

the RME 6900

designed especially for you

The advanced design of the RME 6900 provides every circuitry and control feature necessary for outstanding performance. To obtain the optimum performance afforded by this design superiority a thorough knowledge of proper operation of the receiver is required. *READ THESE INSTRUCTIONS CAREFULLY!*

RME 6900 SPECIFICATIONS

Sensitivity: Signal-to-Noise Ratio: Audio Output: Calibration:	1 microvolt 30% modulation for 50 mw output 10 db at 1 microvolt input (30% modulation) 1.0 watt .03%				Tubes:	6BA6 6U8A 6C4 6BA6 6BA6 6AL5 6T8	R.F Amp. 1st Mixer, Stabilized Osc. 2nd Mixer,, Crystal Osc. 1st I.F. & T Notch driver 2nd I.F. 3rd I.F. Dynamic Noise Limiter
Frequency Drift:	Under warmup	.005% af	ter 15	5 minute		6AQ5A	2nd Detector, (full wave) 1st Audio AGC Line Charging Diode A.F. Output
Selectivity: Position	AM	SSB		CW		OB2 6CB6	Voltage Regulator Crystal Calibrator Osc.
Bandwidth @ 6 DB Attenuation	3.6KC	2KC	500	cycles		12AT7	Product Detector & B.F.O.
Bandwith @ 60 DB Attenuation	11KC	-7.3KC	3.3	KC	Controls:	 a. Tuning b. AF gain le 	м. Э
T-Notch Rejection: S-Meter Calibration:	S1 to S9	than 40 d (6 db ste db units o	ps)			 c. BFO pitch d. BFO inject e. Antenna t f. Calibration g. Band select 	ction rimmer n adjust ctor switch
IF Frequency:	1st IF 2nd IF		95 KC 57 KC			h. RF gain c i. Modemas AM-I	
Image Ratio:	Not less	than 56 d	b on a	ny band			Narrow Lower
Frequency Range: Range 1: Range 2:		11.0 mc 4.0 mc				SSB-U C.W.	Upper –receive—transmit
Range 3: Range 4: Range 5: Range 6:	$^{14.0}_{21.0}$ —	7.3 mc 14.4 mc 21.5 mc 29.7 mc			External	 I. ANL—ad m. 100 KC ca a. Antenna i 	just alibrator on-off nput – Balanced
Tuning Control Ratio:	54:1				(Rear Chassis)		nced lines 50-400 ohms control terminals for
Input Requirement:	117 V—	-50/60 cy	cle AC		(recur chaoolo)	c Relay con	nuting trol terminals
						e. Relay con	troi terminais

÷.,

55 watts Power Input 115 V — 1 amp. max. **Transmit Switch**

d. Audio Outputs: 4 ohms and 500 ohms isolated

17 in. wide x 12½ in. deep x 9¾ in. high Dimensions:

Weight: 35 lb net, 39 lb shipping

INTRODUCTION

The RME 6900 Communication Receiver is the product of more than a quarter-century of the design and manufacture of fine communication equipment by Radio Manufacturing Engineers. In contrast to generally available Amateur Communication receivers, the RME 6900 offers unmatched operating ease due, in part, to the fact that the combined experience and desires of many hundreds of seasoned operators were consulted in the determination of even minute details. Styled to compliment the decor of every operating position, the RME 6900 provides optimum performance in all communication modes, AM - SSB - CW, on all amateur frequencies between 3500 kc and 29.7 mc., plus coverage of the 10 - 11 mc. band.

The RME 6900 employs ten multi-purpose tubes (not including voltage regulator or crystal calibrator tubes) doing the work of fifteen individual tubes. Lower ambient operating temperatures and longer component life are achieved through utilization of silicon diode power rectifiers.

Contributing to the utility of this all-new receiver are advanced concepts in circuitry and construction methods. New and versatile approaches toward providing optimum performance under all operating conditions and modes are the Modemaster switch; optimum selectivity, plus a tunable heterodyne rejection filter; improved fast attack AVC circuitry; internal 100kc crystal calibrator; separate detector for SSB; BFO injection for weak signal cw work; noise limiting at the I.F. frequency and, both 500 and 4 ohm audio outputs isolated to make possible simple phone patch and anti-trip VOX operation.

Immediately upon unpacking carefully inspect your RME 6900 for physical damage. If damage is evidenced, notify the dealer from whom the unit was purchased, or the transportation company if the unit was shipped to you. Responsibility for shipping damages lies with the carrier and claim should be made for recovery. On unpacking your new RME 6900 raise the perforated hinged cover of the cabinet and make sure that all tubes and crystals are seated firmly in their sockets. An RME 6901 speaker, or other permanent magnet speaker with a voice coil impedence in the range of 3 to 4 ohms, may be connected to the 4 ohm speaker terminals. If it is desired to use the 500 ohm output winding a matching transformer must be used between receiver and speaker.

The receiver leaves the factory test department with rear chassis connections as shown in Fig. 1. The lower left terminals are normally connected with a jumper across terminals marked "M" and "G." The receiver will not operate without this circuit being closed either with the jumper as shown or with another closed circuit, such as a pair of closed switch or relay contacts. The receiver is muted by opening this circuit.

The terminals "R" are connected to a switching circuit, closed when the stand-by switch is in TRANSMIT position, marked "TR". This circuit will switch a 117 volt, 0.5 ampere relay circuit or a 117 volt, 1.0 amp. non-inductive circuit for transmitter control. No power is supplied by this circuit.

The receiver is shipped with a jumper between the two left terminals (G-A) of the antenna terminal strip. Except when using balanced antenna transmission lines this jumper should be left in place. Figure 2 suggests proper antenna connections for various types of transmission line lead-ins.

Simple folded dipole antenna permits balanced feeders of any length. Antenna lengths (L) recommended are as follows:

Band	CENTER FREQ.	Approx. Length "L"

Suggested all-purpose antenna; lenght is 75 feet including lead-in. The major portion should be 30 to 40 feet above ground.

When using coaxial cable to feed unbalanced doublets, beams, etc., center lead connects to center pin and outer braid to shell of mating PL259 connector. Terminal "G" should be grounded as described below.

