1 - Introduction 3
2 - Cáráctéristiques techniques 5
3 - Utilisation 11
4 - Entretien - Etalonnage 25
INSTRUCTION BOOK 29
(Notice en langue anglaise)GEBRAUCHSANWEISUNG57(Notice en langue allemande)ILLUSTRATION DES ACCESSOIRES
SCHEMA DE PRINCIPELISTE DES PIECES ÉLECTRIQUESreperage des commandesEMPLACEMENT DES PIECES

Ce multimètre est conforme dans son ensemble aux prescriptions de sécurité CEI 414
L'opérateur a une parfaite protection s'il respecte les instructions de ce mode d'emploi, par contre celle-ci est compromise pour une utilisation inconsidérée.

1.1. GÉNERALITES

C'est un muitimètre autonome à affichage numérique conçu pour les mesures courantes en électronique tensions, intensites résistances.
L'alimentation est assurée par une pile 9 V (type 6F 22 - PP3) dont l'autonomie (en fonction VDC et pour une pile alcaline) atteint environ 2000 heures.
L'affichage de la valeur mesurée est réalisé par des chiffres 7 segments à cristaux liquides (hauteur des chiffres $12,7 \mathrm{~mm}$) permettant de lire de 000 à 1999.
La virgule est positionnée en fonction du calibre affiché.
Le signe "-" devant les chiffres indique que le potentiel sur la douille $\mathrm{V} \Omega, \mathrm{mA}$ ou 10 A est négatif par rapport à la douille COM, dans le cas contraire le signe - s'eteint.
Le signe " \leftarrow " au-dessus du "-" est un indicateur visuel de continuité utile pour une réponse rapide lors de la recherche des courts-circuits ou contacts fugitifs, un signal sonore peut lui être superposé a volonté (mis en service par poussoir).
Le sigle "BAT." allumé signale à l'utilisateur que la pile est à changer (dès l'apparition de ce sigle, le délai de vie de la pile est de 50 heures environ).
La mesure de la tension'jonction des diodes (sens passant) est effectuée en mV .
Le dépassement (calibre sélectionné inférieur à la valeur mesurée) est signaĺé par l'extinction de tous les chiffres à l'exclusion du " 1 " a gauche de la fenestre de lecture.

La forme allongée du multimètre lui assure une bonne prise en main.
La facilité d'emploi est rendue possible par :

- La disposition des commandes
- Un sélecteur de fonctions par touches à enfoncer
- Un commutateur central pour le choix des calibres
- Des douilles 4 mm recevant les cordons de mesure à la base du multimètre.
De nombreux accessoires étendent les possibilités du multimètre : sondes haute tension, sondes de température, shunts, pinces ampèremétriques.

Un fusible HPC (haut pouvoir de coupure) pour le calibre 10 A placé dans le commun isole, en cas de fusion, le multimetre

Un autre fusible protège les calibres intensités 200 mA ,

Toutefois, il est préférable de limiter dans le temps les mesures

Des éléments surdimensionnés permettent d'appliquer sans dommages 1100 V continus sur les calibres V et 380 V

1.2. PROTECTION

 du potentiel dangereux. $20 \mathrm{~mA}, 2 \mathrm{~mA}$. de fort débit. alternatifs sur les calibres Ohms.arnaifo sur les cilo

Seules les valeurs affectées de tolérances ou les limites peuvent être considérées comme des valeurs garanties, les valeurs sans tolérances sont données sans garantie à titre indicatif (norme NFC 42670).

ENVIRONNEMENT

- Température de référence : $23^{\circ} \dot{\mathrm{C}} \pm 2^{\circ} \mathrm{C}$

Température d'utilisation : $+5{ }^{\circ} \mathrm{C}$ à $+40^{\circ} \mathrm{C}$

- Température de fonctionnement : $0^{\circ} \mathrm{C}$ a $+50^{\circ} \mathrm{C}$

Humidite relative : 80% a $40^{\circ} \mathrm{C} \quad\left(35^{\circ} \mathrm{C}\right.$ pour calibres $2-20 \mathrm{M} \Omega$)

ALIMENTATION

1 pile 9 V - type 6F 22 (PP3)
Autonomie : 2000 heures environ (avec pile alcaline et sur fanction VDC)

