3308 5% 4% 000331 3308 5% 4% 000331 3308 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 000223 228 5% 4% 010001 180 0% 011001 180 0% 000272 287 5% 4%	on MULLARD	CR25	ſ
000331 3308 000222 2K2 000222 2K2 000231 5608 000331 5508 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 3308 000331 308 000331 308 000331 308 000332 208 011001 11001 000232 201 000232 201	on MULLARD	CR25	
000222 2K2 000222 2K2 000561 5608 000331 3308 000331 3308 000331 3308 000223 22K 000223 22K 000223 22K 000223 22K 011001 1K0 000272 2K		00.25 00.25	
000222 000561 000331 000331 000331 000223 000223 000223 000223 000223 000223 000272 000272		CB25	
000561 5 000331 5 000331 3 000331 3 000223 3 000223 8 011001 8 011001 8 000272 8		CR25	-
000331 3 000331 3 000223 0 000223 0 000223 8 000223 8 000223 8 000223 8 000272 8	on MULLARD	CR25	•
000331 000223 000223 000821 011001 000272		CR25	
000223 000223 000821 011001 000272		CR25	. 8
000223 000821 011001 000272	on MULLARD	CR25	
000223 000821 8 011001 000272			
000821 8 011001 0 000272	on MULLARD	CR25	
011001		CR25	
000272		40336 / H4	
	on MULLARD	GR25	
875 063103 10K ^{2/1} Cermet Pot	Pot BECKMAN	72P	
876 014021 4K02 1% 4W	METMIN / HOTCO	4033C / H4	
877 - 879 000563 567 5% 4 Cambox	on MILLADD	1 cm.25	
NOTES.		datron	ELECTRONICS LTD.
		DRAWN BY. TITLE JRP 1030 A.D. PCB	
SEE SHEET 2 FOR LATEST I	ISSUE	NEXT DRAWING DRAWING DRAWING DRAWING DRAWING	SHEET 2
		+	1

					-
DESIGNATOR	DATRON PART No.	DE SCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
R80	000563	56K 5% 4W Carbon	MULLARD	CR.25	1
<u>8</u> 81	000332	5K3 5% 4W Carbon	MULLARD	CR25	2
R 82	000222	2K2 5% 4W Carbon	MULLARD	CR25	1
<u>R</u> 83	000562	5K6 5% 4W Carbon	MULLARD	CR25	3
B 84	000222	2K2 5% ±W Carbon	MULLARD	CR25	8
R85	011302	1 3KO 1% 4W MF	WELWYN / HOLCO	4033C / H4	
R86	063201	2008 <mark>å</mark> " Cermet Pot	BECKMAN	72 P	
R 87	440022	FSV 220K 4W Carbon	MULIARD	CR25	1of kit
888	011201	1K2 1% 3 W MF	WELWYN / HOLCO	4033C / B4	-
889	011002	10K0 1% 3W MF	WELWYN / HOLCO	4033C / H4	
890	000562	5K6 5% 4W Carbon	MULLARD	CR25	
R 91	000272	2K7 5% 4W Carbon	MULLARD	CR25	B
R92	000103	10X 5% 4W Carbon	MULLARD	CR25	I
<u>R93</u>	NOT USED				
R94	NOT USED				
<u> </u>	NOT USED				
R96	NOT USED				
<u>897</u>	NOT USED				
808	NOT USED				
R99	000103	10X 5% 4W Carbon	MULLARD	CR25	1
R100	000223	22K 5% W Carbon	MULLARD	CR25	B
R101	014702	4.7K 1,% 3 W MF	WELWYN / HOLCO	4033C / H4	
P102	- 00025	2W2 10% +W Carbon	MULLARD	CR25	-
NOTES.			DATE		
			DRAWN B		ELECTRONICS LTD.
			JRP CHECK		
SEE	SHEET 2	FOR LATEST ISSUE		4 Валинс Инивел 409109	SHEET 4

DESIGNATOR	DATRON PART No.	DESCRIPTJON	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
R103	000473	47K 5% 14 Carbon	MULLARD	CR25	
R104	NOT USED		· · ·		
R105	NOT USED				
R106	063202	2K å" Cermet Pot	BECKMAN	72P	
R107	000472	4K7 5% 4W Carbon	MULLARD	CR25	m
R108	000562	5X6 5% 4W Carbon	MULLARD	CR25	3
R109	000107	100M 10% AW Carbon	MULIARD	CR25	
B110	000222	2K2 5% 4W Carbon	MULLARD	CR25	1
R111	000124	120K 5% 4W Carbon	MULLARD	CR25	4 -
R112	000223	22K 5% 4W Carbon	MULLARD	CR25	
R113	000332	3K3 5% 4W Carbon	MULLARD	CR25	8
R114	000102	1K 5% 4W Carbon	MULIARD	CR25	I
R115	000470	47R 7% 4W Carbon	MULLARD	CR25	-
R116	000152	1K5 5% Aw Carbon	MULIARD	CR25	2
R117	0001 03	1 oK 5% 4W Carbon	MULIARD	CR25	B
k118	000273	27K 5% 4W Carbon	MULLARD	CR25	
R119	000101	100R 5%	MULIARD	CR25	
R120, R124	000472	4K7 5% 4W Carbon	MULLARD	CR25	
R121 - R122	000104	100K 5% 4W Carbon	MULLARD	CR25	
R123	000222	2K2 5% 4W Carbon	MULLARD	CR25	
R125	000103	10K 7% 4W Carbon	MULLARD	CR25	1
R126 - R128	000104	100K 5% <u>4</u> W Carbon	MULLARD	CR25	1
R129	000152	1K5 5% 4W Carbon	MULLARD	CR25	1
NOTES.			DATE.		
R130	000103	10K 5% 4W Carbon	MULLARD	UCUUL ELECTRONICS LTD.	LECTRONICS LTD.
			Снеск	JRP 1030 A.D. PCB	
SE	SEE SHEET 2 Fo	FOR LATEST ISSUE	REXT	V 4 DAAWING DAAWING	MEET 5
	-				

	_				
DESIGNATOR	DATRON PART No.	DE SCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
		:			
R135	000684	680k5% /4 Carbon	Mullard	cR25	-
B131 - B132	000223	22K 5% j W Carbon	MULLARD	CR25	
R134	0001000	IOR 5% '4W CARDON	MULLARD	CR25	-
12	180004	4700 MF / 16V Al Elect	AMTW	Printilvt 4700/16 NCW	•
23	110013	.1ME 250V P7	MULLARD	C280AE P100K	
c3	150003	47MF / 63V Dipped Tant	UNION CARBIDE	K47E6	ę
C4 – C10	101103	.01MF 250V	UNION CARBIDE	801	()
C11	101222	2200pf 500V Cer Disc	ERIE	801	•••
c12		NOT USED			
C 13 - C14	150001	22MF /16V Dipped Tant	UNION CARBIDE	K22E16	ĥ
C15	102221	220pf Cer Disc	ERIE	83	5
C16	110025	3300pF POLYESTER	MULLARD	347 61332	
C17	102471	470pf Cer Disc	ERIE	831	
C18	102221	220pf Cer Disc	ERIE	-	ł
C19	102102	iKpf Cer Disc	ERIE		ഹ
G20	150009	- .	UNION CARBIDE	K3R3E16	
C21	150002	10 MF 20% Bead Tant	UNION CARBIDE	KIO EIG	•••
G22	110005	01 /F 250 DIP Py	MULLARD	C280AE16	-
G23 C24	180005	1000MF /25V Al Elect	WIMA	PRINTILYT	2
G25	150001	22MF / 16V Tant Bead	UNION CARBIDE	K22E16	1
C26	150001	22MF / 16V Tant Bead	UNION CARBIDE	K22E16	
C27 – C28	102470	47nf Cer Disc	ERTE	831	2
NOTES.			DATE		
				11	
			CHECK	1030 A - D PCB ASSY	ASSY
ν3	SEE SHEET 2 F	FOR LATEST ISSUE	DRAWING		seet 6
				REV 4 NUMBER 409109A	

