MANUEL D'ENTRETIEN ET DE RÉGLAGE

DU TÉLÉIMPRIMEUR ÉLECTRONIQUE

SAGEM

TYPE SPE (Série 5)

N° 264-0054

3ème **DEGRÉ** (PARTIE ELECTRONIQUE)

A L'USAGE DU PERSONNEL DES ATELIERS RÉGIONAUX

TABLE DES MATIERES

		Pages
CHAPI	TRE I - GÉNÉRALITÉS	
1,1	Avant-propos	1
1,2	Précautions à prendre	1
1,3	Repérage utilisé	1
СНАРІ	TRE II - CONTROLE ET DÉPANNAGE	
2,1	Rappel des opérations préliminaires	3
2,11 2,12 2,13	Dépose du capot insonorisant	3 3 3
2,2	Bloc électronique	3
2,21 2,22 2,24 2,23	Contrôle des signaux Dépose et repose Démontage et remontage Vérifications	3 6 6 7
2,3	Minuterie électronique	7
2,31 2,32 2,33 2,34	Contrôle Dépose et repose Démontage et remontage Vérifications	7 8 8 9
CHAPI	TRE III - SIGNAUX AUX POINTS DE TEST ET PLAQUES ÉLECTRONIQUES	
	Signaux aux points de test - Emission Signaux aux points de test - Réception Bloc électronique - Plaques 1 à 28 Bloc électronique - Plaques A et B Minuterie électronique - Plaques 1 et 2. Symboles et code des couleurs Alphabet International C.C.I.T. nº 2	13 16 19 47 49 51

TABLE DES PLANCHES

- Planche 1 Diagramme des temps Electronique Emission.
- Planche 2 Diagramme des temps Electronique Réception.
- Planche 3 Face avant de l'oscillographe CRC-OCT 465
- Planche 4 Schéma de principe (électronique).
- Planche 5 Schéma de cablage (électronique).
- Planche 6 Electronique (ensemble).
- Planche 7 Minuterie électronique (schéma-ensemble).

CHAPITRE I

GENERALITES

1,1 AVANT-PROPOS

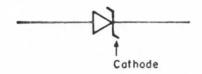
Ce document traite du contrôle, du dépannage et de la remise en état :

- de l'ensemble du bloc électronique qui commande les différentes fonctions du téléimprimeur;
- de la minuterie électronique qui peut être insérée (éventuellement) dans le circuit moteur pour commander automatiquement sa mise en marche et son arrêt retardé.

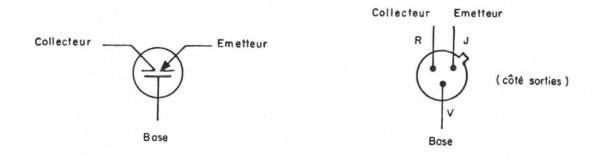
1,2 PRÉCAUTIONS A PRENDRE

L'emploi de tout acide est rigoureusement interdit pour l'exécution des soudures ; pour ces travaux il est impératif d'utiliser un fer à souder basse tension de 30 watts.

Le remplacement d'éléments constitutifs des plaques est déconseillé en raison des risques de détérioration des éléments ou des circuits eux-mêmes et, dans tous cas, il sera procédé à l'échange standard de l'ensemble de la plaque dont un élément est défectueux.


En cas de remplacement d'un élément défectueux, il faut :

- Maintenir la sortie de l'élément à souder à l'aide d'une pince plate entre l'élément lui-même et la soudure à exécuter;
- Utiliser une soudure spéciale;
- Prendre soin d'isoler à l'aide d'une gaine en plastique le corps des diodes à effet
 Zener


1,3 REPÉRAGE UTILISÉ

Les points de test sont indiqués par la lettre « t » suivie d'un numéro de repère ; le tout encerclé. Ex. : point (t4)

Les diodes à effet Zener utilisées comme composants dans les circuits imprimés sont représentées dans les schémas de la façon suivante :

Le corps de ces diodes présente une collerette se trouvant du côté de la cathode. La face côté sortie des transistors utilisés présente un appendice qui permet de repérer la position des sorties; celles-ci seront isolées par des gaines de couleurs différentes. La représentation schématique étant la suivante.

CHAPITRE II

CONTROLE ET DEPANNAGE

2,1 RAPPEL DES OPÉRATIONS PRÉLIMINAIRES

Pour procéder aux opérations de contrôle et permettre la dépose éventuelle des ensembles électroniques, il faut procéder aux opérations préliminaires suivantes :

2,11 DÉPOSE DU CAPOT INSONORISANT

- Retirer la bande perforée engagée dans le lecteur;
- Couper, au ras du capot, le papier page et la bande perforée ;
- Appuyer, à droite et à gauche, sur les deux boutons pour déverrouiller le capot;
- Soulever verticalement celui-ci pour le déposer.

2,12 DÉPOSE DU CAPOT DE PROTECTION INFÉRIEUR

- Déposer le capot insonorisant (voir 2,11);
- Retirer le tiroir recevant les débouchures de perforation ;
- Soulever l'avant de l'appareil, le faire pivoter pour le dresser verticalement et le mettre en appui sur l'arrière de la platine et l'extrémité des béquilles;
- Retirer les quatre vis fixant le capot pour le déposer.

2,13 REPOSE DES CAPOTS

Après contrôle et dépannage des ensembles électroniques, effectuer en premier la repose du capot de protection inférieur; replacer l'appareil en position d'exploitation avant de reposer le capot insonorisant en le présentant verticalement sur le socle.

2,2 BLOC ÉLECTRONIQUE

Pour effectuer toutes les opérations concernant cet ensemble, il faut laisser le téléimprimeur en appui sur la face arrière et l'extrémité des deux béquilles.

2,21 CONTROLE DES SIGNAUX

Placer la plaque de testage (HK1-65) devant le bloc électronique; la fixer sur les colonnettes avant de la platine à l'aide de deux des vis de fixation du capot de protection inférieur.

Sur cette plaque des trous permettent d'accéder aux différents points de test; ils sont numérotés de (t1) à (t21) et portent l'indication de la couleur des fils arrivant à ces différents points pour supprimer tout risque d'erreur.

En l'absence de plaque de testage, repérer la position des points de test sur le câblage de l'électronique en consultant le schéma (planche 5) où ils sont repérés de (t1) à (t21)

2,211 PRINCIPE

Pour chacun des 21 points de test, on compare les images apparues sur l'écran de l'oscillographe avec les courbes témoins représentées aux pages :

- 13 à 15 pour un téléimprimeur fonctionnant en émission;
- 16 à 18 pour un téléimprimeur fonctionnant en réception.

Ces courbes témoins ont été relevées sur l'écran d'un oscillographe bicanon CRC modèle OCT 465, équipé de deux tiroirs préamplificateurs HF 4651.

Nota: L'impulsion de correction reçue:

- en émission par la droite de DB1;
- en réception par la droite de DB1 et de DB2, non visible sur l'écran de cet oscillographe, a été représentée en pointillé sur les courbes relatives aux points de test :
- (t3) (droite de DB1) en émission et en réception;
- (t4) (droite de DB2) en réception.

2,212 RÉGLAGE DE LA POSITION VERTICALE DES SPOTS (planche 3)

Brancher l'oscillographe OCT 465 et placer :

- Les commutateurs (T1) et (T2) des préamplis sur la position 0 (zéro);
- Les boutons « Lumière » (O1) et (O2) des préamplis en position moyenne;
- Le bouton rouge « Mode Synchro » (M) à fond à droite, position « R »;
- Le bouton noir « Mode Synchro » (L) à fond à gauche, position « = »;
- Le bouton rouge « Vernier » (G) à fond à droite, position « Etal »;
- Le bouton noir « Durée Balayage » (F) sur la position « 20 ms/cm ».

Au cours de ces manipulations, deux traces lumineuses sont apparues sur l'écran ; à l'aide :

- Du bouton (Q1) du préampli supérieur, positionner la trace correspondante sur la deuxième ligne horizontale (B) de l'écran (voie 1);
- Du bouton (Q 2) du préampli inférieur, positionner la trace correspondance sur la cinquième ligne horizontale (C) de l'écran (voie 2).

Régler l'intensité et la finesse de ces traces à l'aide :

- Des boutons « Astigmatisme » (N1) et « Concentration » (P1) du préampli supérieur pour la trace de la voie 1;
- Des boutons « Astigmatisme » (N2) et « Concentration » (P2) du préampli inférieur pour la trace de la voie 2.

2,213 RÉGLAGE DE LA SYNCHRONISATION (planche 3)

L'oscillographe doit être synchronisé à l'aide d'un signal ne se produisant qu'une fois par cycle; pour cela, on utilisera le signal donné par la droite de DB 4 qui devra figurer en permanence sur l'écran à la voie 1 et servira de référence.

Pour cela, il faut donc :

- Relier la masse du téléimprimeur à celle de l'oscillographe;
- Injecter dans l'entrée (S1) du préampli supérieur le signal au point (t6)
- Placer le commutateur (T1) du préampli supérieur sur la position « = »;
- Placer le bouton « Volts par division » (R1) du préampli supérieur sur la position « 10 V/cm ».

On voit alors apparaître sur l'écran à la voie 1 une image instable qu'il faut stabiliser; pour cela :

- Placer le bouton noir « Source synchro » (H) sur la position « Ext + »;
- Placer l'inverseur (J) sur la position « 1 »;
- Etablir un « strap » entre l'entrée (S1) du préampli supérieur et l'entrée « Synchro extérieur » (K);
- Placer le bouton rouge « Seuil » (I) à fond à droite ;
- Tourner le bouton rouge « Mode synchro » (M) vers la gauche jusqu'à ce que l'image disparaisse;
- Tourner le bouton rouge « Seuil » (I) vers la gauche jusqu'à ce que l'image réapparaisse et soit stable.
- Vérifier que l'image reste encore stable lorsque l'on fait passer le bouton noir « Source synchro » (H) de la position « Ext + » à la position « Ext ».

2,214 RÉGLAGE DE LA POSITION HORIZONTALE DES SPOTS (planche 3)

Pour cela il faut :

- Placer le commutateur (T2) du préampli inférieur sur la position « = »;
- Placer le bouton « Gain X » (E) sur la position « Etal » ;
- Agir sur le bouton « D » pour positionner horizontalement les spots en faisant coîncider l'origine des traces des voies 1 et 2 avec la première ligne verticale (A) de l'écran.

2,215 VÉRIFICATION DES SIGNAUX

Pour effectuer la vérification des signaux, il suffira d'injecter, les uns après les autres dans l'entrée (S2) du préampli inférieur, les signaux prélevés à chaque point de test, tant en « émission » qu'en « réception ».

Pour chaque point de test, il faut :

- Conserver tous les réglages indiqués aux paragraphes 2,212 2,213 et 2,214 sauf ceux des boutons (F) et (H);
- Respecter les réglages donnés pour chacune des courbes témoins; c'est-à-dire, placer suivant le cas :
 - le bouton noir « Durée Balayage » (F) sur l'une des positions « 2 5 10 ou 20 ms/cm »;

- le bouton « volt par division » (R2) sur l'une des positions « 2 5 10 ou 20 V/cm »;
- le bouton noir « Source synchro » (H) sur l'une des positions « Ext + » ou « Ext »

et ceci afin d'obtenir sur l'écran des images qui doivent être identiques en grandeur, durée et amplitude à celles données aux pages 13 à 18 lorsque le fonctionnement du bloc électronique est satisfaisant.

2,22 DÉPOSE ET REPOSE

2,221 DÉPOSE (planche 6)

- Procéder aux opérations préliminaires (voir 2,11 et 2,12);
- Dévisser les trois vis (234) fixant les pattes sur le dessous de la platine ;
- Tirer vers soi le bloc électronique, en le maintenant parallèle au socle, pour dégager la prise de raccordement (235).

2,222 REPOSE (planche 6)

- Présenter le bloc électronique, en le maintenant parallèle au socle, pour engager la prise de raccordement (235);
- Bloquer les trois vis de fixation (234);
- Reposer les capots (voir 2,13).

2,23 DÉMONTAGE ET REMONTAGE (planche 6)

Déposer le bloc électronique comme indiqué au paragraphe 2,221 et le placer à plat sur la table de travail ; la nappe de câblage sur le dessus et le pot oscillateur du côté de l'opérateur.

Pour toutes les opérations de soudure, suivre le schéma de la planche 5. Pour le détail des plaques voir les pages 19 à 48.

2,231 DÉPOSE DE L'OSCILLATEUR ÉCRÉTEUR (552) (planche 6)

- Dévisser les deux vis (554) fixant l'ensemble (552) sur le support de la prise (235);
- Retirer l'équerre supérieure (550) de gauche après avoir dévissé les deux vis de fixation;
- Soulever l'extrémité gauche de l'ensemble (552) pour le dégager du bloc électronique et rendre accessible les quatre points de connexion de la nappe principale sur la plaque A; dessouder les points 3 7 15 et 21;
- Déposer l'ensemble.

Pour la repose d'un nouvel ensemble, effectuer les opérations en sens inverse des précédentes.

	p				
2,231-A	Démontage des pla	ues	A et	В	(planche 6)
	— Déposer l'ensem	ole osc	illateu	r éc	réteur (voir 2,231);
	— Dévisser les deu	k boulo	ns fix	ant I	es plaques A et B sur le support (552);
	— Pour la plaque	Α, α	essou	ıder	les points de connexion 1 - 5 - 9 - 11 et 13;
	— Pour la plaque	B ,de	essou	der I	es points de connexion 1 et 3.
	Pour le remonta	ge de i	ouve	les	plaques effectuer les opérations en sens inverse

2,231-B Démontage du pot oscillateur Z (planche 6)

Le démontage du pot oscillateur peut être effectué sans déposer l'ensemble oscillateur écréteur.

- Dessouder les sept points de connexion de la nappe;
- Dévisser les deux vis de fixation (553) pour déposer le pot oscillateur.

Au remontage, placer les points de connexion 4 et 8 du côté du bloc électronique et souder les fils de la nappe.

2,232 DÉMONTAGE DES PLAQUES 1 à 28 (planche 6)

- Pour les plaques 1 à 16 , retirer l'équerre supérieure (555) de droite après avoir dévissé les deux vis de fixation ;
- Pour les plaques 17 à 28 , retirer l'équerre supérieure (550) de gauche après avoir dévissé les deux vis de fixation ;
- Soulever ensuite l'extrémité extérieure de la plaque à changer pour la dégager des autres, la faire pivoter sur elle-même pour la ramener à plat sur l'ensemble du bloc, ses éléments constitutifs sur le dessus;
- Dessouder les points de connexion la reliant à la nappe.

Pour le remontage d'une nouvelle plaque, effectuer les opérations en sens inverse des précédentes.

2,233 DÉMONTAGE DE LA PRISE J101 (235) (planche 6)

- Dévisser les deux vis (551);
- Dessouder les fils de la nappe.

Pour le remontage d'une nouvelle prise, placer le petit côté de l'emboîtement trapézoïdal du côté du bloc électronique et souder les fils de la nappe.

2,24 VÉRIFICATIONS

Après dépannage, remontage et repose du bloc électronique, effectuer les opérations de contrôle indiquées au paragraphe 2,21.

2,3 MINUTERIE ÉLECTRONIQUE (éventuel)

2,31 CONTROLE (planche 7)

Pour vérifier le fonctionnement de la minuterie, il suffit de s'assurer :

- Que le relais RC 1 n'est pas alimenté lorsque le point 2 de S 501 se trouve à une polarité négative;
- Qu'une impulsion positive d'une durée de 80 ms donnée au point 2 de S 501 par le bloc électronique du téléimprimeur (gauche de DB 4) assure la montée du relais RC 1 et la mise en marche du moteur;
- Que la chute du relais RC 1 entraîne l'arrêt du moteur en fonction du réglage du potentiomètre R 509 :
 - 40 secondes au plus tôt,

 et 70 secondes au plus tard après que le point 2 de S 501 soit redevenu négatif.
 Pour le détail des plaques voir les pages 49 et 50.

2,32 DÉPOSE ET REPOSE

2,321 DÉPOSE (planche 7)

- Retirer les cosses vissées ou enfichables des points
 - 2 2M 6 et 6M de TB 3
 - 1 3 4 et 5 de TB 5;
- Retirer les deux vis fixant la minuterie (209) sur la platine pour la déposer.

2,322 REPOSE (planche 7)

- Mettre la minuterie (209) à sa place et la fixer à l'aide des deux vis ;
- Brancher les deux gros fils (blanc et vert rouge), munis de cosses vissées, aux points 2 et 6 de TB 3;
- Brancher les deux gros fils (blanc et vert rouge), munis de cosses enfichables, aux points 2M et 6M de TB 3;
- Brancher les quatre fils fins (blanc, marron blanc, vert et rouge), munis de cosses enfichables, aux points 1 - 3 - 4 et 5 de TB 5.

2,33 DÉMONTAGE ET REMONTAGE (planche 7)

2,331 SOCLE DU RELAIS

- Retirer le relais ;
- Dessouder les fils de connexion;
- Retirer la vis pour déposer le socle.

2,332 ÉLECTRONIQUE (planche 7)

- Dessouder sur la plaque | 1 | les quatre fils de la nappe;
- Retirer les deux vis fixant la plaque 1 sur le support (209) pour déposer l'ensemble électronique S 501.