DIMENSIONS : $185 \times 86 \times 40 \mathrm{~mm}$
MASSE $\quad: 0.4 \mathrm{~kg}$ environ
AFFICHAGE : ± 2000 points de mesure $\{31 / 2$ digits)

- 7 segments à cristaux fiquides
- Hauteur des chīffres $12,7 \mathrm{~mm}$
- Polarité automatique "-" affichée pour les valeurs négatives par rapport au COM.
- Virgule positionnée en fonction du calibre affiché.
- Dépassement signalé par le 1 allumé (a gauche de la fenétre de lecture) les autrés digits 'étant éteints.
- Éclaïrement du sigle "BAT." signalant que l'on dispose encore de 50 h de fonctionnement avant de changer la pile.
- Contrôle de continuité par éclairement en permanence du sigle \leftarrow, avec à volonté mise en service supplémentaire d'un signal sonore (buzzer).

CADENCE : 2,5 mesures/seconde
TENSION DE MODE COMMUN : 500 V maximum.

TENSIONS CONTINUES

Calibres	Précision $\mathbf{L}=$ Lecture $\mathbf{d}=$ Digits	Surcharge admissible
$\begin{gathered} 200 \mathrm{mV} \\ 2 \mathrm{~V} \\ 20 \mathrm{~V} \\ 200 \mathrm{~V} \\ 1000 \mathrm{~V} \end{gathered}$	$\begin{array}{cc} \pm 0.1 \% \mathrm{~L} & \pm 1 \mathrm{~d} \\ ", & ", \\ " & ", \\ \pm 0.2 \% \mathrm{~L} & \pm 1 \mathrm{~d} \end{array}$	$\begin{gathered} 1100 \mathrm{~V} \\ \ddot{\prime} \\ \ddot{\prime} \\ \ddot{\prime} \\ " \end{gathered}$

Résolution maximale: 100μ
Résistance d'entrée: $10 \mathrm{M} \Omega$
Coefficient de température $: 100.10^{-8} /^{\circ} \mathrm{C}$ (typique)
Rejection de mode série: 60 db a 50 Hz
Réjection de mode commun : 100 dB

INTENSITES CONTINUES

Calibres	Précision $L=$ Lecture $d=$ Digits	Protection	Surcharge admissible
$\begin{gathered} 2 \mathrm{~mA} \\ 20 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ 10 \mathrm{~A} \end{gathered}$		Fus. 0.5 A " Fus. 16 A	$\begin{gathered} 250 \vee \sim \\ " \end{gathered}$

Résolution maximale : $1 \mu \mathrm{~A}$
Chute de tension maximale : $<1.2 \mathrm{~V}$ fusible compris
Coefficient de température : $600.10^{-6} /{ }^{\circ} \mathrm{C}$ (typique)

INTENSITÉS ALTERNATIVES (45 - 450 Hz)

Calibres	Précision L Lecture d= Digits	Protec- tion	Surcharge admissible
2 mA 20 mA 200 mA 10 A	$\pm 1 \% \mathrm{~L} \pm 4 \mathrm{~d}$	Fus. 0.5 A	$250 \mathrm{~V} \sim$
$" "$	$"$	$"$	$"$
$"$	Fus. 16 A	$"$	

Résolution maximale : $1 \mu \mathrm{~A}$
Chute de tension maximale : $<1.2 \mathrm{~V}$ fusible compris
Coefficient de temperature : $750.10^{-6} / 0 \mathrm{C}$ (typique)

RESISTANCES

Calibras	Précision $L=$ Lecture d = Digits	$\begin{gathered} V / R \\ \text { ty- } \\ \text { pique } \end{gathered}$	$\begin{gathered} \text { I max } \\ \text { ty-- } \\ \text { pique } \end{gathered}$	Surcharge admissible	Duree
$\begin{gathered} 200 \Omega \\ 2 \mathrm{k} \Omega \\ 20 \mathrm{k} \Omega \\ 200 \mathrm{k} \Omega \\ 2 \mathrm{M} \Omega \\ 20 \mathrm{M} \Omega \end{gathered}$	$\begin{array}{cc} \pm 0.2 \% & \mathrm{~L} \pm 3 \mathrm{~d} \\ \pm 0.2 \% & \mathrm{~d} \pm 1 \mathrm{~d} \\ " \prime \\ " \prime \prime & " \prime \\ \pm & 1 \% \\ \hline \end{array}$	$0.8 \mathrm{~V}$		$\begin{gathered} +500 \mathrm{~V}= \\ 0 \mathrm{u} \\ -400 \mathrm{~V}= \\ 00 \\ 380 \mathrm{~V} \sim \end{gathered}$	305