No. USED Per Assy.	1	3	8	2	B	1	-	Ŧ		-	1	8		N		1					datron electronics LTD.	ASST	SHEET 7	
MANUFACTURER'S PART No.	831	с. Г	=	MKS 100V	831	801	861	831	801	KR33E35	80.1	801		Tropyfol F	801	K22E16					datron	JRP 1030 A-D PCB ASST	t 409109A	
PRINCIPAL MANUFACTURER	BIIB	ERIE	ERIE	WIMA	ERIE	ERIE	ERIE	ERIE	ERIE	UNION CARBIDE	ĒRIE	ERIE		WIMA	ERIE	UNION CARBIDE					DATE		REV 4	
DE SCRIPTION	1Kpf Cer Disc	100pf Cer Disc	1Kpf Cer Disc	•47MF / 100V PY	`100pf Cer Disc	•O1MF Cer Disc	100pf 20% Cer Disc	4.7pF Cer Disc	OIMF CER DISC	.33Mr Dipped Tant Bead	· OIMF CER DISC	•01MF Cer Disc 250V		150pf 10% + 30ppm/oC AT	IKPF Cer Disc	22mF/16V Dipped tant							R LATEST ISSUE	
DATRON PART No.	102102	102101	102102	110011	102101	101103	104013	102478	101 103	150010	101 103	101103	NOT USED	110012	102102	150001						,	SEE SHEET 2 FOR	
DESIGNATOR	C29	G 30. C31	c3 2, c 33	c34 ° c35	C36	C37	c38	c39	C40	C41	C42	C43	C44	C45. C46		C48	1		-		NOTES.		Ŋ	

	S No. USED Per Assy.	16		B		æ	-	9	 	2	1							dation electronics LTD.		PCB ASST	оламиис иине#09109A ог 12
	MANUFACTURER'S PART No.	 IN4148			BZY 88C10	IN458A	128NI	IN4148	WSO1	W01	W01			÷					DRAWN BJRP TITLE CHECK		EV 4
	PRINCIPAL MANUFACTURER								15	GI	GI		-					0	<u>.</u>		·
	DE SCRIPTION	Sil Gen Purpose		Sil Gen Purpose	10V 400MW Zener	Sil Low Leakage	TC Ref. Zener 6V2	Sil Gen Purpose	1.5 Amp 100V Rect Bridge	1.0 Amp 100V Rect Bridge	1.0 Amp 100V Rect Bridge										SHEET I FOR LATEST ISSUE
	DATRON PART No.	 200001	NOT USED	200001	210100	200008	214 001	200001	209003	209004	209004										SEE SHEET
-	DESIGNATOR	CR1 - CR3	3		CR3	CR9. CR10. CR11		CR13 - CR24	1 M	W2	W3							NOTES.			

DESIGNATOR	DA.TRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
				A MO ENC	Ľ
<u> 91 - 02</u> 63 66	240006 230000	The struct GP	TELEDYNE	ZN 7904 U1 994E /K4416-18	4
1	240006	Sil NPN HF GP		2N3904	
	250004	Sil PNP HF GP		2N3906	3
a10 - a13	240001	Sil NPN Hi Gain GP		BC184K	4
1	250004	Sil PNP HF GP		2N3906	1
1	240007	Sil NPN HF Switch		2N3646	2
	240 0 09	Sil NPN H.Y. switch		MPSLOI	ĥ
019, 020	240009	Sil NPN H.V. Switch		MPS101	1
021	240006	Sil NPN HF GP	FAIRCHILD	2N3904	1
			N		
	-				
NOTES.			DATE.	datron	ELECTRONICS TD
-			DRAWN BY, JRP		
1 MAY BE NF 500 on EARLY MODELS	on EARLY MODELS		СНЕСК	1030 A-D PCB ASSY	SSY
	SEE SHEET	T I FOR LATEST ISSUE	REV 4	DRAWING 409109A	анеет 9 ог 12

DESIGNATOR	DATRON PART No.	DE SCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
M1	270001	DC 1C Quad Nand		7400NCommercial	6
CM	NOT IISED				
ne M3	270024	Dig IC 7 SEG DELODE	SPERRY NATIONAL	DD 700 DM8890	4
M4 - M6	270024	Dig 1C 7 Seg Decode	SPERRY NATIONAL	DD700 DM8880	
	270001	Dig 10 Quad Nand		7400N Commercial	
	270006	Dig 1C Hex Inv	-	7405N	
W10	270026	DIG- IC QUAD LATCH		74L75N COMMERCIAL	4
M11 - M13	270026	Dig 10 Quad Latch		74L75N Commercial	•
M14	270005	Dig 1C Hex Inv		7404N Commercial	
M15	270027	Dig 1C Dual Dff		74L74N Commercial	-
M16	270008	Dig 1C Triple Nand		7410N Commercial	2
M17 - M20	270025	Dig 1C Delade Count		74L90N Commercial	4
I	270013	Dig 10 Dual Dff		7474N Commercial	2
	270001	Dig 1C Quad ^N and		7400N Commercial	9
M24	290003	Timer Monostable	SIGNETICS	NE 555V Commercial	
M25	270002	Dig 10 Quad ^N and		7401N Commercial	-
M26	270001	Dig 1C Quad Nand		7400N Commercial	3
M27	270008	Dig 1C Triple Nand		7410N Commercial	8 :
M28	270001			7400N Commercial	
M29	270023	DIG. IC QUAD NAND BUFFER		7437N COMMERCIAL	,
M3O	NOT USED				-
M31	NOT ÙSED				
M32 - M33	290 010	Linear 1C 41301A or AMF	National	IN 301AH RED/ORANGE	2
NOTES.			DATE		ECTBONICS TD
			DRAWN BY.	E E	
			CHECK	1	SSY
	SEE SHEET	T FOR LATEST ISSUE		T A NUMBER ADO1 DOA	SHEET 10
		_		+	

