MAINTENANCE

	ο	
	(n)	1
	a A	
	9	100
	D D	P
	ccé les	E
	der	EPA
	X	4-1- MODE DE DEPANNAGI
	ρ×	5
	com	•
	pos	
	ap ne	
÷	dr s	
	Pour accéder aux composants, il fai dessous et les deux barreaux de droite.	
	e 2	
	ä	
	dén	÷
•	ont	
	œ.	
	Pour accéder aux composants, il faut démonter les capots de dessus et de ous et les deux barreaux de droite.	
	C ds	
	pot	
	· ka	
	ie	
	des	
	8 T 8	
	æ	
	d-	
	•=	

Cellule R.C. sur ARIO2 (6,7) Condensateur pot.I (15uf 16v) F2,R1 puis Q204- R208 CR2, Q204,Q203, C201	L'intensité délivrée est instable Pas de protection surtension Protection surtension déclenche intempestivement
Cl. Contrôler les condensateurs de filtrage des alimentations auxiliaires ARIO2 (1,2,3 et 5,6,7) - ARIO1 Q102(générateur de courant I)	L'ondulation est supérieure au chiffre spécifié La tension fonctionne mais : l'intensité délivrée est supérieure au débit max.
AR101, Q 103 (générateur de courant U) Cellule R.C. sur AR102 (8.9) CI-R4	Le tension délivrée est instable
Q2 ou Q3 (SDL/GA.R.40 et 60V) Q101, Q104,AR102 (Rag.U 8.9.10)	La tension dépasse la valeur affichée
F1,Q2 ou Q3 (SDL/GA.R 40 et 60V)	Aucune tension en sortie

운	Sadilec FRANCE

_	LISTE DES COMPOSANTS ELECTRONIQUES						
3 500;	BC RANCE	-				,	Fournisseurs
Repère	SDL/PA R20.2 S2311 Dr.1374	SDL/PA R40.1 S2306 Dr.1375	SDL/GA R 20.3 S2315 Dr.1376	SDL/GA R 40.2 S2313 Dr.1377	SDL/GA R 60.1,5 S.2300 Dr.1378	Référence	Fournisseurs
C1 C2 C3	100uf 25V 10nf 100V 22nf 250V	47uf 63V 10nf 100V 22nf 250V	220 uf 25V 10nf 100V 22nf 250V	47uf 63V 10nf 100V 22nf 250V	47uf 63V 10nf 100V 22nf 250V	C032 C028 UEZ905FA PME 271Y	SIC SIC LCC RIFA
CR1 CR2 CR3	BY251 2N 685 BY251	BY251 2N 685 BY251	BY251 2N 685 Dispo	BY251 2N 685 Dispo	BY251 2N 685 Dispo		SILEC SILEC SILEC
E1 E2	Borne rouge Borne grise	borne rouge borne grise	borne rouge borne grise	borne rouge borne grise	borne rouge borne grise	58.31.12 58.31.18	STOCKLI STOCKLI
F1 F2 XF1-XF2	Fusible 0,63A Fusible 3,15A Pte fusible Tête baionnet	Fusible 0,63A Fusible 2A Pte fusible Tête bainnnet.	Fusible 0,8A Fusible 4A Pte fusible Tête baionnet.	Fusible 1A Fusible 3,15A Pte fusible Tête baionnet.	Fusible 1A Fusible 3,15A Pte fusible Tête baionnet	D8TD/ D8TD/ 311673 311661	CEHESS CEHESS ARNOULD ARNOULD
M1 .	4.26836	4.26919	4.26967	4.26966	4.26911	Galva	O.M.
R1 R2 R3 R4 R5 R6 R7	0,1 470 5K 5K 150 150 Dispo	0,39 470 5K 5K 150 150 Dispo	0,1 470 5K 5K Dispo 150	0,1 470 5K 5R 150 150	0,1 470 5K 5K 150 150	3W10% RB59V 0,25W5% RC21U 8400~ 10T 8400~ 10T 0,25W5% RC21U 0,25W5% RC21U 0,25W5% RC21U	SFERNICE SOVCOR IRC IRC SOVCOR SOVCOR SOVCOR
Q1 Q2 Q3	2N 30558 2N 30558 Dispo	2N 30558 2N 30558 Dispo	2N 3771 2N 3771 Dispo	2N 30558 2N 30558 2N 30558	2N 30558 2N 30558 2N 30558		SESCO SESCO SESCO
T1 S1 S2	TS1239 3.26941 Dispo 1855/1102	TS1238 3.26922 Dispo 1855/1102	TS1262 3.26987 110° M3-F 1855/1102	TS1263 3.26982 110° M3-F 1855/1102	TS1221 3.26894 110° M3-F 1855/1102	Transfo vigitherme Interrupteur	SODILEC HEITO ARNOULD