80M	3750 Kc	115' 4"
40M	7150 Kc	56' 4"
20M	14100 Kc-CW	28' 8"
20M	14250-Phone	28' 4"
15M	21100-CW	19' 11"
15M	21300-Phone	18' 8"
10 M	28500	14' 1"
10 M	29000	13'

REGARDLESS OF THE TYPE OF ANTENNA OR TRANSMISSION LINE A HEAVY WIRE OR BRAID SHOULD BE CONNECTED FROM TERMINAL "G" TO A GOOD ELECTRICAL GROUND. While a copper ground rod is preferable, a convenient WATER pipe scraped clean of paint or oxidization may be used. Make this ground lead as short as possible.

FIGURE 2

OPERATION

Having placed your 6900 in its operating position with speaker and antenna connected as described above, set the following controls as indicated:

A.F. GAIN CONTROL	50% ROTATION
NOISE LIMITER	OFF
ANTENNA TRIM	POINTER STRAIGHT UP
R.F. GAIN	OFF
MODEMASTER/FUNCTION	AM-BROAD
BAND SELECTOR	80 METERS
STAND-BY SWITCH	STAND-BY
CALIBRATION ADJUST	POINTER STRAIGHT UP
CRYSTAL CALIBRATOR	OFF
HET NULL	OFF
BFO PITCH	0
BFO INJECTION	POINTER STRAIGHT UP

Rotate the R.F. GAIN control fully clockwise and check to see that the filaments of all tubes are lighted. Turn the STAND-BY switch to "REC" and the receiver will come to life as evidenced by atmospheric background and/or signal. The ANTENNA TRIMMER should now be adjusted for maximum signal strength or background noise. Repeat this procedure on each band. Now set the BAND SELECTOR to "WWV" and tune for the distinctive signal of the National Bureau of Standards transmitter on 10.0 mc. After peaking the WWV or WWVH signal for maximum strength, switch the MODEMASTER SELECTOR switch to "CW" and tune the Main Tuning Dial for zero beat. Switch the CRYSTAL CALIBRATOR control to position "1". The Crystal Marker signal from the internal calibrator should zero beat the signal from WWV or WWVH. Should the calibrator not be zero beat with the incoming signal on 10.0 mc, adjust trimmer C-26. The calibrator provides accurate check points on all bands and is used to accurately set the dial pointer for correct readings on each band. The dial pointer is positioned for correct calibration by turning the "CAL ADJ" control. A detailed description of the function of other controls follows: MODEMASTER SELECTOR CONTROL: Exclusively from RME comes the MODEMASTER control which combines five switching functions in a single control. In position "AM-B" the receiver is set up for optimum performance for AM Phone reception and maximum audio frequency response. In this position the I.F. Bandwidth is 3.6 kc, conventional AVC and dual-diode detection are provided. Switching to "AM-N" provides the same operating characteristics except that a narrower I.F. bandwidth of only 2 kc is provided to facilitate operation when severe interference is experienced due to crowded conditions. As indicated below, the "Het Null" control may be utilized to further eliminate heterodyne interference. When switched to "LSB" (Lower Side Band) a product detector is substituted for the diode detector; the AVC is changed to a modified Fast Attack/Slow Decay circuit; the high frequency oscillator and beat frequency oscillator are automatically positioned for proper reception of Lower Side Band only; I.F. bandwidth is maintained at 2 kc. When switched to "USB" (Upper Side Band) the same conditions prevail as in LSB except that the oscillators are positioned for Upper Side Band reception. This position (USB) is recommended for radio telegraph reception when a relatively broad I.F. characteristic and A.V.C. are desired (ie: net operation, etc.)

istics in this mode; the BFO PITCH and BFO INJECTION Controls are made operative and the I.F. bandwidth is reduced to approximately 500 cycles.

HETERODYNE NULL CONTROL: This control provides "T" Notch rejection of undesired signals by effectively bypassing such signals from the I.F. system. Being continuously variable across the I.F. band pass of the receiver, any audible signal may be "notched" out by adjusting the "HET NULL" control.

NOISE LIMITER: The RME 6900 noise limiter operates at an I.F. frequency, in contrast to the conventional audio frequency type of limiter. It is, therefore, very effective in supression of noise pulses regardless of mode of transmission being received. It is necessary only to set the NOISE LIMITER control to the degree of clipping desired. Having once set this level, the limiter will automatically attenuate all noise pulses rising above that reference level.

CRYSTAL CALIBRATOR CONTROL: Unique in the RME 6900 is provision for utilizing the 100 kc crystal calibrator either with the antenna feeding signal to the receiver (position 1) or, with the antenna automatically removed from the input stage (position 2). While Postion 1 would normally be used for frequency spotting and calibration purposes, it is often desirable to inject a marker signal that represent the 200th to 300th harmonic of the 100 kc crystal. Switching the Crystal Calibrator switch to position 2 enables the operator to instantly spot the calibrator marker signal without interference from incoming signals or high background noise levels. Needless to say, this control must remain in Position 1 or its OFF position for reception of incoming signals.

BFO PITCH CONTROL: While normally viewed simply as a control to vary the tone of incoming c.w. signals the BFO PITCH CONTROL may also be used to provide a measure of interference rejection. Judicious use of this control, after having peaked the desired signal, will compliment that signal while not favoring nearby signals.

The BFO PITCH and BFO INJECTION controls are not operative in either LSB or USB position. When switched to "CW" the AVC circuit is disabled for optimum character-

4

BFO INJECTION CONTROL: This control varies the amount of BFO signal voltage injected into the I.F. system. It is of great value in weak signal C.W. reception. This control should be set at the point giving most pleasing ratio of rereceived signal to noise. A slight variation in BFO pitch may result from adjustments of the BFO INJ control.

A thorough understanding of the function of each control will greatly enhance the performance that you may obtain from your RME 6900.

ALIGNMENT AND MAINTENANCE DATA

Your RME 6900 has been carefully aligned and tested using high-precision laboratory equipment to insure the highest accuracy. The combination of high quality components and careful design preclude the need for re-alignment unless critical components or tubes have been changed or unless internal adjustments have been tampered with. In no case should re-alignment be attempted unless a critical test in-

dicates a need for same.

