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striving for improved performance, faster response times, wide viewing angles, improved colour in liquid 
crystal display development, and with this comes the need to model lCD devices effectively. the authors 
have significant experience in dealing with the problems related to the practical application of liquid crystals, 
in particular their optical performance.

key features:
 explores analytical solutions and approximations to important cases in the matrix treatment of different

 lC layer configurations, and the application of these results to improve the computational method
 Provides the analysis of accuracies of the different approaches discussed in the book
 explains the development of the eigenwave Jones matrix method which offers a path to improved 

 accuracy compared to Jones matrix and extended Jones matrix formalisms, while achieving significant 
 improvement in computational speed and versatility compared to full 4x4 matrix methods

 includes a companion website hosting the authors’ program library lMOPtiCS (FOrtrAn 90), a collection 
 of routines for calculating the optical characteristics of stratified media, the use of which allows for the 
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 programs (source codes) using lMOPtiCS, which exemplify the application of these methods in different 
 situations.
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Series Editor’s Foreword

Liquid crystal displays are the bedrock of the flat panel display industry. Their success and their continued
improvement in all aspects of performance are due in substantial part to improvements in the fundamental
understanding of how liquid crystal structures interact with forces applied by external electrical fields
and by the intrinsic potential differences which exist at boundaries between dissimilar materials.

Several computer modelling systems are commercially available. They enable users to predict the
properties of displays, avoiding the necessity to test every new idea by experiment. They are essentially
black boxes into which are inputted the properties of materials, cell dimensions, applied voltage and
other data, and which output the optical properties of a display as functions of time, applied voltage,
wavelength and viewing angle. Their use requires no fundamental understanding of the thermodynamics
or mechanics of liquid crystal (LC) interactions and therein lies a potential problem. For reasons of
efficiency and minimising computer time, most, if not all modelling routines operate on simplified
and approximated formulæ. Under some circumstances these approximations can lead to unforeseen
errors and this is a topic which is addressed in unprecedented detail in this volume. But first it contains
an exposition of the fundamentals from a description of polarized light through the calculation of its
interaction with LC layers by the Jones calculus to predict the properties of cell structures. Next are
presented worked examples of different transmissive and reflective nematic and ferroelectric modes
using modelling software developed by the authors. The second part of the book provides a more
detailed analysis of mathematical methods, starting from the basic mathematics and matrix algebra
specific to LC modelling. It then progresses from describing relatively simple models to a description of
rigorous electromagnetic methods to describe the optics of 1D inhomogeneous media and their use for
numerical modelling of LC optics. The impact of approximations on computational accuracy is discussed
throughout. The final chapter of the book touches on layers which are anisotropic in two dimensions, an
important topic for LCDs which increasingly use multi-domain pixel structures.

The detailed contents of each chapter are described by the authors in their introduction, but my
purpose in presenting this briefer description here is to show what a comprehensive book this is. It goes
even further because a companion website http://www.wiley.com/go/yakovlev/modelinglcd contains the
well commented source code of the program library LMOPTICS, which is a collection of routines for
calculating the optical characteristics of multilayer systems, based on the methods described in this book.
It also contains a set of sample programs which exemplify the application of this library and the methods
described in this book to modelling LCDs.

This book and its companion website provide a comprehensive operational base for scientists and
engineers who wish to make reliable modelling experiments. It provides a wealth of information for
academic researchers and students engaged in condensed matter physics which is of relevance not just
to displays but to LC-based photonic devices in general.

Anthony Lowe
Braishfield, UK, 2014
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Preface

Liquid crystal displays (LCDs) are ubiquitous nowadays. They are used in almost all electronic devices
and information systems. This is the result of many years of research and development by dedicated
scientists and technologists. Despite the relative maturity of LCD technologies, many improvements are
still needed and research is being performed. For example, issues such as energy efficiency, simpler
methods of achieving large viewing angles, lower manufacturing cost, and LC alignment techniques still
have a lot of room for improvement. In this regard, computer modeling of LCDs is a very useful tool for
designing new display modes and improving their performance.

Many monographs and textbooks have been written about LCDs. Some are at the pedagogical level,
while others are at the more advanced engineering level. Some involve more physics, while others
concentrate on the engineering aspects. It is our desire to add to this collection with a book devoted
to computer modeling and optimization of the optical performance of LCDs. It is believed that there
is a need for a book that is devoted to an in-depth treatment of this subject. Many useful methods and
techniques as well as fine points not covered in previous books are considered here.