N N N					
N N	290012 Not IISED	Linear 1C 741 OP AMP	FAIRCHILD	U5 B7741393 RED/ORANGE	р
	290012	Linear 1C 741 OP AMP	FAIRCHILD	U5 B7741393 RED/ORANGE	1
2(260005	Linear 1C Power Receiver 5V	MOTOROLA	MC 7805	-
26	260017	Linear 1C Power Receiver 15	1 JV MOTOROLA	MC 78MISCP	N
26	260017	Linear 1C Power Receiver 157 MOTOROLA	MOTOROLA	MC 78 MISCP	8
-					
6	613007	M3 PLAIN WASHER	GKN		N
6	61019	M3x35 Pozi PAN	GKN		-
			DATE.		ECTRONICS LTD.
			CHECK	JRP 1030 A-D PCB ASSY	ISSY
	SEE SHEET	I FOR LATEST ISSUE	REV	4 DO109A	SHEET 11

	ER'S No. USED Per Assy.	-	,2	- S6T		MLD 215NOIOI ML/M62-21 1		5	୫	2	•		3	Ð	2	.4-	30 mm		8	57 [19	ហ		31 1	2	daton electronics LTD.		1030 A-D PCB ASSY	инс 409109A ог 12
	MANUFACTURER'S PART No.	Issue 2	76616/4	101 -083-	ICN 163-53	MLD 215HOI	H2105A	0204 1875	60803-1	459138	459139								ICL 163-56T	1CL 143-53T			10-08-1031	C52116-B	DATE.	DRAWN BY JRP	NEXT	REV 4
	PRINCIPAL MANUFACTURER	PLESSEY WINDINGS	NEWPORT INSTRUMENTS	ASTRALUX	ANTIFERENCE	РУЕ	HARWIN	MOLEX	AMP	KDP ES	KDP ES			GKN	GKN	GKN		7 2 2 3 0	Astralux				Mole X	HARWIN		<u>[ā</u>](<u>, 1</u>	<u> </u>
	DESCRIPTION	Toroidal Maine TX	Pulse Tx (Logic)	BWAY D.I.L SOCKET	02	42 War Dis. 1 Re(ann + Kayin 2)	PCB Solder Terminal	FSV Terminal	Connector Terminal	Transistor Heat Dissipator	Heat Dissipator	P.C.B.	Transistor Mounting Kit	M3 x IOmm Pozipan	M3 z 6mm Pozipan	M3 Nut	12"X 285WG. BRASS STRIP	MIS NYLOCK DUT	16 Way D.I.L. Skt Str Bucket	14 Way D.I.I. Skt Str Bucket	M3 SHAKEPROOF	GUARD SHIELD	MRINS CONNECTOR	M3X4mm STANDOFF				FOR LATEST ISSUE
-	DATRON PART No.	¥0000£	310001	605059	605002	605058	620003	602001	601002	459138	459139	419108 4 = 5A		611006	611007	615002	630033	615010	605028	605 037	613005	450139	604017	612004				SEE SHEET
	DESIGNATOR	TRI	TR2, TR3	-	J3	34																			NOTES.			

			 	 	 													-
No. USED Per Assy.	-	-												OPTION		Alfer	9	
MANUFACTURER'S PART No.	00 / DM8880	SN COMMERCIAL									•		datron	THE 4 % DIGIT	kii - 1030	A 400 N	12.L	
MANU	00700	74L75N											 DATE 24.2.77	2	W)		T	
PRINCIPAL MANUFACTURER	SPERRY / NATIONAL												DATE 2	DAAWA		***	1 1 Kee	
DESCRIPTION	DIG. I.C. 756G. DECODE S	DIG. I.C. QUAD. LATCH																
DATRON PART No.	270024	270026	-															
DESIGNATOR	M3	M IO											NOTES.				DATE 24.2.77	_

			-		
DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
	~				
L1	370 001	10 micro H .SR Choke	PLESSEY	58/10/0011/10	•
R2	000 221	220R 5% 4W Carbon	MULLARD	CB25	
R3. R4	000 562	5K6 5% 4W Carboni	MULLARD	CR25	
R5	000 681	680R 5% 1 4 Carbon	MULIARD	CR25	
R6	000 272	2K7 5% 1 W Carbon	MULLARD	CR25	2
R7	000 102	1K 5% 1 W Carbon	MULLARD	CR25	3
R8 .	000 272	2K7 5% 4 W Carbon	MULLARD	CR25	
R9	000 224	220K 5% 4W Carbon	MULLARD	CR25	
R10, R11	000 102	1K 5% 4W Carbon	MULLARD	CR25	• •
R12	0	NOT USED			
R13	3	NOT USED			
R14	000 562	5K6 5% 7W Carbon	MULLARD	CR25	
R15	000 273	27K 5% 4W Carbon	MULLARD	CR25	
R16	000 223	22.K 5% 4W Carbon	MULLARD	CR25	•
C1	150 003	47ME 20% 63V D1p Tant	UNION CARBIDE	K47E6	•
C 2	110 013	.IME 250V D1P PT	MULLARD	C280AEP100K	•
c3 c4	110 026	-0068mF100V PY	WIMA	FKS-2-MIN	N
CR1, CR2	200 001	Sil Gen Purpose		IN 4148	2
CR3	200 002	Sil Rect		IN 4001	
W1	209 007	1.0 Amp 400V Bridge		W04	
01. 02	240 001	Sil NPN Hi B Gen Purp		BC184K	2
03	240 011	Sil NPN 1 Watt Switch		BC338	
04.05.06	8	NOT USED			
NOTES.			26.1	26.11.73 dation electronics LTD	LECTRONICS LTD.
			DAAWA BY JRP CHECK		PCB
/SS 1552	╞╴╶╊		HEXT DRAWING		»+L1 2
ECO 37 ECO 440	0 ECO 516		KOD	AA 2.2.77 "UNBER 400025	• 3

OF 3					E.C.O 37
		NEXT DRAWING			155.
PCB	-				
LECTRONICS LTD.	-73	DATE. 26.1173			NOTES.
-	cs333	BECKMAN	3 Dig Display Socket	800 008	
-	C5332	BECKMAN	2 Dig Display Socket	800 007	
_			Screw Ned × 76" Self tapping	611 014	
3			Screw M3 x 6 Pozipan	611 004	
			Entrot Nor V - V - V2/FS	100 010	
-			Burnet Black Trif Weills	AED DOT	
+			MY Support Bracket	450 M6	
			THP PCB	410 009 - 4	
-	ICL143-537	Astralux	Dil Socket 14 Pin	605 037	
4	163740-9	AMP	Connector Strip Pins 11	604 003	
A/R	Telshield 'f '	TELCON METALS LTD	Magnetic Shield Wrapping	630 045	
1			Toroidal Tx 5V - 190V	300 004	τ1
•-	SP333	BECKMAN	Display • 3".888	800 005	DM2
-	SP331	BECKMAN	Display •3" ± 18	800 004	DM1
4	V683	IÐ	Filament Lamp 5V 60mA	920 005	FL1 – FL4
2 -	7437N		fer	270 023	1
~	MPS1.01	MOTORO1.4	Silkon NPN Hi Volt Dr	240 009	07_08
No. USED Per Assy.	MANUFACTURER'S PART No.	PRINCIPAL MANUFACTURER	DESCRIPTION	DATRON PART No.	DESIGNATOR

DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
	605001	SOWAY AMP. SKT. (PANEL MNI)	AMPHENOL	57-40500	
	604001	SO WAY AMP. SKT. (ABLE MWT)	AMPHENOL	57-30500	
	4-10013-4	P.C.B.			
				-	
					-
	-				
	-			4	
				-	
NOTES.			DATE Q	3.3.78 datron electromics LTD	ELECTRONICS LTD
SEE SHEET 2 FOR LATEST ISSUE	ST ISSUE		DRAWN	TITLE	A & BCD
			CHECKED	BORD ASSY. (BOI)	(Boi)
M			APPROVED	9	SHEET
СНКВ					0 1 0 2

164
-
3

No. USED Per Assy.	1		-		-		~	-		-	2	4		-	-	~	,		1	-		৸	ELECTNONICS LTD	D 801a		28 x ==
MANUFACTURER'S PART No.	CR25	ų	1		C280AE/PIOK		6 01	KIOE16	C280AE / PLOOK	BC184k	IN4148	74100	74L 157	NE 555 V	51- 30 <i>500</i>		57-40500	ICL 143- 53T	ICL 163-56T	1.01.083-56T	H2505A	60803-1	21.2.77 datron	PH BCD BOARD BOIA	5401,10401,0201 - 104	AN 8277 Mere 400058
PRINCIPAL MANUFACTURER		4			MULLARD	ERIE	e Ric	UNION CARBIDE	MULLARD						RMPHENOL		AMPHENOL	MOLEX	MOLEX		HARWIN	AMP	DATE 21.	DALININ IT		X
DESCRIPTION	1004 JAW CARBON	JOK JAW CARBON	56k MAW CARBON		0.01 AF POLYESTER A	1000 PF CER. DISC E	10PF CER. DISC	IONE, ILV DIPPED TANT U	O-IMF POLYESTER M	BCI84 NPN G.P.	DIODE IN4148	QUAD 2 IPNAND LP	GUAD 2 WAY SELECT LP	TIMER / MONOSTABLE	SO WAY AMPHENOL PLUG AN	PCB.	50 WAY AMPHENOL SKT. AN	7 WAY DIL BUCKET	BUCKET	8 WAY DIL SOCKET A	R TERMINAL	CONNECTOR TERMINAL A			2	380-1 380-2 ECO 566 ECO 622 21.2.77 21.2.77 4-1-78 14.3.78
DATRON PART No.	000104	000103	000563		110005	102102	102100	150002	110013	240001	200001	270017	270021	290003	604001	410013-8	605001	605037	605038	605059	620003	6 01002	BE FITTED ON 1041		~	158 354 38 1.10.76 29.11.76 21
DESIGNATOR	R	R2	R3	•	C1	C2	c3	c4	C S	9 I	DI, D2	١W	MZ	M3									NOTES. * NOT TO	ш. . м.(23.4.76 1.1

