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PREFACE

In revising any book in a rapidly developing field it is possible to think
of many items to add but difficult to decide on what to delete. This is par-
ticularly true when the field covered in a previous volume has expanded
explosively.

When the first edition of this work was planned, it did not seem pre-
sumptuous to attempt to include in one volume the major fundamental
concepts in the field of communication engineering. Since the publication
of the second edition there have been many important developments and
many excellent books and sets of books written on subdivisions of electrical
communication. Such subdivisions include physical electronics, vacuum-
tube circuits, antennas and propagation, electroacoustics, servomecha-
nisms, information theory, pulse-generation and wave-forming circuits,
computer systems, and many many more topics of importance in the
processing of information.

In the third edition it has been decided to concentrate on the area which
must precede the study of all other divisions of communication, namely,
the fundamentals of linear-network analysis and synthesis, including the
use of unilateral elements. This decision is influenced by the fact that the
wide acceptance of the first two editions was based particularly on their
emphasis in that areca. However, in order to demonstrate the design
requirements which are imposed on the linear portions of communication-
system networks, both an analysis of various types of modulation and the
transformation of transients from the time to the frequency domain are
developed.

Naturally, although we can no longer hope to cover a major portion of
the field of “Communication Engineering,” we are retaining that well-
known title.

The senior author wishes to thank the junior author for his major
part in the revision, for it would never have been comple;ed without his
doing so much of the work.

The authors are indebted to their colleagues Profs. J. E. Williams and
M. H. Crothers for their helpful comments on the sections on audio
transformers and to Prof. W. J. Fry for information on piezoelectric
crystals.

We also thank Berenice B. Anner, who did all the typing.

W. L. EvERITT.
G. E. ANNER.
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CHAPTER 1

FUNDAMENTAL PRINCIPLES
OF COMMUNICATION NETWORKS

1-1. The Technical Problem of the Engineer. The fundamental prob-
lem of engineering is the utilization of th forces and materials of nature
for the benefit of mankind. The problem of science is to understand
nature, to answer such a question as: ‘“If a certain combination of
elements and conditions exists, what will happen?’” Engineers are
interested in an inverse type of question, viz.: “If one desires a certain
result, what combination should be assembled to produce it with a reason-
able degree of approximation and at a cost which can be afforded?”

The problems of science are therefore fundamentally those of analysis,
while the problems of engincering are those of synthesis.

It should be pointed out that, in the development of tools for modern
physical research, a great deal of excellent synthesis and design is neces-
sary. This indicates that the distinction between the scientist and engi-
neer is becoming more and more nebulous. However, one might claim
that in designing a modern accelerator the physicist is demonstrating
his ability to perform an engineering function. Most methods of syn-
thesis require a thorough knowledge of and experience in analysis.
Therefore engineering training in any area must place great emphasis
on analysis.

A common method of synthesis involves making a sequence of intuitive
guesses, testing the results of each guess by analytical methods, noting
the degree by which the result differs from the desired one, making a new
guess, and so approaching the answer by successive approximations.
Experience in analysis and a feeling for the physical situation are inval-
uable aids in such a method. However, it is the aim of engineering to
develop straightforward methods of synthesis which can either eliminate
or greatly speed up the guessing and checking process.

Exemplifying the difference between analysis and synthesis is the
tllustration by contrasts between the differential and integral calculus.
Straightforward methods exist for the calculation of the derivatives of a
function, but basic integrals were obtained by guessing the answer and

checking by taking the derivatives. The results may be tabulated so
1
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that each user of integrals need not repeat the process, and rules for com-
binations may be set up, but most new situations require a repetition of
the use of intuition and checking.

The complex problems of engineering may be divided in many ways.
One basis of division might be as follows: (1) the processing of materials;
(2) the processing of energy; (3) the processing of information. Any
actual problem will involve all three, but the communication engineer
is interested primarily in the collection, transportation, and delivery of
information. Ile must, of course, use materials and energy as means
for this processing. In contrast, a power engineer will be interested
primarily in the transformation of energy originally in chemical, atomic,
or other form into an electrical form, its transportation with a minimum
loss, and its reconversion on the customer’s premises into some useful
form such as light or mechanical motion. In this extensive process he
also will have to solve certain problems of information processing in
order to control his system, but this is auxiliary to his main purpose.
It is obvious that both the communication and the power engineer must
use a wide variety of materials, properly fabricated for the purpose.

The engineer may also be considered as interested in the problem of
extending and supplementing the inherent capabilities of man. The
processing of materials is of importance in meeting man’s needs by mod-
ifying his environment and food supply and also in supplying the phys-
ical building blocks for his other wants. The processing of energy is of
importance in supplementing man’s muscles. The processing of infor-
mation has as its function the supplementing of man’s brain power and
nervous system. For example, modern communication methods extend
the sense of hearing by the telephone, radio, and public-address systems,
the sense of sight by television, radar, electron microscopes, and radio
astronomy, the sense of touch by many electronic sensing devices, and
even the senses of smell and taste. Furthermore the development of
modern computers has made it possible to process mathematical informa-
tion much more rapidly than can the brain, and even to reach decisions
based upon comparisons between two or more sets of data resulting from
the processing. Debates have raged over whether such systems are truly
“brains,” but there can be no question that they can remove much of
the repetitive drudgery formerly required of man’s brains. Furthermore,
because of their speed, they open up new possibilities of attacking prob-
lems by computational methods which previously were rejected because
they required an excessive number of man-hours and were very suscep-
tible to human error.

In a “jet air age” involving movements above the speed of sound,
many decisions must be made in the control of airplanes within times so
short that it is not possible to assemble, present, and assess the informa-
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tion on which action must be based using only primitive instrumentation
and man’s senses alone. Electronic communication systems provide the
solution.

1-2. The Nature of Communication Systems. Information arises
from two general sources: (1) ideas in the brain of a man; (2) changesin a
physical environment. In all cases information represents some change
from a previous state. A flow of information arises from a source in
which changes are more or less continuous. The more rapid the changes,
the greater can be the amount of information generated per unit time.

Information is useful only if it can be delivered to a receiver which can
interpret it and make use of it. Corresponding to the two sources, there
will be two types of receivers (sometimes called ““sinks’): (1) the brain
of a man; (2) a physical device which can respond to the signal or some
transformed version of it.

Either type of source may be connected to either type of sink. When
either terminal involves a man, the characteristics of the individual are
of importance. The engineer will find a study of the results of experi-
mental psychology invaluable. Designs of equipment should take into
account statistical studies of the average reactions of individuals to phys-
ical stimuli, and in some cases the reaction characteristics of particular
individuals.

In most situations the information originally generated is not in a form
which can be readily transported to the receiver. It must go through a
transformation, or coding, process, often in more than one step. For
example, an idea may occur in a man’s brain. This idea is translated
into words within the brain. The brain, through long experience and
practice, is able to send nerve impulses to the muscles of the throat and
face to modify the character of the sound whose energy is obtained by
blowing air past the vocal cords. Thus speech is produced. If the
listener (recciver) is nearby, these speech sounds are now ready to be
transmitted by acoustic waves through the transmission medium of the
air to the ear of that listener. There these sounds must produce nerve
impulses, which in turn can be interpreted by the brain.

If, on the other hand, the listener is at a distant point and an elec-
trical transmission system is to be used, then there must be a trans-
formation introduced which will use the acoustical energy emitted by
the mouth to either control or generate electrical energy whose variation
is a reasonable facsimile of the flow of acoustical energy. Such electrical
signals may then be transported over an electrical communication sys-
tem. In the above sentence the word “generate” is used in the sense
of an electrical generator where the energy in a portion of the acoustical
wave is transformed into electrical energy, while the word ‘control”
implies a switching action where one source of energy turns on and off
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the flow of energy in a second system (as with a steam valve). A carbon-
grain transmitter and a vacuum tube are examples of such electrical con-
trol devices.

On the other hand, a particular electrical system (for example, long
ﬁransoceanic cables without intermediate amplifiers) may not be able to
transmit electrical variations which occur as rapidly as those involved
in the pressure variations of speech. This does not mean that trans-
mission of information by electrical means is impossible. Suppose that
the individual whose brain represents the source translates his ideas into
oral language words and then makes a second transformation, either
in his mind or on paper, into written words. The letters in these words
can in turn be translated into the Morse-code dots and dashes. All this
can go on in the source brain, which can then send nerve impulses to its
associated hand to manipulate a telegraph key. Devices which make
transformations in the form of information, which modify it so that it
may be handled by the information-transportation system, may be called
“coders.” A particular class of coders are called ‘ modulators.”

A class of devices also of importance are called “transducers.” The
American Standard definition is:

A transducer is a device capable of being actuated by waves from one or more
transmission systems or media and of supplying related waves to one or more
other transmission systems or media. Note: The waves in the input and output
may be of the same or different types (e.g. electric, acoustic or mechanical).
[ASA C42 65.06.450 (1953).]

Transducers can be either ‘“passive’” or ‘“active.”” The American
Standard definitions are in turn:

A passive transducer is a transducer whose output waves are independent of
any sources of power which are controlled by the actuating waves. [ASA C42

65.06.456 (1953).]

An active transducer is a transducer whose output waves are dependent upon
sources of power, apart from that supplied by any of the actuating waves, which
power is controlled by one or more of these waves. [ASA C42 65.06.458 (1953).]

An important group of transducers are those which transform one form
of energy into another. For example, an electromechanical transducer

is defined as:

An electromechanical transducer is a transducer for receiving waves from an
electrical system and delivering waves to a mechanical system or vice versa.
[ASA C42 65.06.469 (1953).]

Examples of electromechanical transducers are microphones and loud-
speakers, which are discussed in Chap. 16.
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The simplest type of communication system, then, will contain th'e
following five elements:

1. A source of information.

2. A coder, or transducer, for transforming the information into a form
suitable for transportation over a transmission system.

3. A transmission system.

4. A decoder, or transducer, for transforming the signal into a form
suitable for interpretation by the receiver.

5. A receiver of information.

Very frequently the transmission system must be used for several
signals simultaneously, each arising from a separate source and each
being addressed to individual receivers. Radio is an example where all
the world is on a ‘““party line.”” This common use can be accomplished
by proper design of the coder. Each coder must modify the signals from
its associated source so that there is a distinctive difference between the
several coded signals, but the coding must not destroy the identity of the
information. This process is called ‘“modulation” and will be described
later in the chapter. When modulation is involved in the coding process,
the decoder must also be modified to perform two additional functions:
(1) filtering out, i.e., selecting the desired signal for its addressee and
rejecting all other signals; (2) transforming the signal back into a form
in which it can be handled by the normal decoding process. This is
called ‘‘demodulation.”

A complete system from information source to information receiver is
called an information, or communication, channel, whether a portion of
the system is common to other channels or not.

It should be evident that, like all systems, error may creep in, i.e., the
information may be distorted in the process of transportation. Common
gossip is a good example of what may happen in the processing of infor-
mation. Error arises from two major causes:

1. Distortion of the information may occur as it passes through suc-
cessive links. This will be discussed later in the chapter.

2. Extraneous signals or noise may be introduced which will be inter-
preted by the receiver as part of the signal originating at the source.
This noise may intrude at all links in the channel. Examples of noise
source are static in radio, inductive interference from power and other
telephone lines in telephony, and the random motion of electrons in
resistors, vacuum tubes, and transistors in cases where high amplification
is required. The block diagram of a communication system is shown in
Fig. 1-1.

In order to be prepared to analyze and synthesize systems and to
reduce disturbances which result in error, it is necessary to consider in
more detail the characteristics of the signals which may be originated by
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Noise Noise Noise
Information Transmission Information
source Coder system Decoder receiver
From other { To other
coders decoders

Fia. 1-1. Block diagram of a communication channel.
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Time
Fig. 1-2. Current variation in a telegraph signal.

the sources or coding system and how these complex signals may be

analyzed into clementary forms so that the requirements for components
of the system may be specified.

One of the simplest electrical

communication signals is that

originating from the dots and

dashes of a telegraph key which

Cello organ pipe ¢ applies a d-c¢ voltage on an “all-
gl or-nonc”’ basis, as illustrated in
£ s Fig. 1-2.

] 0 l In music and speech the varia-
0 1,000 2,000 3,000 400  tion of pressure in a sound wave
Frequency is complex. The nature of the

fluctuation varies with every indi-
vidual or instrument and with
every word or note which is pro-
duced. Figure 1-3 shows the
waveform of some sounds pro-
duced by musical instruments,
while Fig. 1-4 shows the wave-
- form of a particular spoken word.
1 In television events occur much
o 100 2000 300 4 morerapidly. It is necessary not
Frequency o s .

. only to transmit information on

F1a. 1-3. Waveform of musical sounds and . X
their frequency spectra. details of a picture at a rate of
about 7,500,000 dots per second
(30 pictures per second each with a grain structure of about 250,000 dots)
but also to synchronize information to keep the scanning system at the

Trombone organ pipe ¢

Amplitude

@
—
-
-
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transmitter and receiver in step with each other. Figure 1-5 shows the
waveform of a typical black-and-white television signal.

S

EE

S
MV INASANASSANSAAS A

500 cycles

MWW

Fi1:. 1-4. Waveform of the word ‘“‘seems.”

Radar and computer systems deal with pulses somewhat similar to
telegraph signals except that they are very much shorter, ranging from
a fraction of a microsecond to a few microseconds in duration. All show
a fundamental characteristic of rapid change at the transmitting end and

of unpredictability at the receiver. To
the extent that the signal can be pre-
dicted at the receiving end, the amount
of information is reduced, as, for ex-
ample, when a musical note repeats its
waveform for a long period.

In order that the electrical system
may be designed to handle time-vary-
ing signals, such as those of Figs. 1-3
to 1-5, more detailed knowledge of
their nature is required. In this re-
gard, it will be shown that time-varying
signals, no matter how complicated,

635usec-———|

Synchronizing
signals

Amplitude

t

F16. 1-5. Waveform of one line of a
television signal.

may be analyzed in terms of a frequency spectrum, i.e., in terms of fre-
quency components, with specified relative amplitudes. The means for
determining these frequency spectra are covered in detail in Chap. 2.
For the moment, certain general ideas will be considered.
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1-3. Analysis of Complex Waveforms. A current which varies with
time can usually be analyzed into simpler elements. A method of anal-
ysis which can be applied to many problems is to reconstruct from the
simplest elements a structure or form similar to that of the one being
analyzed.

In Fig. 1-6a is shown a curve of the current flowing in a “‘carbon-
grain’ telephone transmitter when a pure tone, i.e., a sine wave of sound,
is impressed upon its diaphragm.

The wave of Fig. 1-6a could be constructed by adding together the two
components shown in Fig. 1-6b. It will be shown in Chap. 3 that each
of the two components of Fig. 1-6b will divide in any linear network as
though the other were not present. In a nonlinear impedance the com-
ponents will react on each other in the manner described later.

i B ~Anvanve
Time Time

(@) (0]
F1e. 1-6. Analysis of a pulsating current into components.

As an example of how the two components may be separated elec-
trically, consider the effect of sending the current of Fig. 1-6b through a
transformer. The voltage in the secondary depends upon the variation
in flux and not on the amount. Only the alternating component will be
effective in producing voltage in the secondary, and if a load were con-
nected, the current would be a reproduction of the alternating compo-
nents, but the d-c portion would be lost.

An application of a-¢ principles can be used to determine the trans-
mission of the current of Fig. 1-6b in any electrical system. Whether a
current actually reverses or not is immaterial; if it varies with time, it
has alternating components. In fact, direct current can properly be
considered as an alternating current of zero frequency. The study of
elecirical communication is therefore based on a study of a-c circuits.

1-4. Response of Network Elements to Sinusoidal and Nonsinusoidal
Voltages. The sine wave is considered the fundamental, or simplest,
waveform for reasons which will be explained later in the chapter. If a
voltage with a complex waveform is impressed on a pure resistance, the
current which flows will have the same wave shape as the voltage, because,
by Ohm’s law, the current is proportional to the magnitude of the voltage
at every instant. Figure 1-7 shows an oscillogram of voltage across a
resistance and current through it.
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On the other hand, if the complex voltage wave is impre&sed ona pull'e
capacitance, the current is proportional, at any instant, not to the mag-
nitude of the voltage but to the rate at which it is changing. This is

F1a. 1-7. Oscillogram of current and voltage in a resistance
expressed by the equation
. de
1=C m (1‘1)

The waveform of current will therefore be quite different from that of
the applied voltage, unless the latter is a pure sine wave. If it is a sine
wave, i.e., if

e = F sin wt (1-2)
then from Eq. (1-1)

t = wCE cos wt (1-3)
and the two waves will be similar to those shown in the oscillogram of
Fig. 1-8a. In this book an arc over a symbol (for example, £ or I)
represents the peak, or maximum, value of the quantity.

The only difference between a sine and a cosine wave is a time dis-
placement of one-quarter of a cycle. There is no difference in shape,
and so both are grouped under the general heading of ‘‘sine waves.”

Similarly, if a complex wave of voltage is applied to a pure inductance,
the current which flows will be such that, at every instant,

di
e=1L a (1-4)

Equation (1-4) shows that the waveforms of the current and voltage
will not, in general, be similar. An exception occurs when the applied
voltage is a sine wave of the form given by Eq. (1-2). In this case

i=%/Esinwtdt

i = -—%cos wt (1-5)
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An oscillogram of current and voltage for this case is shown in Fig. 1-8b.

Oscillograms of nonsinusoidal voltages and their resulting currents
are shown in Figs. 1-9 and 1-10. In Fig. 1-9 the voltage is applied
across a resistance, in Fig. 1-10a across a capacitor, and in Fig. 1-10b
across an inductor. The waveforms of current and voltage are alike
only in the case where the impedance is a pure resistance. It can be
seen that in Fig. 1-10a the current is proportional to the rate of change

©®)

Fia. 1-8. Voltage and current in reactive elements. (a) Capacitor. (b) Inductor.

of voltage, while in Fig. 1-10b the voltage is proportional to the rate of
change of current.

It is desirable to adopt the convention that when an alternating cur-
rent of frequency f is referred to, it shall indicate that the current passes
through f cycles/sec with a definite waveform. If any arbitrary waveform
is taken as standard, other waveforms can be built up from this initial
waveform. For example, suppose the arbitrary standard waveform
selected were to be the triangular-shaped wave of Fig. 1-11a. The
wave shape of Fig. 1-11b, which has the same period as that of Fig.1-11a,
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F1a. 1-9. An example of current and voltage waves when a nonsinusoidal voltage is
impressed on & pure resistance.

(@)

®
F1a. 1-10. Voltage and current in reactive elements when a nonsinusoidal voltage is
impressed. (a) Capacitor. (b) Inductor.
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could be approximated to any required degree by adding waves of the
shape of Fig. 1-11a, these waves having frequencies which are integral
multiples of the fundamental frequency. This is apparent from the
fact that a single triangular wave may be made to pass through any point
in the first cycle of the wave of Fig. 1-11b and to pass through a similar
point in each succeeding cycle. 7Two triangular waves could be selected
; whose sum would pass through any
two points in the wave of Fig.1-11b,
Vl\/\/ M and if the frequency of one were an
(@ ) integral multiple of the other, it would
Fie. 1-11. Recurrent waveforms. pass through corresponding points
in all the later cycles. Similarly,
three waves could be selected whose sum would pass through any three
points. If enough different triangular waves were selected, each with a
frequency which was an integral multiple of the first, their sum could be
made to pass through any desired number of points in the first cycle and
corresponding points in each succeeding cycle. The sum of an infinite
number of triangular waves could be made to coincide exactly with all
the points on the curve of Fig. 1-11b or any other recurrent wave.

Hence, after the primary waveform has been selected, other wave-
forms can be analyzed in terms of a number of components of different
frequency, but each with the shape of the primary wave form. For this
reason when speaking of a single frequency, one must know what has been
adopted as the fundamental waveform.

If the triangular waveform were to be adopted as fundamental, a
difficulty would immediately arise. If a voltage of this form were
applied to a capacitor, the current would have a different waveform.
Hence, if a single-frequency voltage were applied to the capacitor, the
current would have to be considered as being made up of a number of
frequencies. It is desirable to adopt such a waveform that, if a single-
frequency voltage is applied to a resistance, inductance, or capacitance,
the current will also be considered as having a single frequency, i.e., as
having the same waveform. It has been shown that this occurs only in
the case of the sine wave, for it is the only recurrent curve whose derivative
(rate of change) and integral are of the same form as itself. For that
reason the sine wave has been adopted universally as the fundamental
waveform, and it is understood in all electrical literature that, when a
single frequency f is referred to, 5t means a sine wave with f cycles/sec.
(It is common practice to shorten the dimensionally correct ‘“cycles per
second”’ to ‘‘cycles,” and this will be done in the balance of this book.)
The amplitude (maximum value) of a particular wave might vary with time.
A sine wave has constant amplitude; hence, if the amplitude changes with.
time, the wave must be specified in terms of more than one frequency.
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Therefore, there is, strictly speaking, no possibility of setting up a true
single-frequency current, for the current must have started some time,
and hence a variation with time has occurred. In spite of this it will be
shown that analyses in terms of single frequencies give important infor-
mation on actual networks.

1-6. Analysis of Transient Waveforms. When complex waves, which
repeat themselves over and over, are analyzed by the Fourier method,
described in Chap. 2, the components obtained are integral multiples, or
harmonics, of the frequency at which the wave recurs. Rather than
repetitive waves which continue for an appreciable time, communication
systems are called upon to transmit transients, or waves which differ
from the preceding and succeeding portions. It is possible to analyze
the results of such irregularities if the response to sinusoidal waves at all
frequencies is known.

1-6. The Fourier Integral and Its Significance to Communication. If
a wave repeats itself 10 times a second, it can be analyzed into compo-

nents of 10, 20, 30, 40, 50, . . . cycles. If it occurs only once a second,
then the wave will have harmonics which are integral multiples of unity,
that is, 1, 2, 3, . . . 641, 642, 643, . . . cycles. The amplitude of the

individual harmonics will be decreased, but the frequency interval
between harmonics will also be decreased. If the time between suc-
cessive impulses is still further increased, the individual components
will be still closer together in frequency and smaller in amplitude.
Finally, if an impulse occurs only once, the separation between individ-
ual components becomes infinitesimal and it is possible to plot a con-
linuous curve of relative amplitude vs. frequency. This is accomplished
by means of a Fourier integral, which is a development of the Fourier
series into the case where the fundamental frequency is zero.

The use of the Fourier integral in a formal analytical solution of tran-
sients can be applied only for relatively simple impressed impulses
because of the difficulty of obtaining the necessary definite integrals.
The other method of attack on transients, viz., the use of differential
equations, is equally impotent for complicated impressed voltages. How-
ever, the existence of the Fourier integral does give the knowledge that any
transient impressed voltage or current can be expressed as a continuous band
of frequencies, and the response, or resultant, current or voltage at any part
of the network can also be expressed as a continuous band of frequencies,
the ratio of any frequency component in the impressed wave to the correspond-
ing frequency component in the response wave being determined by the steady-
state characterisiic of the nelwork at that frequency. This is probably the
most important single idea in communication engineering, as the whole
method of attack on communication networks is based upon it. It will
be developed in greater detail iu the next chapter.
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Owing to the continual change in waveform of the signal in communica-
tion systems, it is not possible to determine analytically the distribution
or relative magnitude of the frequency components used in any trans-
mission such as speech, music, telegraph code, television, etc. How-
ever, the distribution can be ascertained statistically. Statistics are in
general resorted to where it is impossible to make definite predictions of
an individual event, but these statistics make it possible to predict the
distribution of a group of events. For example, it is not possible to
predict accurately the exact date of the death of an individual (even if
he has committed murder), but the financial stability of insurance com-
panies is dependent on their ability to determine the distribution of
deaths in a large group of individuals.

The statistical determination of the frequency distribution in impulses
with the transient character of speech can be determined somewhat as
follows: A telephone transmission system which will transmit only a

100
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F1a. 1-12. Effect of frequency range on articulation.

Per cent articulation
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limited but controllable band of frequencies is set up, and random
unrelated speech sounds are sent over it. At the receiving end an
observer records the sound which he hears. By comparison of the
records at each end the percentage of words understood can be deter-
mined as a function of the band of frequencies transmitted. In order
to be significant, thousands of observations should be made, for, in com-
mon with other statistics, the results are only significant when obtained
from a large number of observations. Figure 1-12 shows two curves
obtained by Crandall and MacKenzie, indicating the percentage of cer-
tain word syllables which were understood in two cases, as follows:
curve L shows the percentage of sounds understood when all frequencies
below the frequency indicated were transmitted and those above were
eliminated, while curve H shows the percentage of sounds understood
when only frequencies above the frequency indicated were transmitted.
Curves of this character may be used to determine the width of the fre-
quency band which should be transmitted for an acceptable under-
standing of telephonic speech. These would indicate that a transmission
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1
of 400 to 3,000 cycles might be acceptable for some purposes where only
intelligibility is required.

In many cases it is desirable not only to have the words of the speaker
understood but also to reproduce speech or music with naturalness.
This is the case in broadcast transmission and phonograph reproduction.
In this case, an artistic judgment must enter into the statistical deter-
minations, and it has generally been agreed that a frequency range of
30 or 50 cycles to 15,000 cycles is desirable for so-called *high-fidelity”’
reproduction. Certain sounds, such as those of rattling keys and of
percussion instruments, require the transmission of frequencies up to
15,000 cycles. In general, it is necessary to increase the cost of equip-
ment as the bandwidth is expanded, and so engineering judgment must
be introduced in any case to determine the actual requirements which
should be met in the design of a unit, balancing increased cost against
increased performance.

From this analysis one arrives at the following paradox: Because com-
munication is carried on ezclusively by transients, much of the analysis
of the performance of communication apparatus is made in terms of the
response of such apparatus to steady-stale alternating currents, this
response being determined over the range of frequencies found statis-
tically to be of importance for the type of signal to be transmitted.

Where transmission of pulses is important, as in television and radio,
the analysis of responses to sudden changes is significant and transient
conditions may be examined directly. It will be shown in Chap. 2 that
steady-state and transient response are directly related.

1-7. Response of the Ear. The ear is an important part of the decod-
ing network in communication by speech or music and, in fact, plays an
important part in determining curves such as Fig. 1-12. It is not equally
responsive at all frequencies. Fletcher and Munson have given a set of
curves of equal loudness as shown in Fig. 1-13. No sensation is produced
by amplitudes lower than the zero level, which is called the threshold of
audibility. The ordinate scale is given in decibels or logarithm of the
ratio of the power to some reference power, the use of which will be
explained in Chap. 6. The zero level corresponds to a sound power level
of 10—'¢ watt/sq ¢m, which under normal conditions of temperature and
pressure of the air is an alternating sound pressure with an effective value
of 2.04 X 10—* dyne/sq cm.

In the transmission of speech or music, if a component in the original
sound falls below the threshold of audibility, owing to lack of energy or
being outside the frequency range, then there is no advantage in trans-
mitting it electrically. Hence, no matter what the waveform, it is gen-
erally considered necessary to transmit frequencies only within a limited
range, although the wave may have components outside that range.
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This applies to other signals as well, so that, for any given application,
the circuit may be designed to handle a limited band of frequencies.
The actual band required is determined by the nature of the signal as it
emerges from the coder and the requirements of the receiver (or in some
cases the decoder) for a signal which can be recognized within the required
amount of allowable error.
1-8. Nature of Distortion. As mentioned before, a communication
, network should deliver at the receiving end a waveform which is as nearly
like the original supplied as is technically and economically feasible.
Since control elements such as vacuum tubes and transistors may be used,
the output may be greater in magnitude than the input, in which case
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Fia. 1-13. Loudness-level contours  (Bell Telephone Laboratories.)

the network is said to introduce a ‘“gain,” or it may be less, in which case
the network introduces a ‘‘loss.”

Since networks can produce either a gain or a loss, such gain or loss is
not considered to be an important change in the original signal. How-
ever, a change in waveform modifies the character of the signal, losing
some of the original information, and is called ‘‘distortion.”

Based on the idea that a complex transient can be analyzed into a band
of sinusoidal waves, there are three types of distortion which occur in
transmission. These are defined precisely in Chap. 6 but for the moment
may be described as follows:

Frequency distortion is that form of distortion in which the relative
magnitudes of the different frequency components of the transmitted
wave are altered.

Delay distortion is that form of distortion in which the time of trans-
mission (or delay) of the different frequency components is not constant.



FUNDAMENTAL PRINCIPLES OF COMMUNICATION NETWORKS 17

Nonlinear distortion is that form of distortion in which the output is
not directly proportional to the input. The important result of this is
that new frequency components, not present in the original input wave,
are present in the output wave.

Frequency and delay distortion are usually due to the linear elements
of inductance and capacitance, because their impedance varies with fre-
quency. Delay distortion is not generally perceptible to the ear, if the
unequal delay is kept to low limits, and therefore is of interest, in teleph-
ony, only on long transmission lines. It is of particular importance in
telegraphy, where physical instruments interpret the signal, and in
television.

If a pure sine wave of voltage is applied to a nonlinear impedance, the
current will not be a sine wave. Such a wave can be analyzed into two
or more sine waves, and thus there are introduced in the output new
frequencies not present in the input. If a single sine wave is impressed,
these new frequencies will be harmonics or integral multiples of the orig-
inal frequency. If the impressed wave has more than one frequency
component, the output will also have additional terms equal to the sums
and differences of the input component frequencies and their integral
multiples.

It is usually ‘desirable in a network to make each unit as distortionless
as possible. However, it is often possible to correct for frequency and
delay distortion by additional meshes or elements which provide a counter-
acting distortion. For instance, in a cable the higher frequencies travel
faster and are attenuated more than the lower ones. An equalizing net-
work at the end should attenuate the lower frequencies and delay the
higher ones. Such equalizing networks are considered in Chap. 14.

Nonlinear distortion cannot generally be compensated for in this
manner. Once produced, the new frequencies can be eliminated only
if they fall outside the band of those which are desired or if there is a
total absence of delay distortion, when another nonlinear impedance with
a reverse curvature may be used. All frequencies which do fall outside
the band necessary for communication can be disposed of by networks,
called ‘““filters.” These networks transmit effectively certain bands of
frequencies and greatly attenuate other bands and are the subject of
Chap. 7. As a rule nonlinear distortion must be prevented rather than
corrected after its occurrence.

1.9. Frequency Translation, or Modulation. Nonlinear distortion,
however, has extremely important uses for coding. A fundamental
principle of communication is that a complex wave, represented by a
band of frequencies, can be translated to any other band of at least equal
width, if it is so desired, and later retranslated into its original form.
This may be desirable because of a greater effectiveness of the trans-
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mitting medium at the new band or in order to convey several messages
in the same medium. This translation can be accomplished by using
nonlinear impedances and employing the fact that the current flowing in
such an impedance contains new frequencies, equal to the sums and differ-
ences of those supplied in the input voltage.

Such a translation occurs in all radio and carrier telephone transmis-
sion. It is not feasible to build a radio antenna which will effectively
radiate audio frequencies. The length of an antenna must be of the order
of one-quarter the wavelength to be emitted. Such a length for 800
cycles would be 60 miles. Furthermore an antenna of this length could
not radiate effectively frequencies of the order of one-half or twice its
natural wavelength and so could not transmit the minimum band of
400 to 3,000 cycles needed for intelligible speech. It is necessary, there-
fore, to transmit a band of the same width at higher frequencies; e.g., it
would be possible to use for intelligible speech 1,000,250 to 1,002,750 cycles

This translation, or modulation, may be compared to an automatic
coding and decoding apparatus. Suppose all the words in an abridged
dictionary were represented by Nos. 1 to 10,000. It would be possible
to talk in terms of numbers, and in time the numbers would be as familiar
to us as the words now used.

2,978-1-1,643-6,435-7,695-9,523-6,872-3,169 might be a sentence which
meant “Having a fine time, wish you were here.” Now suppose an
individual suddenly inherits a typewriter which can write only numbers
between 120,000 and 160,000 and he wishes to send a message home.
The intelligence could be conveyed as well by a band from 120,000 to
130,000 as by the 1 to 10,000 band of numbers. He would agree, pre-
viously, with the individual to whom the message is to be sent to subtract
120,000 from the numbers received. The message would then be 122,-
978-120,001-121,643-126,435-127,695-129,523-126,872-123,169.

Suppose at the same time he also wished to send a message to another
member of the family, such as ‘“Wire another hundred dollars.” He
might agree with this member that his messages were to be received in
the band 150,000 to 160,000. The decoding would be accomplished by
subtracting 150,000 from numbers in this group. Before coding this
might read 7,843-819-3,245-1,298, and after coding it would become
157,843-150,819-153,245-151,298.

It would be possible to mix this message right in with the other, and
yet there would be no confusion; e.g., the two messages together might be
122,978-120,001-157,843-121,643-150,819-126,435-127,695-153,245-129,-
523-126,872-151,298-123,169.

Each person at the receiving end would know the band within which
his message was to be received and would select numbers only in that
band before applying the decoding process.
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In the same way, several messages, originally in the same frequency
band but in different channels, (see Fig. 1-1), can be coded, i.e., trans-
lated to new bands by nonlinear impedances, and then be introduced to
and travel simultaneously in the same medium (either free space or a
transmission line), be separated at the receiving end by appropriate filter
networks, be transposed or decoded by nonlinear impedances to their
original frequency band, and be delivered to the proper receiving point
in substantially the same form as the original.

The principle of modulation is so important that it will be developed
at somewhat greater length here, in order to understand its implications
in the design of the networks covered in this book. However, the reader
should refer to another text for detailed discussion of actual modulators
and demodulators. One in general starts with some a-c phenomenon
such as voltage, current, or electromagnetic field strength, generically
referred to as waves.

Modulation of a wave is the process by which a characteristic of a
so-called *carrier wave” of a higher frequency than any component of
the signal is varied in accordance with the time variation of the signal.
A general alternating wave may be represented by the equation

e = A sin (wt + ¢) (1-6)

Three groups of modulation methods are recognized:

1. Amplitude modulation, where A is varied by the signal.

2. Angle modulation, where ¢ is varied by the signal.

3. Pulse modulation, where the signal is turned on or off in pulses, and
where the pulses themselves are modulated in amplitude or time of occur-
rence in accordance with the instantaneous values of the signal.

1-10. Amplitude Modulation.! In an amplitude-modulated wave the
amplitude is varied about its mean value in proportion to the signal.
Let the original signal (such as the sound pressure on the microphone) be
represented by the function f(f). Then the amplitude factor A of Eq.
(1-6) is modified by f(t) to give the amplitude-modulated wave

e = A[l + bf(9)] sin (wt + ¢) (1-7)

where b is a factor determined by the design and operation of the mod-
ulating system and has dimensions such that bf(¢{) is a pure numerie.
b is usually a constant, but in some cases it is made a function of the
signal frequency component. For example, if b is made to change with
frequency in the proper manner, compensation may be secured for defects
in the frequency characteristic of some other part of the system.

1 W. L. Everitt, Frequency Modulation, Trans. AIEE, vol. 59, p. 613, November,
1940.
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The amplitude variation cannot carry the amplitude below zero.
Therefore the factor b should be so chosen by the operator that 1 + bf(f)
never becomes negative. Hence bf(f) should not exceed an absolute
value of unity. This absolute value of the maximum of bf(t) is called
the amplitude-modulation factor and is given the notation ms.

If the signal f(¢) is sinusoidal with a frequency p/2x, Eq. (1-7) becomes

e = A(1 + m, sin pt) sin wt (1-8)
The curve of Eq. (1-8) is illustrated in Fig. 1-14 for m, = 0.5 and
w/p = 10. It will be noted that the wave crosses the axis at regular

time intervals of 2x/w sec for both the modulated and the unmodulated
waves.

Signal voltage -f sin pt

nvelope =A (1+m, sin pt), where mg=bE'=05

——— e — —— —
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t=0 ;-i,—"' Time (= 2T

Fia. 1-14. An amplitude-modulated wave.

In alternating phenomena a single frequency is represented by the
projection of a phasor of constant length rotating with the constant
angular velocity w = 2xf. The wave of Eq. (1-7) could also be repre-
sented by a phasor rotating with a constant angular velocity w, but the
length of the phasor would be changing at a low frequency rate as given
by the equation

Length of phasor = A[l + bf(t)] (1-9)

The term A[1 + bf(?)] is called the envelope of the wave. In Eq. (1-8)
the envelope would be A(1 + mj, sin pt) as is illustrated in Fig. 1-14.

In drawing phasors which represent alternating phenomena it is com-
mon practice to consider that the observer is traveling on a platform
which is also rotating about the same center with a velocity w. The
original phasor would then appear to be stationary and could be rep-
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resented by a single drawing. However, if either the magnitude or the
phase of the phasor is changing with time, a series of successive drawings
is necessary to illustrate what is

Envelope same as figure 1-14

happening. k,

These successive drawings of I
stationary phasors for the wave of S
Fig. 1-14 are shown in Fig. 1-15 I\ T -I [ ]
for time intervals of one-eighth
the period of the I-f wave produc- t=0 Time — t= 2%
ing the modulation. Fig. 1-15. Phasor diagrams of the ampli-

At the receiver the demodulator tude-modulated wave of Fig 1-14 for suc-
must produce a response which js cessive instants.
proportional to the envelope of the modulated wave (except for the con-
stant component).

1-11. Interference of Two Amplitude-modulated Waves. If a second
amplitude-modulated wave of the same carrier frequency and phase is
added to the wave of Fig. 1-14, the resultant wave will have an envelope
which is the sum of the envelopes of the two waves, for the phasors will
be adding in phase. The interfering effect will be noticeable if the
undesired signal is as much as 1 per cent of the desired signal. Hence
it is desirable to make the value of m, as large as possible, since the opera-
tor of a given communication system cannot control the modulation of
the desired wave by the undesired signal.

Envelope of desired signal
U, (same as figure 1-14)

Envelope of desired
vt - 71 o and undesired signal

Hlu 74
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F1a. 1-16. Interference with an amplitude-modulated wave of a carrier of slightly
different frequency. (D is the desired, U the undesired, and R the resultant wave.)

If the frequency of the interfering wave is slightly different from the
desired wave (the difference being too small to eliminate it by selective
circuits), then the interfering wave will produce a variation in the enve-
lope, which variation has an amplitude equal to the magnitude of the
interfering wave (even if it is unmodulated). This additional variation
will occur at a frequency which is equal to the difference between the
carrier frequencies of the desired and undesired signals, and will produce
an interfering modulation which is further superimposed on the result-
ant envelope. This is illustrated by the phasor diagrams in Fig. 1-16,
where the undesired signal has a frequency which exceeds the frequency
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of the desired signal by 1.50/2r. It is seen that the resultant envelope
is modified by an additional component equal to the magnitude of the
undesired wave and so introduces interference proportional to the mag-
nitude of the interfering wave.

Again it is apparent that the amplitude of the envelope of the desired
signal should be kept as large as possible in order that the interference
may be minimized. If Eq. (1-7) represents current or voltage, the
amplitude of the envelope may be increased by increasing either the
power or the amount of modulation (m,).

1-12. Angle Modulation. In angle modulation (of which frequency
modulation is a subdivision) the angle ¢ of Eq. (1-6) is given by a func-~
tion of time which is related, but not, in all cases, directly proportional,
to the signal function f(f). The two principal subdivisions of angle
modulation which have been extensively studied are phase modulation
and frequency modulation.

1-13. Phase Modulation. In this type of modulation the phase
angle ¢ is made to vary in accordance with the signal. That is,

T = bif(t) (1-10)

where b; is a constant determined by the design and operation of the
modulating system. When Eq. (1-10) is inserted in Eq. (1-6), the wave
becomes

e = A sin [wt + b,1f(1)] (1-11)

The maximum value of b,f(f) is called the phase-modulation index m,.
It is the maximum number of radians by which the phase of the carrier
is altered during modulation. If the signal is sinusoidal with a fre-
quency p/2w, Eq. (1-11) becomes

e = A sin (wt + m, sin pt) (1-12)

1-14. Frequency Modulation. In this type of modulation the instan-
taneous frequency is varied about the average value w/2r in proportion
to the instantaneous value of the signal. By definition, the use of the
word ‘frequency” is extended to the general equation (1-6) by the
relation

fon = 0 + 22 (1-13)
Since w is a constant (2r times the carrier frequency), the signal must
modify d¢/dt so that the instantaneous frequency is given by the relation

fm = 5= + bof() (1-14)
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where b; is a design and operating constant. The maximum value of
bsf(f) is the maximum deviation in instantaneous frequency of the mod-
ulated wave from the unmodulated one and is called the frequency devia-
tion, Af. If f(f) is a sine wave of frequency p/2x then

baf(f) = Af sin pt (1-15)
If Egs. (1-13) to (1-15) are combined,

27‘:fmn. = w + 2 Af Sill pl = w + %;2
which gives
. Af
o= | 2rAfsinptdl = — 7, cos pt (1-16)
- 4

where f, 15 the frequency of the modulating signal. Equation (1-16) may
be written
= —my cos pl (1-16a)

where m; is called the frequency-modulation index. 1If this phase angle
is inserted in Eq. (1-6), the result will be

e = A sin (wt — my cos pt) 1-17)

Equations (1-17) and (1-12), applying to a modulating signal of a single
frequency, do not differ appreciably (except for a 90° shift in the modula-
tion phase). In Eq. (1-17) the maximum shift in phase (corresponding
to the phase modulation factor m,) will be

my = (1-18)
)

m, in phase modulation and Af in frequency modulation are arbitrary
design factors. Unlike amplitude modulation they are not restricted
to a maximum value of unity, for m, may be hundreds of radians or
Af thousands of cycles if desired. The limitations on m, and Af will be
determined by the allowable frequency spectrum and will be discussed
later.