For three decades, the authors of this book have been dealing with the problems related to the practical
application of liquid crystals, in particular, developing software for numerical modeling and optimization
of LCDs. Wishing to make our software sufficiently versatile (applicable to most kinds of LCDs) and
efficient (providing a high accuracy of modeling, fast, and provided with convenient optimization tools)
and dealing with specific optimization problems, we have examined a great number of approaches,
methods, and techniques. In this book we have tried to present a unified approach to the optical modeling
of LCDs, which unites the most theoretically rigorous and efficient methods and determines how these
methods should be used in different situations. We describe efficient algorithms for solving typical
problems of LCD optics and give recommendations as to how to build a basic theoretical model and
choose the mathematical tools to solve the problem at hand, considering the problem geometry, factors
to be accounted for, and required accuracy. Much attention is given to analytical approaches to solving
optimization and inverse problems.

Chapter 1 provides the basic knowledge necessary to proceed to optics of LCDs. Basic notions and
concepts of polarization optics and optics of anisotropic media are presented. Particular attention is
given to the classical Jones calculus, a method with the aid of which a great number of optical problems
for LCDs were solved. The classical Jones calculus has many advantages and disadvantages. The main
disadvantage is its conflict with electromagnetic theory in many respects. The main advantages are its
simplicity, reliability in many important cases, and rich mathematical apparatus allowing one to analyze
polarization-optical systems and solve many problems semi-analytically or analytically. This method is
eminently suitable for demonstrating the benefits of using matrices and matrix analysis in polarization
optics to the newcomer to this field. In Chapters 2 and 3 the Jones calculus is used for the analysis of the
optical operation of LC layers and LCDs in terms of the simplest models. Applications of a parameter
space approach and an optical equivalence theorem in LCD optics are demonstrated; these techniques
provide a comprehensive picture of LC modes suitable for LCDs and LC photonic devices.

xv
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xvi Preface

In Chapter 4 we consider various electro-optical effects used in LC displays as well as different kinds
of LCDs, the features of their numerical modeling, and typical optimization problems. We give many
examples of solving particular optimization problems with the help of computer modeling.

Chapter 5 begins with a brief review of notions and relations of matrix algebra as a foundation
to understanding much of the theoretical material of this book. We purposely postponed the regular
presentation of this mathematical material to this chapter, preferring to demonstrate first its usefulness,
which we do in previous chapters. We included this material to make the book self-contained for the
reader. Moreover, in this mathematical review we consider a specific kind of matrices, which is rarely
considered in mathematical books but is important in our consideration of LCD optics. This is followed
by definitions of some radiometric quantities, a summary of the optical conventions adopted in this book,
and a section introducing several important notions concerning the characterization of wave fields by
Stokes and Jones vectors.

In Chapter 6 we present a set of relatively simple approaches and representations useful in solving
optimization and inverse problems for LCDs when normal incidence of light is considered. In typical
situations, the approaches presented in this chapter have no contradictions with electromagnetic theory
and can be used in conjunction with rigorous methods. The discussion is illustrated by experimental
examples, which give a clear idea of the actual effect of various factors that are taken into account or
neglected in different kinds of optical models of LCDs.

Chapters 7 through 10 are devoted to rigorous electromagnetic (EM) methods of optics of 1D-
inhomogeneous media and their use for numerical modeling of the optical properties of LCDs.

In Chapter 7 we discuss different physical models used in modeling the LCD optics, models which
determine the choice of EM methods and ways of their use. This chapter also presents two general
algorithms for calculating transmission and reflection characteristics of layered structures with allowance
for multiple reflections, namely, transfer matrix technique and adding technique. These techniques are
employed in some EM methods considered in subsequent chapters. In the last section of Chapter 7,
optical models of some basic elements of LCDs are considered.

In Chapters 8, 9, and 10 rigorous EM methods of optics of stratified media are discussed in detail.
Along with the discussion of the EM methods, these chapters contain a description of the authors’
program library LMOPTICS (Fortran 90), a collection of routines for calculating optical characteristics
of stratified media based on these methods. This library, available on the companion website, greatly
simplifies the development of program modules for accurate evaluation of the optical characteristics of
LCDs, and we hope it will be useful to the reader.

