For the benefit and convenience of its customers, Fluke Corporation (Fluke) has reproduced this copy of a manual which is no longer in production. This manual has not been edited or updated since the revision date shown on the lower left hand corner of the first page. Fluke will not be liable for any claims, losses or damages of any kind incurred by any user arising from use of this manual.

8600A Digital Multimeter

Instruction Manual

WARRANTY

Notwithstanding any provision of any agreement the following warranty is exclusive:

The JOHN FLUKE MFG. CO., INC., warrants each instrument it manufactures to be free from defects in material and workmanship under normal use and service for the period of 1 -year from date of purchase. This warranty extends only to the original purchaser. This warranty shall not apply to fuses, disposable batteries (rechargeable type batteries are warranted for 90-days), or any product or parts which have been subject to misuse, neglect, accident, or abnormal conditions of operations.

In the event of failure of a product covered by this warranty, John Fluke Mfg. Co., Inc., will repair and calibrate an instrument returned to an authorized Service Facility within 1 year of the original purchase; provided the warrantor's examination discloses to its satisfaction that the product was defective. The warrantor may, at its option, replace the product in lieu of repair. With regard to any instrument returned within 1 year of the original purchase, said repairs or replacement will be made without charge. If the failure has been caused by misuse, neglect, accident, or abnormal conditions of operations, repairs will be billed at a nominal cost. In such case, an estimate will be submitted before work is started, if requested.

> THE FOREGOING WARRANTY IS IN LIEU OF ALL. OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. JOHN FLUKE MFG. CO., INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR OTHERWISE.

If any fallure occurs, the following steps should be taken:

1. Notify the JOHN FLUKE MFG. CO., INC., or nearest Service facility, giving full details of the difficulty, and include the model number, type number, and serial number. On receipt of this information, service data, or shipping instructions will be forwarded to you.
2. On receipt of the shipping instructions, forward the instrument, transportation prepaid. Repairs will be made at the Service Facility and the instrument returned, transportation prepaid.

SHIPPING TO MANUFACTURER FOR REPAIR OR ADJUSTMENT

All shipments of JOHN FLUKE MFG. CO., INC., instruments should be made via United Parcel Service or "Best Way" * prepaid. The instrument should be shipped in the original packing carton; or if it is not available, use any suitable container that is rigid and of adequate size. If a substitute container is used, the instrument should be wrapped in paper and surrounded with at least four inches of excelsior or sımilar shock-absorbing material.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL PURCHASER

The instrument shoulo be thoroughly inspected immediately upon original delivery to purchaser. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notified immediately. If the instrument is damaged in any way, a claim should be filed with the carrier immediately. (To obtain a quotation to repair shipment damage, contact the nearest Fluke Technical Center.) Final claim and negotiations with the carrier must be completed by the customer.

The JOHN FLUKE MFG. CO., INC, will be happy to answer all applications or use questions, which will enhanceyour use of this instrument. Please address your requests or correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX C9090, EVERETT, WASHINGTON 98206, ATTN: Sales Dept. For European Customers: Fluke (Holland) B.V., P.O. Box 5053, 5004 EB, Tilburg, The Netherlands.
*For European customers, Air Freight prepaid.
John Fluke Mig. Co., Inc., P.O. Box C9090, Everett, Washington 98206

Table of Contents

SECTIONTITLEPAGE
1 INTRODUCTION AND SPECIFICATIONS 1-1
1-1. INTRODUCTION 1-1
1-9. SPECIFICATIONS 1.2
2 OPERATING INSTRUCTIONS 2-1
2-1. INTRODUCTION 2 -1
2-3. SHIPPING INFORMATION 2 -1
2-6. INPUT POWER $2-1$
2-9. RACK INSTALLATION 2-1
2-11. OPERATING FEATURES 2-1
2-13. OPERATING NOTES 2-3
2-15. Option Information 2-3
2-17. Fuses. 2-3
2-19. Overrange Indication. 2-3
2-21. Input Overload Protection 2-3
2-23. Autoranging 2-3
2-25. OPERATION 2-4
3THEORY OF OPERATION3-1
3-1. INTRODUCTION 3-1
3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1
3-4. Introduction 3-1
3-6. Input Signal Conditioners 3-1
3-12. A/D Converter 3-2
3-15. Control and Display 3-2
3-18. Data Output Unit (DOU) 3-3
3-20. CIRCUIT DESCRIPTION 3-3
3-22. Input Signal Conditioners 3-3
3-37. A/D Converter $3-6$
3-42. Control and Display 3-8
SECTIONTITLEPAGE
4 MAINTENANCE 4-1
4-1. INTRODUCTION 4-1
4-3. SERVICE INFORMATION 4-1
4-6. GENERAL MAINTENANCE 4-2
4-7. Access/Disassembly 4-2
4-10. Cleaning 4-2
4-12. Fuse Replacement 4-2
4-14. PERFORMANCE TESTS 4-2
4-16. DC Voltage Test 4-2
4-18. Ohms Test 4-2
4-20. DC Current Test 4-3
4-22. AC Voltage Test 4-3
4-24. CALIBRATION 4-3
4-25. Introduction 4-3
4-27. DC Volts Calibration 4-3
4-29. Ohms Calibration $4-5$
4-31. AC Volts Calibration 45
4-33. TROUBLESHOOTING 4-5
4-35. Initial Troubleshooting 46
4-38. Power Supply Checks 4-6
4-40. Fault Area Isolation 4-7
5 LIST OF REPLACEABLE PARTS 5-1
5-1. INTRODUCTION 5-2
5-4. HOW TO OBTAIN PARTS 5-2
5-7. USE CODE EFFECTIVITY LIST 5-2
6 OPTIONS AND ACCESSORY INFORMATION 6-1
6-1. INTRODUCTION 6-1
6-3. CARRY CASE (C80) 6-1
6-5. CARRYING CASE (C86) 6-1
6-7. FRONT PANEL DUST COVER (M00-100-714) 6-1
6-9. RACK MOUNTING KITS 6-1
6-10. Introduction 6-1
6-12. Installation Procedure 6-2
6-16. DELUXE TEST LEAD KIT (A80) 6-2
6-18. CURRENT PROBE, CLAMP-ON (80I-600) 6-4
6-19. Introduction 6-4
6-21. Operation 6-4
6-23. HIGH VOLTAGE PROBE (80K-40) 6-5
6-24. Introduction 6-5
6-26. Specifications 6-5
6-27. Operation 6-5
6-29. HIGH FREQUENCY PROBE (80RF-1) 6-6
6-30. Introduction 6-6
6-32. Specifications 6-6
SECTION title PAGE
6-33. Operating Notes 6-6
6-36. Operation 6-6
6-38. Theory of Operation $6-7$
6-41. Maintenance 6.7
6-50. HIGH FREQUENCY PROBE (81RF) 6-9
6-51. Introduction 6.9
6-53. Specifications 6.9
6-54. Operation 6-9
6-56. TEMPERATURE PROBE (80T-150) 6-9
6-59. BATTERY PACK, OPTION -01 6-9
6-60. Introduction 6-9
6-62. Specifications 6-9
6-64. Operation 6-9
6-66. Theory of Operation 6-10
6-69. Maintenance 6-10
6-80. DATA OUTPUT UNIT (OPTION -02) $6-11$
6-81. Introduction 6-11
6-83 Specifications 6-11
6-85 Operation 6-11
7 GENERAL INFORMATION 7-1
8 SCHEMATIC DIAGRAMS 8-1

List of Illustrations

FIGURE TITLE PAGE
1-1. Model 8600A Outline Drawing $1-5$
2-1. $\quad 8600 \mathrm{~A}$ Controls, Indicators and Connectors 2-2
3-1. Overall Functional Block Diagram 3-2
3-2. Timing Diagram for Dual-Slope A/D Conversion 3.3
3-3. Ohms Converter Block Diagram $3-4$
34. AC Converter Block Diagram 3.5
3-5. A/D Converter Block Diagram $3-7$
4-1. Calibration Adjustment Locations 4.4
4-2. Troubleshooting Flow Chart 4-7
4-3. A/D Converter Output Signal 4-9
4-4 A/D Converter Control Signals 4-10
5-1. 8600A Final Assembly 54
5-2. Front Panel and Main PCB Assembly (8600A Line Power) 5-9
5-3. Front Panel and Main PCB Assembly (8600A-01 Battery Power) 5-14
54. Display PCB Assembly 5-15
5-5. Battery Power Supply PCB Assembly (-01 Option) 5-17
5-6. AC Converter PCB Assembly 5-20
5-7. Ohms Converter Assembly 5-22
5-8. Input Divider PCB Assembly 5-23
5-9. DOU PCB Assembly -02 Option 5-25
Figure TITLE PAGE
6-1. Model C80 Carrying Case 6-1
6-2. Model C86 Carrying Case 6-2
6-3. Rack Mounting Kits, Offset and Center Mount 6-3
6-4. Rack Mounting Kit, Side-By-Side Mounting 6-4
6-5. Deluxe Test Lead Kit (A80) 6-4
6-6. AC Current Probe, Clamp-On (80I-600) 6-4
6-7. \quad High Current Probe (80K-40) 6-5
6-8. High Voltage Probe, Schematic 6.5
6-9. \quad 80RF-1, High Frequency Probe 6-6
6-10. 80RF-1, Schematic 6-7
6-11. Low Frequency Response Check 6.7
6-12. High Frequency Response Check 6.8
6-13. High Frequency Probe (81 RF) $6-9$
6-14. DOU Timing Diagram 6-12
8-1. Front Panel and Main PCB Assembly (2 sheets) 8.3
8-2. Display PCB Assembly 8.7
8-3. AC Converter PCB Assembly 8.9
8-4. Ohms Converter PCB Assembly 8-11
8-5. Battery Power Supply PCB Assembly (Option -01) 8-13
8-6. Data Output Unit PCB Assembly (Option -02) 8-15

List of Tables

table TITLE PAGE
1.1. 8600A Options 1-1
1-2. 8600A Accessories 1-1
1-3. Model 8600A Specifications $1 \cdot 2$
2-1. 8600A Controls, Indicators and Connections 2-2
2-2. Basic Measurement Instructions 2-3
3-1. Ohms Converter Operating Conditions 3-5
3-2. AC Converter Relay Operation 3-5
4-1. Required Test Equipment 4-1
4-2. DCV Performance Test 4-2
4-3. Ohms Performance Test $4-3$
44. DC Current Performance Test 4-3
4-5. ACV Performance Test. 4.3
4-6. DC Volts Calibration Procedure 4.5
4-7. Ohms Calibration Procedure 4.5
4-8. AC Volts Calibration Procedure 4-6
4-9. Fault Area Indication 4.7
4-10. Input Divider Test 4-8
4-11. Operation of U8 with Respect To A/D Converter 4-10
4-12. Range Information 4-11
6-1. Rack Mounting Kits 6-2
6-2. 8600A Ranges For Current Probe (80I-600) 6-5
6.3. 8600A Ranges For DC HV Probe (80K-40) 6-6
6-4. DOU Data Identification 6-12
7-1. List of Abbreviations \& Symbols 7-2
7-2. Federal Supply Codes For Manufacturers 7.3
7-3. Fluke Technical Service Centers $7-7$
7-4. International Service Center 7-7
7-5. \quad Sales Representatives - Domestic 7.8
7-6. Sales Representatives - International 7-9

Introduction \& Specifications

1-1. INTRODUCTION

1-2. The Model 8600A is a compact and light-weight digital multimeter (DMM). It features a $41 / 2$ digit display, push-button selection of range and function, auto polarity, self locating decimal point, self zeroing to eliminate offset uncertainties, and overload protection for all ranges. Autoranging can be selected when the ac volts, dc volts or kilohms functions are selected. Several options and accessories for the 8600 A are available (see Section 6).

1-3. Push-button controls allow the selection of five ac and dc voltage ranges, five ac and dc current ranges, and six resistance ranges. The measurement capabilities of the 8600A range from 10 microvolts to 1199.9 volts ac and dc, 10 nanoamperes to 1.9999 amperes ac and dc , and 10 milliohms to 19.999 megohms.
14. The front-panel readout features a $41 / 2$ digit display using light emitting diodes (LED's). The display includes a self locating decimal point and a + or - polarity indicator. Full-scale readout is 19999 for all ranges and functions except the 1200 volt ac and dc range, which is 11999 . A blinking 18888 readout indicates that the 8600 A is being operated in an overload condition and provides a test for all segments in the display.

1-5. Front panel input connectors are banana type and provide separate connections for current, and volt-ohm inputs. Both the current and volt-ohm inputs are referenced to a common input which is isolated from earth ground and can operate at a potential of up to $\pm 1000 \mathrm{~V}$ dc or peak V ac with reference to earth ground.

1-6. The overload features of the 8600A include a fused current input and an overvoltage protected volt-ohm input. This protection applies for any function and range selected.

1-7. Several options and accessories are available for use with the 8600A. The options are listed and described in Table 1-1, and must be specified at time of purchase. The accessories are listed and described in Table 1-2. Accessories are compatible with all options and can be ordered at time of purchase or after purchase. Detailed information concerning each option and accessory is given in Section 6 of this manual.

Table 1-1. 8600A OPTIONS

MODEL NO	DESCRIPTION
8600A-01	Basic unit w/battery option
8600A-02	Basic unit w/data output unit

Table 1-2. 8600A ACCESSORIES

MODEL NO.	DESCRIPTION
C80	Vinyl Carrying Case w/strap
C86	Molded Hard-Shell Carrying Case
A80	Deluxe Test Lead Kit
801-600	Clamp-on AC Current Probe (2A to 600A)
80K-40	High Voltage Probe; 1 kV to 40 kV
81RF	RF Probe: 100 kHz to 100 MHz
80RF-1	RF Probe 100 kHz to 500 MHz
M00-100-714	Front Panel Cover
M00-200-611	Rack Mount, Center
M00-200-612	Rack Mount, Offset Left or Right
M00-200-613	Rack Mount, Side-by-Side

1-8 Input power for the 8600A is switch selectable to provide operation at either 115 Vac or $230 \mathrm{Vac}, 50 \mathrm{~Hz}$ or 60 Hz . The 8600 A will also operate from $100 \mathrm{Vac}, 50 \mathrm{~Hz}$ or 60 Hz , when in the 115 V switch position. The $8600 \mathrm{~A}-01$
(battery power option) is configured at the factory for 115 Vac , or $230 \mathrm{Vac}, 50 \mathrm{~Hz}$ or 60 Hz line power operation. The battery power option must not be operated from any other line voltage or frequency than that for which it is configured (see decal on bottom of case). The operation of the front panel controls is the same for all power configurations of the $8600 \mathrm{~A}, 8600 \mathrm{~A}-01$, and $8600 \mathrm{~A}-02$ instruments.

1-9. SPECIFICATIONS

1-10. Specifications for the Model 8600A are presented in Table 1-3, under headings of DC VOLTAGE, AC VOLTAGE, DC CURRENT, AC CURRENT, OHMS, and GENERAL. Specifications for each option are listed under the option heading.

Table 1-3. MODEL 8600A SPECIFICATIONS

DC VOLTAGE

Table 1-3. MODEL 8600A SPECIFICATIONS

Table 1-3. MODEL 8600A SPECIFICATIONS

Figure 1-1. MODEL 8600A OUTLINE DRAWING

Operating Instructions

2-1. INTRODUCTION

2-2. This section of the manual contains information regarding installation and operation of the Model 8600A DMM. It is recommended that the contents of this section be read and understood before any attempt is made to operate the instrument. Should any difficulties arise during operation, please contact your nearest John Fluke Sales Representative or the John Fluke Mfg. Co., Inc., P.O. Box 43210, Mountlake Terrace, WA 98043; telephone (206) 774-2211. A list of Sales Representatives is located in Section 7 of this manual.

2-3. SHIPPING INFORMATION

24. The 8600 A is packaged and shipped in a foampacked container. Upon receipt of the instrument, a thorough inspection should be made to reveal any possible shipping damage. Special instructions for inspection and claims are included in the shipping carton.

2-5. If reshipment of the instrument is necessary, the original container should be used. If the original container is not available, a new container can be obtained from the John Fluke Mfg. Co., Inc. Please reference the instrument model number when requesting a new shipping container.

2-6. INPUT POWER

2-7. The 8600A can be operated from 100,115 , or 230 V ac 50 or 60 Hz power lines, as selected by line power select switch S14. Before connecting the instrument to line power, check and, if necessary, set the instrument for operation at local line voltage as follows: (the following procedure should be carried out only by qualified personnel)

CAUTION!

Refer to Section 6 Option -01 for requirements of line voltage change for 8600A -01 instruments.
a. Remove the phillips screw from the rear of the instrument.
b. Remove the case; pull it straight back from the front panel.
c. Locate the power selection switch; near the rear or the main pcb assembly.
d. For 100 or 115 V ac operation position the slide switch so that 115 appears in the slide aperture. For $230 \mathrm{~V} / 240 \mathrm{~V}$ ac operation set the switch so 230 appears.
e. Replace the case and phillips screw.

2-8. The rear panel power input connector is a threeprong, U-ground connector which permits the instrument to be connected, via the power cord, to the appropriate line power. The offset prong on this connector is connected to the 8600 A power supply, and should be connected, via the power cord, to a high quality earth ground.

2.9. RACK INSTALLATION

2-10. The 8600A is designed for either bench-top use or for installation in a standard 19 -inch equipment rack using an optional accessory rack mounting kit. Rack mounting kits are available for left, right, center, or side-by-side mounting of the 8600 A . Information regarding installation of the rack-mounting accessories is given in Section 6 under Rack Installation.

2-11. OPERATING FEATURES

2-12. The location of all 8600A controls, indicators and connectors are shown in Figure 2-1, and described in Table 2-1.

Figure 2-1. 8600A CONTROLS, INDICATORS AND CONNECTORS
Table 2-1. 8600A CONTROLS, INDICATORS AND CONNECTORS

FIG. 2-1 REF. NO.	NAME	FUNCTION
1	INPUT Connectors	Provides the input connections necessary to make current (MA), voltage (V), or resistance (Ω) measurements. All measurements are referenced to the LO INPUT terminals.
2	Digital Readout	Provides a 4 $1 / 2$ digit display (19999 maximum) or the measured input. The readout also includes a properly positioned decimal point, and a + or sign for dc voltage and current measurements.
3	POWER Switch	Switches the instrument on or off. The instrument is turned on when the switch is depressed.
4	RANGE Switches	Provide pushbutton selection of ranges which correspond to the selected function (current, voltage, or resistance). The available ranges are: Voltage: 200 MV, 2, 20, 200, 1200V and AUTO
		Current: $\quad 200 \mu \mathrm{~A}, 2,20,200,2000 \mathrm{MA}$
		Resistance: $\quad 200 \Omega, 2,20,200,2000 \mathrm{k} \Omega, 20 \mathrm{M} \Omega$, and AUTO
5	FUNCTION Switches	Provide pushbutton selection of one-of-five measurement functions; ACV, AC MA, DCV, DC MA, or K Ω.
6	Input Power Connector	Provides the means of connecting the instrument through the power cord to the ac power line.

2-13. OPERATING NOTES

2-14. The following paragraphs describe various conditions which should be considered before operating the 8600A.

2-15. Option Information

2-16. Supplementary information is necessary when operating an 8600 A which is equipped with one of the available options. Detailed information regarding the operation of each available option is given in Section 6, Options and Accessories.

2-17. Fuses

$2-18$. The 8600 A is equipped with a line power fuse, and a current overload fuse for the current measuring function. The line fuse is located near the transformer on the inside of the instrument. The following procedure should be carried out only by qualified personnel. To gain access, remove ac power, remove the retaining screw on the rear of the case and remove the instrument from the case. When replacement is necessary, use an AGC 1/8A fuse. The current input fuse is located behind the front-panel MA INPUT terminal, and is accessed by turning (ccw) and removing the MA INPUT terminal. Use a John Fluke 376582 replacement fuse or equivalent 2 A fast-blo fuse (AGX) 1 inch in length.

2-19. Overrange Indication

2-20. The front panel display, in addition to providing a measurement reading, is designed to serve as an overrange indicator. When the full scale capability of the selected range for any function is exceeded, the display will blink while indicating a 18888 reading. The presence of an overrange indication does not necessarily mean that the instrument is being exposed to a damaging input condition.

2-21. Input Overload Protection

CAUTION

Exceeding the maximum input overload conditions can damage the 8600 A .
$2-22$. Each range and function of the 8600 A is equipped with input overload protection. The maximum allowable input overload conditions for each function and range are given in Table 2-2.

2-23. Autoranging

2-24. Autoranging can be selected when the 8600 A is in the VDC, VAC, or $\mathrm{K} \Omega$ functions. When the AUTO pushbutton is depressed the 8600A will select the lowest range that will display the value of the input signal without causing an overrange indication. Autoranging stops when one of the individual range pushbuttons is depressed.

Table 2-2. BASIC MEASUREMENT INSTRUCTIONS

DESIRED measurement	8600A				REMARKS
	SELECT FUNCTION	SELECT RANGE	INPUT CONNECTION	MAXIMUM INPUT	
DC Volts	DCV	$\begin{aligned} & 200 \mathrm{MV}, 2,20 \\ & 200, \text { or } 1200 \mathrm{~V} \end{aligned}$	$V-\Omega$ and V- Ω LO	1200 V dc or 1700V peak ac, any range	Auto-polarity Auto-ranging
DC Milliamperes	DC MA	$\begin{aligned} & 200 \mu \mathrm{~A}, 2,20 \\ & 200 \text { or } 2000 \mathrm{MA} \end{aligned}$	MA and MA LO*	2A (Fuse Protected)	Manual-ranging Auto-polarity
AC Volts	ACV	$200 \mathrm{MV}, 2,20$	$V-\Omega$ and $V-\Omega$ LO	1200 V rms (sinusoidal), 1700 V peak ac, any range	Auto-ranging Average Responding calibrated to read rms ac volts
AC Milliamperes	AC MA	$\begin{aligned} & 200 \mu \mathrm{~A}, 2,20 \\ & 200, \text { or } 2000 \mathrm{MA} \end{aligned}$	MA and MA LO*	2A (Fuse Protected)	Manual-ranging Average Responding
Kilohms	$k \Omega$	$200 \Omega, 2,20$, $200,2000 \mathrm{k} \Omega$ or $20 \mathrm{M} \Omega$	$V-\Omega$ and $V-\Omega$ LO	250 V dc or 250 V ac peak, any range	Auto-ranging

2-25. OPERATION

2-26. Use the following procedure for initial turn-on of the 8600A;
a. Connect the instrument to ac line power. (See Paragraph 2-6)
b. Depress the POWER switch.
c. In accordance with Table 2-2, select the desired function and range; connect the test leads to the corresponding input connectors.

NOTE
Supplemental instructions may be required for instruments with options installed. These instructions, if any, are given in Section 6, Options and Accessories.

CAUTION:

Do not use V Ω LO for current measurements as damage to the 8600A may result.

static awarengss

A Message From John Fluke Mfg. Co., Inc.