RI COO222 2k2,5%,14w,CARBON MULLARD CR2 2-R4 000103 10K, " " " " " " 2-R4 000103 10K, " " " " " " " 21 150003 47w5 6.3V DPPEDTANT UNION CARBIDE K4756 21 240001 SL,NPN, HiB, G.P. NION CARBIDE K4756 21 240001 SL,NPN, HiB, G.P. SIGNETICS BC1841 270030 DIGLC, MEXTRI-STATE BUF SIGNETICS DM801 1 270030 DIGLC, MEXTRI-STATE BUF SIGNETICS DM801 270030 DIGLC, MEXTRI-STATE BUF SIGNETICS DM801 57-30 20001 50 way SKT (ABUE MTG) AMPHENOL 57-30 57-30 605001 50 way SKT (ABUE MTG) AMPHENOL 57-30 57-30 605001 50 way SKT (ABUE MTG) AMPHENOL 57-30 57-30 605001 50 way SKT (ABUE MTG) AMPHENOL 57-30 57-30 605003 S0 UGE	DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Asy.
R4 COOIO3 I OK. " <th< td=""><td>ĿZ</td><td>000222</td><td>2K2,5%, 14W,CARBON</td><td>MULLARD</td><td>CR 25</td><td></td></th<>	ĿZ	000222	2K2,5%, 14W,CARBON	MULLARD	CR 25	
I I SOOC3 47,45,63V DIPPED TANT UNION CARBIDE K47E6 2.40001 SIL, NPN, HIB, G.P. SIGNETICS DM80L M6 2.70030 DIG.LC, HEXTRI-STATE BUF. SIGNETICS DM80L 4.10004-3 P.C. BOARD 6.04001 S0 WAY SKT (ANLEL MTQ) AMPHENOL 6.04001 S0 WAY SKT (ANLE MTQ) AMPHENOL 6.02003 S0 LDER TERMINAL HARWIN H2505 FT 101 LTT ATTAL VX H2505 FT 101 LTT VX H2505 FT	R2-R4	000103	10K, = = -	3	=	m
I 50003 47 ארץ ל-30 שף בעראד UNION CARBIDE K47 E I 2.40001 5IL., NPN, HIB, G.P. 8C 1841 M6 2.70030 DIG.L., JEXTRI-STATE BUF. 516 NET IC5 DM80L M6 2.70030 DIG.L., JEXTRI-STATE BUF. 516 NET IC5 DM80L M6 2.70030 DIG.L., JEXTRI-STATE BUF. 516 NET IC5 DM80L M6 2.70030 DIG.L., JEXTRI-STATE BUF. 516 NET IC5 DM80L M6 2.70030 DIG.L., JEXTRI-STATE BUF. 516 NET IC5 DM80L M6 2.70030 DIG.L., JEXTRI-STATE BUF. 316 NET IC5 DM80L 605001 50 way SkT (ANEL MTQ) AMPHENOL 57-40 57-302 605033 16 way DIL SKT ASTRALUX 10CL-16 57-302 605033 SOLDER TERMINAL HARWIN H2505 37-327						
I 240001 SIL, NPN, Hiß, G.P. BC 1841 M6 270030 DIG.I.C., нех ТRI-STATE BUF. SIGNET I.C.S DM801 M6 270030 DIG.I.C., нех ТRI-STATE BUF. SIGNET I.C.S DM801 M6 270030 DIG.I.C., нех ТRI-STATE BUF. SIGNET I.C.S DM801 M6 270030 DIG.I.C., нех ТRI-STATE BUF. SIGNET I.C.S DM801 M6 270030 DIG.I.C., нех ТRI-STATE BUF. SIGNET I.C.S DM801 605001 50 way skt (make mtg) AMPHENOL 57-40 605003 50 way skt (case mtg) AMPHENOL 57-30 605003 SOLDER TERMINAL HARWIN H2505 11 1210 AMMENIA HARWIN	C	150003		1	K47E6	-
I 240001 SIL, NPN, HIB, G.P. BC 1841 M6 270030 DIG.I.C.JHEXTRI-STATE BUF. SIGNETICS DM80L M1 410004-3 P.C. BOARD AMPHENOL 57-40 605001 50 WAY SKT (ANLEL MTG) AMPHENOL 57-40 605003 50 WAY SKT (CARLE MTG) AMPHENOL 57-30 605003 50 LDER TERMINAL HARWIN H2505 1 620003 SOLDER TERMINAL HARWIN H2505 1 1 M1 M1 M1	•					
M6 Z10030 DIG.I.C.,HEXTRI-STATE BUF. SIGNETICS DM80L M6 Z10030 DIG.I.C.,HEXTRI-STATE BUF. SIGNETICS DM80L 410004-3 P.C. BOARD AMPHENOL 57-303 605001 50 WAY SKT (ANNEL MTG) AMPHENOL 57-303 605038 16 WAY DIL SKT ASTRALUX 1CL-16 620003 SOLDER TERMINAL HARWIN H2505 1	ā	240001			BC 184K	
M6 Z70030 DIG.I.C.JHEXTRI-STATE BUF. SIGNETICS DM80L 410004-3 P.C. BOARD AMPHENOL 57-40 605001 50 WAY SKT (PANEL MTG) AMPHENOL 57-303 605003 50 WAY SKT (CABLE MTG) AMPHENOL 57-303 605033 16 WAY DIL SKT ASTRALUX 11CL-16 605033 SOLDER TERMINAL HARWIN H2505 620003 SOLDER TERMINAL HARWIN H2505 1 1 11 11 1 1 11 11 1 1 11 11 1 1 11 11 1 1 11 11						
4-10004-3 P.C. BOARD AMPHENOL 57-40 605001 50 WAY SKT (ABLE MTG) AMPHENOL 57-300 604001 50 WAY SKT (CABLE MTG) AMPHENOL 57-300 605038 16 WAY DIL SKT ASTRALUX 1CL-160 620003 SOLDER TERMINAL HARWIN H2505 620003 SOLDER TERMINAL HARWIN H2505 11 T.T. ASTRALUX 1CL-160 12 F.T. ASTRALUX 1CL-160 13 SOLDER TERMINAL HARWIN H2505 14 SOLDER TERMINAL HARWIN H2505 15 SOLDER TERMINAL HARWIN H2505 16 SOLDER TERMINAL HARWIN H2505 17 SOLDER TERMINAL HARWIN H2505	MI-M6	270030	DIG.I.C., HEX TRI-STATE BUF.	SIGNETICS	DM80L95	9
4-10004-3 P.C. B0ARD 605001 50 WAY SKT (PANEL MTG) AMPHENOL 57-40 605001 50 WAY SKT (CABLE MTG) AMPHENOL 57-300 605003 16 WAY DIL SKT ASTRALUX 1CL-160 620003 SOLDER TERMINAL HARWIN H2505 620003 SOLDER TERMINAL HARWIN H2505 11 1 ARTALUX 1CL-160 12 1 1 ARTALUX 1CL-160 13 1 1 ARTALUX 1CL-160 14 1 1 1 1 15 1 1 1 1 16 1 1 1 1 17 1 1 1 1						
605001 50 WAY SKT (PANEL MTG) AMPHENOL 57-40 604001 50 WAY SKT (CABLE MTG) AMPHENOL 57-300 605038 16 WAY DIL SKT ASTRALUX 1CL-161 605038 16 WAY DIL SKT ASTRALUX 1CL-161 605038 16 WAY DIL SKT ASTRALUX 1CL-161 60503 SOLDER TERMINAL HARWIN H2505 61 1 ASTRALUX 1CL-161 620003 SOLDER TERMINAL HARWIN H2505 61 1 1 1 1 620003 SOLDER TERMINAL HARWIN H2505 61 1 1 1 1 620003 SOLDER TERMINAL HARWIN H2505 61 1 1 1 1 62 1 1 1 1 62 1 1 1 1 1 62 1 1 1 1 1 62 1 1 1 1 1 62 1 1 1 <		4-10004-3	P.C. BOARD			
604001 50 WAY SKT (GRUE MTG) 57-30; 605038 16 WAY DIL SKT ASTRALUX 1CL-16; 620003 SOLDER TERMINAL HARWIN H2505 62003 SOLDER TERMINAL HARWIN H2505 62003 SOLDER TERMINAL HARWIN H2505 612 I I I I 1 I I I I 612 I I I I I 1 I I I I I I 1 I I I I I I I 1 I		605001	SO WAY SKT. (PANEL MTG)		57-40500	
ET 2 FOR LATES ASTRALUX ICL-16: 605.038 I6 WAY DIL SKT ASTRALUX ICL-16: 62.0003 SOLDER TERMINAL HARWIN H2505 62.0003 SOLDER TERMINAL HARWIN H2505 7.0007 1.1007		604001	50 WAYSKT (CABLE MTG)	AMPHENOL	57-30500	-
620003 SOLDER TERMINAL HARWIN H2505 ET 2 FOR LATEST ISSUE Image: Solution of the solutico of the solution of the solution of		605038	1	ASTRALUX	1CL-163-56T	9
ET 2 FOR LATEST ISSUE		620003		HARWIN	H2505A	
ET 2 FOR LATEST ISSUE						
ET 2 FOR LATEST ISSUE						
ET 2 FOR LATEST ISSUE						
	NOTES.				montepi 8-3-3"	C ELECTROMICS LTD
	SEE SHEET 2 FOR LATE	ST ISSUE				41, 1045.
3.3.78						E BCD P.C.B.
	1				VED	SHEET
	снко.					3+3 2 ° 2

I.W. 1164

	DATRON PART No.	DESCRIPTION		PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
2	000104	NA YOOI	V CARBON	MULLARD	CR25	4
24	000103	10K 1/4W	U CARBON	MULLARD	cR25	6
R3	000103	10k MAN	V CARBON	MULLARD	CR25	l
R4	000103	N\$1 401		MULLARD	CR25	ł
S	000104	100k 44V	V CARBON	MULLARD	CR25	1
Rb	000103	10k KW	D CARBON	MULLARD	CK255	1
R7	000563	S6k AW	U CARBON	MULLARD	CR25	-
R8 , R9	000103	IOK KAW		MULLARD	CR25	1
ĩ	(50003	47 AF . 6.3Y	Y DIPPED TANT	UNION CARBIDE	K47E6	-
5	102100		CER. DISC	ERIE	801	
c3	102102	1000pF	CER. DISC	ERIE		
¢2	150002	10/1F, 16V	DIPPED TANT	UNION CARBIDE	KIOEIG	
c5	110013	O-IMF	POLY ESTER	MULLARD	C280AE/PIOOK	·
C 6	110005	0-01/F	POLY ESTER	MULLARD	C280AE PIOK	-
ō	240001	SIL NPN	G.P. TRANSISTOR		BC184k	2
92 02	24 0001	NAN JIS	G.P. TRANSISTOR		BCI 84 k	(
DI, D2	200001	DIODE	IN4148		IN4148	7
Ĩ	270030	HEX TRI	STATE BUFFER	SIGNETICS	DW80 L95	6
M2	2700 30	HEX TRI	STATE BUFFER	SIGNET KS	DM801 95	1
M3	2 700 30	HEX TRI	STATE BUFFER	SIGNETICS	DM 80195	(
M4	270030	HEX TRI	STATE BUFFER	SIGNETICS	DM 80195	1
NOTES.				DATE 2	21.2.77 datron	BLECTRONICS LTD
u .w .l				DRAWN	THE THE THE STATE	BCD 8020
ISS. 2		Н	~	20 MAXIM		
N	355 355 16.12.76	380~1 38 21.2.77 21.7	380-2 EC0 584 EC0 21.2.77 1. 11. 77 6-4	ECO 643 6 -4-78	1 10023 mm 400023	3 <u>wer 5</u>
		┥┃╹				