In the event that your RME 6900 should require any realignment, it should be undertaken only by a competent technicial with a complete understanding of not only the receiver, but of the specialized test equipment required to properly make required adjustments.

MEASUREMENT CONDITIONS

(VALUES INDICATED MAY VARY \pm 15%)

- 1. D.C. VOLTAGES measured with a VTVM having an input resistance of 11 megohms; A.C. Measurements with 1000 ohm/volt meter.
- 2. Voltages indicated are measured between point indicated and ground (except filiments).
- 3. All Filaments are at +80V D.C. potential. Filament voltages measured between junction of R-73 and R-74 and point indicated.
- 4. ANTENNA DISCONNECTED No signal tuned antenna trimmer adjusted for minimum background noise. 5. R.F. GAIN set at maximum gain (maximum c.w. position) 6. Function switch set to "Upper-Side-Band" position. 7. AUDIO GAIN set to minimum. 8. OSCILLATOR grid and cathode voltages measured with 100k resistor in series with the probe.
- 9. Pin 6 of V10 voltage varies with setting of "INJ." control when in "CW" position. V11 (xtal cal) voltages and resistances measured with "XTAL-CAL ON"
- 11. Depends on setting of band switch.

EQUIPMENT NECESSARY

- 1. D.C. VTVM with input resistance of 11 megohms or greater.
- 2. Signal generator or crystal marker supplying 57 KC and 2195 KC, unmodulated, with a high degree of accuracy.
- 3. Signal generator or multiple crystal markers covering selected frequencies from 3.5 to 29.7 Mc., as indicated in alignment instructions. NOTE: The accuracy of receiver calibration depends upon the accuracy of this generator.

RESISTANCE MEASUREMENTS

SYM.	TUBE	PURPOSE	1	2	3	4	5	6	7	8	9
V 1	6BA6	R.F. Amp.	5.3 Meg.	56	80K	80K	22K	27K	56		
V2	6U8A	1st Mixer & OSC.	22K	120K	40K	80K	80K	22K	330	Note 11	100K
V 3	6U8A	2nd Mix & XTAL OSC.	64K	3	40K	80K	80K	22K	680	4.7K	52K
V4	6C4	"T" Notch Amp.	26K	∞	80K	80K	26K	15	680		
V5	6BA6	50 kc IF Amp.	7.3 Meg.	68	80K	80K	24K	44K	68		
V6	6BA6	50 kc IF Amp.	7.3 Meg.	150	80K	80K	22K	44K	150		
V7	6AL5	Noise Limiter	22K	22K	80K	80K	8	0	∞		
V 8	6T8	1st Audio, AGC, & 2nd Det.	416K	5.1 Meg.	330K	80K	80K	416K	0	10 Meg.	290K
V9	6AQ5A	Audio Output	270K	330	80K	80K	22K	22K	270K		
V 10	12AT7	BFO & Prod. Det.	72K	470K	470	80K	80K	33K	120K	470	80K
V 11	6CB6	100 kc XTAL OSC	680K	2.7K	80K	80K	390K	250K	2.7K		
V12	OB2	Voltage Reg.	22K	0	∞	0	22K	8	0		<u> </u>

VOLTAGE MEASUREMENTS

SYM.	TUBE	PURPOSE	1	2	3	4	5	6	7	8	9
V 1	6BA6	R.F. Amp.	-1.0	0.7	fil.	fil.	136	118	.7		
V 2	6U8A	1st Mix & OSC.	100	0	80	fil.	fil.	124	1.5	Note 11	Note 11
V3	6U8A	2nd Mix & XTAL OSC.	65	0	108	fil.	fil.	124	2.5	9.0	2.4
V 4	6C4	"T" Notch Amp.	115		fil.	fil.	115	0	3.0		
V5	6 BA 6	1st 57 kc IF Amp.	9	.48	fil.	fil.	125	78	.48		
V6	6 BA 6	2nd 57 kc IF Amp.	9	1.25	fil.	fil.	140	100	1.25		
V7	6AL5	Noise Limiter	140	140	fil.	fil.	140	0	0		
V 8	6T8	1st Audio, 2nd Det. & AGC	75	-1.4	6	fil.	fil.	[~] 75	0	8	65
V9	6AQ5A	Audio Output	0	7.4	fil.	fil.	140	150	0		
V 10	12AT7	BFO & Prod. Det.	80	0	1.7	fil.	fil.	84	-22	1.7	fil.
V11	6CB6	100 kc XTAL CAL.	-12.0	2.0	fil.	fil.	70	38	2.0		
V12	OB2		105	· · · · · · · · · · · · · · · · · · ·		0	105	———	0		
D-1 D-2	IN1763 IN1763	Rect.	ANODES — 125V A.C. K — 165V D.C.								

6900 ALIGNMENT

INITIAL CONTROL SETTINGS:

Calibrate		AF Gain	Comfortable listening level
		REC-STDBY-TR	
	as indicated in chart	Noise limiter	OFF
	OFF	Tuning	Gang half meshed
	Midpoint	-	rom the signal generator to give
		reliable readings above no	
RF Gain	as indicated in chart	, , , , , , , , , , , , , , , , , , ,	