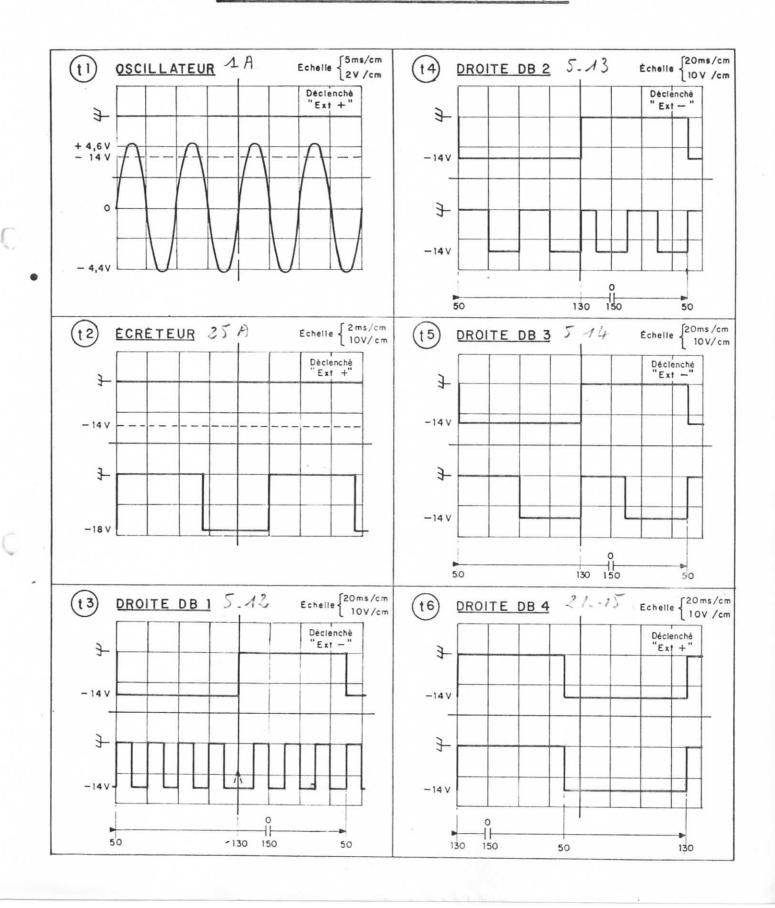
2,333 PLAQUES (planche 7)

- Déposer l'électronique (voir 2,332);
- Dessouder sur la plaque à remplacer les fils de liaison avec l'autre plaque ;
- Retirer les deux vis d'assemblage pour séparer les plaques.

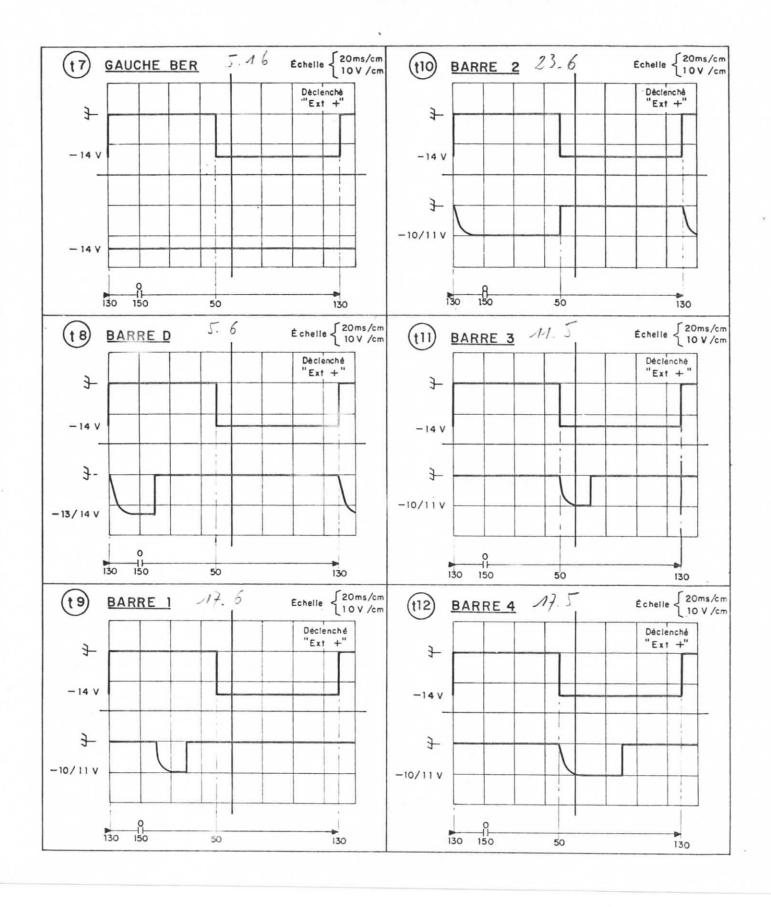
2,334 REMONTAGE (planche 7)

- Assembler les deux plaques à l'aide des vis et entretoise;
- Souder les fils de liaison entre les plaques 1 et 2
 - vert entre les points 2 et 6,
 - marron entre les points 3 et 7,

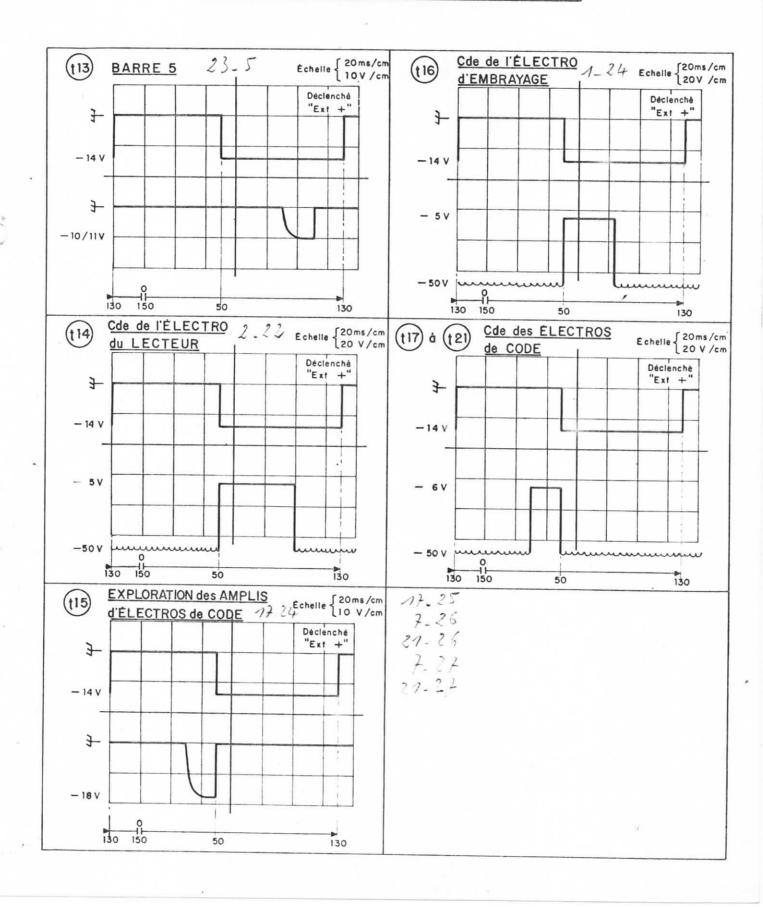
- marron blanc entre les points 4 et 8,
- rouge entre les points 5 et 9;
- Monter l'ensemble électronique S.501 sur le support (209) et souder sur la plaque 1 les fils de la nappe :
 - bleu au point 1,
 - vert au point 2,
 - marron blanc au point 4,
 - rouge au point 5;
- Monter le socle du relais sur le support 209 et souder :
 - aux points 1 et 4 les fils fins (bleu et blanc) ainsi que la diode (cathode au point 1),
 - aux points 7 et 11 les gros fils (blanc),
 - aux points 10 et 14 les gros fils (vert rouge).

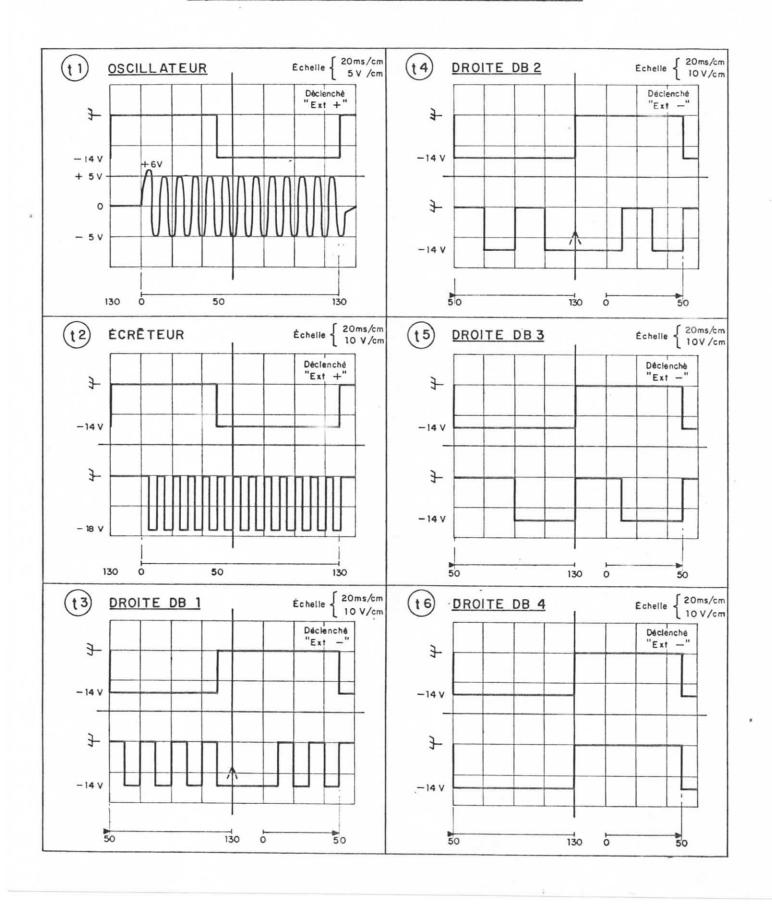

2,34 VÉRIFICATIONS (planche 7)

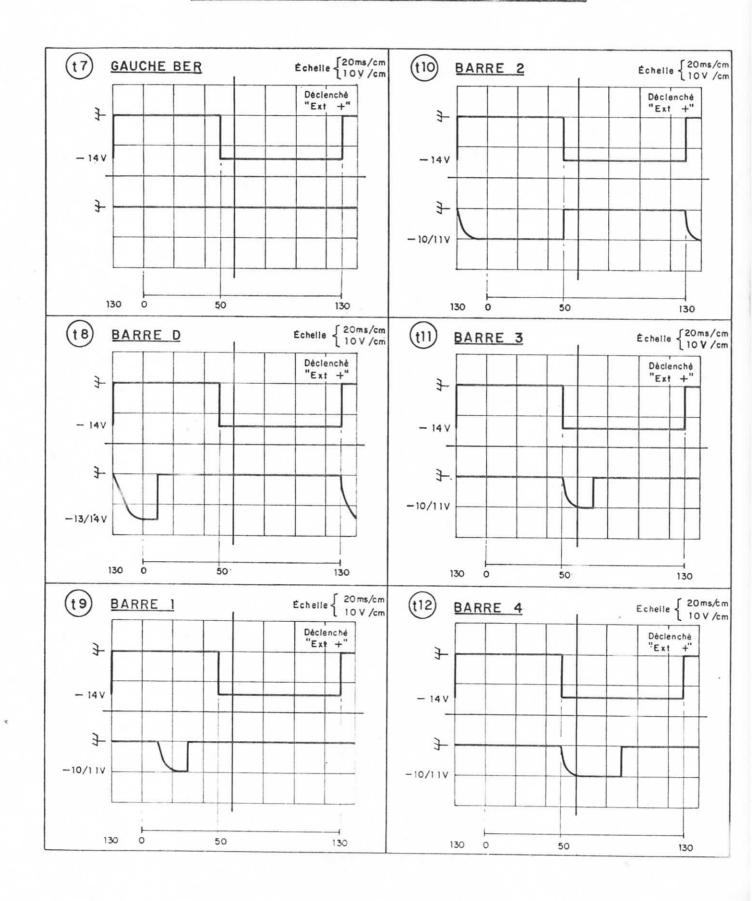
Après dépannage, effectuer les opérations de contrôle indiquées au paragraphe 2,31 et régler, à l'aide du potentiomètre (211), la durée du retard à la coupure.

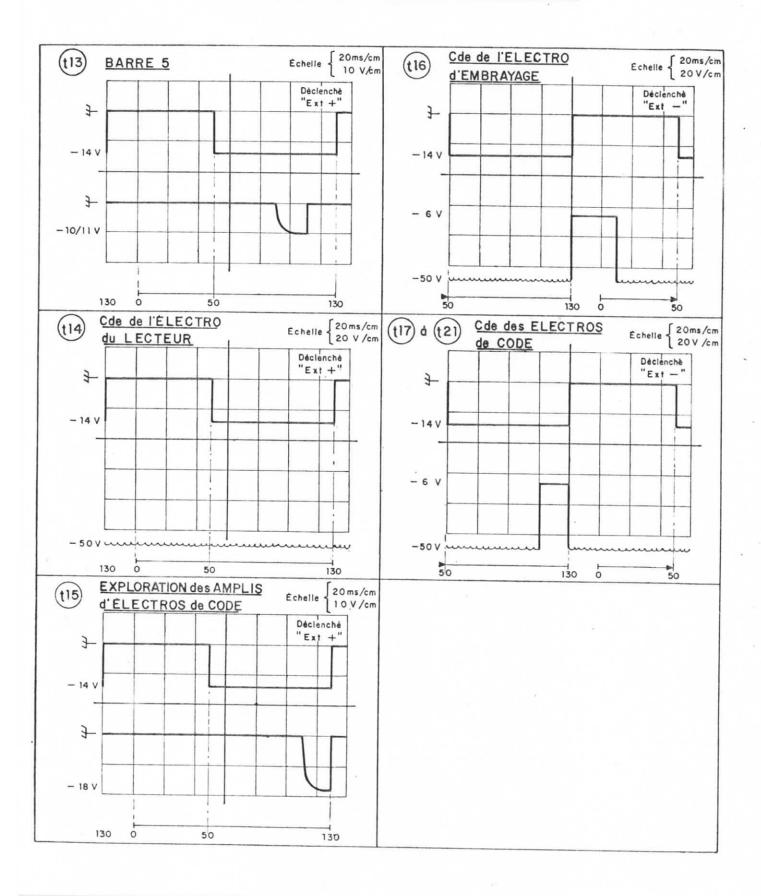

CHAPITRE III

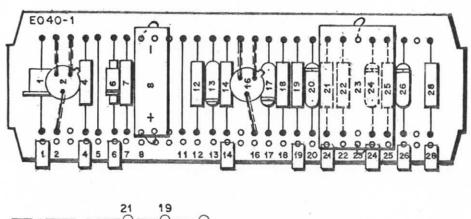
SIGNAUX AUX POINTS DE TEST ET PLAQUES ÉLECTRONIQUES

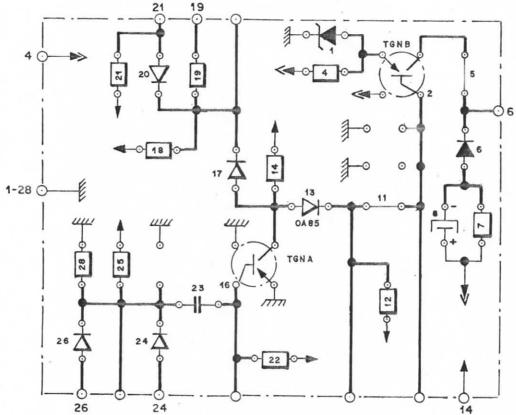

EMISSION _ Points t1 à t6


EMISSION _ Points t7 à t12

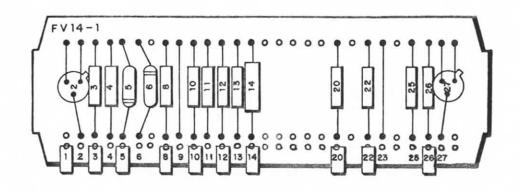

EMISSION _ Points t13 à t21

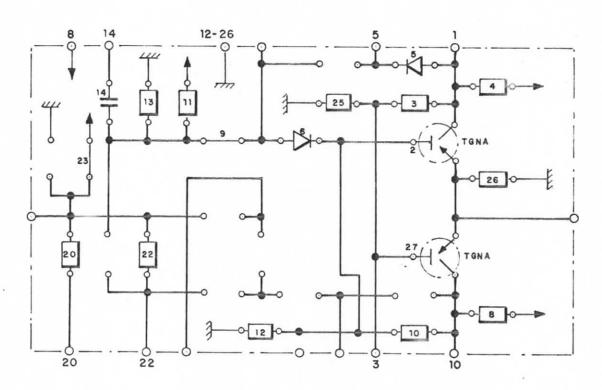

RÉCEPTION _ Points t1 à t6


SIGNAUX AUX POINTS DE TEST RÉCEPTION _ Points t7 à t12



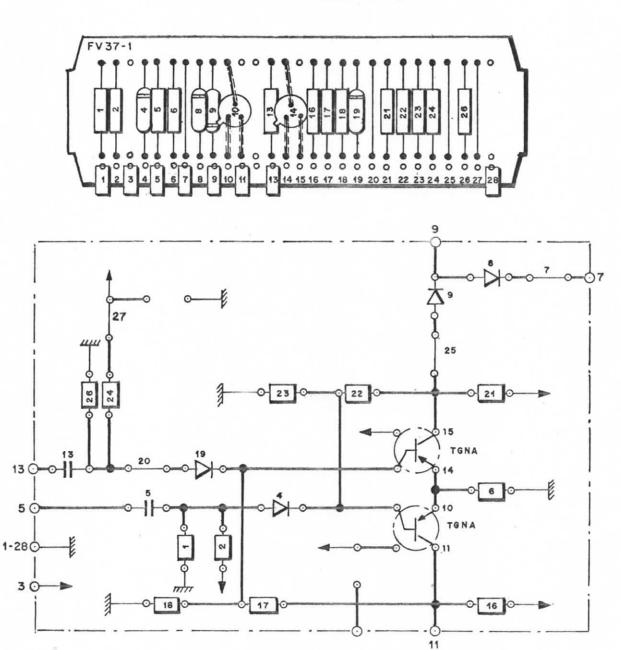
SIGNAUX AUX POINTS DE TEST RECEPTION _ Points t13 à t21