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:

1. Knowing that there is a problem.
2. Learning the guidelines for handling them.
3. Using the procedures, and packaging and bench techniques that are recommended.

The Static Sensitive (S.S.) devices are identified in the Fluke technical manual parts list with the symbol " 0 "

The following practices should be followed to minimize damage to S.S. devices.

1. MINIMIZE HANDLING

2. KEEP PARTS IN ORIGINAL CONTAINERS UNTIL READY FOR USE.

3. DISCHARGE PERSONAL STATIC BEFORE HANDLING DEVICES. USE A HIGH RESISTANCE GROUNDING WRIST STRAP.

4. HANDLE S.S. DEVICES BY THE BODY

5. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT

6. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE

7. AVOID PLASTIC, VINYL AND STYROFOAM © IN WORK AREA

[^0]
8. WHEN REMOVING PLUG-IN ASSEMBLIES, HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR HELPS TO PROTECT INSTALLED SS DEVICES.

9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION
10. ONLY ANTI-STATIC TYPE SOLDERSUCKERS SHOULD BE USED.
11. ONLY GROUNDED TIP SOLDERING IRONS SHOULD BE USED.

A complete line of static shielding bags and accessories is available from Fluke Parts Department, Telephone 800-526-4731 or write to:

JOHN FLUKE MFG. CO., INC.
PARTS DEPT. M/S 86 9028 EVERGREEN WAY EVERETT, WA 98204

Section 3

Theory of Operation

3-1. INTRODUCTION

3-2. The theory of operation for the Model 8600A is arranged under two major headings. The first, titled OVERALL FUNCTIONAL DESCRIPTION, discusses the overall operation of the instrument in terms of the functional relationships of the major circuits. The second section is titled CIRCUIT DESCRIPTION and deals with the internal operation of each major circuit in more detail. Block diagrams and simplified circuit diagrams are included in these sections. The complete schematic diagrams are located in Section 8 of this manual.

3-3. OVERALL FUNCTIONAL DESCRIPTION

3-4. Introduction

3-5. The 8600A circuitry can be divided into three major sections. The first of the three sections, termed Input Signal Conditioners, (see Figure 3-1) comprises the Input Divider, Ohms Converter, AC Converter and Current Shunt. The second section is the A/D (analog-to-digital) Converter and the third is the Control and Display section. The basic operational relationship of these functional areas will be discussed in the following paragraphs.

3-6. Input Signal Conditioners

3-7. The term, input signal conditioner, describes the basic function of the four subsections grouped under it. The input divider, current shunts,ohms converter, and ac converter provide the A/D converter with a dc analog voltage representative of the input (ac volts, dc volts, ac current, dc current, or resistance) applied to the instrument. The path that each input signal follows as it is conditioned for the A / D converter is illustrated in Figure 3-1.

3-8. $D C$ voltages applied to the input terminals are directed via function switch contacts directly to the A / D converter in the 200 mV and 2 V ranges but to the input divider in higher ranges. The input divider divides it by 10,100 or 1000 in the 20,200 and 1200 volt ranges respectively. The A/D converter is provided with a dc voltage level, representing full scale, of 200 mV for the 200 mV range and two volts for the 2 V through 1200 V ranges.

3-9. An ac voltage input to the instrument is applied through switch contacts to the ac converter. The converter then changes the ac input to an equivalent dc voltage for the 200 mV and 2 V ranges. In the 20 V through 1200 V ranges the feedback within the ac converter is changed by reed relays so that the dc voltage output to the A / D converter is two volts for a full scale indication on the 20 V and 200 V ranges and 1.2 volts on the 1200 V range.

3-10. When making a resistance measurement the unknown resistance, connected across the input, is supplied with a known value of current by the ohms converter and input divider. The voltage drop across the unknown resistance is then applied to the A / D converter as a direct representation of that resistance. The input divider is used to change the amount of current applied to the unknown resistance when different ranges are selected.

3-11. When making current measurements (ac or dc) the unknown current is applied directly, via the MA INPUT terminals, to the current shunt. The unknown current is directed, via the range switch contacts, through a precision resistor network so that the voltage developed

Figure 3-1. OVERALL FUNCTIONAL BLOCK DIAGRAM
across the known resistance is representative of the unknown current. In the case of dc current inputs the representative dc voltage is applied directly to the A / D converter, while in the case of ac current inputs the representative ac voltage is directed to the ac converter first and then to the A / D converter as an equivalent dc voltage.

3-12. A/D Converter

3-13. The A/D Converter receives the dc voltage output from one of the Input Signal Conditioners and integrates it for 100 mS . Figure 3-2 is an illustration of the output of the integrator. The slope of the integrator output voltage during the Integrate Period is directly proportional but opposite in polarity to the A/D Converter input. At the end of the integrate period the signal conditioner output is disconnected from the A / D input and a dc reference voltage is connected to the input. The A / D converter then integrates the reference voltage, of opposite polarity, which results in a constant slope returning the integrator output toward zero (Read Period). Since the read period slope is held constant the time required for the A / D integrator output voltage to return to zero is proportional to the instrument input.

3-14. The digital representation of the input is obtained by counting the number of cycles of a clock frequency that occur from the start of the read period to the point where the A / D integrator output voltage returns to the zero detect level. The A/D Converter supplies the Control and Display section with a compare signal at the end of the read period. The compare signal stops the counting of the clock oscillator pulses so that the analog value of the instrument input is now digitally represented by the number of oscillator pulses counted in the $41 / 2$ digit counter.

3-15. Control and Display

3-16. The Control and Display section provides the properly timed signals that direct the correct Input Signal Conditioner output to the A/D Converter during the integrate period. At the end of integrate time period the Control and Display section connects the appropriate reference supply to the A / D Converter input for the read period. The output of a 1 MHz oscillator is used to maintain the proper timing of the control signals as well as provide the base frequency from which the 100 kHz clock signal for the read period is produced.

Figure 3-2. TIMING DIAGRAM FOR DUAL.SLOPE AID CONVERSION
3.17. The clock oscillator pulse count, accumulated during the read period, is applied to the LED display to produce the digital readout of the instrument input sig. nal. The range information from the selected range switch positions the decimal point and illuminates the proper display annunciator.

3-18. Data Output Unit (DOU)

3-19. The DOU provides the display data as a rear panel card-edge output. The bed information presented to the instrument display (polarity, overload, range code, and digit) is also applied to the DOU input. A busy flag is provided so that the output data may not be used while the 8600 A is feeding a new input measurement to the DOU. A register pulse train plus one of the data strobe signals time the data transfer to insure that all the data supplied to the DOU output is stable and not taken during transition periods. For detailed information refer to Section 6.

3-20. CIRCUIT DESCRIPTION

3-21. The following circuit descriptions are keyed to the functional blocks defined in the overall functional block diagram of Figure 3-1. Corresponding functional blocks are defined in more detail using either simplified block dia-
grams or by referring to the schematics. Schematics for the 8600A circuits are provided in Section 8.

3-22. Input Signal Conditioners

3-23. INPUT DIVIDER

3-24. The Input Divider comprises a series connected resistor network (R3, R4, R5, R6, R7, and R8) totaling approximately ten megohms. This network is tapped at three points to provided division ratios of $10: 1,100: 1$, and 1000: 1. Relays K2, K3, and K4 each select one of the division ratios; as directed by the range switches.

3-25. OHMS CONVERTER

3-26 The Ohms Converter produces a known amount of current that, when applied to an unknown resistance (Rx) connected across the $V \Omega$ terminals, will develop a voltage (Vx) proportional to the value of Rx. Producing the known amount of current is accomplished with a current follower, U1, two feedback loops, and a current source (U3 and Q3). One feedback loop is from the V $\Omega \mathrm{HI}$ terminal to the noninverting input of U1 (Pin 3). The voltage of this loop is applied to the A/D Converter. The other feedback loop is from the output of U1 through R20 and R90 to the inverting input of U1 (Pin 2). The current source (U3 and Q3)
controls the loop and consequently the bias on U1. The current output from Ul changes for each range (refer to table 3-1) but is constant within each range. Figure 3-3 is a simplified circuit diagram.

3-27. With $\mathrm{Rx}=0(\mathrm{~V} \Omega \mathrm{HI}$ shorted to $\mathrm{V} \Omega \mathrm{LO})$ there is OV at the noninverting input of U1. U3 has a negative reference voltage applied to its noninverting input and a greater negative voltage applied to its inverting input. This produces a positive output from U3 and allows Q3 to conduct. Q3 conducts an amount of current such that the voltage drop on R35 equalizes the input voltages on Pins 2 and 3 of U3. The amount of current required by Q3 is constant in all operating conditions. As Q3 is turned on, a negative voltage is applied to the inverting input of U1. The negative input causes the output of U 1 to go positive until the current through R20 and R90 satisfies the current requirement of Q 3 . The voltages at that point are +10 V out of U 1 , and OV at the inverting input of U 1 , matching the OV at the noninverting input of U 1 . The 10 V out of U 1 is dropped across the input divider network. Ten volts is maintained across the input divider in all ranges except the $20 \mathrm{M} \Omega$ range. Relay K 5 energizes in the $20 \mathrm{M} \Omega$ range to change the feedback loop (R20 and R90) by a factor of 1

Figure 3-3 OHMS CONVERTER BLOCK DIAGRAM

Table 3-1. OHMS CONVERTER OPERATING CONDITIONS

$\begin{array}{r} \text { 8600A } \\ \text { RANGE } \end{array}$	Ro	Ro $+10 \mathrm{~K} \Omega$	Ix	Rx Max.	RANGE RELAY				A-D RANGE
					K2	K3	K4	K5	
$20 \mathrm{M} \Omega$	$9990 \mathrm{~K} \Omega$	10,000K Ω	$0.1 \mu \mathrm{~A}$	$20 \mathrm{M} \Omega$				X	2 V
$2000 \mathrm{~K} \Omega$	$9990 \mathrm{~K} \Omega$	$10,000 \mathrm{~K} \Omega$	$1 \mu \mathrm{~A}$	$2000 \mathrm{~K} \Omega$					2V
200	$990 \mathrm{~K} \Omega$	1,000K Ω	$10 \mu \mathrm{~A}$	$200 \mathrm{~K} \Omega$	X				2 V
20	$90 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$	$100 \mu \mathrm{~A}$	$20 \mathrm{~K} \Omega$		X			2 V
2	0Ω	$10 \mathrm{~K} \Omega$	$1000 \mu \mathrm{~A}$	$2 \mathrm{~K} \Omega$			x		2 V
200Ω	0Ω	$10 \mathrm{~K} \Omega$	$1000 \mu \mathrm{~A}$	200Ω			X		0.2V

Table 3-2. AC CONVERTER RELAY OPERATION

8600A RANGE	K4	K6	K7	K8	A-D RANGE
1200VAC	X			X	2 V
200VAC	X		X		2 V
20 VAC	X	X			2 V
2 VAC	X				2 V
200 mVAC	X				0.2 V

3-30. AC CONVERTER

3-31. The AC Converter produces a dc output voltage proportional to the ac input voltage. Table $3-2$ presents the relay conditions for each ac volts range; relay K 4 is located on the Input Divider pcb and closes to apply the

AC Converter output to the A-D Converter. Figure 3-4 is a simplified circuit diagram of the AC Converter.

3-32 With no ac signal applied to the $V \Omega$ terminals, Q 1 , U 1 , and Q 7 are biased on such that the current flowing through CL1 and Q7 produces OV at the collector of Q7. An ac signal is coupled by $C 1$ from the $V \Omega$ terminals to input impedance resistor, R17. The ac signal is then applied to the inverting input of Q1 and U2. The network composed of Q1, U2, CR5, Q7, CR11, CR12, and R46 (or R37, R47, and R38 depending on the range selected) is a form of logarithmic amplifier. The net result is that the de level detected by CR12 and filtered by the low pass (L.P.) filter is proportional to the RMS equivalent of the ac voltage applied to the $V \Omega$ terminals. The dc level from the L.P. filter is applied to the A/D Converter. The degree of logarithmic response is determined by the feedback resistance

Figure 3-4 AC CONVERTER BLOCK DIAGRAM
(R46, R37, R47, and R38) selected by the range relays. The positive half of the signal applied to CR12 is distorted by the action of Q7 and CL1. CL1 presents a variable load to Q7 so that for the positive half cycle, as Q7 draws less current, the voltage on the collector of Q7 rises more rapidly than it would with a purely resistive load. The distortion is introduced to minimize errors in small signal measurements caused by the turn-on time of CR.12. The distortion is removed for feedback purposes by the arrangement of R51, C16, and R26. During autozero the A/D Converter is referenced to the offset voltage (stored on capacitors) created by the bias requirements of the circuit. The offset voltage reference is protected from overvoltage conditions by Q8 and Q9.

3-33. CURRENT SHUNT

3-34. The Current Shunt produces an output voltage (ac or dc) proportional to the current (ac or dc) applied to the input. A schematic diagram of the Current Shunt is located in Figure 8-1.

3-35. The Current Shunt consists of series connected shunt resistors R13, R14, R15, R16, and R2, contacts of range switches S 6 through S 10 , and input protection components F1, CR1, CR2, CR6 and CR8. The input current is applied across a portion of the shunt resistor network via contacts of the selected range switch. The voltage developed by the current flow through the shunt resistance for direct current inputs is applied to the A-D Converter; for alternating current the developed ac voltage is applied to the AC Converter.

3-36. The Current Shunt is not only protected against inputs exceeding two amperes, as provided by fuse F1, it is also protected from possible damage caused by an overrange input. Diodes CR1, CR2, CR6, and CR8 will start to conduct if the voltage drop across the shunt resistors exceeds 1.2 volts.

3-37. A/D Converter

3-38. The A-D Converter uses a dual-slope conversion technique. The dc voltage at the input of the A-D Converter is integrated (charges a capacitor) for a controlled amount of time (100 ms). The level to which the capacitor is charged is directly proportional to the level of dc voltage applied to the input. The charged capacitor is then discharged at a controlled rate so that the discharge time is proportional to the level of charge on the capacitor. The discharge time is measured by counting the number of cycles of a reference frequency that occur from the start of discharge to the point where the capacitor reaches a selected zero detect level. Figure 3-5 is a basic illustration of the A-D Converter. The Input Divider is shown as the A-D Converter input voltage source.

3-39 The dc voltage from the input divider is gated through Q14 to the noninverting input of buffer, U4, by the 100 msec integrate (INT) control signal. The output of U 4 is applied to the inverting input of integrator, U 5 . C 28 is charged by U5 and U4 through R80, except that in the lowest range the charge path is through R66 and R80. The slope of the output voltage from U5 is proportional and opposite in polarity to the level of the dc voltage from the input divider. The output of U5 is applied to the input of comparator, U6. As the output of U5 changes away from $0 V$, the output of U6 changes from random noise to a steady state of either OV or +5 V , depending on the polarity of the dc voltage from the input divider. At the end of the integrate period Q14 is turned off, U4 and U5 no longer charge C28, and the charge on C28 is held. Also at the end of the integrate period, the state of the output of U6 is memorized in the DVM IC, U8. An appropriate read reference is selected in $\mathrm{U} 8 . \mathrm{DE}(+\mathrm{R})$ is selected for negative voltages from the input divider, or $\mathrm{DE}(-\mathrm{R})$ is selected for positive voltages. $\mathrm{DE}(+\mathrm{R})$ enables Q16, which applies the +1 V reference from U17 to the input of U 4 . $\mathrm{DE}(-\mathrm{R})$ enables Q 21 , which applies the -1 V charge on C22 to the input of U 4 (in the lowest range $\pm .1 \mathrm{~V}$ is selected as the reference). A delay of $15 \mu \mathrm{sec}$ is introduced in U8 between application of the read reference and the start of the counter. The delay allows adjustment of the zero detect level for comparator, U6. The read reference voltage applied to U 4 allows U 4 and U 5 to discharge C28. The slope of the output of U5 is always the same for the reference applied (1 V or .1 V). The charge on C 28 is proportional to the voltage from the input divider. Therefore the time required to discharge C28 is propor: tional to the voltage from the input divider. When the output of U5 crosses the zero detect level, the output of U6 changes state, producing the compare output applied to U8. The compare signal stops the counter in U8. The number of counts is proportional to the voltage from the input divider.

3-40. After the A-D Converter has integrated the unknown input voltage, integrated the reference voltage, and produced the compare output; the circuits of the converter are zeroed for a new measurement. An auto zero (AZ) control signal from U8 will enable Q15 and Q22 to zero the comparator circuits. The AZ control signal will also enable Q17 to charge capacitor C 22 to the reference voltage level. This provides the negative reference voltage, when Q21 is enabled, needed to process a positive input voltage.

3-41 The different zero detect levels applied to U6

 compensate for the $15 \mu \mathrm{sec}$ delay introduced at the end of the integrate period. The delay and subsequently different zero detect levels are used to facilitate a solid zero display in the presence of noise with no input. Also errors due to noise are minimized. The zero detect levels are determined by the logic levels of the read reference switches and the associated resistive network.

Figure 3-5 A/D CONVERTER BLOCK DIAGRAM

3-42. Control and Display

3-43. The control portion of the instrument consists of contacts of the range and function switches, a three-pole-double-throw switch U16, a bipolar ROM U9, and custom integrated circuit $U 8$. The range and function switch positions in conjunction with strobe signal inputs to U16, control the illumination of the polarity indicator on the display and the selection of five or six ranges for the autorange feature. Refer to Figure 8-1 for the schematic diagram of the control circuits.

3-44 All timing and control information is developed in the DVM IC, U8, from an external clock consisting of Y1 and U7. Range information can be manually programed by the front panel range and function switches, or automatically programed by U8. Eight strobe signals (STOST7) are developed in U8 and are used for range programming and display timing. Digit information from the counter is strobed out in bcd format on lines W, X, Y, and Z (weighted $8,4,2$, and 1 respectively). The strobe signals are strobed sequentially but the digit information presented on $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z is interleaved. The main significant digit (MSD) without polarity appears at STO. The MSD with polarity is presented at ST7. For the display, either STO or ST7 is selected by U16, which is programed by the function switches. The second significant digit (2SD) appears on W, X, Y, and Z at ST2, the 3SD at ST4, the 4SD, at ST6, and the 5SD at ST1. W, X, Y, and Z present the digit information to a seven segment decoder, U10. The strobe signals light the appropriate display LED, U11U15, through the strobe drivers, Q29-Q39. The decimal point logic (DPL) from U8 outputs a signal at the appropriate strobe signal. For the lowest range and the $20 \mathrm{M} \Omega$ range, lower or upper annunciators will light.
3.45 Range information outputs from U8 appear at a, b, and c (pins 29,28 , and 30) which are weighted 4,2 , and 1 respectively. The range information is also presented on W, X, Y, and Z at ST5 for the DOU output. The outputs at a, b, and c are steady state outputs applied to U9. U9 interprets the information and selects the appropriate relays. Range truth tables are included in table 4-12. In all cases the output of U 9 goes low to select a relay because Relay Common is connected to +5 V through S4A (DCmA). Relay, K1, is energized only in the $20 \mathrm{~V}, 200 \mathrm{~V}$ and 1200 V ranges of the DCV function. K1 inserts the Input Divider between $\mathrm{V} \Omega \mathrm{HI}$ terminal and the A / D Converter. The lower two ranges are applied directly to the A/D Converter. In the lowest range for all functions U17 selects the 1 V reference and switches R66 into the charge path of C28. In range programming $U 8$ the α input sets the upper range limit and the β input sets the lower limit. Strobe signals are applied through U16 and the range switches to the α and β inputs. For manual range programming α and β are tied together by U16. S6-S11 apply the appropriate

ST signal (ST3 for the 20 V range etc.). In autoranging β is always connected to ST1 as the lower limit and α is connected to ST5 (5 ranges) for DCV and ACV functions and to ST6 for the Ohms function.
3.46 For A/D Converter timing all outputs (INT, AZ, $\mathrm{DE}(+\mathrm{R})$, and $\mathrm{DE}(-\mathrm{R})$) from U 8 are logic NOT outputs. For example the INT output (pin 40) varies between OV and -15 V . During the integrate signal pin 40 stops conducting and goes to -15 V , biasing the driver, Q10, off. The gate of Q14 goes to -2 V allowing it to conduct. At the end of the integrate signal pin 40 conducts and goes to OV, biasing Q10 on which drives the gate of Q14 to -15 V , cutting Q14 off. The other control signals work the same way except that the gates of the FETs go to OV during their signal on times.

Section 4

Maintenance

Abstract

WARNING!

\section*{these servicing instructions are for use by qualified personnel only. to avoid ELECTRIC SHOCK, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN THE OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.}

4-1. INTRODUCTION

4-2. This section of the manual contains information concerning maintenance and servicing of the Model 8600A Digital Multimeter. A calibration interval of 6 months is recommended to insure instrument operation within the 6 month specifications. Test equipment recommended for performance tests, calibration adjustments and troubleshooting is listed in Table 4-1. If the recommended equipment is not available, equipment of equivalent specifications may be used.

4-3. SERVICE INFORMATION

44. Each instrument manufactured by the John Fluke Mfg. Co., Inc. is warranted for a period of one year upon delivery to the original purchaser. The WARRANTY is printed on the back of the title page located at the front of the manual.

4-5. Factory authorized calibration and service for each Fluke product is available at various world wide locations. A complete list of these Technical Centers is included in Section 7. Shipping information is given in Section 2 of this manual. If requested, an estimate will be provided to the customer before any repair work is begun on instruments that are beyond the warranty period.

Table 4-1. REQUIRED TEST EQUIPMENT

NOMENCLATURE	MINIMUM USE SPECIFICATIONS	RECOMMENDED EOUIPMENT
AC Calibrator	Voltage Range: 0 to 1000 V ac Frequency Range: 30 Hz to 100 kHz Voltage Accuracy: $\begin{aligned} & 30 \mathrm{~Hz} \text { to } 50 \mathrm{~Hz} . \ldots .0^{0.05 \%} \\ & 50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} . . .0 .0 .02 \% \\ & 10 \mathrm{kHz} \text { to } 100 \mathrm{kHz} . .0 .0 .05 \% \end{aligned}$	John Fluke Model 5200A and 5205A
DC Calibrator	Voltage Range: 0 to 100 V dc Accuracy: $\pm 0.003 \%$	John Fluke Model 343A
DC Current Calibrator	Current Range: 0 to 2 mA Accuracy: 0.006%	John Fluke Model 382A
DC Current Calibrator	Current Range: 2 mA to 2 A Accuracy: 0.02%	John Fluke Model 382A
Digital Multimeter	Voltage Accuracy: 0.1% Input Impedance: $1000 \mathrm{M} \Omega$	John Fluke Model 8600A
Resistor Decade	Resistance Accuracy: $\pm 0.01 \%$	ESI 1063B
Oscilloscope	General Purpose with $10 \mathrm{M} \Omega$ probe	Tektronix 465

4-6. GENERAL MAINTENANCE

4-7. Access/Disassambly

4-8. Use the following procedure to gain access to the interior of the 8600A.
a. With the power switch in the OFF position, disconnect the line cord.
b. Remove the Phillips screw from the rear of the instrument case.
c. Remove the instrument from the case.