		····	· · · · · · · · · · · · · · · · · · ·		
STEP	SIGNAL GENERATOR CONNECTIONS	SIGNAL GENERATOR FREQUENCY	OUTPUT INDICATOR	CONTROL SETTINGS	NOTES
		DETEC	TOP TRANSFO	RMER ALIGNMEN	IT (T9)
1	High side to pin 1 (grid) of 6BA6 (V6) thru .1 mfd. Low side to chassis	57 KC (unmod)	S METER	MODE-MASTER AM-B RF GAIN-MAX	T9 is overcoupled thus one winding must be loaded while the other is adjusted. Connect a 100 K ohm resistor across pins 1 and 4 of T9, adjust the top slug for maximum output. Remove the 100 K ohm resistor and connect it across pins 2 and 3. Adjust the bottom slug for maximum output. Repeat this procedure until no further change of either slug is required.
		·	57 KC IF /	LIGNMENT	
2	High side directly to lug on T4. See illus- tration on page 10. Low side to chassis.	58 KC (unmod.)	VTVM, DC probe to junction of R61, R62, R63	MODE-MASTER CW RF GAIN, advance just enough to obtain reading of signal on VTVM	Adjust top slug of T5, T6, T7, T8 for maximum indication. Maintain approx 1 volt reading on VTVM.
			PRELIMINARY E	SFO ADJUSTMEN	
3	Same as Step 2	58.8 KC (Unmod.)	NONE	MODE-MASTER LSB RF GAIN,	Adjust top slug of T10 for zero beat.
		HETER	ODYNE NULL (T NOTCH) ADJU	STMENT
4	Same as Step 2	57 KC (Unmod.)	S METER	MODE-MASTER AM-N RF GAIN, Max	Tune generator slowly thru 57 KC to determine IF passband. Then set generator to center of pass- band. Turn Het Null knob to mid-position. Tune top slug of L19 for minimum reading.
			2.195 MC II	FALIGNMENT	
5	High side directly to center stator of tuning capactior Low side to chassis	2.195 MC (Unmod.)	S METER	MODE-MASTER AM-N RF GAIN, MAX	Tune generator slowly thru 2.195 MC to determine IF passband. Then set generator to center of pass- band. Adjust top and bottom slugs of T3 and T4 for maximum output.
		BFO	SWITCHING FRI	EQUENCY ADJUS	TMENT
6	High side directly to center stator of tuning capacitor. Low side to chassis.	2.195 MC (Unmod.)	NONE	MODE-MASTER (see Remarks) RF GAIN, MAX	Turn Modemaster to LSB. Tune signal generator to zero beat. Switch Modemaster to USB but do not change signal generator frequency. Adjust mica compression trimmer (C99) for zero beat. When the receiver is switched between upper side band and lower side band positions the signal generator and BFO should remain at zero beat. Refer to General Maintenance section for aural method of checking BFO adjustment.

STEP	ANTENNA TRIMMER SETTING	BAND SELECTOR SETTING	GENERATOR & RECEIVER FREQUENCY	ADJUST FOR MAXIMUM
7	12 o'clock	wwv	10.0 MC	L13 (osc. slug) L7 (mixer slug) L1 (ant. slug)
			11.0 MC	C32 (osc. trimmer) C12 (mixer trimmer)
8	2 o'clock	80 M	3.5 MC	L14 (osc. slug) L8 (mixer slug) L2 (ant. slug)

٠

6

.

4.0 MC

C34 (osc. trimmer) C13 (mixer trimmer)

			7.0 MC	L15 (osc. slug) L9 (mixer slug)
9	t2 oʻclock	40 M	7.3 MC	L3 (ant. slug) C36 (osc. trimmer) C15 (mixer trimmer)
10	t 2 o'clock	20 M	14.0 MC	L16 (osc. slug) L10 (mixer slug) L4 (ant. slug)
			14.4 MC	C39 (osc. trimmer)
11	1 o'clock	15 M	21.0 MC	L17 (osc. slug) L11 (mixer slug) L5 (ant. slug)
			21.5 MC	C42 (osc. trimmer)
12	t o'clock	10 M	28.0 MC	L18 (osc. slug) L12 (mixer slug) L6 (ant. slug)
			29.7 MC	C45 (osc. trimmer) C19 (mixer trimmer)

6900 ALIGNMENT

RF ALIGNMENT

A. Check tuning dial indexing. With the "Calibrate" control at midpoint the pointer should line up with the extreme left end of the base line when the tuning gang is fully closed. Reset the mechanical stops so that the pointer may travel beyond the end calibration points but not quite to the ends of the base line.

B. Use either a modulated or unmodulated signal. Use S meter for indicator. The RME 6900 uses a bandpass filter IF so there is no peak in the center. Rock the tuning dal back and forth across the signal to find the edges of the bandpass. Midway between these two points is the calibration frequency.

С.	Control settings S	ame as in initial alignment except:
	Mode-Master	AM-N
	Ant. Trim	as indicated in chart
	Band Selector	as indicated in chart
	RF Gain	

D. Connect a jumper between antenna terminal G and the nearest A terminal. Connect high side of signal generator to the remaining A terminal thru a 50 ohm (approx.) carbon resistor.

CRYSTAL CALIBRATOR ADJUSTMENT

Tune in WWV at 10 MC. Turn Xtal Cal. control to position 1 and adjust C-25 for zero beat, using a non-metallic screw-driver.

S-METER ADJUSTMENT

Occasional adjustment of the S-Meter zero set may be required to compensate for the ageing of tubes and very large changes of line voltage. Proceed as follows: Remove antenna and lead-in from terminal strip on rear apron of receiver. Place bandswitch on band 5 and modemaster switch to A M narrow. Detune antenna trimmer for minimum audible background noise. Now open the top hinged cover of the receiver and locate the screwdriver-adjust meter zero potentiometer as shown in the adjustment location diagram. Rotate this potentiometer until the S-Meter reads exactly 0, as viewed from the normal operating position. Reconnect antenna and return controls to normal operating position.

CW PITCH ADJUSTMENT

E. The oscillator frequency is higher than the signal frequency on all bands. Turn C98 so that the plates are fully meshed. Put the knob on the shaft with the pointer at 3 o'clock and tighten the setscrew. Now when a CW signal is tuned in for maximum strength the audio beat will correspond approximately to the markings on the panel.

6900 DIAL STRINGING GUIDE

1. Turn the tuning knob until the cord pulley is in the position shown. Slide dial pointer to the extreme right end of base line on the scale. Anchor the cord on the tab marked start, bring it out thru the slot and wind $\frac{7}{8}$ turn in the direction shown on the *back* side of the pulley. Continue around the pulley on the slide and thru the tabs on the dial pointer carriage.

2. Finish widing as shown making sure the spring is stretched enough to keep the cord tight. Put a drop of Duco Cement

- 1. Turn bandswitch fully counter-clockwise and fasten pulley on bandswitch shaft as shown.
- 2. Pulley on dial drum so that the slot is up.
- 3. String cord as shown.

on each tab of the dial pointer carriage to permanently anchor it to the cord.