AMPLI ÉLECTRO DE PROGRESSION

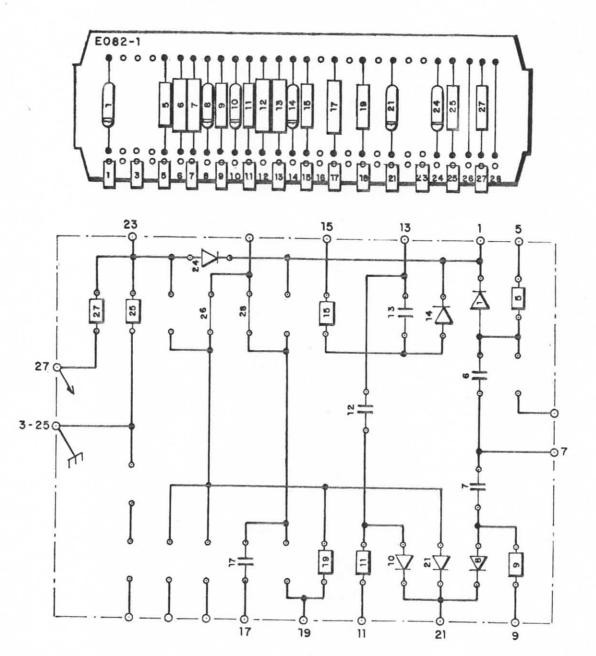


POINTS SUR LAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	CR 74	11 Z 4	8	C 38	50µF	15			22	R199	47 kΩ
2	Q48	TGN B	9			16	Q49	TGNA	23	C37	2,2 µF
3			10			17	CR76	0A85	24	CR 78	0A85
4	R194	10 k Ω	11			18	R197	4,7 kΩ	25	R200	10 kΩ
5			12	R195	3,3 k D	19	R 190	15 k Ω	26	CR79	0A 85
6	CR73	D 25 C	13	CR75	0A85	20	CR 77	0A85	27		
7	R193	2,2 k D	14	R196	100k D	21	R198	47 kΩ	28	R201	8,2 kΩ

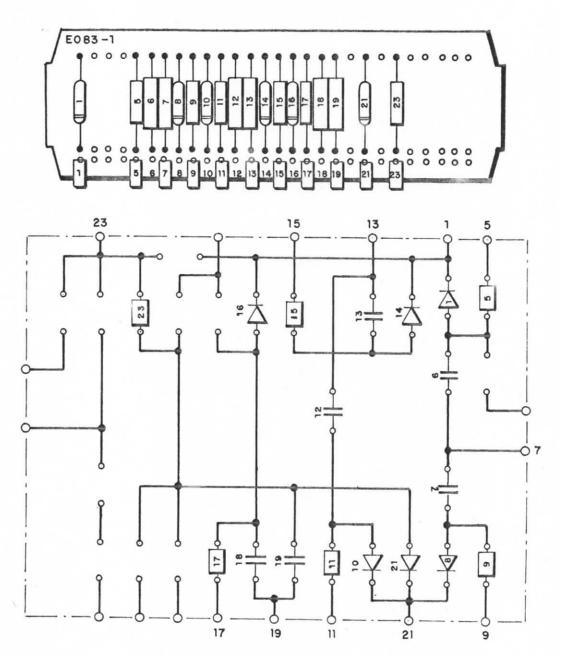

BASCULE DU LECTEUR DE BANDE


POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUP PLAGUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1			8	R 182	4,7κΩ	15			22	R 191	100κΩ
2	Q 4'7	TGNA	9			16			23		
3	R 186	15κΩ	10	R 183	15 κ Ω	17			24		
4	R 185	4,7 K Ω	11	R 189	100 κ Ω	18			25	R 187	1,5 κΩ
5	CR 72	0A85	12	R 184	1,5 κ Ω	19			26	R 181	47Ω
6	CR 71	0A85	13	R 188	10 κ Ω	20	R 192	5,1 κ Ω	27	Q 46	TGNA
7			14	C 3 6	4,7KpF	21			28		

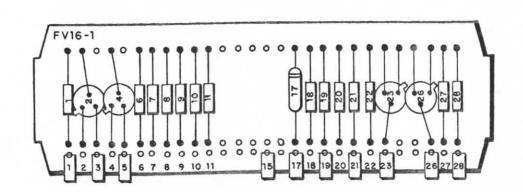
AMPLI D'EMBRAYAGE - AMPLI BICOLORE

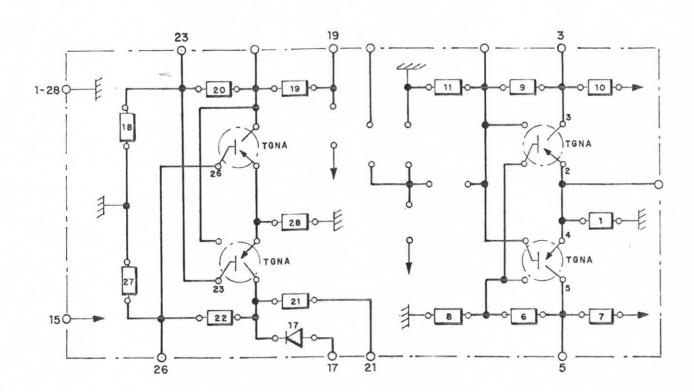

POINTS SUR PLAQUE	SYM	BOLE	VA	LE	UR	POINTS SUP PLAQU	SY	MBOLE DU IRCUIT	VALEUR	POINTS SUR PLAQUE	SY	MBOLE DU RCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	CR	70	11	Z	4	8				15	Q	37	TG NB(E)	22		***************************************
2	Q	45	T	GNI	B	9	С	35	0,47µF	16	Q	37	TGNB(c)	23		
3				_		10	R	163	200κΩ	17				24		
4	R	180	10	K	Ω	11				18				25	Q 38	TGNB
5						12				19	R	164	10 κΩ	26	4 30	TOND
6	R	269	470	2		13	R	179	4,7 κ Ω	20				27	CR 52	11 Z 4
7	-					14				21				28	R 165	10 κΩ

BASCULE UNIVERSELLE (B U)

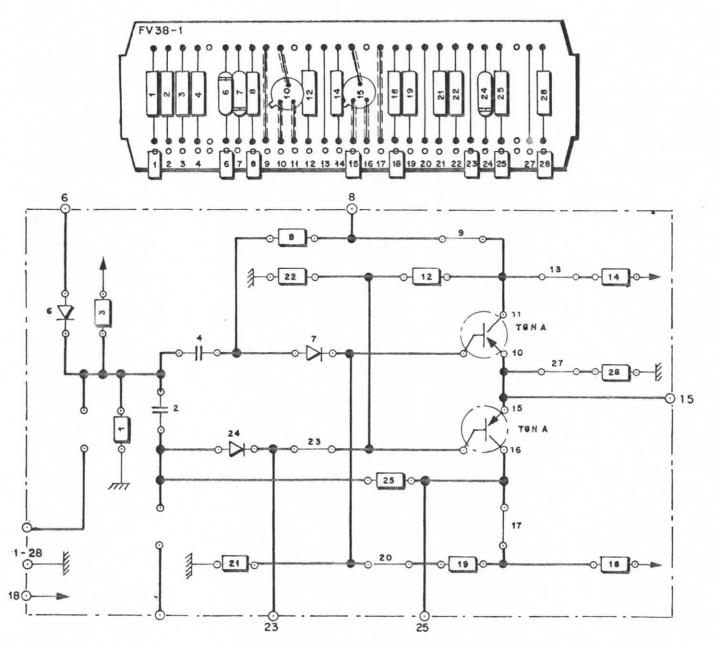

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R104	10 k Ω	8	CR18	0A85	15	Q 23	TGNA (C)	22	R 97	15 k Ω
2	R105	100k D	9	CR19	0A 85	16	R 99	4,7 k D	23	R 98	1,5kΩ
3			10	Q 24	TGNA(E)	17	R100	15 k Ω	24	R103	100 kΩ
4	CR21	QA 85	11	Q 24	TGNA (C)	18	R101	1,5 kΩ	25		
5	C18	4,7kpF	12			19	CR20	0A85	26	R102	10kΩ
6	R 95	47 D	13	C17	4,7 kpF	20			27		
7			14	Q23	TGNA(E)	21	R96	4,7 k D	28		

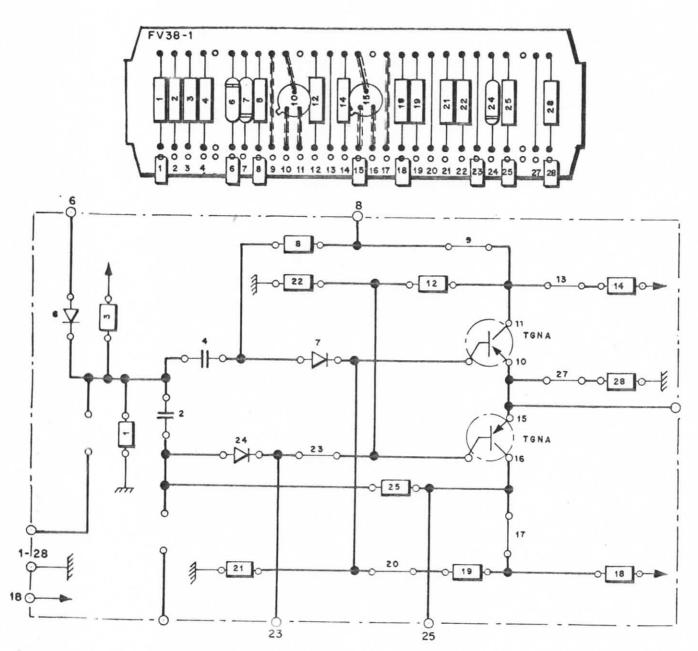
MODULATEUR ÉMISSION (a)


POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR									
1	CR 143	0A85	8	CR 144	0Å85	15	R 248	100 κΩ	22		
2			9	R 247	100 κ Ω	16			23		
3			10	CR146	0A85	17	C 42	4,7 KpF	24	CR 141	0A85
4			11	R 249	100 K Ω	18			25	R 243	10 κΩ
5	R 246	100ΚΩ	12	C 46	4,7 KpF	19	R 245	100 κ Ω	26	11 243	10 142
6	C 43	4,7 KpF	13	C 45	4,7 KpF	20			27	R 244	100 κΩ
7	C 44	4,7 KpF	14	CR 145	0A85	21	CR 142	0A85	28	11 244	100 K72
]										

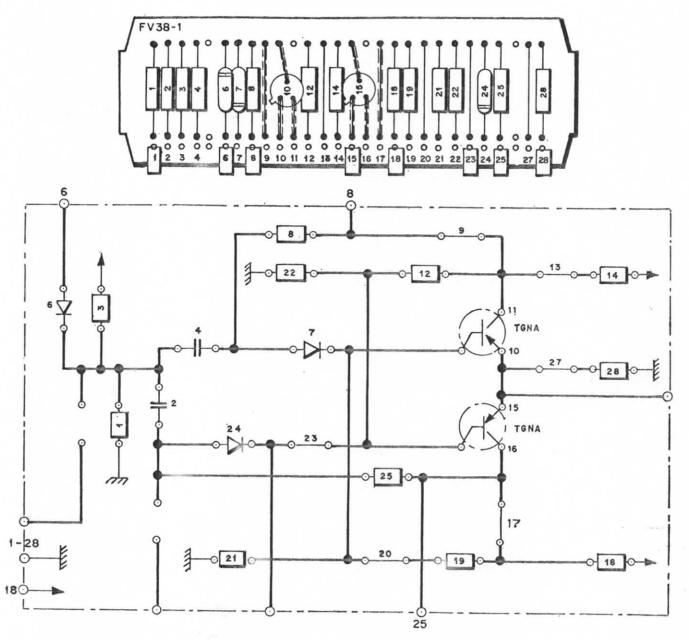

MODULATEUR ÉMISSION (b)

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	CR 147	0A85	8	CR 148	0A85	15	R 252	100 κ Ω	22		
2			9	R 251	100κΩ	16	CR 151	0A85	23	R 255	100κΩ
3			10	CR 150	0A85	17	R 254	100 κΩ	24		
4			11	R 253	100 κΩ	18	C 51	4,7 K p F	25		
5	R 250	100 KΩ	12	C 50	4,7 Kp F	19	C 52	4,7 KpF	26		
6	C 47	4,7 KpF	13	C 49	4,7 Kp F	20			27		
7	C 48	4,7 KpF	14	CR 149	0A85	21	CR 152	0A85	28		

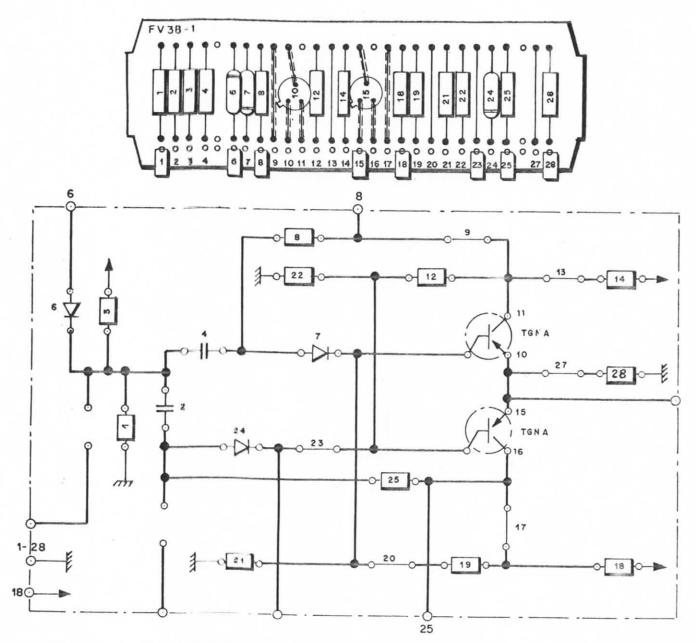

BASCULE D'ÉMISSION (B d E) - BASCULE DE RÉCEPTION (B d R)


POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R 73	47 Ω	8	R 79	1,5 κΩ	15			22	R 82	15 κΩ
2	Q 17	TGNA(E)	9	R 75	15 K Ω	16			23	Q 19	TGNA
3	Q 17	TGNA(c)	10	R 74	4,7 K Ω	17	CR 159	0A85	24		
4	Q 18	TGNA(E)	11	R 76	1,5 κ Ω	18	R 86	1,5 κΩ	25		
5	Q 18	TGNA(c)	12			19	R 84	820 Ω	26	Q 20	TGNA
6	R 78	15 κΩ,	13			20	R 85	15 κΩ	27	R 83	1,5 κΩ
7	R 77	4,7K Ω	14			21	R 81	2 O S8	28	R 80	47 Ω
			1								

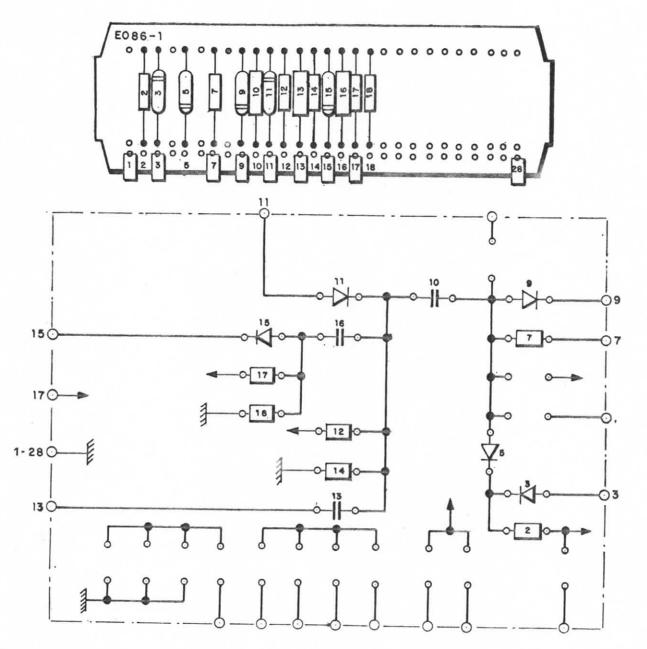
DIVISEUR BINAIRE Nº 1 (DB1)


POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R 24	39 k Ω	8	R 19	100 k Ω	15	QB	TGNA(E)	22	R 18	1,5 kΩ
2	C 6	4,7 kpF	9			16	Q 8	TGNA(C)	23		
3	R 25	47 k D	10	Q 7	TGNA (E)	17			24	CR 3	0A85
4	C 5	4,7 kpF	11	Q 7	TGNA(C)	18	R 20	4,7 kΩ	25	R23	100 k D
5			12	R17	15 kΩ	19	R 21	15 kΩ	26		
6	CR4	0A85	13			20			27		
7	CR 2	0A 85	14	R16	4,7 k D	21	R 22	1,5 kΩ	28	R 15	470

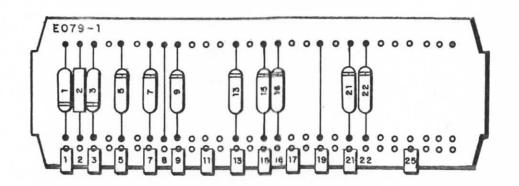
DIVISEUR BINAIRE Nº 2 (DB2)

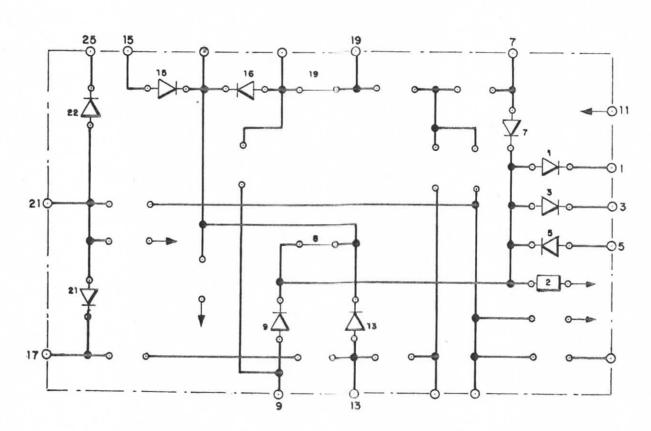

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR									
1	R 35	39kD	8	R30	100kΩ	15	Q 10	TGNA(E)	22	R 29	1,5 kΩ
2	C 8	4,7 kpF	9			16	Q10	TGNA(C)	23		1,0 1,0
3	R36	47 kΩ	10	09	TGNA(E)	17			24	CR6	0A85
4	C 7	4,7kpF	11	Q 9	TGNA(C)	18	R 31	4,7 kΩ	25	R 34	100kΩ
5			12	R 28	15 k Ω	19	R32	15 kΩ	26		10014
6	CRT	OA 85	13			20			27		
7	CR5	0AB5	14	R 27	4.7 k D	21	R33	1,5 kΩ	28	R 26	47 N

DIVISEUR BINAIRE Nº 3 (DB3)