The distinetion between phase and frequency modulation is as fol-
lows: if the frequency, but not the amplitude, of the modulating signal
changes, m, is constant in phase modulaiion and Af is constant in fre-
quency modulation.

1t follows from Eq. (1-18) that in frequency modulation the phase
deviation is inversely proportional to the modulating frequency. On
the other hand, in phase modulation the frequency deviation is directly
proportional to the modulating frequency.

Figure 1-17 is an illustration of angle modulation as represented by
Eq. (1-12) for the case where m, = 0.5 and w/p = 12. On a casual
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examination this would appear to be a single frequency wave. How-
ever, the intervals at which it crosses the axis vary throughout the audio
cycle. In order to show this the first, fourth, seventh, tenth, and
thirteenth cycles are expanded and shown in Fig. 1-18. It is seen that
the varying shift in phase also produces a change in frequency which
varies throughout the low-frequency (If) cycle.

Signal voltage =Esin pt
AXS € —— e N ———

Phase modulated wave =A sin(wt +m, sin pt),
where mp,=kE =05
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Fi1G. 1-17 An angle-modulated wave.

The successive phasor diagrams for the angle-modulated wave of
Fig. 1-17 (corresponding to the diagrams of Fig. 1-15 for an amplitude-
modulated wave) are shown in Fig. 1-19. The signal wave is included
for identification of the various instants.

The difference between phase and frequency modulation may be illus-
trated by the way the motion of the resultant phasor would appear to

F1a. 1-18. Expansion of individual cycles in Fig. 1-17. A, first and thirteenth cycles
of Fig. 1-17. B, fourth and tenth cycles of Fig. 1-17. C, seventh cycle of Fig. 1-17.
an observer riding with the carrier phasor. In phase modulation two
audio signals of equal amplitude, but of different frequencies, would
produce equal angular amplitudes in the apparent swing of the resultant
phasor. In frequency modulation two audio signals of equal amplitude
would produce equal maximum angular velocities in the apparent swing
of the resultant phasor. In this latter case (frequency modulation) the
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maximum angle of swing would be inversely proportional to the audio
frequency [as is indicated by Eq. (1-18)]. This is illustrated by Fig. 1-20,
where the phasors for both frequency and phase modulation are drawn
for two signals with an audio-frequency (af) ratio of 2:1. Note that
in phase modulation the maximum angle ¢.. is the same for both signals,

INSN LV VV

F1a. 1-19. Phasor diagrams of the angle-modulated wave of Fig. 1-17 for successive
instants. Solid-line phasors are phasors of the modulated wave. Dashed-line
phasors are phasors of the unmodulated wave.

while for frequency modulation the maximum angle ¢. for signal A
(the lower frequency) is twice that for signal B. Since the angular
velocity is proportional to the instantaneous value of the signal in fre-
quency modulation, the phasor reaches its maximum angle of deviation
when the signal is zero, while in phase modulation it reaches its maximum
angle of deviation when the signal is a maximum.

Phase
modulation

Frequency |
modulation

Phase Signal A
modulation

Signal B
F16. 1-20. Comparison of phase and frequency modulation by means of phasor dia-
grams. Nole. ¢m is the same for both signals for phase modulation ¢. is in-
versely proportional to signal frequency for frequency modulation. Maximum
velocities of the phasors are the same for both signals for frequency modulation.

In radio transmission by angle modulation means are provided at the
decoder so that the detected signal is proportional to the angle modula-
tion (of the particular type selected) and at the same time this detected
signal is made unresponsive to amplitude variations.

1-16. Interference of Two Angle-modulated Waves. When two angle-
modulated waves of the same carrier frequency are added together, the
total angle modulation is not the sum of the two individual modulations.
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This can be illustrated by Fig. 1-21, where an angle-modulated wave
B is represented by a phasor whose angle is changing with time. This is
added to a larger phasor A which for the moment will be assumed to be
unmodulated. The resultant phasor £ will be the sum of the two
phaseors.

It is apparent that, if B is less than A, then no matter what the total
angular variation of B may be (even if it is hundreds of radians) the total
angular difference between R and A cannot exceed arctan (B/A). For
instance, if B/A = 0.5, the maximum value of m, for the phasor B when
A is unmodulated is m, = 0.46. If B/A = 0.5 and A4 in turn has its
angle modulated, then the difference between the angle of A and that
of R cannot exceed 0.46 radian at any instant. If the modulation factor
m, of A is made large in comparison with 0.46, the interference of B

B
BBBBBBB BB
A A
4 \la \|a (la A |a 4|/ A

Fre. 1-21. Phasor diagrams showing interference in angular modulation. A, the
desired signal phasor (unmodulated). B, the interfering signal phasor (same carrier
frequency). R, the phasor of the total wave (A + B).

becomes negligible, in spite of the fact that the magnitude of B is by no
means negligible in comparison with A.

This analysis justifies the experimental results which show that when
two frequency-modulated signals are picked up by a receiver, there is no
appreciable interference between the two signals if the stronger exceeds
the weaker by a ratio of 2:1 or more.

It will be seen that the greater the value of m, used for the desired
signal the greater is the discrimination against the undesired signal, but
this discrimination is not affected by the value of m, used in the undesired
signal.

The discrimination against interference obtained by angle modulation
applies to all types of interference. In particular, static may be rep-
resented as a phasor of varying phase and magnitude. The selective
circuits of the receiver admit only those components within the band to
which it is receptive. If the amplitude of the admitted noise does not
exceed half the amplitude of the desired wave, a very small amount of
noise will be introduced into the output. The greater the average phase
deviation in comparison with the angle 0.46 (approximately 0.5), the
greater will be the discrimination against the noise. It should also be
observed that components of the noise phasor which differ in frequency
from the carrier by supcraudible frequencies will produce superimposed
angular velocities above audibility and so do not contribute to the noise,
as long as the noise is small compared with the signal.
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In radio operation it will be found that, if a portable receiver is driven
in an automobile away from a frequency-modulated transmitting station,
no appreciable noise will be experienced until the desired field strength
drops to twice the noise field strength (taking into account only those
components of noise accepted by the selective circuits of the receiver).
The noise then rises rapidly, so that a sharp threshold is experienced.

Within the distance limited by the threshold, the signal-to-noise (S/N)
ratio can be improved by either increasing the power or increasing the
modulation factor (either phase or frequency). Since power is propor-
tional to the square of voltage or current in a given system, doubling the
frequency deviation in frequency modulation has the same effect on the
S/N ratio as increasing the transmitted power four times. In general an
increase in the maximum frequency deviation by a ratio n would be
equivalent in its effect on the S/N ratio to an increase in power by the
ratio n?.

The major objection to the use of a large frequency deviation is that it
would limit the number of stations which can serve a given area if a fixed
total bandwidth is allowed for the service.

A compromise must be adopted and a standard set so that the receivers
may work with the transmitters. This is a function of government
regulation. In order to study the problem of the required allotment, a
spectrum analysis must be made of the different classes of modulation.

1-16. Spectrum Analysis of Amplitude Modulation. The wave of Eq.
(1-8) may be expanded by the use of simple trigonometric identities.
This equation becomes

e = A sin wt + 71%4cos (w — p)t — "%4 cos (w + p)t  (1-19)

Equation (1-19) shows that the wave which is amplitude-modulated
by a single frequency may be analyzed into three component frequencies
with the following designations:

A sin ot the carrier
1—’—2—1—1 cos (w — p)t the lower side frequency
mzA
2

The three components may be represented by three phasors rotating
at different angular velocities. Again if the observer were rotating with
the carrier phasor, this phasor would appear to be stationary. The
upper-side-frequency phasor would appear to be rotating counterclockwise
at a velocity p, and the lower side frequency would appear to be rotating
clockwise at the same velocity p.

cos (w + p)t the upper side frequency
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The three phasors corresponding to the wave of Fig. 1-14 are shown in
Fig. 1-22. It will be observed that the upper- and lower-sideband
phasors add together to form a phasor M called the modulation phasor,

Envelope same as figure 1-14

,.——

Lf 1U U L ~ L U L LV\U
Y 74 M ‘ //
s _ (o}
Axnsj T T Tlme

F1a. 1-22 Phasor diagram of the carrier and side frequencies 1n an amphtude-modu-
lated wave C, carrier phasor (constant length) U, upper-side-frequency phasor
L, lower-side-frequency phasor M, modulation phasor (sum of U and L) Phasor
of the complete wave 18 C + M

which is always in phase with the carrier phasor but which varies in
magnitude.
The three component frequencies of Eq (1-19) are represented graph-
ically in Fig. 1-23.
If the original signal were a complex wave nstead of a single frequency,
a spectrum analysis would show it to be represented by
a band of frequencies. The lower and upper side fre-
A quencies would expand into two bands of frequencies
each as wide as the band of the original signal. For
instance, if the signal were restricted to a band of 0 to
5,000 cycles, the two sidebands would extend from 5,000
cycles below to 5,000 cycles above the carrier frequency.
Since the quality of a signal depends upon the width of
the band which may be transmitted, an improvement in
the quality of transmission would require an extension of
the frequency spectrum occupied by the radio wave.
PYZAVYN However, the narrower the frequency band which is
€ ,l__’ wen € ? used, the greater will be the number of stations which
Fra ':_q% ;:)ec_ can be accommodated. In practice a compromise must
trum analyssof € made. Standard broadcasting stations are assigned

Relative ampirtude

mgAllImaga
2

2

an amplitude-
modulated
wave. f, car-
rier frequency.
fo, signal fre-
quency. mg =
0.5.

carrier frequencies in the range of 535 to 1,605 kc on a
world-wide basis, these assignments being separated at
intervals of 10 ke. In order to prevent interference,
selective circuits are required in the receiver which are so
sharp in most commercial models that sideband com-
ponents more than 3,000 cycles away from the carrier are

greatly attenuated. Hence the quality which is permissible in practical
operation is limited by the major problem of interference.
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1-17. Spectrum Analysis of Angle Modulation. The angle-modulated
wave of Eq. (1-12) may be expanded by the use of the identities

gin (m, sin z) = 2[J1(m,) sin z + J3(m,) sin 3z + Js(m,) sin 5z + - - ]
(1-20a)

cos (m, sin ) = Jo(m,) + 2[J2(m,) cos 2
+ Ju(my) cos 4z + Je¢(my) cos 6z + - - -] (1-20b)

where J,(m,;) is the nth-order Bessel function of the first kind. Equa~-
tion (1-12) may be written

e = A[sin wt cos (m, sin pt) + cos wt sin (m, sin pt)] (1-21)

If Eqs. (1-20a) and (1-20b) are inserted in Eq. (1-21), the following
result will be obtained:

e = A{Jo(my) sin wt + J1(my)[sin (w + p)t — sin (o — p)f]
+ Jao(m,)[sin (@ + 2p)t + sin (w — 2p)t] + Ja(m,)[sin (o + 3p)t
— sin (0 — 3p)t] + Ju(m,)[sin (v + 4p)t + sin (0 — 4p)t] + - - -
+ Ja(my)[sin (0 + np)t + (=1)" sin (@ — np)f] + - - -} (1-22)
This indicates that there are an infinite number of side frequencies for

a single-frequency signal. However, this is not as bad as might at first
appear because, for any given value

of m,, there will be a value of n = 0753

above which the coefficients J.(m,) g 03 N

fall off rapidly and become neg- 2 19

ligible. This is shown in Fig.1-24. g 05} mp =10

For example, if m, is 14 radian or § 0~

less, only the first pair of side "; :)'g , _mp=20

frequencies is important. On the 2 gull

other hand, if m, is equal to 20 g 10—7—%5

radians, side frequencies out to the  w 05777,

twenty-fourth pair would be appre- S lg

ciable. For large values of n this 2 05 mp=100

rapid falling off of J.(m,) occurs é Ltettotblic,

just beyond n = m,. Observealso § 9 %,=200

that the value of the carrier com- g o'gu.._L...u...n...-.x_._..l...._n.LlLu......

ponent is always reduced when 24638 \::ml: ol: 16182022
n

modulation occurs since Jo(m,) is
k Fia. 1-24. i
less than 1 for all values of m, differ- of"éhe first Xﬁge?of i:&;ﬁe’:ﬁeﬁ?ﬂmﬂ

ent from 0. This is in contrast
with amplitude modulation, where the value of the carrier is not affected
by modulation.

Figure 1-17 was drawn for a phase-modulation factor of 0.5, and so the
first pair of sidebands are the only ones of importance. If all other side-
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bands are neglected, the phasor diagrams including the side bands for
different instants of Fig. 1-17 can be shown as in Fig. 1-25. The signal
wave is shown for identification. The carrier and resultant phasors are
the same as those shown in Fig. 1-19. The modulation phasor, which is
the sum of the two sideband phasors, is always 90° out of phase with the
carrier and varies in magnitude in the same way that the modulation
phasor varies in amplitude modulation. The neglect of higher-order side
frequencies is the same as an assumption that there is a negligible differ-
ence between the arc and a tangent line of the same length when the
angle is small.

When the modulation phasor is added to the carrier phasor it causes
the resultant phasor alternately to advance beyond and retard behind
the carrier phasor. The maximum advance and retardation is approx-
imately !y radian. The length of the resultant phasor is substantially

M=0
w0 UMy v Mo\t LM LuuyM U
=0~ - L
L L L U UU v L
CIR R\C R\lc R\c C|R cl|/rR c|{/r cl/r c|r

Signal wave

Fi.. 1-25. Phasor diagrams of the carrier and first pair of side frequencies i an angle-
modulated wave for low values of modulation index. (', carnter phasor U, upper-
side-frequency phasor L, lower-side-frequency phasor 1/, modulation phasor
(U + L). R, resultant phasor ((" 4+ 1)

constant. If the additional sidebands were included, the length of R
would be exactly constant.

If the phase-modulation index exceeds !, radian, additional sidebands
must be included because the arc and chord are no longer substantially
the same. The addition of the phasors corresponding to these sidebands
is illustrated in Fig. 1-26 for m,, = 1 and for one quarier of an audio cycle,
the other three quarters being similar. It will be noticed that each pair
of sidebands has associated with it a modulation phasor which main-
tains a constant phase with respect to carrier (assuming that phase
reversals are taken care of by negative signs).

If the modulated wave represents a quantity whose square is propor-
tional to power in a given system, the average power in an angle-modulated
wave is not changed by the modulation, as the root-mean-square (rms)
value of the wave is not modified if the amplitude remains constant.
Therefore the sum of the squares of the carrier and all the sideband com-
ponents remains constant for all values of m,. The sideband power is
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obtained by a reduction in carrier power. This is also proved by & well-

known relation

”S-an(my) =1

nm=l

J02(mp) + 2 (1‘23)

for all values of m,. The number of terms which are of importance in
the infinite series can be evaluated by setting

n==g

Ji(my) +2 ) Ja2(mg) 2\

ne=1

Then if A is taken as some value less than unity, the sum can terminate
with a finite value of n equal to s. If A is equal to 0.999, then 99.9 per

U, U
M, ] ! Locus of R ! (Locus of R
/,’l; N L\< - \\\\
7 ~ ~
-~ TN >~ - N
% M=0 AN /U, .
/ R ! \ c \
/ L \ / \
1 x
¢°=o..- pt=0 ”“?
qbos m, sinpt d’o"”" sin pt
C =0 =0.5 radian
o /Locus of R I <—Locus of R
\\\\ \\\\
\\\ \\\
\,
\,
\ \
L .4
pt:-—a- pt-—z-
d,=m, sinpt & =m, sinpt
=0.866 radian =1.0 radian

F1c. 1-26. Phasor diagram of a carrier and two pairs of side frequencies in an angle-
modulated wave where m, = 1. U,, first upper-sideband phasor. L,, first lower-
sideband phasor. M,, first modulation phasor (U, + Li). U, second upper-side-
band phasor. L, second lower-sideband phasor. 3., second modulation phasor
(Us + L;). C, carrier phasor. R, resultant phasor.

cent of the energy in the wave would be due to sideband components

corresponding to values of n equal to or less than s.
For example, if m, = 4 and six components are taken in each sideband,

n=6
Jo¥(m,) + 2 z Ja2(m,) = 0.157688 + 2(0.004356 + 0.132569

nw=l

+ 0.185072 + 0.079017 + 0.017450 + 0.002411) = 0.999438
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and all the components corresponding ton > 6 would contain only 0.0562
per cent of the energy.

The constancy of power output is in marked contrast to amplitude
modulation where the carrier power remains constant and the sideband
power is added. For this reason certain problems in design are sim-
plified in a phase- or frequency-modulated transmitter.

1-18. Comparison of the Spectra of Phase and Frequency Modulation.
In phase modulation the value of m, is made directly proportional to the
maximum amplitude of the signal. If two different signal frequencies
have equal amplitudes, and modulate the signal in succession, the same
number of sideband components would be necessary for each case and
these components would have the same relative magnitude. It has been
shown that to obtain the advantage of angle modulation in the reduction
of interference requires the use of large values of m, for the desired sig-
nal. If the value of m, for a special case is taken equal to 20, then by
Fig. 1-24 it is apparent that approximately 24 sideband components
would be desirable for the upper sideband and a similar number for the
lower sideband. Therefore if an audio signal of high quality containing
components up to 15,000 cycles were to be transmitted, a bandwidth of
approximately 2 X 24 X 15,000, or 720,000, cycles would be required.
This is obviously impracticable. For this reason phase modulation (as
distinguished from frequency modulation) is seldom used for radio trans-
mission.

In frequency modulation the value of Af is made directly proportional
to the maximum amplitude of the signal. If two different audio signals
bave equal amplitudes and modulate the signal in succession with equal
values of Af, by Eq. (1-18) the values of m, for the two cases will beinversely
proportional totheaf. Thusif m,isequal to4 for 15,000 cycles, it would be
equal to0 40 for 1,500 cycles and equal to 400 for 150 cycles. A study of Fig.
1-24 shows that the number of components of appreciable magnitudeineach
sideband is slightly inexcessof m,. Therefore as the modulating frequency
is reduced, the number of components necessary increases, and the mod-
ulated wave occupies almost a constant bandwidth in the spectrum. As
an example, consider a case where the maximum frequency deviation is
assumed to be 60,000 cycles. Then if a high-quality signal is to be
transmitted, frequency components in this signal up to 15,000 cycles
might be desired. If the wave were frequency-modulated with a 60,000-
cycle deviation (Af = 60,000), at 15,000 cycles m; would equal

60,000
15,000

For this case Fig. 1-24 shows that approximately six components in each
sideband separated at intervals of 15,000 cycles are desirable, and the

= 4 radians
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corresponding bandwidth would be 2 X 6 X 15,000, or 180,000, cycles.
On the other hand, if the wave were to be frequency-modulated with a
60,000-cycle deviation by a 3,000-cycle wave, m, = 60,000/3,000 = 20
and approximately 24 components in each sideband separated at inter-
vals of 3,000 cycles would be desirable. The bandwidth for this signal
would be 2 X 24 X 3,000 = 144,000 cycles, which is somewhat less than
that needed for m; = 4 at 15,000 cycles. Table 1-1 is constructed for a
maximum deviation of 60,000 cycles, and a constant amplitude is assumed
for the audio signal.

TasLE 1-1
Signal | m, for 60,000- | Approximate number of side- | Approximate bandwidth,
frequency |cycle deviation | band components required ke
30 2,000 4,030 120 06
60 1,000 2,020 120 20
600 100 208 124 8
2,500 24 16 140
3,000 20 | 24 144
5,000 12 30 150
10,000 6 16 160
15,000 4 12 180

The spectrum analysis for a deviation of 60 ke and modulating fre-
quencies of 2,500, 5,000, 10,000, and 15,000 cycles is shown in Fig. 1-27,
and it is apparent that the signal is contained within a bandwidth of
approximately 200 ke in all cases.

As a practical matter, in typical audio signals the major portion of the
eunergy is concentrated in the region below 2,000 cycles, the amplitudes
of the higher frequencies falling off rapidly. Since Af is proportional to
signal amplitude, the very nature of typical signals is such that the
required bandwidth is practically constant. For this reason it is found
practicable to use a mazimum deviation of 75,000 cycles for a total spec-
trum bandwidth of 200 ke.

The spectrum analyses for a modulating frequency of 15,000 cycles
and deviation frequencies of 30, 15, 7.5, and 3.0 kc are shown in Fig. 1-28.

It is apparent from Figs. 1-27 and 1-28 that, when the frequency devia-
tion is large compared with the signal frequency, the bandwidth required
is approximately twice the frequency deviation, while, when the signal
frequency is large compared with the deviation frequency, the bandwidth
is twice the signal frequency. The latter case coincides with the situation
in amplitude modulation. In other words, the bandwidth required is
approximately twice the larger of the two frequencies (signal or devia-
tion). If the signal and deviation frequencies are approximately equal,
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Fi1e. 1-27. Spectrum analysis of frequency modulation for a constant deviation, Af,
and different modulating frequencies
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Fig. 1-28. Spectrum analysis of frequency modulation for constant modulating
frequency and vanable-frequency deviation. (Signal 1s for phase modulation )
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the bandwidth required is approximately four times that of the larger
frequency (see Fig. 1-28 for m, = 0.5, 1, and 2).

The spectra of Figs. 1-27 and 1-28 may be used for any other combina-
tions of signal and deviation frequencies which have the same deviation
ratio m,; by modifying the scale of abscissa so that the interval between
adjacent components is equal to the af.

The reader must be cautioned that, if a signal contains two or more
signal frequencies, the resultant spectra cannot be obtained by adding the
spectra resulting from each signal frequency alone (as can be done in
amplitude modulation). However, the total spectra will remain approx-
imately within the limits set by the maximum frequency deviation when
the latter is large.

Although the discrimination against noise is proportional to m,, it is
impracticable to use large values of m, at all signal frequencies because
of the bandwidth involved. However, noise and interference are the
composite result of a larger number of noise components. If frequency
modulation is employed, the maximum value of m, is obtained for each
signal component in the signal which will at the same time keep the side-
band components within the limits in the spectrum assigned to the trans-
mission. Therefore frequency modulation is the type of angle modula-
tion which reduces the composite noise effect to the greatest practicable
extent.

1-19. Simultaneous Modulation. An amplitude-modulated wave and
an angle-modulated wave can be transmitted in the same frequency
band, provided the upper and lower sidebands of both are transmitted.
Methods are available for the detection of amplitude modulation without
responding to angle modulation, and, vice versa, methods are available
for the detection of angle modulation without responding to amplitude
variations. However, in case two signals are transmitted simultaneously
by amplitude and angle modulation, the requirements on the transmission
system will be very stringent. If one sideband is delayed a different
amount from the other, then an angle-modulated wave will have ampli-
tude variations proportional to its signal and an amplitude-modulated
wave will have angle variations proportional to its signal. The same
result will occur if paired components in the two sidebands corresponding
to a given component in the signal are not transmitted with the same gain
or loss. Under these conditions there would be interference (usually
termed cross talk) between the two signals.

For simultaneous modulation, instead of using pure angle modulation
for one of the signals, it could be transmitted by using only the first-
order sidebands, even though the amplitude of the modulation phasor
exceeds 50 per cent of the carrier. This would keep the bandwidth of
both signals identical. This type of modulation is called ‘‘quadra-
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ture’’ modulation. Amplitude modulation might, in contrast, be termed
“inphase,” or ‘‘direct,” modulation. Simultaneous direct and quadra-
ture modulations are used to transmit two of the three video signals
required in color television.

1-20. Single-sideband Transmission. It is possible to filter out one
of the sidebands of a modulated wave, transmitting information in a band-
width equal only to that of the signal without further complication in
coding. In practice amplitude modulation is used to produce the
original signal, and one sideband is then discarded. With one sideband
eliminated, both the phase and the amplitude of the resultant wave will
vary in accordance with the signal, and so only one signal can be trans-
mitted in a given band. Since none of the signal information is con-
tained in the carrier, it may be eliminated at the sending end. However,
the frequency of the carrier serves as decoding information, since the
difference between its frequency and that of each component in the side-
band identifies in turn the frequency of each component in the final sig-
nal in terms of the corresponding component in the original.

The carrier may be reintroduced at the receiving end by a local source,
as long as the required frequency is known. This is simple in the case
of single-sideband transmission, because the reintroduced frequency need
only be quite close to the original. However, in case two sidebands are
used, not only must the carrier frequency itself be exact, but the phase
must be constant and correct if the identity of the angle or amplitude
modulation is to be retained. Therefore in simultaneous modulation it
is absolutely essential that the carrier be transmitted and its phase rela-
tion to the two sets of double sidebands carefully preserved.

1-21, Interspersed or Comb Signal Separation. When quasi-recurrent
signals such as those resulting from the repeating lines of television are ana-
lyzed by the methods of Fourier, it will be found that the spectrum will
show peaks of power at integral multiples of the recurrent frequency (in
the case of television these would be at multiples of 30 X 525 = 15,750
cycles). It is possible to introduce other signals, which have a similar
characteristic and the same peak frequency separation, into the same
frequency band, without appreciable interference. This can be done for
example for one additional signal by displacing it by one-half the fre-
quency difference between peaks. This method is used in the compatible
color-television system adopted by the FCC, the second interspersed
signal carrying both direct and quadrature modulation. The original
and interspersed signals thus transmit the three portions of the video
information necessary to identify a color reproduction in a frequency
band originally used only for black-and-white pictures. As has been
indicated, such a signal will place stringent limitations on delay and
amplitude distortion in the transmission system or there will be inter-
ference between the three color components.
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1-22. Pulse Modulation. Both amplitude and angle modulation permit
the separation of signals by means of frequency-selective networks or
filters described in later chapters. Systems making use of this method
of coding and decoding for transmission of signals through a common
transmission medium or network are generally called “frequency-division
systems.”’

The use of pulse modulation introduces the possibility of another
method of identifying signals of a particular channel on a ‘‘ time-division’’
basis. Pulse modulation is based on the concept of “sampling’ a signal
in accordance with the following theorem:

A signal of duration T whose highest frequency of importance is f, can
be completely specified by 2T, [or 2T (BW), where BW 1is the bandwidth
of the low-pass (LP) network necessary to transmit the signal] samples taken
at equal time intervals of 1/2fy sec.

t
@ /2fh r/s P
_(\__.. 2
3 ]
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F16. 1-29. The 1dea of samphng (a) A signal f(¢) of duration 7. (b) A simple
rotating mechanical sampling switch  (¢) The amplitude samples corresponding to a.

The idea of sampling is shown in Fig. 1-29. The theorem may be
proved as follows: The signal f({) may be expanded into a Fourier series
involving harmonies of 1/7T*, that is,

3 2wk N\ . 2k
f(t) = By + kZl B, cos —T--l + ’?S:Il Ay sin ~7,— t (1-24)

(Actually, when a Fourier series is used, the signal would repeat itself
over and over again for values of time greater than T but all the infor-
mation involved can be extracted in time 7'.)

By the specifications, f5 is the highest frequency of significance; hence
n, the order of the highest harmonic in Eq. (1-24), will be

I
n=q7p = hT
There are, therefore, 2fsT + 1 terms in Eq. (1-24) whose amplitudes
may be evaluated by setting up 2f4T + 1 simultaneous equations of the

* Fourier series are described in detail in Chap. 2. It is suggested that the student
return to this section after completing Chap. 2.
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form of Eq. (1-24) at values of ¢ corresponding to each of the samples.
For typical values of fi, 24T + 1 is essentially equal to 2/,T. Therefore,
the samples contain all of the information necessary to specify f(¢).

Since the signal presumably has components extending from zero to
fn, the highest significant frequency, it is often convenient to replace fj
by BW, which is the bandwidth of both the signal itself and the network
necessary to transmit it.

For a continuous signal (rather than one of duration T, the theorem
may be restated as follows:

A continuous signal, whose highest frequency of importance is BW, can
be completely specified by samples taken at a rate of 2BW per second.

It follows that, if the proper number of signal samples are taken and
their magnitudes are identified with some characteristic (such as ampli-
tude or position in time) of successive short pulses of a high-frequency
(hf) wave, these pulses may be considered to represent a coded form of the
signal. However, these pulses need not occupy all the time of trans-
mission, and so the coded pulses of two or more signal channels may be
interspersed in time, provided that at both the transmitter and the
receiver there is a synchronous method of identifying the particular
pulses of a given channel with the terminal equipment of that channel.
Such a method of coding is termed *time-multiplexing.”

In addition to the advantages of multiplexing by time division, various
forms of pulse modulation show advantages in improving the signal to
noise ratio. As in the case of frequency modulation this improvement
in reducing noise is obtained at the expense of wider-frequency-band
requirements in the transmission system.

1t is also possible to use combinations of pulse and amplitude or angle
modulation.

1-23. Hartley-Shannon Law. It has been shown that the amount of
information in a signal of duration 7 and maximum frequency BW can
be represented by 27 (BW) pulses, each of amplitude determined by the
signal strength at the instants the samples are taken. At the receciving
end, the amplitude of a signal never has an absolutely distinct value but
has been, as it were, ‘“smudged’’ by the introduction of noise from ran-
dom disturbances encountered en route. Hence the value of a signal of
power S is known only within a degree of error determined by the noise
power N.

It is desirable to define the amount of information in a signal. In
legal interrogation, there is always a desire to obtain simple ‘“yes’ and
“no” answers to all questions. As a matter of fact, if there is a definite
answer to a complicated question, it can always be secured if enough
questions are properly phrased which do have an answer either yes or no.?

1 See Matthew 5: 37.
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This is particularly easy if the answer is quantitative. For example, if
one asks an individual to think of any digit from 0 to 63, then not more
than six questions with yes and no answers need be asked to determine
the value of the digit. Suppose the number chosen is 43. Then the
following questions, which are based on dividing possible numbers suc-
cessively into two equal groups, will apply, together with the answers
and conclusions indicated:

Question Answer Conclusion

1. Is0 <z <31l true? No 32<z<63

2. Is32 < r <47 true? Yes (32 <z <47

3. Is32 < xr <39 true” No 40 <z < 47

4. Is 10 < z < 43 true? Yes 40<z< 13

5. Is z either 10 or 117 No z is cither 42 or 43
6. Does z = 42? No r =43

All the possible 64 values between and including 0 and 63 can be
specified by no more than log; 64 = 6 answers to a corresponding num-
ber of questions which can be answered yes or no. By definition the
possible choices among 64 possible values are defined as 6 bits of infor-
mation corresponding to the 6 possible questions which can be answered
yes or no. The term ‘““bit "’ stands for “binary digit.”” The number of
bits represents the maximum number of places in a binary number sys-
tem which are required to designate the number of choices of values
available. The binary number system is of much interest in communi-
cation work because it represents a simpler method of performing arith-
metric operation and storage of information. However, since this book
will deal largely with the analysis of the response of networks to continu-
ous rather than quantized signals, this number system will not be devel-
oped further here.

Return now to a consideration of the information in a series of pulses
describing a signal, each pulse having a voltage or current amplitude
proportional to /8§ + N and an uncertainty in value proportional to
v/N. Then the number of possible recognizable values of signal in the
presence of noise is

n = logs ‘5-;\“, N _ -21-1og2 (1 + %) (1-25)

Since the information in the original signal can be represented by
2T(BW) pulses, the total information H in the signal will be

H = T(BW) log: (1 + %) bits (1-26)
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The rate of transmission of information, or the capacity, of the channel
in bits per second will be

¢ =4 - BWig, (1 + %) bits/sec (1-27)

Equation (1-27) is known as the Hartley-Shannon law. Hartley pro-
vided the concept of the effect of bandwidth, and Shannon added the
important effect of S/N ratio.

This law shows that an increase in information rate can be obtained
by increasing either the bandwidth or the signal power or, alternatively,
by keeping down the noise power. However, it should be recognized
that every communication system does not achieve the full capabilities
inherent in the bandwidth and power used. The design of the coding
and decoding systems has much to do with the degree to which the limit
of the channel capacity is approached. Frequency modulation is just
one method of obtaining improved S/N ratio by using wider bandwidths.
Certain forms of pulse modulation obtain similar results at the cost of
channel bandwidth required and increased complexity of coding and
decoding. Increased complexity in coding may also introduce appreci-
able time delay in order to perform the coding.

The fact that information capacity depends upon S/N ratio was not
at first recognized. However, consider the possibilities of a noiseless
system. In such a noiseless system one could identify the voltage of a
single pulse with as many fine gradations as desired. Then as many
different messages could be sent with a single pulse as there were identi-
fiable values of voltage, presumably an infinite number in this case.
Hence one pulse could transmit any message. One might list all possi-
ble messages ahead of time (theoretically possible but practically not
achievable) and associate each message with a possible magnitude of a
pulse. The fact that voltage can in general be measured with only a
finite accuracy indicates that this uncertainty in measurement is due to
some random characteristic synonomous with noise in the general sense.
This limits the amount of information which can be obtained with one
reading. In practice it is often easier to use n pulses whose presence or
absence indicates yes or no answers than it is to produce the equivalent
2" corresponding recognizable values of magnitude in a single pulse.

The ultimate range of any communication system is reached when the
signal has dropped to a value where the S/N power ratio can no longer
be tolerated. This may be a relatively high value when the signal is to
be used for entertainment, for example, in broadcasting, because it is
easy to turn off the set and seek enjoyment in other pursuits. A much
lower value will be tolerated if the communication is vital, for example,
in military applications. However, even in the latter case, when the
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1
S/N ratio becomes too low, the signal cannot be interpreted by the
receiver and the communication becomes useless.

It is important to observe that once the S/N ratio falls below toler-
able limits the signal cannot be restored by amplifiers, because they will
amplify the noise along with the signal. The most carefully designed
amplifier will introduce a certain minimum noise, due to the random
motion of the electrons both in the input circuit and in the vacuum tubes
or transistors themselves. Therefore signals, even though originally
fairly noise-free and transmitted over circuits introducing very little
noise, must not be allowed to fall to too low an intensity or they may
not be recoverable by amplification. TFor this reason, in long-wire trans-
mission systems it is necessary to introduce amplifiers at intervals, rather
than attempting to add all the amplification at the ends. As an example
consider the case of submarine cables which have a high loss when used
over the band of frequencies necessary for telephone communication.
Transatlantic telephony was not feasible over such cables until a method
was developed which permitted the introduction of amplifiers at frequent
intervals within the cable itself in spite of the fact that these amplifiers
must be immersed deep on the ocean floor.

Figure 1-30 shows an illustration of the energy levels plotted on a'loga-
rithmic scale at different points along a telephone communication system.
This illustration is purposely made somewhat noisier than would be good
practice.

It should be observed that noise is originally introduced at the send-
ing end because of sounds in the room of the talker and inadequacies of
the microphone in the subscriber’s set. The room noise is amplified by
the sending microphone along with the signal. It is assumed that a
negligible amount of noise is introduced by the local-line central office
and first section of long line. However, the loss which has occurred in
the first long-line section illustrated is so great that considerable gain is
needed in the first repeater, and hence the inherent noise of the amplifier
circuits is appreciable in comparison with the weak signal. The combi-
nation of signal and noise emerges from the repeater with a poorer S/N
ratio than on entering. The second long line is assumed to be an open-
wire line running parallel to a power line, and, in spite of the best pre-
cautions, some noise is introduced by induction. It is assumed that
further noise introduced is not great until the S/N combination reaches
the subscriber’s set of the listener. There additional disturbing noise is
introduced, largely due to local room noise, which enters in two ways.
One way is through the ears of the listener (termed acoustic leakage),
and the other is through the local microphone, which amplifies if
through, but attenuated by, the subscriber set and back into the ej
circuit of the receiver. This latter source is called ““side tone.”
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1
fore the signal arrives with a S/N ratio inherently lower than when it
started.

The fact that as much information cannot be passed over a noisy sys-
tem in a given time as over a quiet system is illustrated qualitatively
by the fact that frequent repetitions are required over a noisy telephone
system.

It is the function of any communication-system design, be it telephone,
radio, television, radar, computing system, or what have you, to ensure
that (1) the S/N ratio will not fall below the allowable limit; (2) the
signal itself is of sufficient amplitude to be interpreted or decoded by the
ultimate user of the information, whether man or machine, or a combi-
nation of the two.

1-24. Summary. In the design of electrical communication systems
complex signals representing functions of time must be coded into electri-
cal signals. These signals may then be transmitted dircctly through net-
works to the point of delivery, or they may be further coded by frequency
translation or other means before being introduced in the communication
system.

In general a major feature in the design of communication systems
involves the synthesis of a-c networks which can transmit desired sig-
nals represented by finite bandwidths without appreciable distortion and
can reject signals or portions of signals in frequency ranges not desired.
In this synthesis use will be made of passive elements having properties
of resistance. inductance, and capacitance and of active elements such as
vacuum tubes and transistors. The balance of this book will be devoted
to the analysis and synthesis of the linear networks.

Of comparable importance in the development of the communication
engineer are the subjects of :

1. Ion and electron dynamics of importance in vacuum tubes.

2. Solid-state physics important to transistors.

3. Electromagnetic field theory and the application of boundary con-
ditions set by antennas and wave guides to Maxwell’s equations.

4. Application of nonlinearity to achieve devices for modulation and
demodulation and power amplification of modulated waves.

5. Statistical information theory.

6. Electronic-system design.

Obviously these can no longer be compressed, even in their essence,
within one volume.



CHAPTER 2

METHODS OF
NETWORK-BEHAVIOR ANALYSIS

Two basic concepts are encountered in the study of communication
circuits: analysts, in which the network is given and its behavior is to be
calculated, and synthests, in which a net-

R work is to be designed to give a specified

t + behavior. Fundamental to both these
> L concepts is the idea of network behavior.

¢ H This chapter will discuss several means by
| - - which this can be specified and calculated

Fia. 2-1. A series L ciremt. and the ways in which these means are

related.

2-1. Transient-state and Steady-state Response. Consider the sim-
ple circuit of Fig. 2-1, where e(f) is a cosine voltage suddenly applied at
t = O such that

e(t) =0 t<o0
e(t) = Bcoswt t>0

It is required to find the current 7 as a function of time. Thus, in this
case, the network behavior relates i(f) to e(f). (Alternatively the voltage
across R or L may have been required.) One basic method of finding
the current consists in writing an equation relating #(¢) and its derivative
(and its integral, if necessary) to the driving function e(?) and the circuit
parameters; hence, by Kirchhoff’s voltage law

L%+R¢=Ecoswt 1>0 @-1)

It is well known from the study of differential equations that the com-
plete solution of Eq. (2-1) consists of two parts: (1) the complementary
function which is independent of £ cos wt and is the solution to the homo-
geneous equation obtained by setting the driving function equal to zero
in Eq. (2-1); (2) the particular integral which is dependent upon the form
of the driving function and is a solution of Eq. (2-1). It will be shown
later that these two parts of the complete solution have special physical
significance.

44
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As stated above, the homogeneous equation corresponding to Eq. (2-1)
is

L% Riso (2-1a)
One way by which this may be solved is to separate the variables and
integrate.
- [5a
Ine = — %t +In K

where K = constant
In = napierian, or natural, logarithm
Rearranging and taking antilogarithms,

1 = KeB/L complementary function (2-2)

The particular integral of Eq. (2-1) may be found by a straightforward
method when the driving function is a cosinusoid, because in this case
the derivative and integral are also cosinusoids. One can assume that
the particular integral will have the form i = |I| cos (wf +*¢), where
|T| and ¢ are constants whose values must be determined. As a matter
of convenience 7 may be written in another form by means of Euler’s
identity.

|T|e@t+6) = |T| cos (wl + ¢) + 71| sin (wf + ¢)
or i = |I| cos (wt + ¢) = Re {|I|erer+)} (2-3)

where Re stands for ‘‘real part of.”
Then substituting Eq. (2-3) into Eq. (2-1),
L Re {jw|l|e*et} + R Re {|I|e*e=t} = Re {Bet} (24)
Since Re { } and ¢! are common to all the terms, Eq. (2-4) may be
rewritten Re e{|T|e#(R + jwL) = E}. Therefore

- B B -
R ot )] g1 = = —_— 3 arctan wL/R
cort (e = et = VB R (2-5)
whence |i | = m ¢ = —arctan w_}% (2-50)

Then the particular integral of Eq. (2-1) is
i = Re {|[|erot+e)}
= || cos (wt + &) particular integral (2-6)
The complete solution of Eq. (2-1) is obtained by adding Egs. (2-2)
and (2-6).