One of the EM methods presented in Chapter 8 is a method referred to in this book as the eigen-
wave (EW) Jones matrix method. This is a rigorous method using transmission and reflection operators,
represented by 2×2 matrices, to describe the optical effect of constituents of the layered system under
consideration. One of the advantages of this method over the extended Jones matrix method variants
described in earlier books on LCDs is better accuracy, especially in the case of oblique incidence. The EW
Jones matrix method supplemented with a set of numerical techniques and approximate representations,
which are considered in Chapters 11 and 12, is a convenient tool for solving optimization problems for
LCDs and inverse problems for inhomogeneous LC layers. We show that in most practically interesting
cases, this method provides nearly the same level of mathematical simplicity and the same possibilities
to analyze as the classical Jones calculus does. Chapter 11 considers various ways of calculating trans-
mission operators for inhomogeneous liquid crystal layers used in different variants of the Jones matrix
method. Application of the EW Jones matrix method to inhomogeneous LC layers is discussed in detail.
In Chapter 12 we consider some useful approximations and give examples of application of the EW
Jones matrix method in solving optimization and inverse problems.

In Chapter 13 we discuss the potential and limitations of the EM methods of optics of inhomogeneous
media in modeling LC displays with fine intra-pixel structure and demonstrate some capabilities of more
general EM methods.

Appendix A provides examples of LCD modeling performed over the years by students at Hong Kong
University of Science and Technology. Appendix B contains supplementary theoretical material.



JWST441-fm JWST441-Yakovlev Printer: Markono December 31, 2014 6:54 Trim: 244mm × 170mm

Preface xvii

Chapter 1 was written by D.A. Yakovlev (D.A.Y.) and H.S. Kwok (H.S.K.). Chapters 2 and 3 were
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This book is mainly intended for engineers and researchers dealing with the development and appli-
cation of LC devices. University researchers and students who are specialized in condensed matter
physics and engaged in fundamental and applied research of liquid crystals may also find much useful
information here.

It is our hope that this book will be helpful to developers of new generations of LC displays.
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1
Polarization of Monochromatic
Waves. Background of the
Jones Matrix Methods.
The Jones Calculus

1.1 Homogeneous Waves in Isotropic Media

1.1.1 Plane Waves
Light is an electromagnetic radiation with frequencies 𝜈 lying in the range from ∼4 × 1014 to ∼8 ×
1014 Hz. An elementary model of light is a plane monochromatic wave. The electric field of a plane
monochromatic wave can be represented, in complex form, as

E(r, t) = E0ei(kr−𝜔t), (1.1)

where 𝜔 = 2𝜋𝜈 is the circular frequency and k is the wave vector of the wave, r is a position vector,
and t is time. If the wave propagates in an isotropic nonabsorbing medium with refractive index n and is
homogeneous (see Section 8.1.2), the vector k can be expressed as

k = 𝜔

c
nl, (1.2)

where l is the wave normal, a unit vector perpendicular to the wavefronts of the wave and indicating its
propagation direction; c is the velocity of light in vacuum (free space). In this case, the wave is strictly
transverse, satisfying the condition

l ⋅ E0 = 0. (1.3)

The phase velocity of the wave is

cn =
𝜔|k| = c

n
. (1.4)

Modeling and Optimization of LCD Optical Performance, First Edition.
Dmitry A. Yakovlev, Vladimir G. Chigrinov and Hoi-Sing Kwok.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Website Companion: www.wiley.com/go/yakovlev/modelinglcd
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The true wavelength (𝜆true) of the wave in the medium is defined as

𝜆true ≡ cn𝜏,

where

𝜏 = 1
𝜈
= 2𝜋
𝜔

is the temporal period of the wave. Along with the true wavelength, one can associate with this wave the
so-called wavelength in free space, defined as follows:

𝜆 ≡ c𝜏 = c
𝜈
= 2𝜋c

𝜔
. (1.5)

Throughout this book, speaking on monochromatic fields or monochromatic components of polychro-
matic fields, we will use the term “wavelength” only in the latter sense (often omitting “in free space”).
Also, we will use the parameter

k0 ≡
𝜔

c
= 2𝜋

𝜆
(1.6)

called the wave number in free space. In terms of 𝜆 and k0, equation (1.1) can be rewritten as follows:

E(r, t) = E0ei(k0nlr−𝜔t) = E0e
i
(

2𝜋
𝜆

nlr−𝜔t
)
. (1.7)