4-9. The ohms converter, ac converter and input divider printed circuit boards can be removed from the main board. The ohms converter and input divider boards can be removed by pulling them straight up from the main board until they are free of the connector pins. The ac converter, however, must be removed with care because of a wire connection to the ACMA switch. When the ac converter is free of the connector pins it should then be held to one side so the buss wire can be disconnected.

NOTE!

When reinstalling the plug-in boards, insure that all connector pins are properly aligned before seating the board.

4-10. Cleaning

4-11. Clean the instrument periodically to remove dust, grease and other contamination. Use the following procedure:
a. Clean the interior with clean, dry air at low pressure (20 psi). The contaminants on printed circuit boards can first be loosened by spraying them with Freon T.F. Degreaser (MS 180), then removed with low pressure air.
b. Clean the front panel and exterior surfaces with anhydrous ethyl alcohol or a soft cloth dampened with a mild solution of detergent and water.

4-12. Fuse Replacement

4-13. The power fuse (F2) is located on the main printed circuit board near the power transformer. Access to the fuse is accomplished by following the Access/Disassembly procedure found in this section of the manual. If replacement is necessary, use a $1 / 8$ ampere fuse for either 115 V ac or 230 V ac power configuration ($1 / 2$ ampere fuse for 8600A-01). The MA HI terminal is a fuse holder for current overload protection. Using a screwdriver, turn the
terminal $1 / 4$ turn counterclockwise. Replace the fuse with a 2A AGX, fast blow, fuse.

4-14. PERFORMANCE TESTS

4-15. The following tests are intended for use in performance testing of the 8600 A . The tests compare the instrument performance to the accuracy specifications and are especially suited to acceptance testing of new instruments. Tests should be conducted under the following conditions: ambient temperature $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, relative humidity less than 80%.

$$
\text { NOTE! }
$$

Tolerances and test limits for performance
tests are derived from the 6 month instrument
specifications.

4-16. DC Voltage Test

4-17. Using the dc voltage calibrator, sequentially apply the voltages indicated in Table $4-2$ to the 8600 A V- Ω input terminals and select the ranges prescribed. The 8600A should display a reading within the indicated limits.

4-18. Ohms Test

4-19. Using the resistor decade, sequentially apply the resistance values indicated in Table 4-3 to the 8600A V- Ω input terminals, and select the ranges prescribed. The 8600A should display a reading within the indicated limits.

Table 4-2. DCV PERFORMANCE TEST

8600A RANGE	INPUT REQUIRED	8600A DISPLAY LIMITS
200 mV	+190.00 mV	+189.90 to 190.10 mV
200 mV	-19.000 mV	-18.97 to 19.03 mV
2 V	+1.9000 V	+1.8995 to 1.9005 V
2 V	-1.9000 V	-1.8995 to 1.9005 V
2 V	+.9000 V	+.8997 to .9003 V
20 V	+19.000 V	+18.995 to 19.005 V
20 V	-19.000 V	-18.995 to 19.005 V
200 V	+190.00 V	+189.95 to 190.05 V
1200 V	+1000.0 V	+999.7 to 1000.3 V
AUTO	-.17000 V	-169.91 to 170.09 mV
AUTO	-1.7000 V	-1.6996 to 1.7004 V
AUTO	-17.000 V	-16.996 to 17.004 V
AUTO	-170.00 V	-169.96 to 170.04 V
AUTO	-1000.0 V	-999.7 to 1000.3 V

Table 4-3. OHMS PERFORMANCE TEST

8600A RANGE	INPUT REQUIRED	8600A DISPLAY LIMITS
AUTO	SHORT	00.00 to 00.03
AUTO	100.00Ω	99.87 to 100.13
AUTO	$1.0000 \mathrm{k} \Omega$.9989 to 1.0011
AUTO	$10.000 \mathrm{k} \Omega$	9.994 to 10.006
AUTO	$100.00 \mathrm{k} \Omega$	99.94 to 100.06
AUTO	$1000.0 \mathrm{k} \Omega$	999.4 to 1000.6
AUTO	$10.000 \mathrm{M} \Omega$	9.979 to 10.021
AUTO	OPEN	18.888 Flashing
		(20M Ω LED lit)

4-20. DC Current Test

4-21. Using the de current calibrator (check Table 4-1 for correct calibrator) sequentially apply the values of dc current indicated in Table 4-4 to the 8600A MA input terminals and select the ranges prescribed. The 8600A should display a reading within the indicated limits.

Table 4-4. DC CURRENT PERFORMANCE TEST

RANGE	INPUT	READING
$200 \mu \mathrm{~A}$	Open	-00.05 to +00.05
$200 \mu \mathrm{~A}$	$+190.00 \mu \mathrm{~A}$	+189.79 to +190.21
2 mA	+1.9000 mA	+1.8979 to +1.9021
20 mA	+19.000 mA	+18.979 to +19.021
200 mA	+190.00 mA	+189.79 to +190.21
2000 mA	+1.9000 A	+1897.9 to +1902.1

NOTE!

Because the current measurements of ac and $d c$ are made using the same shunt resistors; a check of ac current is not made.

4-22. AC Voltage Test

4-23. Using the ac voltage calibrator, apply the ac voltages indicated in Table $4-5$ to the 8600A $\mathrm{V}-\Omega$ input terminals and select the ranges prescribed. The 8600A should display a reading within the indicated limits.

4-24. CALIBRATION

4-25. Introduction

4-26 The 8600A should be calibrated every 6 months or whenever repairs have been made, to insure the instrument continues to operate at its rated accuracy. After calibration is completed, the DC current performance test, paragraph
$4-20$ should be run through to verify the functioning and accuracy of the current dividers. The calibration should be performed under the following environmental conditons; ambient temperature of $23^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}$ and a relative humidity of less than 80%. Refer to Table $4-1$ for the recommended test equipment. Calibration adjustment locations are pictured in Figure 4-1. Perform the following preliminary steps before calibrating the instrument.
a. Remove the instrument from the case.
b. Connect the 8600 A to the appropriate $(115 \mathrm{~V}$ ac or 230 V ac) line power.
c. Turn the instrument on and allow it to warm-up for a minimum of 15 minutes.
d. Insure that the ac and dc calibrators are up to their normal operating temperatures.

NOTE!

Use only non-metalic adjustment tools.

Table 4-5. ACV PERFORMANCE TEST

8600A RANGE	INPUT REQUIRED	FRE- QUENCY Hz	8600A DISPLAY LIMITS
200 mV	190.00 mV	70 kHz	188.05 to 191.95 mV
200 mV	190.00 mV	500 Hz	189.46 to 190.54 mV
200 mV	39.00 mV	30 kHz	38.60 to 39.40 mV
2 V	1.9000 V	500 Hz	1.8959 to 1.9041 V
2 V	.9000 V	500 Hz	.8979 to .9021 V
2 V	1.9000 V	50 kHz	1.8900 to 1.9100 V
2 V	1.9000 V	100 kHz	1.8800 to 1.9200 V
2 V	1.0000 V	30 Hz	.9945 to 1.0055 V
20 V	19.000 V	500 Hz	18.959 to 19.041 V
20 V	19.000 V	70 kHz	18.800 to 19.200 V
200 V	190.00 V	500 Hz	189.59 to 190.41 V
200 V	100.00 V	30 kHz	99.45 to 100.55 V
1200 V	1000.0 V	500 Hz	996.9 to 1003.1 V
1200 V	1000.0 V	20 kHz	994.0 to 1006.0 V

4-27. DC Volts Calibration

4-28. The calibration procedure for the DCV FUNCTION of the 8600 A is presented in Table 4-6. Use the recommended dc voltage calibrator (see Table 4-1) to apply the prescribed dc voltages to the V- Ω INPUT terminals and, where required, make the adjustments to meet the specified display limits.

Figure 4-1. CALIBRATION AD.IUSTMENT LOCATIONS

Table 4-6. DC VOLTS CALIBRATION PROCEDURE

STEP	8600A RANGE	INPUT REQUIRED	ADJUSTMENT	8600A DISPLAY LIMITS
1 Select the VDC FUNCTION switch on the front panel.				
2	200 mV	Short	none	-00.01 to +00.01
3	200 mV	$1 \mathrm{M} \Omega^{*}$	C24	-00.01 to +00.01
4	200 mV	+.19V	none	note display reading
5	200 mV	-.19V	C30	within 1 digit of step
6 (Repeat steps 3, 4, and 5 until each step is within limits)				
7	20 V	open	none	± 00.00 to +00.61
8	2 V	$+1.9000 \mathrm{~V}$	R57	+1.8999 to +1.9001
9	2 V	$-1.9000 \mathrm{~V}$	R57	-1.8999 to -1.9001
10 (Repeat steps 8 and 9 until both are within limits)				
11	2 V	+0.9000V	none	+0.8999 to +0.9001
12	200 mV	$+190.00 \mathrm{mV}$	none	+189.95 to +190.05**
13	200 mV	$-190.00 \mathrm{mV}$	none	-189.95 to -190.05^{*}
14	20 V	+19.000V	R4	+18.999 to +19.001
15	20 V	-19.000V	R4	-18.999 to -19.001
16 (Repeat steps 14 and 15 until both are within limits)				
17	200 V	$+190.00 \mathrm{~V}$	R6	+189.99 to +190.01
18	1200V	+1000.0V	R8	+999.9 to +1000.1
**	resistor acros on the displa			

4-29. Ohms Calibration

4-30. The calibration procedure for the $\mathrm{K} \Omega$ function of the 8600 A is presented in Table 4-7. Use the recommended resistor decade (see Table 4-1) to apply the prescribed resistances to the $V \Omega$ INPUT terminals and, where required, make the adjustments to meet the specified display limits.

CAUTION!

Remove any applied voltage from the 8600A input terminals before starting the Ohms Calibration.

4-31. AC Volts Calibration

4-32. The calibration procedure for the ACV FUNCTION of the 8600A is presented in Table 4-8. Use the recommended ac voltage calibrator (see Table 4-1) to apply the prescribed ac voltages at the indicated frequencies to the $\mathrm{V} \Omega$ INPUT terminals and, where required, make the adjustments to meet the specified display limits.

4-33. TROUBLESHOOTING

4-34. The following information is provided to assist in locating malfunctions in the 8600 A . It is recommended that the theory of operation in Section 3 be read completely before attempting to troubleshoot the instrument.

Table 4-7. OHMS CALIBRATION PROCEDURE

STEP	8600A RANGE	INPUT REQUIRED	ADJUSTMENT	8600A DISPLAY LIMITS	
1	Depress the K Ω FUNCTION switch on the front panel.				
2	200	Short	none	0.00 to 00.02	
3	$2000 \mathrm{k} \Omega$	$1000.0 \mathrm{k} \Omega$	R 21	999.9 to 1000.1	
4	2	$1.0000 \mathrm{k} \Omega$	R27	.9999 to 1.0001	
5	$20 \mathrm{M} \Omega$	$10.000 \mathrm{M} \Omega$	R 29	9.997 to $10.003 \mathrm{M} \Omega$	

Table 4-8. AC VOLTS CALIBRATION PROCEDURE

STEP	$\begin{aligned} & \text { 8600A } \\ & \text { RANGE } \end{aligned}$	INPUT VOLTAGE REQUIRED		ADJUSTMENT	8600A DISPLAY LIMITS
1	Simultaneously select the ACMA and DCV FUNCTION switches. *				
2	1200 V	none	none	R72	-20.0 to -30.0
3	Select the VAC FUNCTION switch on the front panel.				
4	2	1.9000 V	500 Hz	R50	1.8998 to 1.9002
5	2	0.9000 V	500 Hz	none	. 8997 to . 9003
6	200	190.00 V	500 Hz	none	189.90 to 190.10
7	200	190.00 V	50 kHz	C2	189.95 to 190.05
8	2	1.9000 V	50 kHz	C19	1.8995 to 1.9005
9	Repeat steps 7 and 8 until both are within limits				
10	2	1.9000 V	100 kHz	none	1.8875 to 1.9125
11	2	1.9000 V	30 Hz	none	1.8950 to 1.9050
12	20	19.000 V	500 Hz	none	18.990 to 19.010
13	20	19.000 V	50 kHz	C10	18.990 to 19.010
14	200 mV	190.00 mV	50 kHz	none	189.80 to $190.20 * *$
15	200 mV	190.00 mV	500 Hz	none	189.85 to $190.15^{* *}$
16	200 mV	39.00 mV	500 Hz	none	38.90 to $39.10^{* *}$
17	1200 V	1000.0V	500 Hz	none	998.0 to 1002.0
18	1200V	1000.0V	20 kHz	none	996.0 to 1004.0

* Simultaneous selection of bothfunction switchesconnects the positive 25 mV AC Converter offset to the A-D Converter auto zero input. The A-D Converter action causes the negative display of STEP 2.
* 200MV LED on the display should be on.

4-35. Initial Troubleshooting

4-36. The troubleshooting techniques given below should be completed as the first step toward repairing any apparent malfunction in the unit. Improper operation may not always be caused by failures within the 8600 A . The following reminders of basic fault isolation techniques will help determine if the cause is the result of an internal failure or faulty external connection.
a. Carefully check the 8600A control settings: some false indications may be caused by an incorrect or overlooked control setting.
b. Check associated equipment: insure that associated equipment controls and connections are correct.
c. Check the 8600A performance: the performance test (par. 4-14) will determine if the malfunction is in the 8600A.
d. Carefully inspect the interior of the instrument: check for physically damaged parts, loose or broken wires, and improperly seated plug-in assemblies.

4-37 When it has been determined by the above checks that the malfunction is within the 8600 A multimeter, the following procedure should be used to isolate the problem area. The recommended test equipment for troubleshooting this instrument is listed in table 4-1. A troubleshooting flow chart is included in figure 4-2 as an aid in repairing the instrument. Performance tests given in the beginning of this section are referred to by paragraph number and table number. Tests contained in the following sections are referred to by paragraph number. In addition portions of the theory of operation section relevant to the correct operation of the circuitry in question are referred to by paragraph number.

NOTE

Refer to the appropriate schematic for the electrical location of test points specified. Physical test point connectors may not appear on some pcbs.

Figure 4-2 TROUBLESHOOTING FLOW CHART

4-38. Power Supply Checks

4-39. Incorrect output voltages from the +5 volt, +15 volt, or -15 volt supplies may cause the unit to exhibit various improper indications. Because of this the power supplies should be checked in the event of any 8600 A malfunction. Use the following procedure to check the power supply output voltages.
a. Connect the test equipment multimeter return lead to the $V-\Omega$ LOW input terminal.
b. Connect the high input lead to TP12, the +5 volt supply. The power supply voltage should be
+4.75 V to +5.75 .
c. Connect the high input lead to TP4, the -15 volt supply. The power supply voltage should be -15.0 ± 0.5 volts.
d. Connect the high input lead to TP5, the +15 volt supply. The power supply voltage should be $+15.0 \pm 0.5$ volts.

4-40. Fault Area Isolation

4-41. A malfunction in the 8600A may be isolated to a particular section of the circuitry by observing the front panel display during each mode of operation. The performance tests (par. 4-14) will exercise the 8600A in each function in order to determine the functional operations of the unit affected by the failure.

4-42. The indications observed during the 8600A operation in each of four functions (VDC, VAC, Ohms, and DC current) may isolate the failure to a particular area. Table 4-9 lists the fault area indicated by various combinations of proper or improper 8600A operation in each of the four functions exercised in the performance test.
443. Troubleshooting information for the indicated fault area is presented in the following paragraphs. Proceed to the troubleshooting information for the indicated failure area. It should be kept in mind that some failures may cause improper operation of functional areas other than the one actually containing the problem.

4-44. INPUT DIVIDER

4-45 Problems in the Input Divider will generally give improper operation in the DCV and OHMS functions, leaving other functions unaffected. There are exceptions, however. For example the relay, K4, must be energized in all ACV ranges to connect the output of the AC Con-

Table 4-9. FAULT AREA INDICATION

8600A FUNCTION	8600A OPERATION - PROPER OR IMPROPER				
VDC	IMPROPER	PROPER	PROPER	PROPER	IMPROPER
OHMS	IMPROPER	IMPROPER	PROPER	PROPER	IMPROPER
DCI	PROPER	PROPER	IMPROPER	PROPER	IMPROPER
VAC	PROPER	PROPER	PROPER	IMPROPER	IMPROPER
FAULT AREA INDICATED	INPUT DIVIDER	OHMS CONVERTER	CURRENT SHUNT	AC CONVERTER	A/D CONVERTER OR CONTROL AND DISPLAY

verter to the input of the A/D Converter. By inserting a voltage at TP11, all input signal conditioners will be bypassed. The operation of the A/D Converter and the Control and Display sections (with the exception of the range controls) can be checked with the following test. If the instrument passes this test, the indication is that the fault is in the Input Divider or in the range selection.
a. Select the DCV function and the 200 mV range.
b. With no input to the $\mathrm{V} \Omega$ terminals, check the voltage at TP11, and at buffer input (U4 pin 3). If it is $O V$ proceed to the next step. A voltage on TP11 or at the buffer input indicates that one of the control FETs (Q14, Q15, Q16, Q17, Q21) or Q13 or Q11 may be shorted or leaky.
c. Connect +190 mV to TP11 and the return lead to TP3. Refer to table 4-10 and observe the front panel display as the front panel range switches are changed.

RANGE SETTING	DISPLAY
200 mV	+190.00
2 V	$+\quad .19$
20 V	+1.90
1200 V	+19.00
AUTO	DECIMAL MAY BE
REPEAT FOR NEGATIVE INPUT	

Table 4-10 INPUT DIVIDER TEST

4-46. OHMS CONVERTER

4-47. An instrument malfunction affecting only the ohms mode of operation is generally the result of the ohms converter producing an improper level of current for the particular resistance range being used. The following procedure should be used to evaluate the operation of the ohms converter.
a. Select the $\mathrm{K} \Omega$ function and 20 K range.
b. Place a good quality short across the V- Ω input terminals.
c. Measure the voltage level at the cathode of CR2. lt should be $+10 \pm 0.1 \mathrm{~V}$ dc.
d. If the voltage is incorrect measure the voltage at pin 3 of U 1 . This point should be 0.00 volts ± 100 microvolts.
e. A voltage level greater than ten volts at CR2 and zero volts at pin 3 of U 1 would indicate that the current source (Q3, U3 and associated components) is supplying more current than normal. If the voltage at CR2 were less than ten volts the current from Q3 would probably be less than normal.
448. The operation of the current source can be checked by measuring the voltage at pins 2 and 3 of U3. The voltage on both pins should be approximately -8.6 volts. Uneven voltages may be caused by improper resistance value of R35 or R91, or a failure in CR10. The voltages at pin 2 and 3 of U 3 may be proper and the current supply from Q3 improper if the gate of Q3 were leaking current back to pin 6 of U3.

4-49. CURRENT SHUNTS

4-50. Failures in the current mode of operation affecting all current ranges would probably be attributed to a failure in one of the following areas: 1) the input fuse (F1) open, 2) one or more of diodes CR1, CR6, CR7, or CR8 shorted, or 3) improper connection in the contacts of function switch S 2 (ACI), or S 4 (DCI) or range switches S6-S10.

4-51. AC CONVERTER

4-52. Generally a failure in the ac converter will do one of two things: 1) create a dc voltage output without an ac input signal applied to the 8600A input terminals or 2) not produce the proper dc voltage output when an ac input is applied to the unit. A dc offset voltage created within the ac converter may cause the multimeter display to indicate some substantial value of ac voltage when a short is placed across the input terminals. When the ac converter failure causes the display to remain at zero when an ac signal is applied to the input, the converter is not producing the proper dc voltage output for the A / D converter.

4-53. The operation of the ac converter can be checked for the dc voltage offset by performing the following procedure.
a. Remove the molded plastic outer case from the 8600A (see par. 4-7 Access/Dissassembly).
b. Remove the ac converter pcb, take the metal shield off the side and reinstall the board into mainframe.

NOTE!
Take care that all the connector pins on the board are properly aligned before seating the $p c b$.
c. Short the V- Ω INPUT terminal HI to LO. Select the 200V RANGE and VAC FUNCTION.
d. Connect the return lead of the test equipment voltmeter to the 8600A V/ Ω LO input terminal.
e. Connect the high input lead to the ac converter output at pin 9 . Note the voltage level.
f. Move the high input lead to pin 10. The voltage level should be the same as that noted in step e.

4-54. A difference in voltage levels between the two pins would be displayed as an offset on the front panel readout. The level at either pin should not exceed +30 millivolts nor be less than +20 millivolt. If the voltage level is too high or there is a difference in voltage level between the two, check current source CL1 or transistors Q1, Q7, and Q9, or capacitors C12 and C13.

4-55. The operation of the ac converter with an ac input applied, observed at the circuit locations described below, may indicate the fault area. With the 8600A in the 2 V range and $\mathrm{AC} V$ function apply a 1 V rms 500 Hz signal to the V / Ω INPUT terminals and proceed as described below.
a. Connect the input return lead of an oscilloscope to the 8600A MA LO terminal.
b. Connect the scope input probe to the ac converter input at the wire connection on S2A. Note the amplitude of the signal; it should be 2.8 volts peak-to-peak.
c. Move the scope input probe to U2 pin 6. The ac signal at this point should be about one-quarter of the amplitude of the input signal, or about 0.7 volts peak-to-peak. If correct go to step e.
d. If the signal is not present at this point or the dc voltage level is close to either the -15 volt or +15 volt supply, $\mathrm{U} 2, \mathrm{Q} 7$, or CLl are probably defective. If the signal is distorted check the operation of Q1.
e. Connect the scope input probe to the base of Q7, the signal here should be one-quarter of the amplitude of the input signal.
f. The ac converter output at pin 9 should be one volt dc plus the dc voltage offset level at pin 10.

4-56. A/D CONVERTER OR CONTROL AND DISPLAY

4-57. An A/D converter or control and display failure will generally affect the operation of the 8600A in all
functions. The exceptions to this would be a malfunction in an individual function's control signal or range relay signal. The following information is provided to aid in isolating problems within the A/D converter and control and display circuitry.

4-58. The A/D Converter can be checked by using the following procedure.
a. Select the DCV function and the 2 V range.
b. Apply +1 V dc to $8600 \mathrm{~A} \mathrm{~V} \Omega$ terminals.
c. Connect the oscilloscope probe to TP2. The probe ground return may be connected to TP3 or the mA LO terminal.
d. The signal at TP2 should be as shown in figure 4-3.