Run the pointer back and forth a few times to make sure that the cord does not wind on top of another turn on the cord pulley. When done correctly, as the cord unwinds to one side it leaves room for the cord to wind up from the other side.

6900 BAND CHANGE CORD STRINGING GUIDE

PARTS LIST AND DESCRIPTIONS

TUBES

TRANSFORMERS & CHOKES

Item No.	Туре	Function	Base
V1	6BA6	R.F. AMPLIFIER	7BK
V2	6U8A	1st OSCMIXER	9AE
V3	6U8A	2nd OSCMIXER	9AE
V4	6C4	HETRO. REJ. AMP.	6BG
V5	6BA6	1st 50 Kc IF AMP.	7BK
V6	6BA6	2nd 50 Kc IF AMP.	7BK
V7	6AL5	NOISE LIMITER	6BT
V8	6T8A	DETECTOR/AUDIO AMP.	9E
V9	6AQ5A	AUDIO OUTPUT	7BZ
V10	12AT7	PRODUCT DETECTOR-BFO	9A
V11	6СВ6	100 Kc Crystal OSC.	7CM
V12	ОВ2	VOLTAGE REGULATOR	5BO

8

There	Ermetion	Rating	RME No.				
Item	Function	Voltage/Current	DC Res.	RME NO.			
T1	POWER	pri: 117v, 60 cycle SEC. #1: 260v .115a SEC. #2: 6v a 4.4a	6.6 ohms 54 ohms c.t. 0.2 ohms	15103			
T2	AUDIO OUTPUT	PRI Z: 5100 ohms SEC. #1 Z: 4 ohms SEC. #2 Z: 500 ohms	150 ohms .33 ohms 40.7 ohms	15105			
L20	FILTER	5 hy at 115 ma. DC	95 ohms	15104			
(NOTE: ABOVE ARE SPECIAL. ORDER REPLACEMENTS FROM DISTRIBUTOR BY RME NUMBER ONLY)							

.

.

CAPACITORS

(Values are given in mmf for mica and ceramic capacitors below .01 and in mfd for paper and electrolytics.)

	Rat	ing	Cincult Econotion	D1/F #	Replacement Data					
Item No.	Cap.	Volt.	Circuit Function	RME #	_	Aerovox #	Centralab #	С—Д	Sprague #	
C1 C2 C3 C4 C5	30 50 70 100 47	500 500 500 500 500 500	WWV Ant. Padder 40 M. Ant. Padder 20 M. Ant. Padder 15 M. Ant. Padder R.F. Signal Input	42229 42232 42233 42227 42211				 C10Q-47C		+ 5%, N330 + 5%, N330 + 5%, N330 + 2%, N330 + 20%, NPO
C6 C7 C8 C9 C10	.01 .01 var. .01 .01	500 500 air 500 500	R.F. Cathode By-pass R.F. Screen By-pass Antenna Trimmer Mixer Primary By-Pass Mixer Primary By-Pass	4252 4252 42017 4252 4252	*E. F. JOHNSON T	BPD-01 BPD-01 YPE 25K10 BPD-01 BPD-01	DD 1032 DD 1032 	BYA 10S1 BYA 10S1 	5GA-S1 5GA-S1 5GA-S1 5GA-S1	
C11 C12 C13 C14 C15	10 1-9 1-9 60 1-9	500 500	WWV Mixer Fixed Padder WWV Mixer adj. padder 80 M. Mixer adj. padder 40 M. Mixer fixed pad. 40M. Mixer adj. padder	42231 42018 42018 42228 42018			TCA 10			+ 10%, N330 Special Special + 2%, N330 Special
C16 C17 C18 C19 C20	100 100 25 1-9 47	500 500 500 500	20 M. Mixer Fixed pad. 15 M. Mixer Fixed pad. 10 M. Mixer Fix. Padder 10 M. Mixer Adj. padder Input coupl., 1st Mix.	42227 42227 42234 42018 42211		 NPO-DI-47	TCZ 100 TCZ 100 	C10-TIC C10-TIC C10Q-47C	5TCC-T1 5TCC-T1 	+ 2%, NPO + 2%, NPO + 5%, N330 Special $\pm 20\%$, NPO + 6% NPO
C21 C22 C23 C24 C25	5 .01 .01 .01 5	500 500 500 500 500	Osc. Inj., 1st Mixer 1st Mixer Cathode By-pass 1st Mixer Screen By-pass 1st Mix. Osc. Plate By-p. Calibrator coupling	42119 4252 4252 4252 4252 42077		BPD-01 BPD-01 BPD-01 	TCZ 5 DD 1032 DD 1032 DD 1032 DD 050	C10 V5C BYA 10S1 BYA 10S1 BYA 10S1 L10Q5	5GA-S1 5GA-S1 5GA-S1 5GA-V5	+ 5%, NPO + 10%
C26 C27 C28 C29 C30	5-25 .01 270 .01 5	500 500 500 500	Calibrator Freq. Adj. Calibrator Cathode By-p. Calibrator Screen By-p. Calibrator Plate By-pass WWV Osc. Fixed Padder	42121 4252 42224 4252 42119		BPD-01 NPO-SI270 BPD-01	DD 1032 TCZ 270 DD 1032 TCZ 5	BYA 10S1 BYA 10S1 C10-V5C	5GA-S1 5TCC-T27 5GA-S1	Special + 20%, NPO <u>+ 5%, NPO</u>
C31 C32 C33 C34 C35	15 1-9 15 1-9 30	500 500 500	WWV Osc. Fixed Padder WWV Osc. Adj. Padder 80M Osc. Fixed Padder 80M Osc. Adj. Padder 40M Osc. Fixed Padder	42226 42018 42226 42018 42087		N750-DI-15 	TCN 15 	C10Q15U C10Q15U	5TCU-Q15 5TCU-Q15	+ 5%, N750 Special + 5%, N750 Special + 2%, N330
C36 C37 C38 C39 C40	1-9 30 30 1-9 5	500 500 500	40M Osc. Adj. Padder 20M Osc. Fixed Padder 20M Osc. Fix. Padder 20M Osc. Adj. Padder 15M. Osc. Fixed Padder	42018 42087 42105 42018 42119			TCZ 5	 		Special +2%, N330 +2%, N330 Special +2%, NPO
C41 C42 C43 C44 C45	30 1-9 15 20 1-9	500 500 500	15M Osc. Fixed Padder 15M Osc. Adj. Padder 10M Osc. Fixed Padder 10M Osc. Fixed Padder 10M Osc. Adj. Padder	42087 42018 42235 42225 42018		 NPO-SI-15 	$\frac{-}{TCZ} 15$	 C10Q15C 		+2%, N330 Special +5%, NPO +5%, N330 Special
C46 C47 C48 C49 C50	45 45 30 15 70	500 500 500 500 500	Osc. Tank, Fixed Osc. Tank, Fixed 40/20M Osc. Series 15M Osc. Series 10M Osc. Series	42101 42102 42105 42038 42212					5TCC Q3	+ 2%, N330 + 2%, NPO + 2%, NPO + 2%, NPO + 2%, NPO + 2%, NPO
C51 C52 C53 C54 C55	1 .01 ½ .1mfd .1mfd	200	2Mc I.F. coupling 2 Mc. I.F. Bypass 2 Mc. Mixer inj. coupl. 2nd Mix. Cathode By-pass 2nd Mix. Screen Bypass	42006 4252 42156 42208 42208		BPD-01 — —	DD 1032 DF 104 DF 104 DF 104	BYA 10S1	5GA-S1 3GAB-P1 3GAB-P1	+5%, NPO Ceramic GMV + 10%, NPO Ceramic GMV Ceramic GMV
C56 C57 C58 C59 C60	33 33 .1mfd 100 20	500 500	2nd Mix. Osc. Coupling 2nd Mix. Osc. Coupling 2nd Mix. Osc. By-pass 1st 50 KC I.F. 1st 50 KC IF Coupling	42203 42203 42208 42240 42117		NPO-SI-33 NPO-SI-33 	TCZ 33 TCZ 33 DF 104 	C10Q33C C10Q33C 	5TCC-Q33 5TCC-Q33 3GAB-P1 MS-31 5TCC-Q2	+10%, NPO +10%, NPO Ceramic GMV Silver Mica +2%, NPO
C61 C62 C63 C64 C65	105 200 .1 100 2400	500 500 200 500 500	1st 50 KC IF Coupling 1st 50 KC IF Coupling 1st 50 KC IF Bypass Het. Rej. coupling Het. Rej. Tuning	42248 42206 42208 42044 42207		 	TCZ 200 DF 104 TCZ 100	· · · · · · · · · · · · · · · · · · ·		
C66 C67 C68 C69	2400 10 .1 70	500 500 200 500	Het. Rej. Tuning 1st IF Coupling 1st IF Screen Bypass IF Gain Adjust	42207 42164 42208 42242		NPO-SI-10	TCZ 10 DF 104	(Silver Mic C10O1C	a, Special +2% 51CC-01 3GAB-P1	Tolerance) +10%, NPO Ceramic GMV +10%, NPO