§ = Ke RV/L 4 cos (wt + @) @7

B
VR + (uL)?
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The constant K is obtained from the initial conditions which prevail
at ¢ = 0. Since current cannot change discontinuously through the
inductance, 7 = 0 at £ = 0. Then, substituting in Eq. (2-7),

VR F @I
From Fig. 2-2, cos ¢ = R//R? + (wl)?; so the complete solution is
J— [Z'R » Rt/ 1L _L : DX
L= R+ (ol)? ¢ + Ve + L) cos (wt + ¢) (2-8)

The first term in Fq. (2-8) 15 the transient-state part of the solution and
is important only for finite values of time near { = 0. The second term
is the steady-state part of the solution. In most circuits the parameters
have values such that the transient-state term reduces to a negligible
value in a fraction of a second and only the steady-state term prevails
at large values of time. Thus the steady-state term describes the behav-
ior of the circuit in response to the driving function after all transient
terms have been reduced to negligible values.

2-2. Steady-state Response. A number of observations may be made
concerning the method of obtaining the steady-state response or partic-
ular integral for a sinusoidal driving function as given in the last section.
These serve as the basis for the usual jy-oper-

5 ¢

3 ator, or complex-number, method of solving
WY a-c circuit problems:
i3 wL 1. Once the solution has been gone through
step by step to lay the basis for the method,
R it is the usual practice to omit the Re { } and
\_ ¢ arctan (wL/R) et in Bq. (2-4).

F1g. 2-2. Phasor diagram for 2. The time derivative d( )/dt is replaced
evaluating cos ¢. . . . .
by the multiplying operator jw, and the time

integral [( ) di is replaced by the multiplying operator 1/jw. (The last
statement was not demonstrated in the last section but may be proved by
the student.)

3. In Eq. (2-5) the term R 4 jwl. may be identified with the usual
complex impedance

Z = R + jwL (2-9a)

having a magnitude _
|Z] = V/R? + (wL)? (2-9b)
and angle ¢ = arctan % (2-9¢)

4. It is the usual practice in a-c-circuit theory to use the rms value of
|I| rather than |I|, thus,

Il = v2 1| (2-10a)
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and the ““complex current’’ is represented by
I = |Ile#* = |I|/¢ (2-10b)

A knowledge of the steady-state characteristic of a network as a func-
tion of frequency can be very useful. This may be obtained by calculat-
ing the response to a sinusoidal driving function of constant amplitude
at many different frequencies and plotting the resulting data vs. fre-
quency. Since the response will generally be a complex quantity, three
quantities will be involved. By way of illustration, I for the circuit of
Fig. 2-1 is plotted isometrically as a three-dimensional single-valued
locus in Fig. 2-3a, the circuit-parameter values being R = 10 ohms,
I, = 1.59 mh, E = 5 volts, In the figure, the coordinates are the real
and imaginary parts of I, and frequency.

It is fairly apparent that some simplified means of presenting these
data are desirable, because the three-dimensional locus is difficult to
draw on a two-dimensional plane, and even more difficult to interpret.
Three such means are in common use.

The first consists in plotting the projection of the three-dimensional
curve on the (Re {I})-(Im {I}) plane. Since this projection results
from collapsing the frequency scale, the frequency axis is lost. This
difficulty is overcome in some instances by identifying points on the
projection with their corresponding frequencies as in TFig. 2-3b. In
other instances where the shape of the curve is of prime importance an
arrow indicating the direction of increasing frequency may be used.

Another method consists in resolving the locus of Fig. 2-3a into its
polar coordinates |I| and ¢,

I = |Ile* = |I| cos ¢ + j|I| sin ¢
= Re {I} + j Im {I}

and of plotting these against frequency as in Fig. 2-3c.

A third method utilizes two projections of the three-dimensional locus:
Re {I} on the (Im {I})(f) plane, and Im {I} on the Re {I})(f) plane.
This presentation is shown in Fig. 2-3d.

In many applications the frequencies at which the behavior is of
interest encompass such a large range that compression of the fre-
quency scale is desirable. The psychological behavior of the human
ear serves as a logical basis for this compression. The ear identifies
equal frequency ratios as equal musical intervals. For example, if the
two frequencies 128 and 64 cycles are heard simultaneously or in sequence,
they seem to be separated by the same interval as if the two frequencies
1,024 and 512 cycles are sounded under similar conditions, even though
the difference between them is 64 cycles in the first case and 512 cycles in
the second. The key to this situation is that in both cases the frequency
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shown to be —E/R; so the transient response to EU(%) is

i= %(1 — eRUL) (2-14)

There are many reasons for choosing the step function as the basis for
calculating transient response. For example, it may be shown that any
nonrecurrent driving function may be analyzed as an integration of
infinitesimal step functions properly weighted in amplitude and time.
This is analogous to the method of the Fourier integral, whereby a non-
recurrent driving function is analyzed into an integration of infinitesimal
sinusoids properly weighted in amplitude and phase. Another reason
for choosing the step function as a basic driving function is that the
transient response, so calculated, is related to the steady-state response.
This relationship is developed later in the chapter.

2-4. Time and Frequency Domains. In an earlier section a very basic
problem of circuit analysis was considered when a time-varying current
was calculated as the response of a network to a time-varying applied
voltage. The current was found by solving the network differential
equation. This method presents certain difficulties, particularly in a
multimesh network where the solution of the simultaneous network
equations results in differential equations of high order and hence alge-
braic equations of high degree. In such cases another method of solution
which is based on the network’s steady-state response can greatly sim-
plify the work. In this method the network is conceived as an operator
which is a function of frequency, W(f). If, then, the time-varying driv-
ing function, Dr(f), can be transformed into a corresponding function of
frequency, Dr(f), Dr(f) can be operated upon by W(f) to give the
response R(f) = W (f)Dr(f). A second transformation is then required
to find the response as a function of time, R(¢). This alternate method,
then, involves the transformation of the driving function from the time
domain to the frequency domain, multiplication by W(f), and trans-
formation of the resulting response from the frequency to the time
domain.

One fundamental limitation on this method is that the network must
be linear, i.e., the magnitude of the response must be directly proportional
to the magnitude of the driving force. If this linear relation does not
hold, modulation will result and a given frequency component in R(f)
will not be a function solely of the corresponding component in Dr(f).

Before the direct and inverse transformations between the time and
frequency domains are considered, a few statements concerning W(Jf)
are in order. W(J) is simp]y the steady-state network response that has
been discussed earlier. It may give the relationship between voltage
and current at a single pair of terminals, or it may relate voltage or cur-
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rent at one pair of terminals to voltage at another pair or current in
another mesh of the network. Therefore this function may have the
dimensions of impedance or admittance when it relates voltage and cur-
rent, or it may be dimensionless when it relates voltage to voltage or
current to current. Bode! has suggested that a suitable name for W(Jf)
may be ‘“adpedance’’ or ‘‘immittance,” the latter being in more common
use.

The network function will always be a continuous function of fre-
quency. If the driving force is recurrent, both it and the response will
have components at only integral multiples of the fundamental frequency.
As a consequence, if the phenomenon occurs less and less often, the num-
ber of components in a given frequency interval becomes greater and
greater. In the limit when the phenomenon occurs only once, the fre-
quency spectra become continuous. This concept will be developed in
more detail later.

2-6. Fourier Series. The required transformation of the driving func-
tion from the time to the frequency domain may be accomplished by a
“Fourier-series analysis’ if Dr(t) is repetitive or recurrent. By this
means Dr(f) may be analyzed into a numuver of sinusoidal components
whose sum is known as a ‘“ Fourier series,” which is identical to Dr(f).
As explained in Chap. 1, the frequencies of these component waves will
be integral multiples of the number of times per second the nonsinusoidal
wave recurs. Such integral multiples are termed ‘‘ harmonics.” In the
interests of generality the Fourier series will be considered for a general
time-varying function f(6), 6 being wt, which has a period of § = 2x.2

If all the harmonic terms started at the same instant, there would
necessarily be symmetry between successive half cycles, of the type of
either Fig. 2-5a due to odd harmonics or Fig. 2-5b due to even harmonies.
In order that the second half of the cycle may be controlled as well as
the first, it is necessary to control both the magnitude and the phase of
the harmonic terms. A harmonic of any frequency can be controlled in
both phase and magnitude by adding two components in quadrature with
each other, of the form A, sin n8 4+ B, cos né.

If the average value of the wave over a complete cycle were not zero,
there would also be a d-c component to be added.

The general equation or Fourier series for any recurrent wave is,

1H. W. Bode, ‘“Network Analysis and Feedback Amplifier Design,” D. Van
Nostrand Company, Inc., New York, 1945.

? The mathematician places additional restrictions on f(8) for it to be expandable
into a Fourier series. These restrictions are known as the Dirichlet conditions. See,
for example, E. A. Guillemin, “The Mathematics of Circuit Analysis,” p. 463, John
Wiley & Sons, Inc., New York, 1949. It is fortunate for the engineer that most

recurrent functions encountered in the physical world satisfy these restrictions, which
will, therefore, not be considered here.
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therefore,
f(6) = Ay sin 6+ A;8in20+ A;8in30+ - - - 4 By + By cos 6
+ B; cos 20 + Bz cos 30 + - - - (2-15)
= E (4, sin n0 4+ B, cos n6) (2-15a)
n=0

where, of course, the A’s and B’s must be determined for the particular
f(8). This may be done in the following manner:

l}
I |
b a
(a) ®)
Fig. 2-5. Symmetry. (a) Symmetry produced between positive and negative halves
of the cycle by odd harmonics. Note. The wave displays even symmetry about b

and odd symmetry about a. (b) Symmetry produced between positive and negative
halves of cycle by even harmonics whose value is zero when the fundamental is zero.

Multiplying Eq. (2-15a) by cos k6 df (k being an integer) and inte-
grating over any complete period from 6; to 6, + 2,

01+2x ~ 61+ 2x
/ f(6) cos k6 d E / (A, sinnb cos k@ + B, cos nb cos ko) do
[} [
n=0

= 61+ 2% A
z /; {7" [sin (n + k)6 + sin (n — k)6]

n=0

+ % [cos (n + k)6 + cos (n — k)0]} do (2-16)

There appear to be a large number of terms to evaluate on the right-
hand side of Eq. (2-16). However, it can be shown readily that the
infinite summation reduces to a simple expression. The integral of a
sine or cosine term over a complete cycle or integral number of cycles is
zero since for one half of the cycle the term is positive, while during the
other half it is negative. Therefore, terms where k& # n, on the right-
hand side of Eq. (2-16), are equal to zero.

On the other hand, terms where £k = n and n 5= 0 reduce to

0142« 0142w A B
[ £(6) cos nb db = / [-5’-' sin 2n6 + —2—” (cos 2n6 + 1)] do
[} 6
(2-16a)
Again the two trigonometric térms reduce to zero, and one has

1 01+2x !
B, = Z f £(6) cos n6 do n#0 (2-16d)
o
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If k = n = 0, Eq. (2-16a) yields

1 01+2x
Bo= o /0 7(6) d8 (2-16¢)

By multiplying Eq. (2-15a) by sin k6 df and integrating from 6, to
0: + 2w, the student may show in a similar manner that

1 614 2x
A, = z / 7(6) sin n6 dé (2-16d)

If an equation can be written for f(8), then Egs. (2-16b) to (2-16d)
can be evaluated analytically, but in many cases f(8) can be expressed
conveniently only in a graphical form. In this case the integrals in
Eqgs. (2-16b) to (2-16d) must be obtained by & point-to-point method
such as the trapezoidal rule or Simpson’s rule. A Fourier analysis can,
of course, be applied to any recurrent wave, and f(8) in these equations
may represent any physical or mathematical quantity which is a func-
tion of 6.

2-6. Odd and Even Symmetry. In Eqgs. (2-16b) to (2-16d) 6,, the
lower limit of integration, may be any angle whatever, the only require-
ment heing that the integrations shall take place over a complete cycle.

Since f(6) is recurrent, repeating itself at intervals of 2r for all values
of 6, the angle 6 = () may also be chosen arbitrarily. Both 6, and 8 = 0
are usually selected according to the function involved so as to simplify
the integrations. For example, if 8 = 0 can be chosen such that

J(—8) = —f(6) 2-17)
the function displays ‘“ odd,” or ‘“skew,” symmetry. This would be the

case in Fig. 2-5b if a were chosen to be § = 0. Under this condition the
student may show that

A, = .2-/ £(6) sin n6 d8
7 Jo

B, = B.=0 (2-17a)
Also, if # = 0 can be chosen such that
f(—6) = f(6) (2-18)
the function displays ‘“mirror,” or “even,” symmetry and
B, = -2-/ 5(6) cos no do
7Jo
Bo=1 [ £(6) de (2-18a)
7 Jo
A, =0

This would be the case if the angle b were chosen as 8 = 0 in Fig. 2-5b.
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2-T. Calculation of Circuit Response by Fourier Series. If the function
of interest is a recurrent function of time with a period T = 1/f; and if
2xfy is designated by w;, then the set of equations becomes

F¢) = Bo + z (A, sin nwit + B, cos nunt) (2-19)
1 ll:;l
where Dy = T [ (o) dt (2-20)
2 L+ T
B, = —T’/ Sf(t) cos nwit dt n # 0 (2-21)
&
2 6+ T
A, = 7 ,/: f(t) sin new,t dt (2-22)

where again {; may be selected for convenience.

It would be simpler if Eqs. (2-19) to (2-22) could be included in a
single equation. However, if Eqs. (2-20) to (2-22) are inserted directly
in Eq. (2-19), there may be confusion, because the integration with
respect to ¢ must not affect the sin nw,t and cos nwit of Eq. (2-19). One
way to avoid this confusion would be to use a different variable such as
r in Egs. (2-20) to (2-22), since, after integration, when the limits are
applied, this variable disappears. Equations (2-19) to (2-22) could then
be written in one equation as follows:

1 [o+T 2 N [u+T
f(t) = T [ f(r) dr + 7 2 [ f(7)(sin nwr sin nw;t
t = 31

+ cos nwT cos nwit) dr  (2-23)
The integrations with respect to (r) in Eq. (2-23) would then produce
the coefficients A, and B, for all values of n, and there should be no
confusion between the time variable r, which must be integrated to
determine the magnitude of each component in the frequency spectrum,
and the time variable ¢ associated with each individual frequency com-
ponent in the summation.

Equation (2-23) can also be written as follows:

u+T = u+T
i) = —; f () dr + % 2 [ f@) cosnan(t — 1) dr - (224)
n=1

t

emwi(t—1) . gmimwn(t—r)

2

But cos nw,(t — 1) =

1 iy tu+T
Therefore @) = T E / fr)emae— dr (2-24a)
3

Ne — o
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where the first, or d-c, term in Eq. (2-19) is now taken care of by the
case n = 0.

In Egs. (2-23) and (2-24) it will be observed that the integration for
each value of n determines the magnitude of the corresponding com-
ponent in the frequency spectrum and the summation of all these com-
ponents gives the original function of time f(t). The ¢ntegration is there-
fore a process of analysis and the summation a process of synthesis.
Going through both processes without any modifying action in between
would correspond to taking a machine down into its component parts
and then reassembling them back into the same machine. This may be
instructive but is probably not very useful. On the other hand, if the
parts are modified after they are taken apart, they may be reassembled
into a new machine. Similarly if the frequency components of a driving
force which is a function of time are determined and then subjected to
modification by a network, the corresponding response when they are
reassembled will be a new function of time. Consider the case where
the driving force is a current £(t), a recurrent function of time. Then
this current may be broken down into a frequency spectrum by Egs.
(2-20) to (2-22). Suppose a voltage response is to be calculated. Then
each component of voltage can be determined in both magnitude and
phase if the impedance of the network, which relates the driving force
and response, is known. If each of these components is computed and
expressed as a corresponding function of time and the total summed up,
then an expression for the voltage response as a function of time will be
obtained.

Let the network impedance at a frequency nf; be given by the relation

Zn = Rn + ]Xn (2-25)

Let the component of current at this frequency be given by the

expression
tn = A, 8in nwl + B, cos nwit (2-26)

and this current is flowing in the impedance Z,. The resistance will
produce a voltage in phase with the current, and the reactance will pro-
duce a voltage leading the corresponding current by 90° if X, is positive.
Therefore the corresponding component of voltage across the impedance
will be

en = R.(A,sin nwit + B, cos nw;t)

+ X. [A,. sin (nwlt + ‘—'2-) + B, cos (nw,t + g)]

= R.(A,sin nwt + B, cos nwil) + Xn(An cos nwit — B, sin nwt)
= (Rnda — X.B,) sin nwyt + (RuB, + X.A4,) cos nw;t (2-27)
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Equation (2-23) may be modified, therefore, to give the relation
between a current ¢(f) and a voltage e(f) related by an impedance which
is & function of frequency as follows:

Ro u+T . 9 - u+T . .
e(t) = T ), i(r) dr + T z /; 1(7)[(Ra sin nwyr
n=1

— X, cos nwyr) sin nwit + (R, cos nw,r + X, sin nw;r) cos nwit] dr (2-28)

where, by Eq. (2-25), R, is the d-c¢ resistance.

To generalize Eq. (2-28), let the driving force be represented by a
function Dr(t) and the response by R(f). Further let them be related
at a frequency nf by a network function (or immittance)

Wn = Un + ]Vn (2'29)

where U, produces a response component in phase with the corresponding
driving-force component and V', a response component which leads the
driving-force component by 90°. Then Eq. (2-28) becomes

1

(] u+T 2 = t+T
R@) = _7_,9 / Dr(r) dr + 7 Z / Dr(7)[(Up sin new;r
t O

n=1]
— Vacos nwir) sin nwit + (Un cos nwir + V,sin nwr) cos nwgt] dr - (2-30)

W, may be an impedance, an admittance, or dimensionless, depending
upon what driving force is related to what response.

It has been pointed out that, in network analysis, it is convenient to
replace sine and cosine functions by exponential functions. Then if the
network is described by a complex function such as Eq. (2-29), the
response at a given frequency can be obtained by straightforward multi-
plication. Thus if the component of a driving force at a frequency nf, is

Dr, = A, sin nwit + B, cos nwit (2-31)
and since et = cos nwil + J sin nwit

this can also be written
Dr, = Re {(B, — jA,)e""} (2-32)

where, as before, the symbol Re means ‘“real part of.” Then if the net-
work function is given by Eq. (2-29), the corresponding component of
the response will be

R = Re {(Un + jVa)(Ba — jAn)ein}
= Re {[Uan + VnA,, +j(Van —_ UnA”)]ehw‘t}
= (U4, — VaB,) sin nwit + (UpBn + V,A,) cos nwt (2-33)

Equation (2-33) may be compared with Eq. (2-27).
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An alternate procedure is to consider the use of both positive and neg-
ative frequencies. In all network functions it will be found that the real
part, U, involves only even powers of w, and the imaginary part, V, will
have odd powers of w, in the numerator and even powers in the denomina-
tor. Therefore if positive and negative values of n are considered,

U.=U_
Vo= —V_a

Equation (2-31) may be rewritten in exponentials,

(,nw.l —_— e-—)nw,r e;ﬂu.t + e—ﬂ""x‘
Dr.=A4,7""

2] " 2

If values of e are multiplied by U, + jV, = W, and values of
e~ are multiplied by U7, — jV, = W_,, then the following will be
obtained,

UnA"ejm.nl I’”Anenmll _ (]-nA;n‘:nm.l ‘7"/_1"6:71;111
25 2 2)
(]an(’"w" ‘7”Bne;nu|t U”Bne—]nult ‘7"Bnc—1rw.l
L R gy Tt Ty
= (U,A. — V.B,) sin nwt + (UnB. + V.A,) cos nwit  (2-34)

which is the same expression as Eq. (2-33).

Equation (2-34) avoids the cumbersome part of writing Re { |
because any imaginary terms which may appear on the left side of
Eq. (2-34) cancel out.

Hence it is apparent that Eq. (2-30) can be simplified in a manner
similar to Eq. (2-24a) to

tu+T
R@) = [ W, Dr(r)ema=n dr (2-35)
13

1
T

Nes — ®©

Alternatively, Eq. (2-35) may be written in three equations as follows:

1 h+T
Dry =7 Dr(t)e- dt (2-36a)
71
R. = W.Dr, (2-36b)
+ =
RQ@) = 2 Rermnt (2-36¢)

It is not necessary to use () instead of (f) in Eq. (2-36a) because
there can be no confusion if the integration is performed first. Equation
(2-36a) represents the analysis of the driving force as a function of time



58 COMMUNICATION ENGINEERING

into its frequency spectrum. Equation (2-36b) represents the operation
of the network in determining the frequency spectrum of the response
for a giving driving force. Equation (2-36c) represents the synthesis of
the frequency spectrum into the time function for the response.

2-8. The Fourier Integral. If the rate of recurrence of the repetitive
driving function is made smaller and smaller while its shape is kept the
same, the function will approach the condition where transient effects
die out between successive events. In the limit the event may occur
only once, and solutions for transients may be obtained. The summation
of the Fourier series then becomes an integral and is called the Fourier
integral. The transition from the series to the integral will now be
considered.

For convenience let ¢; at the lower limit in Eq. (2-35) be —T/2, and
let f be any frequency component in the spectrum. Then the fundamen-
tal frequency will be

1
f1—71—, and n =<

nwy = w (2-37)

Assume that the event occurs only between the time —T,/2 and + T/2
so that, at all other times between —T/2 and +7/2, Dr(t) = 0. Then
Eq. (2-36a) would give the component at any value of w which is a mul-

tiple of w, as follows:
1 To/2
Dr(w) = f Dr(t)e—i=t dt (2-38)
T —To/2

By way of a specific example, consider the repetitive square pulse of duration
T, = 1 psec, of period T, and of amplitude E as shown in Fig. 2-6. Then

=T T,

Drit) = E <t<zg

Dr(t) = 0 [ T, T

By Eq. (2-38)
T:/2

1
Dr(w) = g [Lpry Bet

E [e—IWJTx/Z 2F ewT/2 — g=1wl1/-
“Tljelrp ™ T 2j
Multiplying numerator and denominator by 7:/2,
_ TiEsin (@Ty/2)
Driw) = =5~ =41 72

Equation (2-38a) gives the envelope of the square-pulse-driving-force spectrum,

(2-38a)



/
METHODS OF NETWORK-BEHAVIOR ANALYSIS 59

but its magnitude has significance at only those frequencies which are integral
multiples of the fundamental repetition rate, 1/T. Thisisillustrated in Fig. 2-6,
where the spectra are shown for three different values of T, T being held con-
stant. If the pulse occurs 500,000 times a second (T = 2 usec), the spectrum
contains components at 500, 1,500 k¢ and all other odd integral multiples of
500 ke as shown in Fig. 2-6a. If the pulse occurs 50,000 times per second
(T = 20 usec), the spectrum contains components at integral multiples of 50 ke
as shown in Fig. 2-6b. In the second case there are 10 times as many frequencies
present in the spectrum. The envelopes have the same shape, but in the second

@ lusec 1usec
04E 0 i
E 02E L——I
[ 1 s =2 usec X
3.0, Et 05 10 [1520 25 30 35 40 45 50 55 60 65 7.0
Frequency, Mc

- 08x10°E
x . 06x10"E
0ar%E{ N on’e (¢) l,‘i’-? Lusee
06x10°E “\_02u0°E |+H"_E H
E “‘lw‘,E \\\ o 400 402 5405 4075 410
s 0x10°E \o4 0w oume L—-——T=2.000usec—————'
o 3. 7"1’ ey — 3 = el VU — -
—0210°E fo5 16~..15.--20 25 30 —35~ 40 45 50 55 60 65 70
-04x10%E{ 04 Frequency, Mc

Fig. 2-6. Frequency spectra for repetitive square pulses The pulse duration and
repetition period are shown for each case. An enlarged portion of the spectrum for ¢
is shown in the inset.

case the magnitude is }{o the magnitude of the first. Since the power is pro-
portional to the square of the amplitude of either voltage or current, the total
power in the second case is 10 per cent of that of the first (10 times as many com-
ponents with relative power per component of 1/10%).

Still a third case is shown in Fig. 2-6¢, where T = 2,000 usec. The envelope
still has the same shape, but, in comparison with the first case, there are 1,000
times as many components, and the envelope amplitude is reduced by 1,000 and
the total power to 0.1 per cent. In the limit as T — w, when the driving func-
tion becomes a single pulse, the spectrum becomes continuous, all frequencies
being present, each being of infinitesimal amplitude.! This will now be shown.

1 Note that there is a finite amount of energy in the pulse, but since, in order to
compute power, one must divide this finite energy by infinite time, the total power of
all these components is actually zero.
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As the interval between recurrences becomes larger and larger, 1/T
becomes very small and so it would be preferable to write the fundamental
frequency (which is also the frequency interval between successive com-
ponents in the spectrum) as f; = Af = 1/T. Then Eq. (2-35) would
become

+ o
T/2
R = L Aw W s, Dr(r)emat=n dr (2-39)
2 —12

But, in the limit as 7 — «, Af approaches df, and the summation
becomes an integration. Thercfore, for an event which is not recurrent

RO = [° & [T WHDrmem dr (2-40)

where the network function is now expressed as W (f) since nw; has been
replaced by w and the spectrum is now continuous.

Equation (2-40) can also be written as three equations which are
analogous to Eqs. (2-36a) to (2-36¢).

Dr(f) = f_“_, Dr(t)e—r dt (2-41q)
R(f) = W(f)Dr(f) (2-410)
RW) = [ R(per=r df (2-41c)

Equation (2-4la) analyzes the driving function of time into a con-
tinuous frequency spectrum. Equation (2-41b) determines the corre-
sponding spectrum of the response resulting from the operation of the
network. Equation (2-41¢) synthesizes the response spectrum into a
function of time.

It should be observed that, while the spectrum is now continuous, the
amplitude of each component has become infinitesimal. However, the
sum of all these infinitesimals gives a finite response. This is not sur-
prising, for, in all integrals which have a value, this value is obtained by
summing up an infinite number of infinitesimals.

In Eq. (2-41a) the limits of integration are over all time. If the
driving function has a value over only a limited interval, then the inte-
gration will have finite limits. This would also apply to Eq. (2-40).

It is frequently desirable to investigate the frequency spectrum of
particular driving functions to determine their character. Of particular
interest is the case of a d-c pulse. Suppose the driving function is a
voltage described by the equations.

et =0 t<o0
e(t) = E o0t T,y (2-42)
G(t) =0 t> T]
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Then by analysis by Eq. (2-41a)

ef) = [ Beit dt
E_A"_ _E, ..
= —-[j—-we ']0 = —j—a—’(e”' -1) (2-43)
_ sin wT, .1 — cos wT,
e(f)—E< — - - ) (244)

In this analysis the real part represents the envelope of the spectrum
of the cosine terms and the negative of the imaginary part gives the spec-
trum of the sine terms. As a general situation the spectrum must be
represented by two functions, which may be either the functions of the
sine and cosine terms or the functions of amplitude and phase.

As in the case of the Fourier series, the analysis may sometimes be
reduced to a single function if a proper choice of time axis can be selected
to give symmetry. For example, suppose the time was selected so that
the d-c pulse started at time ¢ = —T,/2 and ended at time 7;/2. (The
pulse then becomes the limiting case as T'— o of Fig. 2-6.) Then there
will be only cosine terms. Equation (2-41a) would then give

e(f) = [ T/ | Eer dt

— ‘_]E_(:’ (_(,—-mT,/" + e)aT:/‘)
in @11 _ g, sin (@T1/2) -
e(f) = E gin 5~ = BT, oT/2 (2-15)

Since e(f) is real, there will be only cosine terms with relative amplitude
given by Eq. (2-45). The general form of this spectrum for positive
values of frequency is identical to the spectrum envelope in Fig. 2-6a to c.
Since the sin u/u factor is an even functlion of u, the spectrum for
negative values of frequency is the mirror image of that for positive
frequencies.

Equations (2-41a) to (2-41c) are of far-reaching significance, for they
show that the transient characteristic of a network is uniquely determined
by the steady-state nelwork characteristics. This follows at once from Egs.
(2-41). If Dr(t) is known, then since Dr(f) is unique, R(f) and hence
R(t) will be determined uniquely by W(f) operating on Dr(f). For
emphasis the statement in Chap. 1 will be reiterated: It is because of the
transformation possible by the Fourier integral that so much of the analysis
and synthesis of communication circuils can be carried out on a steady-state,
stnusoidal basis, even though communication signals themselves are inherently
transient in character.

Some typical applications of the Fourier integral to the calculation of
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the response of some so-called ideal networks will now be considered to
illustrate the method. One important result of these calculations shows
that these particular circuits are actually not physically realizable.
Other results may be carried over to practicable circuits as convenient
intuitive conclusions.

2-9. Transient Response of an Ideal Low-pass (LP) Filter to a Step
Function. Consider the response to a step driving function shown in
Fig. 2-4. It might be expected that the analysis of this step function
could be determined by making T; — « in Eq. (2-43). However, other
methods are preferred because there is difficulty in interpreting the mean-
ing of sinusoidal functions at the infinite limit.?

The ideal LP filter consists in a network having the property that it
transmits frequency components between —f, and +f. without modifica-
tion except that they are delayed by a time interval {; and that it entirely
eliminates all frequencies of magnitude greater than f., that is,

W(f) =emwe  —f<f</[.

2-46
W) =0 11> 1. (2-46)
Then by substituting Eqs. (2-43) and (2-46) into Eq. (2-11¢),
1o —
1 — T
® P e f
By symmetry this becomes
Je groli—ta) _ giw(t—ta) _ plt—Ti—ta) | g—10(=Ti~te)
R(t) = E / ¢ . -
© 0 2jxf
_ é[ ¢ [5_19 ot — tg) 4. sin (T, — 1t + td)] de (2-47)
T Jo w w

Now the transcendental function defined by the expression

z .
sin uw
/ du
0 u

is called the “sine integral of "’ and is abbreviated Si(z). The series

1 In this chapter emphasis is being placed on the Fourier integral and the Fourier
transform because it is believed that the student at this stage will better understand
the philosophy of the interchangeability of time and real frequency by a Fourier inter-
pretation. However, modern circuit analysis places greater dependence upon the
Laplace transform, which extends the frequency idea into the complex plane, as, for
that matter, will be done in this book in certain other applications. The Laplace
transform eliminates many of the difficult convergence problems met with at the
infinite limit in the case of the Fourier transform, for example, with the step function.
The actual forms ot both the Fourier transform and the Laplace transform are similar,
and the same transform tables apply.
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for this function can be obtained by integrating term by term,

*sin u * u? u‘

x? z5 7

Si(x)=x—3*é+5§—7—|_7_+-

Values of this function are listed in a number of handbooks,! and a plot of
the function is shown in Fig. 2-7. Asz — + «, the value of Si(z) — =/2.
Equation (2-47) may be written

RE) = ZiSiloctt — )] + Sitw(T, — 1 + 1)) (2-48)

If now the value of T, is made to approach infinity so that, for any value

-10 -8 -6 -4 -2 0 2 4 6 8 10
x
Fic. 2-7. Plot of Si(z).

of ¢ — t4, T, is very much greater than { — ¢, then, no matter what the
value of ., Eq. (2-18) becomes

@ = 2+ Fsituntt — ta) (2-49)

A plot of this expression, which is the transient response of the ideal
LP filter to a step function, is shown in Fig. 2-8

It is apparent that the effect of increasing the value of T, in the applied
pulse to infinity is to introduce a d-c term E/2 into the expression. The
following facts may also be noted from Fig. 2-8:

1. The 50 per cent response point, E/2, occurs at a time ¢; after { = 0.
Furthermore, the response curve of Fig. 2-8 begins at ¢t = — ». This

1 See, for example, E. Jahnke and F. Emde, ‘ Tables of Functions,” Dover Publica-
tions, New York, 1945.
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would mean that the circuit has an anticipatory property and would
start to respond before the driving function is applied. Clearly, this is
an impossible situation and arises in this problem because the steady-
state amplitude and delay (or phase) characteristics of the network were
specified independently.

2. The “rise time,” or steepness, of the response in the vicinity of
t =ty is related to the cutoff frequency f. of the filter. The two con-
clusions regarding delay and rise times may be carried over qualitatively
to physical circuits.

Another qualitative rule may be derived in a similar manner by con-
sidering an LP filter in which the steady-state amplitude characteristic
cuts off gradually rather than abruptly, as in Eqgs. (2-46).! It may be

|
{

————de ]

1
[

Fic. 2-8 Response of the ideal LP filter to the step function EU(Z).

shown that the overshoot, or peak in the transient response, is reduced
by having a gradual cutoff characteristie.

It is of interest to note that, if the function of Eqs. (2-46) 15 introduced
directly into Eq. (2-11a), the equation would be

e(f) = E fom et dt
- [Ee"”']‘ (2-50)

Jo  Jo

Direct substitution of the infinite limit in Eq. (2-50) does not give an
answer, but by the analysis given above it is seen that the effect of the
infinite limit is to produce a d-c term so that the spectrum will have a
finite d-c term of value E/2 and a continuous spectrum of infinitesimals
of value E/jw.

The complete response will then be obtained by adding the response to
the d-c¢ term to the response obtained by integrating the infinitesimals.

! See, for example, Colin Cherry, ‘‘Pulses and Transients in Communication Cir-
cuits,” p. 169, Dover Publications, New York, 1950
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2-10. Transient Response of an Ideal Bandpass (BP) Filter to a Step
Function. In an ideal BP filter, only frequencies are transmitted between
f1 and f,, the two cutoff frequencies, and, when expressions which also
involve negative frequencies are used, between —f, and —f;. There
isalsoadelay ?ts. Nod-ctermisinvolved, since it will not be transmitted.

Si Eoz(t—td)]

~

~
7
,/k& [wl (X td)]

€9 ®

(®)

F16. 2-9. Response of the 1deal BP filter to EU(f). (a) Sine integral components of
the response. (b) General form of the response obtained by adding the two curves of a.

Then the output voltage will be given by Eq. (2-41c).

(t E / =Nt pro(t—ta) B /’ 12 prwlt—to) d
e ) h —f1 j“’ + N j"’ f
E [ sin2nf(t — ta)
=& [T en2nflt —t) g
T Jn f f
= £ iSifuntt ~ ] = Silent - w) (2-51)

The two functions Si[ws(f — t;)] and Si[wi(t — t)] would then appear as
in Fig. 2-9a. The output voltage is shown in Fig. 2-9b.

Note that the duration of the main response is inversely proportional
to the lower cutoff frequency, while the rise time in the center is inversely
proportional to the upper cutoff frequency. An accurate plot for the
case fa = 2f; is shown in Fig. 2-10.

2-11. D-C Pulse of Duration 7', Applied to an Ideal LP Filter. In
this case the voltage of Eq. (2-45) is applied to an LP filter. If the
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Fiec 2-10 Response of an 1deal BP hlter to EU(t), whete f; = 500 cycles, f = 1,000

cycles The response and 1ts components are shown i normalized form
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e, (t)(%) =8 [wc (Tl/2+t-td)]
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Fic 2-11. Response of an ideal LP filter to a d-c pulse of duration T; = 1 msec

(milhisecond)
ponents are shown 1n normalized form.

The filter cutoff frequency 1s f. = 1 ke.

The response and 1ts com-
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conditions produced by an ideal filter are inserted in Eq. (2-41c), the
expression would be

“° sin w(T1/2 -t + td) + sin w(T1/2 + t — t.g) df

e,(t) = g

0 f
- g {Si [wc (22‘ —t+ td)] + 8i [w, (%‘ 41— ta)]} (2-52)

The two functions in Eq. (2-52) would then appear as in Fig. 2-11 for
the case where f. = 1/T:. The function e,(t) is also shown in Fig. 2-11.

e (F) = Si[we-(T,/2+-1,)]
+8i[w (T/2-t+4,)]

——

\—-/ \

Si [w, (Ty/2- t+t,)]/

S’ S ——-

\s. [we @y /2+8-2,)]

N \ ~
_‘;\/_3 -2 \ v \./'
(- t;), msec
\
\\\__,/ - T < / \\ //’—\\h_’/

F1a. 2-12. Response of an ideal LP filter to a d-c pulse of duration T'; = 1 msec.
fe = 500 cycles.

1t will be «bserved that the solution of Eq. (2-52) is the same as would
be obtained by superimposing two solutions of the type obtained in Eq.
(2-19) with appropriate shifting of the time axis.

If f. is equal to 1/2T,, the two functions and their sum would appear
as in Fig. 2-12. If f. is equal to 2/T), the two functions and their sum
would appear as in Fig. 2-13. Hence as the cutoff frequency is increased,
the output voltage becomes more nearly like the input voltage. It is
apparent that f. should be at least equal to 1/27'; in order to transmit a
reasonable replica of the input pulse.

These facts permit certain conclusions to be drawn with regard to
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communication circuits. In machine telegraph circuits 7 intervals are
allowed for each letter-code group, and in 5 of these intervals the volt-
age may or may not be applied during each interval, dependent upon
the code of the letter to be transmitted. If 60 words are sent per minute
and each word has 5 letters, then the number of possible pulses per minute

would be
n=060X5X7=2100

or the number of pulses per second would be 35; hence 7'y = 135. The
-4

ﬂ/——eo(t)(%) =S [wc (T1/2+t—t¢)]
+8i[w, (T) /2=t +1,)]

A~ [ve @/2ve-4]
' N

]
)
!
[
!
I
[}
1

f T N f T -
-3 -2 -1 ,' Ul 2 3
',' | (t-t,), msec

1|

" \

NN Ve
'~ ] v
-2

Fra. 2-13. Response of an ideal LP filter to a d-¢ pulse of duration 7'y, = 1 msec
Jo = 2 ke.

transmission system should then be designed to transmit frequencies up
to 18 cycles, and preferably higher

In television, on the other hand, it has becn determined that the stand-
ards should permit a picture with a detail of about 250,000 dots to be
sent 30 times per sccond. Therefore, the shortest pulse that should be
recognized would have a time duration of approximately 1/7,500,000 sec.
Hence the transmission system should be able to transmit up to a fre-
quency of 3,750,000 cycles. The bandwidth in television transmission is
specified to be 4 Me.

2-12. Fourier Transforms, or Paired Functions. It has been stated
previously that the network function W(f) of physical circuits is a con-
tinuous function of frequency. In many instances this property leads
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!
to a simplified method of solving for the response by means of the Fourier
integral.

In Eq. (2-41a) the expression is given for the analysis of any function
of time into a function of frequency. It is convenient to set up tables
to show on the one side sets of functions of time and corresponding to that
on the other side the corresponding functions of frequency. These may
be represented by the relations corresponding to Egs. (2-41a) and (2-41¢),
W(f) being taken as unity, i.e.,

o) = [ f0e> dt (2-53)
1 = [ oherds (2-54)

where for convenience p = j2xf. In most cases if tables are constructed
from Eq. (2-53), it will be necessary to use Eq. (2-54) only occasionally,
since the correspondence of g(f) to f({) may proceed in either direction.

Equations (2-53) and (2-54) are called the Fourier transforms.! The
method of building up such a table will be shown. Consider the function

f& =0 t <0

f(t) = e~# t>0
Then Eq. (2-53) becomes

o) = [, e

— e—(pth)t

p+8
At the infinite limit, e=®+®¢ = 0 if 8 has any positive real part, however
small; therefore

(2-55)

1
9(f) = gy (2-55a)
and Eq. (2-55a) is the mate of Eq. (2-55). Furthermore since Eq. (2-55a)
holds if 8 has any positive real part, no matter how small, it must be the
limit as the real part is reduced to zero and hence must apply even if 8 is
entirely imaginary. Therefore Eq. (2-55) is a general one so long as 8
does not have a negative real part.
The mates for the product of two functions may be obtained directly
or by use of a relation which will now be developed. Let
f1(t) be the mate of g,(f)
f2(2) be the mate of g:(f)
f(®) be the mate of g,(f)gz(f), which is to be found

tIn the case of the Laplace transform p is considered complex and is usually
replaced by p = 5 + jw.
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From Eq. (2-54)
1@ = [, aiDgxne df (2-56)
but by Eq. (2-53)
s = [ htyerra @2-57)
Equation (2-57) cannot be substituted directly in Eq. (2-56) because

there would be confusion of the time variable in the two separate inte-
grations. However, Eq. (2-57) could also be written

o) = [ fwerrdr (2-57a)
afld Eq. (2-57a) could be substituted directly in Eq. (2-56). This would
give

10 = [, [ p@e gy et dr df
= [C.6@ [, epremeren dr | dr (2-58)
But by Eq. (2-54)
[, ethermremn ds = £t — 1)
5O = [ n@f =) dr (2-59)

As an example of the application of Eq. (2-59), let
f1it) = e Jo() = et t >0

Then a(f) = p—-i_-_ g(f) = ? + B

The problem is to find the mate f(¢) of the function

1
10 = 616 FH

By the definition of f3(¢) it has a value only when { is positive. There-
fore fy(t — ) has a value only when 7 is less than . fi(r) has a value
only when 7 is greater than zero. Therefore, in substituting in Eq. (2-59)
the infinite limits change to zero and i, and Eq (2-59) for this case
becomes

(2-60)

70 = [} e
= Bt [ ! g—ta—Br gy
0

—e—(a-pyr |t —pat —Bt
= e¢—Bt ¢ = € + € -
€ [a—B Jo B (2-60a)

Equation (2-60a) then gives the mate of the function of Eq. (2-60).
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In the same way that Eq. (2-59) was derived to obtain the mate of
91(Ng2(f) it can be shown that the mate of fi(f)fz(t) is given by the
expression

0 = [ ox(=2)gaf + 2) da (2-61)

where in this case z is the variable introduced for the purpose of
integration.