4-59. The stable +5 V section of the waveform shown in figure $4-3$ should be 200 msec long for a +1 V dc input. If the dc input voltage is increased to 2 V , the stable portion of the waveform should be 300 msec long. If the waveform is correct, the problem is in the display section. If the waveform is incorrect, refer to figure $4-4$ for further test points and waveforms in the A/D Converter. Check the waveforms at the buffer, U4, for the correct voltage from Q14 and the appropriate reference (U17, Q17, and Q21). U4 has a gain of 5 so the waveform at its output should be 5 times its input (not inverted). The output of U 5 should be triangular as shown and opposite in polarity to the buffer input.

Figure 4-3. A/D CONVERTER OUTPUT SIGNAL

4-60. The control waveforms and timing are important to the correct operation of the A/D Converter. The waveforms and test points are shown in figure 4-4. Continue with the test setup in 4-58. First check the signal at the gate of the FET. If absent or wrong, check that output from U8, keeping in mind that the driver transistors act as inverters. The operation of U8 with respect to the A/D Converter may be checked as follows.
a. \quad Select DCV function and 2 V range.

Figure 4-4. A/D CONVERTER CONTROL SIGNALS
b. Apply OV dc to TP2 by connecting it to TP3 (ground). Refer to table 4-11 for test points and indications.
c. Apply +5 V dc to TP 2 by connecting it to TP12 (+5 V supply). Refer to table $4-11$ for test points and indications.

4-61. The operation of the range control system can be checked by observing the interaction of U8, U9, U16, and the function switches. For switching between the lowest range and the higher ranges, U17 changes the reference
applied to U4 and the charge path of C28. Table 4-12 contains truth tables for U8 and U9. It also shows which relays are energized in each range and the internal switching arrangements for U16 and U17. To check a questionable range, select the range manually and check the inputs and outputs given in Table 4-12 that affect that range. Keep in mind that relay common is +5 V so in all cases the output of U9 goes low to select a relay. The strobe signals are used to program U8 for the different ranges. U16 together with the range switches apply the ST signals to U8 as explained in Theory of Operation.

TP2 INPUT	FRONT PANEL DISPLAY	AZ U8 PIN 2	INT U8 PIN 40	DE(+R) U8 PIN 38	DE(-R) U8 PIN 39
OV dc					
+5V dc	OVERRANGE	PULSE	PULSE	OV dc	PULSE
OVERRANGE	PULSE	PULSE	PULSE	OV dc	
		PULSE AMPLTTUDE SHOULD BE 15V (FROM OV dc to -15V dc)			

Table 4-11 OPERATION OF U8 WITH RESPECT TO A/D CONVERTER

RANGE SELECTED	U8 OUTPUT PINS			FUNCTION	U9 INPUT PINS	
	29 (a)	28 (b)	30 (c)		10	11
200 mV	0	0	1	ACV	1	0
2 V	0	1	0	AC MA	1	1
20V	0	1	1	DCV	0	1
1200 V	1	0	1	DC MA	1	0
$20 \mathrm{M} \Omega$	1	1	0		0	0
LOGIC $1=+5 \mathrm{~V}$ LOGIC $0=0 \mathrm{~V}$ IN DC mA FUNCTION U9 AND RELAYS INACTIVE						

ACV FUNCTION		DCV FUNCTION	
RANGE	RELAY ENERGIZED	RANGE	RELAY ENERGIZED
$\begin{gathered} 200 \mathrm{mV}, 2 \mathrm{~V} \\ 20 \mathrm{~V} \\ 200 \mathrm{~V} \\ 1200 \mathrm{~V} \end{gathered}$	K4 K4, K6 K4, K7 K4, K8	$\begin{gathered} 200 \mathrm{mV}, 2 \mathrm{~V} \\ 20 \mathrm{~V} \\ 200 \mathrm{~V} \\ 1200 \mathrm{~V} \end{gathered}$	None K1, K2 K1, K3 K1, K4
OHMS FUNCTION		AC MA FUNCTION K4 ENERGIZED IN ALL RANGES	
RANGE	RELAY ENERGIZED		
$\begin{aligned} & 200 \Omega \\ & 2 \mathrm{~K} \Omega \end{aligned}$	K4 K4		
$20 \mathrm{~K} \Omega$	K3	DC MA FUNCTION	
$200 \mathrm{~K} \Omega$	K2		
$2000 \mathrm{~K} \Omega$	None	U9 AND RELAYS DEENERGIZED	
$20 \mathrm{M} \Omega$	K5		

$\begin{aligned} & \text { U17 } \\ & \text { 4PST } \end{aligned}$	INTERNAL SWITCH	A	B	C	D	+5 V TO CONTROL PIN CLOSES SWITCH (ON) OV OPENS SWITCH (OFF)
	SWITCH CONTROL PIN	13	5	6	12	
	PINS SWITCHED				(11)	

U16 3PDT	INTERNAL SWITCH	A	B	C	
	SWITCH CONTROL PIN	11	10	9	SWITCHES ARE AS SHOWN FOR
		OV ON CONTROL PIN			
	PINS SWITCHED	(12)	(2)	(5)	+5V ON CONTROL PIN SWITCHES
		(14	(15)	(4)	CENTER ROW FROM TOP TO BOTTOM
		(13)	(1)	(3)	

Table 4-12 RANGE INFORMATION

4-62. Errors in the display concerning decimal point location and upper or lower annunciators can be the result of range control problems. $\mathrm{A}+5 \mathrm{~V}$ is required from U8 to turn on the annunciators. Decimal point logic is a positive pulse output from U8 occuring at the same time as the appropriate strobe signal. Either STO or ST7 is selected by U16 before being applied to the display board. The digit information to be presented on the front panel is delivered by U8 in BCD format on lines W, X, Y, and Z.

4-63. A malfunction caused by the display section of the circuitry will generally cause the 8600A display to indicate the failure in one of five ways; 1) all LED's are dark, 2) one segment of any one or all LED displays are dark, 3) any single LED display is dark, 4) the numbers containing a particular binary code ($1,2,4$ or 8) will not display or 5) one digit is brighter than normal and all others are off. The probable cause for each possible failure indication is given below.

4-64. When all LED's are dark, check for +5 volts at the emitter of Q30. Using an oscilloscope check U10 pins 9 through 15, LED segment drive signals, for a squarewave signal alternating between +3.5 volts and +0.4 volts.

4-65. When a segment of only one LED is dark the LED is the probable cause of the failure. If, however, the
same segment in all LED' s is out the particular segment drive signal, U10 pins $13,12,11,10,9,15$, or 14 corresponding to segments A, B, C, D, E, F, and G respectively, can be checked for the required voltage change from +3.5 volts to +0.4 volts as the segment lights.

4-66. When one digit in the display remains dark the strobe signal for that digit should be checked. The base of Q37 (MSD), Q29 (2SD), Q31 (3SD), Q33 (4SD) and Q35 (LSD) should go to +5 volts as each is strobed on for $300 \mu \mathrm{~s}$.

4-67. When the display indicates that one of the binary codes ($1,2,4$, or 8) is missing; the bed output from U8 can be observed at pin 31 (1), 32 (2), 33 (4) and 35 (8). The output at each pin should drop from +5 volts to about zero volts when that code is used to produce the digit being displayed. If the bcd information at U8 is correct the probable cause of the failure is U10.

4-68. When one display digit is bright and all others are off, the clock oscillator is the probable cause. Check the operation of U7, U8, and the 1 MHz crystal Y1.

Section 5

Lists of Replaceable Parts

TABLE OF CONTENTS

ASSEMBLY NAME/NUMBER	PART NO.	PAGE
Final Assembly, Model 8600A	8600A	5-3
Front Panel and Main PCB Assembly (8600A-4001)	365866	5.5
Front Panel and Main PCB Assembly (-01 Option) (8600A-4011)	366906	5-10
Display PCB Assembly (8600A 4002) .	373860	5-15
Battery Power Supply PCB Assembly (-01 Option) (8600A-4006)	373837	5-16
AC Converter PCB Assembly (8600A4003)	373852	5-18
Ohms Converter Assembly (8600A-4004) .	373845	5-21
Input Divider PCB Assembly (8600A4005) . .	397463	5.23
DOU PCB Assembly (-02 Option) (8800A4005)	366369	5-24

5-1. INTRODUCTION

5-2. This section contains an illustrated parts breakdown of the instrument. Components are listed alpha-numerically by assembly. Electrical components are listed by reference designation and mechanical components are listed by item number. Each listed part is shown in an accompanying illustration.

5-3. Parts lists include the following information:
a. Reference Designation or Item Number
b. Description of each part
c. Fluke Stock Number
d. Federal Supply Code for Manufacturers. See Appendix A for Code-to-Name list.)
e. Manufacturer's part Number or Type.
f. Total Quantity per assembly or component.
g. Recommended Quantity: This entry indicates the recommended number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one in each assembly in the instrument be stocked. In the case of optional subassemblies, plug-ins, etc. that are not always part of the instrument, or are deviations from the basic instrument mode, the REC QTY column lists the recommended quantity of the item in that particular assembly.
h. Use Code is provided to identify certain parts that have been added, deleted or modified during production of the instrument. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectifity, paragraph 5-7.

5-4. HOW TO OBTAIN PARTS

5-5. Components may be ordered directly from the manufacturer by using the manufacturer's part number, or from the John Fluke Mfg. Co., Inc. factory or authorized representative by using the FLUKE STOCK NUMBER. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary.

5-6. To ensure prompt and efficient handling of your order, include the following information.
a. Quantity
b. FLUKE Stock Number
c. Description
d. Reference Designation or Item Number
e. Printed Circuit Board Part Number
f. Instrument model and Serial number

5-7. USE CODE EFFECTIVITY LIST
USE

CODE
SERIAL NUMBER EFFECTIVITY
For U8, page 5-3
A Up to 42560 order CMOS
B 42560 and above order PMOS

Figure 5-1. 8600A FINAL ASSEMBLY

$\begin{array}{\|c} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$
	FRONT PANEL AND MAIN PCB ASSY. (8600A Line Power) Main PCB Assy. Figure 5-2	365866	89536	365866	REF		
C21	Cap, polystyrene, $0.022 \mu \mathrm{~F} \pm 10 \%, 100 \mathrm{~V}$	333823	02799	1PJ223K	1		
C22	Cap, polycarbonate, $0.47 \mathrm{uF} \pm 10 \%, 100 \mathrm{~V}$	288860	01281	X463VW04791	1		
C23	Cap, cer, $2.7 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$	363705	80031	$\left\lvert\, \begin{gathered} W \\ 2222-631-09278 \end{gathered}\right.$	1		
$\begin{aligned} & \mathrm{C} 24, \\ & \mathrm{C} 30 \end{aligned}$	Cap, var, $0.25-1.5 \mathrm{pF} \pm 0.25 \mathrm{pF}, 2000 \mathrm{~V}$	218206	72982	530-000	2	1	
$\begin{aligned} & \mathrm{C} 25, \\ & \mathrm{C} 26, \\ & \mathrm{C} 27, \\ & \mathrm{C} 35 \end{aligned}$	Cap, Ta, 10uF $\pm 20 \%, 20 \mathrm{~V}$	330662	56289	$\left\lvert\, \begin{gathered} \text { 196D 106X0020 } \\ \text { JA1 } \end{gathered}\right.$	4		
C28	Cap, polypropylene, $0.47 \mathrm{uF} \pm 10 \%, 50 \mathrm{~V}$	363085	01281	JF86	1		
C31	Cap, cer, $0.001 \mathrm{uF} \pm 20 \%, 3 \mathrm{KV} / 5.25 \mathrm{~K}$	105635	56289	29C300	1		
C39	Cap, mylar, $0.01 \mathrm{uF} \pm 20 \%$	159996	01281	$\begin{gathered} 6634 \mathrm{~W} 103-010 \\ \mathrm{~W} \end{gathered}$	1		
$\begin{aligned} & \mathrm{C} 101, \\ & \mathrm{C} 102 \end{aligned}$	Cap, elect, $220 \mathrm{uF}+50 /-10 \%, 40 \mathrm{~V}$	178616	25403	ET221X040A01	2	1	
C103	Cap, elect, $2000 \mathrm{uF}+100 /-10 \%, 15 \mathrm{~V}$	364182	25088	B4101-2200/15	1	1	
$\begin{aligned} & \text { CR1, } \\ & \text { CR2, } \\ & \text { CR6, } \\ & \text { CR8 } \end{aligned}$	Diode, Si, 2A, 50V	347559	14099	1N5400	4	1	
$\begin{aligned} & \text { CR9, } \\ & \text { CR15, } \end{aligned}$							
CR20, CR21, CR24	Diode, Si, 150 mA	203323	07910	1N4448	5	1	
$\begin{aligned} & \text { CR14, } \\ & \text { R56, } \\ & \text { R60 } \end{aligned}$	Zener, reference set	377283	89536	377283	1	1	
CR101,	Rectifier, bridge, $2 \mathrm{amp}, 100 \mathrm{~V}$	296509	09423	FB100	2	1	
CR103	Zener, $6.8 \mathrm{~V}, 1 \mathrm{~mA}$	352898	99942	R4852	1	1	
F2	Fuse, Slo-Blo, 1/8A	166488	71400	MDL	1	5	
K1	Relay, Telephone, DPDT	357707	12300	R10E2662-2	1		
L1	Choke, RF, 100uh	111542	99800	1537-76	1		
Q2, Q6	Xstr, Si, PNP	195974	04713	2N3906	2	1	
$\begin{aligned} & \text { Q10, } \\ & \text { Q26, } \\ & \text { Q27, } \\ & \text { Q28 } \\ & \hline \end{aligned}$	Xstr, Si, NPN	159855	07910	CS23030	4	1	

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	$\left\|\begin{array}{l} \mathrm{TOT} \\ \mathrm{OTY} \end{array}\right\|$	REC QTY	USE
Q11	X str , Si, NPN, Selected	352138	89536	352138	1	1	
Q16, Q17, Q21, Q22	Xstr, J-FET, N-channel	357889	21845	F2692	4	1	
$\begin{aligned} & \text { Q14, } \\ & \text { Q15 } \end{aligned}$	Xstr, J-FET, N-channel	357897	21845	F2691	2	1	
$\begin{aligned} & \mathrm{Q} 13, \\ & \mathrm{Q} 23, \end{aligned}$	Xstr, J-FET, N-channel	370072	12040	TYPE KE4393	2	1	
R1	Res, comp, $100 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148189	01121	CB1045	1		
R2	Res, WW, card, $0.1 \pm 0.05 \%$	374611	89536	374611	1	1	
R10, R11, R83	Res, comp, $470 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	188441	01121	CB4745	3		
$\begin{aligned} & \text { R12, } \\ & \text { R52 } \end{aligned}$	Res, comp, 100K $\pm 5 \%$, 2 W	285056	01121	HB1045	2		
R13	Res, WW, $900 \pm 0.05 \%, 1 / 10 \mathrm{~W}$	357483	89536	357483	1	1	
R14	Res, WW, $90 \pm 0.05 \%, 1 / 10 \mathrm{~W}$	357517	89536	357517	1	1	
R15	Res, WW, $9 \pm 0.05 \%, 1 / 10 \mathrm{~W}$	357525	89536	357525	1	1	
R16	Res, WW, card, $1.0 \pm 0.05 \%$	356097	89536	356097	1	1	
R18	Res, met film, $60.4 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	291419	91637	MFF1-86042F	1		
R23	Res, met film, $30.1 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	168286	91637	MFF1-83012F	1		
R24	Res, met film, $90.9 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	223537	91637	MFF 1-89092F	1		
R57	Res, var, cer, $500 \pm 10 \%, 12 \mathrm{~W}$	325613	71450	360T501A	1	1	
$\begin{aligned} & \text { R62, } \\ & \text { R65, } \\ & \text { R67 } \end{aligned}$	Res, match set, 3 pc	375782	89536	375782	1	1	
$\begin{aligned} & \mathrm{R} 63, \\ & \mathrm{R} 7 \mathrm{l} \end{aligned}$	Res, comp, 10K $\pm 5 \%, 11 / 4 \mathrm{~W}$	148106	01121	CB1035	2		
R66	Res, met film, $22.1 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	235234	91637	MFF1-82212F	1		
R68	Res, comp, $56 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	170738	01121	CB5635	1		
R70	Res, met film, $8.06 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	294942	91637	MFF 1-88061F	1		

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	$\left\|\begin{array}{l} \text { TOT } \\ \text { OTY } \end{array}\right\|$	$\left\|\begin{array}{l} \text { REC } \\ \text { OTY } \end{array}\right\|$	USE
R71	Res, met film, $2.0 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	235226	91637	MFF1-8202F	1		
R74	Res, comp, $4.7 \mathrm{M} \pm 5 \%$, $1 / 4 \mathrm{~W}$	220046	01121	CB4725	1		
R80	Res, met film, $200 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	261701	91637	MFF1-8204F	1		
R81	Res, comp, $10 \pm 5 \%, 1 / 4 \mathrm{~W}$	147868	01121	CB1005	1		
R82	Res, comp, $2.7 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	193490	01121	CB2755	1		
R84 R103	Res, comp, $2.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148049	01121	CB2225	2		
R87	Res, comp, $4.7 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148072	01121	CB4725	1		
R94	Res, comp, $1 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148023	01121	CB1025	1		
R98	Res, comp, $220 \pm 5 \%, 1 / 4 \mathrm{~W}$	147959	01121	CB2215	1		
RN1	Res, network, 15 pc	385815	89536	$\begin{gathered} 385185 \\ \text { TYPE } 760 \end{gathered}$	1	1	
S1 thru S13	Switch Assembly, pushbutton	390948.	89536	390948	1	1	
S14	Switch, Slide, DPDT 115/230	376789	89536	376798	1	1	
T1	Xfmr, power	374264	89536	374264	1	1	
U4	IC, Op, Amp (yellow dot)	381962	12040	LH0042C	1	1	
U5	IC, Op, Amp (red dot)	385450	89536	385450	1	1	
U6	IC, linear, opnl ampl	352195	12040	LM31 1N8	1	1	
	IC, hex, buffer/conv	355214	04713	MC14009 CP	1	1	
U8	(See Final Assembly)						
U9	IC, bipolar ROM	376061	01295	SN7488AN	1	1	
U16	IC, digital, C-MOS, 2-channel multiplexer (8)	375808	49671	CD4053AE	1	1	
U17	IC, digital, C-MOS, quad switch	363838	49671	CD4016AE	1	1	
U102	IC, voltage regulator	355107	12040	LM340T5	1	1	
U103	IC, voltage regulator	413187	04713	MC7815CP	1	1	
U104	IC, voltage regulator	413179	04713	MC7915CP	1	1	
XF2	Fuseholder, clip	284984	84613	3621-2	2	1	
Y1	Crystal, 1.000 MHz	358069	30148	TYPE 815A	1	1	
	Connector, post	376574	00779	5166-333-68	24		
	Connector, post	379438	00779	86144-5	7		

$\begin{array}{\|c} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	TOT	REC OTY	USE
	Contact, fuse	397992	89536	397992	1		
	Receptacle, power, 3 prong						
	Insulator, receptacle	338624	89536	338624	1		
	Contact, earth common	338640	89536	338640	1		
	Contact, voltage	338657	89536	338657	2		
	Pushbutton, grey	369546	71590	J52305-J31753	12		
	Pushbutton, green	352211	71590	J52305-J71449	1		
	Socket, IC, 14-pin	291542	00779	583527-1	1		
	Socket, IC, 16-pin	291534	00779	583529-1	3		
	Socket, IC, 40-pin	376244	23880	TSA3100-40W	1		
	Socket, relay, 2-poles	376665	77342	27E501	1		
	Strap, relay retainer	381624	77342	P49	1		
	Front Panel Assembly (Not Illustrated)						
	Display PCB Assembly	373860	89536	373860	1		
C38	Cap, cer, $47 \mathrm{pF} \pm 10 \%$, 2 kV	282145	00656	$\begin{gathered} \text { HVD3-47 }+10 \% \\ 2 \mathrm{KV} \cdot \mathrm{I} \end{gathered}$	1		
F1	Fuse, fast acting, 2A	376582	71400	AGX	1	5	
J1	Jack, banana, red	162065	74970	108902	1		
J2, J3	Jack, banana, black	162073	74970	108903	2		
XF1	Fuseholder	345611	89536	345611	1		
	Lens, display	367920	89536	367920	1		
	Panel, molded	369041	89536	369041	1		
	Decal, panel	375865	89536	375865	1		
	Retainer, neoprene	352484	77969	9109 E	2		
	(7) Indicates MOS device which may be damaged by static discharge.						

Figure 5-2. FRONT PANEL AND MAIN PCB ASSEMBLY (8600A Line Power).