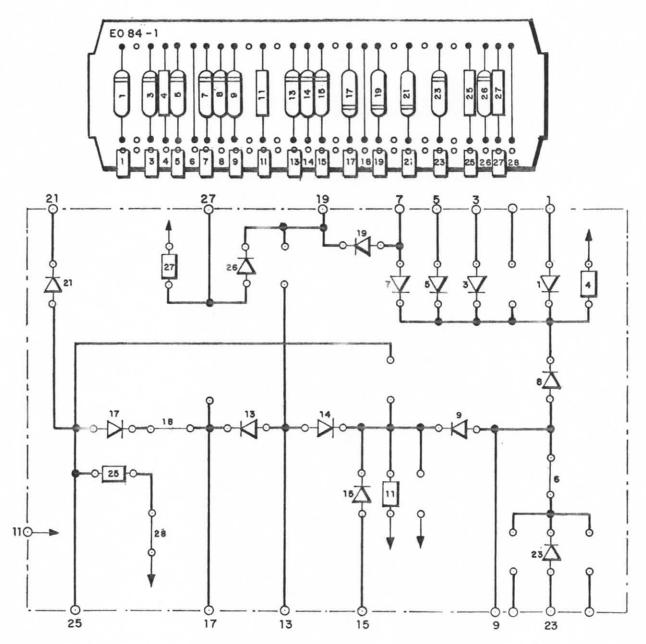

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R46	39 kΩ	8	R41	100kΩ	15	Q 12	TGNA(E)	22	R40	1,5 kΩ
2	C10	4,7kpF	9			16	Q12	TGNA (C)	23		
3	R 47	47 k D	10	Q 11	TGNA(E)	17			24	CR9	0A 85
4	C 9	4,7 kpF	11	Q 11	TGNA(C)	18	R42	4,7 kΩ	25	R 45	100kΩ
5			12	R39	15 kΩ	19	R43	15 k Ω	26		
6	CR10	OA 85	13			20			27		
7_	CR8	0A85	14	R38	4,7 k D	21	R44	1,5 kΩ	28	R37	47Ω

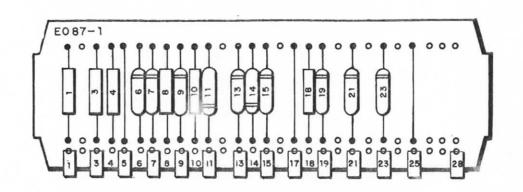
DIVISEUR BINAIRE Nº 4 (DB4)

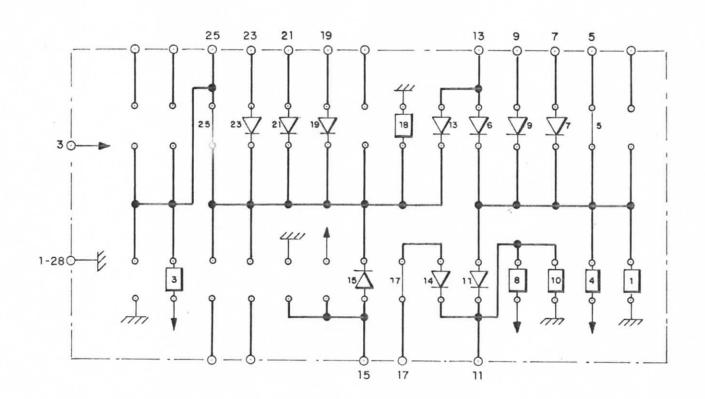

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	PLAQUE	SIMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R 57	39k D	.8	R52	100 kΩ	15	Q14	TGNA(E)	22	R51	1,5 kΩ
2	C 12	4,7 kpF	9			16	Q14	TGNA(C)	23		
3	R 58	47 kΩ	10	Q13	TGNA(E)	17			24	CR12	0A85
4	C 11	4,7kpF	11	213	TGNA(C)	18	R53	4,7 kΩ	25	R 56	100kΩ
5			12	R 50	15 kΩ	19	R54	15 kΩ	26		100 8 3 5
6	CR13	0A 85	13			20			27		
_7	CR11	0A85	14	849	4.7 kΩ	21	R55	1,5 kΩ	28	R 48	47 Ω


DIVISEUR BINAIRE AUXILIAIRE

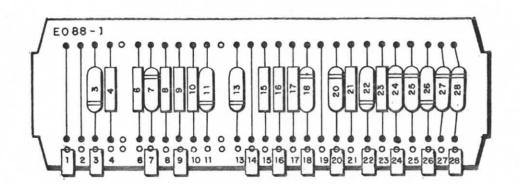
POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUP PLAQUE	SYM	BOLE U CUIT	VALEUR	POINTS SUR PLAQUE		BOLE DU CUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1			8				15	CR	16	0 A 85	22	Charleston	Constitution of the last
2	R 259	56 K Ω	9	CR	15	0 A 85	16	С	14	10 KpF	23		
3	CR154	0 A 85	10	С	13	10 KpF	17	R	258	100 кΩ	24		
4			11	CR	14	0 A 85	18	R	257	10 κΩ	25		
5	CR 153	0 A 85	12	R	63	47 KΩ	19				26		
6			13	С	15	4,7 KpF	20				27		
7	R 59	47 K Ω	14	R	62	47 K Ω	21				28		

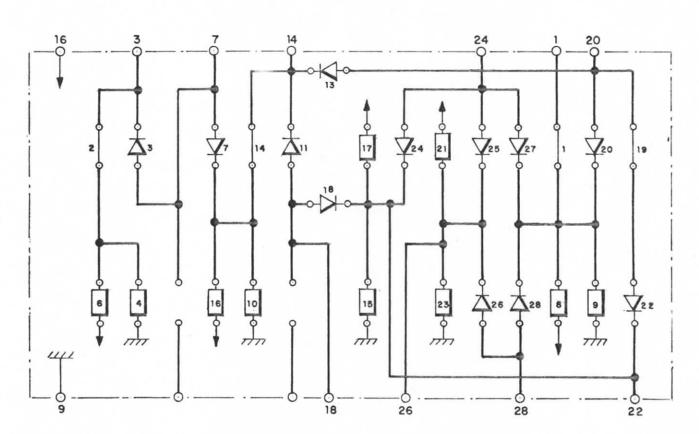

MATRICE A DIODES (d)


POINTS	SYMB	OLE J UIT	VALEUR	POINTS SUP PLAQUE	SYM	BOLE	VALEUR	POINTS SUR PLACUE	SYM	BOLE OU CUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLI DU CIRCUIT	VALEUR
1	CR	92	0 A 85	8				15	CR	98	0A85	22	CR 90	0A 85
2	R 2	216	47 KΩ	9	CR	96	0 A 8 5	16	CR	99	OA 85	23		
3	CR	93	0A85	10				17				24		
4				11				18				25		
5	CR	94	0A85	12				19				26		-
6				13	CR	97	0A85	20				27		
_7	CR	95	0A85	14				21	CR	91	0A85	28		

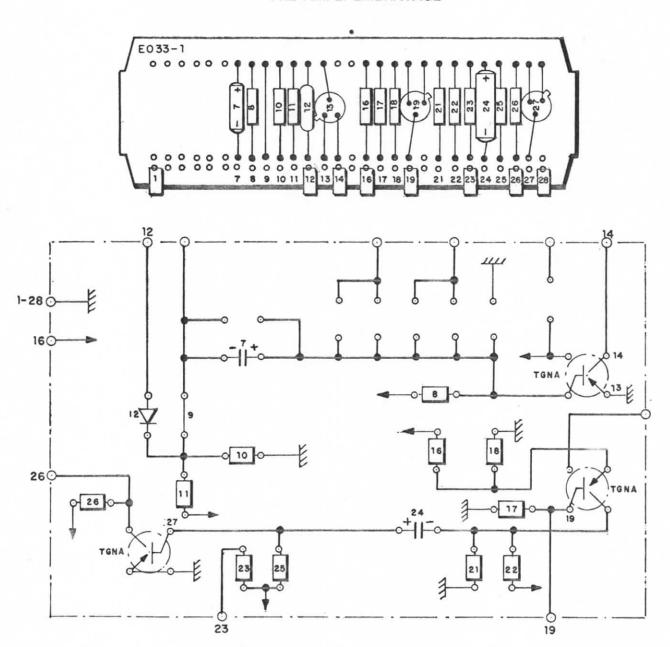

MATRICE A DIODES (c)

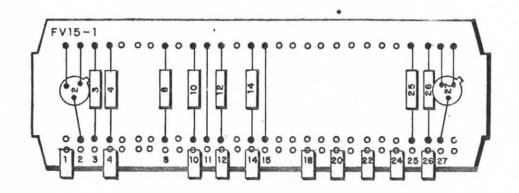
POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	CR 102	0 A 85	8	CR 111	0 A 85	15	CR106	0 A 85	22		
2			9	CR 112	0 A 85	16			23	CR 158	0 A 85
3	CR 103	0 A 85	10			17	CR 113	0 A 85	24		
4	R 218	15 κΩ	11	R 219	15 κΩ	18			25	R 220	47 K Ω
5	CR 104	0 A 85	12			19	CR 100	0 A 85	26	CR 109	0 A 85
6			13	CR 108	0 A 85	20			27	R 217	47 κΩ
7_	CR 105	0 A 85	14	CR 107	O A 85	21	CR114	O A 85	28		

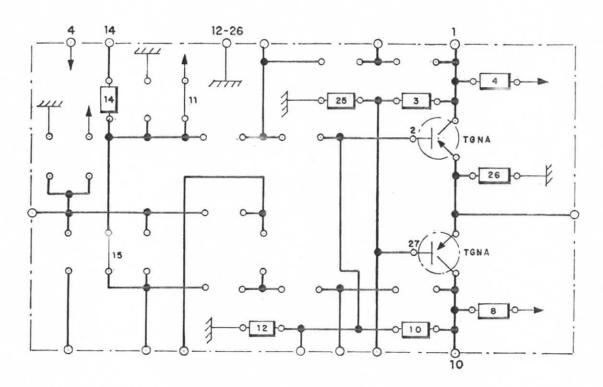

MATRICE A DIODES (b)



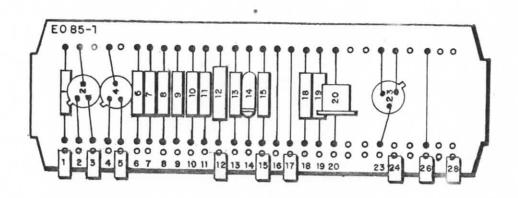
POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R 221	100 κ Ω	8	R 224	ззкΩ	15	CR 123	0A85	22	CHI STALL CO.	
2			9	CR 117	0A85	16			23	CR 122	0A85
3	R 226	22 K Ω	10	R 223	47 K Ω	17			24		
4	R 222	47 KΩ	11	CR 124	0A85	18	R 225	22 K Ω	25		
5			12			19	CR 120	0A85	26		
6	CR 116	0A85	13	CR 121	0A85	20			27		
7	CR 115	0A85	14	CR 118	0A85	21	CR 119	0A85	28		

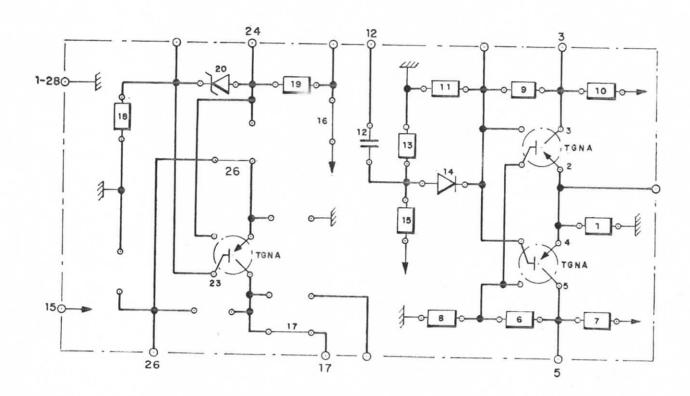

MATRICE A DIODES (a)


POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1_			8	R 232	47 K Ω	15	R 227	47 K Ω	22	CR 125	0 A 85
2			9	R 231	47 K Ω	16	R 236	47 K Ω	23	R 229	47 K Ω
3	CR 133	0 A 85	10	R 235	47 KΩ	17	R 228	47 K Ω	24	CR 127	O A 85
4	R 233	47 K Ω	11	CR 134	0 A 8 5	18	CR 126	0 A 85	25	CR 129	0 A 8 5
5			12			19			26	CR 128	0 A 85
6	R 234	47 K Ω	13	CR 135	0 A 8 5	20	CR 130	0 A 85	27	CR 132	0 A 85
7	CR 136	0 A 85	14			21	R 230	47 K Ω	28	CR 131	0 A 8 5

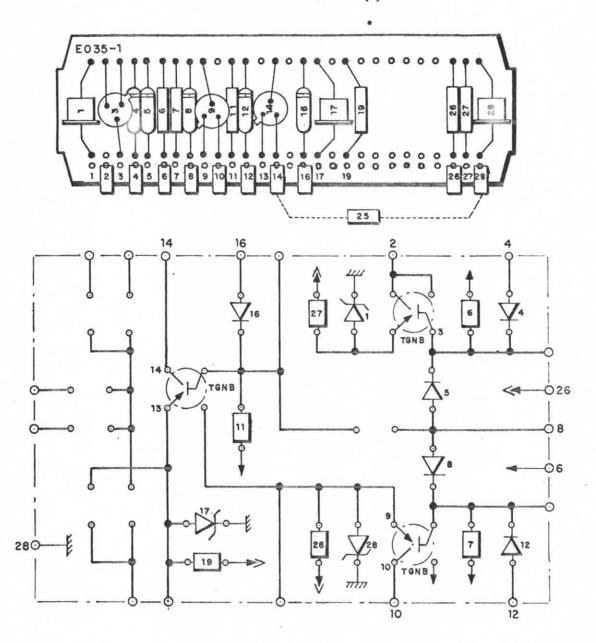

PRÉ AMPLI EMBRAYAGE

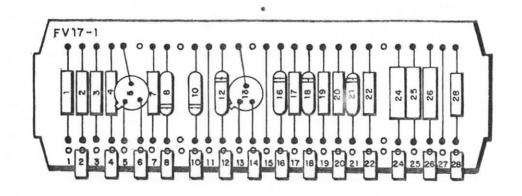
POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUP PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1			8	R 266	47KΩ	15			22	R 160	10 κΩ
2			9			16	R 157	4,7 κΩ	23	R 267	100 κ Ω
3			10	R 265	47 K Ω	17	R 156	5,6 κ Ω	24	C 34	5 μF.
4			11	R 264	47 K Ω	18	R 158	560 Ω	25	R 161	18 кΩ
5			12	CR 157	0 A 85	19	Q 35	TGNA	26	R 268	5,6 K Ω
6			13	0 54	TGNA(E)	20			27	Q 36	TGNA
7	C 54	2 μ F	14	Q 54	TGNA(c)	21	R 159	10 κ Ω	28		

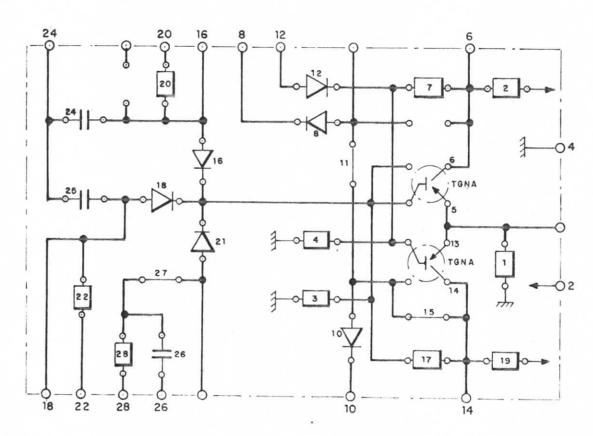

BASCULE ANTI-REBONDISSEMENT



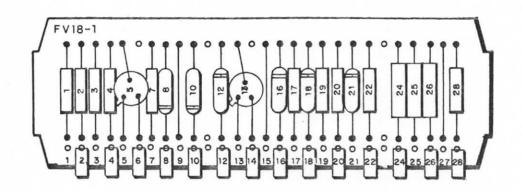
SYM	BOLE	VALEUR	POINTS SUR PLAQUE	SY	MBOLE DU RCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR			
			8	R	91	4,7 κΩ	15			22	CHRESTLESS	a designation and the second
Q	21	TGNA	9				16			23		
R	89	15 κΩ	10	R	92	15 κΩ	17	1.1		24		
R	88	4,7 KΩ	11				18				R 90	1,5κΩ
			12	R	93	1,5 κ Ω	19					
			13				20					1
			14	R	94	5,1 κ Ω	21			28		
	CIR Q R	R 89	Q 21 TGNA R 89 15 KΩ	PLAGUE R 89 15 KΩ 10 R 88 4,7 KΩ 11 12 13	VALEUR PLAQUE CII	VALEUR PLAQUE CIRCUIT 8 R 91	VALEUR PLAGUE CIRCUIT VALEUR	VALEUR PLAQUE CIRCUIT VALEUR PLAQUE	VALEUR PLAQUE CIRCUIT VALEUR PLAQUE CIRCUIT	VALEUR PLAQUE CIRCUIT VALEUR PLAQUE CIRCUIT VALEUR	VALEUR PLAQUE CIRCUIT VALEUR PLAQUE	VALEUR PLAQUE CIRCUIT VALEUR CIRCUIT VA

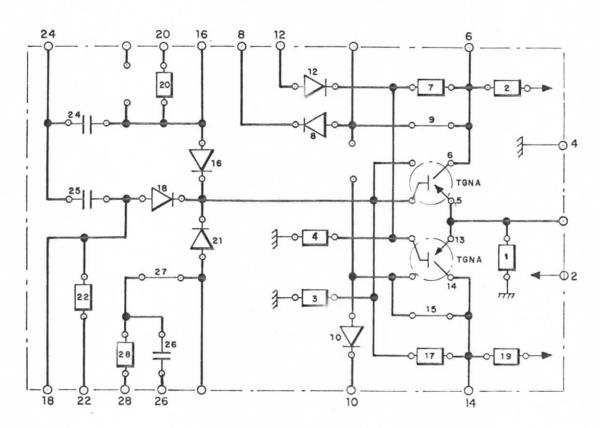

BASCULE ÉMISSION RÉCEPTION (B E R)