amont. Le courant de cette source est refermé au travers d'une diode zener, ce qui permet d'obtenir une tension de Le circuit intégré AR103 fournit une tension régulée de 12V= à partir du 28V= Ces deux tensions servent à alimenter les deux circuits intégrés AR101/AR102 -6V2

3.3.1- Générateur de courant de référence

La zener de référence 6V2 (1N823) , le circuit intégré AR101 et les transis-tors Q102,Q103 constituent un ensemble de deux générateurs de courant constant 1 mA. Ces générateurs alimentent les potentiomètres (R3,R4), on obtient deux tensions de référence pour les amplificateurs U et I (0 à 5V*)

3-3-2- Circuit de régulation de tension

une cellule de contre-réaction. teur, ce qui corrige l'erreur initiale. La cellule R.C aux bornes de AR102 est devient plus conducteur, le transistor ballast commandé par Q104 moins conduc-On compare une fraction de la tension de sortie à la tension de référence sur R4. Le circuit intégré AR102 (8,9,10) sert de comparateur. Si la tension en sortie croît, la tension de sortie (8 de AR102) croît, le transistor Q104

3-3-3- Circuit de régulation de courant

par l'amplificateur I (AR102-1,2,3) (SDL/PA.R), R107 (SDL/GA.R). Cette tension est amplifiée avec un gain de 10, L'intensité est traduite par une tension aux bornes de la résistance R104

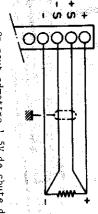
sortie (7 de AR102) croît, le transistor Q104 devient plus conducteur, On compare cette tension à la tension de référence sur R3. Le circuit intégré AR102 (5,6,7) sert de comparateur. Si le courant en sortie croît, la tension de initiale. La cellule R.C aux bornes de AR102 est une cellule de contre-réaction. transistor ballast commandé par Q104 moins conducteur, ce qui corrige l'erreur

3-3-4- Circuits annexes

La diode CRI protège la sortie de l'alimentation contre les inversions de

masse en dymamique. Le condensateur C3 fixe le potentiel de l'alimentation par rapport à la

Le condensateur Cl est un découplage en sortie Les diodes CR201, CR202 constituent l'affichage du mode U ou I


3-4- CIRCUIT DE PROTECTION SURTENSION

Le circuit Z200 constitue le circuit de protection surtension. Le générateur de courant constant 5 mA (Q201) alimente la zener référence CR205 (3V9). On compare une fraction de la tension de sortie (R206,R209,R211) à la zener CR205 (différentiel Q202,Q203). Si la tension croît, le transistor Q203 devient conducteur, Q204

Le potentiomètre R211 permet de régler cette tension de 5V à V max. Le thyratron CR2 déclenche et court-circuite la tension de sortie.