Résolution maximale : 0.1Ω
Coefficient de température : $250.10^{-6} /{ }^{\circ} \mathrm{C}$ (typique)

CONTROLE CONTINUITE : Deux possibifités offertes pour améliorer la rapidité de l'ohmmètre

Position 200Ω seulement :

1) Affichage permanent du sigle \leftarrow lors de la mesure des courtscircuits ou de résistances $\leqslant 100 \Omega$.
2) Mise en service a volonté d'un signal sonore (buzzer), en plus de l'affichage permanent précédent; par simple action de la touche poussoir AC ad /DC (en courtcircuit, alarme lorsque la touche est enfoncee)

CONTROLE DIODE

- Position graver 14
- Courant de mesure 1 mA
- Indication de la tension de la jonction dans le sens passant (en mV)
- Étendue de mesure 1 mV à 1.999 V

ACCESSOIRES

Livrés avec le multimètre

Jeu de cordons pointes de touche	AG 0328
Fusible rapide 0,5 A HPC	AA 2428
Fusible rapide 16 A HPC	AA 2611
1pile $9 V$ type $6 \mathrm{~F} 22(\mathrm{PP} 3)$	AL 0020

Livrés en option sur demande :

Sonde 3 kV AC DC Sonde 30 kV DC (ex HA 0794)	$\begin{aligned} & H T T^{0203} \\ & H T \end{aligned}$
Sonde de temperature $-50^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$ - contact	HA 1159
Sondes de température $-25^{\circ} \mathrm{C}$ à $+350^{\circ} \mathrm{C}$ - ambiance - contact	$\begin{aligned} & \text { HK } 0200 \\ & \text { HK } 0201 \end{aligned}$
Shunt 30 mV 30 A	HA 0303
Shunt 30 mV 300 A	-
Shunt 50 mV 50 A	2
Shunt 50 mV 500 A	HA 1029
Pince ampèremétrique $1000 \mathrm{~A} \phi 100 \mathrm{~mm}$	HA 0768
Pince ampèremétrique $1000 \mathrm{~A} \phi 50 \mathrm{~mm}$	AM 0015
Pince ampèremétrique $300 \mathrm{~A} S 11 \times 15 \mathrm{~mm}$	AM 0010
Sonde de filtrage lignes TV	HA 0902 HA 0932
Jeu de grip test avec cordons Pile alcaline $9 \vee 6 \mathrm{~F}$	AL 0042
Etuí	AE 0182
Gaine caoutchouc	MC 0138
Sonde HF 100 KHz 750 MHz	HT 0208
Chargeur et batterie NiCd 9 V	HN 0207

3 - UTILISATION

4
Symbole situé entre les douilles d'entrée "rouge" et "noire" qui rappelle à l'utilisateur qu'il doit lire fa notice avant d'appliquer un paramètre inconnu à l'entrée

Symbole qui rappelle à I'utilisateur que la tension sur cette douille peut etre dangereuse pour lui-merme, tout en demeurant dans les limites imposées à l'entrée

3.1. PRESCRIPTIONS DE SÉCURITE \triangle 〈

Ce multimétre implique de la part des utilisateurs de respecter les règles de sécurité pour se protéger contre les dangers du courant électrique et pour préserver la vie du multimètre.
Les cordons de mesure doivent étre en excellent état, les changer si l'isolement est défectueux (coupé, brûlé, etc...).
Avant de changer de fusibles ou de piles, débrancher les cordons (points de mesure et multimètre). Pour changer de fusibie, il est recommandé de prendre un modèle rigoureusement équivalent.
Ne jamais dépasser les limites permises par cet instrument.
Attention : Lors d'une mesure de tension et en présence diun affichage nul, vérifier immédiatement l'etat du fusible 16 A (voir controle de F2 page 25).
Lorsque l'ordre de grandeur d'une mesure n'est pas connu, commencer par utiliser le calibre le plus élevé. Adopter ensuite le calibre qui donne la meilleure résolution.
Avant de changer de fonctions, débrancher les cordons de mesure du circuit en essais.
Lors de mesures d'intensites, couper le courant avant de changer de calibre. S'abstenir de brancher ou débrancher les cordons de mesure (circuit sous tension et multimètre). Ceci évitera les extra-courants de fermeture ou de rupture qui pour de fortes valeurs d'intensités risquent de faire sauter inutilement les fusibles de protection du multimètre.
En dépannage TV, les impulsions de forte valeur peuvent endommager le multimètre (voir surcharge admissible). Pour éviter de te!s inconvénients, utiliser une sonde de filtrage TV (HA 0902).
Ne pas effectuer de mesures de résistances sur des circuits sous tension.
Les mesures d'intensités élevées doivent être impérativement réalisées avec le multimètre hors gaine ou hors étui de transport.