It is apparent from the equations for the mates that, if ¢:(f) and g:(f)
are the mates, respectively, of f1(t) and f2(t), g:(f) + g2(f) is the mate of
f1(t) + f2(¢). As an example of the application of this principle, consider
the function

cosat = (%f—'—o—‘ t>0
The mate of e™ is 1/(p — ja), while that of et is 1/(p + ja). There-
fore the mate of cos at is L,[1/(p — ja) + 1/(p + ja)] = p/(p? + a?).
Similarly the mate of sin at for ¢ > 0 is a/(p? + a?).

Since a constant multiplier A does not affect the integration, if f(t)
and g(f) are mates, Af(t) and Ag(f) are mates.

If the derivative of both sides of Eq. (2-34) is taken with respect to
time, the following relation is obtained,

D) = p [, g(f)em= df (2-62)

where D, means ‘“‘time derivative of.”” Therefore if f(f) is the mate of
g(f), Df(t) is the mate of pg(f). Similarly Dg(f) is the mate of —j2xif(t).
Furthermore, by integration,

/ " 1) dtis the mate of }1) 0:() (2-63)
/
/_ _g1(0) dfis the mate of — ﬂLﬂ 1100 (2-64)

Some of the relations which have been derived above are summarized
in Table 2-1. The most extensive table yet published is by G. B. Camp-
bell, The Practical Application of the Fourier Integral, Bell System Tech-
nical Journal, vol. 7, p. 639, October, 1928. The tables of Laplace
transforms published in many books may be used in the same manner.

2-13. Development by Partial Fractions. An alternative and very
powerful method for the determination of mates is by the method of
partial fractions. It is known from algebra that a fraction of the type

f(z)
@-—az-b@—-cm- - (z-n)
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TABLE 2-1. FOURIER-TRANSFORM MATES

Pair [16)) f®
1
1 - U
» ®
2 1 e 1 >0
P+a '
1 1 —e
31 s e — >0
1 —a
4 m temet, 1 >0
1 P — e
5| BFanTH -5 t>0
P ae”® — fe#
bl mraeFw s 120
7 ;,—-_’;_—w, cos wh, ¢ > 0
;’—:_—w’ sinw, t >0
}W:(f) th)(t)
t
0| Lan [l nwa
7 1
n | [l ey | -0
Note. g,(f) 18 the mate of f,(1).
can be expanded into the form
A B C, C, Cn
x—a+x—b+x—c+(:c—c)’+ o +(:v—c)"'
’ N
+ ...+ P

where 4, B, C, Cy, . . . , Cm, . .
rules apply:

., N are constants.

The following

1. To any factor of the first degree, as z — a in the denominator,

there corresponds a partial fraction of the form A/(x — a)

2. To any factor repeated m times, as (z — ¢)™, in the denominator
there corresponds a series of m partial fractions of the form

Cy C. Cn
et @t T tTa-or

The constants may be evaluated in the following way: When z is in
the neighborhood of the value a, the value of the sum of the partial
fractions is determined almost entirely by the term A/(z — a). There-
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fore in this region

f=) !
@T—az-b—0c" - - - (z—n) z—a
f(=) _
or (x—b)(x—c)-»...(x_n)~f1 (2-65)

This approximation becomes closer and closer as x approaches a. There-
fore in the limit, i.e., where z equals a, Eq. (2-65) becomes an identity
and

. J@ —
@=be-0 - @-m =4 (2-66)
I () _
®-a =0 G=m ° aac
and similar expressions apply to all the constants when a, b, . . . , n are

different.
To show how this may be applied, let the problem be again to find the
mate of g(f) = 1/(p + a)(p + B). Then

1 A B

P+ FP ptal o8
Applying Egs. (2-66) and (2-67),
_ 1
 —a+8
1
b=
Theretore 1 _ __1__ <__1_ _ ! )
P+a)p+8 B—a\p+ta p+8

Now the mate of 1/(p + ) is e==, and the mate of 1/(p + 8) is e~

Therefore the mate of l - (et — ¢?%), which has

1 .
P+a+6 "8
previously been developed in Eq. (2-60a).

If there are two or more identical factors in the denominator. the pro-

cedure must be modified. Consider the fraction —~—f—(:r)—-, where
(z = a)"Q(x)

Q(x) has no factor + — a. Then

= _ A B M

(z—a)"‘Q(z)_(x—-a)"+(x—a)'"“+ tizat

(2-68)

As z approaches a, the right-hand side will be determined by the term
A/(z — a)™ and hence

= /@
4 Q(a) (2-69)
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The fraction can also be written

/@) A, @)~ 4Q(@)
(.’l: - a)mQ(x) (x - a)"‘ + (I Za)"Q2) (2“70)

Now the second term of the right-hand side of Eq. (2-70) must equal
the sum of all the right-hand terms in Eq. (2-68) except the first. But
these terms, if combined into a single fraction, would have z — a only
to the (m — 1)st power in the denominator. Hence f(r) — AQ(x) has
a factor £ — a which can be canceled in the seccond term of Eq. (2-70).

@) — 4Q@) fi(@)
Let the fraction @ = a0 then be of the form — @~ &)0.@) By

the same process used in the derivation of Eq. (2-69) the expression for
B will be

f 1(0)

B = 5 2-71
0(0) @
In the same way all the coefficients for the partial fractions may be
obtained.

As an example consider the function

_p+r _ A +_£_+ C
P+ap+e (@+a* p+a ptec
By Eq. (2-69)
_—a+r
A——-a-l-c

Then the second term on the right of Eq. (2-70) becomes

r
@) — Q) _ P =gt
(p + a)Q(p) (» +a)p +¢)
_pt+nNc—a - —ap+eo
p+a)p+olc—a
_ _pc— pr—ar+ac
(»+ a)p + o)(c — a)
. @tae=1
@+ap+c)c—a)
cC—T7T
T+ a)(P +c)(c — a)
Therefore B + c-r
pta p+c @+ a)® +c)c—a)
c—r c—r
Then ErEar I Rl e
[ r—=«¢

= (—c + a)(c — a) = (c — a)?
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and the original expression becomes
ptr - r—a c—r c—r

TR M T L E T BT L D)
(2-72)

The mate of 1/(p + a)? can be determined by the use of Eq. (2-59) and is
te~t. By the use of Eq. (2-72) the mate of ptr will be the sum of the

(® + a)*p + 0
mates of the functions on the right-hand side and will be

1® = oy

From these relations it is easy to make up most of the pairs of interest.
Only a few of these were shown in Table

(e—'at — —cl) (2_73)

2-1 -

As an example of the method by which these %R
transforms may be applied to the solution of a E-L /D c
typical transient problem, consider the case
given by Fig. 2-14, where the switch is closed EL
at time ¢t = 0. Then the voltage function of

time could be obtained from the table from FiG. 2-14. Series RLC circuit.
pair 1. The same result may be obtained by

setting B = 0 in pair 2 and multiplying both sides by the constant E. Hence
the corresponding function of f will be

E E
Dr =¢ =" = .-
(N =e) = = 5o
Now that the voltage has been obtained as a function of f, the current can be
quickly determined also as a function of f. The impedance of Fig. 2-14 is

, 1
Z_R+JwL+ﬁoC
_ 1
—R+Z)L+p—-c,

Hence the current as a function of f will be

) _ E
0=z p(RE+ oL T 1750)

= Lip* F (R/Dyp + 1/LC)

This has the form of g(f) of pair 5 in Table 2-1, where a and 8 are the negative
of the roots of the equation p? + Rp/L + 1/LC = 0. Therefore

e _JE_T
2L a* " IC
R 1

8=+ Vs~ 1o
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Hence the current as a function of time is given by the f() function in pair 5,
that is,
() _
_ Elexp (—R/2L + VR?/4L* — 1/LC) t — exp (—R/2L — \/R?/4L? — 1/LO)]
2L +/R*/AL* — 1/LC

where exp (z) stands for es. If 1/LC > R?/4L? this can be written

1= — —_——,—ll_?_ — ¢~ k¥/2L gin I _—Ri {
L A/1/LC — R?/AL? LC 4L
= E o rw g
w,Le /2L gin w,

where w; = \/1/LC — R?/4L?, which is the solution desired.

2-14. Poles and Zeros. It has been shown that the transient and
steady-state responses of a network are uniquely related through the
Fourier integral. It will now be shown that the poles and zeros (to be
defined later) of the network function uniquely determine both the tran-
sient and steady-state characteristics of a network except for a scale
factor H. As a matter of convenience, the p notation of the last two
sections will be adopted.

In physically realizable circuits the network function, or immittance,
W (p) of a lumped network may be expressed as a rational fraction,! i.e.,
as the ratio of two pelynomials in p,

ap™ + ap™t + - - - + an
w = 9
®) =y F b+ ¥ b, @74
Factoring out a,/b; = H,
prteaptt+ - - - +cm
=H ap X
Wo) = B o G+ ¥ dn (@74a)
where ¢, = ar/a,
dk = bk/bl
Now if the numerator in Eq. (2-74a) is equated to zero, the roots of
the resulting equation may be designated po1, Po2, . . . , Pom and the

numerator may be written as the product of its factors p — por. Sim-
ilarly, the denominator may be written as the product of the factors
P — D, Where p,i1, Pr2, . . . , Dxn are the roots of the denominator set
equal to zero. Thus Eq. (2-74a) may be rewritten as

g @ = P)(P—Por) - - (P = Pom) g
e R R EEENCES B S

Now if p takes on any of the values po:, W(p) becomes zero; hence,
1 This point is covered in greater detail in Chaps. 4 and 14.
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Po1, Poz, - « - ; Pom are said to be zeros of W(p). Similarly if p takes on
any of the values p.x, W(p) — «; hence px, px2, - . . , Dxn are said to
be poles of W(p). Both the poles and zeros may be either real, imaginary,
or complex and, when complex, will appear in conjugate pairs of the
general form p,; = 8z + jws, Paz = 8o — jw.. In physical cases 8, will be
negative.

From Eq. (2-74b) it is apparent that if the zeros, poles, and scale factor
H are specified, W(p) is uniquely determined. It follows, then, that the
behavior of a network may be specified by either (1) its steady-state
response as a function of frequency, or (2) its response to a step function
as a function of time, or (3) its poles, zeros, and scale factor.

1t is of interest to note how the steady-state immittance, W(w) or W(f),
may be obtained graphically by plots in the complex plane of § + jw.
In general the factors in the numerator and denominator of Eq. (2-74b)
are complex and may be written in polar form as

P — Dok = Bi/x g
P — P = /6 (2-75)

Substituting into Eq. (2-74b),

— @16_2 N ) Bm
W(p) H‘Yl‘n . £ Y
[or+d2+ - - -+ ém) — (61 +0:4+ - - - + 6,) (2-T4c)

A typical situation is illustrated in Fig. 2-15 for a circuit having two
complex conjugate poles and a single negative, real zero. The zero and
poles are plotted in the complex p plane. B, vi, and v are scaled from
the diagram for a particular value of w = w,; then

W(wr) = H 2L
Y1Ye
61, 62, and ¢; may also be measured, and the angle of W(w,) will be
¢1 — (6: + 6;). The student may observe that 17 (w) may be obtained
by letting the point w; vary from — = to + = along the axis of real
frequencies, which is the vertical axis in Fig. 2-15.

It is apparent from work earlier in the chapter that the poles and zeros
of the network function also determine the network’s response to any
driving function. A simple extension of this work leads to a concept of
fundamental importance in communication circuits, that the character of
the response, i.e., oscillatory or nonoscillatory, is governed by the net-
work poles.

Using the p notation of the last section, Eq. (2-41b) shows that the
response of a network described by W (p) will be

E(p) = W(p)Dr(p) (2-76)
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Dr(t) may be a step function, say, of voltage, so that from pair 1 of
Table 2-1 Dr(p) = E/p. As stated earlier, W(p) is a rational fraction;
hence W(p)E/p will also be a rational fraction so that Eq. (2-76) may be
written in the form of either Eq. (2-74a) or Eq. (2-74b). It should be
noted that the denominator of these equations, expressed as a polynomial
in p, will have real coefficients; therefore, the poles will be either real or

o =2zero
x = pole

F1c. 2-15. Graphical determination of the steady-state characteristics at w; from the
pole and zero locations in the complex p plane.

complex conjugate pairs. Then if B(p) is expanded by partial fractions,
it will have the general form

R

Rie) —EH<p—px: = p¥PE T ) (2-76a)
In this equation, the quotation p,, and p}, are complex conjugates.
R(t) may then be found by identifying each term with its mate in Table
2-1. It may be seen, then, that each real pole and each pair of complex
conjugate poles of R(p) contribute a corresponding time-varying term to
R(2), the former being exponential and the latter oscillatory. Since only
the poles appear explicitly in Eq. (2-76a), it may be concluded that it is
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R(p)=:5 R (t)=Ke™*
K
jw
)
p plane ¢

(a) Real, negative pole

R(p)= X R@)= Za-e

plpt+a)

p plane ‘

(b) Real, negative pole + pole at zero

K K
R)= G oo~ var (R O=K'snot

'
0

p plane
(c) Imaginary conjugate poles

R = W‘;’ R(®=K'e* sin wt

B,= —a+jw, P ,= ~a-jw

X
x
p plane

(d) Complex conjugate poles

R®)= g5 R (9= K™

K

p plane
(e) Second order, real, negative pole
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F1e. 2-16. Effect of basic pole combinations on transient response. Note. The phase

angle is neglected in ¢ and d.
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the poles of R(p) which determine the character (i.e., exponential, sinus-
oid, damped-sinusoid) of the transient response. The zeros of B(p) affect
the amplitudes A, B, . . . of the several termsin R(¢). Some frequently
encountered forms are shown in Fig. 2-16.

2-16. Responses of RC-coupled Amplifier. The broad-band RC-
coupled amplifier, whose equivalent circuit is shown in Fig. 2-17a, will
serve as a good example for the summarizing of the results of the fore-
going sections and to show typical approximations that may be used in

o]
L s
8B STCSR, T IEO
S 4 -
Ry
(a)
b
) 300
5—— —— -%/ et 1250
af—- Lot — 200
y PG - \ ¢
3 i 150
IE W \
3 == / \ 100
1 — 50
— . ~ 1o
10 1002 1008 10 107 100®° 10° 10
w, radians/sec

F1a. 2-17. RC-coupled amplifier. (a) Lquivalent circuit  (b) Steady-state response
curves. Note the break in the w scale. Iy = 1 kilohm, R, = 100 kilohms, (", = 6
wuf, C, = 14 puf, g,.E; = —5 ma, C. = 0.1 pf.

calculating circuit responses. As will be explained in Chap. 15, typical
values of the circuit parameters in Fig. 2-17a are

R, = 1 kilohm R, = 100 kilohms
C, = 14 uuf Co = 6 uuf C. = 0.01 uf

]

It may be noted that the driving function is a current g»E, and that the
desired response is the output voltage £,. It may be shown by the usual
methods of steady-state analysis that the network function W(w) i~
given by

W(w) = ——

1  (C.+C, | CotC. : '
imﬁ*« Rz T Rﬂ)+uwma+am+an
2-77)

Now the engineer, in order to simplify his work, takes note of the rela-
tive magnitudes of the quantities involved in his calculations. Thus
since C, < C; K C. (< means “less than,” « means ‘‘very much less

—Ja(',
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than”’),
Ci+C.=C, Co+C.=C,
and since B, K R,

Furthermore, C,C, K ('.(C, + C,); hence
Co('s + C(Co + C,) = Ce(Co + C,) = C.C,
where C, = C, + C,. Therefore Eq. (2-77) may be simplified to
o —jwC,
1/RLR, + jwC./Ri + (jw)?C.C,

Factoring out jwC./R. from the denominator and rearranging the order
of terms,

W(w) = (2-78)

=k
1 + j(wC. Ry — 1/wC.R,)

The steady-state response to a sinusoidal current driving function will
then be

W(w) = (2-78a)

E,(w) W(w)nga("’)

— gnlr,
= T T F @R, — 1/aC.Ry) (2-78b)
Equation (2-78b) may be used to calculate the steady-state response
of the RC amplifier, subject, of course, to the approximations which have
been made. Before doing this, however, it should be noted that dif-
ferent circuit components control the response in different ranges of
frequency. Note that wC,Rp = 2 X 10~%», while 1/wC.R, = 10%/w.
Hence, at very high frequencies 1/wC:.R, K wR.C,, and the response

simplifies to
3 - ngL

(Eo)nr = | FjoC.Rs (2-79a)
_gmPL
V1 + (wC,RL)?

On the other hand, at very low frequencies, wC,R; < 1/wC.R,, and
the response simplifies to

/—180° — arctan wC.R;  (2-79b)

e = —InBr
(IJO)IDW = 1= j/‘l’C;Rv (2‘796)
= ____gL__ / —180° + arctan 1 (2-79d)
V1 + (1/wC.R,)? wCeR,

At some particular frequency, w./2v, w.C.R, = 1’'w,C.R, and the
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response simplifies to
(Eo)mrd = -ngL = Om RL/ - 180_0 (2-79(‘)

As a practical matter, C, and C. have a negligible effect over a consider-
able range of frequencies which are often referred to as the *mid-fre-
quency band” or simply ‘“mid-band.” The steady-state response of the
amplifier in question with g, = 5 X 10~® mho and E, = —1 volt is
plotted in Fig. 2-17b. A more eclegant presentation of this response in
terms of normalized variables will be considered in Chap. 15.

Consider, next, the transient response of the RC amplifier shown in
Fig. 2-17a. By replacing jw by p and factoring out C,C. from the denomi-
nator in Eq. (2-78), the network function becomes

r —_— e . p_ o —_—— D
W)= = 0, 2 + p/RiC + TTRIR,CC) (2-80)

In this case where the transient response is desired, let the driving cur-
rent be a negatwe step function such that

i) = t<0
i) = —gnk t>0 (2-81)
(The negative sign is chosen in order that the response may be plotted
as a positive function of time.) Then, from Table 2-1, I(p) = —g.E,/p.
The output voltage will be
E.(p) = W(p)I(p)

gmlt, ~ 1 L
C. p*+ p/R.C. + 1/R.R,C.C.

Since the denominator is a second-degree polynomial, Eq. (2-82) will
have two poles, say, p.1 and p.2, and may be written

gnk, 1

(2-82)

E P - —_— -
® = %%, ( = pa)(p — Pe2) (2-83)
Then by the mates of Table 2-1
F xit x2t
e(t) = C, (le — Px2) (er &) (2-84)

The two poles may be evaluated by setting the denominator of Eq.
(2-82) equal to zero and finding the roots of the resulting equation by
the quadratic formula, thus:

Px1 - — __1___ + \/( __1 )2 _- _1_~‘_-
P2 2R.C. — 2RLC, R.R,C,C,

1 iR.C,
2RC(1$\/1— RC) (2-85)
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'

Now, for the values given, R; K R, and C, K C.; therefore 4R.:C,/
R,C. << 1. The second term under the radical is therefore very small
compared with 1, but it should not be neglected or the difference between
the two poles and the nature of the response will be lost.

In a situation like this, slide-rule accuracy is inadequate, but resort
may be made to the binomial expansion, viz.,

a? 3a®

— — a
\/]+a=l+§—4T2”+§@—"'

If a < 1, the series converges so rapidly that only the first two terms
are significant and give an accuracy in numerical computation better
than the slide rule. By applying this expansion to Eq. (2-85), the poles

become
el LT (12|
p‘,l = zmc,[‘ T (1 R,C.
1 —1
whence P = — i = o, = — 108
R,IC; 10% X 10 1 (2-85a)
~ — —_— = — . = —} 7
P~ ~ g = T i0v02 x 10-w) — 0 X 10
Noting that p.; — px2 = 1/R.C,, Eq. (2-81) becomes
e(l) = gnE R (6710 — ¢—5X10%) (2-86)

It is observed, then, that the response is proportional to the sum of
the two exponentials. The general shape of Eq. (2-86) is shown in Fig.
2-18a, where it may be observed that the response consists of a build-up
of relatively short duration followed by a long, slow decay. This comes
about because of the great difference between the values of p.; and p..
and simplifies the work of plotting the actual response.

For values of ¢ close to zero, say, of the order of 1 usec or less, e?=¢ = 1,
and the ‘“short-time’’ transient response may be expressed as

(’o(t)nlmrt = nggRL(l - e—SXlO’l) (2‘860)

Since the leading edge of the applied step function occurs at ¢ = 0,
o(t)unore is often called the ‘““‘edge response.” In this case of the RC
amplifier the edge response has the form of an exponential build-up.

For larger values of time, say, of the order of 100 usec or more, e?=* ~ 0,
and the “long-time”’ transient response simplifies to

eo(f)lsn‘ = nguRLe.-mu (2‘861))

This is the equation of an exponentially decaying function and results
from the inability of the circuit to pass a d-c term because of the series
capacitor C.. Because of the shape of the exponential, €,(£)i.. is often
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called the “sag.” The transient response of Fig. 2-17a is plotted in
Fig. 2-18.

It is of significance to note the following conclusions concerning the
RC amplifier:

1. The steady-state response may be considered in three separate
ranges of frequencies, or bands: the low, mid, and high. The low-band
response depends upon the parameters R, and C.; the high-band response,
on R; and C,.

2. The transient response may be considered in two separate time
intervals: short (edge response) and long (sag). The edge response is

¢

(@)
5r 5
af a4t
Sag

23 L L 3F
S ©°
= Edge response z
s2r T20

1 b

0 L A 1 1 1 J 0 1 1 1 1 J

02 04 06 08 10 12 200 400 600 800 1000
1, msec t, Msec
®) © .

Fia. 2-18. Response of the RC amplifier to a step function (a) General shape of
e,(t). (b) The edge response for small values of {. (c) The sag response for large
values of {. Note the change 1n time scale as compared with b.
governed by R; and C, and hence is related to the high-band steady-
state characteristics. The sag is governed by R, and C. and hence is
related to the low-band steady-state characteristics.

These ideas serve as important guides in considering the behavior of
many communication circuits and illustrate quantitatively some of the
conclusions reached qualitatively in Chap. 1.

PROBLEMS

2-1. Replace the inductor of Fig 2-1 by a capacitor " Find the complete solution
for i(t) and verify that integration with respect to time corresponds to multiplication
by 1/jw in the frequency domain.

2-2. Sketch the steady-state impedance curves of a series RL(C circuit in three
different ways.
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2-3. Calculate and sketch the transient response to EU (£) of the circuit of Prob, 2-1.

2-4. Verify Eq. (2-16d).

2-8. (a) Calculate and sketch the frequency-spectrum envelope of a repetitive saw-
tooth wave of amplitude E and period 7. (b) Repeat for a single, nonrecurrent saw-
tooth pulse of amplitude E and period T. (c) How are these two envelopes related?

2-6. A certain idealized filter has the following network function: W(w) = A4,
~w; <w < 4wi; W(w) is linear between 0 at —ws: and A at —w;; W(w) is linear
between A at w; and 0 at w,. The delay is ¢, at all frequencies.

a. Derive an expression for the transient response to EU(f).

b. Plot a curve of the response for w, = 2w, and compare with Fig. 2-8.

2-7. Calcuiate and plot the frequency spectrum of U(t) which is shown in Fig, 2-4.

2-8. A single d-¢ current pulse of duration T\ is applied to a shunt RC load. Let
the cutoff frequency be defined by f. = 1/2aCR.

a. Derive an expression for the voltage across the RC load as a function of time.

b. Calculate and plot ey(t) if f. = 2/T\.

2-9. A current step function IU(t) is applied to a parallel combination of R, L, and
C. Using the method of Fourier transforms, calculate the voltage across the parallel
combination for the three cases 1/(2RC)? greater than, equal to, and less than 1/LC.
Sketch the response for each case.  Compare your results with the illustrative problem
in Sec. 2-13,



CHAPTER 3

STEADY-STATE ANALYSIS
AND NETWORK THEOREMS

Kirchhoff’s voltage and current laws are the basic working tools in
solving network problems. Traditionally emphasis has been placed
upon the voltage law and its natural consequence, the mesh, or loop,
method of analyzing circuits, while the current law and the nodal method
of analysis have been relegated to a secondary place. As a practical
matter in dealing with communication networks it is the nodal analysis
which often better fits the physical circuit. This is true for two primary
reasons: (1) nodal analysis presumes current generators as sources, a
condition closely matched in those circuits employing a pentode vacuum
tube operated under linear class A conditions; (2) in correlating theoret-
ical calculations with experimental measurements it is convenient to cal-
culate those quantities which can be measured easily in the laboratory.
A moment’s reflection about electronic circuits in general shows that it is
voltage, rather than current, which is the more easily measured quantity.
In fact, in the plate circuit of a vacuum tube currents and voltages con-
sist of two components: an alternating component superimposed on a
d-c component. The measurement of the alternating component o-
voltage is readily accomplished by means of an a-c vacuum-tube voltf
meter, while no simple means are available for measuring the alternating
component of current alone. Since the usual methods of analysis are
concerned with alternating components only, it seems that one should
solve for voltage, rather than current, as the quantity which can be
checked directly by measurement. Certainly, then, at least as much
emphasis should be given to the nodal analysis as to the more familiar
mesh analysis. It will also be seen that in many cases a given circuit
may be solved with fewer nodal equations than mesh equations. This
is particularly true when the interelectrode capacitances of vacuum tubes
must be taken into account.

An advantage is to be gained also from studying these two basic forms
of analysis together. It will become apparent that a principle of general
duality exists between certain networks, a principle that can be of con-
siderable aid in the solution of network problems.

86
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Because of their basic importance, it is advisable to review the applica-
tion of the two laws of Kirchhoff as they are used in the steady-state
analysis of circuits containing more than one mesh. Such a review will

also make clear the concepts of general duality and equivalence.

3-1. Sign Conventions. In an a-c circuit current flows first in one
direction and then in the other in every branch.  However, in order to add
and subtract their effect at junctions as is required by Kirchhoff’s current
law, it is essential that an arbitrary assignment be made of the direction
of current flow that will be called positive. This is usually done by draw-
ing an arrow — on the circuit diagram, the current then being considered
positive when it is flowing in the direction of the arrow. It is of impor-
tance to note that the assignment of the arrow direction on the diagram
is arbitrary, but, once assigned, it must be maintained throughout the
analysis.

(a) (b) (c) (@)
Fre 3-1. Sign conventions. (a¢) Voltage source (b) Current source. (d) Shows
one possible set of assumed positne current directions and voltage polarities for
network c.

The complex current itself may be desiznated in a number of ways,
but throughout this book one form of single-subscript notation is used:
the current is designated by I, followed by a single identifying subscript,
1, I,, 1, .... The magnitude of the complex current, say, I., will
be designated |7.|. Similarly the potential difference between two points
in an a-¢ network must be assigned an assumed positive direction which
in this text will be indicated on circuit diagrams by a double-headed
arrow with a + sign at one end. The two heads indicate the two points
of the circuit across which the voltage is defined, and the voltage is con-
sidered positive when the end with the + sign is at a higher potential
than the opposite end.

The complex voltage itself is identified by E followed by a single
identifying subscript, E,, E,, E., and its magnitude by |E.|.

The symbols used in this book for voltage and current generators are
shown, respectively, in I'ig. 3-1a and b.

The use of this notation may be clarified by considering the circuit
shown in Fig. 3-1c. Before any solution is possible, assumed positive
or arrow directions of current and voltage must be assigned. One pos-
sible set of these assumed directions is shown at d. Cousider the prob-
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lem of designating the voltage produced across Z; in terms of currents
I, and 7. The arrow direction of I, 1s such that positive current causes
the upper end of Z; to be at a higher potential than the lower end, since
the upper end of E; 1s marked +, the component of E, caused by I, 1s
+1,Z,

The arrow direction of I,, however, 1s such that positive current causes
the upper end of Z; to be at a lower potential than the lower end Thus
the component of £, caused by I;1s —1 Z3 Then

El = 11Z'§ - IzZa = (Il - Io)Z;

3-2. Kirchhoff’s Voltage Law; Mesh Analysis Kkuchhoff’s voltage
law may be stated as follows The algebraic sum of all the voltages around
any closed loop 1n a nelwork 15 zero
Z, Z, Z, % As a direct application of the law
consider the ciicuit of Fig 3-2  The
current floning through Z, 15 to be
determined Two loops, or meshes,
that may be chosen for solving the
:xi:]y::;f Circut for illustrating mesh  potyworl are those indicated by the
currents I; and I, It should be
stressed again that the arrow directions of current and assumed positive-
voltage polarities have been assigned arbitrarily
Apphcation of the voltage law to the two loops yields

Mesh 1 Zoa+ Z)]+ Zs(I, — 1)) — E, =0 3-1)
Mesh 2 (Z:+ 212+ Z25(I: — 1)) + E, = 0 (3-2)
The terms may now be collected and regrouped 1n a convenient manner
Since the two equations are hinear, they may be solved readily by deter-
minants, so the regrouping should place terms in an orderly fashion such
that, on the left, vertical columns contain the same currents and all volt-
age sources appear on the nght Thus,

(Za+ Z,+ Zy) 1, —Z,, = E, (3-3)
—Zsly+ (Zo+ Z+ Zp)I, = —E, (3-4)

Equations (3-3) and (3-4) are frequently ssmplified to the forms

Luly + Zy2l: = Ey (3-3a)
Znly + ZyIy = E, (3-4a)

where Z,; and Z,; are the sum of all the impedances 1n their respective
meshes, that 1s,

Zu=2.+4+2,+ 2,4 Zy=Zo+Zs+ 2
Zys =7y = —Z,
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Then by Cramer’s rule

o B oz -z
_1Zn Ey | _ ZuEy — ZaE, 3.
L= | T BB = ZnZin (3-5)
Zzl Z22
ZZEG - (Za + Zl + Z3)Eb (3-5@)

T G F I 2 F ZaF To) + Za(Z2 + Zy)

3-3. Generalization for a p-mesh Network. A multimesh network
having B branches and N branch points, or nodes, can be shown to have
p independent meshes, where p = B — N + 1. Such a network is often
called a p-mesh network and can be described by a set of p simultaneous
equations, each having the general form of Egs. (3-3a) and 3-1a), namely,

Zuli + Zwle+ Zpls + - - - + Zy,I, = E,
Zonly+ Zolo + Zosls + + - - + Zypl, = E, (3-6)
Z,,lIx + Zp212 + Z,:;Ia + ct + Z,,,,Ip = I’]p

there being one equation for each of the p independent meshes. Each
of the impedance coefficients appearing in the equations has a special
significance. These will now be considered.

3-4. Mesh Impedance. Let the mesh to which the assumed current I,
has been assigned be designated mesh 1. Then if all the meshes of the
network but mesh 1 are open-circuited, all mesh currents but I, are zero
and one has from the first equation

Z11=(~IEL1) n=2;314’ SRR 4 (3-7)
1/ I=0

Thus Z,, is the impedance around mesh 1 with all other meshes open-
circuited. Alternatively, Z,; is also the sum of all the impedances
through which I, flows and is designated the ‘“self,”” “loop,” or ‘““mesh”
impedance of mesh 1. Similarly, Z,, is the mesh impedance of mesh 2,
i.e., the mesh to which I, has been assigned arbitrarily, and is equal to
(Ba/I)tmo, m = 1,3,4, . .. ,p. Ingeneral Z,, is the loop impedance
of the mth mesh and is the sum of all the impedances in mesh m. Asa
specific example of this concept, in Fig. 8-3 Z22 = Z, + Z. + Z; + Z..
8-6. Mutual Impedance. Let all the meshes but mesh 2 of the network
described by Eqgs. (3-6) be open-circuited. Then all the currents but I
will be zero, and one notes that the voltage induced in mesh 1, say, Ej,
is E; == Zng, or
E;
Zu = (-I—:-)l.-o n = 1, 3, 4, Y 4 (3-8)
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Thus Z,, is the ratio of the voltage induced in mesh 1 to the current in
mesh 2 with all meshes but 2 open-circuiled and is called the ‘“mutual
impedance” between meshes 1 and 2. This induced voltage could be
measured by connecting a voltmeter (theoretically of infinite impedance
and capable of measuring phase as well as magnitude) in the first mesh
and sending a current around the second mesh.

A similar definition holds for the remaining coefficients of the form
Znn in Eqgs. (3-6), each being the mutual impedance between meshes m
and n. For instance, the mutual impedance between meshes 3 and 2 of

(b)

F1c. 3-3. A multimesh network. (b) lllustiates the method for determining the
mutual impedance between the second and third meshes (f a.

Fig. 3-3a could be measured in the manner shown in Ifig. 3-3b and would
be the ratio Z,, = E%/[; measured by the voltmeter |’
The student will observe in Fig. 3-3b that Ky = —Z.I, or that

Z.l2 = "Ze

Thus the mutual impedance Z,.. between the two meshes m and n may
be seen also to be the sum of all the impedances through which both I,
and I, flow in the original, unopen-circuited network. The mutual
impedance is positive if the arrow directions of both currents are the same
through the common impedance elements and negative if the arrow
directions of current are opposite. It follows that, when a network
contains only simple resistors, capacitors, and inductors, the mutual
impedance is bilateral, that is, Z,.. = Zum.
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In cases where the mutual impedance is due to mutual inductance
particular care must be exercised in determining its sign because the wind-
ing polarity of the coils must be taken into account as well as the assumed
positive directions of the mesh currents.

Where actual winding diagrams of the coil assembly are available as
in Fig. 3-4a, no ambiguity is present; Lenz’s law may be used to deter-
mine the sign associated with the mutual impedance. It is generally
the case, however, that such a diagram is not available and some addi-
tional notation is required that gives the same information. To this end,
winding terminals of the same polarity will be indicated in this book by
a large dot as illustrated in Fig. 3-4b.! Once the dot locations are known,

L ,/le\ L, . ,/le‘\ .
m L L, (Iz Z,= iy,
T T E E
1 2 3 4

(a) (b)
Fi1a. 3-4. Determination of the sign of the mutual impedance between two circuits
coupled by mutual inductance.
the sign of the mutual impedance may be determined by the following
rules:

1. The mutual inductance L., is always taken to be positive.

2. If the assumed arrow directions of /,, and I, are both into (or out of)
the dot terminals, the mutual impedance is positive, that is, Z,u, = jwLma.
If the assumed positive directions of I, and I, are such that one flows
into a dot terminal and the other out of a dot terminal, the mutual
impedance is negative. To illustrate in Fig. 3-4b, the mutual impedance
is —jwlLys.

3-6. Summary: Mesh Equations. The results of the foregoing para-
graphs may be summarized into a set of rules for setting up the system of
p simultaneous equations (3-6) which describe a p-mesh network. In
the equation for the mth mesh:

1. The coefficient of I,, is the sum of all the impedances through which
I,, flows and is designated Z,m, the self-impedance of mesh m.

2. The coefficient of I, n ¥ m, is the sum of all the impedances
through which I,, and I, flow and is designated Z,.., the mutual imped-
ance between meshes m and n. If I,, and I, have the same arrow direc-
tion through the mutual elements, the mutual impedance is positive;
if not, it is negative.

1 An alternative method of marking polarities that is widely used in the Bell Tele-
phone System numbers coil terminals in their winding sequence. Thus all odd-num-
bered terminals have the same polarities as do all even-numbered terminals.
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3. Voltage sources in the mth mesh appear on the right-hand side of
the equation, with a positive sign if their assumed polarity is such that
they cause positive current to flow in the direction of the I, arrow and
with a negative sign if their assumed polarity causes positive current to
flow in the opposite direction.

These rules may be applicd to each mesh in turn to give the p equations
(3-6). The student should observe that these rules permit Eqs. (3-3)
and (3-4) to be written directly without the neced of writing the prelim-
inary equations (3-1) and (3-2) which result from the direct application
of Kirchhoff’s voltage law.

The unknowns in Eqgs. (3-6) are the currents Iy, I, . . ., I,, while
the impedances and voltages are known. The problem, therefore, is to
find one or more of the currents in terms of the impedances and voltages.
Since the p simultancous equations are linear, this may be done most
conveniently by the use of determinants. Owing to space limitations
the theory of determinants will not be treated here,! but the solutions
for the equations may be given by means of a few definitions The
following notation will be used:

The impedance determinant D is obtained by including all the imped-
ances in the form

Znw Zyn .. Zyp
Z21 Z22 .. Z2p

D = Zu Zaz PR Zaﬂ (3‘9)
Zow Zot o Ty

As has been stated previously, in networks containing only linear bilat-
eral elements, Z,., = Z,»; hence for such networks the determinant will
exhibit symmetry about the principal diagonal from the upper left to the
lower right corner. It may be stated also that in a number of commu-
nication networks, particularly those of the ladder type, several of the
impedances Z,., may be zero.

The minor M,., is the determinant that is obtained by eliminating the
mth row and nth column from D. The cofactor Cn. is defined in terms
of the minor M,. by the relationship Cp, = (—1)"+"M,,.. Then, by
the theory of determinants, the solution for the current in the mth mesh
of the p-mesh network is

Cim Cam R S v 1.Cm -

It will be observed that the coefficient of each voltage on the right-hand

1 The reader is referred to any good algebra text. See, for example, W. L. Hart,
“College Algebra,” D. C. Heath and Company, Boston, 1926, or E. A. Guillemin,
“The Mathematics of Circuit Analysis,”” John Wiley & Sons, Inc., New York, 1949,

I, =
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side of Eq. (3-10) is dimensionally an admittance; hence, adopting the
definition
Com
Ymn = D (3-1 l)
one notes that the solutions for all the unknown currents of the p-mesh

network are given by

I, = qul + ymEz + ylsEa + -+ ylpEp
Iy = yuEy + y2oEr + yasEs + - ¢ - + yooF,
I, = ymel + yszz + ymaEx + - 4y E (3-12)
I, = ymE1 + ypeEs + ypBis + -+ + yppks

The several admittances appearing in the ahove equations all have
physical significance and are given special names. These will now be
considered in terms of the equation for the current in the mth mesh.

3-T7. Mesh Driving-point Admittance, Impedance. Let all the meshes
in the original network be closed and all generators but those in the mth
mesh be replaced by their internal impedances. This condition effec-
tively shorts out the generated voltages so that E, = 0, n % m. Then
one has from Eqgs. (3-12)

I, = ynmEm E,.=0 n# m
or Ymm = (Iw":) nFEm (3-13)
]'Jm Epm(
This quantity is termed the ‘“driving-point admittance of the mth mesh.”

As an example, in Fig. 3-3a the driving-point admittance of the first
mesh would be the ratio y, = I,/E,, with the voltages £, and E; reduced
to zero, but with all the meshes closed, i.e., connected as shown in the
figure.

The reciprocal of ymm is a useful quantity, the driving-point impedance
of mesh m, and will be represented by the symbol zmm. It should be
observed that z... is nof equal to the mesh impedance Z,... The driving-
point admittance and impedance of any mesh may be calculated in terms
of the original network impedance by means of Eq. (3-11).

These relationships may be made more clear by considering an example
afforded by the circuit of Fig. 3-2. The driving-point impedance of mesh
1 or the driving-point impedance at the terminals of the generator E,,
namely, z;;, may be determined by inspection. The definition calls for
E, to be reduced to zero; thus, replacing E, by a short circuit, one has by
inspection

_ Zy(Zs + Zv)
zn=2,+ 2,+ 7 ¥ Z: F % (3-14)
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It is suggested that the student verify this result by means of deter
minants, using Eq. (3-5) as a check on his work.

It may be noted further that, in special cases where only one generator
is connected to the circuit, the driving-point impedance at the generator
terminals is often called the ‘“input impedance’’ and its reciprocal the
“‘input admittance.”” The notation remains the same or is sometimes
designated Z,, or Y., as the case may be.