Repère	SDL/PAR 20.2.	SDL/PAR 40.1.	SDL/GAR 20.3	SDL/GAR 40.2	SDL/GAR 60:1,5	Référence	Fournisseur
CR101	1N 4003	IN 4003	Dispo	BY251	BY251		CTIEC
CR102	1N 4003	1N 4003	Dispo	BY251	BY251		SILEC
CR103.	1N 4003	1N 4003	BY 214200	BY251	BY251		SILEC
CR104	1N 4003	1N 4003	BY 214200	BY251	BY251		SILEC
CR 1 0 5	1N 4003	1N: 4003	BY 214200	BY251	BY251	•	SILEC
R106	1N 4003	1N 4003	BY 214200	BY251	BY251		SILEC
R107	BZX85C6V2	BZX85C6V2	Dispo	B1231	B1231		SILEC
			1-1000	BY251	nuas:		SESCO
CR108	IN 823	1N 823	BY 214200	BY251	BY251	• *	SILEC
R109	BZX85C5V1	B2X85C5V1	Dispo	B1251	BY251		SILEC
		DENOSCOVI	Drabo				SESCO
R110	B2X55C10V	BZX55C10V		1N 4003	1N 40 0 3		SILEC
	BERSSOTOV	B2X23C10V	1		1 1		SESCO
R111	BZX55C10V	BZX55C10V	1N 4003	1N 4003	1N 4003		SILEC
	DEAD JOI 00	BEADJULUV	L		1		SESCO
R112	1N 4148	133 / 1/ 0	1N 4003	1N 4003	IN 4003	The second second	SILEC
****	IN 4148	IN 4148		•	·		SESCO
R113	IN 4148	hw 1110	1N 4003	1N 4003	1N 4003		SILEC
R114	BZX55C5V1	IN 4148	BZX55C5V1	BZX55C5V1	BZX55C5V1	• *	SESCO
*****	TACACCVAG	BZX55C5V1	1		[SESCO
R115	1N 4003	IN 4003	1N 4003	1N 4003	1א 4003		SILEC
R116	1N 4003		1N 4003	ln 4003	1N 4003		SILEC
R117	IN 4003	IN 4003	Dispo	IN 4003	1N 4003		SILEC
R118 à	114 4003	IN 4003	Dispo	1N 4003	1N 4003	•	SILEC
R121	BY251	L		j -			
R122	BY251	BY251	1N 4003	1N 4003	1N 4003		SILEC
1122	D1721	BY251			1 1		SILEC
R123	l		B2X85C6V2	BZX85C6V2	BZX85C6V2	•	SESCO
	Dispo	Dispo	IN 823	1N 823	1N 823	•	SILEC
1124	Dispo	Dispo	BZX85C5V1	BZX85C5V1	BZX85C5V1	•	SESCO
125	Dispo	Dispo	BZX55C1OV	BZX55C10V	BZX55C10V		SESCO
1126	Dispo	Dispo	BZX55C10V	B2X55C10V	B2X55C10V		SESCO
127	Dispo	Dispo	ln 4148	IN 4148	1N 4148	•	SESCO
	Dispo	Dispo	IN 4148	1N 4148	1N 4148		SESCO
1129	Dispo	Dispo	1N 4148	IN 4148	1N 4148		SESCO
1130	Dispo	Dispo	BY 251	BY 251	BY 251		SESCO

-10-

découpler la charge - si accrochage, nécessité de - pour des distances relativement importantes (1m ou plus), il faut blinder les senseurs

arrêter l'appareil

On peut admettre 1,5V de chute dans la ligne "-" et 1,5V dans le "-"

2-3-5- Branchement en // avec commande unique

- si la charge est loin des appareils câbler le senseur - comme en 2.3.4.