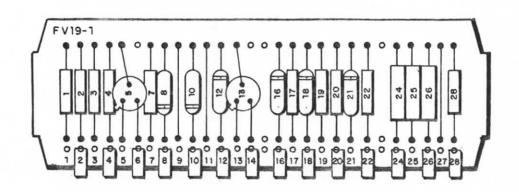


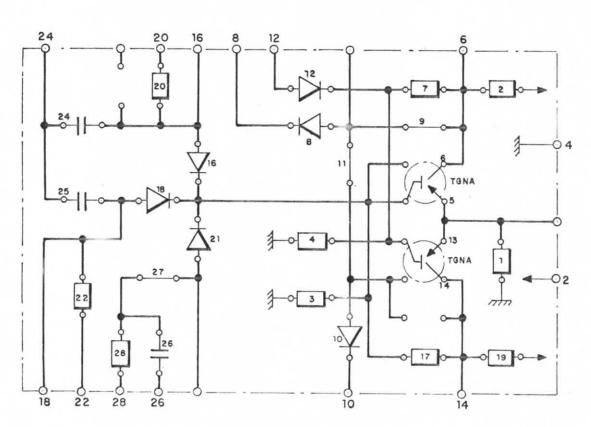

POINTS SUR PLAQUE	SY	MBOLE DU RCUIT	VAL	EUR	POINTS PLAGUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R	64	47	Ω	8	R 70	1,5 κΩ	15	R 71	100 κΩ	22		
2	Q	15	TGK	IA(E)	9	R 66	15κΩ	16		io o in ab	23	0.6	TGNA
3	Q	15	TGN	IA(c)	10	R 65	4,7κ Ω	17			24	40	IGNA
4	Q	16	TGN	A(E)	11	R 67	1,5 κΩ	18	R 13	1,5 κ Ω	25		
5	ହ	16	TGN	A(c)	12	C 16	4,7 K pF	19	R 14	33 K Ω	26		
6	R	69	151	(Ω)	13	R 72	20 K Ω		CRI	11 Z 4	27		
7	R	68	4,71	(Ω)	14	CR17	0A85	21			28		
											20		

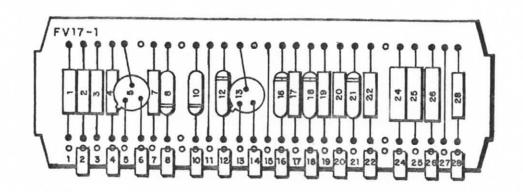
AMPLI ÉLECTRO CODE (a)

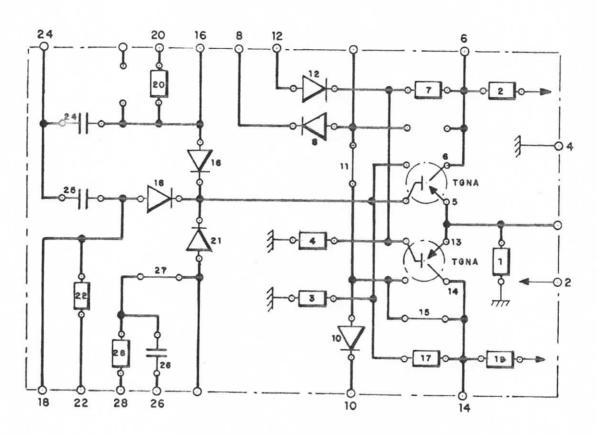


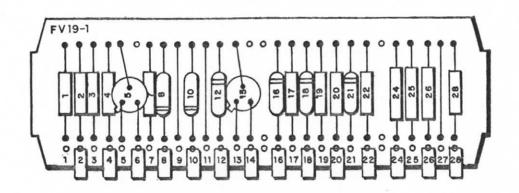

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS PLAGUE	SYMB	OLE	VALEUR	POINTS SUR PLAQUE	SYME		VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	CR 60	1124	8	CR	55	0A 85	15				22		
2			9	Q	40	TGNB(E)	16	CR	53	0A85	23		
3	Q 41	TGN B	10	Q	40	TGNB (c)	17	CR	54	11Z 4	24		
4	CR 59	0A85	11	R	167	4,7 K Ω	18				25	R 168	10 κΩ
5	CR 58	0485	12	CR	56	0A85	19	R .1	66	10 κ Ω	26	R 169	10κΩ
6	R 172	4,7 κ Ω	13	Q	39	TGNB(E)	20				27	R 171	10 κΩ
7	R 170	4,7 K Ω	14	Q	39	TGNB(c)	21				28	CR 57	11 Z 4

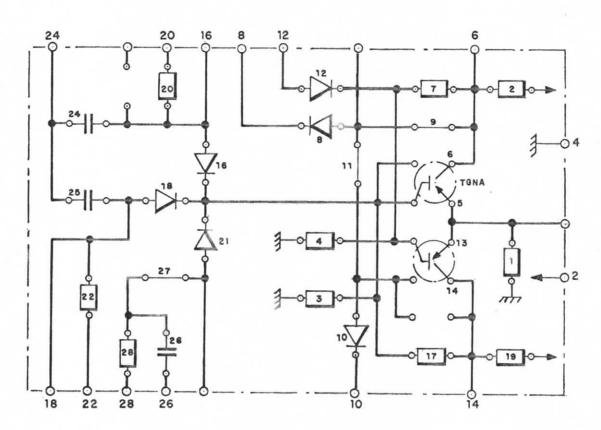


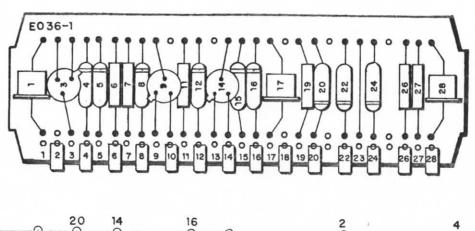

PONTS	SY	MBOLE DU RCUIT	VAL	EUR	POINTS SUP PLAQUE		BOLE	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE		MBOLE DU RCUIT	VALEUR
1	R	106	47	Ω	8	CR	26	0A85	15			22	R	113	100κΩ
2	R	107	4,71	(Ω)	9				16	CR 24	0A85	23			
3	R	112	1,5	×Ω	10	CR	27	0A85	17	R 111	15 κ Ω	24	С	20	4,7 KpF
4	R	109	1,51	Ω	11				18	CR 22	0A85	25	С	19	4,7KpF
5	0	25	TGN	A(E)	12	CR	23	0A85	19	R 110	4,7κΩ	26	С	21	4,7KpF
.6	Q	25	TGN	A(c)	13	Q	26	TGNA(E)	20	R 114	100 K Ω	27			
7	R	108	151	(Ω)	14	Q	26	TGNA(c)	21	CR 25	0A85	28	R	115	100 κ Ω

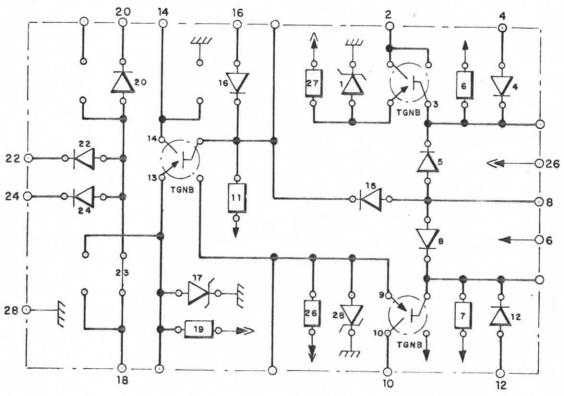

POINTS SUR LAQUE	SY	MBOLE DU RCUIT	VAL	EUR	POINTS SUP PLAQUE		BOLE OU CUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE		MBOLE DU IRCUIT	VALEUR
1	R	116	47	Ω	8	CR	32	0A 85	15			22	R	123	100ΚΩ
2	R	117	4,71	×Ω	9				16	CR 30	0A85	23			
3	R	122	1,5 1	KΩ	10	CR	33	OA 85	17	R 121	15 κΩ	24	С	23	4,7 KpF
4	R	119	1,5	(Ω)	11				18	CR 28	0A85	25	C	22	4,7 Kp F
5	Q	27	TGN	A(E)	12	CR	29	0A85	19	R 120	4,7 K Ω	26	С	24	4,7 KpF
6	Q	27	TGN	A(c)	13	Q	28	TGNA(E)	20	R 124	100 K Ω	27			
7	R	118	1 5	ĸΩ	14	Q	28	TGNA(c)	21	CR 31	OA 85	28	R	125	100 K Ω



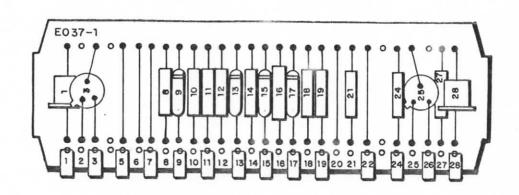

POINTS SUR PLAQUE	SY	MBOLE DU RCUIT	VALEUR	POINTS SUP PLAQUE		BOLE	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE		MBOLE DU RCUIT	VALEUR
1	R	126	47 Ω	8	CR	38	0485	15			22	R	133	100κ Ω
2	R	127	4,7k Ω	9				16	CR 36	0A85	23			
3	R	132	1,5 κ Ω	10	CR	39	0A85	17	R 131	15 κΩ	24	С	26	4,7 K p F
4	R	129	1,5kΩ	11				18	CR 34	0A85	25	С	25	4,7kpF
5	Q	29	TGNA(E)	12	CR	35	0A85	19	R 130	4,7 k Ω	26	С	27	4,7KpF
6	Q	29	TGNA(C)	13	Q	30	TGNA(E)	20	R 134	100 K Ω	27			
7	R	128	15 K Ω	14	Q	30	TGNA(c)	21	CR 37	0A85	28	R	135	100 k Ω

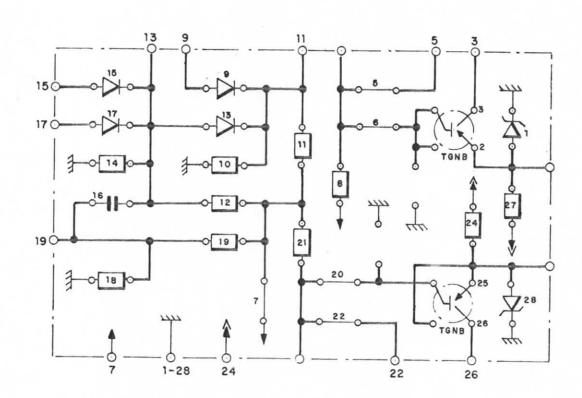



POINTS	SYMBOLE	VALEUR	POINTS SUR PLAQUE		BOLE	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE		MBOLE	VALEUR
1	R 136	47 Ω	8	CR	44	0A85	15			22	R	143	100кΩ
2	R 137	4,7 K Ω	9				16	CR 42	0A85	23	-	- 1	1001140
3	R 142	1,5 κ Ω	10	CR	45	0A85	17	R 141	15 κΩ	24	c	29	4,7 KpF
4	R 139	1,5κΩ	11				18	CR 40	0A85	25	c	28	4,7 KpF
5	Q 31	TGNA(E)	12	CR	41	0A85	19	R 140	4,7 K Ω	26	c	30	4,7 KpF
6	Q 31	TGNA(c)	13	Q	32	TGNA(E)	20	R 144	100 κ Ω	27	-		411 Hpt
7	R 138	15ΚΩ	14	Q	32	TGNA(c)	21	CR 43	0A85	28	R	145	100ΚΩ

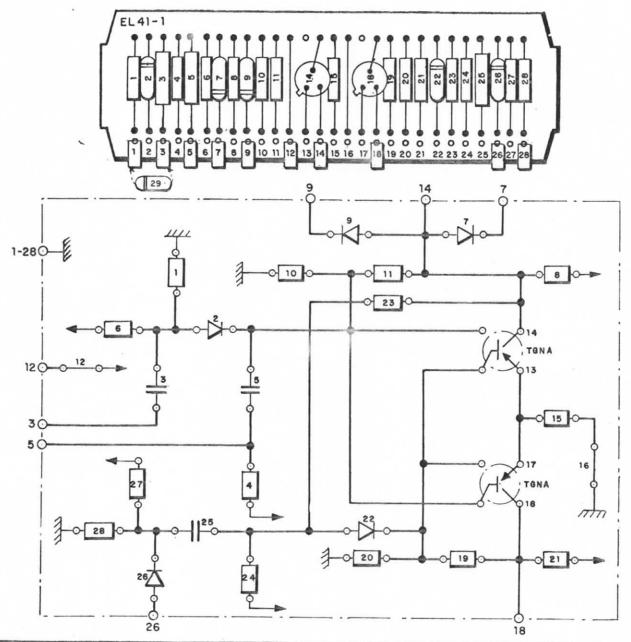


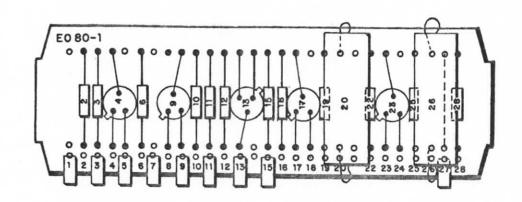
POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS PLAQUE	SYMBOLI DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R 146	47 Ω	8	CR 48	0A85	15			22	R 153	100κΩ
2	R 147	4,7KΩ	9			16	CR 50	0A85	23		
3	R 152	1,5 κ Ω	10	CR 51	0A85	17	R 151	15 κΩ	24	C 32	4,7 KpF
4	R 149	1,5 κΩ	11			18	CR 46	0A85	25	C 31	4,7 KpF
5	Q 33	TGNA(E)	12	CR 47	0A85	19	R 150	4,7 KΩ	26	C 33	4,7 KpF
6	Q 33	TGNA(C)	13	Q 34	TGNA(E)	20	R 154	100 κ Ω	27		
7	R 148	15 κΩ	14	Q 34	TGNA(c)	21	CR 49	0A85	28	R 155	100KΩ

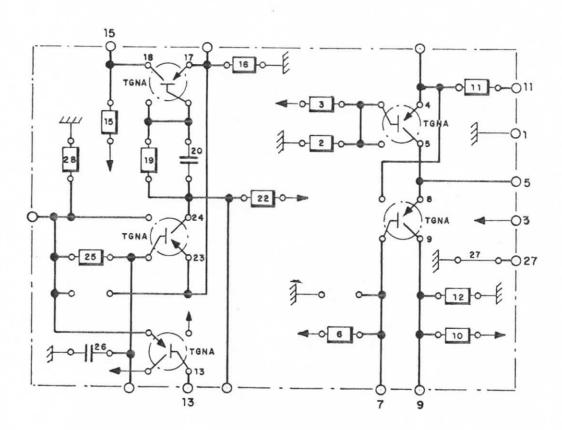

AMPLI ÉLECTRO CODE (b)



POINTS SUR PLAQUE	SYMBOLE		POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	CR 69	11 Z 4	8	CR 64	0A85	15	CR 61	0A85	22	CR 85	0A85
2			9	Q 43	TGNB(E)	16	CR 62	0A85	23		01100
3	Q 44	TGNB	10	Q 43	TGNB(c)	17	CR 63	11 Z 4	24	CR101	0A85
4	CR 68	0 A 8 5	11	R 174	4,7 K Ω	18			25		0.1.00
5	CR 67	0A85	12	CR 65	0 A85	19	R 173	10 κ Ω	26	R 175	10 κΩ
6	R 178	4,7 K Ω	13	Q 42	TGNB(E)	20	CR 84	0 A 85	27	R 177	10 κΩ
7	R 176	4,7 K Ω	14	Q 42	TGNB(c)	21			28	CR 66	11 Z 4


DÉTECTION « CHIFFRE J » - DÉCLENCHEMENT ÉMETTEUR D'INDICATIF (b)

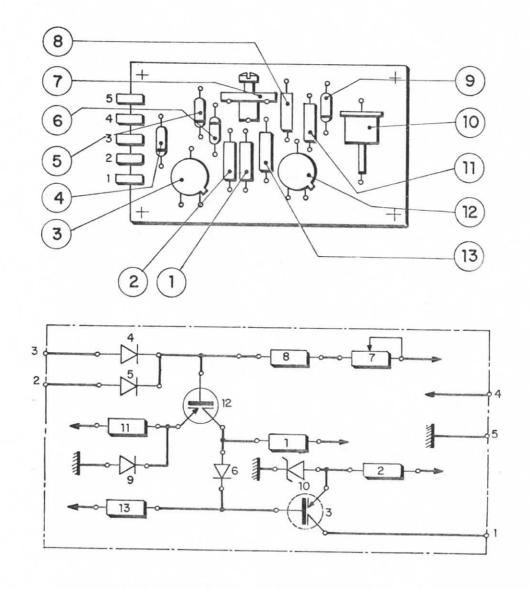

POINTS SUR LAQUE		CUIT	VAI	E	JR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE		VALEUR
1	CR	89	11	Z	4	8	R 215	10 κΩ	15	CR139	0A85	22		4
2	Q	53	TG	NB(E)	9	CR137	0A85	16	C 41	47 KpF	23		
3	Q	53	TGI	NB(C)	10	R 237	82 K Ω	17	CR140	0 A 85	24	R 212	10 κΩ
4						11	R 238	47 KΩ	18	R 241	10 κΩ	25	Q 52	TGNB(E)
5						12	R 240	47 KΩ	19	R 242	100 K Ω	26	Q 52	TGNB(c)
6						13	CR138	0A85	20			27	R 214	10 κΩ
7					_	14	R 239	100κΩ	21	R 213	4,7 κΩ	28	CR 87	11 Z 4

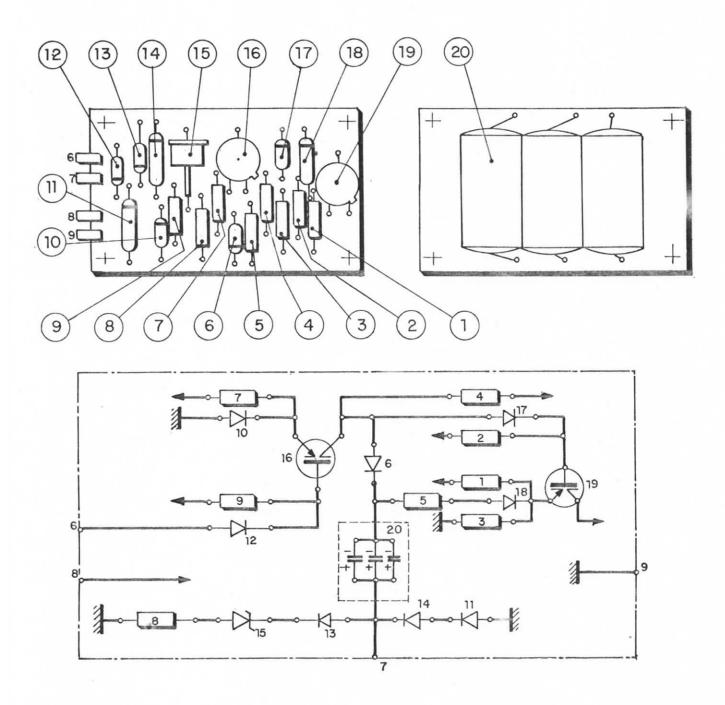

DÉCLENCHEMENT ÉMETTEUR D'INDICATIF (a)