3-8. Mesh Transfer Admittance and Impedance. The remaining
admittances in Eqs. (3-12) are of the general form yn,. Following the
method of the last section, let all the meshes in the network be closed and
all generators but E,, be replaced by their internal impedances. Under
these conditions one obtaius from Eqs. (3-12)

I. = Yumbim E,=0 n = m
or Ynm = ( 1 ")E , n#Zm (3-15)

En

This quantity is termed the *“ mesh transfer admitiance” between meshes
mandn. For example in Fig. 3-3a the mesh transfer admittance between
the first and fourth meshes would be y4 = I,/E,, with voltages E, and
E; reduced to zero, but with all meshes closed as in the figure. The
reciprocal of ynm is the ““ mesh transfer impedance’” and will be symbolized
by z.m.- The values of these two quantities may be determined in terms
of the original network impedances by means of Eq. (3-11). It should be
noted that the mesh transfer impedance z,, is nol equal to the mutual
impedance Z,.. Again the circuit of Fig. 3-2 may be used to illustrate
the coucept for, letting E; become zero in Eq. (3-5), one has

Ey _ (Za+ Z)(Zs+ Za + Z0) + Zu(Zs + %)

T, 7 E,=0 (3-16)

221 =

The reciprocal is ya;.

3-9. Summary. The results of the foregoing paragraphs may be
summarized as follows: If Kirchhoff’s voltage law is applied to each mesh
in turn of a network having p independent meshes, p linear simultaneous
equations result, each having the general form

Zm],Il+Zm2I2+ st +meIm+ R +ZmpIp=Em

Z mm is the self-impedance of mesh m, and the other impedances appearing
in the equation arc the mutual impedances between mesh m and the other
meshes in the network.

The p voltage equations may be solved in turn for each of the mesh
currents, in each case the current being expressed by an equation of the

form
Im =ymlEl+ym2E2+ e +ymmEm+ st +ympEp
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Tn this current equation Y. is the driving-point admittance of mesh m,
and the other admittances are the mesh fransfer admittances between
mesh m and the remaining meshes in the network.

In communication systems multimesh networks are ordinarily used to
connect a generator to a load. As a result, two currents are of particular
interest: the current in the generator and the current in the load. In
such cases the two impedances of primary concern are the driving-point
impedance of the input mesh and the mesh transfer impedance between
the input and output meshes, for these quantities relate the desired cur-
rents to the applied generator voltage.

3-10. Current Generators. While the methods of mesh analysis may
be used to solve any network problem, the nodal method is often easier
to employ and may be more useful in a given problem. In this latter
method it is convenient to work with current generators rather than
with voltage generators.

Voltage ]
gen |
-

(a) (b) (c)

Fia 3-5 Voltage and current generators which produce the same load current.

Current generators are seldom encountered in practice except when
pentode vacuum tubes are used. Any voltage generator, however, may
be replaced for purposes of analysis by a current generator that causes
the same conditions in the load. Ior example, Fig. 3-3a shows a voltage
generator with generated voltage E, and series internal impedance Z,
connected to a load Zr. At b the voltage generator has been replaced by
a current generator which consists of a current source of value I, = E,/Z,
shunted by the original generator impedance Z,. The student may easily
verify that both generators give the same value of current, Iy, in Zy, pro-
vided the values of Z, and E, remain unchanged.

In nodal analysis one generally uses admittances rather than imped-
ances as a matter of convenience. Figure 3-5¢ shows the current-
generator circuit with each impedance replaced by its corresponding
admittance. The value of I is unchanged in all three circuits shown in
the figure.

8-11, Kirchhoff’s Current Law; Nodal Analysis. Kirchhoff’s current
law may be stated as follows: The algebraic sum of all the currents at a node
(or junction) in a network is zero.
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As a direct application of the law, consider the circuit of Fig. 3-6.
The voltage across the admittance Y, is to be determined in terms of the
known currents I, and I, and the known admittances. The circuit is
redrawn at b to show one possible choice of nodes and to show one pos-
sible set of assumed positive polarities for voltages between nodes 1 and

N L Vn
;A My, ¥
Is( Y, % Yy Iy LY, E; Y, Ez Yy I,
C
0

FiG. 3-6. Circuit for illustrating nodal analysis.

2 and the reference node identified as 0. Then application of the current
law to nodes 1 and 2 yields

Node 1: (Y:+ Y)E:+ Ye(ly — E2) — I. =0 (3-17)
Node 2: Ye+ Y)E:+ Ys(E: — E)+1,=0 (3-18)

The terms may now be collected and regrouped for convenient solution
by determinants. Thus

(Y.+ Ya+ Yp)E, — Yk, =1, (3-19)
—YpE,+ (Y + Y+ Y)E, = — I, (3-20)
The last two equations are frequently simplified to the forms
YuE,+ YE, = 1) (3-19a)
YuE: + Yk, = I, (3-20a)

where Y1, and Y, are the sum of all the admittances directly connected
to their respective nodes and Yy is the sum of the admittances connected
between these two nodes, i.e.,

Y11=Y:+YA+YB Y22=YB+YC+Yy
Yie=Yan=—Ys

Then by Cramer’s rule, the desired voltage E, is given by

Yll Il

E2 = Y2l I2 — YllIZ - Y2lIl
Yll Yl2 Y11Y22 - Yuyn
Y21 Y22

- YBIz - (Yz + YA + YB)Iv___
Y.+ Y)Y+ Yc+7Y)+ Ys(Yc+ V)

8-12. Generalization for a (p + 1)-node Network. It can be shown
that a multinode network having, say, (p + 1) nodes all conductively
coupled can be described by a set of p independent nodal equations.

(3-21)
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Therefore, one node may be chosen arbitrarily as the ‘‘common,” er
“reference,” node and the p equations set up in terms of thevoltages
between all other nodes and this reference. Each of these equations will
have the general form of Eqgs. (3-19a) and (3-20a), and the set of p equa-
tions will appear as

YuEi+ Yl + Yl + - - - + VY,E, =1,
Yaully + YoEr + YasEs + - - - 4+ Yooli, = I,

Y:uEx + YazEz + YaaE:s + ot + szEp = Is (3'22)

YpE:, 4+ YpeEs+ YEs + - - - + Ypli, =1,

Each of the admittance coefficients appearing in the equations has a
special significance. These will now be considered.

3-13. Node Admittance. In Egs. (3-22) E, is the assumed potential
difference between node 1 and the reference node, E. is the assumed
potential difference between node 2 and reference, and so on. Then if
all the nodes but 1 are shorted to the reference node, all the voltages but
E, are zero and one has from the first of Egs. (3-22)

Yll:(l%) n=2)3}47 - P (3-23)
1/ E, =0

Thus Y;: is the total admittance between node 1 and the reference node,
with all other nodes shorted to the reference. Inspection of Fig. 3-6b shows
Yiutobe Y.+ Y4 + Yp; hence Y1, may also be seen to be the sum of
all the admittances connected directly to node 1. This quantity is designated
the ‘“self-admittance’ of node 1. Similarly, Y, is the self-admittance
of node 2 and is the sum of all the admittances directly connected to
node 2. In general Y, is the self-admittance of node m. As a spe-
cific example, the self-admittance of the node labeled 1 in Fig. 3-3a is
Yll = I/Za + l/Zb + l/Zc + I/Zf'

3-14. Nodal Mutual Admittance. Let all the nodes except node 2 of
the network described by Eqs. (3-22) be shorted to the reference node.
Then all the node voltages but E, become zero, and the current flowing
from node 1 to node 2, say, I, is Y2E.. Hence Y, the ‘“nodal mutual
admittance’’ between nodes 2 and 1, is the ratio of I to E,, all nodes but
node 2 being shorted to the reference node. This concept is illustrated in
Fig. 3-7, where the reference node is labeled 0. The original network is
shown at a, and the circuit is redrawn at b to show nodes 1 and 3 shorted
to the reference node. The current I] flowing from node 1 to node 2 as
a result of K, could be measured by a millimeter (theoretically of zero
impedance and also capable of measuring phase) in the branch Y,, and
the nodal mutual admittance would be the ratio Y3 = —I{/E..
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The student will observe in Fig. 3-6b that I} = —Y,E; or that
Yl2 = - Y4

Thus for the case where the network contains only simple resistances,
inductances, and capacitances the nodal mutual admittance between
any two nodes m and n may be seen also to be the sum of all the admit-
tances which connect the two nodes directly. The nodal mutual admittance
is positive if the two node voltages have opposite assumed positive polar-
ities relative to the reference node and negative if the two node voltages
have the same assumed positive polaritics. It follows that the nodal
mutual admittance between the nodes is bilateral, thatis, Ym, = Yoam,
if the network contains only simple resistors, inductors, and capacitors.
When vacuum tubes or transistors are used in their linear range, similar
analyses may be applied but Y, will not then equal Y,,,..

4 2
i +
1/% 3 Y {2 Y, v & .
A A4 vV ) 2
5@ - 2
4 Y I, WL 3
0 1:3
o/
I
(a) 1 ()]

F16. 3-7. Circuit for determining the mutual admittance between two nodes.

3-16. Summary of Nodal Equations. As was the case in mesh analysis,
the final equations, (3-22), for the (p + 1)-node network may be written
by inspection without the need of first applying the current law directly
to each node in turn and then regrouping terms into the desired orderly
form. For example, a little practice shows that Eqgs. (3-19a) and (3-20a)
may be written at once without first writing the preliminary equations
(3-19) and (3-20). This is done by applying to each node in turn the
following rules, which summarize the foregoing work. In the equation
for the mth node:

1. The coefficient of E,, is the sum of all the admittances connected
directly to the mth node and may be designated Y ..., the self-admittance
of the mth node.

2. The coefficient of E,, n #* m, is the sum of all the admittances
directly joining nodes m and n and is designated Y..., the mutual admit-
tance between nodes m and n. (This does not apply when Y, # Viom
as in vacuum tubes and transistors unless they are reduced to so-called
equivalent circuits.) The nodal mutual admittance is negative if K, and
E. have the same assumed positive polarities relative to the reference
node; if not, it is positive.
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8. Current sources connected to node m appear on the right-hand side
of the equation with a positive sign if their arrow directions are into the
node and with a negative sign if their arrow directions are away from
the node.

The admittances and currents in Eqs. (3-22) are presumed to be known
quantities while the several node voltages are unknown. These latter
may be evaluated by means of determinants. The admittance determi-
nant D’ is obtained by including all the admittances in the form

Yu Ym e e Y],
b |¥n Yu ... Yy
1Yor Yy Ypp

The minors and cofactors are determined from D’ in the same manner as
were the minors and cofactors from D, the impedance determinant in
mesh analysis. Where the possibility of confusion between impedance
and admittance is present, they will be designated C},, or M}, the primes
indicating that they are derived from the admittance determinant D’.
In any given problem where no such chance of confusion is present, the
primes may be omitted.
Solution of Egs. (3-22) for E,. by determinants yields the equation

Bo= G+ Snt -+ L+ 62

It will be observed that the coefficient of each current on the right-hand
side of Eq. (3-24) is an impedance dimensionally; hence, adopting the
definition,

’
r— Com

S

(3-25)

one notes that the solutions for all the unknown voltages of the (p + 1)-
node network are given by

R I I A S
Ey =z Iy + 25ls + 25513+ - - - + 2;,1,,
B = 2iuli+ 2hels + zngDs + - - + 20,1, (3-26)
E, = z;,lI; + 2;212 + z;’aIa + -+ zlppIp

The several impedances appearing in these equations all have physical
significance and are given special names. These will now be considered
in terms of the equation for E,.
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8-16, Nodal Driving-point Impedance, Admittance. In the general
network described by Eqs. (3-22), let all current generators but /7, be
replaced by their internal admittances alone. This condition is obtained
by open-circuiting each current source but I,, so that /, = 0, n # m.
Then from Eqs. (3-26) one has

En =2 mnln I,=0 n#m
E
[ Em .
or Zpm = ( Im)l,.—(! n#Em (3-27)

This quantity is termed the ‘“‘nodal driving-point impedance’’ between
node m and reference node.

As an example, the nodal driving-point impedance between node 1 and
the reference node in Fig. 3-7a would be the ratio 2y, = E,/I, with the
branches containing I, and I; open.

The reciprocal of z,,, is a useful quantity, the ‘“nodal driving-point
admittance’ between node m and reference, and will be represented by
the symbol y.,. It should be noted that y,.. is not equal to the self-
admittance of the node, Y,m. 2, and y,,,. may be calculated in terms
of the original network admittances by means of Eq. (3-25).

To clarify these relationships, consider the circuit of Fig. 3-6a. The
nodal admittance between node 1 and the reference node can be deter-
mined by inspection: open-circuiting the I, branch, one has by inspection

' Ye(Ye+ Y,
yu— Yz+ YA+ Y'B"'+ YC+ Yv

(3-28)

The student should verify this result by determinants.

3-17. Nodal Transfer Impedance, Admittance. The remaining imped-
ances in Eqs. (3-26) are of the general form z,,. These may be inter-
preted by open-circuiting all current sources but I,, (with the generator
admittances left in place). Under this condition, one has from the
equations

E, =2z, I,=0 n#Em

or 2 = (PI_)I . onEm (3-29)

This quantity is the ‘‘nodal transfer impedance’’ between nodes m and n.
For example, in Fig. 3-7, the nodal transfer impedance between nodes 1
and 2 would be the ratio 2z, = E./I, with the branches containing I,
and I; open. The reciprocal of zj, is the ‘‘nodal transfer admittance”
between nodes 1 and 2 and will be symbolized by yj,. ¥4, is not equal
to Y3, the mutual admittance between nodes 1 and 2.
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The circuit of Fig. 3-6 may also be used to illustrate this concept,
for letting 7, become zero in Eq. (3-21) one obtains

y21=1§:= Y.+ YA)(YB*FYc;’; Y,) + Ys(Yc+ V) (3-30)

3-18. Summary. The results of the preceding paragraphs may be
summarized as follows: Application of the nodal form of analysis to a
network containing p + 1 conductively connected nodes results in p linear
simultaneous equations cach having the general form

leEl + szlg? + I + YmmEm 'l" st + Y"PEP = I"‘

Ymm is the self-admittance of node m, and the other admittances that
appear in the equation are the mutual admittances hetween node m and
the other nodes i the network

1

Y, 2
D +
I=E, Y, Y,
£ e e Y, E, “Yc E,3Y,
0 ®

(a)

Fre 3-8 Cucuit tor comparing mesh and nodal analvsic

Solution ot the p current equations by determinants or other means
vields equations for the unknown voltages between nodes and the refer-
ence node.  Each of these will be of the form

E’" =:7’n111+z'ln‘.’.12+ tot z:nmlm-l- e +zr’anP
where 2/

z} .. is the nodal driving-point impedance between node m and refer-
ence and the other impedances are nodal transfer impedances between
node m and the remaining nodes.

3-19. Example. It is obvious that any given network may be solved
by either the mesh or nodal equations, irrespective of the type of gener-
ator, but values computed directly may not always be the final charac-
teristics desired.  As an example consider the case of a II network con-
necting a generator to a load Z;. The diagram for the mesh analysis is
shown in Fig. 3-8a. Since there are three meshes, three equations will be
set up. Note that the sequence of meshes 1, 2, 3 is arbitrary. It is quite
common to designate mesh 1 as the input mesh and mesh 2 as the output
mesh. The set of three mesh equations will be

(ZO + Za)Il + O - Z¢Is = E,

0+ (Ze + Z1) 12 - ZJI3 =0
—Za.I, —Zds+ (Za+ Zo + Z) 15 =
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The mesh transfer admittance between the input and output meshes
will be by Eq. (3-15)
1,

Y21 = E,
~ Z.Z.
- (Z, + Za)(Zc + ZL)(Za + Zy + Zc) - Zaz(Zc + ZL) - Zcz(zﬂ + ZG)

and the mesh transfer impedance z,; will equal 1/ys,.

For nodal analysis the corresponding circuit will be that shown in
Fig. 3-8b. The only change is that the constant-voltage generator E,
in series with its impedance Z, has been replaced by its equivalent con-
stant-current generator I, in parallel with the admittance Y, (where
Y, = 1/Z, of Fig. 3-8a) and for convenience the network branches have
been designated by their corresponding admittances. Since there are
only two nodes other than the reference node, only two equations will be
needed. They are

(Yo + Yo+ Yo)E, — Wi, = I,
—YE:+ (Yo + Yo+ Y)E: =

The nodal transfer impedance z;,, will be given by Eq. (3-29),

2l = E} = Y,
20T (Y, + Y.+ Y)Y+ Y.+ Y — V2

and the nodal transfer admittance y;, will equal 1/z5,.

Notice that the solution for the nodal transfer impedance does not give
the current through the load, but rather the voltage across it for a given
current from the gencrator source. There is however a relation between
the mesh and nodal transfer impedances for this circuit which may be
derived as follows:

I, = E,;Y,

By = 1, _ I, (of Fig. 3-8a)
Y. Y.

, B, I, 1

= T EY.Y. Y.V

z;,zn = Z,,ZL

It is left to the student to show that the sets of equations in this
example are consistent.

3-20. General Duality, Dual Networks. Comparison of Egs. (3-6) and
(3-22) reveals that a formal symmetry exists between the mesh and nodal
forms of analysis, and important use may be made of this fact in studying
certain classes of circuits.

When two networks exhibit the property whereby the nodal equations
of one network are similar, term by term, to the mesh equations of the
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other, voltage being interchanged with current and impedance being inter-
changed with admittance, the two circuits are said to exhibit the property
of general duality. It will be found that such circuits display similar
properties in so far as impedance is concerned on the one hand and as
admittance is concerned on the other. The circuits of Figs. 3-2 and 3-6
are two such networks. The former is described by the mesh equations
(3-3) and (3-4) and the latter by the nodal equations (3-19) and (3-20).
These pairs of equations are seen to be identical term by term provided
admittance is interchanged with impedance and current with voltage.

One frequently has need for considering passive dual networks, for
example, the T and the IT structures. The former is that portion of the
network between the terminals indicated in Fig. 3-2. Letting Z, and
Zy be zero in order to consider the four-terminal T structure alone, one
has the mesh equations

Z+ ZyI —Zl, = E,
—Z: I+ (Zo+ Z)1, = E,

A TI structure is that portion of the network between the terminals
indicated in Fig. 3-6. Letting Y. and Y, be zero i order to consider
the II structure alone, one has the nodal equations

(Ya+ YR)E, — YgE, = I,

—YBEI + (YB + YC)E2 Iu

It can be seen at once that Eqs. (3-31) and (3-32) are similar, term by
term, with the following interchanges:

Y. for Z, E, for I,
Y for Z, E, for I, (3-33)
YB fOl' Z;

Thus the T and II networks satisfy the condition for general duality.
A direct consequence of this statement may now be demonstrated. Con-
sider the mesh driving-point impedance (z;) of the T network and the
nodal driving-point admittance (yi,)u of the IT network. (z11)r may be
determined by solving the mesh equations for the ratio E./I,, E, = 0.
It is instructive, however, to evaluate this quantity by inspection: it con-
sists of Z, in series with the shunt combination of Z; and Z; (E, being
reduced to zero),

or (Zu)'r =27+

(3-31)

(3-32)

Z:Z,
7+ Zs
Similarly, (y1,)u of the IT network is 7./E,, I, = 0, or by inspection it is
Y 4 shunted by the series combination of ¥5 and Ve,
YsYe

+ Ye

(3-34)

Widn =Ya+ Y (3-35)



104 COMMUNICATION ENGINEERING

One result of the T and IT networks being general duals is immediately
apparent from Egs. (8-34) and (3-35). (¥i,)n may be derived from the
expression for (z;1)r if the substitutions indicated in (3-33) are made.

Another example of this principle is afforded by comparing (z:2)r and
(y3)n. For the former, one has by solution of Eqgs. (3-31)

(z12)r = ?? =0
1
ZrZs + ZoZs + 707,

7 (3-36)

Then, utilizing the principle of general duality and the substitutions
(3-33), one has for (y5,)n

, YaY Y. Y Ye¥
W = AT e T Lga T el (3-37)

It is recommended that the student verify the last two equations. It
will be found that the principle of general duality can greatly simplify
the study of impedance-matching networks.

In certain instances {wo networks which satisfy the conditions of
general duality may further exhibit the property whereby inductance,
capacitance, and resistance in one circuit are replaced, respectively, by
capacitance, inductance, and conductance in the other. In such cases
the two are said to be dual networks o1, simply, duals. Use is made of
the properties of dual networks in the chapters on equalizers and filters.

3-21. Network Theorems. While Ohm’s and Iirchhoff’s laws are the
fundamental working tools in solving network problems, much time can
often be saved by making use of certain theorems. By means of these
theorems, an answer to some specific problems can be secured with such
increased facility that they may be considered the machine tools of net-
work theory. The use of only Ohm’s and Kirchhoff’s laws in their sim-
plest forms may be compared to the exclusive use of a file and a hack saw
where a lathe might be applied.

There are many things in common life which are equivalent to each
other, and when they have been mentally listed as similar situations,
experience which has been secured in handling one case can be quickly
applied to treating the equivalent problems. It is the ability to recog-
nize new setups, to which old procedures can be applied, which enables
some individuals to accomplish so much more in life than others.

In the same way, if there are certain fundamental similarities between
new complicated structures and other simpler networks, it is not neces-
sary to start from the beginning each time a new problem presents itself.
The theorems studied in this chapter establish these similarities. Per-
haps the most important of these theorems is that of superposition.
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8-22. Superposition Theorem. This principle states that: In any net-
work consisting of linear impedances, the current flowing at any point s
the sum of the currents that would flow if each generator were considered
separately, all other generators being replaced at the time by impedances
equal to their inlernal impedances.

This theorem may be proved rigorously on the basis of the foregoing
sections. Consider a multimesh circuit where the number of independent
meshes is p. Then, no matter how complicated, the network is described
by the p simultaneous equations (3-6). Furthermore, by Eq. (3-10) the
current in any mesh m is

_ CinEy , Conls Combin . ., ConEy
-~ D D

L. tepotooo Tt

This solution constitutes a proof of the superposition theorem as each
term on the right gives the contribution of an individual voltage to the
total current I, in terms of a mesh driving point or mesh transfer admit-
tance of the network and shows that this contribution is independent of
the effect of the other voltages. It is left as an exercise for the student
to prove the dual form of the superposition theorem, viz.: In any net-
work consisting of current generators and linear admittances, the voltage
between any node and the reference node is the sum of the voltages that
would appear between the two nodes if each current generator were con-
sidered separately, each other current generator being replaced at the
time by an admittance equal to its internal admittance.

The use of the superposition theorem permits the solution of networks
without setting up a large number of simultaneous equations because
only one generator at a time need be considered. Another advantage of
the superposition theorem is that, if new voltages are introduced into the
system, it is not necessary to solve the network from the beginning. An
example, where new voltages not ordinarily accounted for may be
introduced, is that of a telephone line exposed to inductive interference.

If voltages of different frequencies are introduced, the superposition
theorem permits a solution to be obtained for each individual frequency.
these solutions being independent of each other. Therefore the currents
of each frequency flow as though the other frequencies were absent if the
impedances in the network are linear.

Other typical applications of the principle of superposition will be illus-
trated in the proofs of some of the following network theorems.

3-23. Reciprocity Theorem. In any system composed of linear, bilateral
impedances if a voltage E 18 applied between any two terminals and the cur-
rent I due to E 1s measured tn any branch, their ratio (the transfer impedance)
w1ll be equal to the ratio obtained if the positions of E and I are interchanged.
The proof of this theorem follows directly from the results of the previous
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sections. A linear bilateral network contains only linear self and mutual
R, L, and C elements; hence the two transfer impedances

D D

Zmn = 5 and Zm = 5
nm mn

are equal.

In the application of the reciprocity theorem it should be noticed that
no impedances are interchanged in the transfer of £ and I. The theorem
does not apply to the interchange of a generator with internal impedance
and a load impedance unless these two impedances are equal.

An important conclusion from this theorem is that it proves that a
network of bilateral impedances transmits with equal effectiveness in
both directions, when generator and load have the same impedance.

3-24. Compensation (Alteration) Theorem. In a linear network if any
impedance Z through which a current I flows 1s modified by an amount AZ,
the current increment produced thereby at any point wn the network is equal
to the change in current at that point that would be produced by a generator
of emf I AZ placed in series with the altered impedance.

‘ z ‘ z
Remainder AZ AZ
of I + +
network =~ IAZ «,+Ec=..mz
E=IAZ
(a) (b

F1c. 3-9. Cueutt for proof of the compensation theorem.

Consider the network of Fig. 3-9, one branch of which is shown in
detail. Let a compensating emf E. = —I AZ be introduced simultane-
ously with AZ as shown at a. Then the current 7 in this branch remains
unchanged as will the currents at all other points in the circuit.

Now let a second emf I¥ = +1 AZ be introduced as at b. Then the
current at every point in the circuit will be modified in accordance with
the superposition theorem. However, I + E. = 0; therefore the imped-
ance change AZ alone must produce the same effect as £ = I AZ acting
in the branch containing Z, AZ, and E. = —1 AZ. Since E. exactly
cancels the drop in AZ, the theorem is proved.

This theorem greatly simplifies a study of the effect of impedance
tolerances in network design.

!
The use of the compensation theorem in handling network tolerances may be
illustrated by a simple d-c example. It is desired to calculate the change in 7, in
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Fig. 3-10 when the right-hand resistance increases 20 per cent. In the original
circuit,
I, = 1%50 X ¥4 = }40 amp

At b, the resistance is increased to 120 ohms, and by the compensation theorem a
voltage E = I,AR = 24 volt is added in scries. Then, by the superposition
theorem,

Al = 3§ X ¥{70 X ¥4 = 3§10 amp
The student may verify this result by direct application of Kirchhoff’s laws.

A simpler and more general form of the theorem is covered in the next
section and will be designated the compensation theorem A. It is intro-
duced because of its application in Chap. 9.

10092 10092
+ | -~ 1209
| 1003 3 S
10v 'm Q2 ’D 31009 ar l?zop +
E=I,20=%v
(@) (/]

Fia. 3-10. Circuit for illustrating the use of the compensation theorem.

3-26. Compensation Theorem A. Any impedance in a network (either
linear or nonlinear) may be replaced by a generator of zero internal imped-
ance, whose generated vollage at every instant is equal to the instantaneous
polential difference produced across the replaced impedance by the current
flowing through 1t.

Consider the network of Fig. 3-11. In Fig. 3-11q, one branch of imped-
ance, Z, through which a current / is flowing is considered separately
from the rest of the system. The equations of Kirchhoff’s laws com-
pletely determine all the currents and potentials in the system. These

I 1
Network contaning  }—— == |+
generators and Z% = | Same network as a E»)E 1z
impedances of any type )
(@) ()]

Fia. 3-11. Equivalent netw orks demonstrating the compensation theorem A.

equations, summing up the voltage around any mesh or the current at
any point, will not be altered if the network is changed from Fig. 3-11a
to Fig. 3-11b, and therefore this change cannot affect the current flowing
anywhere in the system.

It should be noticed, in applying the compensation theorem A, that if
any part of the network is later changed, the value of E must be changed.
Observe also that there is no restriction in this theorem on the types of
impedances in the network: they may be bilateral or unilateral, and they
may be linear or nonlinear.
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8-26. Current-division Theorem. In a passive two-branch circuit the
ratto of either branch current to the tolal current equals the impedance of the
other branch divided by the sum of the branch impcdances. Proof of the
theorem consists in writing K of I'ig. 3-12 in terms of the currents and

impedances by Ohm’s law:

1,
’ 7 “71122_ _ _
L—]Z1+Z2—IIZ1—IzZ,
whence
L_ % L 2 (33

Fro. 3-12. Circuit for proving the T Z,+ 7, I Zi+ Z

current-division theorem. L . .
The current-division theorem simpli-

fies the analysis of a number of circuits, particularly those of linear
vacuum-tube amplifiers.

3-27. Equivalent Passive Networks. It is often true that the analysis
of a circuit problem may be simplified by replacing some portion of that
circuit by an equiralent networh whose behavior is already known or
readily calculable.

By definition:

An equivalent network is a network which, under certain conditions cf use,
may replace another network without substantial effect on electrical performance.
Note. If one networh can replace another network in any system whatsoever
without altering in any way the electrical operation of that portion of the system
external to the nctworks, the networks are said to he “networks of general
equivalence.” If one network can replace another network only in some par-
ticular system without altering in any way the electrical operation of that portion
of the system external to the networks, the networks are said to be ‘“networks of
limited equivalence.” Examples of the latter are networks which are equivalent
only at a single frequency, over a single hand, in one direction only, or only with
certain terminal conditions (such as H or T networks). (ASA C42 65.06.500.)

4+ I 2 Ip " '+IA3 415 Trs
s | v [omnd | v [On
1 2 3 4

Fia. 3-13. Networks N and N’ are equivalent if I,’ = I, and I’ = Ip.

Thus two linear, passive networks may be said to be equivalent if, when
identical voltages (of any value) are applied to corresponding terminals
of the two networks, identical currents flow at corresponding terminals
of the networks. This concept of equivalence is illustrated in Fig. 3-13.
The networks N and N’ are equivalent if

IA = Iﬁ and Ia = I;,
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when the voltages E4 and Ejp, of any value whatsoever, are applied to
both networks. If this condition is satisfied, network N’ may be sub-
stituted for N without disturbing any remaining portions of a circuit of
which N may be a part.

In the following sections the conditions for equivalence will be consid-
ered for two-, three-, or four-terminal networks.

3-28. Two-terminal Equivalent Passive Networks. The simplest
example of network equivalence is the two-terminal network shown in
Fig. 3-14a. It is desired to construct a network having the impedance
Z.. of a network a. One might first consider the question of how many
complex impedance elements are required to synthesize Z.. at a single
frequency. This question is answered by considering how many condi-
tions must be satisfied. In general if Z,, is complex, the number of
conditions is two: one must design for a given magnitude |Z,,| and a given
angle 6., or, alternatively, for a given real part R,, and a given imaginary

Z, —

"
Ot x‘
(a)

) (b
Fic. 3-14 Equivalent passive two-terminal networks.

part X..; therefore the unknown must at least have a resistance and a
reactance. In turn these two components may be connected in series
as at b or in parallel as illustrated at ¢. The values of the series form
may be evaluated as follows: Z, must be equal to Z,,; so

Z, = R, +jX, = Z.n/0n = |Z.n|(cO8 0, + j 5in 6,n)
whence R, = |Z.a] cos 6., X, = Z,.sin 6,, (3-39)

The shunt network of Fig. 3-14¢ can be handled most easily by working
in admittance form; hence one notes that Y, must be equal to 1/Z,,; so

1 g _ 1, _ 1 o
Y, = R, X, 1Za] /=8 = \Z2] (cos 6,, — 7 8in B;)
_ |Zal |2
whence R, = cos B X, = S b (3-40)

Lest the student think of Egs. (3-39) and (3-40) as “formulas’ to be
memorized, it is well to work out a typical example that frequently
occurs in the laboratory.

A test is to be made on an artificial line which must be terminated in the
impedance 500 — j153.5 ohms at a frequency of 796 cycles. The elements
available for synthesizing the impedance are a decade resistance box of range 1 to
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1,000 ohms and a decade capacitor covering the range 0.001 to 1 uf. Then the
series form of the impedance will be

w = 2nf = 27 X 796 = 5,000 radians/sec
Z, = 500 — j153.5

= _J
=k wC,

Thus the required series elements are
R, = 500 ohms
=4+ -1
' w X 1535 5 X 10%(1.535 X 10?)
Since the value of C, is greater than that available from the decade capacitor,
the parallel form of network should be considered.

1_ 1

Z 523/-—-17.1°
= (1.827 -+ j0.561) X 1073
1 .

= R, + jwC,

= 1.3 uf
Y, =

= 1.911 X 107%/17.1°

Then the required shunt components are
103

R, = 1827 = 534 ohms
_ 0.561 X 1078 _
Cr = 225 100 0.1121 uf

This set of values 1s quite satisfactory since they may be set up to three significant
figures on the available decade units.

2 1 4 22 2 1 Yy 2

1
Omenmeed

Z3 Y, Ye

3 3 3 3 3 3
(@) () {0
F16. 3-15 Equivalent passive three-terminal networks.

In general since the reactance component varies with frequency, equiv-
alence for any given set of components will hold only at a single frequency.
The synthesis of some complex impedance over a wide range of frequen-
cies is a complicated problem and will usually require more than the two
elements used in the foregoing example.

3-29. Three-terminal Equivalent Passive Networks. Another com-
monly encountered configuration is the so-called three-terminal network
shown in Fig. 3-15a, a network having two pairs of terminals with a com-
mon lead joining one terminal of each pair. It may now be shown that
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the basic definition of equivalence places certain restrictions on the mesh
driving point and transfer impedances of the two networks that are to
be equivalent; thus let N and N’ of Fig. 3-13 be three-terminal networks.
Then for network N one may write

B4 | Es

0, K
In=Pa By (3-41)
211 212 221 292
and for network N’
I, = £y +L" ];‘=L'_".+E" (3-42)

233 234 243 211

Then if corresponding currents are to be equal in order to establish
cquivalence, it must be true that

211 = 233 222 = 244 (3-43)
212 = 24 221 = 243 (3-44)

Inasmuch as the networks are linear and bilateral
212 = 231 23 = 243
and Egs. (3-44) may be replaced by the single condition
219 = 2m (3-45)

It follows from Egs. (3-43) and (3-15) that the two networks will also be
equivalent if they have identical mesh driving-point and mesh transfer imped-
ances. This is a necessary and sufficient condition for equivalence;
hence an equivalent network may be calculated if these three impedances
are known for the original network.

Say that a threc-terminal network is to be designed so that it is equiv-
alent to the original network of Fig. 3-15a. In the interests of economy
the equivalent network should contain the smallest number of elements
possible. This minimum number may be arrived at quite simply by two
methods of reasoning. FIirst, for equivalence to be established, three
design conditions must be satisfied (two driving-point and one transfer
impedance); hence, three independent elements are required in the
unknown network. In general the specified impedances are all complex;
so the three unknown elements will also be complex. Second, if the
student tries to interconnect three terminals with impedance elements,
he will find that only three can be used without placing two or more
elements in series or in parallel. He will also find that the three elements
can be arranged either as a T or a IT as shown at b and ¢ in Fig. 3-15.
In power applications these are termed “star’” and ‘““delta,” respectively.
Thus either the T or the II network may be designed to be equivalent
to the original network.

The design of an equivalent T or IT network on this basis is of particular
advantage when the internal structure of the original network is known,
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for then the unknown elements may be calculated in terms of the imped-
ance determinant and cofactors of the original network.?

By way of illustration say the original network has p meshes, and let the
meshes be numbered so that mesh 1 includes the input and mesh 2 the
output terminals. Then the circuit is described by Egs. (3-6) except
that all the voltages but E, and E. are zero, the network itself being
passive. Then the input and output currents will be by Eq. (3-10)

Il=@E1+-@Ez=&+E2

D D 211 212 (3-46)
I =~(£2E +C_”F =1_"1_‘+_E_3
PTDTVTD T T 2 zm

Then if the II network of Fig. 3-15¢ is to be made equivalent to the
original network, one may write

Il = (YA + YB)El + YBE2
I = +VsE, + (Y5 + Yo)Es (3-47)
and one finally has
1 D 1 D 1 D
MEritoi-te TV T-Ce PTWmTC
(3-48)

The student should consult the reference for an extension of these ideas.

In communication work three-terminal networks may be of consider-
able physical length, terminals 1 and 3 being located some distance from
the other pair, 2 and 3. For this reason end-to-end impedance measure-
ments on networks are often not feasible; hence if one wishes to construct
an equivalent network from measurements on the original network, he
must find some other value to replace the transfer impedance.

The impedances that are most easily measured are the open- or short-
circuit driving-point impedances at each pair of terminals. In this book
these impedances will be designated by the following symbols because
of their wide adoption:

Z,1 = input impedance at end 1 with the terminals at end 2 open-
circuited

Z,» = input impedance at end 2 with the terminals at end 1 open-
circuited

Z,, = input impedance at end 1 with the terminals at end 2 short-
circuited

Z,» = input impedance at end 2 with the terminals at end 1 short-
circuited.

1 M. B. Reed, General Formulas for “T” and “II” Network Equivalents, Proc.
IRE, vol. 33, No. 12, p. 897, December, 1945.
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One method of approach to synthesizing a T section that is equivalent
to the original three-terminal network would be to ascertain whether the
mesh transfer impedance z;, is specified uniquely in terms of Z,1, Z,s,
Z,,and Z,;. A simpler and more direct approach is to determine whether
the elements of the T section itself may be evaluated in terms of these
four measured impedances. Thus, reading from Fig. 3-15b,

Zor = Zy + Z (3-49)

Zu = 2, + 220 (3-50)
' Zy+ Z;

Zor = Zy + Zs (3-51)

Zo=Z+ ;0 (3-52)
' Z +7z,

Then the impedance elements of the equivalent T section must be
as follows: Rearranging Egs. (3-49) and (3-51),

Zl = an - Zg (3-53)
Zy = Zoy — Zy (3-54)

Substitute Eqgs. (3-53) and (3-54) into Eq. (3-30).

ZorZor — ZorxZis — ZosZs + Z3* + ZoZy — ZL3* + ZosZs — Zy?

Zal = Z°2

All but two of the terms in the numerator will cancel, and so by clearing
of fractions
ZuZor = ZorZoy — Zaz

Zs + V' Zox(Zoy — Z._x) (3-55)

Equations (3-53) to (3-55) complete the design of the equivalent T section
except for an ambiguity of sign.

It is of interest to consider the products Z,1Z,; and Z,.Z,;. From
Eqgs. (3-49) to (3-52)

ZorZyy = Z2\Zo + Z3Z3 + Z,Z, (3-56)
Zozznl = Z1Z2 + ZzZa + Z1Z3
Therefore ZolZcZ = Zo2Zul (3'57)

Equation (3-57) shows that only three of the four impedances Z,,, Z,,,
Z,,, and Z,; are unique and leads to an alternative expression for Z; of
the equivalent T,

Zs =+ NZ1(Zoz — Z.3) (3-58)

A similar procedure may be used to evaluate the components of the Il
network that will be equivalent to the original network in Fig. 3-15.
Once again work with the IT section is best carried out in terms of admit-
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tances; thus from Fig. 3-15¢

_ YsYe _ Ya¥Ys
Yo=Ys+ Y, + Vs Yoo =Ye + 5~ Y.+ Vs (3-59)
Yu=Ysa+4+ Vs Yo=Yc+ Vs

whence the design equations of the equivalent Il section, except for an
ambiguity of sign, become
Ya=Y,—TYs (3-60)
Ye=Yo—Tp (3-61)
YB = '\/Yl2(Yal - ol) i '\/YMT)—;:2 - Yoz_) (3“62)

Comparison of the design equations for the T and II networks shows,
once again, the general duality that exists between these two networks.
It will be observed that the interchange of Y, for Z;, Y¢ for Z, and Yp
for Z;, plus the interchange of open-circuit admittance for short-cireuit
impedance, allows the design of the II section from the equations of the
T section.

Inspection of the foregoing design equations for an equivalent T or IT
section in terms of the open- and short-circuit impedances of the original
network shows that an ambiguity is present in the sign of Z; or Y. This
indicates that the design equations can give two T’s or two II’s but only
one of each pair can be equiwalent to the original network. To resolve
this difficulty, additional information is required about the original net-
work. In a large class of problems a knowledge of the phase angle
between I, and I, with the network terminated in a specified load pro-
vides the necessary information. This situation is illustrated in the
following example:

Measurements on a three-terminal network at 1 ke yield the following data:
Z, = 10 + j50 ohms, Z,, = 5 + jO ohms, Z,; = 510 4 j50 ohms. I, lags I,
when end 2 is terminated in a pure resistive load. Design the equivalent T
section.

+Zs = * \VZosi(Zor — Za) = + /5/0° 500/ —180° = F;50 ohms
Solution A. Choosing the positive sign,

= +350 ohms
Z, =2, — Z3 = 10 + jO ohms
Zy = Zos — Zz = 5 — j50 ohms
These values give the T section shown in Fig. 3-16a.
Solution B. Choosing the negative sign,

Z3 = —350 ohms
= 10 4 5100 ohms
Zs = 5 + j50 ohms

which values yield the T section shown in Fig. 3-16b.
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The phasor diagrams of the two networks are also drawn in the figure. Since
network B provides the required sign of phase angle between I, and I, B rather
than A is the equivalent network.

3-30. Physical Realizability of Equivalent Sections. It should be
recognized that the arms of the equivalent T sections of physical struc-
tures are not necessarily physically realizable. It is quite possible for an
individual arm to have a negative-resistance component, i.e., the imped-
ance may lie in any of the four quadrants. If the network which it
represents is physical, the total I2R of all arms will be positive, although
that due to an individual arm may be negative. The presence of nega-

L 10 5-501, L, 10 +100 +j50 5 I,
+7 e +i50 gl

Bo £
]

Fic 3-16 Circuits having the same open- and short-circuit impedances but providing
different phase shifts

tive resistances in an arm of the equivalent network does not prevent its
use in computation, since on paper a negative resistance presents no
difficulty. The equivalent structure may also be set up physically if the
arm with negative resistance is in series or in shunt with an external
impedance whose resistance may be combined with the negative-resistance
arm to make an impedance whose total resistance is positive.