	-				
DESIGNATOR	DATRON PART No.	DESCRIPTION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
MS	270030	HEX TRI STATE BUFFER	SIGNETICS	DMBOL95	1
Ж6	270030	HEX TRI STATE BUFFER	SIGNETICS	DM 80195	1
M.7	270017	QUAD 2 1/P NAND LP		74 L 00	-
8W	270021	QUAD 2 WAY SELECT LP		74 LIS7	-
6W	29003	TIMER / MONO STABLE		NE SS5 V	
	410004-7A	PcB			
	605001	50 WAY AMPHENOL SKT.	AMPHENOL	57-40500	
	602 005	8 WAY DIL BUCKET	MOLEX	1460-8	14
	602006	7 WAY DIL BUCKET	MOLEX	2460-7	2
	602004	DIL SOCKET STRIP	MOLEX	1938-4	156
	620003	SOLDER TERMINAL	HARWIN	H2505A	-
	601002	CONNECTOR TERMINAL	AMP	60803-1	S
	540001	TINNED COPPER WIRE			A/R
	590004	SILICON RUBBER SLEEVE			A/R
	604001	SO WAY AMPHENOL PLUG	AMPHENOL	57-30500	
	605059	8WAY DIL SOCKET	ASTRALUX	1cL - 083 - 56T	
NOTES.			OATE	21.2.77 datron	
u.w.1			OHECK CHECK	THI TRI STATE I	8CD 8020
ISS. SEE			MEXT DAAW		
SHT. 2.				V NAME 40023	л Т Т т т т т т т т т т т т т т т т

DESIGNATOR	DATRON PART No.	IPT ION	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	JRER'S	No. USED Per Assy.
R	000102	CARBON	MULLARD	CR25	- KO	Ø
R2	000102	CARBON	MULLARD	CR 25	IKO	1
R3	000102	4 W CARBON 5%	MULLAED	CE 25	ПКО	1
R4	201000	14 W CARBON 5%	MULLARD	CR 25	- KO	1
5 2	000 000	14 W CARBON 5%	MULLARD	C R 25	UX I	1
å	000562	4 W CARBON 5%	MULLARD	CR25	SKG	ę
R7	000222		MULLARD	C 225	N N N	N
ßВ	000471	4 W CARBON 5%	MULLARD	CR25	470R	ß
ଣ୍ଡ	000471		MULLARD	CR25	470R	1
RID	000562		MULLARD	CR25	5 KG	1
RII BII	000562	4 W CARBON 5%	MULLAED	CR25	SKG	1
RIZ	000222		MULLARD	CRRS	2 K 2	1
RI3	000471		MULLARD	CR25	470R	l
7 7	201000		MULLARD	C R25	IKO	ţ
RIS	000471	4 w CAEBON 5%	MULLARD	CR25	470R	1
RIG	000471	4 W CARBON 5%	MULLARD	CR25	410R	1
ā	250006	P.N.P. GEN .P. TEANSISTOR	FAIRCHILD	A A	.322	N
G2	250000		=			I
NOTES.			DATE DATE	ון זיטרא לא	datron	ELECTNONICS LTD
SHEET	ATEST ISSUE		A RU	W.G.SMITH.		OGRAMME
<u>8</u>			СНЕС	CHECKED ML	P.C.B. 1030	030
SI =				APPROVED	DRAWING A OO LIJ	
CHKD.				J		 2 4

.....

DI ZOCODD DONCK GERMANUM PRNC/PAL MANUACATOBER S NA USE SOLO DI ZOCODD DOCK GERMANUM CP HIGHES MANUACTOBER S NA USE SOCODD D ZOCODD DOCK GERMANUM CP HIGHES MANUACTOBER S NA USE SOCODD D ZOCODD DOCK GERMANUM CP T T T D ZOCODD DOCK GERMANUM CP T T T D ZOCODD T T T T T T DP ZOCODD T T T T T T DD ZOCODD T T T T T T T T DD<							
Discretion 2000000 Dorde Gerwanum GP Hichles	DESIGNATOR	DATRON PART No.	DESCRIPTIO	Z	PRINCIPAL MANUFACTURER	MANUFACTURER'S PART No.	No. USED Per Assy.
2 200000 · <th>ā</th> <th>200002</th> <th></th> <th>1</th> <th>HUGHES</th> <th></th> <th></th>	ā	200002		1	HUGHES		
33 200005 · </td <td>20</td> <td>200005</td> <td>-</td> <td>2</td> <td></td> <td>8</td> <td>1</td>	20	200005	-	2		8	1
H 200005 · <td>D3</td> <td>200002</td> <td>Ŧ</td> <td></td> <td>T</td> <td>•</td> <td>1</td>	D3	200002	Ŧ		T	•	1
Bit 200005 ·<	4 0	200005	=		3	F	1
86 20005 · <td>D5</td> <td>20005</td> <td>8</td> <td>:</td> <td></td> <td>-</td> <td>8</td>	D5	20005	8	:		-	8
N 200005 · <th< td=""><td>ØQ</td><td>200005</td><td></td><td></td><td>T</td><td></td><td>1</td></th<>	ØQ	200005			T		1
BD 200000 · </td <td>D7</td> <td>20005</td> <td>F</td> <td></td> <td>I</td> <td>£</td> <td>1</td>	D7	20005	F		I	£	1
DB 200005 · <t< td=""><td>Q</td><td>200005</td><td>Ŧ</td><td></td><td>3</td><td>r.</td><td>1</td></t<>	Q	200005	Ŧ		3	r.	1
DC 200005 C </td <td>ସେ</td> <td>20005</td> <td>T</td> <td></td> <td></td> <td>Ŧ</td> <td>1</td>	ସେ	20005	T			Ŧ	1
DII 200005 DIOR GERMANIUM G.P HUGHES HG FPLA SCO05 - 1 220005 0 1 1 1 1 1 1 2 220005 1 1 1 1 1 1 2 220005 1 1 1 1 1 1 2 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1 1 220005 1 1 1 1 1 1	Q	20005	Ŧ		T	T	1
II 220005 OPTO ISOLATOR I LITRONIK FPLA 820 9 R 220005 * * * * * A 220005 * * * * * B 220005 * * * * * I 220005 * * * * * B 220005 * * * * * B		20005			HUGHES		1
II 220005 OPTO 150 ATOR I IITRONIX FPLA 820 9 R 220005 *<							
2 220005 * <th>M</th> <th>520055</th> <th>OPTO 1</th> <th>SOLATOR I</th> <th>LITRONIX</th> <th>∢</th> <th>ຄ</th>	M	520055	OPTO 1	SOLATOR I	LITRONIX	∢	ຄ
Description 220005 ·	M M	220005	Ξ	-		3	1
Id 220005 · </td <td>£М</td> <td>220005</td> <td>E</td> <td>• •</td> <td>T</td> <td></td> <td>1</td>	£М	220005	E	• •	T		1
6 220005 * * * * * * * * * 7 220005 * * * * * * * * 7 220005 * * * * * * * * 8 220005 * * * * * * * * 9 220005 * * * * * * * * 9 220005 * * * * * * * * 9 220005 * * * * * * * * 10 * * * * * * * * * 11 11 * * * * * * * * 11 * * * * * * * * * 11 * * * * * * * * * 11 * * * * * * * * *	44	220005	z	E	¥	Ŧ	1
(a) 220005 "<	MS	22 0005	z	\$	*	R	1
7 220005 " <td>9WC</td> <td>220005</td> <td>=</td> <td>z</td> <td>=</td> <td>z</td> <td>1</td>	9WC	220005	=	z	=	z	1
B 220005 " <th< td=""><td>M7</td><td>220005</td><td>2</td><td>-</td><td>=</td><td>3</td><td>1</td></th<>	M7	220005	2	-	=	3	1
Participant Participant Participant Participant ET 2 FOR LATEST ISSUE I 1 JULY 7B I 1 JULY 7B I 1 JULY 7B ET 2 FOR LATEST ISSUE Participant Participant Participant	МВ	220005	T	Ŧ	:	:	1
ET 2 FOR LATEST ISSUE	GW	220005	z	T	z	:	1
DRAWN TITLE DRAWN TITLE W.G. SMITH P.C. B. 1030 APPROVED P.C. B. 1030 APPROVED DRAWNG DATE DATE	NOTES.				۹		
CHECKED CHECKED P.C.B. 1030 APPROVED APPROVED P.C.B. 1030 Image: Sheet of the state of th	SEE SHEET 2 FOR LATE	EST ISSUE	-			דודנב	1
APPROVED APPROVED DATE NUMBER 403117 3 OF	SI				5	1 1 2	
DATE DATE NUMBER 403117 3 of	E.C.O DATE					VED	
	СНКD					NUMBER	3 of