arrêter les appareils

- câbler comme ci-contre

Sodile	MCE	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
epère	SDL/PAR 20.2	SDL/PAR 40.1.	SDL/BAR 20.3	SDL/GAR 40.2	SDL/GAR 60.1,5	Référence	Fournisseur
120	Réglage	Réglage	4,7K	4,7K	4.7K	0,25W5% RC21U	SOVCOR
121	10K	10K	1			0,125W1% NY4	SFERNICE
			4.7K	1K	1 K	0,25W5% RC21U	SOVCOR
122	1K	1 K	10K	10K	10K	0,125W1% NY4	SFERNICE
123	1 K	1K				0,125W1% NY4	SFERNICE
1			120	120	120	0,5W5% S2OS	SOVCOR
124	120	120				0,25W5% RC21U	SOVCOR
			100	100	100	0,5W5% S20S	SOVÇOR
125	100	100	4,7K	4,7K	4,7K	0,5W5% S2OS	SOVCOR
126	4,7K	4,7K	1'		1	0.5W5% S20S	SOVCOR
		1'	33K	150K	330K	0,25W5% RC21U	SOVCOR
127	33K	150K				0,25W5% RC21U	SOVCOR
	1		100	100	100	0,5W5% S2OS	SOVCOR
1 28	100	100	1 2 2 2		1	0,5W5% S2OS	SOVCOR
77	1	1.00	4,99K	4,99K	4.99K	0,125W1% NY4	SFERNICE
129	4,99K	4,99K	15K	34,8K	54.9K	0,125W1% NY4	SFERNICE
1 30	15K	34,8K	1***	34,01	131,76	0,125W1% NY4	SFERNICE
. 50	13%	34,01	1,5K	3,3к	6,8K	0,5W5% S2OS	SOVCOR
131	1, 5K	3,3K	Dispo	Dispo	Dispo	0,5W5% S20S	SOVCOR
131						0,125W1% NY4	SFERNICE
	Réglage	Réglage	1K	1 K	1,21 K		SOVCOR
133	2,7	2,7	1		1	0,25W5% RC21U	
	4 71.1		1 K	1K	1,21K	0,125W1% NY 4	SFERNICE
134	4,7K	4,7K		1	1	0,25W5% RC21U	SOVCOR
	1		Réglage 4,7M	Réglage 4,7 M	Réglage 4,7M	RC2T	R.T
L35	330	330			1	0,25W5% RC21U	SOVCOR
			10K	10K	10K	0,125W1% NY4	SFERNICE
136	1 K	1 K	2,7	2,7	2,7	0,25W5% RC21U	SOVCOR
. 37	1 K	3,9K	2,2K	2,2K	2,2K	0,25W5% RC21U	SOVCOR
138	330	330	330	330	330	0,25W5% RC21U	SOVCOR
39	4,7K	4,7K	4,7K	4,7K	4,7K	0,25W5% RC21U	SOVCOR
140	4,7M	4,7M				RC2T	R.T
			4,7K	4,7K	4,7K	0,25W5% RC21U	SOVCOR
41	Dispo	Dispo	330	. 330	330	0,25W5% RC21U	SOVCOR
42	Dispo	Dispo	1K	3,9K	1 '	0,25W5% RC21U	SOVCOR
143	Dispo	Dispo	4,7M	4,7M	4,7M	RC2T	R.T.
	4.26960	4.26920	3.26988	3.26980	3.26857	CABLAGE C.I.	1

Les deux potentiomètres étant au max, un seul suffira pour régler les deux alimentations de 0 à V max. L'égalité des deux tensions est réalisée à 2%, si on veut l'améliorer, il faut ajouter une résistance (RI) dans le

senseur + de l'alimentation la plus faible.

On peut effectuer une programmation de la tension comme en 2.3.1. Le potentiomètre doit varier de 0 à 2.5K ou la source extérieure absorber 2 mA (0 à 5V) (relier 5, déconnecter 6)

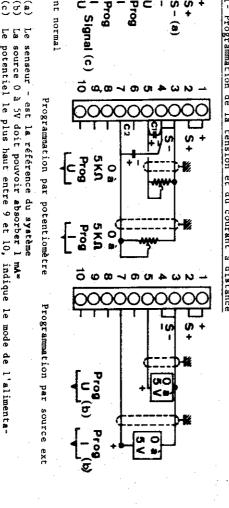
- c) vérifier le branchement normal de la barrette (12)
- ٥ placer l'interrupteur (1) sur la position M, il doit s'allumer.