8-31. Equivalence of T and II Networks. In the preceding sections
both the T and II sections were designed to be equivalent to the same
original three-terminal network. Then by the familiar axiom, ‘ Things
equal to the same thing are equal to each other,” one might conclude
that a IT section may be designed to be equivalent to a given T, and vice
versa. The equations relating the impedance elements of a T and the
elements of its equivalent IT are known as the ‘“T-II transformations.”

In one respect, these transformations have already been derived, for
given a T, it is possible to find Y., Yos, and Y,; and to evaluate the I
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components from them by Eqs. (3-60) to (3-62). It is desirable, however,
to have these transformations explicitly in terms of the component
elements, and they may be derived by manipulation of the foregoing
equations. Another approach, which utilizes the original definition of
equivalence, will be used, however, to illustrate a different means of

working the problem.

Fra. 3-17. Circuits for deriving the 7'-II transformations

The T and II networks of Fig. 3-17 are to be made equivalent. Let
the voltages E;, and K, be applied to both networks as shown in the
figure. Then

Y4+ Yn)E, — Ygk, = I,
— Yk, + (Y + YO)E, = I,
and by Cramer’s rule
| Il - )’B
e _ 112 Y+ Yo Y+ Ye Ys
b= v, Tve T v Dt yplr (363)
—Ys Y+ Ye
E, = zfﬁ I, + Y4 j_:,')'e I, (3-64)
) } T
where Y1 = Y, Y5 + YpYc + YaYe (3-65)
The mesh equations for the T network are
(Z1+ Z)1, + Z;1: = E, (3-66)
Zsly + (Z:+ Z3)1, = E, (3-67)

Now by definition, if the two networks are equivalent, corresponding
voltages and corresponding currents are equal; hence coefficients of corre-
sponding terms in Egs. (3-63) and (3-66) and in (3-64) and (3-67) must
be equal. Thus solving for the Z’s one obtains the II-T transformations

Z, = Y)i‘?, Z, = Z%Z“
T T
Y ZsZc
Zy = Y_:z Zy =222 (3-68)
_ Ys _ ZaZe
Zs - ﬁ ZB - ZT

Yi? = Ya¥p + Ya¥Ye + YaYe Ze=Zs+ Zp+ Zc
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The student may show that the corresponding T-II transformations are

-_— Z’
Yi= 7
Z I/ ry 7 /N,
YB = Zfz [1‘2 = 4152 + ZzZ:; + [1‘61 (3-69)
Z
Ya = Z—:z

3-32. Equivalent Four-terminal Networks. A four-terminal network
or two-terminal pair (Fig. 3-18) may lack the common lead of the three-
terminal network but is indistinguishable from the latter in so far as
equivalence is concerned, provided no additional connection exists between
the input and output generators through a third conductor such as ground.
This follows because measurements of the impedances Z,,, Z,2, Z,;, and
Z,2 are made only at one end or the other of the network. To determine

el O Yy P E X

(a) ®)
F1g. 3-18. Four termunal networks or two-terminals pairs. A halanced-to-ground
connection 1s shown at b

the presence or absence of a common lead within the network requires
an additional end-to-end impedance measurement. It may be concluded,
then, that a T or a IT network may be designed to be equivalent to a two-
terminal pair.

The student should know that certain types of communication net-
works, e.g., telephone lines, are purposely ‘“‘balanced to ground.” This
means that both sides of the network have equal shunt admittances to
ground and equal series impedances. Networks of this type operate
between generators that are three-terminal devices, one terminal being
connected to ground (in actual practice perhaps only by stray capac-
itances) as shown in Fig. 3-18b. If a T or a IT network is substituted for
a network operated between two terminals of such three-terminal end
devices, the third terminal being grounded, the common lead of the T or
II network destroys the balance. To make a balanced equivalent of the
two-terminal pair, it is necessary only to divide Z, and Z, of the T net-
work equally between the upper and lower series arms, giving a balanced
T or H network as shown in Fig. 3-19a. A balanced IT or O network
results from dividing the series impedance of the IT network equally
between the upper and lower arms as shown in Fig. 3-19b. It should be
apparent that such modifications of the original structures leave unaf-



118 COMMUNICATION ENGINEERING

fected the open- and short-circuit impedances and the design equations
of the T and II networks.

3-33. Lattice Network. One of the commonest four-terminal networks
encountered in practice is the lattice, or bridge, network shown in Fig.
3-20. The lattice-T transformation will now be derived in terms of the

z,/2 z,/2 2Y,
NV
Zs , Y
NV
z,/2 z,/2 2Y,
(a) ©®)

Fic. 3-19. Balanced networks. (a) Balanced T or H section. (b) Balanced ITor O
section.

F1a. 3-20. Lattice, or bridge, network.

component impedances. If the notation adopted in the previous sec-
tions is applied to I'ig. 3-20, the following relations will be obtained:

_ (Za + 20)(Z. + Za) X
Zol_Za+Zb+Zc+Zd 70
7., = Za+ Z)(Zs + Za) (8-71)

P Za+¥tZ 4 Zs
- Zazwdie + ZoZZg + ZoZaZy + ZoZ.Zg

o Za+ Z2)(Zy + Za) (3-72)
_ Z.ZyZo + ZaZ.Zoa + ZuZbZa + ZoZ.Z4 ]
b = Z. + Z5)(Z. + Za) (3-73)
—_ 2
Then Z, — Z (ZoZ. ZoZ3) (3-74)

T ZaF Zo + Zo F Za)(Za + Z2)(Z + 7Za)

Insert the results of Eqs. (3-74) and (3-71) in Eq. (3-55) to obtain one
of the equivalent T-section arms,

_ (ZoZ. — Z.24)*
Z“'*wa+m+zr+mv (8-75)
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It is of interest to note that, in the special case where Z; = 0, the
lattice structure becomes a IT section and so Eq. (3-75) should reduce to
the II-T transformations. Therefore the positive root will be used, and
Eq. (3-75) becomes

_ ZvZ. — Z.Z4
S 2T 2,77+ Za
By inserting Eqgs. (3-75), (3-70), and (3-71) in Eqgs. (3-53) and (3-54)

7, = ZiZ: + 2Z.24 + ZvZa
VU Zo+ Zv+ 2.+ Za
_ ZaZb + 2ZaZd + Zch

2= G R n A 4T Za (3-78)

z (3-76)

(3-77)

Lattice structures are sometimes used in preference to ladder structures
(T or II networks). These are rather special applications, and so the
relations for the design of a lattice structure will be discussed in a later
chapter after the relations in repeated, or iterative, structures have been
developed.

3-34. Equivalent Active Networks. While the discussion of equivalence
thus far has been restricted to passive networks, corresponding ideas may
be set up for circuits containing voltage or current sources, but a new
definition of equivalence is required for these active circuits: Two active
networks are said fo be equivalent if, for any value of load impedance con-
nected to the lerminals of both circuils, they both produce the same value of
load current. Two theorems covering the equivalence of active circuits
will be presented.

3-36. Thévenin’s Theorem. The current in any tmpedance Zg, con-
nected to two terminals of a network, is the same as if Zr were connected o a
simple generator, whose generated voltage s the open-circuited voltage at the
terminals in question and whose impedance is the impedance of the network
looking back from the terminals, with all generators replaced by impedances
equal lo the internal tmpedances of these generators.

In Fig. 3-21 the upper part is a diagrammatic representation of
Thévenin’s theorem. E, is the voltage measured at terminals 1, 2
with Z 5 removed, and Z, is the impedance measured back from terminals
1,2. In measuring this impedance it is assumed that the generators have
stopped generating; i.e., they are replaced by impedances equal to their
internal impedances.

The network can be reduced to the simple network of Fig. 3-21¢ with
three impedance elements and one generator. If there is more than one
generator, then, by the superposition theorem, each could be considered
separately in the proof. When each had been reduced to the simple
network at the right, the generated voltages would all be connected
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in series and could be replaced by a single generator. The proof holds,
therefore, for any number of generators in the network.
In Fig. 3-21c a solution of the T network gives

. EZ
Z\Zo+ ZoZs + Z )23 + Zr(Z, + Zy)

Equation (3-79) can be rearranged so that Zz will appear in the denom-
inator only and be alone.

I, =

I, = (3-79)

EZ/(Z, + Z3)
Z)\Zs + ZyZs+ Z,Z,4
I+ Zs

(3-80)
+ Zr

This current is the same as would flow for any value of Zg, if Zr were
connected to a generator whose generated voltage is EZ;/(Z, + Z;) and
whose internal impedance is (Z1Z2 + Z2Z3 + Z:Z3)/(Z, + Z5s).

zl
Network contaning 19
impedances and . %Z,t = e Zg
generators 20—

zl 72,42,2,42, 2y
T z,+z,

FIG. 3-21. Equivalent networks as given by Thévenin’s theorem

(@)

If Zgr is removed, the voltage at the terminals 1, 2 of the T network
will be

Zs
W+ Z,

and if Zg is removed and E 1s replaced by a short circuit, the impedance
at the terminals 1, 2 will be

E,.=E (3-81)

Z1Zs _ ZnZy + ZiZs + Z1Zs
Z + Za Zl + Za

By comparing Egs. (3-80) to (3-82), it will be seen that Eq. (3-80)
gives the current which will flow if a generator whose emf is given by
Eq. (3-81) and whose internal impedance is given by Eq. (3-82) is con-
nected to the load Zz. This proves Thévenin’s theorem.

While Thévenin’s theorem as stated at the beginning of the section
can be applied quite readily when the internal components of the genera-

Z, =12, + (3-82)
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tor and their configuration are known, another case often is encountered
that requires some ingenuity in addition to the theorem. Say some
generator is available in the laboratory, such as an audio oscillator. One
wishes to determine its Thevenin’s equivalent circuit in order to predict
its behavior when serving as the voltage source for some complicated
network. What measurements can be made on the oscillator which will
allow one to synthesize the equivalent generator? Remember, one must
also be sure the source is behaving as a linear network.

Two quantities must be determined, as may be seen from Fig. 3-21d:
|Eo| (only the magnitude is required since the phase may be assumed
zero) and Z,. Feedback is employed in many typical oscillators; hence
the internal emf cannot be made zero readily without changing the
equivalent internal impedance; hence the determination of Z, by a bridge
measurement is not feasible Accurate a-¢ current measurements are
difficult to make; so the problem resolves into: How many voltage measure-
ments need be made? Since there are three unknowns, three voltage
measurements will be required. The different values of voltage are
obtained for different load conditions.

1. E,. can be obtained by direct measurement under no-load con-
ditions, i.e., with Zp = .

2. Let Zzx = R, + jX,; then the voltage across the load will be

R, +jX,
(Be + By + (X, + X1)

Taking magnitudes, squaring, and rearranging,

E, = E, (3-83)

(Ro+ B+ (X, + X0t = | 2= (Rr 4 X (3.89)

E,,
E,
3. Let Zr = R, + jX.; then in a similar manner
E,

(Ro+ R + X, + Xt = | Z=[ (R2 4 X2y (385)

2
Subtracting Eq. (3-85) from (3-84) and expanding,
R, 4+ 2R,R, + R:* + X,* 4+ 2X,X, + X1i* — R,2 — 2R,R: — R»?

RS S5 & NS C R IRCEES DR L X )
(3-86)
2(R, — R)R, + 2(X, — X)X,
E 2 E 2
= (R + X1 ( Zeel 1) — (Be* - Xy ( Bel _1) 1)
E1 E2

Now it is desirable to minimize the amount of calculation necessary in
finding R, and X,; thus one tries to choose the loads intelligently. If



122 COMMUNICATION ENGINEERING

one chooses X; = Ty, By. (3-87) may be solved for £, in terms of known
quantities. Then X, may be determined from either Eq. (3-84) or Eq.
(3-85). Notice, however, that both these equations are quadraties and
there will be ambiquity in the sign of X,.

If, on the other hand, one chooses RB; = R, Eq. (3-87) may be solved
for X, with no ambiguity of sign.

_ (B + X)) (|Eoe/ Er|* — 1) = (B2? + X2*)(|Eoe/E|?

-1)
3(X: = X) (3-87a)

X,

R, may then be determined from either Eq. (3-84) or Eq. (3-85), and
the choice of sign is no problem since R, must be positive. Thus R,,
X, (with proper sign), and |E.] may be determined in terms of the three
measured voltages.

Even further simplification results if |E,| and |E;| are measured with
purely capacitive loads, making B; = R; = 0. Under these conditions

= Xlz(lEm/Ell.z:.l) - Xzz(IEo:/E'ZIZ - 1)

X 2(X, — X»)

and from Eq. (3-84)
Rz =

(3-88)

2
Xi? — (X, + X1)? (3-89)

Eo.
E

it being understood that X; and X are negative quantities. A similar
reduction in Eq. (3-87) cannot be obtained for inductive loads because
the condition R, = R, = 0 cannot be satisfactorily approximated with
physical inductors.

A familiar example of an application of Thévenin’s theorem is the
equivalent-plate-circuit theorem of electronics whereby the plate circuit
of a vacuum tube operating under linear class A conditions is replaced
by an equivalent generator uE, in series with the dynamic plate resistance
of the tube. These two equivalent series components may be used to
calculate the a-c plate current flowing in the load. Use of the theorem
allows the complicated structure of the vacuum tube to be replaced by
an equivalent generator and series impedance, in so far as the calculation
of a-c load current is concerned.

3-36. Norton’s Theorem. A theorem suggested by E. L. Norton of the
Bell Telephone Laboratories is: The current in any impedance Zg, con-
nected to two terminals of a network, is the same as if Zr were connected to a
constant-current generator whose generated current is equal to the current
which flows through the two terminals when these terminals are short-circuited,
the constant-current generator being in shunt with an impedance equal to the
impedance of the network looking back from the terminals in question.

This theorem is simply the dual of Thévenin’s theorem. It is illus-
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trated by Fig. 3-22. If one starts with Thévenin’s theorem, it is apparent
from Fig. 3-22b that
E,.

~ 7+ Z» (3-60)

Ip

On short circuit the current would be

1, =2 3-91)

[
In Fig. 3-22¢ the current through Zx would be

_ L.z,

E Zc + ZR
Combining Egs. (3-91) and (3-92),

_ _E,.
= Zﬂ + ZR
which shows the equivalence of b and ¢ in Fig. 3-22, and hence the equiva-
lence of ¢ to a.

I (3-92)

I (3-93)

¥/

(4

LA I I,
Network contamingo- { { &
impedances and Z,=(V) Zy =) Zy
generators o
) (c)

2
(a) (b
Fi1g. 3-22. Equivalent networks as given by Norton’s theorem. (Compare with
Fig. 3-5.)

One of the commonest applications of Norton’s theorem is the shunt
form of the equivalent plate circuit of a vacuum tube operated under
linear class A conditions. Here the plate circuit of the tube is replaced
by a current generator g.E, shunted by the dynamic plate resistance,
in so far as the calculation of a-c load current is concerned. Another
use of the theorem was covered in Sec. 3-10.

3-37. Limitation on Thévenin’s and Norton’s Theorems. The student
should pay particular care to note the wording of the two foregoing
theorems. The equivalence afforded by Thévenin’s or Norton’s equiva-
lent circuit holds for the load current and not for conditions within the
generator itself. Failure to recognize the limitations of these theorems,
as well as of any other theorem, can lead to ridiculous results.

To illustrate this point, it will be shown that the power loss within the
generator of Fig. 3-21c is not the same as the power loss within the
equivalent generator of d.
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Let all the impedances be pure resistances to simplify the calculations.
Then in the former circuit under no-load conditions, that is, Zr — o,
the power loss within the generator is P, = E2/(R; + R;), whereas the
power loss within the Thévenin’s equivalent generator under the same
no-load conditions is zero. Neither Thévenin’s nor Norton’s equivalent
circuit can be used to calculate circuit efficiencies.

3-38. Other Theorems. Other theorems will be developed in later
chapters as subsequent theory is introduced. Important examples are
Foster’s reactance theorem and the theorems governing the maximum
transfer of power.

3-39. Special Properties of T and IT Networks. The amount of space
that has been devoted to T and IT networks indicates that they assume
important status in the analysis of communication networks. Because
of their importance certain special properties that they exhibit will be
investigated, properties that are primarily concerned with their imped-
ance characteristics: the iterative, image, and characteristic impedances.

3-40. Asymmetrical T and II Networks. The first impedance of the

asymmetrical T network to be considered

2 Z, is the ilerative impedance. By defini-
tion: “ The iterative impedance of a trans-
Z,— z, z, ducer is that impedance which, when

connected to one pair of terminals, pro-
. . ducesa like impedance at the other pair of
o, emetrycal T section 4 orminals.”” (ASA C42 65.08.387.) By

applying this definition to the asymmet-
rical T section, i.e., where Z, = Z,, of Fig. 3-23, by definition if Zr = Z,,,
then Z,, = Z,, and one may calculate Z,, in terms of the known compo-
nents of the network. Thus

_ Zy(Zy+ Z,) _
Zw =121+ ZTm = Zu (3-94)

Cross multiplying,

Zl(Zz + Za + Zu) + Za(Zz + Zu) = Zst(Z2 + Za + Za)
Zo*+ (Zy — Z)Zy — (Z1Zs + Z2Zs + Z:1Zs) = 0 (3-95)

and by the quadratic formula

_ — 2
2,050y JOS B Gzt 220+ 2.2

or 2,-07 %y \/(Z‘ 28\ (2, + 22, (3-96)

As a general rule the choice of the sign in front of the radical is gov-
erned by the physical realizability of Z,. If the latter is to be built up
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as a passive physical structure, its real part must be positive, a condition
that is usually satisfied by using the positive sign.

The student should observe that the value of Z, given by Eq. (3-96)
applies only when Z, is on the input side of the T section. If the T sec-
tion is reversed, putting Z; on the input side, the new value of Z,, will
differ from Eq. (3-96). The derivation of this new value is left as an
exercise for the student.

The usefulness of Z,; as a concept in circuit analysis will become evi-
dent in the study of iterative networks, which are discussed in Chap. 6.

The iterative impedance of an asymmetrical II section, i.e., one in
which Z4 # Z¢, may be found in a similar manner, or one may utilize
the principle of general duality between the T and II networks and write
for the iterative admittance, Y4 being on the input end,

- Y.+ Yo)? -
va=Yag Yoy [T, i tvar,  gen

Another pair of impedances, the image impedances, also are charac-
teristic of an asymmetrical four-terminal passive network. By definition:
“The image impedances of a transducer are the impedances which will
simultaneously terminate all of its inputs and outputs in such a way that
at cach of its inputs and outputs the impedances in both directions are
equal.”  (ASA C42 65.08.390.)

More specifically for three- or four-terminal structures, such as the T
and II networks, the two image im-

Zl ZZ
pedances, Z1; and Zj are two values 1 3
of impedance such that, it end 1 of
the network is terminated in Z;,, the 2 l{ % Z } 2
input impedance at end 2 is Z; and
2 4

if end 2 is terminated in Z;s, the in-

putimpedanceatend 1is Z;;. From Fic. 3-24. Asymmetrical T section illus-

this definition their values can be rting the mage impedances.

determined in terms of the components of a T section as in Fig. 3-24.
The input impedance at terminals 1, 2, when Z;. is connected between

terminals 3, 4, is by definition, Z;;. Therefore

(Z2 + ZI?)Z.! (3'98;

Z!1=Z1+Z2+Za+zn

Similarly, when Z;, is connected to terminals 1, 2, the input impedance
into terminals 3, 4 is Z;,. Therefore

(Zl + ZII)ZB (3_99)

In=2% 37717,
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Solving these two equations simultaneously yields

Z Z
Zn = Z;j; 7 BZa + 2aZs + 2:2)) (3-100)
Zrz = g: ::_- g: (Z\Z2 + Z:Z; + Z:1Z5) (3-101)

The student may recognize the factors within the radical as the open-
and short-circuit impedances of the T network. Hence alternative
expressions for the image impedances of the T are

Zrl = V ZOIZCI
Zis = \/ZnZa (3-102)

Corresponding equations for the image admittances of the asymmetri-
cal II network may be derived by the principle of general duality. It
will be found that the concept of the image impedances of a network is
of particular use in the design of impedance matching networks, Chap. 11.

8-41. Symmetrical T and II Networks. The symmelrical T section is
one in which the two series arms are equal, that is Z, = Z,. Under this
condition, from Eq. (3-96),

Zy =2+ 222, (3-103)
and from Egs. (3-100) and (3-101)
Zn = Z12 = \/Z:® + 22.Z; (3-104)

It may be observed from these equations that the image and iterative
impedances of the symmetrical T network coalesce into a single value
which is given a special designation, the characteristic impedance, Z,.
The same situation holds true for the symmetrical II, where Y4 = Yg.
It is the usual practice to adopt a special notation when one is dealing
with the symmetrical T section. The two equal series arms are each
z/2 z,/2 designated Z,/2 and the shunt arm Z,
! ! as shown in Fig. 3-25. It is conveni-

ent to derive expressions for the char-
z, Z, Z, acteristic impedance in terms of this
new notation; thus the characteristic

Fig. 3-25. Symmetrical T network il- impedance Z". will be t%m't Va!ue of
lustrating the characteristic imped- impedance which, when it terminates
ance. the network, causes Z,, to be equal to
Z,. To state this mathematically, if the section of Fig. 3-25 is termi-

nated in Z,,

Zx(Z\/2 + Z,) (3-105)

Ia=2e= g Yz 0t Tt 2,
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Clearing and taking the square root,
7 2
Z, = \/z,z, + 2 (3-106)

Equation (3-106) permits calculation of Z, when Z, and Z; are known.
It is not in optimum form for handling complex impedances, however.

The rearranged form
Z, = \/Zzl (222 + %) (3-1060)

is much better for this purpose, a fact that may be verified by working a
numerical example.

Frequently the problem arises in the laboratory of determining the
characteristic impedance of a symmetrical unknown network, i.e., one
where Z; and Z, are not known. For such a situation the open- and
short-circuit impedances of the network can be measured. Because of
symmetry in the network

Zal = ZoZ = Zoc
and Zg =2 = Zy

Then, since Z, and the image impedances of a symmetrical network are
identical,

Zo = \/ZuZn (3-107)

Equation (3-107) applies to the symmetrical T section as well as to an
unknown symmetrical network. It is suggested that the student verify
this statement by evaluating Z,. and Z,. in terms of Z, and Z, to show
the identity of Eqgs. (3-106) and (3-107).

It follows, then, that the components of a symmetrical T section may
be calculated in terms of the open- and short-circuit impedances. Using
the new notation, Egs. (3-53) to (3-55)
reduce to

zZ_ ., _ 3

g = Ze— 2 (3-108)

Zs = /7ol =~ Z) Y,
PROBLEMS P

8-1. (a) Using nodal analysis, calculate the Fio. 3-26. Bridged T network.
input admittance between terminals 1, 4 of the bridged T network of Fig. 3-26. (b)
What is the input impedance between the same two terminals? (¢) What is the nodal
transfer admittance between terminals 1, 4 and 3, 4?

8-2. Repeat Prob. 3-1, using mesh analysis.

3-8. (a) A two-terminal impedance consists of a 1,000-ohm resistance shunted by
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a 450-mh inductance. Calculate the components of an equivalent series network at
159 cycles. (b) Will the two networks be equivalent at 796 cycles?

8-4. An unknown network with two terminal pairs yields the following measure-
ments, and I, lags I, when the load is resistive:

Zy =0 Z,» = +3j200 ohms
Zy = —j50 ohms Zy =

a. Calculate the components of an equivalent T’ network.

b. Repeat for an equivalent II network.

8-56. Reduce the bridged T network of Fig. 3-26 to an equivalent 1I network, and
verify the results of Prob. 3-1a.

3-8. Construct a network involving eight resistance elements, and then reduce this
network to an equivalent T section and an equivalent II section.

8-7. Construct a network involving eight impedance elements, each element to
contain resistance and reactance, and then reduce this network to an equivalent T
and an equivalent IT section.

8-8. A four-terminal network that is known to be balanced to ground and to have
inductive series arms yields the following data:

Zol
Zal

10 + 710 ohms Z,2 = 10 + 710 ohms
10 — 710 ohms

Calculate the components of a balanced equivalent T section.
N/a-s. A transformer has two mmput and two output terminals with the following
measurements:

Zy = 400 + 34,000  Z,s = 100 + 71,000  Z,, = 38 + j380

Determine the equivalent T and II sections.

8-10. A generator with a generated voltage of 1 volt and an internal impedance of
1,200 + 71,900 ohms is connected to the mput terminals of the transformer of Prob.
3-9. Determine from Thévenin’s theorem the equivalent generator which can replace
the network and actual generator as far as the
load current 1s concerned.

L 8-11. It is desired to investigate I, as a
L I) function of frequency in Fig. 3-27. This may
L
R

(S

!

be simplified if the network 1s reduced to an
equivalent series circuit.
+ a. Derive the components of the equivalent

F1e. 3-27. Circuit for Prob. 3-11. series circuit as far as I, is concerned.

b. If the reactance of C is negligibly small
ag compared with r,, what simplification can be made n the equivalent cireuit?

¢. What is the value of Iz, in polar form, under the conditions of (b)?

8-12. Show that the T-NI transformations give circuits that are equivalent at all
frequencies, provided that the T is constructed of inductances alone or capacitances
alone.

8-18. The following data are obtained for an unknown generator at a frequency of
1 ke: (1) The open-circuit voltage is 10 volts. (2) The voltage across a 500-ohm-
resistance load is 5.25 volts. (3) The voltage across a 250-ohm-resistance load is
3.46 volts.

a. Determine the components of the Thévenin equivalent generator.

b. Determine the components of the Norton equivalent generator.

LE,
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8-14. (a) By calculating the power loss within the two equivalent generators cal-
culated in Prob. 3-13, show that the equivalence does not hold within the generators:
(b) By calculating the power dissipated in a 400-ohm resistive load, show that the
equivalence does hold for the load.

8-18. Calculate the iterative and image impedances of a T network in which

Z, = 30 +j7.50hms 7, = —53,220 ohms
Z, = 50 + 510 ohms

8-16. For a certain network

Zoy = Zos = 100 — 57.2 ohms
Zy = 90 + j22 ohms

Derive the components of the equivalent balanced T section at w = 5,000 radians/sec.



CHAPTER 4

RESONANCE

In the networks used in power-distribution systems, resistance and
inductive reactance play the major role, while capacitive reactances are
of only minor importance. This restricted use of capacitive reactances is
due to the large size and cost of capacitances which could handle a reason-
able number of volt-amperes at commercial frequencies.

Inductive reactances increase and capacitive reactances decrease as the
frequency is raised; therefore even the inductive reactance or capacitive
susceptance of a length of wire connecting two elements cannot be neg-
lected at high frequencies. Use is therefore made of the fact that a
capacitive susceptance can be neutralized by an inductance in parallel,
or a series inductive reactance can be nullified by a series capacitive
reactance of the same value. This phenomenon is called ‘‘resonance.”

Because of the fact that one type of reactance increases with frequency
while the other decreases, the total reactance or susceptance can be
reduced to zero at only one frequency. This gives an important use of
resonance, in that, by its means, circuits can be designed which will
transmit freely certain frequencics and greatly impede others. This
enables the use of a single medium, such as a telephone line or free space,
for the transmission of several messages simultaneously, selective circuits
at the receivers picking out those bands of frequencies associated with a
given message for routing to its proper destination.

Two types of resonance have been referred to: (1) series resonance, or
the neutralization of series reactance, and (2) parallel resonance, or the
neutralization of parallel susceptance. TFarallel resonance is often and
preferably called “‘antiresonance’ to distinguish it from series resonance.
Either or both types of resonance may occur at different frequencies one
or more times in a given network, the number of such resonant points
depending on the number and character of the meshes.

4-1. Series Resonance. The simplest type of resonant circuit is a
series circuit consisting of resistance, inductance, and capacitance as
shown in Fig. 4-1. In such a series circuit resonance is defined to be
the condition that obtains when the total net reactance is zero. The

resonant frequency f, is that value of frequency at which resonance occurs.
130
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Phasor diagrams of the series resonant circuit are also drawn in this figure
for the three cases where the frequency is less than, equal to, and greater
than the resonant frequency. It will be seen that, when the reactance of
the inductor is equal to the reactance of the capacitor, the phasor sum
of the voltage drops across the inductor and the capacitor is zero. The
total voltage, which is the phasor sum of the individual drops, is then a
minimum for a given current and equal to the drop due to the resistance.
If the frequency is increased above resonance, the total reactance will
increase, so that for a given current the voltage will be greater. Like-
wise, if the frequency is decreased below resonance, the total reactance
and voltage will increase again.

¥
EL“IXL ER I Eg=Ep
E =1Z E IR
R

=1xc

f<f, f=1, >t

Fi1c. 4-1. Resonance in a series circuit.

The total impedance of a series circuit can be determined by adding
the individual impedances in the complex form

. 1
Z=R+j <wL - ;C> (4-1)
It can be seen by inspection that |Z| is a minimum when
L=-"1 (4-2)
k=0 -
or the resonant frequency is
1
y = ———— 4-3
f 2r \/LC “-3)

At this frequency the reactive term, which is the only one which varies
with frequency, disappears. At resonance, therefore,

and the circuit has unity power factor. At lower frequencies 1/wC > L,
and the total reactance is capacitive, while at frequencies higher than
resonance wL. > 1/wC, and the circuit is inductive. In determining how
the reactance of such a circuit varies with frequency, use can be made of
sketches showing the way each individual element behaves.
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4-2. Reactance Curves. A curve is drawn in Fig. 4-2a, showing the
variation with frequency of the reactance of a capacitor. This is the
hyperbola X¢ = —1/wC. Tigure 4-2b is the corresponding curve for the
reactance of an inductor, which is the straight line X, = oL. In Fig.
4-2¢ these are combined and added to get the total reactance Xr. The
frequency at which the curve crosses the abscissa is the point of resonance.

In actual circuits pure reactances are not present, the resistance R
being largely a part of the inductor, but the general considerations are
the same, except that the voltage measured across any physical element
would be the phasor sum of its /X and IR drops.

The curves of Fig. 4-2 may be presented in another form to give a
handy nomogram for the calculation of reactance and resonant frequency.

+ + wL + %
Xy
x Frequency X Frequency x Frequency
0 0
Xc
- 1 — -
“wc
(@) ®) (©)

F16. 4-2. Reactance sketches of a series resonant circuit.

This nomogram is derived by plotting the reactance vs. frequency curves
on log-log paper. (‘onsider the reactance of the inductor L,

X1 = wl = 2xLf (4-5)
and taking logarithms

log X1 = log 2xL + log f (4-6)

Eq. (4-6) can be seen to plot as a straight line with unit slope and with
y intercept equal to log 2xL. In a similar manner the reactance of the
capacitor C is!
-1 -1
Xe = 6 = gmer 7

1 In accordance with the recommendations of the ASA the symbol X¢ is used here
to designate the capacitive reactance, —1/wC. There is variance in the past literature
on this point, in many cases the usage being X¢ = +1/wC. The student in reading
the literature should make a practice of checking which sign is used by cach author.

Xy is defined to be +wL. A general rcactance X carries its own sign. The
reactance of an inductance and capacitance in series is written X = X, 4+ X¢. Cor-
respondingly By = —1/wL and B¢ = +wC. The susceptance of an inductance and
capacitance in parallel is B = By + Be.
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and taking logarithms of the magnitudes
1
log | X¢| = log 50~ log f (4-8)

Equation (4-8) also plots as a straight line with negative unit slope
and with y intercept equal to log (1/2xC). If, now, Egs. (4-6) and (4-8)
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(300m) (30m) (3m) (30cm) (3cm) (0.3cm) (0.03cm)
Frequency
Fic. 4-3. Reactance chait  Always use corresponding, i.e, upper or lower, scales.
(General Radio Company.)
are plotted on log-log paper for different values of L and C, the family
of straight lines of Iig. 4-3 results. This nomogram may be used for
determining reactance and resonant frequency as well, for Eq. (4-2) is
represented on the figure by the intersection of the two curves represent-
ing the particular values of L and € involved.
4-3. Loci of Impedances and Admittances of Series Circuit. The
locus of the terminal point of the impedance phasor, as the frequency is
changed, is a straight line as illustrated in Fig. 4-4a. Since

, 1
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this locus will be parallel to the reactance axis at a distance B. As the
frequency is raised, the impedance phasor will be represented successively
by Z., Zs, Z3, Zs, Zs, . . . and will extend from the origin to points on
the vertical locus through R.

The locus of the corresponding admittance will now be determined.
The derivation will be carried out on a geometrical basis and then will
be related to the electrical circuit. In Fig. 4-4b the circle OBGO is con-
structed to that its diameter OG = 1/0OR. It is desired to find the rela-
tionship between any point X on the vertical line through R, and a point

Z plane Y plane
X e X B Y,
Zs B : Y,
Y3
o Z, o 0
z, | B UG R Yy, G
z, Y;
Y
2

(@) (] ()

F1a. 4-4. Impedance and admittance loci of a series resonant circuit.

B, which is the point of intersection of the straight line OX and the cir-
cle. The angle OBG@, being inscribed in a semicircle, is 90°. Then
because the triangles OBG and ORX are similar

OB _ OR

06 ~ 0Xx (4-9)
But by the construction of the circle
1
oG = OR or OG-OR =1 (4-10)
1
Therefore OB = 0% (4-11)

Since X is any point on the vertical line, it may be concluded that the
transformation [Eq. (4-11)] maps the vertical line, point by point, into
the circle.

These geometrical results may now be applied to electrical circuits.
For any two-terminal network, the impedance and admittance are
related by

1
Y = or |Yl_/_0y = ]—Z_|70:
1 Ui

0, = —6, (4-12)

~ NI

whence Z]
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¥

Since the electrical circuit requires a change of sign in the angle 8,
the lower half of the impedance line maps into the upper half of the
admittance circle and the upper half of the impedance line maps into the
lower semicircle.

Now, the variation of Z with frequency for the series resonant circuit
is given by a vertical line in the Z plane representing a constant value of
R and a varying value of X. Thus the corresponding admittance will
be represented by a circle of diameter G = 1/R lying along the real axis
of the admittance plane. This situation is shown at a and ¢ in Fig. 4-4,
where corresponding values of Z and Y are represented by corresponding
subscripts. This circle diagram has important applications in electro-
mechanical impedances such as telephone receivers, piezoelectric crys-
tals, and magnetostriction oscillators, where resonant mechanical systems
reflect their characteristics back into the electrical networks, and in the
analysis of induction and synchronous rotating machinery. The trans-
formation Y = 1/Z is also of aid in the study of transmission lines.

The principle that has just been illustrated, whereby the straight line
representing Eq. (4-1) in the complex Z plane is mapped into a circle in
the complex Y plane by the transformation ¥ = 1/Z, is but one example
of the so-called linear transformation of complex-variable theory. This
transformation

_a+ f2

where «, 8, v, and § are complex constants, maps circles in the complex
z plane into circles of the complex y plane, it being understood that
straight lines are circles of infinite radius. If @, 8, and v be set equal to
zero and 8 equal to unity, Eq. (4-13) reduces to the special case specified
by Eq. (4-12).

4-4. Quality Factor Q. The equations that govern resonance may be
simplified by introducing the quality factor @ of the resonant circuit.
This quantity will now be defined.

Basically @ is defined as the quality factor of an inductor and as such
is a measure of the efficiency of energy storage in the inductor when an
alternating current is passed through the inductor. Mathematically,
the definition is
max energy stored

Q@=2r energy dissipated/cycle

(4-14)

or, multiplying numerator and denominator by f, the frequency of the
current,

max energy stored
avg power dissipated

Q=0 (4-14a)

In this book, the Q of an inductor will be designated by the subscript
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L. @ may be expressed in terms of the resistive and inductive compo-
nents of the inductor and in terms of the frequency of the current. To
illustrate this, let a current of rms value I and of frequency f flow through
the inductor represented in Fig. 4-5a. R and L are, respectively, the

R
R
Rp L, R’ C,
L
wL
Q="

R 1
Q = -2 Q = — Q“""CpRp
@ ® L wLp © ¢ wCR @
L Q)= ZF
c
w.L
& meE

(e)
F1a. 4-5. Circuits for calculating the figure of merit Q

series resistance and inductance of the inductor at frequency f. Then

Max energy stored/cycle = %f 2

—SVRIE =L @)
and Avg power dissipated = |I|2R (4-16)

Substitution of Egs. (4-15) and (4-16) into Eq. (4-14a) reduces the quality
factor of the inductor to
QL = %—J (4-17)
It should be noticed that Q; depends upon frequency, and hence a
numerical value of @, has meaning only when the corresponding value
of frequency is known. It might seem from Eq. (4-17) that Q. varies
linearly with f. This is not generally true, however, because L and R
also vary with frequency in physical inductors. The reasons for this
variation are discussed later in the chapter.
At any frequency an inductor may also be specified in terms of its
effective shunt resistive and inductive components, R, and L,, as shown
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in Fig. 4-5b. It is left as an exercise for the student to show that the
expression for Q. in terms of these shunt components is

QL = ‘%’ (4-18)

While the concept of @ was originally applied to inductors, it may be
extended so that the efficiency of energy storage in a capacitor, or in any
two-terminal network for that matter, may be expressed in terms of the
circuit components and frequency. Thus, for example, if the series
resistance and capacitance of a capacitor are, respectively, R and C as
in Fig. 4-5¢, evaluation of Eq. (4-14a) when an rms current |I| of fre-
quency f flows through the capacitor shows the quality factor of the
capacitor to be

1
QC = m

On the other hand, if the capacitor is represented by its shunt compo-
nents R, and C,, the quality factor becomes

QC = prRp (4—190)

In practice, Q¢ is often replaced by its reciprocal, the dissipation factor.

A further extension of the definition of @ to a two-terminal network
containing both L and C is often of aid in the analysis of communication
circuits. Thus in Fig. 4-5e¢ it is possible to determine the quality factor
Qr of the circuit comprising R, L, and C in series. It should be noticed,
however, that Eq. (4-14a) involves the mazrimum energy stored per cycle;
hence @Qr will be expressed in terms of either L or C depending upon
whether the frequency of the current is greater than or less than the
resonant frequency of the combination. This is illustrated in the follow-
ing example:

(4-19)

In the series resonant circuit of Fig. 4-5¢ the maximum energy stored per cycle
in-the capacitance is

|Bol2c

2
(We)m === |Ecl®C = il

wiC

and the maximum energy stored per cycle in the inductance is
(Wi)m = |II’L

at frequencies below resonance f < f, and wL < 1/wC. Hence
We)m > (Wi)m

Thus below resonance, by Eq. (4-14a),

Qr=;clﬁ F<r5
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On the other hand, above resonance (Wc)m < (Wir)m, and the circuit quality
factor becomes

=2 s>y

At the resonant frequency the maximum energy stored is the same for
both the inductance and capacitance, and the quality factor may be
expressed in terms of either L or C as

oL 1

(QT)r = _R_ = wr_C'R (4'20)

In certain cases the quality factor of a complete circuit including the
gencrator resistance in I'ig. 4-5¢ is required. In such a case the resistance
used is the net series resistance in the circuit, or, for the figure,

w,L
Q= R, + R

This in turn may be related to the @r of Eq. (4-20) by dividing numerator
and denominator by R to give

“’fL/R (QT)r (4_22)

C={ITE/E-TFR/R

Several applications of the concept of inductor or circuit @ in the study
of resonance will be apparent in the next section. Methods for measuring
the quality factor will be discussed later in the chapter.

4-6. Sharpness of Resonance. It has been shown in a previous section
that the admittance of the series resonant circuit as a function of fre-
quency plots as a circle in the complex Y plane. An alternative and very
useful representation may be obtained by plotting |¥| and 6, as a func-
tion of frequency in rectangular coordinates as in Fig. 4-6. The ordinate
of Fig. 4-6a is also a plot of current magnitude if the voltage is assumed
to be constant. If the resistance of the series circuit is increased, the
admittance will be decreased at all frequencies, but much more markedly
in the neighborhood of the resonant frequency. A flatter curve will be
obtained under these conditions. In Fig. 4-6 curve 2 is drawn for a com-
bination with higher resistance than curve 1. Curve 1 will discriminate
more in favor of frequencies in the region of the resonant frequency and
therefore is called a ‘“more selective’’ circuit.