3.2. MISE EN PLACE DE LA PILE

- La pile est placée dans un compartiment au dos du multimètre.
- Pour ouvrir le compartiment, faire coulisser le couvercle dans le sens de la fleche
- Relier la pile à son support à l'extrémité des fils de liaison au circuit imprimé.
Nota : L'inversion de polarité ne permet pas d'enficher le support.

3.3. MISE EN SERVICE

- Placer l'interrupteur à gauche de la fenêtre d'affichage en position haute pour alimenter le multimètre.
- Lorsque la mise en service est réalisée, l'affichage doit indiquer en l'absence de court-circuit entre les entrées $\vee \Omega$ et $C O M$ le dépassement 1 (fonction ohmmètre) ; sinon l'affichage sera voisin'de 000.

3.4. REMPLACEMENT DES FUSIBLES

Le contrôle et la vérification indiqués page 25 - Chapitre 4 permettent de locatiser un fusible défectueux devant être échangé sur le circuit imprimé.
Pour cela, il est nécessaire d'ouvrir le boittier maintenu par 3 vis.

3.5. MESURES

Elles sont décrites pages suivantes et impliquent toutes la réalisation de la mise en service précédente (paragraphe 3.3.).

- Ouvrir éventuellement le dépliant de la face avant

3.5.1. MESURES DE TENSIONS CONTINUES

- Brancher les cordons noir et rouge entre COM et $V \Omega$.
- Relâcher la touche AC - DC (Appuyer pour enfoncer, appuyer pour relâcher).
- Enfoncer la touche V.
_- Placer le sélecteur de calibres sur l'une des positions 200 mV à 1000 V .

Nota : Pour les valeurs de tensions inconnues, il est préférable de commencer par le calibre le plus élevé et de décroître progressivement pour avoir une meilleure précision (maximum de chiffres après la virgule).

- Prendre la mesure et lire le résultat affiché.

Calibres	Lecture	Surcharge max. admis.	Durée
200 mV	00.0 à $\pm 199.9 \mathrm{mV}$	1100 V	1 mm
2 V	.000 à $\pm 1.999 \mathrm{~V}$	$"$	$"$
20 V	0.00 à $\pm 19.99 \mathrm{~V}$	$"$	$"$
200 V	00.0 à $\pm 199.9 \mathrm{~V}$	$"$	$"$
1000 V	000 à $\pm 1000 \mathrm{~V}$	$"$	$"$

Nota : Pour les tensions supérieures au calibre affiché, le dépassement est signalé par l'affichage du 1 á gauche de la fenêtre de lecture et l'extinction de tous les autres chiffres (sauf sur le calibre 1000 V).

- L'affichage du signe "-" indique que la tension sur la borne $V \Omega$ est négative par rapport à celle apparaissant sur la borne COM ; dans le cas contraire, le signe "-" est éteint.

3.5.2. MESURES DE TENSIONS ALTERNATIVES

- Brancher les cordons noir et rouge entre COM et V Ω.
- Enfoncer la touche AC/DC.
- Enfoncer la touche V.
- Placer le sélecteur de calibres sur l'une des positions 200 mV a 750 V .

Nota : Pour les valeurs de tensions inconnues, il est préférable de commencer par le calibre le plus élevé et de décroître progressivement pour avoir une meilleure précision (maximum de chiffres après la virgule).
-Prendre la mesure et lire le résultat affiché.

Nota : Pour les tensions supérieures au calibre affiché, le dépassement est signalé par l'affichage du 1 à gauche de la fenétre de lecture et l'extinction de tous les autres chiffres (sauf sur le calibre 750 V).