J.W. 1164

				. 4
No. USED Per Assy.	N 1	v 8 4		RECTRONIGS LTD REAMME D A or A or
MANUFACTURER'S PART No.	DM 7417 N DM 7417 N	1938 - 4 2460-7		DATE DATE ILILY 7B DEMONS LTD DEMONS LTD DEMONS LTD DEMONS LTD LEEFTROMIS LTD DEFENDING LEEFTROMIS LTD LEEFTROMIS LEEFTROMIS LTD LEEFTROMIS LEEFTROMIS LEE
PRINCIPAL MANUFACTURER	NATIONAL NATIONAL	(ONE OFF FITTED TO BCD PCB) MOLEX MOLEX		
DESCRIPTION	HEX BUFFER OPEN C HEX BUFFER OPEN C	LO PROFILE LOWAY DIL DIL SOCKET STRIP (CARRIER)	P.C. BOARD RIBBON CABLE ASSY	
DATRON PART No.	21001 <i>ଇ</i> ଅପରୀଜ	605002 602004 602006	410001-1 571535	1 ISSUE
DESIGNATOR	QI = W	Ъ		NOTES. SEE SHEET 2 FOR LATEST ISSUE iss f.c.0 DATE DATE CHKD M. 1164

-

FILTER OPTIONS - PART NUMBERS

Value	Datron Part No.
1K2	000122
2K2	000222
3K3	000332
3K9	000392
4K7	000472
5K1	000512
6K8	000682
8K2	000822
11K	000113
15К	000153
18К	000183
27К	000273
39К	000393
47K	000473
62K	000623
82K	000823
180K	000184
270K	000274
620K	000624
820K	000824
1M8	000185
2M	000205
2M7	000275

R126-R131 are $\frac{1}{4}W$, 5% carbon resistors

C48, 50 - 52 are as shown below

Value & Type	Datron Part No.
.22µF 10% 250V PY	110010
.684F 10% 100V PY	110008
1.0%F 10% 100V PY	110009
3.3LF 10% 100V FY	110007
101F 10% 63V PY	110001
100%F 10% 30V, WET TANT	170002

FILTER OPTIONS

The components shown in the table below are on the analog board, 409106, and are as detailed for the selected option. The

ge.
page
owing
foll
the
No
isted
<u> </u>
are
numbers
part
ding
corresponding
Je C

Option	Pt.No.	R126	R127	R128	R129	R1 30	R131	C48	C50,51,52
40Hz /1Hz	440004	15K	820K	ЛК	620K	270K	4K7	.68µF	3.3µF
40Hz /10Hz	440003	15K	82K	ЯГГ	62K	27K	4K7	.68µF	3.3µF
10Hz /1Hz	440005	82K	820K	62K	620K	270K	27K	.68µF	3.3µF
10Hz /.1Hz	440006	27K	2M7	1 8K	1M8	820K	8K2	1.0 µF	10.0µF
THZ /.THZ	440007	270K	2M7	180K	1M8	820K	82K	1.0 µF	10.0µF
THZ /.01Hz	440008	27K	2M7	18K	1M8	820K	8K2	1.0 µF	100 µF
.1Hz /.01Hz	440009	270K	2M7	180K	1M8	820K	82K	1.0 µF	100 µF
350Hz/40Hz	440001	3К9	47K	3K3	39K	15K	1K2	.22µF	1.0µF
350Hz/10Hz	440002	3К9	270K	3K3	180K	82K	1K2	.22µF	1.0µF
50Hz /1Hz	440050	6К8	2M7	5K1	ZΜ	820K	2K2	.22µF	1.0µF

DELAY TIME OPTIONS

Option	Part No.	R50	C20	C21	C22
40Hz /1Hz	440013	150K	2.2µF	100µF	.01µF
40Hz /10Hz	440012	150K	2.2µF	6.8µF	.01µF
10Hz /1Hz	440014	150K	10 µF	100µF	.01µF
10Hz /. 1Hz	440015	1M5	1.0µF	100µF	1KpF
1Hz /.1Hz	440016	1M5	10 µF	100µF	1KpF
1Hz /.01Hz	440017	15M	lμF	100µF	1KpF
.1Hz /.01Hz	440018	15M	10 µF	100µF	1KpF
350Hz/40Hz	440010	15K	3.3µF	22µF	.1µF
350Hz/10Hz	440011	150K	.33µF	10µF	.01µF
350Hz/1Hz	440051	150K	.33µF	100µF	.047µF

The following components on the A-D Board 409109A are as shown below for the filter option selected:-

R50 is $\frac{1}{4}$ W, 5%, carbon resistor

Value	Datron Part No.
15K	000153
150K	000154
1M5	000155
15M	000156

C20, 21 and 22 are as shown below:

	Value & Type	Datron Part No.
1KpF	Cer Disc	102102
.01µ F	10% 250V Dip PY	110005
.047µF	10% 250V Dip PY	110004
. 1µ F	10% 250V Dip PY	110013
.33µF	20% 35V Dipped Tant Bead	150010
1.0µF	20% 16V Dipped Tant Bead	150011
2.2µF	20% 16V Dipped Tant Bead	150005