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\left\|\begin{array}{l} \mathrm{TOT} \\ \mathrm{OTY} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}\right.$	$\left\|\begin{array}{l} \text { USE } \\ \text { CDE } \end{array}\right\|$
L2	Inductor, 6 turn	320911	89536	320911	1		
Q2, Q6	Xstr, Si, PNP	195974	04713	2N3906	2	1	
$\begin{aligned} & \text { Q10, } \\ & \text { Q26, } \\ & \text { Q27, } \\ & \text { Q28 } \end{aligned}$	Xstr, Si, NPN	159855	07910	CS23030	4	1	
Q11	Xstr, Si, NPN, selected	352138	89536	352138	1	1	
Q13,Q23	Xstr, J-FET, N-channel	370072	12040	TYPE KE4393	2	1	
$\begin{aligned} & \text { Q14, } \\ & \text { Q15 } \end{aligned}$	Xstr, J-FET, N-channel	357897	21845	F2691	2	1	
$\begin{aligned} & \text { Q16, } \\ & \text { Q17, } \\ & \text { Q21, } \\ & \text { Q22, } \end{aligned}$	Xstr, J-FET, N-channel	357889	21845	F2692	4	1	
Q43	Triac	413013	89536	413013	1	1	
R1	Res, fxd, comp, $100 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148189	01121	CB1045	1		
R2	Res, fxd, WW, card, $0.1 \pm 0.05 \%$	374611	89536	374611	1	1	
R10, R11, R83	Res, comp, $470 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	188441	01121	CB4745	3		
$\begin{aligned} & \text { R12, } \\ & \text { R52 } \end{aligned}$	Res, comp, $100 \mathrm{~K} \pm 5 \%, 2 \mathrm{~W}$	285056	01121	HB1045	2		
R13	Res, WW, $900 \pm 0.05 \%, 1 / 10 \mathrm{~W}$	357483	89536	357483	1	1	
R14	Res, WW, $90 \pm 0.05 \%, 1 / 10 \mathrm{~W}$	357517	89536	357517	1	1	
R15	Res, WW, $9 \pm 0.05 \%, 1 / 10 \mathrm{~W}$	357525	89536	357525	1	1	
R16	Res, WW, card $1 \pm 0.05 \%$	356097	89536	356097	1	1	
R18	Res, met film, $60.4 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	291419	91637	MFF1-86042F	1		
R23	Res, met film, $30.1 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	168286	91637	MFF1-83012F	1		
R24	Res, met, film, $90.9 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	223537	91637	MFF1-89092F	1		
R57	Res, var, cer, $500 \pm 10 \%$, 12 W	325613	71450	360T501A	1	1	
R62, R65, R67	Res, matched set, 3 piece	375782	89536	375782	1	1	
$\begin{aligned} & \text { R63, } \\ & \text { R76 } \end{aligned}$	Res, comp, $10 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148106	01121	CB1035	2		
R66	Res, met film, $22.1 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	235234	91637	MFF1-82212F	1		

$\begin{array}{\|c\|} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{array}$	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	TOT QTY	REC QTY	$\left\lvert\, \begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}\right.$
R68	Res, comp, $56 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	170738	01121	CB5635	1		
R70	Res, met film, $8.06 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	294942	91637	MFF1-88061F	1		
R71	Res, met film, $2 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	235226	91637	MFF $1-8203 \mathrm{~F}$	1		
R74	Res, comp, $4.7 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	220046	01121	CB4755	1		
R80	Res, met film, $200 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	261701	91637	MFF1-8204F	1		
R81	Res, comp, $10 \pm 5 \%, 1 / 4 \mathrm{~W}$	147868	01121	CB1005	1		
R82	Res, comp, $2.7 \mathrm{M} \pm 5 \%, 1 / \mathrm{W}$	193490	01121	CB2745	1		
R84	Res, comp, $2.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148049	01121	CB2225	1		
R87	Res, comp, $4.7 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148072	01121	CB4725	1		
R94	Res, comp, $1 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148023	01121	CB1025	1		
R98	Res, comp, $220 \pm 5 \%, 1 / 4 \mathrm{~W}$	147959	01121	CB2215	1		
RN1	Res, network, 15 piece	385815	89536	385815	1	1	
S1 thru S13	Switch assembly, push-button	390948	89536	390948	1	1	
T1	Xfmr, power	372003	89536	372003	1		
U4	IC, operational amp, yellow dot	381962	89536	381962	1	1	
U5	IC, operational amp, red dot	385450	89536	385450	1	1	
U6	IC, linear opnl ampl	352195	12040	LM811N8	1	1	
U7	IC, hex, buffer/converter	355214	12040	MC14009CP	1	1	
U8	(See Final Assembly)						
U9	IC, bipolar ROM	376061	01295	SN7488AN	1	1	
U16	IC, digital, C-MOS, 2-channel, multiplexer	375808	49671	CD4053AE	1	1	
U17	IC, digital, C-MOS, Quad, switch	363838	49671	CD4016AE	1	1	
XBT	Battery holder	390450	89536	390450	4		
XF2	Fuse holder	103283	71400	4405	1	5	
Y1	Crystal, 1.000 MHz	358069	30148	TYPE 815A	1	1	
	Battery polarity label	380675	89536	380675	2		
	Connector, post	379438	00779	86144.5	7		
	Connector, post	376574	00779	5166-333-68	29		
	Contact, battery	344200	89536	344200	8		

Figure 5-3. FRONT PANEL AND MAIN PCB ASSEMBLY (8600A-01 Battery Power)

Figure 5-4. DISPLAY PCB ASSEMBLY

| $\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$ | DESCRIPTION | FLUKE STOCK NO. | $\begin{array}{\|l} \text { MFG } \\ \text { FED } \\ \text { SPLY } \\ \text { CDE } \end{array}$ | MFG PART NO. OR TYPE | TOT OTY | \|REC| |QTY| | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | BATTERY POWER SUPPLY PCB ASSY
 (-01 Option) (8600A-4006) | | | | | | |
| | 100 VAC Version | 378380 | 89536 | 378380 | REF | | |
| | 115 VAC Version | 373837 | 89536 | 373837 | REF | | |
| | 230VAC Version | 378372 | 89536 | 378372 | REF | | |
| | Figure 5-5 | | | | | | |
| C201 | Cap, mylar, $5.0 \mathrm{uF} \pm 5 \%, 150 \mathrm{~V}$ (Used on 115 V ac version) | 364190 | 56289 | TYPE 439 P | 1 | | |
| C201 | Cap, mylar $6.6 \mathrm{uF} \pm 5 \%, 135 \mathrm{~V}$ (Used on 100 V ac version) | 394189 | 56289 | TYPE 439P | 1 | | |
| C201 | Cap, metalized polypropylene
 $2.8 \mathrm{uF} \pm 5 \%, 300 \mathrm{~V}$ (Used on 230 V ac version) | 394197 | 89536 | 394197 | 1 | | |
| $\begin{aligned} & \text { C203, } \\ & \text { C204 } \end{aligned}$ | Cap, Ta, $6.8 \mathrm{uF} \pm 20 \%, 35 \mathrm{~V}$ | 363713 | 56289 | $\left\|\begin{array}{c} 196 \mathrm{D} 685 \mathrm{X} 0035 \\ \mathrm{KAl} \end{array}\right\|$ | 2 | | |
| C204 | Cap, Ta, $22 \mathrm{uF} \pm 10 \%, 15 \mathrm{~V}$ | 182816 | 56289 | $\left\|\begin{array}{c} 150 \mathrm{D} 226 \mathrm{X} 9015 \\ \mathrm{~B} 2 \end{array}\right\|$ | 1 | | |
| C205 | Cap, cer, $0.01 \mathrm{uF}+80 /-20 \%, 500 \mathrm{~V}$ | 105668 | 56289 | 33 C 4186 | 1 | | |
| $\begin{array}{\|l} \text { CR203 } \\ \text { thru } \\ \text { CR206 } \end{array}$ | Diode, Hi-speed, switching | 203323 | 07910 | 1N4148 | 4 | | |
| L201 | Choke, 6 turn | 320911 | 89536 | 320911 | 1 | | |
| $\begin{aligned} & \text { Q201, } \\ & \text { Q202 } \end{aligned}$ | Xstr, Si, NPN | 330803 | 07263 | MPS6560 | 2 | | |
| Q203 | Xstr, Si, PNP | 195974 | 04713 | 2N3906 | 1 | | |
| R201 | Res, comp, $1 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 182204 | 01121 | CB1055 | 1 | | |
| R202 | Res, comp, 1.2 \pm +5\%, $1 / 4 \mathrm{~W}$ | 190371 | 01121 | CB1225 | 1 | | |
| R204 | Res, comp, $22 \pm 5 \%, 1 / 4 \mathrm{~W}$ | 147884 | 01121 | CB2205 | 1 | | |
| R207 | Res, comp, $8.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 160796 | 01121 | CB8225 | 1 | | |
| R208 | Res, met film, $4.53 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$ | 260331 | 91637 | MFF1-84531F | 1 | | |
| R209 | Res, met film, $16.9 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$ | 267146 | 91637 | MFF1-81692F | 1 | | |
| T2 | Xfmr, inverter | 372011 | 89536 | 372011 | 1 | | |
| U202 | IC, voltage regulator | 413187 | 04713 | MC7815CP | 1 | 1 | |
| U203 | IC, voltage regulator | 413179 | 04713 | MC7915CP | 1 | 1 | |
| 1 | Connector, plug/jack, red | 170480 | 74790 | 105-752 | 3 | | |
| 2 | Receptacle, Amp Mode II | 375329 | 00779 | 85863-3 | 5 | | |

Figure 5-5. BATTERY POWER SUPPLY PCB ASSEMBLY (-01 Option)

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	$\left\lvert\, \begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}\right.$	REC QTY	\|USE
	AC CONVERTER PCB ASSEMBLY (8600A-4003)	373852	89536	373852	REF		
	Figure 5-6						
C1	Cap, cer, 0.05 uF GMV, $1 \mathrm{KV} / 2 \mathrm{KV}$	355420	71590	2DD65N5032	1		
C2,C19	Cap, var, $0.25-1.5 \mathrm{pF}, 2000 \mathrm{VDC}$	218206	72982	530-000	2		
C5	Cap, cer, $15 \mathrm{pF} \pm 2 \%, 100 \mathrm{~V}$	369074	80031	2222-631-10159	1		
$\begin{aligned} & \mathrm{C} 6, \mathrm{C} 7, \\ & \text { C32, } \\ & \text { C33, } \\ & \text { C34 } \end{aligned}$	Cap, cer, $0.025 \mathrm{uF} \pm 20 \%, 100 \mathrm{~V}$	168435	56289	$\underset{M}{C 023 \mathrm{~B} 101 \mathrm{H} 253} \mathrm{M}$	5		
C9	Cap, cer, $27 \mathrm{pF} \pm 2 \%, 100 \mathrm{~V}$	362749	80031	2222-631-10279	1		
C10	Cap, var, cer, $1.710 \mathrm{pF}, 250 \mathrm{~V}$	375238	91293	9931	1		
C11	Cap, polystyrene, 9100pF	355321	91590	$\left\lvert\, \begin{gathered} 2 \mathrm{DRP00J912GA} \\ \mathrm{~A} \end{gathered}\right.$	1		
$\left\lvert\, \begin{array}{l\|l} \mathrm{C} 12, \\ \mathrm{C} 13 \end{array}\right.$	Cap, Ta, $330 \mathrm{uF} \pm 20 \%, 3 \mathrm{~V}$	385963	56289	$\left\lvert\, \begin{gathered} \text { 196D337X0004 } \\ \text { LA3 } \end{gathered}\right.$	2		
$\begin{array}{\|l\|l} \mathrm{C} 14, \\ \mathrm{C} 20 \end{array}$	Cap, mylar, $0.47 \mathrm{uF} \pm 10 \%, 100 \mathrm{~V}$	369124	73445	$\begin{gathered} \text { C280MAHA470 } \\ \mathrm{K} \end{gathered}$	2		
C15	Cap, $\mathrm{Ta}, 39 \mathrm{uF} \pm 20 \%, 6 \mathrm{~V}$	163915	56289	$\left\lvert\, \begin{gathered} 196 \mathrm{D} 396 \mathrm{X} 0006 \\ \text { JA1 } \end{gathered}\right.$	1		
C16	Cap, Ta, $5.6 \mathrm{uF} \pm 20 \%, 20 \mathrm{~V}$	368969	56289	196D565X0020	1		
C17	Cap, mica, $400 \mathrm{pF} \pm 1 \%, 500 \mathrm{~V}$	385328	71236	DM15F401F	1		
C18	Cap, cer, $2.2 \mathrm{pF} \pm 0.25 \mathrm{pF}, 100 \mathrm{~V}$	362731	80031	2222-631-09228	1		
CL1	Current limiter, regulator	334714	07910	TCR5315	1		
CR5, CR11, CR12, CR16, CR17	Diode, low cap	375907	07263	TYPE FD700	5		
$\begin{aligned} & \mathrm{K} 6, \mathrm{~K} 7, \\ & \mathrm{~K} 8 \end{aligned}$	Relay, reed, SPST	357566	71707	E8182	3		
Q1	Xstr, dual FET	379321	17856	E7024	1		
Q7	Xstr, Si, NPN	218396	04713	2N3904	1		
Q8	X ${ }_{\text {str, }}$ Si, PNP	352146	89536	352146	1		
Q9	Xstr, Si, NPN	330803	07263	MPS6560	1		
R17	Res, met film, $2 \mathrm{M} \pm 0.5 \%, 1 \mathrm{~W}$	354894	80031	MF8C205	1		

REF DESIG OR ITEM NO.	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$	MFG FED SPLY CDE	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}\right.$	$\begin{array}{\|l\|} \text { USE } \\ \text { CDE } \end{array}$
R25	Res, deposited carbon, $10 \mathrm{~K} \pm 5 \%$, $1 / 4 \mathrm{~W}$	348839	TOYO	R25141035	1		
R26	Res, deposited carbon, $2.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	343400	TOYO	R251-42225	1		
$\begin{aligned} & \text { R32, } \\ & \text { R33 } \end{aligned}$	Res, comp, $15 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148114	01121	CB1535	2		
$\begin{aligned} & \text { R37, } \\ & \text { R38, } \\ & \text { R45, } \\ & \text { R46, } \\ & \text { R47 } \end{aligned}$	Res, matched set, 5 pc	426544	89536	426544	1	1	
R40	Res, comp, $240 \pm 5 \%, 1 / 4 \mathrm{~W}$	221895	01121	CB2415	1		
R43	Res, comp, $150 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	182212	01121	CB1545	1		
$\begin{aligned} & \text { R49, } \\ & \text { R89 } \end{aligned}$	Res, met film, $68.1 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	236828	91637	MFF1-86812F	2		
R50	Res, var, cermet, $50 \pm 10 \%, 1 / 2 \mathrm{~W}$	285122	71450	360S500A	1		
R51	Res, met film, $2.194 \mathrm{~K} \pm 0.25 \%, 1 / 8 \mathrm{~W}$	375345	91637	MFF1-82R194P	1		
R72	Res, var, cermet, $20 \mathrm{~K} \pm 10 \%$, 32 W	291609	71450	360S203A	1		
R75	Res, comp, $120 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	193458	01121	CB1245	1		
R77	Res, deposited carbon, $62 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	384904	TOYO	R25 1-46235	1		
R79	Res, deposited carbon, $12 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	348847	TOYO	R25141235	1		
R88	Res, met film, $59.0 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	261677	91637	MFF1-8593F	1		
U2	IC, Operational Amplifier	329912	12040	LM318H	1		
	Connector, plug/jack, red	170480	74970	105-752	2		
	Shield	388314	89536	388314	1		
	Receptacle, Amp MOD II	375329	00779	85863-3	7		

Figure 5-6. AC CONVERTER PCB ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	$\left\|\begin{array}{c} \text { TOT } \\ \mathrm{OTY} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}\right.$	$\left\|\begin{array}{l} \text { USE } \\ \text { CDE } \end{array}\right\|$
	OHMS CONVERTER ASSEMBLY (8600A-4004) Figure 5-7	373845	89536	373845	REF		
C3	Cap, mylar, $0.022 \mathrm{uF} \pm 20 \%, 250 \mathrm{~V}$	369165	25403	C281A/A22K	1		
C8	Cap, cer, $33 \mathrm{pF} \pm 2 \%, 100 \mathrm{~V}$	354852	80031	2222-638-10339	1		
CR2	Diode, zener	266601	07910	1N965B	1		
CR10	Diode, zener \square				1		
CR22	Diode, Si, hi-speed, switch	203323	03508	1N4148	1		
K5	Relay, reed, SPST	357582	71707	UF40070	1		
Q2,Q12	Xstr, Si, PNP	195974	04713	2N3906	2		
Q3	Xstr, FET, N-channel	357905	21845	F2690	1		
R19	Res, comp, $220 \pm 5 \%, 1 / 4 \mathrm{~W}$	147959	01121	CB2215	1		
R21	Res, var, cermet, $200 \pm 10 \%, 1 / 2 \mathrm{~W}$	285148	71450	360S201A	1		
R22	Res, met film, $2 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	335422	91637	MFF1-8202F	1		
R27	Res, var, cermet, $100 \pm 10 \%, 1 / 2 \mathrm{~W}$	285130	71450	360S101A	1		
R28	Res, WW, power, $9.95 \mathrm{~K} \pm 0.1 \%, 5 \mathrm{~W}$	363275	ARC 1DY	160-9950-1	1		
R29	Res, var, cermet, $50 \pm 10 \%, 1 / 2 \mathrm{~W}$	285122	71450	360S500A	1		
R35	Res, WW bobbin, $13.5 \mathrm{~K} \pm 0.1 \%, 0.15 \mathrm{~W}$	363119	54294	SP21	1		
R41	Res, selected 1				1		
$\begin{aligned} & \text { R42, } \\ & \text { R99 } \end{aligned}$	Res, comp, $10 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	148106	01121	CB1035	2		
R48	Res, comp, 2.2 ${ }^{\text {m }}+5 \%, 1 / 4 \mathrm{~W}$	148049	01121	CB2225	1		
R90	Res, selected 1				1		
R91	Res, met film, $4.22 \mathrm{~K} \pm 1 \%, 1 / 8 \mathrm{~W}$	168245	91637	MFF 1-84221F	1		
U1	IC, operational amplifier	357830	12040	LH0042C	1		
U3	IC, linear, operational amplifier	363515	24355	AD301AN	1		
	Connector, plug/jack, red	170480	74970	105-752	2		
	Receptacle, Amp, MODII	375329	00779	8586303	8		
	Socket, IC, 14-pin DIP	276527	23880	TSA2900-14W	1		
1	CR10, R90, and R41 are matched components. Order Part No. 458760		89536				

Figure 5-7. OHMS CONVERTER ASSEMBLY

Figure 5-8. INPUT DIVIDER PCB ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	$\begin{aligned} & \text { MFG } \\ & \text { FED } \\ & \text { SPLY } \\ & \text { CDE } \end{aligned}$	MFG PART NO. OR TYPE	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	REC OTY	$\left\|\begin{array}{l} \text { USE } \\ \text { CDE } \end{array}\right\|$
	DOU PCB ASSEMBLY -02 Option (8800A-4005)	366369	89536	366369	1		
	Figure 5-9						
C1, C3	Cap, elect, $220 \mathrm{uF}+50 /-10 \%$, 10 V	236935	73445	ET221X010A5	2		
C2	Cap, plstc, $0.022 \mathrm{uF} \pm 10 \%, 50 \mathrm{~V}$	271577	06001	75F1R5A222	1		
C4	Cap, cer, $0.05 \mathrm{uF}+80 /-10 \%, 25 \mathrm{~V}$	148924	32897	5855Y5U503Z	1		
CR1	Rectifier, bridge	296509	51605	FB100	1		
CR2	Diode, zener, 5.6 V	277236	07910	1N752A	1		
$\begin{aligned} & \mathrm{Q} 1, \\ & \mathrm{Q} 2, \\ & \mathrm{Q} 5 \end{aligned}$	Xstr, Si, NPN	218396	04713	2N3904	3		
Q3,Q4	Xstr, $\mathrm{Si}, \mathrm{PNP}$	195974	04713	2N3906	2		
$\begin{aligned} & \text { R15, } \\ & \text { R16 } \end{aligned}$	Res, desposited carbon, $1 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$	343426	TOYO	R251025	2		
$\begin{aligned} & \text { R17, } \\ & \text { R18 } \end{aligned}$	Res, comp, $4.7 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$	220046	01121	CB4755	2		
RN1	Res, network	385930	89536	385930	1		
T1	Xfrm, power	374652	89536	374652	1		
U1 thru U4, U10	IC, C-MOS, dual 4-bit static shift register	340125	04713	MC14015CP	5		
U5	IC, C-MOS, dual, type D flip-flop	340117	04713	MC14013CL	1		
U6	IC, C-MOS, NOR Gate	355172	04713	MC14001CL	1		
U7,U8, U12, U13, U14	IC, C-MOS, hex, buffer/inverter	381848	49671	CD4049AE	5		
U9	IC, DTL, C-MOS, quad, bilateral SW	363838	49671	CD4016AE	1		
U11	IC, C-MOS, dual 4-input NOR gate	363820	49671	CD4002AE	1		
$\begin{aligned} & \mathrm{U} 16, \\ & \mathrm{U} 17 \end{aligned}$	Opto-Isolator, photo Xstr	380014	89536	MCT2	2		
	Cable, flat	385922	08261	5112-007.25X	1		
	Socket, IC, 14 pin	276527	23880	TSA2900-14W	4		
	Socket, IC 16 pin Indicates MOS device which may be damaged by static discharge.	276535	23880	TSA2900-16W	11		

Figure 5-9. DOU PCB ASSEMBLY - 02 Option

Section 6

Option \& Accessory Information

6-1. INTRODUCTION

6-2. This section of the manual contains information pertaining to the options and accessories available for your instrument. Each of the options and accessories are described under separate major headings containing the model or option number. The option descriptions contain applicable operating and maintenance instruction, and field installation procedures. Replaceable parts and schematics for all options are given in Sections 5 and 8, respectively.

6-3. CARRYING CASE (C80)

64. The Model C80 Carrying Case, Figure 6-1, is a soft vinyl plastic container, designed for the storage and transport of the 8600A. The case provides the 8600A with adequate protection against normal handling and storage conditions. A separate storage compartment is provided for test leads, power cord, and other compact accessories.

6-5. CARRYING CASE (C86)

6-6. The Model C86 Carrying Case, Figure 6-2, is a molded polyethylene container, with handle, designed for use in transporting the 8600A. This rugged case provides the 8600 A with maximum protection against rough handling and adverse weather conditions. A separate storage compartment is provided for test leads, power cord, and other compact accessories.

6-7. FRONT PANEL DUST COVER (MOO-100-714)

6-8. The front panel dust cover is a molded plastic snap-on accessory which fits over the front panel of the

8600A. The dust cover provides protection for the front panel controls, and is useful when storing or transporting the 8600A.

6-9. RACK MOUNTING KITS

6-10. Introduction

6-11. Three rack mounting kits are available for mounting the 8600 A in a standard 19 -inch equipment rack. The kits, listed in Table 6-1, provide the option of either offset mounting (left/right), center mounting or side-by-side mounting.

Figure 6-1. MODEL C80 CARRYING CASE

Figure 6-2. MODEL C86 CARRYING CASE

6-12. Installation Procedure

6-13. Installation instructions for each of the rack mounting kits is given in the following paragraphs. Use the procedure which corresponds to the model number of the kit being installed.

6-14. OFFSET AND CENTER MOUNTING KITS (M00-200-611 and M00-200-612)
a. Remove 8600A carrying handle by removing the handle disc decals and the handle mounting screws.
b. Remove screw from rear of case and separate the case from the 8600A.
c. Install the side mounting brackets, as shown in Figure 6.3 , and secure them to the mounting panel using the nuts provided.
d. Insert the front of the 8600A case through the opening on the back side of the mounting panel.
e. Install the handle mounting screws through the side brackets into the handle mounting bosses. Don't over tighten these screws.
f. Slide the 8600A through the mounting panel and into the case. Install and tighten the retaining screw at the rear of the case.

6-15. SIDE-BY-SIDE MOUNTING KIT (M00-200-613)
a. Remove the carrying handles from both 8600A's by removing the handle disc decals and the handle mounting screws.
b. Remove the retaining screw from the rear of the cases and separate the instruments from their cases.
c. Install the center mounting bracket, as shown in Figure 6-4, and secure it to the mounting panel using the nuts provided.
d. Install the clamp screw in the center mounting bracket using the nuts and washers provided.
e. Insert the front of the 8600A cases through the openings on the back side of the mounting panel. Make sure the case's handle mounting bosses are inserted into the clamp hole of the center mounting bracket
f. Tighten the clamp screw.
g. Install the side mounting brackets and secure them to the front panel using the nuts provided.
h. Install the handle mounting screws through the side brackets into the handle mounting bosses. Don't over tighten these screws.

Slide the 8600A's through the mounting panel and into their cases. Install and tighten the retaining screw at the rear of both cases.