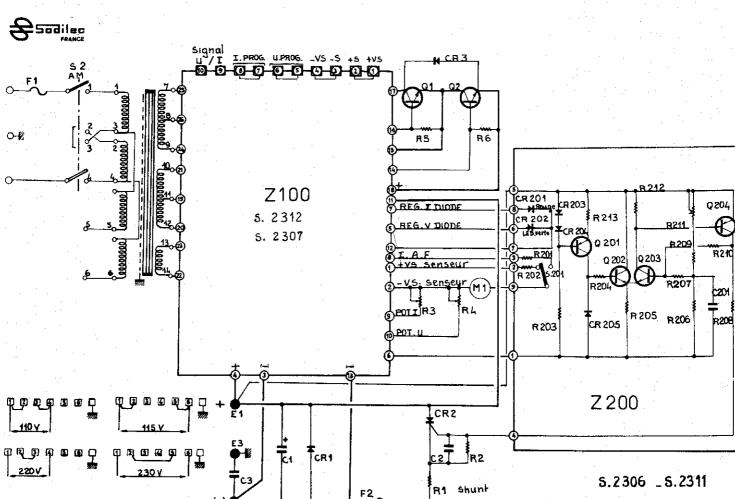
2-2-2- Réglages à effectuer

Mettre le potentiomètre ll au maximum (sens horaire)

2-2-2-a- Réglage tension en local ;

contrôlant cette dernière sur le voltmètre (8), l'inverseur (7) étant sur A l'aide du réglage tension (6) ajuster la tension à la valeur désirée en position V, la barrette (12) en branchement normal. Alimentation à vide.


14


2-2-2-b- Réglage courant en local: court-circuiter les bornes + et - de l'alimentation. Mettre en fonctionnement. En agissant sur le réglage (5) me gler et lire le débit sur l'ampéremètre (9), l'inverseur (7) étant sur la position A, la barrette (10) en branchement normal lorsque le circuit déclenche on a la valeur désirée. Le voyant (10) la protection surtension : mettre le réglage tension ou on met le potentiomètre intensité (5) On diminue la valeur

s'allume, la tension affichée sur le voltmètre (8) est inférieure à 27 montre; du potentiomètre (11), on tourne dans le sens inverse des aiguilles d'une 2-2-2-c. Réglage de la protection surtension : mettre 2-2-2-a, à la valéur désirée de disjonction surtension. Pour réarmer on arrête l'appareil zéro, en ayant au préalable remis le réglage tension à sa valeur initiale

Branchement normal DIFFERENTES POSSIBILITES DE BRANCHEMENT 2-3-1- Programmation de la tension et du courant à distance Prog Prog ບ Signal (c) S - (a) 0 Prog 5KS 9 98 765 0000000 5+

αα4υαναφο

désirée. La liaison sera faite à l'aide d'un blindé bifilaire relié à la

Arrêter l'appareil. Enlever le strapp correspondant à la programmation

Le potentiel le plus haut entre 9 et 10, indique le mode de l'alimenta-

Z,

La source 0 à 5V doit pouvoir absorber 1

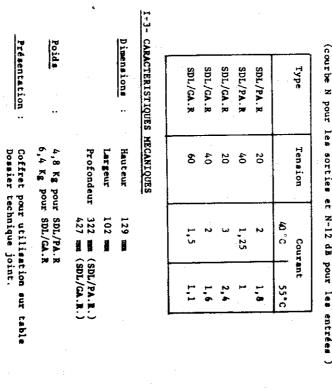
Reg U

10 > 9

Reg

9 > 10

(plage entre -5V et +5V)


régulation : secteur : Δ Is \angle + (2.10°4 de Is + 5.10°4 de I max) pour une variation réseau de +10% après 30 minutes de mise sous tension à température, charge et secteur constants coefficient de température : DIs < (2.10 de la + 4.10 4 ondulation résiduelle : 0,35% de I max (1% en 400 Hz) charge : Als < (2.10 de ls + 2mA) pour une variation de (1.10-3 de Is + 2.10-3 de I max) de dérive sur 8 heures de I max) par °C