- Ce multimètre est étalonné pour des mesures de tensions de forme sinusoïdale. Lorsque la tension n'est plus sinusoïdale, l'indication donnée est proportionnelle à la: uvaleur, moyenne" de la tension. Cette valeur peut étre différente de celle de la tension efficace vraie. En cas de doute, un contrôle à l'oscilloscope montrera la distorsion de la tension alternative.

3.5.3. MESURES DE TENSIONS JUSQU'A 3000 V

CONTINU OU ALTERNATIF

- Utiliser la sonde 1/1000. Elle comporte un diviseur par 1000 ($20 \mathrm{M} \Omega / 20 \mathrm{k} \Omega \pm 5 \%$).

Suivant la nature de la tension:

- Enfoncer la touche AC/DC pour l'alternatif ou relâcher la touche AC/DC pour le continu
- Enfoncer la touche V
- Placer le sélecteur de calibre sur 20 V .
- Brancher les cordons de la sonde entre COM et $V \Omega$.
- Prendre fa mesure et lire le résultat affiché.

Calibre	Lecture en kV
20 V	0.00 à 3.00^{*}
	*Valeur à ne pas dépasser

Nota : Pour les tensions continues négatives par rapport au COM, le signe "-" s'allume.

Attention : La mesure des tensions élevées requiert certaines précautions :

- s'assurer que la sonde est parfaitement propre, les poussières peuvent rendre sa surface conductrice
- éviter lors de la mesure, tout contact entre la main libre tou toute autre partie du corps) et les pièces conductrices réunies à la terre.

3.5.4. MESURES DE TENSIONS JUSQU'A $30000 \mathrm{~V}=$

- Utiliser la sonde 1/100. Elle comporte une résistance de $990 \mathrm{M} \Omega \pm 5 \%$ qui avec la résistance $10 \mathrm{M} \Omega$ d'entrée constituent un diviseur par 100.
- Brancher la sonde entre COM et V Ω.
- Relâcher la touche AC/DC.
- Enfoncer la touche V
- Placer le sélecteur de fonctions sur 200 V ou 1000 V .
- Prendre la mesure et lire le résultat affiché.

Calibre	Lecture en kV
200 V	00.0 à $199.0: 10$
1000 V	000 à $300: 10 *$

* Valeur kV à ne pas dépasser

Attention : La mesure de tensions élevées requiert certaines précautions :

- s'assurer que la sonde est parfaitement propre, les poussières peuvent rendre sa surface conductrice
- vérifier la continuité du circuit entre l'anneau de garde et les fiches bananes noires a l'aide de l'ohmmètre du multimètre. La résistance ne doit pas dépasser 10Ω.
- travailfer dans un lieu très sec sur un tapis isolant.
- éviter lors de la mesure, tout contact entre la main libre (ou toute autre partie du corps) et les pièces conductrices réunies à la terre.

3.5.5. MESURES DE TENSIONS AVEC SONDE DE FILTRAGE

- La sonde est destinée à protéger le multimètre contre les impulsions de fortes valeurs superposées à une tension continue ; c'est le cas, par exemple des tensions rencontrées dans les circuits de base de temps des teléviseurs. Cette protection est assuree par un filtre passe-bas ($\mathrm{R}=100 \mathrm{k} \Omega$ $\mathrm{C}=10 \mathrm{nF}$) qui bloque les impulsions et ne laisse passer que la composante continue à mesurer.'
- L'erreur maximale fin de calibre est de $\pm 5 \%$.
- La tension maximale admissible par la sonde est de 1500 V continus.

Attention : Il est dangereux de prendre des mesures directement sur l'anode du tube balayage ligne, où la tension en impulsions atteint des valeurs élevées risquant d'endommager l'appareil. Points de mesure conseillés : grille du tube balayage ligne ou base du transformateur ligne aux bornes de. la capacité de récuperation.

- Brancher les cordons de la sonde entre COM et V Ω
- Relácher la touche AC/DC.
- Enfoncer la touche V.
- Placer le sélecteur de calibres sur 1.000 V .
- Prendre la mesure, lire le résultat affiché.