In order to specify the degree of sharpness, it is customary to compute
the frequency band within which the admittance or current exceeds a
certain proportion of the maximum. This proportion may be arbitrarily
assumed; it is only necessary in comparing different curves that the
same basis be used for each curve. The most convenient limiting points

(4-21)
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to assume are those where the reactance has increased from its value
of zero at resonance to a magnitude equal to the resistance. This
will occur at two frequencies, one above and the other below the res-

onant frequency. At these points since |X| = R and Z = v/R? + X2,
Z = /2 R, the admittance is 70.7 per cent of its maximum value and
the power |I|2R for a given voltage is one-half the value at resonance.
These two frequencies, which shall be designated f; and f,, are termed the
lower- and upper-half-power frequencies, respectively.

In most radio-frequency (rf) circuits, the reactances of the inductor
and capacitor are individually much larger than the value of the resist-
ance, so that, in the neighborhood of resonance, the reactance is a small
difference between two relatively large quantities. It is preferable and
convenient in the region of resonance to calculate this difference directly.
+90°7

1

Iyl

Frequency

-900

Frequency
(a) ()]
F1a. 4-6. Resonance curve of a circuit containing R, L, and C in series.

In Fig. 4-2a the slope of the reactance curve for the capacitance is

aX. _ 1
& =t ape (4-23)
In Fig. 4-2b the slope of the reactance curve for the inductance is
dX. _
At the resonant frequency
2rf,L = 1
"= 2afC
1
or 21‘L = 2; f'—zt, (4-25)
Therefore, from Eqgs. (4-23) to (4-25), at the resonant frequency
dX.\ _ (dX.
(‘df ) = ( af ) (4-26)

which means that, if a change of frequency Af is made in the neighbor-
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hood of resonance, the capacitive reactance will increase algebraically in
& positive direction the same amount as the inductive reactance. Since
the capacitive reactance is negative, its absolute value will decrease by the
amount that the inductive reactance increases. The increase in induc-
tive reactance of an inductance when the frequency is increased by an

amount Af is
AX; =2n AfL

Therefore, the change in the reactance of a series circuit in the region
of resonance, for a change in frequency Af, is twice the increase in induc-

tive reactance alone, and so
AX =4r AfL (4-27)

This expression will simplify computations of selectivity.

In the case where the frequency band is to be determined, within which
the power is equal to, or greater than, one-half the maximum power,
let fi equal the lower frequency at which the power dissipated is one-
half the value at resonance. Let fs equal the higher frequency at which
the power dissipated is onc-half the value at 1esonance. Let f, be the
frequency at resonance. It has been explained that at resonance the
reactance will be zero and at f; and f, the reactance will be equal to the
resistance. Furthermore Af = f; — fi = f, — f.. Then by Eq. (4-27)

dx(fe —fOL =R
dr(fo — fOL = R

Therefore fo—fi = R

o, (4-28)

The sharpness of resonance in a circuit is theretore dependent on the
ratio B/L and may be related to the quality factor of the series resonant
circuit.

Let

BW = f; — fi = half-power bandwidth (4-28a)

Divide both sides of Eq. (4-28) by f,. Since BW is the difference
between the two half-power points,

BW _foi-fH _ R _ 1
fr fr 27rfr]1 Qr

The percentage frequency discrimination of a resonant circuit BW/f, is
therefore inversely proportional to the quantity @,.

At times it is desirable to examine the variation in voltage across indi-
vidual components. For example, if the grid circuit of a vacuum tube is
connected across the capacitor, the voltage across the capacitor would
determine the current in the plate circuit. Figure 4-7 shows the reso-

(4-29)
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nance curve for the three variables |E.|, |Ec|, and |I] of Fig. 4-1. It
will be observed that the three curves have practically the same sharp-
ness, the two voltage curves being tipped slightly from the current curves.
All three curves check Eq. (4-29) for sharpness of resonance.

It will be observed from Fig. 4-7 that |E.| and |E¢| maximize at practi-
cally the resonant frequency, a phenomenon that has been termed the
“resonance rise of voltage.” It may be shown that this maximum value

’° /
° / \
7.07-———~—————~—/ e et e e
o /| A\
£% 6
=2 1Ec| / R, |E,|
1NN T'qi\gjﬂu
35 // ~E R|™L /1Ec
o> 4—|EL|X— ~
NS
/ |
/_/ E=lvolt |R,=50w
2 L=159uh | C=159 uuf
R=50w
0 |
800 900 1000 1,100 1,200

Frequency, kc
F16 4-7 Resonance curves of a series circult

of voltage is determined by the circuit Q and the applied voltage. At
resonance

E E
I_R.,+R_E (4-30)
and the voltage across the capacitor will have the magnitude
_ 1 _ _IE|
But at resonance w. = 1/w,C. Therefore
L
|Ed| = |E| °5 = |EIQ. (4-32)

A similar approzximation holds for the voltage across the inductor.
Remembering that any physical inductor has resistance, say, R as in
Fig. 4-7, one may write for the voltage magnitude across the inductor
at resonance

|EL| = I}TE,I VR + X, (4-33)
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Now if the quality factor of the inductor at f, satisfies the inequality

Q=221 j=; (4-34)

Eq. (4-33) becomes approximately

2] = |B| %E = |EIQ (4-35)

Equations (4-32) and (4-35) may be used to verify the data of Fig. 4-7.
4-6. Effect of Source Impedance. For purposes of comparison with
curves which will be shown later in connection with the discussion of
antiresonance, I'ig. 4-8 shows the same three variables for the extreme
condition where the generator is a constant-current one. In a constant-

I~

| _—
> 11|
<\ |Ec|

—1 L=159uh C=159 ual ———__|
@L B lr

R Constant-current supply

C E=® Rg=®
06 T 7 E/Rg=1x10"%amp

800 900 1,000 1,100 1,200
Frequency, k¢

Fic. 4-8. Resonance curves of a series circuit driven by a constant-current generator.

Current, ma
Voltage, volts
=
o

o
©

current supply the generated voltage is infinite, and the internal resist-
ance is also infinite, but the ratio of generated voltage to the internal
resistance is finite and equal to the current supplied. It will be seen
that in Fig. 4-8 the series circuit does not provide any frequency dis-
crimination whatever under this condition.

4-7. The Universal Resonance Curve. Figure 4-6 shows the selec-
tivity curves for two series resonant circuits having different values of Q.
While the curves exhibit different peak values and different values of
selectivity, still they have the same shape. This must be true because
they both are described by the same basic equation
_ E
T R+ j(wL — 1/wC)

where R is the total series resistance of the circuit, including the gener-
ator, and it can be made easier to see if the basic equation is reduced to
normalized form. Thus if current is divided by its peak or resonant
value, and if frequency is divided by the resonant frequency, both these

I
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quantities will be reduced to a dimensionless, ‘“per unit’ basis and a

normalized equation will result that is applicable to all series resonant

circuits. The process of normalization may be carried out as follows:
Factor out R from the denominator of the basic equation.

E 1

I'=%1 + 7(A/R)(wL — 1/wC) (4-36)
Factor out w,L from the second term in the denominator.
E 1
I = R T F7@L/R) /e = T/awL0) (4-37)
E wll _ 1 _
But _R = I,- T = Q' L_C = w,’ (4-38)

Substituting Eqs. (4-38) into Eq. (4-37), and dividing through by I,
there results
I 1

Equation (4-39) is in the desired normalized form and may be used for
slide-rule calculations of both the magnitude and the phase of the cur-
rent ratio. It should be noticed that the derivation of the equation
assumes R to be independent of frequency in the vicinity of resonance.
Actually R is frequency-dependent, but the use of the circuit @ defined
at resonance eliminates & from the equation so that, in effect, the assump-
tion is made that the circuit quality factor remains constant at its reso-
nant frequency value. The validity of this latter assumption is discussed
subsequently in the chapter.

While Eq. (4-39) is in a form that yields to ready calculation by the
slide rule, it is of interest to reduce it formally into polar form, viz.,

(4-39)

I 1
| = J— 4-40a
and 8 = — arctan Q, % — 'g—f) (4-40b)

If Eq. (4-40a), giving the normalized current response of the series
resonant circuit, is plotted with f/f, as the independent variable, it will
be found that the resulting curve displays geometric symmetry, that is to
say, |I1/1,| will have the same value at two frequencies, f, and f,, whose
geometric mean is f,, the resonant frequency. This may be demon-
strated as follows:

Let two frequencies be chosen such that

fofo = £ (4-41)
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Then the quantity fo/f. — f-/fa i8 equal to

a fl')* .fr2 frfb Gb fr)*
2} =L e (22— 4-42
(f, f) THETI . (#-42)
It follows at once, because of the identity between the two quantities
marked with an asterisk, that |I/I,| in Eq. (4-40a) will have the same
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Fi6. 4-9. Comparison of resonance curves plotted against (a) logarithmic and (b)
linear frequency scales
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value at f, and f;; the property of geometric symmetry has been proved.
It should be noticed also that, at f, and f,, any two frequencies whose
geometric mean is f,, 8 will have the same magnitude but opposite sign.

One of the principal consequences of geometric symmetry is that Eq.
(4-40a) displays mirror symmetry when plotted against a logarithmic fre-
quency scale. This is illustrated in Fig. 4-9a, where Eq. (4-40a) is
plotted for @, = 5. The same data are plotted against a linear fre-
quency scale at b in the figure to show the asymmetry that results when
a curve having geometric symmetry is plotted against a linear frequency
scale. It should be mentioned that both curves are plotted with a loga-
rithmic ordinate scale to allow the convenient presentation of the almost
100-to-1 range of values present. Such a procedure does not affect the
symmetry along the horizontal axis, for more or less obvious reasons.

If, however, the second curve is inspected closely, it will be observed
that in the vicinity of resonance, i.e., for values of f/f, nearly equal to 1,
the curve appears to be symmetrical, as near as the eye can tell. Use is
made of this fact to derive a simplified approximation of the,universal
resonance curve [Eq. (4-39)], which may be used for calculations near
resonance. This approximate form will now be derived, and it will be
shown over what range of frequency it is valid.

Let & be defined as the fractional deviation from resonance, i.e.,

gLt (4-43)
fr
Then, adding 1 to both sides of the equation,
1+a=1+f~——;f'=% (4-44)
Sk 1 _1+2+82-1
whence T f—1+6 T i T+
_ 2t
=34 133 (4-45)

If, then, the frequency is restricted to values near resonance so that
|8] « 1, one has the approximation

I Lo g (4-46)

and the previous exact equation (4-39) becomes

1 1

L~ 1203 (3-47)
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and the polar components of I/I, become

I 1

= -, == = 4—48

Ll /T + (2Q.9)? (4-48)
6 ~ — arctan 2Q,é (4-49)

Equation (4-48) displays arithmetic symmetry, i.e., at any two fre-
quencies f, and f,, such that f, — fa = fo — f., |I/1;| has the same value.
The proof of this proposition is left as an exercise for the student.

Equations (4-48) and (4-49) are plotted in Fig. 4-10 to give the univer-
sal resonance curves. It should be noticed that Q,5, rather than 6 alone,

————
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S g
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— —g 041-20 \
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Fic. 4-10 Universal 1esonance curves.

is used as the independent ‘variable so that the curves are independent
of the specific value of .. It must be stressed again that the curves are
based on the assumption that 8] < 1.

A brief explanation about the sign of 6 in Fig. 4-10 and Eq. (4-49)
may be helpful. From the equation it is seen that 6 is the angle of /
relative to I,. If @ is negative, I lags I,. DBut at resonance current
and applied voltage are in phase; thus negative 6 implies current lagging
the applied voltage, or a positive phase angle in the circuit.

4-8. Approximate Form Errors. Some idea of the magnitude of the
errors introduced by use of the approximate equation (4-48) may be
obtained from Fig. 4-11, where the exact and approximate equations have
been plotted for a Q, of 5 and of 10. The following facts may be observed
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from the curves: (1) The approximate curves are tipped to the left about
the point of maximum response so that for any given response the fre-
quencies given by the approximate equation are lower than those given
by the exact equation. (2) The difference between the exact and approx-
imate frequencies decreases as resonance is approached. (3) The differ-
ence between the exact and approximate frequencies decreases as @, is
raised. These points may be verified analytically from the work that

follows.
10 [

I

. o NGRS

>~ S
—=F =S ~
- X Qr =10
|
04 0.6 0.8 1 12 14 16
t/1,

Fia. 4-11. Comparison of exact and approximate resonance curves for two values of @,.

Interestingly enough the approximate equation may be used to deter-
mine the bandwidth, say, (Af)s between the two frequencies at which
the normalized response has the value 1/a. From Eq. (4-10a)

whence (Af)s = &g Var—1= (BW)+ar—-1 exact (4-50a)

From the approximate form, Eqgs. (4-43) and (4-48),

2;?' (fa —fr) = tf_rf (Af)a = \/ag_——l

(Af)a = (BW)4/a* =1  approximate (4-50b)

Since Eqs. (4-50a) and (4-50b) are identical, the statement is proved.
If, however, the actual frequencies at which the normalized response
is 1/a are required, then the approximate, arithmetic symmetry form
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does introduce an error, the error being a function of @, and the value of
normalized response. Let
fi = exact frequency below resonance at which relative response is 1/a
fo = approximate frequency below resonance at which relative
response is 1/a
Let it be required to find the value of @, for which the difference
between these two frequencies does not exceed 100k per cent. That is,

f"fbf"<k or %=y21—lc

Then from Eq. (4-40a)

of-§)- - v

the negative sign being chosen because f;/f, < f./fi. Then

wes (=Ygt =gt +)

The positive sign must be chosen for f] to be positive. Expanding
the second radical by the binomial expansion

- \/a2 1)
hj¢ ~f,<— T + 1+ 2 SQ (4-51)

In a similar manner from Eqs. (4-43) and (4-48) one obtains
2(3,(@ftﬁ — —Va—1

or fo =1 (1 ‘/‘;20': 1) (4-52)

Then substituting for y in terms of f; and f, and solving for Q,,

Q- = ‘/“2 - 1(1 + \/1 +_ 2z :) (4-53)

where the positive sign will be chosen to minimize the error introduced
by using only the first two terms of the binomial expansion in Eq. (4-51).
By the hypothesis, y > 1 — k. Substituting into Eq. (4-53), one

finally obtains B ~
> V@ -] (1 + \/1 + %) (4-54)

Equation (4-54) is plotted in Fig. 4-12 for k = 0.01 and 0.03. For
example, if Q, is 25, frequencies determined by the approximate equation
are correct to 1 per cent within the !{ relative response points.

4-9. Tuning: Series Resonance with Variable Capacitance. In the
foregoing discussion of resonance it has been assumed that the circuit
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parameters remained fixed while the frequency of the applied voltage
was varied to give a selectivity curve. Resonance was said to occur
when the frequency had a value such that X, = —Xe.

In practice, resonance may be obtained in another manner. If the
amplitude and frequency of the applied voltage are held constant, the
circuit parameters may be varied to satisfy the resonant condition, viz.,
that X;, = —X¢. This procedure is known as tuning, and resonance is
generally brought about by varying the circuit capacitance.

In case capacitance is used as the abscissa of a resonance curve, it is
again easiest to specify the sharpness in terms of the variation between
half power points, i.e., the change in capacitance necessary to increase

40 +

02 04 0.6 0.8 10
Relative response
F1a. 4-12. Curves showing the error between the exact and approximate resonance
curves. The error between the two forms is 1004 per cent.
the current from 0.707/,. to I... and reduce it again to 0.7071,,,. At
each end point the total reactance will equal the resistance in magnitude.
Let

C, = capacitance at lower half power point
C, = capacitance at upper half power point
C, = capacitance at resonance

1
;’—C—-I—NL=R
1
wL_C—\!—C—Q—R

1 1
o, " aC; ~ 2F
C:—C1_ op
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Now C,? nearly equals C,C,, and if AC is the change in capacitance
between the two half power points,

C,—C, _ AC _
wCiCa (2~ 2R
AC 2R 2

Equation (4-55) is very similar to Eq. (4-29); so measurement of the
sharpness of resonance by either the variation of frequency or the varia-
tion of capacity may be used to find @ and the resistance of the circuit.

ART
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®

F1c. 4-13. Antiresonance in a parallel circuit. Note. The circuit 18 the dual of Fig.
4-1.

4-10. Parallel Resonance. In parallel resonance (antiresonance) two
equal and opposite susceptances oppose each other, so that the admit-
tance, instead of the impedance, is a minimum at the resonant frequency.

This situation is represented in Fig. 4-13. The total admittance of
the shunt circuit can be determined by adding the individual admit-
tances in complex form

Y =G, +; (wC,, - ;—) (4-56)

Comparison of this equation, describing the shunt circuit of Fig. 4-13a,
and Eq. (4-1) of the series circuit shows that these two circuits are exact
duals, i.e., they are identical term by term except for the interchange
of impedance and admittance. Thus admittance for the shunt circuit
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behaves in exactly the same manner when frequency is varied as does the
impedance of the series circuit. Hence by the principle of duality one
may immediately sketch the admittance and impedance loci of the shunt
circuit as shown in Fig. 4-14. The susceptance curves are also shown in
the figure.

B X

®)
L4 Bc =wC BT + xr BT
B /’requency x Frequency
1 XT
- B L = _O)T -
(© @

F1a. 4-14. Admittance and susceptance curves for the parallel circuit of Fig. 4-13.

The equation for the voltage drop across the shunt elements is

I
= G, + j(wC, — 17aL,)

E= )_1 (4-57)
and again by the principle of duality it follows at once that E and Z
(since I is constant) obey the universal resonance curve. This follows
at once since Eq. (4-57) may be reduced to the normalized form

E _ 1 - 1
E. 1 +5QU/f =17 — 1 +52Q:8

It should be observed, however, that in this case, where R,(=1/G,) is
in shunt with L,, the circuit quality factor is given by Eq. (4-18), namely,
Qr = Ry/w.L,, and since at antiresonance w.L, = 1/w,C,, one may also
write

(4-58)

Q, = w,C,Rt, (4-59)
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At this point the student may object that the shunt form of the anti-
resonant circuit which has just been discussed is not the ‘“usual” anti-
resonant circuit with which he is familiar; B should be in series with L
rather than in shunt. In reply, it may be stated that the behavior of
most antiresonant circuits at rf can be described equally well by both the
shunt and the more conventional representations. At best, they are
both only first-order approximations to the physical circuit. The rea-
sons for this statement will be discussed later. For the moment the
student’s objection will be recognized. Consider the more familiar form
of the antiresonant circuit that is shown in Fig. 4-15.

In this diagram it will be seen that the capacitive component of sus-
ceptance neutralizes the inductive component at the resonant frequency.
If there were no resistance, there would be no total current and the admit-
tance would be zero. At this frequency the power factor is unity. This

ic
I, I 4 7
t E I E E
wo \
I L
/3
f </r f =fr f >fr

Fia. 4-15 Antiresonance 1 a parallel circuit of modified form.

will be discussed shortly under the algebraic solution. At frequencies
below resonance, the circuit is inductive and above resonance it is capac-
itive, which is the reverse of the series-resonance case.

It is often desirable in circuits which are composed largely of reactive
elements to determine the approximate manner in which the reactance
varies with frequency. This can be done if the resistive components are
neglected and sketches are drawn for the variation of the reactive compo-
nents with frequency. Several examples of reactance sketching will be
discussed in this chapter. A practical application of the use of these
sketches will occur in the discussion of filters and Foster’s reactance
theorem.

Then, if R of Fig. 4-15 is neglected, the susceptances of that circuit
are identical to those of the shunt circuit (Fig. 4-14a) and the curves of
Fig. 4-14c and d apply here as well. In all reactance curves where
resistance is neglected it should be noted that the slope is positive at all
frequencies.

To solve algebraically for the impedance of Fig. 4-15, the procedure is
to add the two admittances.
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Let Y = total admittance.
1 1

Y=YL+Y0=R—-T-—m+m

_B+iX. + Xc)
(B +jX1)jXc
—X1Xc + jRXc

1
Y R+X.+ Xo) (4-61)

(4-60)

Z=

Rationalizing,
z RX¢? . X? X1 + XcX.1t 4+ R*Xc

TRF X+ Xt T R F (XL F Xo)?

4-11. Condition for Unity Power Factor in Parallel Resonant Circuit.
In order to make Zr a pure resistance, the imaginary part of Eq. (4-62)
should equal zero.

Therefore for unity power factor

(4-62)

XX, + XcXi2 + R*Xc = 0
R = —Xu(Xc + X1) (4-63)

It will be noticed that for unity power factor the criterion is not quite
the same for series and parallel resonance, as in the former —X¢ must
equal X;. Where, as is often the case in radio circuits, the quality factor
Q. is high, say, greater than 10, Xz > R, and Eq. (4-63) nearly reduces
to the equation.

X, = —X¢ (4-64)
For example, let
X = 1,000 ohms
R = 20 ohms
Then to find X¢ for unity power factor, change Eq. (4-63) to

2
Xo = - (XL + %)
—(1,000 + 0.4) = —1.000.4 (4-65)

whose magnitude is almost equal to X;.

Where the resistance is appreciable in comparison with the reactance,
the inductive reactance should not be equal to the capacitive reactance
and the currents I, and I¢ will have a definite ratio different from unity.
This can be used to set the circuit for unity power factor if an ammeter
is placed in each branch. This ratio is computed as follows: From
Eq. (4-63)

R* 4+ X2 = —-X. X¢
R8 + XLI _ &‘
Xt 0 Xc
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Substituting Eq. (4-65) for — Xe¢,

R+ X, X
Xc? X2+ R

But |I¢/IL] = vV/R* + X1*/[X¢|. Therefore for unity power factor

Ie| o Xp
Il X2+ R

Radio-transmitter circuits are sometimes tuned to resonance by making
use of Eq. (4-66).

4-12. Conditions for Maximum Impedance in Parallel Resonant
Circuit. It may be that, instead of desiring unity power factor from the
adjustments of the parallel circuit, marimum impedance is required. In
making the adjustments, the capacitance, frequency, or inductance may
be varied. It is usual to adjust the capacitance in any resonant circuit,
as this can most readily be made variable by the physical construction.
Equation (4-61) is the simplest to find when the absolute value of Z is a
maximum. Since the interest lies in the absolute value, the square of the
impedance is most readily handled. This will eliminate square roots and
when |Z|? is a maximum, |Z| will be, also.

From Eq. (4-61), by finding the absolute value of numerator and
denominator

(4-66)

(R* 4 X)X ¢?
R+ (X1 + Xo)?
Equation (4-67) is simpler to apply than the use of the square root of

the sum of the squares of the components in Eq. (4-62).
To maximize with respect to Xg,

AlZ|* _ (R® + X1 {2Xc[R* + (X1 + Xc)?] — 2X (XL + Xo)| _
0X¢ [R* + (XL + X¢)??
R*+4 X2 4+ 2X Xe+ X¢? — X1 Xe— X¢* =0
R*= —X1(X¢+ X1) (4-68)

It will be seen that Eqgs. (4-68) and (4-63) are identical, and therefore,
when the capacitor is adjusted so that the impedance is & maximum, the
circuit of Fig. 4-13 will also have unity power factor.

If the physical inductance of Fig. 4-13 is adjusted, the resistance may
vary with the inductance. The nearest approximation is to assume they
will vary proportionately; i.e., in varying the inductance, the magnitude
of Z; will vary but not its angle. Now

|Z.|* = R* + X!
X, = IZLl sin 6

|Z)* = (4-67)
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Equation (4-67) may be written

IZLI’Xc
IZT’ + 2[Z1,'Xc sin 6 + Xc

in which |Z.| represents the absolute magnitude of the impedance of the
inductive branch. To maximize with respect to |Zy|

3zl
a|ZL|
Xc*21Z.|(1Z2)* + 2|Z1|Xcsin 6 + Xo?) — |Z2]*(2]Z1] + 2Xcsin 8)] _
(Z.T+ 2[Z.|Xcsin 8 + Xo?)?
IZLP + 2|ZL|X(,' sin 6 + Xc - 'Z[,'2 |ZL|XC sin 06=0
—Xc = IZLl sin 6 = XL (4-70)

122

(4-69)

Therefore the way to make |Z| a maximum, as |Z;| is varied, is to
make the capacitive and inductive reactances have equal magnitudes.
It has been shown that, when the resistance is small, this is practically
the same as the criterion for unity power factor.

The maximum value of impedance may be found by substituting Eq.
(4-70) into Eq. (4-61), thus:

X:Xe , .RX

7o tiTRt = —Xe(@ —J) (4-71)

Zn = — .

Taking magnitudes,
1Zn| = |Xc| VQF+1 (4-72)

and again, if @, is large with respect to 1, to a good approximation

|Zml = |Xcl|Qr = (4-73)

RC
In a similar way the condition may be found for maximum impedance

when the frequency is varied. It will be found that,

when Q, is large, Eq. (4-64) gives a high degree of

approximation and hence the antiresonant frequency L,

is approximately

R
1 @-74) Re

2r v/LC T 3~C,
4-13. Resonance for Inductance and Capacitance .. 4 16 Parallel-
in Both Branches. The derived equations can alsobe  resonant circuit con-
applied to the circuit shown in Fig. 4-16, provided that taining R, L, and C
the term X, applies to the total reactance in one in both branches.
branch and X¢ applies to the total reactance in the other branch. In
order to secure parallel resonance, one branch must have its inductive

Jr =



156 COMMUNICATION ENGINEERING

greater than its capacitive reactance, and the reverse must be the case
in the other branch.

In Fig. 4-17 is shown a circuit in which taps are brought out from
intermediate points on the inductance. The
condition which must be met to secure resonance
between a and c is that the inductive reactance
of one branch is equal to the magnitude of the
capacitive reactance of the other branch, or

F16. 4-17. Parallel reso- 1
nant circuit with variable w(Ly + Ly + 2L1s) = — (4-75)
taps wC

This is the same as saying that the total reactance measured around the
loop LiL:C (including the effect of mutual inductance between L, and L,)
is zero.

To secure resonance hetween b and ¢, the inductive reactance of L,
must equal the capacitive-reactance magnitude through L,C, namely,
—[w(L1 + 2L12) — 1/wC]. Therefore

wly = ;1(1 — w(Ly + 2Lys) (4-76)

But Eqgs. (4-75) and (4-70) are identical, and theretore, 1t resonance 1s
secured between two points at any frequency in a parallel circuit, the
circuit will be resonant at the same frequency between any other two
points.

It should be remembered that, if the capacitance between the leads
a and c is appreciable in comparison with C, the movement of the tap
from a to b may have an effect on the resonant frequency.

While the resonant frequency has not been changed by altering the
connection of the lead from a to b, the impedance will be less than the
impedance between a and ¢. It may be shown that

1 [w,(Ll + Lz + 2L1) _ ]
‘e = o0 R: + R. J
_ [wi(L1 + Ls + 2L1))?
- R, + R,

(4-77)

provided that
w(L1 + Ly + 2L1,)

R, + R, »>1
and
2 ' 2 '2 .
Taw = B+ oy — (T = lerlla t L)l 4 2Rl & Lo

[w (L2 4 Ly2)]? -
STRAR e
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provided that
erz
N >1
where Z,. = impedance at resonance between points a and ¢
Zy. = impedance at resonance between points b and ¢

4-14. Sharpness of Resonance in Parallel Circuit. It is apparent
that, when a parallel combination of inductance and capacitance is con-

R0
10 =
g o8 -
S N L =159 uh R=50w
g V \c=159 uut E=1
w
& o6 o7 S
s @y\
2 04 o/ AN
23 \
0z / \\
L =30-°°°u’
Re \
0
800 900 1,000 1,100 1,200

Frequency, kc

Fia. t-18. Effect of generator resistance on the voltage across a parallel resonant
circuit.

nected to a generator with a zero internal impedance, the voltage across
the combination will not vary with frequency. On the other hand, if the
generator has a high impedance, the voltage drop in this impedance will
be a minimum at the antiresonant frequency where the current is a mini-
mum. Therefore, the voltage across the combination will be a maxi-
mum at this frequency and will drop off as the frequency is increased or
decreased from this value. The current through either branch will be a
maximum at approximately the frequency where the voltage is a maxi-
mum. As the resistance of the generator is increased, this curve will
become more peaked, because the drop in the generator impedance
increases more at the off-resonant frequencies than at resonance. Fig-
ure 4-18 shows how the voltage across the capacitor varies with fre-
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quency and with different generator resistances for some assumed parallel
combination.

In order to compare the sharpness of resonance for the curves of Fig.
4-18, they have been replotted in Fig. 4-19 with the following modifi-
cation: As the resistance of the generator was increased, the generated
voltage was also increased so as to bring all the curves to a common peak.
This is often approximated in practice, for higher generated voltages are
usually associated with higher internal resistances, both in vacuum tubes

1.0
o/ W
08
3 =5 / \
20707 —t+ ==
8
06
E \
&
=
S o4 R,
L
R} T &3 T
0.2 L) \\
L=150uk ~——
C=159 uuf
Cons}ant—curren} generator R=50w I
o 1
800 900 1,000 1,100 1,200

Frequency, kc

Fic. 4-19. Resonance curves of Fig 4-18 with generator voltages modified to give a
common peak

and in electromagnetic generators. It is also possible in Fig. 4-19 to
include the case for a constant-current generator and show that, unlike
the series-resonance case, the constant-current generator gives the most
selective curve of all.

In order to make a comparison of the change, with frequency, of the
different variables in the series and parallel resonant cases, Figs. 4-20
and 4-21 have been drawn. In Fig. 4-20 the parallel circuit matches the
generator resistance of 20,000 ohms at antiresonance. This should be
compared with the series case of Fig. 4-7, where the same R, L, and
C in series match the generator resistance of 50 ohms at resonance. It
will be seen that, except for a different scale of ordinates, the curves of
Fig. 4-7 can be superimposed on the curves of Fig. 4-20. However, the
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Fic 4-21 Resonance curves of a parallel circuit driven by a zero-resistance generator.

curve of common current of IFig 4-7 corresponds in shape to the curve of
common voltage of I'ig. 4-20, the voltage across the capacitor in Fig. 4-7
corresponds to the current through the inductor of Fig. 4-20; and the
voltage across the inductor in Fig. 4-7 corresponds to the current through
the capacitor of Fig. 4-20.
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As a further comparison Fig. 4-21 has been drawn for the case where
the generator has zero internal impedance. The curves are of the same
character as those shown for the constant-current supply of the series
circuit shown in Fig. 4-8; they could be superimposed on each other with
the same correspondences as between Figs. 4-7 and 4-20.

It can thus be seen that, to secure sharpmess of resonance with a low-
impedance generator, series resonance should be used, while, to secure sharp-
ness with a high-impedance generator or supply network, a parallel combi-
nation must be used. As most of the generators in communication circuits
have a high impedance, parallel resonance is used much more extensively
than series resonance.

4-16. Universal Resonance Curve. In previous sections it has been
shown how duals in the series and parallel resonant circuits behave in
the same manner. It may now be demonstrated that the previously
derived universal resonance curves may be applied to the parallel reso-
nant circuit, provided that @ is properly evaluated. Thus consider the
circuit of Fig. 4-22a. Application of Norton’s theorem to the generator

+ + +

L 3 E I'ﬂ R:E L = |E
C Ry £>3 C

J

E,
KC|E I=R_: %) 3R,

(a) (b) (c)
Fi1g. 4-22. Parallel resonant circuits
produces the equivalent circuit shown at b. It is convenient to reduce
this to the equivalent circuit c.
Thus, changing the RL branch into equivalent shunt form,

_ 1 _ R — juL

" R+ juL R+ (wL)?

Then if Q. of the inductor is 10 or greater, (wL)? > R? or
~. B _J

T wl)?  wL

This of course corresponds to a shunt resistance (wL)?/R and a shunt

inductance L. The net effective shunt resistance R,, as depicted at c,
will be the parallel combination of (wL)?/R and R,,

_ RGDYR _ (l)?
=B T GDUE - BT GLVE, (4-80)

Since R, and L are in parallel, the circuit Q becomes at resonance

_ B _ w.L - (Qr)r _ (Qr), .
=L~ FF@Li/R, " TT WL/ER ~ TF @wl/k, *3V

Y

Y (4-79)

R.
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The last step is obtained by dividing numerator and denominator of the
expression by R.
Then for the final circuit (Fig. 4-22¢)

I I

E=v%= 1R 50 =1/

(4-82)

Multiplying numerator and denominator by R, and factoring out 1/w,L
from the parentheses,

E IR,

T 1 F (RJo L) (00 LC — o /o)

Noting that IR, = E,, the voltage at antiresonance, and substituting
for known quantities,

E
E (4-83)

1
=1+ 5QUf/fe = £/)
This expression is identical to I/I, for the series resonant circuit; there-
fore the universal resonance curves of Fig. 4-10 also apply to normalized
voltage in the antiresonant circuit. This fact will be of particular use
in the study of tuned amplifier circuits in Chap. 15.

Inasmuch as the circuit under consideration is the dual of the series
resonant circuit, one may expect a resonance rise of current in each
branch. This may be proved as follows: The current through the capac-
itor in Fig. 4-22¢ will be, at resonance,

¢l =‘—;=-=IQ« (4-84)

If the left-hand member of Eq. (4-83) is multiplied by I,/1, the equa-
tion is seen to give the normalized impedance of the antiresonant circuit

Z . 1
Zar - 1 +.7Q0(f/f" _f"/f)

Equation (4-83a) may be evaluated to give the equivalent series imped-
ance of the antiresonant circuit, as shown in Fig. 4-23. The curves are
plotted for the arithmetic symmetry approximations.

4-16. Design of an Antiresonant Circuit. A problem which frequently
presents itself is that of designing a parallel circuit which will convert a
branch resistance into a definite higher resistance at antiresonance. The
usual circuit which is used is that shown in Fig. 4-15. From Eq. (4-62)
the impedance at antiresonance will be a pure resistance given by

N RX¢?
Rar = Rz + (XL + XC)’ (4'85)

(4-83a)
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Fi1g. 4-23. Equivalent series impedance of a parallel resonant circuit.
From Eq. (4-63) (X: + X¢)?2 = R*/X.% Introduce this in Eq. (4-85).
XX 2

Rar = R(Icg__i: X;{j (4'86)
Also from Eq. (4-63) —X:X¢ = R? + X 2. Therefore
_ R2+ X2
Ro==—TF
X, = VR(R. — R) (4-87)
—X:X¢ = RuR
RoR _ k-
X¢ = X, = R, \/————~RM % (4-88)

One of the principal applications of such an antiresonant circuit is as
the tuned plate load of a class C amplifier. In that application the
relatively small resistance load R is transformed into the large value
R., required for proper loading of the vacuum tube. The tuned circuit
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serves another important function in this application in that its selec-
tivity characteristic discriminates against the high-order harmonics that
are present in the plate current. Satisfactory suppression of these
unwanted harmonics requires a inductor @y of 10 or more. This restrie-
tion brings up an important question in design because there are only
two adjustable parameters in the network, X, and X¢. Consequently
it is impossible to design for three arbitrary values, R, R,,, and Q.. It
will be shown that, if @y, is specified, the impedance transformation ratio

Rar
R

n = (4-89)

must be greater than a specified value. By definition Q, = X./R.
Introducing Eq. (4-87),

RN LR RS
whence n=Q+1 (4-90)
Equation (4-90) may be applied to (4-87) and (4-88) to give
X = - -g“—'
L 02 (4-91)
and X = X¢ 02 Fi

Thus if Q. is to be 10 or greater, the transformation ratio must be at
least 101:1, and to a good approximation X; = —Xe.

If this ratio causes R,, to be too large, a satisfactory load for the tube
may be obtained by tapping down on the coil as discussed in Sec. 4-13.

4-17. Circuit Components at Radio Frequency. In the foregoing
treatment of resonant circuits it has been assumed that the circuit
parameters, R, L, and C, are independent of frequency, and they have
been thought of as circuit constants. Actually this may not be true; all
three parameters vary with frequency, and their variation may become
quite significant in rf work. These phenomena will now be considered.

4-18. Inductors. It is customary to think of the equivalent electrical
circuit of an inductance coil as a constant inductanee L in series with a
constant resistance R. Actually at higher frequencies such a naive
equivalent circuit is not adequate. If the student thinks of the physical
construction of a coil carefully, he will realize that all three types of
impedance elements are present: inductance due to the flux linkages
when current flows in the coil; resistance due to the finite conductivity
of the wire that makes up the coil; and capacitance distributed through-
out the entire structure, between turns and from end to end.

The effective wire resistance increases with frequency because of skin
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effect and the proximity effect. In the former it may be shown that
increasing frequency changes the current distribution within the cross-
sectional area of the wire conductor, causing the current to crowd toward
the surface of the conductor. The resultant decrease in effective cross-
sectional area causes a change in effective resistance proportional to the
square root of frequency.

Further, the change in resistance is also affected by the flow of current
in nearby conductors. In an inductor this means that the distribution
of current in any given turn is affected by the current in the other turns,
causing a further change in the effective cross-sectional area. The result-
ing increase in resistance has been termed the prorimaty effect.

It can be seen readily that the construction of an exact equivalent cir-
cuit for an inductor is a complicated procedure, and resort is generally
made to a first-order approximation to the actual circuit. This sim-

R,

RO L

(@) ® ()

F1a. 4-24. Equivalent inductor circuits (a) First-order approximation. (b) Below
antiresonant frequency. (c) Above antiresonant frequency.

plified equivalent circuit is shown in Fig. 4-24a. It will be observed that
the circuit is precisely the antiresonant circuit that has been studied in
earlier sections, and their results may be applied here. In order to
emphasize that resistance changes with frequency because of skin and
proximity effects, the internal resistance of the inductor will be repre-
sented by R(f). The equivalent series impedance of the inductor may
be determined from Eq. (4-62) and is plotted, assuming R(f) is constant,
in Fig. 4-23. The curves show that the circuit is inductive below the
gelf-resonant frequency of the inductor, f, = 1/2r 4/LC, and is capac-
itive for f > f,. Thus if the inductor is to have an inductive reactance,
its operation must be confined to frequencies below the self-resonant
frequency. It may be shown from Eq. (4-62) that the effective series
inductance at frequencies well below f, is given approximately by

- L
1=/

provided that Q. = wL/R > 10 over the frequency range of interest.
This inequality is usually satisfied by most inductors in the rf range.

L, (4-92)
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Fig. 4-25. Variation of typical inductor parameters as a function of frequency. (a)
Air core. (b) Metal core.
In a similar fashion the effective series resistance at frequencies well
below f, may be shown to be
R(f)
R, = —F 4-93
= G/T (4-63)
where the variation of R(f) with frequency is generally not known but
will be something greater than /7.
Figure 4-25 shows the measured variation of R,, L,, and Q, = wL./R,

(%]
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for two typical inductors. It will be observed from these data that over
a given frequency range Q. remains more constant than R, whose exact
behavior is difficult to predict. It is for this reason that the universal-
resonance-curve equations are expanded in terms of Q at the resonant

frequency.
160 - .
/\_/L, 400
140 — — ’/,
”— —:=. <— Q
120 /’ e e i ~, e ]
0 :/——— \\\ 300
100 - L \\\
Q ° £EmN =
80 - L — 200 :
+joL—~CT
6 | RetiwL, R i %
[ —
or ——W/0 shield %0
20 —==W/ shield
0 T N N S SN B NN R 0
0.6 08 1.0 12 14
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F1e. 4-26. Effect of metal shield on inductor parameters.

It is the usual practice in rf work to surround inductors with a grounded
aluminum shield to minimize both the magnetic and the electric coupling
to nearby units. Such a shield adds further complication to the induc-
tor’s behavior because the shield acts like a secondary circuit of indue-
tance and resistance coupled by mutual inductance to the inductor.
The first-order approximate circuit of a shielded inductor is shown at
the inset in Fig. 4-26. The student may verify, at least in a qualitative

L, R, L, R,

(a) ©®)
F1a. 4-27. Equivalent capacitor circuits.

fashion, that the shield acts to lower L, and raise B,. Measured data
for L, and Q. as a function of frequency are plotted in Fig. 4-26 for a
typical inductor, with and without a shield.

4-19. Capacitors. The first-order-approximation equivalent circuit of a
capacitor is shown in Fig. 4-27. R represents the losses of the capacitor
dielectric, and L, and R, represent the lead inductance and resistance,
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respectively. For good air or mica dielectric capacitors B may be
assumed infinite, giving the series resonant equivalent circuit of b. In
this case the lead inductance may become of appreciable importance at
frequencies in the vicinity of 100 Mc or more. In that range the induct-
ance of a single lead is given to a good approximation by

L = 0.00508! (m%’ - 1) uh (4-94)

where | = lead length, in.

d = lead diameter, in.
Thus if a 100-uuf capacitor has 1-in. leads of No. 22 copper wire on each
end, the inductive reactance of the leads is 26 ohms. Considering that the
reactance of C alone is —16 ohms at the same frequency, one notes that
at 100 Mc the whole structure is inductive with a reactance of 10 ohms!

Calibrated
oscillator

CT];

(a) (b)

Fic 4-28 Q-meter circuit used for measuring parameters of an inductor.