PARTS LIST (Continued)

CAPACITORS

(Values are given in mmf for mica and ceramic capacitors below .01 and in mfd for paper and electrolytics.)

	Ratir	ng			Replacement Data						
Item No.	Cap.	Volt.	Circuit Function	RME #	Aerovox # Cer		Centralab #	Centralab # C—D#		Notes	
C70 C71 C72 C73 C74	.1 200 20 105 200	200 500- 500 500 500	50 KC Gain Adjust IF Gain Adjust 50 KC IF Coupling 50 KC IF Coupling 50 KC IF Coupling	42208 42243 42117 42248 42206		 NPO-SI-20 	DF 104 TCZ 20 TCZ 200	 C-10Q2C 	3GAB-P1 5TCC-Q2	Ceramic GMV ⁺ 10%, NPO ⁺ 2%, NPO ⁺ 2%, NPO Spcl. ⁺ 5%, NPO	
<u>C75</u>	.1	200	2nd 50 KC Bypass	42208			DF 104	<u> </u>	3GAB-P1		
C76 C77 C78 C79 <u>C80</u>	100 .1 .1 .1 .1 .1	500 200 200 200 200 200	IF Output Coupling IF B+ Bypass 2nd IF Cathode Bypass 2nd IG Screen Bypass Noise Limiter	42044 42208 42208 42208 42208 42208		NPO-DI-100 	TCZ 100 DF 104 DF 104 DF 104 DF 104 DF 104	C10 TIC	5TCC-T1 3GAB-P1 3GAB-P1 3GAB-P1 3GAB-P1	⁺ 20%, NPO Ceramic, GMV Ceramic, GMV Ceramic, GMV Ceramic, GMV	
C81 C82 C83 C84 C85	.1 1.0 Mfd. .1 .1 .05	200 200 200 200 200	Noise Limiter Noise Lim. Charging Cap. Noise Lim. AGC Charging AGC Charging Cap.	42208 42237 42208 42217 42218		 P84CM-1/200 P84CM1/200 P84CM05/200	DF 104 DF 104	$\frac{\overline{2W1}}{2P1}$	3GAB-P1 2TM-M1 3GAB-P1 2TM-P1 2TM-S5	Ceramic, GMV — Ceramic, GMV +20%, paper +20%, paper	
C86 C87 C88 C89 C90	270 270 .01 270 270 270	500 500 500 500 500	AM Det. Filter AM Det. Filter Detector-Audio Coupling Prod. Det. R.F.Filter Prod. Det. R.F.Filter	42213 42213 4252 42213 42213 42213		BPD-270 BPD-270 BPD-01 BPD-270 BPD-270 BPD-270	DD 271 DD 271 DD 1032 DD 271 DD 271	L10 T27 L10 T27 BYA 10S1 L10 T27 L10 T27	5GA-T27 5GA-T27 5GA-S1 5GA-T27 5GA-T27	+20% - +20% +20% +20% +20%	
C91 C92 C93 C94 C95	.01 .01 .01 330 5 Mfd.	500 500 500 500 25	Audio Coupling Audio Coupling Audio Coupling Audio Amp. Grid Bypass Audio Amp. Cathode Bypass	4252 4252 4252 42215 42220		BPD-01 BPD-01 BPD-01 BPD-330	DD 1032 DD 1032 DD 1032 DD 331	BYA 10S1 BYA 10S1 BYA 10S1 L10 T33 BR 550	5GA-S1 5GA-S1 5GA-S1 5GA-T33 TVA 1203	- + 20% Electrolytic	
C96 C97 C98 C99 Ç100	.01 .01 100 4-40 33	500 500 air 500	Audio Amp. Plate Bypass Phone Coupling C.W. Pitch Control Sideband Freq. Adjust. Sideband Freq. padder	4257 4252 42210 4292 42203		BPD-01 BPD-01 — 	DD 1032 DD 1032 	BYA 10S1 BYA 10S1 	5GA-S1 5GA-S1 5TCC-Q33	+ 20% Special Mica Comp. + 10% NPO	
C101 C102 C103 C104 C105	270 .01 12 Mfd. 10 100	500 500 250 500 500	BFO Grid Coupling BFO Plate Coupling Prod. Det. Bypass Prod. Det Input Prod. Det. Volt. Div.	42213 4252 42221 42164 4281		BPD-270 BPD-01 PRS-12/250 NPO-SI-10 BPD-100	DD 271 DD 1032 	L10 T27 BYA 10S1 BR 1225 C10&IC L10 T1	5GA-T27 5GA-S1 TVA 1505 5TCC-Q1 5GA-T1	+ 20% Electrolytic + 10%, NPO + 20%	
C106A C106B C107 C108 C109	40 Mfd. 40 Mfd. .01 .01 2	250 250 500 500 500	Filter Filter 1st Mixer Fil. Bypass 1st Mixer Fil. Bypass 80 M. Ant. Padder	42222 4252 4252 42247		AFH2-29 BPD-01 BPD-01	DD 1032 DD 1032 	UP 4425 BYA 10S1 BYA 10S1	TVL 2520 5GA-S1 5GA-S1	Electrolytic + 5%, NPO	