Calibre	Lecture
1000 V	$00.0 \mathrm{a} \pm 1000 \mathrm{~V} *$
	*Valeur à ne pas dépasser
	1000 V pendant 1 minute

3.5.6. MESURES D'INTENSITES CONTINUES

- Brancher les cordons de mesure noir et rouge entre COM et mA pour les courants $\leqslant 200 \mathrm{~mA}$ ou entre COM et 10 A pour les courants $\gg 200 \mathrm{~mA}$.
- Relâcher la touche AC/DC.
- Enfoncer la touche mA.
- Placer le sélecteur de calibres sur l'une des positions 2.mA à 200 mA
- Brancher le multimètre en série dans le circuit dont on veut mesufer le débit aprés avoir coupé son alimentation.
- Remettre le circuit sous tension et lire le résultat affiché.

Calibre	Lecture
2 mA	$.000 \mathrm{a} \pm \pm 1.999 \mathrm{~mA}$
20 mA	$0.00 \mathrm{a} \pm 19.99 \mathrm{~mA}$
200 mA	00.0 à $\pm 199.9 \mathrm{~mA}$
$(20) \quad 10 \mathrm{~A}$	0.00 à $\pm 10.00 \mathrm{~A}{ }^{*}$

3.5.7. MESURES D'INTENSITÉS SUPÉRIEURES A 10 A EN CONTINU AVEC SHUNT EXTÉRIEUR

On utilise un shunt pour mesurer des intensites de fortes valeurs. C'est une résistance de faible valeur à brancher en série dans le circuit électrique dont on veut mesurer l'intensité. Celle-ci produit, dans la résistance du shunt, une chute de tension mesurée alors par le multimètre en fonction V continu.
Étant donné que la résolution du multimètre est de $100 \mu \mathrm{~V}$. il est intéressant d'utiliser des shunts dont la chute de tension est un multiple entier du mV
Par exemple, pour un shunt qui chute 30 mV pour un courant de 30 A , soit 1 mV de chute de tension par ampère, I'affichage sera de 00.0 a 30.0 .

- Relácher la touche AC/DC.
- Enfoncer la touche V.
- Placer le sélecteur de calibres sur 200 mV .
- Prendre la mesure et. lire le résultat affiché.

Shunts		Calibre	Lecture		Valeur	
30 mV	30 A	200 mV	00.0 à ± 30.0	directe		
30 mV	300 A	200 mV	00.0	à	\pm	30.0
50 mV	50 A	200 mV	00.0	à	\pm	50.0
50 mV	500 A	200 mV	00.0	directe		
50	50.0	$\times 10$				

3.5.8. MESURES D'INTENSITÉS ALTERNATIVES

- Brancher les cordons de mesure noir et rouge entre COM et mA pour les courants $\leqslant 200 \mathrm{~mA}$ ou entre COM et 10 A pour les courants $>200 \mathrm{~mA}$.
- Enfoncer la touche AC/DC.
- Enfoncer la touche mA..
- Placer le sélecteur de calibres sur l'une des positions 2 mA à 200 mA .
-- Brancher le multimètre en série dans le circuit dont on veut mesurer le débit après avoir coupé son alimentation
- Remettre le circuit sous tension et lire le résultat affiché.

Calibre	Lecture	
2 mA	.000 à	1.999 mA
20 mA	0.00 à	19.99 mA
200 mA	00.0 à	199.9 mA
(20) 10 A	0.00 à	10.00 A *
	"Valeur à ne pas dépasser	

3.5.9. MESURES D'INTENSITÉS ALTERNATIVES AVEC PINCES AMPÉREMETRIQUES

Les pinces ampéremétriques sont des transformateurs d'intensités de rapport $1000 / 1$, c'est-à-dire que pour 1000 A へdans le primaire, il y aura 1 A \downarrow dans le secondaire. Cet accessoire permet de mesurer du courant alternatif sans ouverture du circuit électrique.

Attention :

1) Pour la mesure d'intensité alternative un seul conducteur doit être enserré dans la pince. Si l'utilisateur place au centre de la pince plusieurs conducteurs la somme vectorielle des courants peut être très faible, voire nulle dans le cas de triphase.
2) Ne jamais enserrer un conducteur traversé par un courant avec une pince ampèremétrique non branchée au multimètre en fonction A AC. En effet, si le secondaire de la pince est en circuit ouvert (impédance élevée), it y a surtension et claquage.