	Value & Type	Datron Part No.
3.3µF	20% 16V Dipped Tant Bead	150009
6.8µF	20% 16V Dipped Tant Bead	150007
10µF	20% 16V Dipped Tant Bead	150002
22µF	20% 16V Dipped Tant Bead	150001
100µF	20% 6.3V Dipped Tant Bead	150004

58.9 51 9 52 9 s3 9 DC+AC 1000V 100V юv DIO DII DB D91 R695 D 12 R36 M BM2 R15 R32 **R3**7 18K \$ 100 K Q12 +15 +15 人 -15 с61 <u>|К</u>рF R38 97 С60 1 КрF к2 D2 KI DI C14 -1|--IBpf R5 **₹**100K QI Q_2 BCIB4K BCI84K R6 \$ зкэ ZR18 287 C57 OILYF R250 2K7 R24 ₹R26 6K8 1% **(**-15 Å R 1% 2K7 R341K5 90 C46 FSV 2 K2 ╢ Rig R7 33 CВ -OI PY B 41 R27 ž ၇ခ IK2pF **K**22 47R FROM C3 08 2N3906 910 Q3 612 1015 197 80 | **ο**ιο RB IOK 1% BC184K Ca 27pf CER NISO ZIBpf СВ κı C6, 015 DB CIC Q5A Q5E PY ş C5 67 BIO Ş RЗ LMII4 470 Pr IKV 249K 6 зкз 1% 15pf R28\$3K3 CII R115 29 RII SOK 3K3 $\frown \Delta \lambda$ Q48 +V401 IKρf 976K 1% ୦ଔ R21 R30 \$ R29 D41 D64 R2 249K 10000 Ş 2N3904 **\$**R33 470K POLYCARBONATE R20 D77 05 1% FSV CI 27pf: CER NISO **X**RI 243K 1% |kV|-15v HI SOLDER TERMINA R153 R152 TP2 LC R23 2M 470k 470k C56 CS5 •0//F ቶ NOTES :-- GUARD О SUAF SOLDER ALL 1% RESISTORS 4WATT 50P.Pm METAL FILM EXCEPT RI-1 F.P. ALL OTHER RESISTORS 1/4 WATT CR25 OR SIMILAR TERMINALS ALL DIODES IN4148 ALL CAPACITORS POLYSTYRENE 5% UNLESS MARKED HIGHEST Q17, R70, C28, CR21. + Q31 + Q32. NOT USED CRIB MP = MATCHED PAIR PART No. 259005 Q6, Q7 IN THERMAL CONTACT Q33, Q32 н 11

NOTES: Q

- ~ ____ IN

	1	
	155	
	2	E.C.O.40 RIS7-RIGO ADDED IV 16.5.75
	3.	ECO 152 RIGI-165 ADDED. SUPPLY DELETED MJ.D. 5.2.76
CRB	8	SEE SHEET I
CR7 CRII CR9 CRIO	3	
• • • •	10	4 13
	11	11 11
	r	1
b d b d b 12d b≠		
I IG DIG. COM		
₫~~₽		
		ł
~~ iv iov ioov võl š š š		
\$ \$ \$ \$		
vn + m v)		
RI65		

1-5-73	da	atron	ELECTRONICS LTD	
DRAWN BY.	TITLE			
CHECK ///	Swii	Ching and of Supply for 1030	TIONAL POWER MODELS	
DRAWING (ASSY. PCB)	DRAWING		SHEET 3	
	NUMBER	439105		

.

NOTE All DIODES IN4148 UNL

						T	1
ALL	4 L BURRS TO BE REMOVE	<u>5</u>		NOTES		155. 4	Redrawn, PJH
						Ľ.	14-3-77
				RP = REMOTE PROG. SO	>CKET (1030 OPTION)	5	ECO 586 BJ. 4-1-77.
			3	SP = SHORT/NG PAD (REMOVED WITH ABO	VE OPTION IN.)		
			3	GPE GOLD PIN			
			1				
			2				
			4				
	·····		5				
			7				
			8				
			9 (0				
			11 12				
			13				
			14				
·····			15 16				
			17				
		G PO	18 23 26				
			27				
			28 29				
			30 31				
·			31 32				
		······································	33				
			34 35	·			
			36				
-† -↓	¥ +5v	59 <u>15</u> 4	46 47				
_₹	↓ C4 10/λ.F/16γ		18				
 •	GPQ		*7 8				
•		-♠∳	39				
			40 41				
		·	42				
	· · · · · · · · · · · · · · · · · · ·		43 44				
- +5√							
	·	4	-5				
	_						RAWING SIZE
	rtatron	ELECTRONICS				0	AWING SIZE
	BCD -	BOIa IO	30 1041	1045	DRAWING No. 430042		SHEET
					430042		I OF I

FIT 7 WAY BUCKETS AND DIL. SOCKET STRIP TO MID & MII

REVISION	DATE					
1.2	18-8-76 ECO 255	REMOTE PROG	RAMMING	PCB	FOR	1110-1030
		REDJP				
		PROD 1.4 N. 2.2.77	<u>c, N°</u>	40	Э І	17
		NEXT DRC		40:	51	1/

SHEET | OF 4 SHEETS .

MODIFICATIONS TO ANALOG BOARD.

AINK OTTIO OF ST CUT TRACK FROM 2 OF ST TO 170F 56 CUT TRACK FROM 2 OF ST TO 2 OF S8 CUT TRACK FROM 2 OF ST TO 2 OF S8 CUT TRACK FROM 2 OF ST TO 2 OF S8 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 170F S6 CUT TRACK FROM 2 OF ST TO 2 OF S8 CUT TRACK FROM 2 OF ST TO 2 OF S8 CUT TRACK FROM 2 OF ST TO 2 OF S8 LINK 8+10 OF 57

(UT ISU COMMON TRACK (ANALOGUE SIDE) EG. SI PINB TO SI DIN 11 (ALL LINKS) (A.DUIN

REVISION	DATE	
W 2	18-8-76 ELO 255	REMOTE PROGRAMMING P.C.B FOR 110-1030
		RED JP
		PROD. (.A.D. NEXT 2.2.71 430001 DRG.

ADDENDUM AND ERRATA SHEETS INDEX

INSTRUMENT:

SERIAL NO:

Component Parts [.] and Serial Nos.	Associated Update Sheets

Errata sheets:

datron

TO: THE USER

Every effort has been made to ensure that the information supplied with the instrument is accurate and up to date. If, however, you find any errors or have any suggestions for improving this Manual, please return the reply card completed as appropriate.

Full information is available on the complete range of Datron products and we will be pleased to forward these to you on request by return of the reply card completed as appropriate.

Name: Dept: Company: Address Instrument: Serial No: Manual Ref. No.:

Correction / Suggestion:

Please send inf	formation on the following products:	
Model 1030	True RMS Digital Voltmeter	
Model 1041	4 ¹ / ₂ digit Multifunction Digital Voltmeter	
Model 1045	4 ¹ / ₂ digit DC Digital Voltmeter	
Model 1051	5 ¹ / ₂ digit Precision Multifunction Digital Voltmeter	
Model 1055	5½ digit DC Digital Voltmeter	
Model 1057	5½ digit Digital Multimeter.	
Model 1059	5½ digit Digital Multimeter.	
Data Logging	Equipment	