4-20. Measurement of Circuit Parameters. The results of the two
preceding sections show that the design of circuits at radio frequencies is
difficult because circuit parameters are not constants as they can be
assumed to be in the lower power frequencies. This is particularly true
when operation is extended into the very-high-frequency (vhf) (30- to
300-Mc) and ultrahigh-frequency (uhf) (300- to 3,000-Mc) ranges. At
these high frequencies the best procedure is to determine the effective
parameters by dircct measurement at the desired operating frequencies.
The series parameters of an inductor may be determined quite readily at
rf by means of a number of devices which are known commercially as
“Q meters.” The operation of one such device will now be explained
since it is an excellent practical application of series resonance. The
basic circuit is given in Fig. 4-28a, the equivalent circuit in Fig. 4-28b.
The current I’, furnished by a calibrated oscillator, 1s held constant by
suitable controls and a thermocouple current instrument. Application
of Thévenin’s theorem yields the equivalent circuit at the right. With
the unknown coil connected to the terminals 7', the variable capacitor is
adjusted until a maximum voltage is indicated on the vacuum-tube volt-
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meter, This maximum value of |E¢| occurs at resonance, where

- E'U
'=r¥r (4-95)
_ _ E|Xc|
So |Ec| = I'Xcl = R, ¥ Rc (4-96)

But resonance is defined by equal values of X, and | X¢|; therefore

|Ec| = |E, (4-97)

7 ¥ &, R"+ R, + R,
In a typical commercial version of the instrument R’ is 0.04 ohm and for
the usual case may be considered negligible with respect to R,; thus

|Ec| = |E,|Q. (4-98)

If, therefore, I’, and so E,, is set to a fixed, known value, then the vacuum-
tube voltmeter may be calibrated directly in @,. The effective induct-
ance is given by
1
L, = oiC (4-99)
The above description covers only two of the many measurements that
can be made with the @ meter. The other properties of resonance may
be applied for the measurement of the distributed capacitance of induc-
tors and the like. While the  meter may be used to determine the
quality factor of an inductive circuit, it cannot determine the @, of a
resonant circuit at the resonant frequency. This is because at f, the
series resonant circuit has a series impedance that is a pure resistance.
This difficulty may be overcome by measuring @, by means of the half-
power-bandwidth method. For example in the circuit of Fig. 4-5¢ the
frequency of the applied voltage may be varied to f; and f;, at which the
current drops to 70.7 per cent of its resonance value. Then by Eq.
(4-29) the Q, of the entire circuit including the generator impedance at
fr will be Qr = f'/(f3 - fl)'

On the other hand, if it is required to find the quality factor of the res-
onant circuit B L C alone, one can obtain the desired result from im-
pedance measurements, for the total reactance is

1

X =X.4+X¢ =wL — —
wC

Differentiating with respect to f,

ax _
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But at the resonant frequency the derivative ha.;s the value

dX 1
(—37>' = 2xl + 2?6'?,2 = 4xL (4-100)

Then from the derived form for @, and Eq. (4-100)

_wlL _ f (dX
(Qu)r = T = op (37)' (4-101)

Inasmuch as R and (dX/df). can be determined from impedance
measurements, Eq. (4-101) may be used to determine (@), from lab-
oratory data. The equation also is of value in determining the @ of
resonant sections of transmission lines.

The quality factor of an antiresonant circuit may be determined in a
similar manner. The two half-power frequencies f; and f: may be found
as the frequencies at which the voltage across the antiresonant circuit
drops to 0.707 times its resonance value. Then Eq. (4-29) gives the
quality factor, at the antiresonant frequency, of the entire circuit includ-
ing the generator impedance.

The @ of the antiresonant circuit alone may be determined from admit-
tance measurements, and by duality the necessary relationship may be
shown to be

_ Bof (4B _ J, (4B
=% (), = 6, (%), (#-102)
where G, is the equivalent conductance of the network at the antiresonant

frequency.

4-21. Multiple Resonance. It 15 possible for a network to be resonant
at one frequency and antiresonant at another; in fact a network is limited
in the number of 1ts resonant and antiresonant frequencies only by the
number of its capacitive and inductive elements. Circuits that have
more than one resonant or antiresonant frequency are said to exhibit
multiple resonance.

An example of the use of a circuit which is resonant at one frequency
and antiresonant at another is the case where a parallel combination of
inductance and capacitance is inserted in an antenna circuit to present
a high impedance to an interfering signal. Such a combination is called
a ‘“wave trap’ At the same time the circuit as a whole is tuned to
resonance to accept a desired signal.

It is often the practice, where such networks become rather compli-
cated, to analyze their behavior on the assumption that only pure react-
ances are present, i.e., the small resistances representing the power losses
in the reactance elements are neglected or assumed to be zero. As has
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been explained previously, this practice greatly simplifies the work
involved and means are available to correct the results for the resistive
components.

Subject to this simplifying assumption, a great deal can be learned
about a multiple-resonant circuit from its reactance or susceptance curves
similar to Figs. 4-2 and 4-14¢c and d. The method of using these curves
may be demonstrated by working the example shown in Fig. 4-29.

(@) b)

(@

FiaG. 4-29. Circuit displaying multiple resonance.

At b the reactances of L, and C, are added to get their total reactance
X, as a function of frequency. Since the two branches L;C; and C, are
in parallel, they may be handled most readily as susceptances. Thus
at ¢, B is the reciprocal of X, and is added graphically to B; = (..
The reciprocal of their sum is plotted at d. This is the reactance of the
combination of the three elements.

Inspection of d shows that at f; the over-all impedance is zero, indicat-
ing series resonance; therefore f, is a series resonant frequency, or a zero.
Furthermore, the total impedance is infinite (remember, lossless elements
have been assumed) at f»; thus f. is an antiresonant frequency, or a pole.
" The frequencies at which the zero and pole occur may be determined
by setting up the equation for Z, the driving-point impedance.

Z = _(_tj/wCQ)j(le - l/wCl)
J(wL — 1/wCy — 1/wCh)
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Factoring out L,/w from the numerator and denominator,
_j_ w’ - 1/L101
wC, o — 1
L:C,C:/(Cy + C3)

It is clear that, at w? = 1/L,Cy, Z = 0, defining a zero, or resonant fre-
quency. Thus, adopting the previous notation,
S T w10t
! L,C, ! v L.C, (4-109)

Z=— (4-103)

Similarly at w? = mcm), Z — oo, defining the pole, or anti-

resonant frequency.
2 1 1
w2® = w2 =
LICIC2/(CI + Ci) ‘\/L101C2/(Cl + Cs)
By introducing Eqgs. (4-104) and (4-105), Eq. (4-103) may be simplified
to

So

(4-105)

= =i [ = w?) i
Z = oCs L(wz o) (4-106) L,
The circuit of Fig. 4-30 may be analyzed in a similar
manner to give L, c,
. [ (w? — ws?)
Z = jwLy _—_—(w’ — (4-107)
where w, is a pole of value Fia. 4-30. Cir-
. 1 cuit whose im-
W =75 (4-108) pedance is
. g given by Eq.
and w: is a zero of value (4-107).
1
2= -
" = Lo/ (o F L) (4-109)

The subscripts of the w’s are chosen to show the order of their values,
that is, wz > wi.

It will be observed that Egs. (4-106) and (4-107) are quite similar in
form, differing only in the coefficient preceding the bracket and in the
subscripts of the w’s. This similarity represents a general principle which
may be obtained by extrapolating these results. Thus the driving-point
impedance of any lossless, two-terminal network will have the form

Z =2z (‘J"2 - "’ol’)("’2 - ("o.'nz)(‘"2 - ‘9082) f e (0’2 - wo»’)
(0’2 - w;lz)(wa - wx!’)(w’ - wxaz) tt e (“’2 - wxm’)

(4-110)

where z = jwH or x = H/jw.
The student should note that the foregoing sentence is stated without
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proof. The above results merely show that two circuit configurations
of lossless elements have driving-point impedances of the specified form.
The general proof is available in more advanced texts.

4-22. Foster’s Reactance Theorem. In Eq. (4-110) each frequency
woi/2m is a zero, for if f = for, Z = 0. Further, these values of frequency
are known as internal zeros, meaning simply that they are finite and
different from zero frequency. Similarly, each frequency w./2r is an
internal pole; if f = fu, Z — « and f,, will always be finite and different
from zero frequency. With these definitions and Eq. (4-110) one may
state Foster’s reactance theorem: T'he driving-point impedance of any
two-terminal, lossless network is uniquely specified by its internal poles and
zeros, which occur at real frequencies, and a scale factor H. This follows
because H and the internal singularities are the only constants in Eq.
(4-110).

Two corollaries are of importance here.

Corollary 1. The poles and zeros of a two-terminal lossless network must
alternate along the frequency scale. This is known as the separation prop-
erty of such networks and may be proved by differentiating Eq. (4-110).
It will be found that dZ/j dw > 0, that is, the reactance curves will always
have positive slopes. (This is also apparent from the fact that both the
reactance and susceptance curves of all lossless components have positive
slope.) Then since Z can change sign at only a pole or a zero, the sep-
aration property is proved.

A consequence of the separation property is that the number of inter-
nal zeros, z, and the number of internal poles, p, can never differ by more
than 1.

In working a numerical example, it is convenient to have the subscripts
on the internal singularities ordered so that w; < ws < w3z - - - . It is
therefore desirable to expand Eq. (4-110) into two alternative forms
corresponding to the two possible forms of the external factor z.

If 2 = jwH, w =0 and Z = 0 at direct current. Then by virtue of
the separation property, the next higher (or first internal) singularity
must be a pole, with zeros and poles alternating above that. Thus, for
z = jwH, Eq. (4-110) may be written

(wz — w22)(w2 —_ w‘2) . .. (w2 —_— wz’ﬁ)
(@ — 0@ — ws) (@ — waep1)

On the other hand, if z = H/jw, Z — « at v = 0, indicating an exter-
nal pole at direct current. By the separation property the first internal
singularity must be a zero, with poles and zeros alternating with increas-
ing frequency. Thus for z = H/jw Eq. (4-110) may be written

Z = jull (4-110a)

z2=HW —oNW —o) - - - @ —wpd) (405

Jow (wt — w,?)(w2 — w‘Z) « . ((‘,2 —_ wzp2)
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Corollary 2. There are only four possible types of reactance curves that
may be obtained with two-terminal, lossless networks. This corollary may
be proved by noting the possibilities inherent in Eqs. (4-110a) and
(4-110b), namely, z and p may be equal or may differ by 1. Since there

Reactance curves Series circuit Shunt circuit
/ Lz:-l
Zz sz-l
/ W/t f ha f Cg-- c'“
Cozq
(w’-wz’)(w'-w.’) +(wi-tys?)
@' Z=jwH gz W) (@i -Wyt) s @ty | P2 .
Ly Ly Lp4p
f, L
z 2241 2 BLo:
£ Loé c°:= g l-
AV AYY 7Z"fz, Ve Co FCas
G G Cpu
. (W= W) (@2 W) o o (WP =2, %)
®' Z=jwH (@0, @) @t ) p=z+l
L, sz
Oy - -
z Zn c. L L, ;LZ;;—I
0 T E
! 1 2 3 4 fzp-l PR S -..1___ Cop1
_H (w'-w,’)(w’-w;’) (w‘-wz.-.)
(c) J‘l) (Qz-wzf)((dz w‘z) (wz_wz 2) s ZED
2 sz
& F EE
SV Ry é,. hons T ~Ci_ FCopn
P H (0P~ w3 (@P=wy?)ees (2= Wzpn?)

e (W2~ W, W2 =Wy ?)e ™« (W2 =) 2)
F1a. 4-31. Summary of basic Foster reactance networks.

are two equations each having two possible relationships between z and
P, Z has four possible forms. These are illustrated in Fig. 4-31.
Consider a specific example, say, £ = joH and z = p. As previously
explained, an external zero occurs at direct current. Then an equal
number of internal singularities alternate, beginning with a pole and end-
ing with a zero. By the separation property an external pole occurs at
infinite frequency. The last statement may also be verified from Eq.



174 COMMUNICATION ENGINEERING
4-110a). Factoring out w?/w? and taking the limit as w —

1 = (wo/w)?][l = (wa/w)?] - - - [1 = (was/w)?]
m 27 = lim ol = /) = (/@) [T = (wms/a)]

W= ©

This case is illustrated in Fig. 4-31a. In the diagram zeros are indicated
by a small circle and poles by a small cross.

Two of the possible circuit configurations that give the specified react-
ance curve are also shown in the figure. It is of interest to note how these
circuits may be checked from physical considerations. Thus, continuing
the previous example, which is shown at a in the figure, consider the
behavior of the series form circuit. At direct current there is a direct
short through the inductances Lo, L1, Ls, . . . , Le.1, giving Z = 0 at
direct current. At infinite frequency the reactance of L, is infinite.
Since Ly is in series with the remainder of the network, Z — o« at infinite
frequency. Thus the two external singularities of the reactance curve
have been verified: a zero at direct current and a pole at infinite frequency.
Furthermore, since the several antiresonant loops such as L;C, are all in
series, the total impedance must be infinite at the antiresonant frequency
of each of these loops; hence the number of antiresonant loops must
correspond to the number of internal poles on the reactance curve.

The shunt circuit may be checked in a similar fashion. L, contributes
the external zero at direct current. Since each of the shunt branches
contains a series inductance, Z is infinite at infinite frequency. The
number of series resonant branches must equal the number of internal
zeros on the reactance curve for, at each resonant frequency, the total
impedance goes to zero.

The other three possibilities are also shown in Fig. 4-31 and may be
checked by the same methods used in analyzing Fig. 4-31a.

4-23. Canonic Forms. The student should take particular note of
the fact that, in each of the Foster networks shown in Fig. 4-31, the total
number of elements is one more than the sum of internal poles and zeros
and is the minimum number of elements that may be used to synthesize
a given reactance curve. It is for this reason that the Foster networks
are referred to as fundamental, or canonic, circuit forms. The value of
these canonic forms in designing a minimum-element structure to give a
specified reactance curve will become apparent when the synthesis of
these reactive networks is considered.

4-24, Synthesis of Foster Networks. The components of a Foster
network to provide a given reactance frequency curve may be deter-
mined by expanding Eq. (4-110) with the proper number of pole and
zero factors, by partial fractions, as described in Sec. 2-13. Such an
expansion reduces the equation into a series of terms each of which may
be identified with a capacitance and inductance in parallel, or an anti-
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resonant circuit. This procedure may best be illustrated by working a'
typical example.

It is required to synthesize a reactive network which will give a
response as shown in Fig. 4-31b, having two internal poles, w: and ws,
and one internal zero, we;. For this case, then, Eq. (4-110) reduces to

(w? — wse?)
(@ — W) (0 — ws?)

Z = jwH (4-111)
The degree of w in the numerator is 3, and in the denominator 4. Thus
Z is a proper rational fraction, and the partial-fraction expansion! in
terms of w?is

Z=ij[ 4 B ]

(w’ — w1?) (C"2 — w3?) (4-112)

Since the two equations (4-111) and (4-112) must be identical, one may
evaluate A and B by equating the terms within the brackets.
A B (w? — ws?)

(@ = w1f) + (@? — wd) = (@ = wlz)(wz__—w;_zj

Reducing to a common denominator,

A(w? — ws?) + Blw? — w1?) = (w? — ws?)

Let w = w;.
A(w)? — ws?) = (012 — ws?)
_ (@ = w2?) (4-113)
or A= [
Let w = w3.
B(w32 - o.u’) = ((.l):g2 - wzz)
or _ (ws® — w2?) (4-114)

T (ws? — @i?)

Thus, given the values of the poles and the zero, one may obtain
numerical values for 4 and B. Then Eq. (4-112) becomes

Joll A JoHB

(_w—r:wf) (‘;z _ ;32_)

Z = + (4-115)

Since the total impedance of two networks in series is the sum of their
individual impedances, Eq. (4-115) represents two impedance combi-
nations in series. Each combination may be identified from Fig. 4-32,
where a number of basic reactance combinations are tabulated. Thus

each term of Eq. (4-115) is a shunt LC combination, and the components

18ee, for example, W. L. Hart, “College Algebra,” D. C. Heath and Company,
Boston, 1926.
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of the first term may be calculated. From Eq. (4-115) and Fig. 4-32

C = ——ll

' IHA (4-116)
d L= L
an 1 = w1201

The components of the remaining parts of the network are calculated in
a similar manner, and it will be noticed that the series-form network of
Fig. 4-31b has been derived.

Element ¥4 Y Internal singularity
L . N
¢ | o _—o JjwL L None
C 1

b | o I( o GaC JjwC None

L G .ix w 1
igw-w?) | ——p w2 = —
¢ | v w ! JLw2-wd) VT LG
2 w iC, k%~ w,2) 1
) JCw2=w,?) @ 2L,

Fic. 4-32. Summary of basic elements for synthesizing Foster reactance networks.

In any specific problem one additional piece of data, other than the
poles and zeros, must be specified in order that H may be evaluated.
This is illustrated in the following numerical example:

Design a series-type Foster network to give a driving point impedance of

+7100 ohms at w = | megaradian/sec. There is to be a zero at 3 megaradians/
sec, and poles at 2 and 4 megaradians/sec. Following the previous notation of
ordering the subscripts, let

w; = 2 megaradians/sec

w2 = 3 megaradians/sec

w3 = 4 megaradians/sec
To find H, substitute w = 1 megaradian/sec into Eq. (4-111).

(1 X 10%)2* — (3 X 1092

J100 = j(1 X 109H | g6y = (2 X 1091 X 109 — (& X 1099
(4-110a)
8% 10°
=
or Hm=—BXI100_ 563108

8 X 107t
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From Eq. (4-113)
4o (ot —w?) _ (4-—19) x10¢

@ — o) ~ @ —16) x 108 ~ 10416
From Eq. (4-114)
_ (0 — w?) _ (16 — 9) X 1012 _
B = (ws? — wi2) (16 — 4) X 1012 +0.584
From Eq. (4-116)
1 1 _
Ci = \[[4, = GEs X o904t ~ b0
1
Ll = wl’—(:l = 58.7 Mh
and Co = p| = Go63 X 109 0.588) ~ 00
-1 _
Ls = 5o = 20.5 uh

L, and C,; are in parallel. (; and L; are in parallel. The two parallel com
binations are in series. This completes the design of the required network.

The student might well wonder how the equivalent shunt Foster net-
work of Fig. 4-31b is derived. In that form a number of branches are in
parallel; hence a good approach to the problem would be to work in terms
of admittance, rather than impedance, because admittances in parallel
add directly. Thus, to get the shunt equivalent of the previously derived
network, one need only invert the impedance equation (4-111) and expand
by partial fractions. (Notice the similarity here to the procedure used in
the last chapter to design equivalent shunt-form two-terminal imped-
ances.) Thus, inverting Eq. (4-111),

_ 1 (o = @1} (w? = ws?)
- ]w-—ﬁ (w? — we?)

As in the previous example the partial-fraction expansion is to be carried
out in terms of w?; so0 it is convenient to multiply through by w/w, giving

Y

(4-117)

y = & @ = w)(@? — o)

JjH w?(w? — ws?)

Now Y includes an ¢mproper rational fraction whose degree of w in the

numerator is not less than the degree of w in the denominator; thus one

divides through once by the denominator to give the partial-fraction
expansion in w?

(4-117a)

w C D
y .i—lf(1+55+w’—wz’)
+ C wD

w
A R () (4-118)
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Remembering that H, C, and D may be positive or negative depending
upon the specific values of the singularities, one can, by comparing each
term with the basic forms of Fig. 4-32, identify them as

w . . =1 -
b7g A capacitance of value Cy = : g{ (4-119)

C : = -
i An inductance of value Ly, = iCT (4-120)
T
FH(0? — we?)’
A series resonant circuit with resonant frequency f», where

H 1
Lz = ’E and Cz = m (4-121)

These three branches are all connected in parallel to give the shunt Foster
form of Fig. 4-31b. It should be apparent that the two constants C and
D are evaluated in the same manner as were A and B of the series-type
circuit.

: e

(@) (2]
F1a. 4-33. A redundant network. Figure 4-30 gives the same impedance function
with a minimum number of elements.

4-25. Simplifying Redundant Networks. It has been pointed out (but
not proved) that Foster networks are canonic in that they synthesize a
given reactance curve with the minimum number of reactive elements.
This fact may be utilized to simplify a redundant network. Repeated
addition of reactance and susceptance curves shows that the reactance of
the circuit of Fig. 4-33 exhibits one internal pole and one internal zero as
shown at b. Then, since the network has four eclements, rather than
three as is the case with canonic forms, the original network is redundant;
it has more than the minimum number of required elements. A Foster
network may therefore be designed which will require only three elements.
One such possible network is shown in Fig. 4-30. As a matter of fact,
whenever in a network the number of inductors differs from the number
of capacitors by more than one, there are redundant elements. How-
ever, there can also be such elements when this is not the situation, and
8 resort to reactance plots is one of the simplest methods to discover

*redundancy.
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4-26. Cauer Networks. The student must not think that the Foster
forms of Fig. 4-31 are the only types of canonic networks. Other con-
figurations are possible; for example, where only four internal singularities
are needed, a dead-end bridged T structure may be used (see Prob. 4-15).
In any case, regardless of the number of poles and zeros a Cauer network
may be used in place of a Foster network. These Cauer structures are
ladder networks and have the form shown in Fig. 4-34a. They are
derived by expanding the impedance function into a continued fraction,
rather than a partial fraction. The expansion of the driving-point imped-
ance of a two-terminal ladder network into a continued fraction may be
demonstrated for the generalized ladder structure of Fig. 4-34a. The
series elements of the network are written as impedances, and the shunt

C2n-1

L, L, . Lo °—"ICl 0‘3_%_“ "'I (_%
L, L, L,,
IT c, IT Cs chu
o ' ©

C®

F1a. 4-34. Cauer networks.

elements as admittances, for convenience in the expansion which begins
at the right-hand end of the network.

The driving-point impedance of the last two elements may be obtained
by inverting Y, and adding it to Z;.

1
Zy =23 + Y.
The driving-point admittance of the last three elements may be obtained
by inverting Z, and adding it to Y.

1

Y¢= Y2+Z3+1/Y4
Then the driving-point impedance of the entire array is

1
2=t 5 @ I

(4-122)

Equation (4-122) is in the form of a continued fraction and is often
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1 1 1
z=zi+gl+ gl + 7l (4-122a)

where the symbol ['_l is a space-saving notation for the continued fraction.

In general any driving-point impedance function may be synthesized
by two alternative Cauer networks, the series-L type of Fig. 4-34b, and
the series-C" type of Fig. 4-34c. For the series-L type the continued-
fraction form of Z will be

written as

- LS 1 - .
7= 0+ (g + o+ s (4-125)
This form may be obtained by arranging the analytical expression for
Z in descending powers of w and carrying out a process of 1epeated long
division, the remainder being inverted after cach division. The result-
ing expression will have the form of Eq. (4-123), but the coefficient of
each jo term will have a numerical value. Then each clement of the
network may be identified with its corresponding term 1n the continued
fraction and so may be evaluated.

For the series-(' Cauer network the continued-fraction form of Z will be

1 1 1 1 1
=50+ lipeln * e+ W e T 6120
In contrast to the series-L case thc numerical form of Eq. (4-124) 1
obtained by arranging the analytical expression for Z 1n ascending powers
of w befoere carrying out the process of repeated long division. These
methods will be illustrated later by numerical examples.

The study of Foster-type networks earlier in the chapter showed that
only four types of impedance curves can be obtained from lossless two-
terminal networks. It was also shown that the character of the external
singularities placed certain restrictions on the elements in the network.
Since Cauer networks are also two-terminal lossless structures, similar
restrictions apply to them. Knowledge of these restrictions can guide
the algebraic manipulation that must be carried out in the synthesizing
process.

Consider these restrictions for the series-L type (Fig. 4-34b). If the
impedance is to be zero at direct current, C2, must be shorted out so that
a continuous path from terminal to terminal is provided through induct-
ances alone. Furthermore, if a zero is to occur at infinite frequency,
L, must be shorted out so that a purely capacitive path connects terminal
to terminal. This latter fact may be verified by Eq. (4-123). If L, is
different from zero, Z — « at infinite frequency; if L, is shorted out,
Z = 0 at infinite frequency.

VA
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t

A similar set of restrictions may be set up for the series-C' network of

Fig. 4-34c. If the impedance is to be zero at direct current, C; must be

shorted out so that L, may provide the required short-circuit path

between terminals at direct current. This fact may be verified from

Eq. (4-124). Furthermore, L,, must be shorted out if a zero is to occur
at infinite frequency.

151F———==—>

(S

10 10° 2 x 10° w

(a)

©®) (c)
Fia. 4-35. Examples of two Cauer networhks and their impedance curve.

With these restrictions established, the process of synthesizing Cauer
networks to give a specified impedance function may be illustrated.

Design a two-terminal lossless network to meet the following specifications:
Z = j1.51 ohms at 1.59 ke, and there shall be only two internal singularities, a
pole at 15.9 ke and a zero at 31.8 ke.

From the specifications it may be predicted that the reactance frequency curve
has the form shown in Fig. 4-35a. Since the curve exhibits a zero at direct
current, the factor z in Eq. (4-110) is jwH. Further from Eq. (4-110) the expres-
sion for Z must be

_ ooy (@ — we?)
where w: = 27x(31.8 X 10%) = 2 X 10° radians/sec.
w; = 2x(15.9 X 10%) = 1 X 10° radians/sec.
and one may predict that the form of the network will be that shown in Fig.
4-35b. The value of H may be determined by substituting in the equation for
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w = 2r(1.59 X 10%) = 1 X 104 radians/sec. Thus

_ .15l 105 —10"  _ -
=7 ji5t Tor =3 1o = 0375 X 10

Hence the analytical expression for the required impedance function is

. _o w2 — 4 X 10
The series-L type Cauer network will be designed first; hence the numerator is
multiplied out and the terms arranged in descending powers of w.

7 = (0.375 X 10~950° — (1.5 X 109w
= W — 100

Then by long division
_0.375 X 1079w
w? — 101)(0.375 X 10~4)jw® — (1.5 X 1080
)(0.375 X 10~4)yw® — (0.375 X 109w

— 1125 X 105w
_ (1,125 X 1080

w? — 101

or Z = (0.375 X 107)jw

To get the continued-fraction form, the remainder, or second term, is inverted and
the process of long division carried out again.

(0.889 X 10~4)5w
—(1.125 X 10%)w)w? — 1 X 101
w2
-1 X 107
or Z=(0375X 109jw+ L+ _y 100
[(0.889 X 10~%)jw ' !1.125 X 10%w
Rearranging the remainder,
. 1 1
= —4 S — -
Z = 0375 X 10790 + (G850 1095w T [(1.125 X 10-97w

But, from Fig. 4-35b, Z in terms of the circuit elements must be

. 1| 1|
Z = jwL . ;
bt oty ¥ (juln
Then, comparing coefficients in the last two equations, one has

L, = 0.375 X 1074 = 37.5 ph
C» = 0.889 X 10¢ = 0.889 uf
Ly = 1.125 X 10~* = 112.5 ph

This completes the design of the series-L-type Cauer network. It should be
observed that the number of circuit elements is 1 greater than the number of
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internal singularities; hence the structure is canonic. The student will observe
that for this case the Cauer and series-type Foster networks are identical. When
more than two internal singularities are required, this is no longer true.
To illustrate further the method of continued fractions, let a series-C' network be
designed to give the same impedance function. This is done by first arranging the
analytical expression for Z in ascending powers of w.

_ (L5 X 109jw — (0.375 X 10~4)je?
= 1010 —w?

zZ

It has already been determined that a zero occurs at direct current; hence C, in the
network must be zero, and one predicts that the network will have the form shown
in Fig. 4-35¢. Since the reactance of C must be zero, one inverts the equation for
Z and begins the process of long division, the remainder being inverted each time
as has been demonstrated above. The resulting expression is

N ST S PITRN
Z‘,@fwxm* texio T[T oas
Jo e |0375 X 109w

But from the figure
1 1 1
= ] I
2= WjjaLs T 175aCs T [/jals

Then by equating corresponding terms

1
L: = 667 x 10+ = 150 kb
1
Cs = 3108 = 0.5 uf
0.375 X 10~
Li=""475 —=5uh

This completes the design of the series-C' Cauer structure. which, once again, is
canonic, the number of elements exceeding the number of internal singularities
by 1.

4-27. Choosing Canonic Forms. The results thus far indicate that
for any given impedance function at least four possible canonic networks
may be designed—two Foster and two Cauer types. Theoretically, at
least, all four give identical behavior, and the student might well wonder
why all four types have been considered when any one will do the job.
Aside from pedagogic reasons, the answer lies in the practical problems
of building a network that has been designed.

For example, as has been seen, all inductors inevitably have some shunt
capacitance. The effect of this capacitance is to cause undesirable
changes in the effective inductance, especially when the frequency of
operation approaches the self-resonant frequency of the inductor. On
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this basis alone, then, the series Foster circuit seems preferable, for its
design calls for a capacitance, say, C, shunted across each inductance,
save possibly one. This capacitance may be used to ‘“wash out’ the
stray capacitance associated with the coil, that is, C may be adjusted so
that its value plus the strays equals the design value. Such a procedure
cannot be used in the shunt Foster forms, but these latter permit the use
of a common ground connection.

Another practical consideration is the size and cost of the components
required by each of the equivalent networks. In general each of the four
possible circuits requires a different set of values. Thus that design
having the most economical set may be chosen. In this regard one may
note the following facts about low-level circuit components used at low
voltages and currents.

Fixed capacitors are generally made with three types of dielectrics:
paper, ceramics, and mica in that order of increasing cost. The nominal
ranges of capacitance available with these dielectrics are:

Ceramig 1 ppf-0 01 uf
Mica 5 uuf-0 01 uf
Paper 500 upf-1 uf

As a general rule cost and physical size go up with capacitance. The
paper dielectric gives the greatest losses, and its values drift more with
time and temperature. Thus where possible it is desirable to use capac-
itance values not exceeding 0.01 uf with either ceramic or mica as the
dielectric.

Variable capacitors which may be used for trimming the parameters
to the proper value are generally available with three types of dielectric.
The nominal ranges are:

Ceramic 50 upuf max, 7:1 ratio
Air 500 upt max, 10:1 ratio
Mica 0 001 ut max, 10-1 ratio

In regard to inductors those having inductances up to approximately
100 ph are often self-supporting and may be adjusted over a small range
by slight changes in the between-turns spacing. In another type of
construction the coils are wound on a supporting tube of treated paper or
ceramic with a movable slug inside the tube. Slugs of high-permeability
materials such as powdered iron alloys or magnetic ceramics (ferrites)
increase the effective inductance as they are centered in the coil winding.
Slugs consisting of a shorted turn of silver-plated copper decrease the
effective inductance as they are centered in the coil winding. In general,
positioning of the slug proves a 2 or 3 to 1 change in effective inductance.
The high-permeability-type slug increases inductance more than effec-
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tive coil resistance with the result that @’s of the order of 100 or more
may be obtained.

In the millihenry range the single-layer type of winding is usually
replaced by groups of narrow-width multiple-layer coils. In the 100-mh
and greater range resort is often made to winding the coils on closed cores
of high-permeability materials.

4-28. Reactance Frequency Curves for Dissipative Networks. The
reactance curves shown thus far are for ideal elements of zero resistance.
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F16. 4-36. Effect of inductor losses on the impedance function of a Foster network.

They show the reactances reversing through infinity at the antiresonant
frequencies. Such ideal elements do not exist, and furthermore nature
does not deal in infinities. Therefore, the actual reactance must reverse
by passing through zero at antiresonance. This has been shown in Fig.
4-23. Because of the behavior of the real part of the impedance, the
magnitude of the impedance goes through a large, but finite, maximum
at the pole. How these effects show up in a physical Foster network is
illustrated in Fig. 4-36.

The network was designed to the following specifications: Z = +;400
ohms at 2 ke; internal zeros at 500 cycles and 1.5 kc; internal pole at
1ke. Design values of inductance, namely, Ly = 58.2 mh, L; = 54.6 mh,
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were set to only two significant figures on decade inductors. The induc-
tor quality factors were Qo = 90, Q. = 81, both measured at 1 ke.

The measured value of Z at 2 k¢ was 14.1 + j405 ohms. Poles and
zeros checked the design values to less than 3 per cent, which is within
the accuracy of the frequency calibration of the oscillator and of the
impedance-measuring equipment.

Measured values of resistance were less than 20 ohms from 0 to 590
cycles and above 1.7 ke. The student should notice that, even though
X passes through zero at the pole, |Z| is large, approximately 8,500 ohms,
because of the sharp rise in the resistive component.

4-29. Resonant Circuits as Impedance-transforming Networks. Sec-
tion 4-16 has shown how a parallel resonant circuit can transform a low
resistance in one of its branches to match a high-resistance generator. It
will be shown later in Chap. 11 how a parallel resonant circuit can be
used to match any two impedances external to itself, a function which it is
peculiarly able to perform in the narrow h-f bands used in radio commu-
nication, where the constants necessary to build an efficient transformer
of inductances alone cannot be attained.

PROBLEMS

4-1. Draw a log-log reactance vs. frequency chart for the following values of induct-
ance and capacitance: 1, 2, 6, 8, and 10 mh; 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 uf.
Cover the frequency range from 10 cycles to 1 Me.

4-2. By geometrical inversion derive the admittance locus of a series circuit con-
sisting of constant L in series with R that varies from 0 to .

4-3. Repeat Prob. 4-2 for a circuit of constant C 1n serics with R that varies from
0to .

4-4. A 53-ohm resistor is in series with an inductance coil. The parallel inductance
of the coil is 100 xh and the parallel resistance 56.5 kilohms.

a. Reducing the network to an equivalent series circuit, find QL and Q at 1 Me.

b. Verify your results for Q by using the basic definition in terms of stored and dissi-
pated energy.

4-5. An inductance of 200 ph has a @ of 50, which is to be assumed mndependent of
frequency. This inductance is connected in scries with a capacitance of 100 puf to a
generator with a generated voltage of 1 volt. The generator has a constant internal
resistance equal to the resistance of the coil at resonance. Construct a table from
which the curves of current, voltage across the capacitor, and voltage across the
inductance as a function of frequency may be determined.

4-6. Verify the results of Prob. 4-5, using the universal resonance curves.

4-7. Using Eq. (4-48), verify that BW = f£,/Q.

4-8. A radio antenna has an effective series resistance of 25 ohms and an induced
voltage of 250 uv. The antenna is connected to a series coil and variable capacitor.
The coil has inductance L = 270 uh, and its Q varies as

f, ke | 550 | 800 ’ 1,000 | 1,200 I 1,400 l 1,600
B |

Q... |60|81]92|99

100 | 94
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a. Plot a curve of ¢, vs. f, where C, is the value of capacitance required to produce
resonance.

b. Plot a curve of |E|c vs. f.

4-9. Verify Eq. (4-83) by reducing the circuit of Fig. 4-22a into an equivalent series
circuit. This may be done by applying Thévenin’s theorem to all the circuit lying
to the left of the capacitor.

4-10. An inductance of 200 xh has a constant Q;, of 50 and is shunted by a 100-uuf
capacitor. The shunt combination is connected to the terminals of a generator whose
internal resistance is equal to the antiresonant impedance of the tuned circuit. The
generated voltage is 100 volts. Plot a curve of voltage across the tuned circuit vs.
frequency in the neighborhood of the antiresonant frequency.

4-11. A class C amplifier is to work into a resistive load of 10 kilohms at 500 kec.
The physical load of 72 ohms, pure resistance, is placed in series with an inductance L
whose resistance is negligible. This combination is shunted by a capacitance C to
form the tuned tank circuit.

a. Calculate the required values of L and C.

b. What is the @ of the tuned load?

¢. It is found that the fundamental and second-harmonic components of plate
current have relative amplitudes of 0.325 and 0.26, respectively. Calculate their
relative amplitudes in the 72-ohm resistance. What is the percentage reduction of
second harmonic to fundamental?

4-12. An inductance of 200 xh has a Q of 100. Two capacitors are connected in
series across its terminals. A generator with an internal resistance of 10,000 ohms is
connected across one of the capacitors. What should be the capacitances of the two
capacitors, in order that the load presented by the parallel circuit to the generator
shall be a resistance of 10,000 ohms? What will be the generator current and the cur-
rent in each branch in this case? f = 1,000,000 cycles.

4-18. The d-c inductance of a coil is 20 uh, and the coil is self-resonant at 20.5 Mec.

a. Calculate the effective series inductance at 10 Me.

b. Up to what frequency does the series inductance remain within 1 per cent of its
d-c value?

c. What is the shunt capacitance of the coil?

4-14. A Q meter has a fixed frequency oscillator that operates at 1 Mc. The
capacitance C is variable from 30 to 450 uuf.

a. Draw a calibration curve to show how the capacitor may be calibrated to read
effective series inductance directly. Is any advantage to be gained by using a log-log
plot of L vs. C? Explain. c

b. What should be the oscillator frequency to have the 3
C scale direct reading from 0.1 to 1.5 mh?

4-16. The dead-end bridged T network shown in Fig.

4-37 has the values
Ly = L, = 100 gxh L, L,
C1 -'Cz-C; = IOOMﬂ.f

a. Calculate the internal poles and zeros of the network. I C, l C,

b. Sketch the curves of driving-point reactance vs.
frequency.

c. Is the network canonic, i.e., does it have the mini- F16. 4-37. Dead-end
mum possible number of elements? bridged T network.

4-16. Synthesize a series-type Foster network that has the same input impedance
as in Prob. 4-15.

4-17. Synthesize a shunt-type Foster network to give the Z of Eq. (4-110a).
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4-18. The circuit of Fig 4-33¢ has a pole at w; = 10% radians/sec and a zero at
wg = 15 X 10° radians/sec The mput 1mpedance 18 +71,000 ohms at 08 X 10°
radians/sec  Design a series-type Foster network that 1s equivalent to the original

network
4-19. Design a Cauer networh to synthesize the impedance

_2X10° —95 X 107%? + 25 X 10-%*
Jo — 35 X 10 ¥w?

Z



CHAPTER 5

BRIDGE NETWORKS

An important class of networks often encountered in communication
engineering comprises the null, or bridge, networks. These circuits usu-
ally take the form of a two-terminal pair whose elements are so arranged
that at some particular frequency both the nodal and mesh transfer
impedances between the terminal pairs become infinite. Use may be
made of this property to measure voltage transfer ratios, impedance, and
frequency. The property of infinite transfer impedance may also be
used to separate two signals originating at different points but traversing
a common network, e.g., two telegraph or telephone messages passing
along a transmission line in opposite directions. Three basic types of
null networks and some of their more important applications will be con-
sidered: the a-c Wheatstone bridge,
the parallel-T, and the bridged-T net-
works. A number of applications of
bridge networks which employ mutual
. . . +
inductance will also be considered. E ,\;

6-1. A-C Wheatstone Bridge. Fig-
ure 5-1 shows the components of a
Wheatstone bridge for measuring im-
pedances. A source of alternating
voltage is impressed between the [
points @ and b, and a detector is con-
nected between the points ¢ and d
In the af band this detector is usually Detector
a pair of telephone receivers, but it Fi. 5-1 Wheatstone bridge for
may be another indicator such as a f;ﬁz‘:_“mmmt with alternating cur-
vacuum-tube voltmeter. The detec-
tor may incorporate an amplifier to make it more sensitive. It is
desirable that this amplifier be tunable to the frequency being measured.
A sensitive harmonic analyzer makes an almost ideal bridge detector.

When the bridge is balanced, the points ¢ and d are at the same poten-
tial and no current will flow in the detector circuit, no matter what its
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impedance. Then one may write at balance

I,.Z, = I,Z, (6-1)
a,nd 11Za = IzZ4 (5-2)
Therefore at balance
Z Z
Z“; = 7—f or  Z)Zi= Z:Z, (5-3)

Equation (5-3) is the equation of balance of the a-c Wheatstone bridge,
i.e., if the four impedances satisfy Eq. (5-3), no current flows in the
detector, the transfer impedance between terminals a, b and ¢, d is infinite,
and the bridge is said to be balanced.

In the general case all the four impedances are complex; thus the
equation of balance imposes two requirements on the circuit, one con-
dition on the impedance magnitudes, and one on their angles, for Eq.
(5-3) may be written:

1Z,1/8:  1Z1|/6,

Z/6: ~ 12/6, 5-4)
whence % = Ilé—jl and 0, — 0; = 0, — 6 (5-5)

A similar set of conditions on the real and imaginary components of the
impedances may also be derived.

When the bridge is used for impedance measurement, it is customary
to make Z; and Z, pure resistances. For this condition Eq (5-3) sim-
plifies to

R, + 70 _ R, + 50

R +9X: R ¥ X, (5-6)
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