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUP PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1	R 210	10 κ Ω	8	R 203	4,7 κΩ	15	R 202	47 Ω	22	CR 83	0 A 85
2	CR 80	0 A 85	9	CR156	O A 85 .	16			23	R 260	ιοκΩ
3	C 39	4,7 KpF	10	R 205	1,5 KΩ	17	Q 51	TGNA(E)	24	R 263	100 K Ω
4	R 211	47 K Ω	11	R 204	15 κΩ	18	Q 51	TGNA(c)	25	C 53	4,7 KpF
5	C 40	4,7 KpF	12			19	R 207	15 κΩ	26	CR 82	0 A 85
6	R 209	100 K Ω	13	Q 50	TGNA(E)	20	R 208	1,5 κ Ω	27	R 262	47 K Ω
7	CR 155	0 A 85	14	Q 50	TGNA(C)	21	R 206	4,7 κΩ	28	R 261	39 к Ω
	ا ا						*		29	CR 81	OA47

OSCILLATEUR ÉCRÉTEUR

POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1_			8	Q 2	TGNA(E)	15	R12	3,3 κΩ	22	R11	3,3 κΩ
2	R 3	зкΩ	9	Q 2	TGNA(c)	16	R 9	82 N	23	Q 4	* TGNA(E)
3	R 2	3,3 K Ω	10	R 5	300 N	17	Q 5	TGNA(E)	24	Q 4	TGNA(c)
4	Q 1	TGNA(E)	11	R1	ıκΩ	18	Q 5	TGNA(c)	25	R 8	560Ω
5	Q 1	TGNA(C)	12	R 6	2,7 K Ω	19	R 10	10 κ Ω	26	СЗ	0,47µF
6	R 4	10 κΩ	13	Q 3	TGN A	20	C 4	0,47μF	27		-5,
7			14			21			28	R 7	1 κΩ


CONDENSATEURS D'ACCORD


POINTS SUR LAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUP PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR	POINTS SUR PLAQUE	SYMBOLE DU CIRCUIT	VALEUR
1			8	C 1	100KpF	15			22	- Carlotte Control of the Control of	
2	C 1	10 KpF	9			16			23		
3			10			17	C 2	22 KpF	24	C 2	120 KpF
4			11			18			25		
5			12			19			26		
6			13		Strap 50 Bd	20		•	27		
7			14		Strap 50 Bd	21			28		

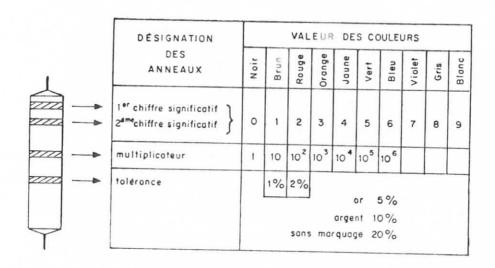
MINUTERIE ÉLECTRONIQUE - PLAQUE 1

SUR PLAQUE	SYMBOLE DE CIRCUIT	VALEUR	REPERE SUR PLAQUE	SYMBOLE DE CIRCUIT	VALEUR	REPERE SUR PLAQUE	SYMBOLE DE CIRCUIT	VALEUR	REPERE SUR PLAQUE	SYMBOLE DE CIRCUIT	VALEUR
1	R 513	220kΩ	4	CR410	17P2	7	R509	Pot. $470 \mathrm{k}\Omega$	10	CR 414	11 Z 4
2	R 514	4,7k Ω	5	CR 411	0A47	8	R510	100kΩ	11	R 511	4,7kΩ
3	Q 304	TGNB	6	CR412	OA95	9	CR 413	0447	12	Q 303	28303
									13	R 512	33kΩ

MINUTERIE ÉLECTRONIQUE - PLAQUE 2

SYMBOLE DE CIRCUIT	VALEUR	REPERE SUR PLAQUE	SYMBOLE DE CIRCUIT	VALEUR	REPERE SUR PLAQUE	SYMBOLE DE CIRCUIT	VALEUR	REPERE SUR PLAQUE	SYMBOLE DE CIRCUIT	VALEUR
R506	Ω 4001	6	CR404	0 A 47	11	CR408	D25C	16	Q301	TGNA
R504	1 k Ω	7	R501	4,7 kΩ	72	CR401	0A47	17	CR403	0A4 7
R505	Ω AOF	8	R508	47 D	13	CR407	17P2	18	CR 405	D25C
R503	10k Ω	9	R502	10kΩ	14	CR409	D25C	19	Q302	TGNA
R507	27Ω	10	CR402	17P2	15	CR406	15Z4	20	C201	3 x 100µF
	R506 R504 R505 R503		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DE CIRCUIT VALEUR SUR PLAQUE CIRCUIT DE CIRCUIT VALEUR R506 100 kΩ 6 CR404 0 A 47 R504 1 kΩ 7 R501 4,7 kΩ R505 10 kΩ 8 R508 47 Ω R503 10 kΩ 9 R502 10 kΩ	DE CIRCUIT VALEUR SUR PLAQUE CIRCUIT VALEUR SUR PLAQUE PLAQUE R506 100 kΩ 6 CR404 0 A 47 11 R504 1 kΩ 7 R501 4,7 kΩ 12 R505 10 kΩ 8 R508 47 Ω 13 R503 10 kΩ 9 R502 10 kΩ 14	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

SYMBOLES


Tous les éléments des circuits sont repérés par une lettre symbole suivie d'un numéro de repère.

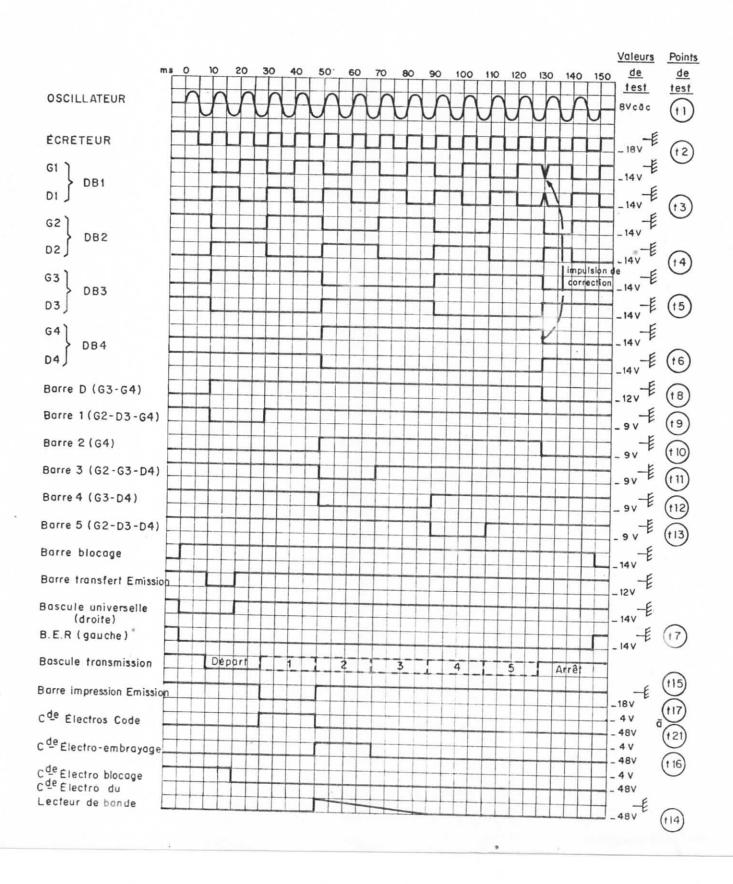
— C	Condensateur	– 0	Transistor
— CR	Diode	— R	Résistance
— Е	Borne	— RL	Relais de ligne
— ET	Etouffeur d'étincelle	— S	Contacteur et interrupteur
— F	Fusible	— ТВ	Réglette de raccordement
— 1	Connecteur (partie fixe)	— Z	Pot oscillateur
— P	Connecteur (partie mobile)	— RC	Relais contacteur

ABRÉVIATION DE LA COULEUR DES FILS

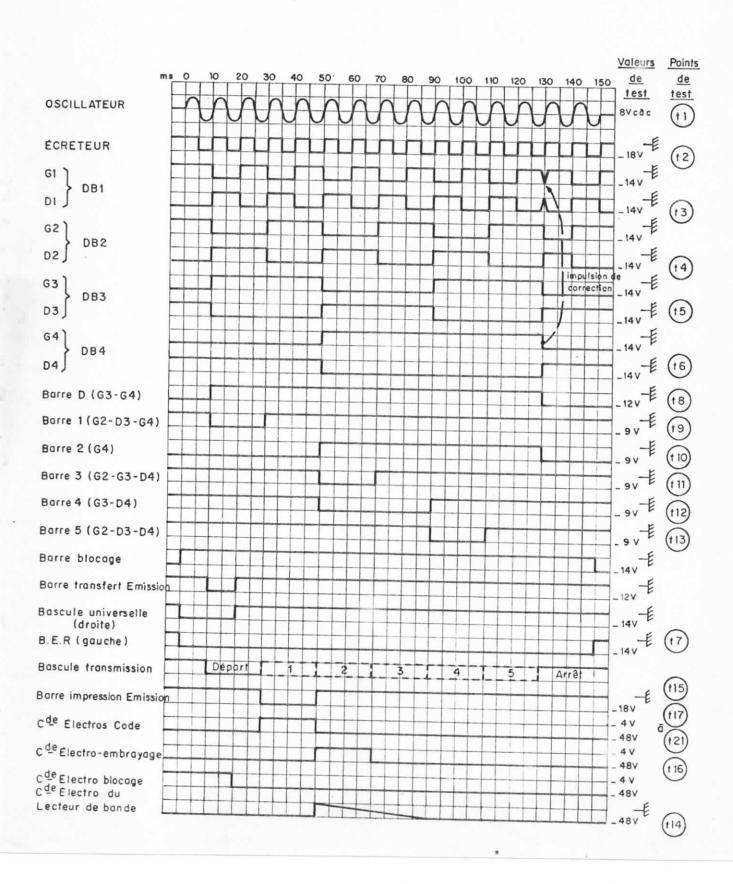
— Ь	Blanc	— N	Noir
— В	Bleu	– 0	Orange
— G	Gris	— R	Rouge
— J	Jaune	_ v	Vert
M	Marron	_ Vi	Violet

CODE DES COULEURS (RÉSISTANCES)

alphabet international C.C.I.T. N° 2 attention a la position 1-2-3-4-5 des Moments qui sont inverses 5-4-3-2-1 Complété, pour le service intérieur français, par l'utilisation en position « CHIFFRE » des combinaisons n° 6 - 7 et 8.


8 2 g	POSI	TION		Nº D	ES ÉL	ÉME	NTS		2000	PC	SITION	1		Nº D	Es El	.emi	ENTS	
Constitute of	Lettres	Chiffres	5	4	3	OME	2	1	A S Product	Lett	res	Chiffres	5	4	3	SHONE	NTS 2	1
1	A	-	0	0	0	A	•	•	17		Q	1	•	0	•	A	•	•
2	В	?	•	•	0		0	•	18		R	4	0	•	0		•	0
3	C		0	•	•		•	0	19		S	,	0	0	•		0	•
4	D	4	0	•	0		0	0	20		T	5	•	0	0		0	0
5	E	3	0	0	0	ent	0	•	21		U	7	0	0	•	ent -	•	•
6	F	Ė	0	•	•	inem	0	•	22		V	=	•	•	•	inement	•	0
7	G	%	0	•	0	l'entro	•	0	23		W	2	•	0	0	l'entro	•	•
8	H	H	•	0	•	ous	0	0	24		X	1	•	•	•	lons o	0	0
9	1	8	0	0	•	forati	•	0	25		Y	6	•	0	•	forat	0	0
10	J	R	0	•	0	ber s	•	•	26		Z	+	•	0	0	s per	0	•
11	K	(0	•	•	a des	•	0	27	Retour	Charlot	<	0	•	0	e des	0	0
12	L)	•	0	0	AX	•	0	28	Interligi	ne	CONCESS CONCESS CONCESS	0	0	0	AX	•	0
13	M	•	0	•	•	Ī	0	0	29	LE	TTRE		0	•	•	1	•	•
14	N	9	0	0	•		0	0	30	CH	HFFRE		•	0	0		•	•
15	0	9	•	0	0		0	0	31	ES	PACE		0	0	•		0	0
16	P	0	0	0	•		•	0	32				0	0	0		0	0
0		ré _ ((-)									

ALPHABET INTERNATIONAL C.C.I.T. Nº 2


Complété, pour le service intérieur français, par l'utilisation en position « CHIFFRE » des combinaisons $n^{\rm ce}$ 6 - 7 et 8.

101	POST	TION			es tu			21	P	OSITION	1		N* 0	es ex	EMENT	
1	Lettres	Chiffree	5		3	OMENT 2		1	Let	ren .	Chiffren	5	4		OMENTS 2	1
1	A	_	0	0	0			17		Q	1		0		4 0	
2	В	3			0	0		18		R	4	0		0		0
3	C	:	0	•		•	0	19		S	,	0	0		0	
4	D	+	0	•	0	0		50		T	5		0	0	0	0
5	E	3	0	0	0	1		21		U	7	0	0		i •	
6	F	Ė	0	•	•	2		22		V	=	•	•	•		0
7	G	%		•	0		0	23		W	2		0	0		
8	Н	Ħ		0	•		0	24		×	1	•		•	\$ O	
,	1	8	0	0	•	•	0	25		Y	6		0		0	9
10	J	R	0	•	0	ž (26		Z	+	•	0	0	0	0
11	K	(0	0		١.		27	Relour	Charlet	<	0		0	្ខំ០	0
12	L)		0	0	4	0	20	interlig	ne:	\equiv	0	0	0	4	0
13	M			0		Î	0	29	L	ETTRE					•	
14	N	,	0	•	•	0	0	30	CH	UFFRE			•	0		
15	0	9			0	0	00	31	2.0	SPACE		0	0		0	0
16	P	0	•	0		1	0	32				0	0	0	10	0