RESISTORS ALL FIXED RESISTANCES + 10%

Item No.	Resistance	Watts	Function	Part No.	Item No.	Resistance	Watts	Function	Part No.	Item No.	Resistance	Watts	Function	Part No.
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12	15 270K 56 4.7K 15K 270K 820 330 1K 330 1K 330 100 47	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	R.F. Grid Series Res. R.F. Grid Res. R.F. Cathode Res. R.F. Cathode Res. R.F. Screen Res. R.F. Gain Control Blocking Gias Res. Mixer pri. decoupling WWV Osc. 80M Osc. 80M Osc. 20M Osc. 15M Osc.	46069 4669 4622 4675 46151 4669 4694 4623 4693 4623 4623 46140 46035	R37 R38 R39 R40 R41 R42 R43 R44 R45 R45 R46 R47 R48	82K 680 3.3K 47K 2.2 meg. 100K 68 22K 82K 27K 27K 27K 82K	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	1st 50Kc IF loading 6C4 Cathode 6C4 Plate T Notch coupling 1st IF Grid T Notch 2nd IF K 2nd IF S.G. 2nd IF stage loading 2nd IF stage loading 2nd IF stage loading 2nd IF stage loading		R73 R74 R75 R76 R77 R78 R79 R80 R81 R82	150K 150K 100K 47K 10K 3.3K 47K 120K 470 470 470K	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Fil Bias Fil Bias BFO Inj. BFO Inj. Limit BFO Plate Drop P.D. Plate Decoupl. P.D. Plate decoupl. BFO Grid P.D. K P.D. G	4603 4603 46154 4668 4691 46017 4668 4670 4654 4650
R13 R14 R15 R16	150 680K 2.7K 120K	1/2 1/2 1/2 1/2 1/2	10M Osc. Xtal calib. grid Xtal calib. cathode	46149 46009 46036	R49 R50 R51 R52	820 820 1K 270	1/2 1/2 1/2 1/2 1/2	3rd IF Trans decoupler IF Sub assembly decoupler S Meter adj.	4694 4694 46153	ITE	F	SCELL	ANEOUS FUNCTION	
R10 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R29 R30 R31 R32	270K 270K 100K 39K 15 120K 330 18K 100K 100 1K 820 15K 680 4.7K 47K 39K	233-232-232-232-232-232-232-232-232-232	Xtal calib. Screen Grid Xtal calib. Plate Xtal caib. B+ Manual gain bias 1st mix S.G. 1st mix G 1st mix K 1st mix S.G. R.F. Osc. G. R.F. S.G. R.F. Plate decoupling 1st mix Plate decouple 2nd mix S.G. 2nd mix S.G. 2nd mix Osc. K 2nd mix Osc. G 2nd mix Plate	4670 4669 4695 4682 46069 4670 4623 46029 4695 46140 4693 4694 4653 4694 4653 46045 4675 4668 4697	R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R65 R66 R67 R68	68K 12K 150 2.2 meg 820 180K 5 meg 330K 4.7 meg 82K 4.7 meg 82K 4.7K 270K 2 meg 10 meg 270K 270K	72 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	S Meter sens.* S Meter adj. v. dropping 2nd IF S.G. 2nd IF K 2nd IF G 2nd B+ decoupler Noise Limiter N. L. control AGC Bridge AGC Filter AGC Bridge AGC Audio/R.F. Filter R.F. Filter, P.D. output AF Gain 1st Audio Grid 1st Audio P decoupler 6AQ5 Grid	46034 46150 4649 46149 46025 4694 4671 46155 4685 46026 4696 4675 4669 4669 46152 46065 4669 4669 4669	JI J1 J2 M X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 10 3 8 5 6 71 6 8 8 8	Coax, Ant. Jack phone jack "S" meter 100 KC crystal crystal 1½ A fuse 3AG SI Neon Lamp — NE Panel Lamp, type 4 Panel Lamp, type 4 Panel Lamp, type 4 Panel Lamp, type 1 Panel Lamp, type 1	-2 7 7 7 847
R32 R33 R34 R35 R36	820 82K 27K 27K	72 1/2 1/2 1/2 1/2 1/2 1/2	1st 50Kc IF decoupling 1st 50Kc IF loading 1st 50Kc IF loading 1st 50Kc IF loading 1st 50Kc IF loading	4694 4696 4651 4651	R69 R70 R71 R72	330 47K 10K 1.5K	72 1 1/2 1/2 5	6AQ5 K Phone tap down Phone tap down VR Dropping	4609 46160 4668 4691 46148		efer to follo oil informati		e for Switch and RF-I	F

* deleted in late production

.