Table 6-1. RACK MOUNTING KITS

MOUNTING STYLE	MODEL NUMBER
Offset	M00-200-611
Center	M00-200-612
Side-By-Side	M00-200-613

6-16. DELUXE TEST LEAD KIT (A80)

6-17. The deluxe test lead kit, shown in Figure 6-5, contains two test leads with probes (red and black), and five pairs of universal probe tips. The probe tips include: alligator clips, test prod tips, pin tips, banana plug tips, and binding post lugs. A convenient plastic pouch is provided for storing the contents of the test lead kit.

Figure 6-3. RACK MOUNTING KITS, OFFSET AND CENTER MOUNTING

Figure 6-4. RACK MOUNTING KIT, SIDE-BY-SIDE MOUNTING

Figure 6-5. DELUXE TEST LEAD KIT (A80)
6-18. CURRENT PROBE, CLAMP-ON (801-600)

6-19. Introduction

6-20. The Model 80I-600, as shown in Figure 6-6, is a clamp-on current probe which is used to extend the current measurement capabilities of the 8600 A . The probe is designed to measure currents of 2 to 600 amperes at frequencies of up to 400 Hz with $\pm 3 \%$ accuracy. The clamp-
on feature allows current to be measured without breaking the circuit under test.

6-21. Operation

6-22. Use the following procedure for operating the 8600 A with the 80I-600 probe:
a. Plug the 80I-600 dual-banana plug into the MA and COMMON INPUT terminals on the 8600A.

Figure 6-6. AC CURRENT PROBE, CLAMP-ON (801-600)
b. Depress the AC MA pushbutton (FUNCTION)
c. Select the desired current range in accordance with Table 6-2.
d. Clamp probe around current carrying conductor to be measured.
e. Observe ac current reading in amperes on the 8600A readout.

NOTE

Clamping the probe around more than one current carrying conductor at a time produces a reading that is the vector sum of the currents in the conductors.

Table 6-2. 8600A RANGES FOR CURRENT PROBE (801-600)

RANGE SELECTED	CURRENT RANGE WITH 801-600 PROBE
2000 MA	200 A to 600 A
200	20 A to 200A
20	2 to 20A

6-23. HIGH VOLTAGE PROBE (80K40)

6-24. Introduction

6-25. The Model 80 K 40 High Voltage Probe as shown in Figure $6-7$, provides the 1000 X at tenuation necessary to extend the dc voltage measuring capabilities of the 8600A up to 40 kV dc . A schematic of the $80 \mathrm{~K}-40$ probe is shown in Figure 6-8.

6-26. Specifications

Overall Accuracy: $\quad 20 \mathrm{kV}$ to $30 \mathrm{kV} \pm 2 \%$ (Calibrated 1% at 25 kV)
Upper Limit: \quad Changes linear from 2% at 30 kV to 4% at 40 kV
Lower Limit: \quad Changes linear from 2% at 20 kV to 4% at 1 kV
Voltage Range: $\quad 1 \mathrm{kV}$ to 40 kV
Input Resistance: $\quad 1000 \mathrm{M} \Omega$
Division Ratio: 1000:1

Figure 6-7. HIGH VOLTAGE PROBE ($80 \mathrm{~K}-40$)

6-27. Operation

6-28. Use the following procedure for operating the 8600A with the $80 \mathrm{~K}-40$ probe:
a. Plug the $80 \mathrm{~K}-40$ dual-banana plug into the $V-\Omega$ and LO INPUT terminals on the 8600A.
b. Depress the DCV pushbutton (FUNCTION)
c. Select the desired voltage range in accordance with Table 6-3.
d. Connect the common probe lead to a suitable ground and touch the probe tip to the circuit point to be measured.
e. Observe dc voltage reading displayed in kilovolts on the 8600 A readout.

CAUTION

Before touching probe tip to a high voltage source, always connected probe common lead to circuit common. Removal of the probe common connection during a measurement may result in damage to the 8600A.

Figure 6-8. HIGH VOLTAGE PROBE, SCHEMATIC

Table 6-3. 8600A RANGES FOR DC HV PROBE (80K-40)

RANGE SELECTED	VOLTAGE RANGE WITH 80K-40 PROBE
200	20 to 40 kV
20	2 to 20 kV
2	1 to 2 kV

6-29. HIGH FREQUENCY PROBE (80RF-1)

6-30. Introduction

6-31. The Model 80RF-1 High Frequency Probe, Figure $6-9$, extends the frequency range of the 8600 A to include 100 kHz to 500 MHz for ac voltage measurements from 0.25 to 30 V rms. The 80RF-1 operates in conjunction with the dc voltage ranges, and is connected to the 8600 A using a shielded dual-banana plug and an adapter.

6-32. Specifications

Voltage:	0.25 V to 30 V	
Response:	Responds to peak value of input. Calibrated to read rms value of a sine wave input.	
AC to DC Transfer Accuracy:	Loaded $\pm 10 \%$	megohms
	$\begin{aligned} & 100 \mathrm{kHz}- \\ & 100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz}- \\ & 500 \mathrm{MHz} \end{aligned}$
$+10^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$	+5\%	+7\%
$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	+7\%	+15\%
$< \pm 3 \mathrm{db}$ at 10 kHz and 700 MHz		
Input Impedance:	4 megohms shunted by 2 $\pm 0.5 \mathrm{pf}$	
Maximum Input:	30 volts rms ac, 200 volts dc	
Cable Connections:	Shielded dual banana plug fits all standard $3 / 4$-inch dual banana connectors.	
Cable Length:	4 ft . (121.9 cm) minimum	
Weight:	$31 / 2$ oz. net	
Accessories:	Ground lead, straight tip, hook tip, high frequency adapter	

e. Connect the probe's ground lead to a suitable ground when using the straight or hooked probe tip. The ground clip is not required when using the high frequency adapter with an appropriate 50 ohm termination.
f. Touch the probe tip to the circuit point to be measured.
g. Observe the voltage reading displayed in volts rms on the 8600 A readoug.

6-38. Theory of Operation

6-39. A schematic diagram of the 80RF-1 High Frequency probe is given in Figure 6-10. Capacitor Cl is used

Figure 6-10. 8ORF-1 SCHEMATIC

Figure 6-11. LOW FREQUENCY RESPONSE CHECK
a. With equipment as shown in connection "A" adjust the ac signal source for an output of 3.000 V rms at 100 kHz as measured on the DVM.
b. In connection "B" with the DVM set to measure V dc , observe a probe output of 3.15 to 2.85 V dc.
c. Placing cables back in connection " A ", decrease the ac signal source by $10 \mathrm{db}(0.95 \mathrm{~V} \mathrm{rms})$.
d. Moving back to connection "B", observe a voltmeter indication of between 1.00 and 0.90 V dc (10 db down from 3.0 V dc).
e. In connection " A ", decrease the ac signal source an additional 10 db (to 0.3 V rms) as indicated by the voltmeter in its ac function.
f. Back to "B", observe a voltmeter reading of . 315 to .285 V dc.
g. Return the ac signal source back to 3.000 V rms.
h. Repeat steps a through g with frequencies of $500 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz .
646. HIGH FREQUENCY RESPONSE
647. Connect equipment to the $80 \mathrm{RF}-1$ probe as shown in Figure 6-12, and perform the following steps:
a. Set the ac signal source to 100 MHz with an output level of 10 milliwatts as indicated on the power meter. Ensure that the ac signal source has stabilized at the 10 milliwatt output.
b. Observe that the voltmeter indication is between 0.757 and $0.657 \mathrm{~V} \mathrm{dc},(0.707 \mathrm{~V}$ dc corresponds to 10 milliwatts into 50 ohms.)
c. Repeat the above for frequencies of 200 MHz , $300 \mathrm{MHz}, 400 \mathrm{MHz}$, and 480 MHz .

648. CALIBRATION

6-49. Should the 80RF-1 require recalibration, perform the following steps:
a. Perform steps a and b in paragraph 6-44, with a frequency of 1 MHz .
b. Observe the dc voltmeter; a reading below 3 V dc calls for a decrease in the value of R 3 , a reading above 3 V dc calls for an increase in R3. Resistor R 3 should be a $1 / 8 \mathrm{~W}$ metal film type. In a probe that is working properly, a $30 \mathrm{k} \Omega$ change in R3 will produce about a 1% deviation in the reading.

Figure 6-12. HIGH FREQUENCY RESPONSE CHECK

6-50. HIGH FREQUENCY PROBE (81RF)

6-51. Introduction

6-52. The Model 81RF High Frequency Probe, Figure $6-13$, extends the frequency range of the 8600A to include 100 kHz to 100 MHz for ac voltage measurements from 0.25 to 30 V rms. The 81 RF operates in conjunction with the dc voltage range, and is connected to the 8600A using a shielded dual-banana plug and an adapter.

6-53. Specifications

Transfer Accuracy:	$\pm 1 \mathrm{~dB}$ from 100 kHz to 100 MHz
Voltage Range:	.25 V rms to 30 V rms (operated into a $10 \mathrm{M} \Omega$ input resistance voltmeter). Peak responding calibrated to read rms value of
	a sinewave.
Maximum DC Input:	350 V
Input Impedance:	$12 \mathrm{M} \Omega$ shunted by $\approx 15 \mathrm{pf}$ maximum

6-54. Operation

6-55. Use the following procedure for operating the 8600 A with the 81 RF probe:
a. Connect the 81 RF shielded dual-banana plug to the $8600 \mathrm{~A} \mathrm{~V}-\Omega$ and LO INPUT terminals.
b. Attach the desired probe tip to the probe body.
c. Depress the DCV pushbutton (FUNCTION)
d. Select the desired voltage range.
e. Connect the probe's ground lead to a suitable ground.
f. Touch the probe tip to the circuit point to be measured.
g. Observe the voltage reading displayed in volts rms on the 8600 A readout.

Figure 6-13. HIGH FREQUENCY PROBE (81RF)

6-56. TEMPERATURE PROBE (80T-150)

6-57. The Model 80T-150 Temperature Probe is a selfcontained temperature-to-voltage converter. It is designed to provide a direct temperature reading on the display of any high impedance voltmeter ($1 \mathrm{M} \Omega$) capable of 1 mV resolution, and at least 300 mV full-scale readout. The probe can be configured to provide either one of two temperature displays: -50 to $+150^{\circ} \mathrm{C}$ or -58 to $+300^{\circ} \mathrm{F}$.

6-58. Operating power for the probe is provided by an internal lithium battery. Typically, the battery will provide up to 1000 hours of continuous operation before replacement is necessary. An on/off switch is provided to conserve the battery when not in use.

6-59. BATTERY PACK, OPTION -01

6-60. Introduction

6:61. The Battery Pack provides the 8600A with the capability of operating as a portable (battery-operated) instrument. Four nickle cadmium (Ni-cad) batteries allow, typically 8 hours of portable operation before recharging is necessary. The batteries are recharged by connecting the 8600 A to the ac power line. If desired, the 8600 A can be operated during the charging process, however, the charging time will be increased.

6-62. Specification

6.63. The specifications for the Battery Pack are given in Section 1 of this manual.

6-64. Operation

CAUTION:

Damage may result if alkaline, zinc-carbon, or mercury batteries are charged in the 8600A.

6-65. With a fully charged battery pack, the 8600 A can be disconnected from line power and operated for typically 8 hours, as a portable instrument. When all the display decimal points flash on and off, the battery pack should be recharged by switching the POWER switch to OFF and connecting the instrument to the ac power line. The total charge time is approximately 16 hours. If desired, the 8600A can be operated during the charging process, however, the charge time will be extended to approximately 43 hours.

NOTE

> Battery manufacturers recommend that Ni-cad batteries be recharged at least every 90 days. Storage temperatures below $+25^{\circ} \mathrm{C}$ are recommended.

6-66. Theory of Operation

6-67. The 8600A equipped with the battery pack option (-01) uses the power transformer configuration shown in Figure 7.2 and the battery power supply pcb shown in Figure 7-6. With the POWER switch in the ON position, the batteries are connected to the input of the battery power supply pcb, a dc-to-dc converter.
6.68. The +5 volts from the battery is applied to the primary windings of T201, causing transistors Q201 and Q202 to alternately conduct. The alternating current in the primary windings is stepped up by the secondary winding and applied to a bridge rectifier consisting of CR203 through CR206. The two halves of the rectifier output are applied to two voltage regulators, U202 and U203. The resulting +15 V and -15 V power supply voltages provide the operating power for the instrument.

6-69. Maintenance

6-70. INPUT POWER

6-71. The $8600 \mathrm{~A}-01$, in addition to battery operation, is capable of operating from either 100,115 , or 230 V ac, 50 or 60 Hz line power. Before connecting the instrument to line power, check and, if necessary, use the following procedure to prepare the unit for operation at the local line voltage:
a. Remove the phillips screw from the rear of the instrument.
b. Remove the case from the unit by pulling it straight back from the front cover.
c. Locate the Battery Power Supply PCB Assembly (See Figure 5-1) and determine the size of the large capacitor C201 on the pcb (See Figure 5-5). The relationship of this capacitor to line power is as follows:

1. $5.0 \mathrm{uF} \cdot 115 \mathrm{~V}$ ac 60 Hz
2. $6.6 \mathrm{uF} \cdot 100 \mathrm{~V}$ ac 50 Hz
3. $2.8 \mathrm{uF} \cdot 230 \mathrm{~V}$ ac 50 Hz
d. Install the appropriate capacitor. The capacitors specifications and John Fluke part numbers are given in the Lists of Replaceable Parts, Section 5. (Battery Power Supply PCB Assembly).
e. Install the unit in its case and insert the phillips screw.

6-72. CHARGING NI-CAD BATTERIES

6-73. With regard to the charging of nickel-cadmium batteries, there are some phenomena which should be considered. For instance, charging Ni-Cad batteries with cell case temperatures above $25^{\circ} \mathrm{C}$ will cause the cell's charge capacity to decrease. The decrease in capacity is linear from 100% of rated capacity at $25^{\circ} \mathrm{C}$ to only 60% of rated capacity at $50^{\circ} \mathrm{C}$, and as low as 45% at $60^{\circ} \mathrm{C}$. Cell case temperatures typically run from $5^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ above ambient temperature during charging due to heat dissipated by the charging circuit. Due to the enclosed nature of the light-weight case on the 8600A, the temperature inside the case typically runs an additional 10° to $15^{\circ} \mathrm{C}$ above ambient temperature. For most complete charging and longest battery life, the $8600 \mathrm{~A}-01$ should be charged at less than $23^{\circ} \mathrm{C}$ ambient. Cell charge times are also affected by low temperatures. Charging the batteries at less than $5^{\circ} \mathrm{C}$ will reduce charge storage capacity and reduce battery life. The battery manufacturer recommends allowing the instrument to warm up to room temperature before charging the unit.

6-74. Charge capacity may also be affected by a cell's charging-discharging routine, due to a memory-type phenomenon. For instance, if a Ni-Cad battery pack is used in a daily routine where it is allowed to discharge by only 30% before being fully recharged again, it will eventually become a battery pack capable of delivering only 30% of its rated capacity. To return such a battery pack to its rated capacity, connect an external load which will discharge the battery completely at a rate equal to its capacity divided by 20 . For example, a pack of four series-connected 1.2 -volt cells having individual capacity ratings of 3.5 ampere hours should be discharged at a rate of $3.5 \mathrm{~A} \div 20=.175 \mathrm{~A}$. This requires a load resistor of $4.8 \mathrm{~V} \div .175 \mathrm{~A}=27.5$ ohms (approximate) with a
power rating of at least $(4.8 \mathrm{~V})(.175 \mathrm{~A})=85 \mathrm{~W}$. (A 2 -watt carbon composition resistor is suitable.)

6-75. Allow the battery pack to discharge for 30 hours, then charge the battery pack at twice the discharge rate for 20 hours. (In the example, the charging rate would be 0.35 amperes at 4.8 volts.) When charging is complete, discharge the pack at the capacity-divided-by- 20 rate for 30 hours, then recharge at twice the discharge rate for a period of 20 hours. The battery pack should now be restored to its rated capacity.

6-76. BATTERY REPLACEMENT

6-77. Use the following procedure for removing and replacing batteries:

CAUTION!

Do not attempt to charge alkaline, zinc-carbon or mercury batteries in the 8600A.
a. Disconnect line cord. Remove retaining screw at rear of instrument case, and remove instrument from case.
b. On the underside of the pcb, remove the two threaded bolts securing the battery holders.
c. Remove the holder tops and batteries.
d. Replace the batteries with 1.2 volt nickel-cadmium batteries (JF Part No. 346924). Install the batteries in the direction indicated by the polarity markings on the battery holder.

6-78. FUSE REPLACEMENT

6-79. The input power fuse F1 is located on the interior of the instrument near the power transformer. If replacement is necessary, use an MDL $1 / 8 \mathrm{~A}$ (slo-blo) for battery powered instruments.

CAUTION!

Line potential exists on the fuseholder whenever the instrument is plugged into the line.

6-80. DATA OUTPUT UNIT (OPTION -02)

6-81. Introduction

6-82. The Data Output Unit (DOU) provides digital measurement information to a rear panel output connector for use by remote display instruments or data printers. The output data is in parallel bcd format and is compatible with the Fluke Model 2010A Digital Printer.

6-83. Specifications

6-84. The specifications for the DOU are presented in Section 1 of this manual.

6-85. Operation

6-86. DOU DATA IDENTIFICATION

6-87. The data available at the rear panel DOU connector is listed in Table 6-4. The connector pin assignment and logic level requirement for each signal is provided.

6-88. DATA UPDATE

6-89. Refer to figure 8-6 and the timing diagram (figure $6-14$) for the following discussion. The DOU output can be updated by an external command (ARM ENABLE, ARM INPUT) or allowed to update automatically (FREE RUN) at the end of each new instrument measurement. A logic level $1(+4.75$ to $+5.25 \mathrm{~V})$ applied to ARM ENABLE (pin B) and a logic level 0 applied to FREE RUN will prevent acquisition of new data by the DOU. A positive going trigger applied to ARM INPUT (pin C) will enable the DOU to acquire data. New data will start to load into the DOU after the next measurement is complete. BZ (from the instrument to the DOU) occurs synchro: nously with the second STO signal affer a measurement is complete and lasts for one strobe cycle. BZ is presented to U10 as a data input. ST5 clocks the data into U10. As soon as data appears in U10, RG is applied through U11 and the isolation circuit to $\mathrm{U} 4, \mathrm{U} 3, \mathrm{U} 2$, and U 1 . At this time the busy flags are applied to the DOU output signifying that data is being changed. U10 enables the data on W to be serially loaded into the bottom of U 4 during the first strobe cycle. When ST5 occurs again, the data in U10 is shifted to enable the data on X to be loaded into U 4 . Four strobe cycles are required to load the new data. When the fifth ST5 signal occurs, U10 is emptied of data and all its outputs are 0 . RG is then inhigited by U11 and the clocking of data ceases. The busy flags are cleared from the DOU output and the data can be read. ARM INPUT may go to 0 at any time in the cycle but it must go to 0 before a data update can be externally commanded. If desired the DOU will automatically update at the end of each instrument measurement. If FREE RUN is allowed to be high, the DOU will automatically update the data after each measurement.

6-90. BUSY FLAG

6-91. The updating period of the DOU is signified by the BUSY (pin 2) and BUSY (pin 4) outputs from the DOU. During this period the data on the output connector pins will be changing to reflect the updated input. Either the positive true BUSY or negative true BUSY flag can be used to inhibit the data recording instrument during this time period.

Table 6-4. DOU DATA IDENTIFICATION

Figure 6-14 DOU TIMING DIAGRAM

6-92. POLARITY FLAG

6-93. The polarity of the dc voltage input to the A-D Converter determines which polarity sign will be presented at DOU output pin 3; pin 5 provides POL in Model 8800A only. A positive dc level at the converter will cause DOU output pin 3 to go to logic 1 and pin 5 (8800 A) to go to logic 0 . A negative converter input will cause the opposite logic level output from each pin.

6-94. OVERLOAD INDICATION

6-95. The DOU provides a single-bit output indication of a display overload condition. When the digit count exceeds the display capacity pin 6 of the DOU output connector changes from a logic 0 to logic 1 .

6-96. RANGE CODE

6-97. The instrument range is presented in a three-bit bcd format at DOU output connector pins $\mathrm{H}, 7$, and F . The output code representing each range is presented in Table 64.

6-98. DISPLAY DIGIT

6-99. The numerical value of each digit of the instrument display is presented in a four-bit bcd format at the DOU output connector. The connector pin assignments for each significant digit of the display are provided in Table 6-4. The most significant digit (DOU connector pins $18,19, \mathrm{~V}$, and W) needs only one active bit to represent the two display digits, 1 or 0 . The three remaining bits are connected to ground in the DOU and, in most cases, the corresponding bits in the remote display unit must also be grounded to represent a logic 0 .

6-100. DOU INTERFACE CABLE

6-101. A mating DOU connector is supplied with the DOU option for fabrication of a custom interface cable. Use the following procedure when constructing the interface cable.
a. Assemble the following equipment:

1. Teflon or vinyl insulated wire, 26 gauge, 31 pieces cut to the desired length.
2. Sleeving, \# 16 for vinyl wire, or \# 18 for teflon.
3. Rosin core solder, 60/40.
4. Wire strippers.
5. Soldering iron, pencil-type (45 W max.)
6. DOU mating connector.
7. Mating connector for interface instrument.
b. Strip one-half inch of insulation from the DOU connector end of the wires and tin each wire.
c. Cut 31 pieces of sleeving one-half inch long.
d. Place one piece of sleeving over each prepared wire.
e. Solder a connector contact pin to each wire.
f. Slide the sleeving over each solder connection.
g. Insert one connector contact pin into each DOU mating connector position corresponding to the desired data output.
h. Prepare the mating connector for the interface instrument. Ensure that the data line connections, at the interface instrument mating connector, place the DOU data on the correct pins.

Section

General Information

7-1. This section of the manual contains generalized user information as well as supplemental information to the List of Replaceable Parts contained in Section 5.