I-2-4- Conditions d'environnement charge de 0 à 100%

refroidissement: par convection naturelle antiparasitage: conforme sux normes VDE 0871, classe B et VDE 0875

-10° & + 55°C

température de stockage température d'utilisation :

I-1- GENERALITES

CHAPITRE I

tion des réglages de l'alimentation et la valeur de la charge appliquée entre ses que, sans intervention manuelle. Le point de commutation est défini par la posipassage automatique d'un mode de régulation à l'autre par commutation électroni-Ces alimentations fonctionnent à tension constante ou courant constant avec (caractéristique rectangulaire)

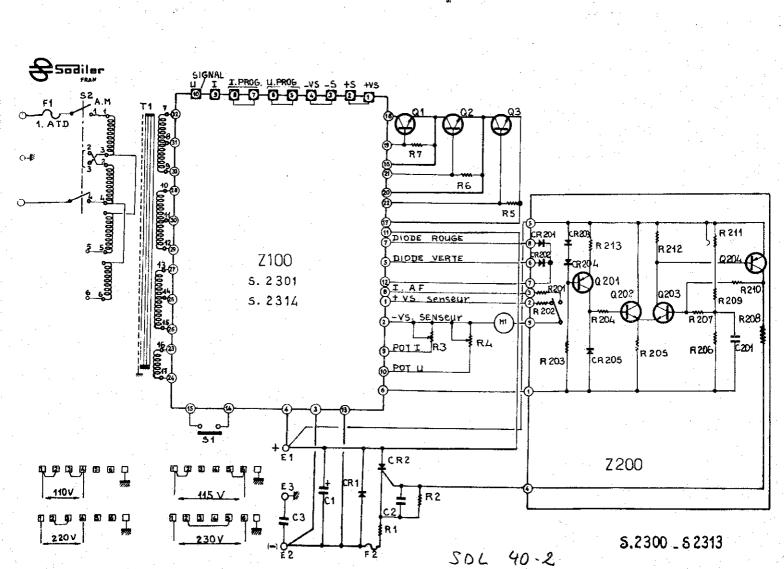
I-1-1-Possibilités

- branchement du + ou du à la masse mécanique (sorties flottantes)
- continues extérieures (.0 à programmation de la tenion et du courant par potentiomètre ou par sources 5 Km 0 à 5V=)
- télérégulation à distance aux bornes de la charge
- branchement en série
- (diode série nécessaire dans le + branchement en parallèle avec possibilités de commande unique de la tension
- en suiveuse. branchement avec polarités négatives communes, une alimentation pilotant les branchement en symétrique avec alimentation positive en pilote et négative
- autres (auto-tracking) nement U ou I signal sur bornier arrière, et voyants en face avant indiquant le fonction-
- EURONORM (nécessité de démonter les capots de dessus et dessous) ou équivamontage en baie standard 19" avec adaptateur au rack standard "30"

I-1-2- Protections

- contre les courts-circuits et les surcharges
- en fonctionnement tension constante par limitation de courant de 0 à 1 max en fonctionnement courant constant par limitation de tension de 0 à 0 max
- secteur par fusible
- réglable entre 5V et V max. contre les surtensions par circuit de protection à thyristor incorporé
- tension résiduelle 🗲 2V (typique 1,5V)
- rapidité instantanée par intégration suivie d'une disjonction électronique effectuant en moins de 5 μs . Réarmement par arrêt secteur
- contre les échauffements anormaux par vigitherme (SDL/GA.R)

I-2-CARACTERISTIQUES ELECTRIQUES


I-2-1-Tension d'entrée

secteur monophasé 110/115V4/ 220V4/230V4+10% (par cablage intérieur) 48 à 440 Hz

consommation approximative SDL/PA ∠ 120VA

SDL/GA 200VA

-2-