9

SWITCHES

NO. PART NO. DESCRIPTION

100.0

.

S1	56023	Switch rotary 7 pole, 6 pos. — Band switch
S2	56022	Switch rotary 4 pole, 5 pos. — IF Bandwidth
S 3	56024	Switch rotary 2 pole, 3 pos. — calibrator switch
S4	56021	T notch switch —
S5		Part of R5 — AC on-off
S6	A5663	Switch rotary 2 pole, 3 pos. — Rec-T-R
S 7	56025	Switch rotary, 4 pole, 5 pos. — Function Switch
S8		Part of R59 — Noise Limiter

I.F. - R.F. COILS

NO.	PART NO.	DESCRIPTION
L1 L2	F3593	Ant. coil (WWV)
L3	A3593	Ant. coil 80M
L4	B3593	Ant. coil 40M
L5	C3593 D3593	Ant. coil 20M
L6	G3593	Ant. coil 15M Ant. coil 10M
L7	G3594	Mixer coil (WWV)
L8	A3594	Mixer coil 80M
L9	B3594	Mixer coil 40M
L10	C3594	Mixer coil 20M
LĨĨ	D3594	Mixer coil 15M
$\overline{L12}$	H3594	Mixer coil 10M
L13	F35075	Osc. coil (WWV)
L14	A35075	Osc. coil 80M
L15	B 35075	Osc. coil 40M
L16	C35075	Osc. coil 20M
L17	D35075	Osc. coil 15M
L18	E35075	Osc. coil 10M
L19	35074	T-Notch coil
T3	A15031	2.2 MC I. F. Transformer
T 4	A15031	2.2 MC I. F. Transformer
T 5	35073	50 KC I. F. Transformer
T6	35073	50 KC I. F. Transformer
T 7	35073	50 KC I. F. Transformer
T8	35073	50 KC I. F. Transformer
T9	15106	Det transformer
T 10	15107	BFO transformer

10

.

NOTES ON RECEIVER OPERATION

Modern receivers with increased selectivity require more attention to proper modes of operation than did those of former years. This is particularly true regarding CW, SSB and narrow AM reception. The following suggestions are presented to help those interested in improving their "Operating technique" with the RME 6900.

SELECTIVITY AND PHONE QUALITY

Due to heavy QRM on the amateur bands a modern receiver must possess a high degree of selectivity in order to give the desired signal all the encouragement possible and make communication possible and enjoyable. The transmission and reception of information via radio does require a certain bandwidth determined largely by the detail or quantity of information to be exchanged. A human voice transmitted via a radio signal requires more bandwidth than CW.

The question as to what constitutes a satisfactory degree of quality of voice transmission gets many answers from operators in the amateur ranks. Telephone quality communication using a bandwidth favoring the human voice is adequate for most speech communications and this bandwidth is used in the RME 6900. Under extreme conditions of heavy QRM receiver selectivity which would permit telephone quality is not good enough and selectivity of higher degree is required. Since increasing selectivity reduces audio response, the amplitude modulated signal will suffer since it requires a bandwidth twice the value of the audio frequency received. Thus when modern receiver circuits designed for SSB and CW reception are used with older tuning techniques, low intelligibility results.

The remedy for this problem is to tune the receiver so that the incoming carrier is at one edge or the other of the receiver passband (an adjustment determined by the point at which the "S" meter reading just starts to fall). With this adjustment the receiver mode becomes "single sideband with-carrier" and the audio response range doubles in frequency. In this adjusted mode in the RME 6900, when the mode switch is set at "AMN" (2KC), the audio response range which with normal tuning (peaked "S" meter reading-carrier in band center) is 1 KC becomes 2 KC and thus greatly improves the intelligibility. If the receiver was center band tuned when the mode switch was set to "AMB" (3.6 KC bandwidth) the audio response range would extend to 1.8 KC less than the side-tuned method, described above, and with less effective selectivity. Try these suggestions when QRM is heavy and reception difficult. The above discussion presupposes the use of the 6901 speaker unit or its acoustic equivalent. The use of large speakers with bass emphasis is not compatible with receivers of this type.

CW OPERATION

The Model RME 6900 receiver was designed with special attention to excellence in CW reception. A filter circuit has been incorporated that provides a passband of only 500 cycles when the receiver is used in the "CW" Mode. When starting to tune make certain that the "Het Null" control is set to "Off" so it will not have been accidently left at a position coinciding to peak

CW signal frequency.

Tuning should be done slowly because of the selective nature of the filters and the possibility of passing over the maximum signal response point. All CW signals will be received at the same tone when properly tuned. The frequency of the tone is determined by the "BFO PITCH" control setting-usually between .5 and 1.0 KC. If a signal is not properly tuned it will be heard rather weakly and apparently in the background. If, when a signal is properly tuned at peak amplitude, another signal at a somewhat different frequency is bothersome the "Het Null" control can be

Page 2 - Notes on Receiver Operation

rotated slowly until the undesired signal is greatly reduced or eliminated.

If the foregoing is unnecessary because QRM is not great and interference is not a problem, CW reception can be carried on using either "LSB" or "USB" positions of the Mode switch. Here the passband becomes wider (2 KC) and signals will not require exact tuning. Also they will be received at various audio tones with equal intensity over a 2 KC range. The "Het Null" control will still be effective for interference reduction.

ELECTRO-VOICE, INC./ Buchanan, Michigan

Part No. 53254 March, 1961

Mimeo in U.S.A.