Federal Supply Codes for Manufacturers

D9816	01101	02697	04423
Westermann Wilhelm Augusta-Anlage	Wabash Inc	Parker-Hannifin Corp.	Telonic Berkley Inc.
Mannheim-Nackarau Germany	(Formerly Wabash Magnetics) Wabash, N	O-Ring Div Lexington, KY	Laguna Beach, CA
S0482			04713
Sony Corp.	01121	02735	Motorola Inc.
Tokyo, Japan	Allen Bradley Co. Milwaukee, WI	RCA-Solid State Div. Somerville, NJ	Semiconductor Group Phoenix, AZ
S3774 Somerville, NJ Phoenix, AZ			
Oshino Electric Lamp Works	01281		04946
Tokoyo, Japan	TRW Electronics \& Defense Sector	02768	Standard Wire and Cable
	RF Devices	ITW (ILTool Works)	Rancho Dominquez, CA
0AD86	Lawndale, CA	Fastex Division	Rancho Dominqu,
IN General		Des Plaines, IL	05173
El Paso, TX	01295		General Radio
	TX Instruments Inc.	02799	NY,NY.
OAE89	Semiconductor Group	Arco Electronics Inc.	Replaced by:
Autosplice Inc. Woodside, NY Dallas, TX Chatsworth, CA			
	01526	03296	24655
OBW21	Genicom	Nylon Molding Corp.	Genrad, INC.
Noritake Co. Inc. Burlington, MA	Burlington, MA		
	01537	03445	05236
OANFO	Motorola Communications \&	Lercon Electronics Inc	Jonathan Mfg. Co.
Topaz Semiconductor Inc San Jose, CA	Electronics Inc. Franklin Park, IL	Burbank, CA	Fullerton, CA
		03508	05245
ODSM7	01686	General Electric Co.	Corcom Inc.
Conductive (Pkg) Containers Inc. Brookfield, WI	RCL Electronics/Shallcross Inc.	Semiconductor Products	Libertyville, IL
Brookfield, WI	Electro Componenis Div. Manchester, NH	\& Batteries Aubum, NY	
OCLN7			05276
Ernhart Fastening Group	01884	03797	ITT Pomona
Shelton, CT	Sprague Electric Co. (Now 56289)	Genisco Technology Corp. Eltronics Div.	Electronics Div. Pomona, CA
		Rancho Dominquez, CA	
0 OB81	01961		05277
S-Mos Systems Inc.	Varian Associates Inc.	03877	
San Jose, CA	Pulse Engineering Div. Convoy, CT	Gilben Enginecring Co.Inc Incon Sub of Transitron	Semiconductor Div. Youngwood, PA
OFFP1		Electronic Corp.	Youngrood, PA
Everready LTD	01963 -	Glendale, AZ	05347
Ever Ready Special Battery Div.	Cherry Electrical Products Corp		Ulironix Inc
Dawley Tclford Salop UK	Waukegan, IL	03888 KDI Electronics Inc.	Grand Junction, CO
00199	02111	Pyrofilm Div.	05397
Marcon Electronics Corp	Spectrol Electronics Corp.	Whippany, NJ	Union Carbide Corp.
Keamy, NJ	City of Industry, CA	03911	Materials Systems Div. Cleveland. OH
00213	02114	Clairex Corp.	
Nyronics Comp. Group Inc.	Amperex Electronic Corp.	Clairex Electronics Div.	05571
Darrlingon, NC	Ferrox Cube Div. Saugeries, NY	Mount Vemon, NY	Sprague Electric Co. (Now 56289)
00327		03980	
Welwyn Intemational Inc.	02131	Muirhead Inc.	05574
Westlake, OH	Gencral Instrument Cop. Govermment Systems Div.	Mountainside, NJ	Viking Connectors Inc Sub of Criton Corp.
00656	Westwood, MA	04009	Chatsworth, CA
Aerovox Corp.		Cooper Industries, Inc.	
New Bedford, MA	02395	Arrow Hart Div.	05791
	Sonar Radio Corp.	Hanford, CT	LYN-TRON
00686	Hollywood, FL		Burbank, CA
Film Capacitors Inc.		04217	
Passaic, NJ	02533	Essex Intemational Inc.	
	Leigh Instruments Lid.	Wire \& Cable Div.	05820
	Frequency Control Div.	Anaheim, CA	EG \& G Wakefield Engineering
AMP, Inc.	Don Mills, Ontario, Canada		Wakefield, MA
Harrisburg, Pennsylvania		04221	
	02606	Midland-Ross Corp.	05839
00853	Fenwal Labs	Midex Div.	Advance Electrical
Sangamo Weston Inc	Division of Travenal Labs	N. Mankato, MN	Chicago, Il
Components Div	Morton Grove, IL		
Pickens, NC		04222	
		AVX Corp.	05972
01091	Bunker Ramo-Elra Corp.	AVX Ceramics Div.	Lactite Corp.
Allied Plasties Co.	Amphenol NA Div.	Myrtle Beach, SC	Newington, CT
Los Angeles, CA	Broadvicw, 1L.		

Federal Supply Codes for Manufacturers (cont)

Federal Supply Codes for Manufacturers (cont)

12060	13050	14704	16473
Diodes Inc.	Potter Co.	Crydom Controls	Cambridge Scientific Industries
Northridge, CA	Wesson, MS	(Division of Int Reclifier)	Div. of Chemed Corp.
		El Segundo, CA	Cambridge, MD
12136	13103		
PHC Industries Inc.	Thermalloy Co., Inc.	14752	16733
Camden, NJ	Dallas, TX	Electro Cube Inc. San Gabriel, CA	Cablewave Systems Inc. North Haven, CT
	13327		
12300	Solitron Devices Inc.	14936	
AMF Canada Lid.	Tappan, NY	General Instrument Corp.	16742
Poter-Brumfield		Discrece Semi Conductor Div.	Paramount Plastics
Guelph, Ontario, Canada	13511	Hicksville, NY	Fabricators Inc.
	Bunker-Ramo Corp.		Downey, CA
12323	Amphenol Cadre Div.	14949	
${ }^{\text {Practical Automation Inc. }}$	Los Gatos, CA	Trompeter Elloctroxics	16758
		Chasworth, CA	General Motors Corp. Delco Electronics Div
12327	13606	15412	Kakomo, IN
Freway Corp.	Sprague Electric Co.	Ammon	
Cleveland, OH	(Use 56289)	Midothian, IL	17069
12406	13689		Circuit Structures Lab
Elpac Electronics Inc.	SPS Technologies Inc.	${ }^{15542}$ Scienific Components Corp.	Burbank, CA
Santa Ana, CA	Hatifild, NJ	Mini-Circuits Laboratory Div.	17117
		Brooklyn, NY	Electronic Molding Corp.
	13764		Woonsocket, RI
12443	Micro Plastics	15636	
Budd Co.,The	Flippin, AZ	Elec-Trol Inc.	17338
Plastics Products Div. Phocnixville, PA		Saugus, CA	High Pressure Eng. Co. Inc.
	13919		OK City, OK
	Burr-Brown Research Corp.	15782	
Hitachi Metals Inernational Ld.	Tucson, A2	Bausch \& Lomb Inc.	17504
Hitachi Magna-Lock Div,	14099	Graphics \& Control Div.	Aluminum Filter Co.
Big Rapids, MO	Semuech Corp.		Capimeria, ${ }^{\text {a }}$
	Newbury Park, CA	15801	17545
12615		Fenwal Eletronics Inc.	Alantic Semiconductors Inc.
US Terminals Inc.	14140	Div. of Kidde Inc.	Asbury Park, NJ
12617	Commercial Development Div. Manchester, NH	15818	${ }_{\text {Angsurohm Precision, Inc. }} 17745$
Hamlin Inc.		Teledyne Inc. Co.	Hagerstown, MD
LaKe Mills, WI	14189	Teledyne Semiconductor Div.	
	Orronies, Inc.	Mountain View, CA	17856
12673	Oriando, FL		Siliconix Inc.
Wesco Electrical		15849	Santa Clara, CA
Greenfield, MA	14193	Usecolnc.	
	Cal-R-Inc.	(Now 88245)	18178
	Santa Monica, CA		E G \& Gvactee Inc.
12697 Mat		15898	St. Louis, MO
$\underset{\text { Dover, NH }}{\text { Clatat }}$	14301 Anderson Electronics	International Business Machines Corp.	18235
Dover, NH	Hollidaysburg, PA	Machines Corp.	KRL/Bantry Components Inc.
12749			Manchester, NH
James Electronic Inc.	14329	16068	
Chicago, IL	Wells Electronics Inc. South Bend IN	Intemational Diode Div.	18310
12856		Hanso,	New Yorik, NY
MicroMetals Inc.	14482	16162	
Anaheim, CA	Watkins-Johnson Co.	MM	18324
	Palo Alio, CA	Southfield, MI	Sigrelics Corp.
Metex Corp.	14552	16245	Sacramento, CA
Edison, NJ	Microseni Corp.	Conaplnc.	
	(Formerly Micro-Semiconductor)	Olean, NY	18377
12895 Sectic	Santa Ana, CA		Parlex Corp.
Cleveland Electric Motor Co.		16258	Mehuen, MA
Cleveland, OH	14604	Space-Lok Inc.	
12954	Pawucket, RI	Burbank, CA	Sharp Electronics Corp.
Microsemi Corp.		16352	Paramus, NJ
Components Group	14655	Codi Corp.	
Scousdale, AZ	Cornell-Dublier Electronics Div. of Federal Pacific	Linden, NJ	18542 Wabash Inc.
12969	Electric Co. Govt Cont Dept.	16469	Wabash Relay \& Electronics Div.
Unitrode Corp. Lexington, MA	Newark, NJ	MCL Inc. LaGrange, IL	Wabash, IN

Federal Supply Codes for Manufacturers (cont)

18565	2 Y 384	23732	26402
Chomerics Inc.	North American Philips Lighting Corp.	Tracor Applied Sciences Inc.	Lumex,Inc.
Woburn, MA	Van Wert, Oll	Rockville, MD	Bayshore, NY
18612	20584	23880	26629
Vishay Intertechnology Inc.	Enochs Mfg. Inc.	Stanford Applied Engineering	Frequency Sources Inc.
Malvem, PA	INpolis, IN	Santa Clara, CA	Sources Div.
	20891	23936	Chelmsford, MA
18632	Cosar Corp.	William J. Purdy Co.	26806
Santa Monica, CA	Dallas, TX	Pamotor Div.	American Zeuler Inc.
	21317	Burlingame, CA	Amencan Zeuler Inc. livine, CA
18677	Electronics Applications Co.		27014
Scanbe Mfg. Co.	El Monte, CA	24347	National Semiconductor Corp.
Div. of Zero Corp.		Penn Engineering Co.	Santa Clara, CA
E1 Monte, CA	21604	S. E1 Monte, CA	
	Buckeye Stamping Co.		27167
Voltronics Corp.	Columbus, OH	24355	Coming Glass Works Coming
East Hanover, NJ	21845	Analog Devices Inc. Norwood, MA	Electronics Wilmington, NC
	Solitron Devices Inc.		Wumington, NC
	Semiconductor Group	24444	27264
18786	Rivera Beach, FL	General Semiconductor	Molex Inc.
Micro-Power Long Island City, NY		Industries, Inc.	Lisle, IL
Long Island City, NY	21847	Tempe, AZ	
	Aertech		27440
18927 GTE Products Corp	Now TRW Microwave Inc.	24546	Industrial Screw Products
Precision Material Products	Sunnyvale, CA	Bradford Electronics Bradford, PA	Los Angeles, CA
Business Pats Div.	21962		27494
Titusville, PA	Vectron Corp.	24618	Staffall, Inc.
	Replaced by: S.W. Electronics	Transcon Mfg,	Providence, RI
Robinson Electronics Inc.	22526	Now: D.J. Associates Inc.	
San Luis Obispo, CA	DuPont, El DeNemours \& Co. Inc.	24655	27745
	DuPont Connector Systems	Genrad Inc.	Associated Spring Bames Group Inc.
19112	Advanced Products Div.	(Replaced General Radio 05173)	Syracuse, NY
Garry Corp.	Now Cumberiand, PA	Concord, MA	
Langhome, PA			27918
	22626	24759	Component Parts Corp.
19315 Bendix Corp., The Navigation \& Control Group Terboro, NJ	Micro Semiconductor	Lenox-Fugle Electronics Inc.	Bellmore, NY
	(Now 14552)	South Plainfield, NJ	
	22670	24796	27956
	GM Nameplate	AMFInc.	Relcom (Now 14482)
19451 Perine Machine Tool Corp. Kent, WA	Seaule, WA	Potter \& Brumfield Div.	28175
		San Juan Capistrano, CA	Alpha Metals
	22767	San Jun Capitrao, CA	Chicago, IL
	ITT Semiconductors	24931	
Delta Electronics Alexandria, VA	Palo Alto, CA	Specialty Connector Co.	28198
		Greenwood, IN	Positronic Industries
	22784		Springfield, MO
19613	PalmerInc.	ECS	
MN Mining \& Mfg. Co. Textool Products Dept. Electronic Product Div. living, TX	Cleveland, OH	Grants Pass, OR	
	Cleveland, On	Grants Pass, OR	MN Mining \& Mfg. Co. Consumer Products Div.
	23050	25088	3M Center
	Product Comp. Corp. Mount Vernon, NY	Siemen Corp.	Saint Paul, MN
19647Caddock Electronics Inc.		lsilen, NJ	28309
	23223	25099	Kaiser
Riverside, CA	CTS Microelectronics Lafayette, NY	Cascade Gasket Kent, WA	Minete, AL
19701			28425
Mepco/Centralab Inc.	23237	25403	Serv-O-Link
Mineral Wells, TX	1.R.C., Inc.	Amperex Electronic Corp.	Euless, TX
	Microcircuits Divison	Semiconductor \& Micro-Circuit Div.	Ealess, $1 \times$
	Philadelphia, PA	Slatersville, RI	28478
2B178	23302		Deltrol Corporation
Wire Products	S.W. Electronics \& Mfg. Corp.	Moldtronics, Inc	Deltrol Controls Div.
Cleveland, OH	Cherry Hill, NJ	Downers Grove, IL	Miwaukee, WI
2K262	23730		28480
	23730	25706	Hewlen Packard Co.
Boyd Corporation	Mark Eyelet and Stamping Inc.	Dabum Electronic \& Cable Corp.	Corporate HQ
Porland, OR	Wolcotr, CT	Norwood, NJ	Palo Alto, CA

Federal Supply Codes for Manufacturers (cont)

28484	31433	33246	36701
Emerson Electric Co.	Kernet Electonics Corp.	Epoxy Technology Inc.	Van Waters \& Rogers
Gearmaster Div.	Simpsonville, NC	Billerica, MA	Valley Field, Quebec, Canada
Mchenry, IL			
	31448	33292	37942
28520	Army Safeguard Logistics Command	Pioneer Sterilized Wiping Cloth Co.	Mallory Capacitor Corp.
Heyco Molded Products Kenilworth, NJ	Ilunsville, AL	Porland, OR	Sub of Emhar Industries
			INpolis, in
	31471	33297	
28932	Gould Inc	NEC Electronics USA Inc.	39003
Lumax Industrials, Inc	Semiconductor Div	Electronic Arrays Inc. Div.	Maxim Industries
Altoona, PA	Santa Clara, CA	Mountain View, CA	Middleboro, MA
29083	31522	33919	4 F 434
Monsanto Co.	Metal Masters Inc.	Nortek Inc.	Plastic Sales
Santa Clara, CA	Baldwin, MS	Cranston, RI	Los Angeles, CA
29604	31746		40402
Stackpole Components Co.	Cannon Electric	34114	Roderstein Electronics Inc.
Raleith, NC	Woodbury, TN	Oak Industries Rancho Bemardo, CA	Statesville, NC
29907	31827		42498
Omega Engineering Inc.	Budwig	34263	National Radio
Stamford, CT	Ramona, CA	CTS Electronics Corp. Brownsville, TX	Melrose, MA
3D536	31918		43543
Seatle, WA	TrT-Schadow	34333	Nytronics Inc.(Now 53342)
	Eden Praire, MN	Silicon General Inc. Garden Grove, CA	43744
30035	32293		Panasonic Industrial Co.
Jolo Industries Inc.	Intersil	34335	San Antonio, TX
Garden Grove, CA	Cuperino, CA	Advanced Micro Devices (AMD)	
		Sunnyvale, CA	43791
30045	32539		Datron Systems
Solid Power Corp.	Mura Corp.	34359	Wilies Barte, PA
Farmingdale, NY	Westbury, Long Island, N.Y.	MN Mining \& Mfg. Co.	
		Commercial Office Supply Div.	44655
30146	32559	Saint Paul, MN	Ohmite Mfg. Co.
Painesvill, OH	Bivar		Skokie, IL
	Santa Ana, CA	34371	
		Harris Corp.	47001
30148	32719	Hamis Semiconductor	Lumberg Inc.
AB Enterprise Inc.	Siltronics	Products Group	Richmond, VA
Ahoskie, NC	Santa Ana, CA	Melboume, FL	
			47379
30161	32767	34576	ISOCOM
Azvid Engineering Inc.	Griffith Plastics Corp.	Rockwell International Corp.	Campbell, CA
Laconia, NH	Burlingame, CA	Newport Beach, CA	
			49569
30315	32879	34641	DT (nnternational Development \& Trade)
Itron Corp.	Advanced Mechanical Componenis	Instrument Specialies	Dallas, TX
San Diego, CA	Northridge, CA	Euless, TX	
			49671
30323	32897	34649	RCA Corp.
IL Tool Works Inc.	Murata Erie North America Inc.	Intel Copp.	New York, NY
Chicago, IL	Carlisle Operations Cardisle, Pennsylvania	Santa Clara, CA	49956
30800		34802	Raytheon Company
General Instrument Corp.	32997	Electromotive Inc.	Executive Offices
Capacitor Div.	Bourns Inc.	Kenilworth, NJ	Lexinglon, MA
Hicksville, NY	Trimpor Div.		
	Riverside, CA	34848	SD590
30838		Hartwell Special Products	Mostek Corp.
Chicago, ILL	33025	Placentia, CA	Replaced by: SGS Thompson Microelec
	M/A ComOmni Spectra, Inc. (Replacing		tronics
	Omni Spectra)	35009	
31019	Microwave Subsystems Div.	Renfrew Electric Co. Led.	SF520
Solid State Scientific Inc. Willow Grove, PA	Tempe, AZ	IRC Div.	Panel Components Corp.
Willow Grove, PA		Toronto, Ontario, Canada	Santa Rosa, CA
31091 Alpha Industries Inc. Microelectronics Div. Hatfield, PA	33096	35986	SP575
	CO Crystal Corp.	Amrad	Nobel Electronics
	Loveland, CO	Melrose Park, 11	Suffem, NY
	33173	36665	5W664
31323	General Electric Co.	Mitel Corp.	NDK
Metro Supply Company Sacramento, CA	Owensboro, KY	Kanata, Ontario, Canada	Div. of Nihon Dempa Kogyo LTD Lynchburg, VA

Federal Supply Codes for Manufacturers (cont)

SU802	51499	52840	54937
Dennison Mfg. Co.	Amron Corp.	Western Digital Corp.	DeYoung Mfg.
Framingham, MA	Boston, MA	Costa Mesa, CA	Bellevue, WA
50088	51506	53021	54590
SGS - Thomson Microelectronics Inc.	Accurate Screw Machine Co.	Sangamo Weston Inc.	RCA Corp.
Carrollton, TX	(ASMCO) Nutley, NJ	(See 06141)	Electronic Components Div. Cherry Hill, NJ
50120	51605	53036	
Eagle-Picher Industries Inc.	CODI Semiconductor Inc.	Textool Co.	55026
Electronics Div. CO Springs, CO	Kenilworth, NJ	Houston, TX	American Gage \& Machine Co. Simpson Electric Co. Div.
	51642	53184	Elgin, IL.
50157	Centre Engineering Inc.	Xciton Corp.	
Midwest Components Inc. Muskegon, MS	State College, PA	Lathan, NY	55112 Plessey Capacitors Inc.
	51705	53217	(Now 60935)
50356	ICO/Rally	Technical Wire Products Inc.	
Teac Corp. of America Industrial Products Div	Palo alto, CA	Santa Barbara, CA	55261 LSI Computer Systems Inc.
Montebello, CA 50364	51791 Statek Corp.	53342 Opt Industries Inc.	Melville, NY
50364 MMI, Inc.(Monolithic Memories Inc) Military Products Div.	Orange, CA 51984	Phillipsburg, NJ 53673	55285 Bercquist Co.
Santa Clara, CA	51984 NEC America Inc. Falls Church, VA	53673 Thompson CSF Components Corp. (Semiconductor Div)	Minneapolis, MN 55322
50472 Metal Masters, Inc.	52063	Conaga Park, CA	Samlech Inc. New Albany, IN
City of Industry, CA 50541	Exar Integrated Systems Sunnyvale, CA	53718 Airmold/W. R. Grese \& Co.	55408
50541 Hypertronics Corp. Hudson MA	52072	Roanoke Rapids, NC	$\begin{aligned} & \text { STI-CO Industries Co } \\ & \text { Buffalo, NY } \end{aligned}$
Hudson, MA 50558	Circuit Assembly Corp. Irvine, CA	53848 Standard Microsystems	55464
50558 Electronic Concepts, Inc.	52152	Hauppauge, NY	Central Semiconductor Corp. Itauppange NY
Eatontown, NJ	MN Mining \& Mfg. Saint Paul, MN	53894 AILAMInc.	55557
50579 Litronix Inc. Cuperino, CA	52333	RanchoCA, CA	Microwave Diode Corp. W.Stewarstown, NH
Cuperinio, CA 50891	API Electronics Haugpauge,Long lsland, NY	53944 Clow-Lite Pauls Valley, OK	55566
Scmiconductor Tectnology	52361	Pauls Valley, OK	R A F Electronic Hardware Inc. Seymour, CT
Stuart, FL 50934	Communication Systems Piscataway, NJ	54178 Plasmetex Industries Inc.	55576
Tran-Tec Corp	52500	San Marcos, CA	Synertek Santa Clara, CA
Columbus, NE	Amphenol, RF Operations Burlington, MA	54294 Shalleross Inc. Smithfield, NC	$\begin{aligned} & 55680 \\ & \text { Nichicon/Anerica/Corp. } \end{aligned}$
51167	52525		Schaumburg, IL
Aries Electronics Inc.	Space-Lok Inc.	54453	
Frenchtown, NJ 51284	Lerco Div. Burbank, CA	Sullins Electronic Corp. San Marcos, CA	55943 D J Associates, Inc
S1284 Mos Technology	52531	54473	(Replaced Transcon Mfg.24618) Fort Smith, AZ
Noristown, PA	Ilitachi Magnetics Edmore, MO	Masushita Electric Corp. (Panasonic)	56282
51249 Heyman Mfg. Co. Cleveland, OH	52745	Secaucus, NJ	Utek Systems Inc. Olathe, KS
Cleveland, OH 51372	Timco Los Angeles, CA	54492 Cinch Clamp Co., Inc.	56289
Verbatim Corp.	52763	Santa Rosa, CA	Sprague Electric Co. North Adams, MA
Sunnyvale, CA 51398	Stettncr-Electronics Inc. Chattanooga, TN	54583 TDK	56365
MUPAC Corp.	52769	Garden City, NY	Square DCo. Corporate Offices
Brockton, MA	Spraguc-Goodman Electronics Inc. Garden City Park, NY	54590 RCA Corp	Palatine, II.
51406 Murata Erie, No. America Inc. (Also see 72982)	52771 Moniterm Corp.	Distribution \& Special Products Cherry Hill, NY	56375 WESCORP Div. Dal Industries Inc
Marielta, GA	Amatrom Div. Santa Clara, CA	54869 Piher Intemational Corp. Arlington Heights, IL.	Mountain View, CA

Federal Supply Codes for Manufacturers (cont)