Trois types de pinces sont proposés :

Références	Étendue de mesure	Ouverture
AM 10	300 A	Section $11 \times 15 \mathrm{~mm}$
AM 15	$1000 \mathrm{~A} \sim$	$\phi \quad 50 \mathrm{~mm}$
HA 768	$1.000 \mathrm{~A} \sim$	$\phi 100 \mathrm{~mm}$

- Enfoncer la touche AC/DC.
- Enfoncer la touche mA.
- Brancher les cordons de la pince entre COM et 10 A oumA.
- Placer le sélecteur de calibres sur l'une des positions $20-10 \mathrm{~A}$ ou 200 mA .
- Enserrer le conducteur traversé par le courant a l'intérieur de la máchoire de la pince.
- Lire le résultat

Calibres	Lecture	Valeur
10 A	0.00 a 1.00×1000	0 a 1000 A
200 mA	00.0 a 199.9	0 a 200 A

*Valeur à ne pas dépasser

3.5.10. MESURES DE RESISTANCES

- Brancher les cordons de mesure noir et rouge entre COM et $V \Omega$. 14
- Relâcher la touche AC/DC, ou l'enfoncer le cas échéant (voir al position AC Nota 2).
- Enfoncer la touche Ω.
- Placer le sélecteur de calibres sur l'une des positions 200Ω à $20 \mathrm{M} \Omega$.
- Mesurer la résistance et lire le résultat.

Calibres	Lecture
200Ω	00.0 à $199.9 \Omega \Omega$
2000Ω	000 a 1999Ω
$20 \mathrm{k} \Omega$	0.00 a $19.99 \mathrm{k} \Omega$
$200 \mathrm{k} \Omega$	00.0 a $199.9 \mathrm{k} \Omega$
$2 \mathrm{M} \Omega$	000 a $1.999 \mathrm{M} \Omega$
$10 \mathrm{M} \Omega$	$0.00 \mathrm{a} 19.99 \mathrm{M} \Omega$

Nota

1) Dépassement :

L'afficheur indique 1 dépassement lorsque la résistance n'est pas branchée, est coupée, ou bien supérieure en valeur au calibre affiché.
Éviter de mesurer des résistances sur des circuits sous tension.

2) Position 200Ω contrôle de continuit'́

En plus du simple affichage permanent du sigle \leftarrow lorsque les douilles $C O M$ et $\mathrm{V} \Omega$ sont en court-circuit, ou présentent une résistance $\leqslant 100 \Omega$, on peut mettre en service un "buzzer" qui délivre un signal sonore additionnel au sigle \leftarrow affiché. II suffit pour cela d'enfoncer la touche AC DC (AC al).
3) Pour le contrôle des diodes

- Relâcher ta touche AC/DC.
- Enfoncer les touches ($\mathrm{mA}+\mathrm{V}$) reliées par le symbole $-\mathbb{4}$.
- Placer le sélecteur de calibres sur $2+4$
- Brancher la diode COM $\uparrow \leftarrow$ V Ω (cathode sur COM anode sur $\mathrm{V} \Omega$).
L'afficheur donne la chute de tension directe de la jonction exprimée en volts (VDC).
Lecture de .000 à 1.999 V .
L'afficheur indique 1 si la diode est inversée ou présente une coupure.
3.5.11. MESURES DE TEMPERATURES (Sondes, usage général HK 200 - contact HA 1159, HK 201)
Pour les trois types de sondes proposés:
- Relácher la touche AC/DC.
- Placer le sélecteur de calibres sur 200 mV (ou 2 V au-dessus de $+200^{\circ} \mathrm{C}$ pour les sondes HK 200 et 201).
- Brancher les cordons noir et rouge de la sonde entre COM et V Ω.
Mettre la sonde en fonctionnement :
- HK 200 et HK 201 en appuyant sur le bouton rouge.
- HA 1159 en mettant l'interrupteur sur marche et le sélecteur de calibres sur $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
Lire la valeur de la température ;
- HK 200 air ambiant, gaz, air liquide (non corrosifs) et HK 201 (contact, surface)
Calibre 200 mV Lecture de -35.0 à $199.9^{\circ} \mathrm{C}$
Calibre 2 V Lecture de .200 à $.350^{\circ} \mathrm{C}$
(sans tenir compte du point décimal pour une lecture directe en ${ }^{\circ} \mathrm{C}$ sur le calibre 2 V).
HA 1159 (contact surface)
Calibre 200 mV Lecture de -50.0 à $150.0^{\circ} \mathrm{C}$