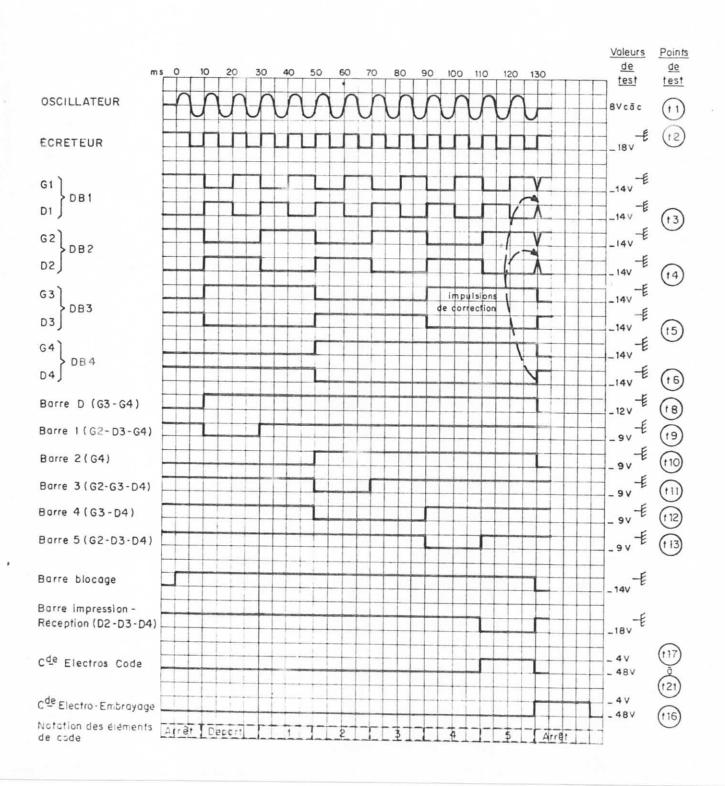
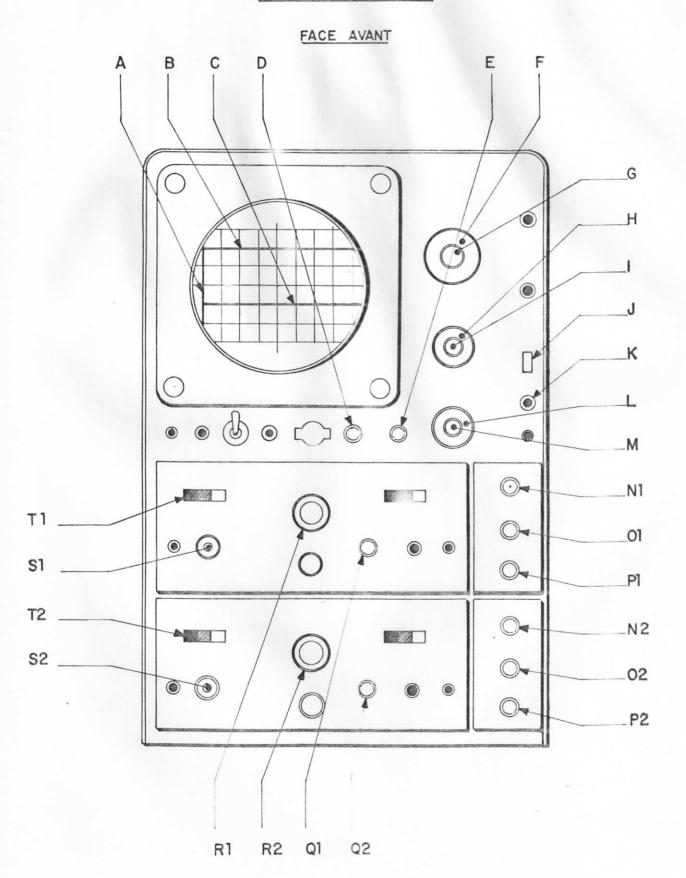
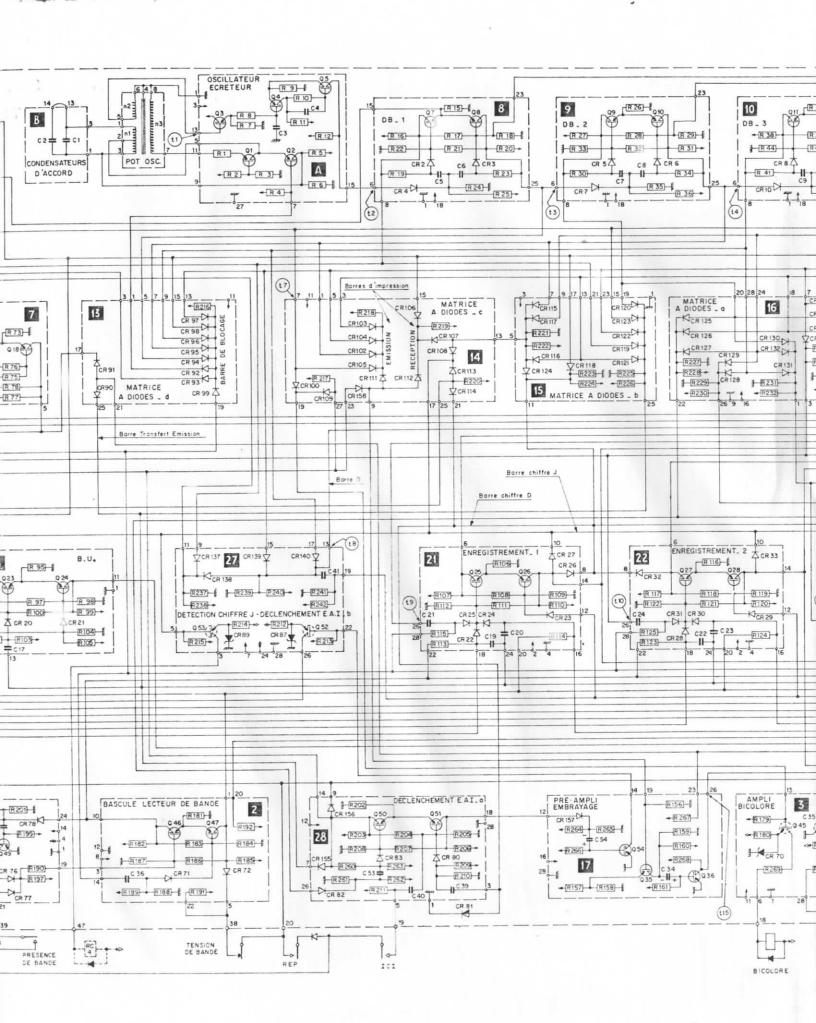
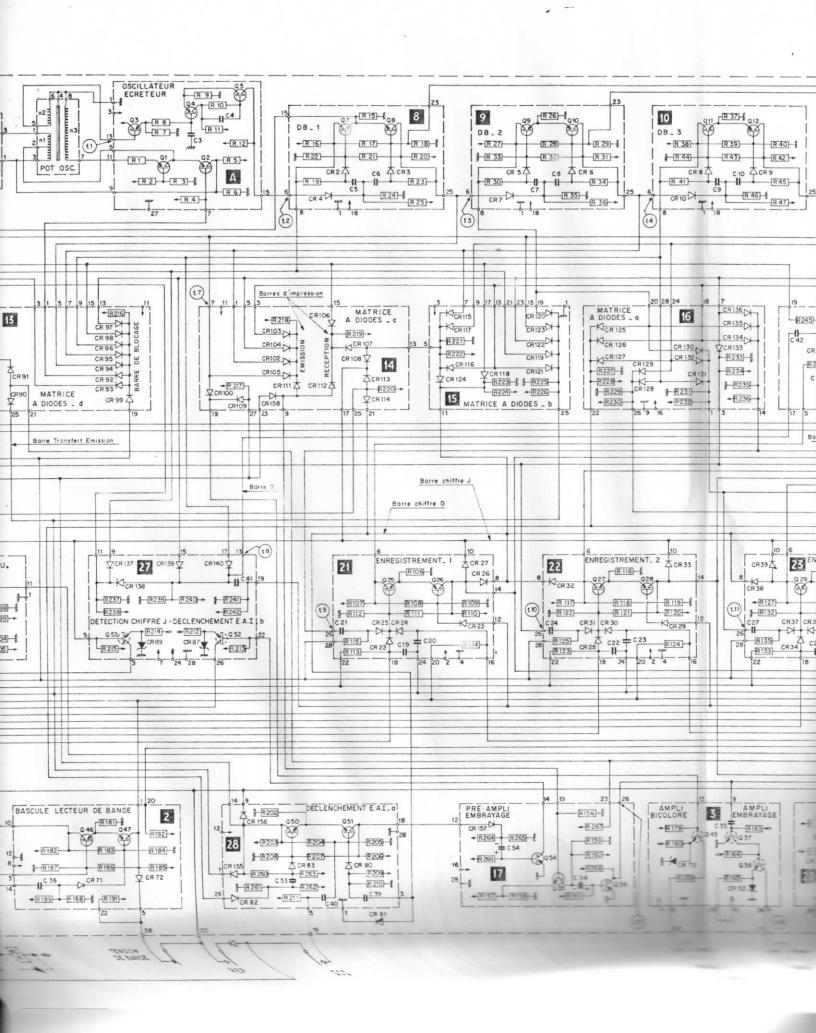

DIAGRAMME DES TEMPS ÉLECTRONIQUE - ÉMISSION

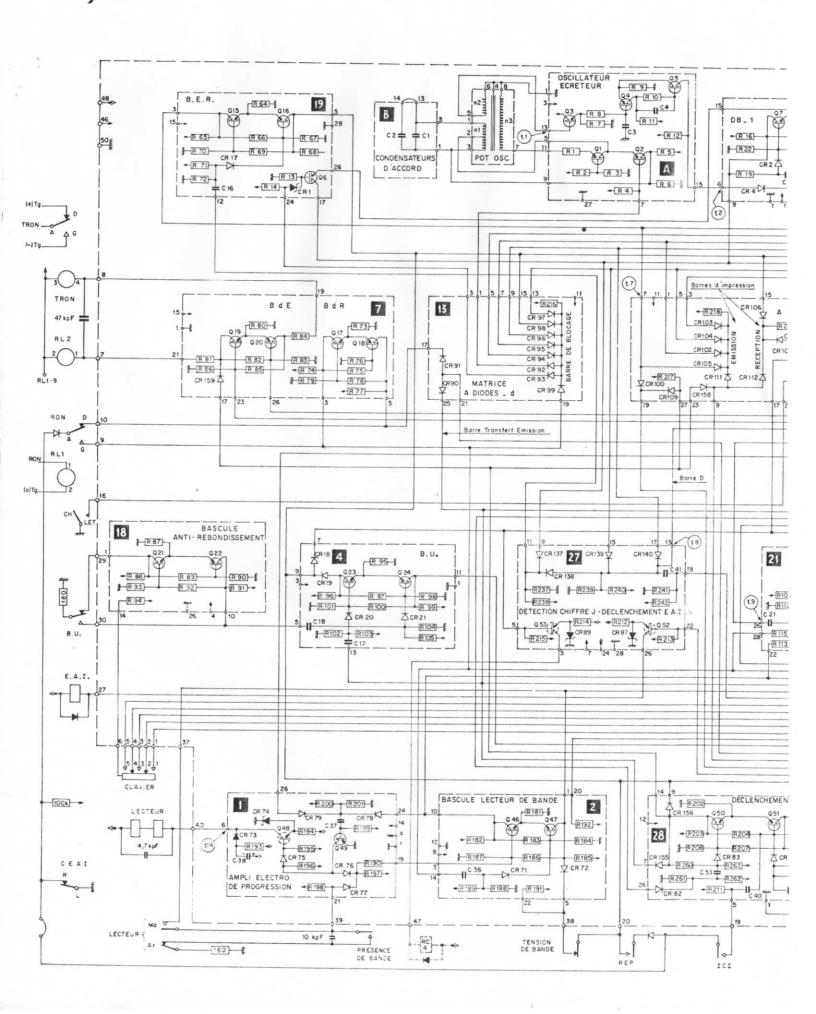
DIAGRAMME DES TEMPS ÉLECTRONIQUE - ÉMISSION


DIAGRAMME DES TEMPS ÉLECTRONIQUE - RÉCEPTION

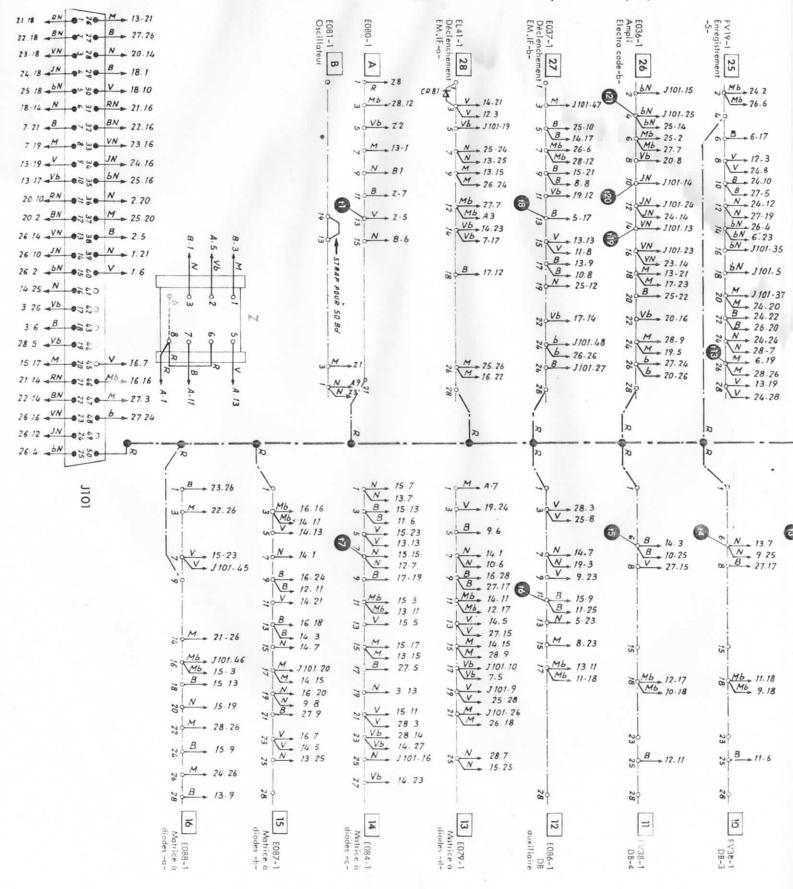

FACE AVANT DE L'OSCILLOGRAPHE
CRC « OCT-465 »