56481	59610	60911	64537
Shugart Associates	Souriau Ine	Inmos Corp.	KDI Electronics
Sub of Xerox Corp.	Valencia, CA	CO Springs, CO	Whippany, NJ
Sunnyvale, CA			
	59635	60935	64782
56637 RCD Components Inc. Manchester, NH	HV Component Associates	Westlake Capacitor Inc.	Precision Control Mfg. Inc.
	Howell, NJ	Tantalum Div. Greencastle, IN	Bellevue, WA
	59640		64834
56708	Supertex Inc.	60958	West M G Co.
Zilog Inc.	Sunnyvale, CA	ACIC	San Francisco, CA
Campbell, CA		Intercomp Wire \& Cable Div.	
	59660	Hayesville, NC	
56856	Tusonix Inc.		64961
Vamistor Corp. of TN	Tucson, AZ	61271	Electronic Hardware LTD
Sevierville, TN		Fujisu Microelectranics Inc	North Hollywood, CA
	59730	San Jose, CA	
	Thomas and Betts Corp.		65092
56880	IA City, IA	61394	Sangamo Weston Inc.
Magnetics Inc.		SEEQ Technology Inc.	Weston Instruments Div.
Baltimore, MD	59831	San Jose, CA	Newark, NJ
	Serntronics Corp.		
57026	Watchung, NJ	61429	65786
Endicott Coil Co. Inc.		Fox Electronics	Cypress Semi
Binghamton, NY	61053:	Cape Coral, FL	San Jose, CA
	American Components Inc.		
57053	an Insilco Co. RPC Div.	61529	65940
Denver, CO	Hayesville, NC	Aromat Corp. New Providence, NJ	Rohm Corp \& Whatney Irvine, CA
	$6 \mathrm{L611}$		
57170	Allen, Robert G. Inc.	61752	65964
Cambridge Thermionic	Van Nuys, CA	IR-ONCS Inc	Evox Inc.
Cambridge, MA		Warwick, RI	Bannockbum, IL
Replaced by:	Q850		
71279	Burgess Switch Co., Ine	61772	66150
Interconnection Products Inc.	Northbrook, IL	Integrated Device Technology Santa Clara, CA	Entron Inc. Winslow Teltronics Div.
57668	OU095		Glendale, NY
R-ohm Corp	AMD Enterprises, Inc.	61802	
Irvine, CA	Roswell, GA	Toshiba	
		Houston, TX	66302
57962	6×403		VLSI Technology Inc.
SGS - Thomson Microelectronics Inc	SGS/ATES Semiconductor Corp.	61857	San Jose, CA
Montgomeryville, PA	INpolis, IN	SAN-O Industrial Corp. Bohemia, Long Island, NY	66419
58014	6Y440		Exel
Hitachi Magnalock Corp.	Micron Technology Inc.	61935	San Jose, CA
(Now 12581)	Boise, ID	Schurter Inc. Petaluma, CA	66450
58104	60046		Dyna-Tech Electronics, Inc
Simco	Power Dynamics Inc	62351	Walled Lake, MI
Atlanta, GA	West Orange, NJ	Apple Rubber Lancaster, NY	66608
58364	60197		Bering Industries
BYCAP Inc.	Precicontact Inc.	62643	Freemont, CA
Chicago, IL	Langhome, PA	United Chemicon	
		Rosemont, IL	66891
58451	60386		BKC Intemational Electronics
Precision Lamp	Squires Electronics Inc	62712	Lawrence, MA
Cotat, CA	Comelius, OR	Seiko Instruments Torrance, CA	66958
	60395		SGS Semiconductor Corp.
58474	Xicor Inc.	62793	Phoenix, AZ
Superior Electric Co. Bristol, CT	Milpitas, CA	Lear Siegler Inc. Energy Products Div.	
	60399	Santa Ana, CA	66967
58614	Torin Engincered Blowers		Powcrex Inc
Communications Instruments Inc.	Div. of Clevepak Corp.	63743	Aubum, NY
Fairview, NC	Torrington, CT	Ward Leonard Elecric Co.Inc. Mount Vemon, NY	67183
59124	60496		Altera
KOA-Speer Electronics Inc.	Micrel Inc.	64154	Santa Clara, CA
Bradford, PA	Sunnyvale, CA	Lamb Industries Portland, OR	68919
59422	60705		WIMA
Holmberg Electronics	Cera-Mite Corp.	64155	\% Harry Levinson Co.
Irvine, CA	(formerly Sprague) Grafton, WI	Linear Technology Milpitas, CA	Seatle, WA

7F361	71468	73138	75042
Richmond-Division of Dixico	$17 T$ Cannon Div. of ITT	Beckman Industrial corp.	TRW Inc.
Seaule, WA	Fountain Valley, CA	Helipor Div.	IRC Fixed Resistors
		Fullerton, CA	Philadelphia, PA
7F844	71482		
Moore Business Forms, Inc	General Instrument Corp.	73168	75297
Seatue, WA	Clare Div.	Fenwal Inc.	Kester Solder Div.
	Chicago, il	Ashland, MA	Litton Systems, Inc
$7 \mathrm{G902}$	71590	73293	Des Plaines, IL
Textron Inc.	Mepco/Centralab	Hughes Aircraft Co.	75376
Rockford, IL	A North American Philips Co.	Electron Dynamics Div.	Kurz-Kasch Inc.
	Fort Dodge, IA	Torrance, CA	Dayton, OH
75395		73445	75378
Universal Plastics	71707	Amperex Electronic Corp.	CTS Knights Inc.
Welshpool, WA	Coto Corp.	Hicksville, NY	Sandwich, IL
7 J 696	Providence, RI	73559	
AMD Plastics	71744	Carlingswitch Inc.	75382
East Lake, OH	General Instument Corp.	Harford, CT	(Now 83330)
7K354	Lamp Div/Worldwide		Mount Vernon, NY
Omni Spectra Inc	Chicago, IL	73586 Circle F Industries	
Los Altos, CA	71785	Circle F industries Trenton, NJ	75569 Performance Semiconductor Corp.
	TRW Inc.		Sunnyvale, CA
	Cinch Connector Div.	73734	
ALPS	Elk Grove Village, IL	Federal Screw Products Inc.	75915
Searie, WA		Chicago, IL	Littelfuse Tracor
	71984		(Formerly: Tracor-Littelfuse)
7X634	Dow Coming Corp.	73743	Des Plaines, IL.
Duracell USA	Midland, MI	Fischer Special Mfg. Co.	
Div. of Dant \& Kraft Inc.	72005	Cold Spring, KY	Oak Switch Systems Inc.
Valdese, NC	AMAX Specialty Metals Corp.	73893	Crystal Lake, IL
70290	Newark, NJ	Microdot	
Almetal Universal Joint Co.		Mt. Clemens, MS	77122
Cleveland, OH	Electro Motive Mfg. Corp.	73899	TRW Assemblies \& Fasteners Group
	Florence, NC	JFD Electronic Components	Mourainside, NJ
70485 ,		Div. of Murata Erie	
Chicago, IL	72228	Oceanside, NY	77342
	AMCA Intemational Corp.		AMF Inc.
	Continental Screw Div.	73905	Potter \& Brumfield Div,
Amperite Company	New Bedford, MA	FL Industries Inc. San Jose, CA	Princeton, IN
Union City, NJ	72259		77542
	Nytronics Inc.	73949	Ray-O.Vac Corp
70903 Cooper-Belden Corp. Geneva, IL	New York, NY	Guardian Electric Mfg. Co.	Madison, WI
			77638
71002	72619	74199	General Instrument Corp.
${ }^{71002}$ Bimbach Co. Inc.	Amperex Electronic Corp.	Quam Nichols Co.	Rectifier Div.
Farmingdale, NY	Dialight Div. Brooklyn, NY	Chicago, IL	Brooklyn, NY
$\begin{aligned} & 71034 \\ & \text { Biley Electric Co. } \\ & \text { Erie, PA } \end{aligned}$		74217	77900
	72653	Radio Switch Co.	
	G C Electronics Co.	Marlboro, NJ	(Now 78189)
	Div. of Hydrometals Inc.		
	Rockford, IL	74306	77969
71183 Westinghouse Electric Corp. Bryant Div. Bridgeport, CT		Piezo Crystal Co.	Rubbercraft Corp. of CA Lud.
	${ }^{72794}$ Dzus Fastner Co.	Div. of PPA Industries inc.	Torrance, CA
	West Islip, NY	Carlse, PA	78189
	Warlsip, F	74445	IIL Tool Works Inc.
	72928	Holo-Krome Co.	Shakeproof Div.
71279 Interconnection Products Inc. Formerly Midland-Ross Cambion Div. Santa Ana, CA	Gulton Industries Inc.	Elmwood, CT	Elgin, IL
	Gudeman Div.		
	Chicago, IL	74542	78277
		Hoyt Elect.Instr. Works Inc.	Sigma Instruments Inc.
	72962	Penacook, NH	South Braintree, MA
71400 Bussman Manufacturing Div. McGraw-Edison Co. St. Louis, MO	Elastic Stop Nut		
	Div. of Harrard Industries	74840	78290
	Union, NJ	II. Capacitor Inc. Lincolnwood, IL	Struthers Dunn Inc. Pitman, NJ
	72982		
71450 CTS Corp. Elkhart, IN	Erie Specialty Products, Inc	74970	78553
	Formerly: Murata Erie	Johnson EF Co.	Eaton Corp.
	Erie, PA	Waseca, MN	Engineered Fastener Div. Cleveland, OH

Federal Supply Codes for Manufacturers (cont)

Federal Supply Codes for Manufacturers (cont)

9W423 Amatom El Mont, CA	91934 Miller Electric Co. Woonsockct, RI	95573 Campion Laboratories Inc. Detroit, MI	98278 Malco A Microdot Co. South Pasadena, CA
90201 Mailory Capacitor Co. Sub of Emhart Industries Inc. Indianapolis, IN	91967 National Tel-Tronics Div. of electro Audio Dynamics Inc Meadville, PA	95712 Bendix Corp. Electrical Comp. Div. Franklin, IN	98291 Sealectro Copp. BICC Electronics Trumbill, CT
90215 Best Stamp \& Mfg. Co. KS City, MO	91984 Maida Development Co. Hampton, VA	95987 Weckesser Co. Inc. (Now 85480)	98372 Royal Industries Inc. (Now 62793)
90303 Duracell Inc. Technical Sales \& Marketing Bethel, CT	91985 Norwalk Valve Co. S. Norwalk, CT	96733 SFE Technologics San Femando, CA	98388 Lear Siegler Inc. Accurate Products Div. San Deigo, CA
91094 Essex Group Inc. Suflex/IWP Div. Newmarket, NH	92218 Wakefield Corp., The Wakefield, ME 92527 VTC Inc.	96853 Gulton Industries Inc. Measurement \& Controls Div. Manchester, NH 96881	```98978 IERC (International Electronic Research Corp.) Burbank, CA```
91247 IL Transformer Co. Chicago, IL	Bloornington, MN 92607	Thomson Industries Inc. Port WA, NY	99120 Plastic Capacitors Inc. Chicago, IL
91293 Johanson Mfg. Co. Boonton, NJ	Tensolite Co. Div, of Carlisle Corp. Buchanan, NY	97464 Industrial Retaincr Ring Invington, NJ	99217 Bell Industries Inc. Elect. Distributor Div.
91462 Alpha Industries Inc. Logansport, IN	92914 Alpha Wire Corp. Elizabeth, NJ 93332	97525 EECO Inc. Santa Ana, CA	Sunnyvale, CA 99378 ATLEE of DE Inc.
91502 Associated Machine Santa Clara, CA	93332 Sylvania Elecric Products Semiconductor Products Div. Wobum, MA	97540 Whitehall Electronics Corp. Master Mobile Mounts Div. Fort Meyers, FL	N. Andover, MA 99392 Mepco/Electra Inc.
91506 Augat Alcoswitch N. Andover, MA	94144 Raytheon Co. Microwave \& Power Tube Div. Quincy, MA	97913 Industrial Electronic Hardware Corp. NY, NY	Roxboro Div. Roxboro, NC 99515 Electron Products Inc.
91507 Froeliger Machine Tool Co. Stockton, CA 91637	94222 Southoo Inc. Concordville, PA	97945 Pennwalt Coxp. SS White Industrial Products Piscataway, NJ	Div, of American Capacitors Duarte, CA 99779 Bunker Ramo- Elura Corp.
Dale Electronics Inc. Columbus, NE	94988 Wagner Electric Corp. Sub of Mcgraw-Edison Co. Whippany NJ	97966 CBS	Bames Div. Lansdown, PA
91662 Elco Copp. A Gulf Westem Mfg. Co. Connector Div. Iluntingdon, PA	Whippany, NJ 95146 Alco Electronic Products Inc. Switch Div. North Andover, MA	Electronic Div. Danvers, MA 98094 Machlet Laboratories Inc. Santa Barbara. CA	99800 American Precision Industries Delevan Div. East Aurora, NY 99942
91737 ITT Cannon/Gremar (Now 08718)	95263 Leecraft Mig. Co. Long Island City, NY	98159 Rubber-Teck Inc. Gardena, CA	Mepco/Centralab A North American Philips Co. Milwaukee, WI
91802 Industrial Devices Inc. Edgewater, NJ	95275 Vitramon Inc. Bridgeport, CT		
91833 Keystone Electronics Corp. NY, NY 91836	95303 RCA Corp. Receiving Tube Div. Cincinnati, OH		
King's Electronics Co. Inc. Tuckahoe, NY 91929	95348 Gordos Copp. Bloomfield, NJ		
Honeywell Inc. Micro Switch Div. Freeport, IL	95354 Methode Mfg. Corp. Rolling Meadows, IL		

Australia
Philips Customer Support
Scientilic \& Industrial
25-27 Paul St. North
North Ryde N.S.W. 2113
Tel: 61028888222
Austria
Oesterreichische Philips industrie
Unternehmensbereich Prof. Systeme
Triesterstrasse 66
Postfach 217
A- 1101 Wein
Tel: 43 222-60101, x1388
Belgium
Philips \& MBLE Associated S.A.
Scientific \& Industrial Equip. Div
Service Department.
80 Rue des deux Gares B-1070
Brussels
Tel: 3225256111

Brazil

Hi-Tek Electronica Ltda.
Al. Amazonas 422, Alphaville
CEP 06400 Barueri
Sao Paulo
Tel: 5511421 -5477
Canada
Fluke Electronics Canada Inc. 400 Britannia Rd. East, Unit \#1
Mississauga
Ontario L4Z 1X9
Tel: 416-890-7600

Chlie

Intronica Chile Ltda.
Casilla 16228
Santiago 9
Tel: 562 2321886, 2324308
China
Fluke International Corp.
P.O. Box 9085

Beijing
Tel: 8601 512-3436
Colombia
Sistemas E Instrumentacion, Ltda.
Carrera 13, No. 37-43, Of. 401
Ap. Aereo 29583
Bogota DE
Tel: 57 232-4532

Denmark

Philips A/S
Technical Service I \& E
Strandlodsveij 1 A
PO Box 1919
DK-2300
Copenhagen S
Tel: 451572222

Ecuador
Proteco Coasin Cia., Ltda.
P.O. Box 228-A

Ave. 12 de Octubre
2285 y Orellana
Quito
Tel: 5932529684

Egypt

Philips Egypt
10, Abdel Rahman el Rafei st.
el. Mohandessin
P.O. Box 242

Dokki Cairo
Tel: 20-2-490922
England
Philips Scientific
Test \& Measuring Division
Colonial Way
Wattord
Hertorshire WD2 4TT
Tel: 44 923-40511

Finland
Oy Philips AB
Central Service
Sinikalliontie 1-3
P.O. Box 11

SF-02630 ESPOO
Tel: 358-0-52572

France

S.A. Philips Industrielle
et Comerciale,
Science et Industry
105 Rue de Paris Bp 62
93002 Bobigny, Cedex
Tel: 33-1-4942-8040

Germany (F.R.G.)
Philips GmbH
Service fuer FLUKE - Produkte
Department VSF
Oskar-Messter-Strasse 18
D.8045 Ismaning/Munich,

West Germany
Tel: 49089 9605-239

Greece
Philips S.A. Hellenique
15, 25th March Street
17778 Tavros
10210 Athens
Tel: 3014894911

Hong Kong
Schmidt \& Co (H.K.) Ltd.
18/FL., Great Eagle Centre
23 Harbour Road
Wanchai
Tel: 85258330222

India
Hinditron Services Pvt. Ltd
1st Floor, 17-B,
Mahal Industrial Estate
Mahakali Road, Andheri East
Bombay 400093
Tel: 91226300043

Hinditron Services Pvt. Inc.
33/44A Raj Mahal Villas Extn.
8th Main Road
Bangalore 560080
Tel: 91812363139

Hindiron Services Pvt. Ltd.
Field Service Center
Emerald Complex 1-7-264
5th Floor
114 Sarojini Devi Road
Secunderabad 500003
Tel: 08 42-821117
Hindtron Services Pvt. Ltd.
15 Communiry Centre
Panchshila Park
New Delhi 110017
Tel: 011-6433675

Indonesia

P.T. Lamda Triguna
P.O. Box 6/JATJG

Jakarta 13001
Tel: (021) 8195365

Israel
R.D.T. Electronics Engineering, Ltd.
P.O. Box 43137

Tel Aviv 61430
Tel: 9723483211

Italy
Philips S.p.A.
Sezione I\&E / T\&M
Viale Elvezia 2
2005 Monza
Tel: 39393635342

Japan

John Fluke Mifg. Co., Inc.
Japan Branch
Sumitomo Higashi Shinbashi Bldg.
1-1-11 Hamamatsucho
Minato-ku
Tokyo 105
Tel: 813 434-0181

Korea
Myoung Corporation
Yeo Eui Do P.O. Box 14
Seoul 150
Tel: 82 2 784-9942

Malaysla
Mecomb Malaysia Sdn. Bhd.
P.O. Box 24

46700 Petaling Jaya
Selangor
Tel: 60 3 774-3422

Mexico
Mexel Servicios en Computacion
Instrumentacion y Perifericos
Blvd. Adolfo Lopez Mateos No. 163
Col. Mixcoac
Mexico D.F.
Tel: 52-5-563-5411
Netherlands
Philips Nederland
Test \& Meetapparaten Div.
Postbus 115
5000 AC Tilburg
Tel: 31-13-352445

Singapore
Rank O'Connor's Singapore (PTE) Ltd.
98 Pasir Panjang Road
Singapore 0511
Tel: 654737944

South Africa

South African Philips (Py) Ltd.
Service Department
195 Main Rd
Martindale, Johannesburg, 2092
Tel: $2711470-5255$

Spain

Philips Iberica S.A.E.
Depto. Tecnico instrumentacion
c/Martinez Villergas 2
28027 Madrid
Tel: 3414042200

Swaden

Philips Kistaindustrier AB
Customer Support
Borgarfjordsgatan 16
S-16493 Kista

Switzerland
Philips A.G.
Technischer Kundendienst
Postlach 670
Allmendstrasse 140
$\mathrm{CH}-8027$ Zurich
Tel: 411482211
Taiwan
Schmidt Electronics Corp.
5th Floor, Cathay Min Sheng
Commercial Building,
344 Min Sheng East Road
Taipei
Tel: 886 2501-3468

Thailand
Measuretronix Ltd.
$2102 / 63$ Ramkamhaeng Rd.
Bangkok 10240
Tel: 662 374-2516, 374-1632
Turkey
Turk Philips Ticaret A.S.
Inonu Caddesi 78/80
Posta Kutusu 504-Beyoglu
istanbul
Tel: 9011435891
Uruguay
Coasin Uruguaya S.A
Casilla de Correo 1400
Libertad 2525
Montevideo
Tel: 598-2-789015
Venezuela
Coasin C.A.
Calle 9 Con Calle 4, Edif. Edinurbi
Apartado de Correos Nr-70-136
Los Ruices
Caracas 1070-A
Tel: 582 241-0309, 241-1248

West Germany
Philips GmbH
Department VSF
Service fuer FLUKE - Produkte
Oskar - Messter - Strasse 18
D-8045 Ismaning / Munich
Tel: 49089 9605-260

Section 8

Schematic Diagrams

TABLE OF CONTENTS

FIGURE NO.NAME
DRAWING NO. PAGE
8-1 Front Panel and Main PCB Assembly (2 sheets) 8600A-1001 8-3
8-2 Display PCB Assembly 8600A-1002 8.7
8-3 AC Converter PCB Assembly 8600A-1003 8-9
8-4 Ohms Converter PCB Assembly 8600A-1004 8-11
8.5
Battery Power Supply PCB Assembly (Option -01) . . 8600A-1006 $8-13$
8-6 Data Output Unit PCB Assembly (Option -02) 8800A-1005 $8-15$

NOTES:

1. UNLESS OTHERWISE SPECIFIED ALL RESISTANCES ARE IN OHMS AND ALL CAPACITANCES ARE ARE IN OHMS
MICROFARADS
$2 . \pm$ EARTH GROUND
2. \downarrow \triangle ANALOG COMMON $\perp \angle O G I C ~ C O M M O N$
3. REF ASSY DWG B6004-400 \& 8600A-4011
4. SEE SH / FOR ALL OTHER MAIN PCB CKTY

FIGURE 8-2. DISPLAY PCB ASSEMBLY (8600A-1002)

FIGURE 8-3. AC CONVERTER PCB ASSEMBLY (8600A-1003)


```
    NOTES:
    1. UNLESS OTHERWISE SPECIFIED ALL RESISTANCES ARE IN OHMS
    AND ALL CAPACITANCES ARE IN mICROFARADS.
    2. Q denotes screwdriver adrust.
    3. D E factory selected value.
    4. 方ANALOg common
    5. Doenotes calibration adj points.
    6. REFERENCE ASSY DWG 86004-4004
```


FIGURE 8-4. OHMS CONVERTER PCB ASSEMBLY (8600A-1004)

T201

LOGIC COMMON $\xrightarrow{2}$
ANALOG COMMON $\xrightarrow[\nabla]{8}$

NOTES:

1. UNLESS OTHERWISE SPECIFIED ALL RESISTANCES ARE IN OHMS aND all capacitances are in microfanads.
2 CAPACITOR VALUE SELECTED FOA AC LINE VOLTAGE (i.e. 115, 230, etc.).
2. REF ASSY DWG 8600A-4006.
3. $\frac{1}{\nabla}$ ANALOG COMMON 1 LOGIC COMMON

HIGHEST REF DES	REF DES NOT USED
$C 205$	
$C R 206$	$C R 201.202$
$L 201$	
$Q 203$	2203
$R 209$	
$T 201$	
$U 203$	

FIGURE 8-5. BATTERY POWER SUPPLY PCB

FIGURE 8-6. DATA OUTPUT UNIT PCB ASSEMBLY, -02 OPTION (8800A-1005)

[^0]: PORTIONS REPRINTED WITH PERMISSION FROM TEKTRONIX, INC. AND GENERAL DYNAMICS, POMONA DIV.