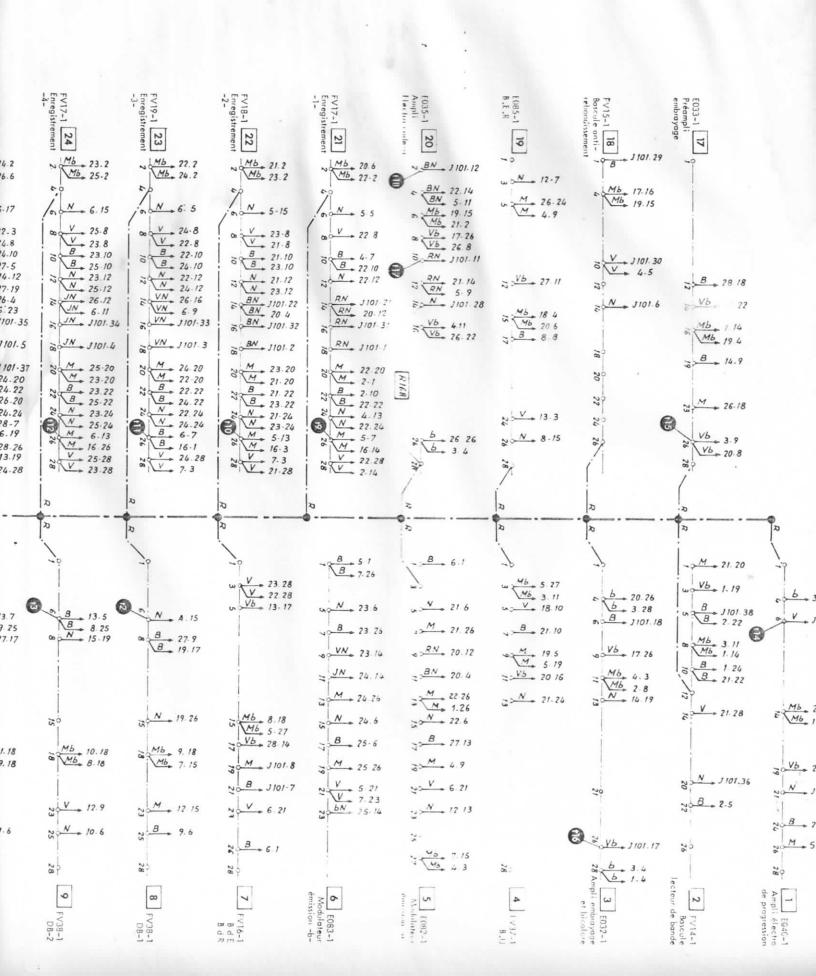

OSCILLOGRAPHE_CRC_


MODELE OCT_ 465
PREAMPLIS HF 4651



9			D	IODES													
SYMBOLE CIRCUIT		REPERE PLAQUE	SYMBOLE CIRCUIT	YALEUR	REPERE	SYMBOLE	VALEUR	REPERE					SCH			PRIN	CIPE
CR 1 CR 2 CR 3 CR 4 CR 5 CR 6	11Z 4 0A 85 0A 85 0A 85 0A 85 0A 85	19 8 8 8 9	CR SS CR SS CR SS CR SS	OA 85 OA 85 11Z 4 OA 85 OA 85	20 20 20 20 20 20	CR 109 CR 111 CR 112 CR 113 CR 114	OA 85 OA 85 OA 85 OA 85 OA 85	14 14 14 14 14						(éle	ctron	ique)	
CR 7 CR 8 CR 9	0A 85 0A 85 0A 85	9 10 10	CR 51 CR 52 CR 53	0A 85 0A 85 11Z 4	26 26 26	CR 115 CR 116 CR 117	0A 85 0A 85 0A 85	15 15 15				RE	SISTANO	CES			
CR 10 CR 11	0A 85 0A 85	10	CR 54 CR 55	0A 85 0A 85	26 26	CR 118 CR 119	0A 85 0A 85	15 15	SYMBOLE	VALEUR	REPERE	1 - 1114-14	VALEUR	REPERE	SYMBOLE	VALEUR	REPERE
CR 12 CR 13	0A 85 0A 85	11	CR 56 CR 57	11Z 4 0A 85	26 26	CR 120 CR 121	0A 85 0A 85	15 15	R 1	1 kiz	PLAQUE	R 92	15 ktz	PLAQUE 18	R 183	1 9 kΩ	PLAQUE 2
CR 14 CR 15	0A 85 0A 85	12	CR 58	0A 85 11Z 4	26 26	CR 122 CR 123	0A 85 0A 85	15	R 2	3,3 kΩ 3 kΩ	A	R 93 R 94	1,5 kΩ 5,1 kΩ	18	R 184 R 185	1,5 kΩ 4,7 kΩ	2 2
CR 16 CR 17	0A 85 0A 85	12	CR 70 CR 71	11Z 4 0A 85	2	CR 124 CR 125 CR 126	0A 85 0A 85	15 16	R 4	10 kΩ 300 Ω	A	R 95 R 96	47 D 4,7 kΩ	4	R 186 R 187	15 kΩ 1,5 kΩ	2 2
CR 18 CR 19	0A 85 28 A0	4	CR 72 CR 73	DA 85 D25 C	1	CR 127	0A 85 0A 85	16 16	R 6	2,7 kΩ 1 kΩ	A	R 97 R 98	15 kΩ 1,5 kΩ	4	R 188 R 189	10 kΩ 100 kΩ	2 2
CR 20 CR 21	0A 85 0A 85	4	CR 74 CR 75	11Z 4 0A 85	1	CR 128 CR 129	0A 85 0A 85	16 16	R 8	560 Ω 82 Ω	A	R 99 R 100	4,7 kΩ 15 kΩ	4	R 190 R 191	15 kΩ 100 kΩ	1 2
CR 22 CR 23	0A 85 0A 85	21	CR 76	DA 85 DA 85	1	CR 130 CR 131	0A 85 0A 85	16 16	R 10	10 kΩ 3,3 kΩ	A	R 101 R 102	1,5 kΩ 10 kΩ	4	R 192 R 193	5,1 kΩ 2,2 kΩ	2
CR 24 CR 25	0A 85 0A 85	21	CR 79	0A 85 0A 85	1	CR 132 CR 133	0A 85 0A 85	16	R 12	3,3 kΩ 1,5 kΩ	A 19	R 103 R 104	100 kΩ 10 kΩ	4	R 194 R 195	10 kΩ - 3,3 kΩ	1
CR 26 CR 27	0A 85 0A 85	21 21	CR 80 CR 81	GA 85 DA 47	28 28	CR 134 CR 135	0A 85 0A 85	16 16	R 14 R 15	33 kΩ 47 Ω	19	R 105 R 106	100 kΩ 47 Ω	4 21	R 196 R 197	100 kΩ 4,7 kΩ	1
CR 28 CR 29	0A 85 0A 85	22 22	CR 82 CR 83	0A 85 0A 85	28 28	CR 136 CR 137	0A 85 0A 85	16 27	R 16 R 17	4,7 kΩ 15 kΩ	8	R 107 R 108	4,7 kΩ 15 kΩ	21	R 198	47 kΩ	i
CR 30	0A 85 0A 85	22	UR 34	0A 85	26	CR 138 CR 139	0A 85 0A 85	27	R 18	1,5 kt1	8	R 109	1,5 kΩ	21	R 199 R 200	47 kΩ 10 kΩ	1
CR 31	0A 85	22	CR 85	0A 85	25	CR 140	0A 85	27	R 19 R 20	4,7 kii	8	R 110	4,7 kΩ 15 kΩ	21	R 201 R 202	8,2 kΩ 47 Ω	28
CR 33 CR 34	0A 85 0A 85	22	CR E7	11Z 4	27	CR 141 CR 142	OA 85 OA 85	5	R 21 R 22	15 ktl 1,5 ktl	8 8	R 112 R 113	1,5 kΩ 100 kΩ	21	R 203 R 204	4,7 kΩ	28 26
CR 35 CR 36	0A 85 0A 85	23	CS 89	11Z 4 0A 85	13	CR 143 CR 144	0A 85 0A 85	5 5	R 23 R 24	100 kts 39 kts	8 8	R 114 R 115	100 kΩ 100 kΩ	21	R 205 R 206	1,5 kg 4,7 kg	28 28
CR 37 CR 38	0A 85 0A 85	23 23	CR 91 CR 92	0A 85 0A 85	13	CR 145 CR 146	0A 85 0A 85	5	R 25	47 kii 47 ti	8 9	R 116 R 117	47 11 4.7 kg	22 22	R 207 R 208	15 kΩ 1.5 kΩ	28 28
CR 39 CR 40	0A 85 0A 85	23	CR +3 CR +4	08 85 08 80	13	CR 147 CR 148	0A 85 0A 85	6	R 27 R 28	4,7 k11 15 k11	9	R 118 R 119	15 kΩ	22	R 209	100 kΩ	28
CR 41	0A 85	24	CR 75	0A 85	13	CR 149	0A 85	6	R 29	1,5 kt2	9	R 120	1,5 kΩ 4,7 kΩ	22	R 210	10 kΩ 47 kΩ	28 28
CR 42 CR 43	0A 85 0A 85	24	CR #5	0A 85 0A 85	13	CR 150 CR 151	0A 85 0A 85	6	R 30 R 31	4,7 kiž	9	R 121 R 122	1.5 kΩ 1,5 kΩ	22 22	R 213	10 kΩ 4,7 kΩ	27 27
CR 44 CR 45	0A 85 0A 85	24	CR 78	0A 85 0A 85	13	CR 152 CR 153	0A 85 0A 85	12	R 32 R 33	15 kil 1,5 kil	9	R 123 R 124	100 kΩ	22 22	R 214	10 kg	27 27
CR 46 CR 47	0A 85 0A 85	25 25	CR 100	0A 85 0A 85	14 26	CR 154 CR 155	0A 85 0A 85	12 28	R 34	100 kt/ 39 kt/l	9	R 125 R 126	100 kt/2 47 12	22 23	R 216 R 217	47 kil 47 kil	13
CR 48 CR 49	0A 85 0A 85	25 25	CR :22	0A 85 0A 85	14	CR 156 CR 157	0A 85 0A 85	28 17	R 36 R 37	47 kΩ 47 Ω	9	R 127 R 128	4,7 kt2	23 23	R 218 R 219	15 kii	14
CR 50 CR 51	0A 85 0A 85	25 25	CR 104 CR 105	0A 85 0A 85	14	CR 158 CR 159	OA 85 OA 85	14 7	R 38 R 39	4,7 kΩ	10	R 129 R 130	1,5 kt2	23	R 220	47 kΩ	14
CR 52	11Z 4	3	CR 106	OA 85	14	CK 139	0.00	1	R 40	1,5 kΩ	10	R 131	4,7 kΩ 15 ° kΩ	23 23	R 221	100 kΩ 47 kΩ	15
CR 53 CR 54	0A 85 11Z 4	20	CR 107 CR 108	DA 85 DA 85	14				R 41 R 42 R 43	100 kΩ 4,7 kΩ 15 kΩ	10 10	R 132 R 133 R 134	1,5 kΩ 100 kΩ 100 kΩ	23 23 23	R 223	27 kg	15
	,		TT .	APACIT	_	п			R 44 R 45	1,5 kts 100 kts	10	R 135 R 136	100 kΩ 47 tl	23 23 24	R 225 R 226 R 227	22 kΩ 22 kΩ 47 kΩ	15 15 16
SYMBOLE	YALEUR	PLAQUE	CIRCUIT	VALEUR	PLAQUE		VALEUR	PLAQUE	R 46 R 47 R 48	39 kii 47 kii 47 ti	10	R 137 R 138 R 139	4,7 kg 15 kg 1,5 kg	24 24 24	R 228 R 229 R 230	47 kΩ 47 kΩ 47 kΩ	16 16 16
C 1	(100 + 10) nF (120 + 22) nF		C 23	4,7 kpF 4,7 kpF	21 21	C 39 C 40	4,7 kpF 4,7 kpF	28 28	R 49 R 50	4,7 kΩ 15 kΩ	11	R 140 R 141	4,7 kΩ	24 24	R 231 R 232	47 kH 47 kD	16 16
C 3	0,47 "F 0,47 "F	A	C 22 C 23	4,7 kpF 4,7 kpF	22 22	C 41 C 42	47 kpF 4,7 kpF	27 5	R 51 R 52	1,5 ktl	11	R 142 R 143	1,5 kts	24	R 233	47 kΩ	16
C 5	4,7 kpF 4,7 kpF	8	C 24 C 25	4,7 kpF 4,7 kpF	22 23	C 43 C 44	4,7 kpF 4,7 kpF	5 5	R 53	4,7 ktl	11	R 144	100 kill 100 kill	24 24	R 234 R 235	47 kH 47 kH	16
C 7	4,7° kpF 4,7 kpF	9	0 % 0 7	4.7 kpF	23 23	C 45	4,7 kpF 4,7 kpF	5	R 54 R 55	15 kg 1,5 kg	11	R 145 R 146	100 kis 47 is	24 25	R 236 R 237	47 kΩ 82 kΩ	16
C 9	4,7 kpF	10	C 28	4,7 kpF 4,7 kpF	74	C 47	4,7 kpF	6	R 56 R 57	39 kii	11	R 147 R 148	4,7 kΩ 15 kΩ	25 25	R 238 R 239	47 kil 100 kil	27
C 10	4,7 kpF	11	C 29	4.7 kpF 4.7 kpF	24 24	C 48 C 49	4,7 kpF 4,7 kpF	6	R 58 R 59	47 kii 47 kii	11	R 149 R 150	1,5 kil 4,7 kil	25 25	R 240 R 241	47 kii 10 kii	27 27
C 12	4,7 kpF 10 kpF		C 32	4,7 kpF 4,7 kpF	25 25	C 50 C 51	4,7 kpF 4,7 kpF	6				R 151 R 152	15 kΩ 1,5 kΩ	25 25	R 242 R 243	100 kΩ	27
C 14 C 15	10 kpF 4,7 kpF		C 34	4.7 kpF 5 μF	25 17	C 52 C 53	4,7 kpF 4,7 kpF	6 28	R 62 R 63	47 kΩ 47 kΩ	12 12	R 153 R 154	100 kΩ	25 25	R 244 R 245	100 kΩ	5
C 16 C 17	4,7 kpF	19	C 35	0,47 µF	2	C 54	2 µF	17	R 64	47 11 4,7 kg	19	R 155 R 156	100 ks2	25 17	R 746	100 ×11	5
C 18 C 19	4,7 kpF 4,7 kpF	4	C 37	2,2 µF 50 "F	1				R 66	15 kΩ 1,5 kΩ	19	R 157 R 158	5,6 kH 4,7 kΩ 560 H	17	R 247 R 248 R 249	100 kg 100 kg 100 kg	5 5
	1	1	TRA	NSISTO	ORS				R 68 R 69 R 70	4,7 kH 15 kH	19 19	R 159 R 160	10 kΩ 10 kΩ	17 17	R 250 R 251	100 kg 100 kg	6
SYMBOLE	VALEUR	REPERE	SYMBOLE CIRCUIT	VALEUR	REPER		VALEUR	REPERE	R 71 R 72	1,5 kt1 100 kt1 20 kt1	19 19 19	R 161	18 kil	17	R 252 R 253 R 254	100 kg 100 kg 100 kg	5
Q 1	TGN A	A	2 X	TGN A	7 18	Q 39 Q 40	TGN B	20	R 74 R 75	47 Ω 4,7 kΩ	7	R 164 R 165	10 kg	3	P 255	100 kg	6
Q 3	TGN A	A	3 22	TON A	18	Q 41	TGN B	20	R 76	15 kΩ 1,5 kΩ	7 7	R 166 R 167	4.7 kil	20	R 258	10 kg	12
Q 5	TGN A	A	Q 23	TON A	4	Q 42 Q 43	TON B	26 26	R 77 R 78	4,7 kH 15 kH	7 7	R 168 R 169	10 kg	20 20	R 259 R 250	56 kg 10 kg	12 28
9 6	TGN A	19 8	Q 25	TGN A	21	Q 44 Q 45	TGN B	26 3	R 79 R 80	1.5 kΩ 47 Ω	7	R 170 R 171	4,7 kH 10 kH	20 20	R 261	79 kg 47 kg	28 28
Q 8	TON A	8 9	2.79	TGN A	22 22	Q 46 Q 47	TON A	2 2	R 81 R 82	820 11 15 kil	7 7	R 172 R 173	4,7 kΩ	20 26	R 263	120 -44	28
Q 10 Q 11	TGN A	9	2.39	TGN A	23 23	Q 48 Q 29	TGN B	1	R 83	1,5 kH	7	9 174	4,7 kil	26	R 264 R 265	47 xii	17
Q 12 Q 13	TGN A	10	2 21 2 22	TGN A	24 24	Q 50 Q 51	TON A	28 28	R 85	820 D 15 AD	7 7	R 175 R 176	4,7 11	26 26	R 266 R 267	47 AU	17
Q 14 Q 15	TGN A	11	2 22	TON A	25	Q 52	TGN B	27	R 86 R 87	1,5 kil 47 li	7 18	R 177 R 178	10 kil 4,7 kil	26 26	R 259	5,5 -11 470 14	17
Q 16	TON A	19	2.34	TGN A	25 17	Q 53 Q 54	TON B	17	R 88 R 89	4,7 kU 15 ku	18	R 179 R 180	4,7 kil 10 kil	3			
Q 17 Q 18	TGN A	7	3 2 3 79	TGN A	17				9 90 R 91	1,5 kii 4,7 kii	18	R 181 R 182	47 (1 4.7 kg)	2 2			
Q 19	TON A	7	2.38	TGN B	3	L				4,7 111	10	n 104	4,7 81				





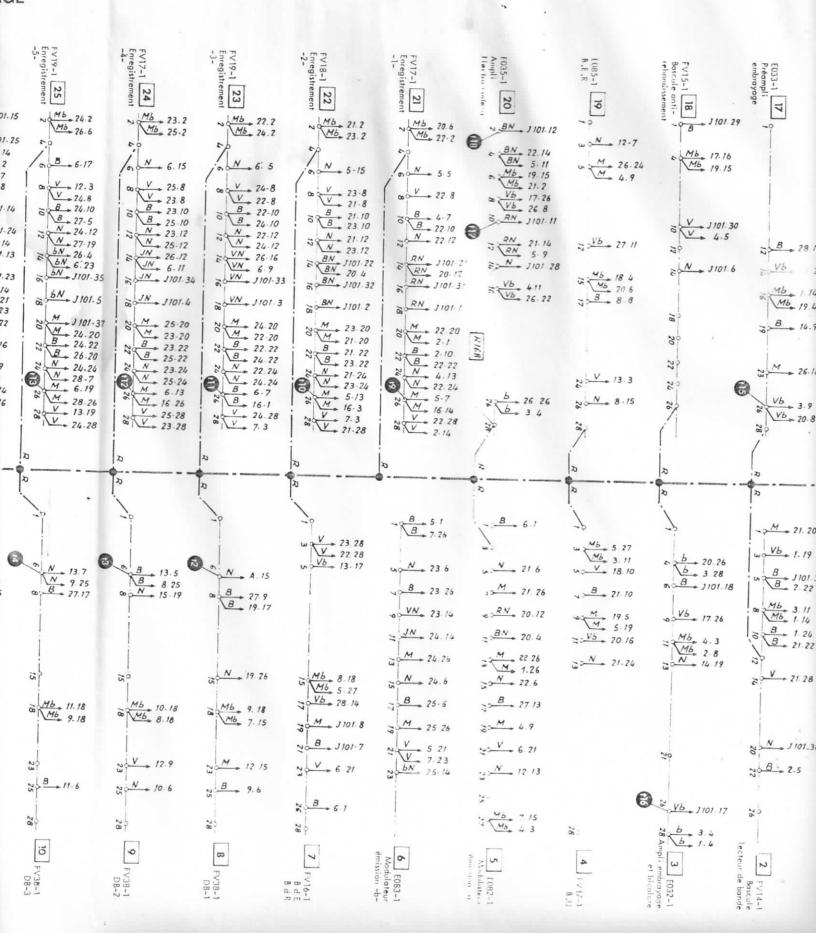
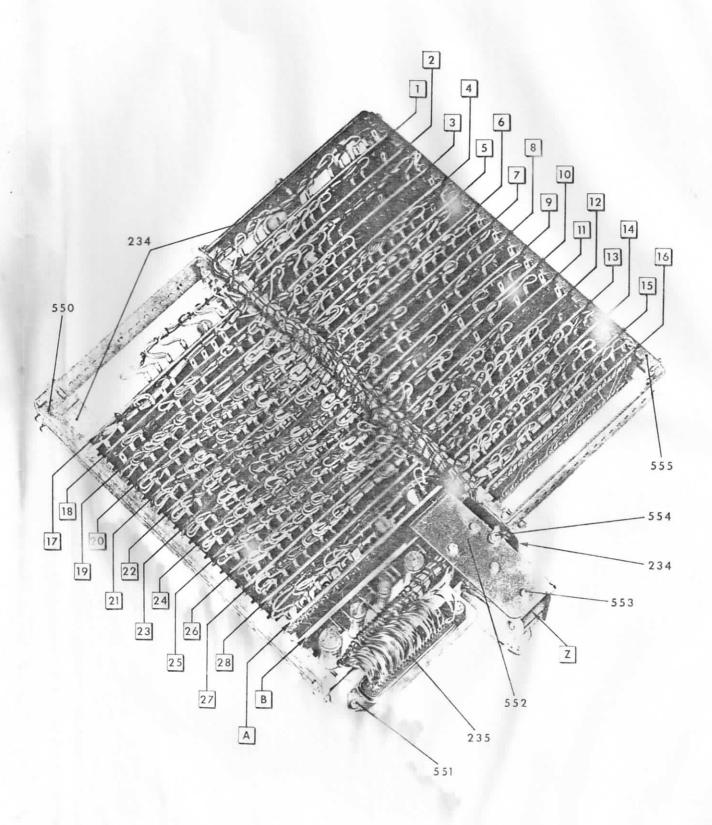
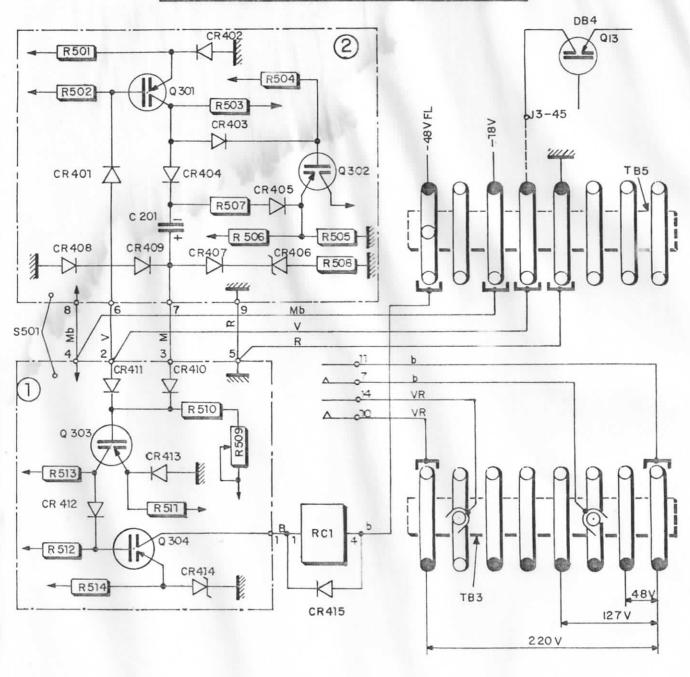


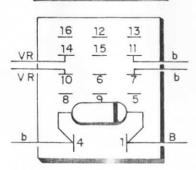
SCHÉMA DE CABLAGE


(électronique)

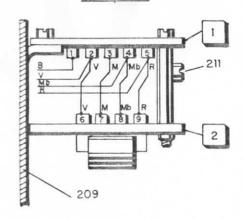
ÉLECTRONIQUE (ensemble)


La raparat : -- plag. rs correspond à calvi du schèma (Planch - 1)

MINUTERIE ÉLECTRONIQUE (schéma - ensemble)


REPERTOIRE DES COMPOSANTS

	DIODES			RESISTANCES	
Symbole circuit	Valeur	Repère plaque	Symbole circuit	Valeur	Repère plaque
CR401	OA 47	2	R 501	4,7 kΩ	2
CR402	17 P2	2	R 502	10 kΩ	2
CR403	OA 47	2	R 503	10 kΩ	2
CR404	OA 47	2	R 504	1 kΩ	2
CR405	D25C	2	R 505	10 kD	2
CR 406	15 Z4	2	R 506	100 kΩ	2
CR 407	17P2	2	R 507	.27 Ω	2
CR 408	D 2 5 C	2	R 508	47 Ω	2
CR409	D250	2	R 509	470 $k\Omega(pot^{tre})$	1
CR410	17 P2	1	R 510	100 kΩ	1
CR411	0A 47	1	R511	4,7kΩ	1
CR412	0 A 95	1	R 512	33 kΩ	1
CR413	0 A 47	1	R513	220 kΩ	1
CR414	11 Z4	1	R 514	4,7 kΩ	1
CR415	D25C	Relais			
	TRANSISTORS			CAPACITES	
Symbole circuit	Valeur	Repère plaque	Symbole circuit	Valeur	Repère plaque
Q 301	TGNA	2	C 201	3 x 100μF	2
Q 302	TGNA	2			
Q 303	2\$303	1			
Q 304	TGNB	1			


SCHEMA DE PRINCIPE ET DE CABLAGE

ENSEMBLE