The field (1.1) must satisfy the following wave equation [1]:

∇ × (∇ × E) − k2
0𝜀E = ⌢

0, (1.8)

where 𝜀 is the electric permittivity of the medium, ∇ is the nabla operator, and
⌢

0 is the null vector.
Throughout this book, we use the Gaussian system of units and consider only media that are nonmagnetic
(i.e., having their magnetic permeability 𝜇 equal to 1) at optical frequencies. Substituting (1.1) into (1.8)
gives the equation

k × (k × E) + k2
0𝜀E = ⌢

0, (1.9a)

which can be rewritten as

k ⋅ (k ⋅ E) − k2E + k2
0𝜀E = ⌢

0, (1.9b)

where k2 ≡ k ⋅ k. Scalarly multiplying any of these equations by k, we see that these equations include
the condition

k ⋅ E = 0; (1.10)

this condition may also be derived from the Maxwell equation ∇ (𝜀E) = 0. We should note that condition
(1.10) is valid for inhomogeneous waves of the form (1.1) as well (see Sections 8.1.2 and 9.2). In the
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case of a homogeneous wave, condition (1.10) is tantamount to (1.3). In view of (1.10), equation (1.9b)
can be reduced to the following one: (

k2
0𝜀 − k2

)
E = ⌢

0. (1.11)

This equation requires that √
k2 = k0

√
𝜀. (1.12)

In the case of a homogeneous wave, equation (1.12) leads to (1.2) with

n =
√
𝜀. (1.13)

With complex n and 𝜀, equations (1.1)–(1.3) and (1.13) can be used to describe homogeneous waves
propagating in absorbing media (see Section 8.1.2).

1.1.2 Polarization. Jones Vectors

Polarization Parameters

Let us consider a plane wave satisfying (1.3). We introduce a rectangular right-handed Cartesian system
(x, y, z) with the z-axis codirectional with the wave normal l. Denote the unit vectors indicating the
positive directions of the axes x, y, and z by x, y, and z. Using this coordinate system, we can represent
the electric field of the wave as follows:

E(r, t) = E(z, t) =
(
xẼx(z) + yẼy(z)

)
e−i𝜔t (1.14a)

or

E(r, t) =
(

x ||Ẽx(z)|| ei𝛿x + y |||Ẽy(z)||| ei𝛿y

)
e−i𝜔t, (1.14b)

where Ẽx and Ẽy are the scalar complex amplitudes, and 𝛿x and 𝛿y are the phases of the x-component and
the y-component of the field. The quantity

𝜒 =
Ẽy

Ẽx

=
|Ẽy||Ẽx| ei𝛿 , (1.15)

where 𝛿 = 𝛿y−𝛿x, fully describes the state of polarization (SOP) of the wave. For completely polarized
waves, which we consider here, the SOP is essentially the shape, orientation, and sense of the trajectory
that is described with time by the end of the true electric vector [Re(E)] associated with a given point in
space (r). It is well known that in general such a trajectory is an ellipse. With the help of Figure 1.1, we
present basic parameters used for description of the SOP of completely polarized waves [1–3]:

1. The azimuth (orientation angle) 𝛾e of a polarization ellipse is defined as the angle between the positive
direction of the x-axis and the major axis of the ellipse (Figure 1.1).

2. The ellipticity ee is defined as

ee = ±b
a

, (1.16)



JWST441-c01 JWST441-Yakovlev Printer: Markono December 30, 2014 7:44 Trim: 244mm × 170mm

4 Modeling and Optimization of LCD Optical Performance
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Figure 1.1 A polarization ellipse

where a and b are the lengths of the semimajor axis and semiminor axis of the ellipse, respectively.
The ellipticity is taken positive if the polarization is right-handed and negative if the polarization is
left-handed. The handedness of the polarization ellipse determines the sense in which the ellipse is
described. In the literature, different conventions on the handedness of polarization are used. In this
book, we use the convention adopted in the books [1, 2, 4]: the polarization is called right-handed
if the polarization ellipse is described in the clockwise sense when looking against the direction of
propagation of the light [this is the case in Figure 1.1 where the z-axis and the wave normal l are
directed out of the page, toward the viewer] and left-handed otherwise. For a linearly polarized wave,
ee = 0. For right- and left-circularly polarized waves, ee equals 1 and –1, respectively.

3. The ellipticity angle 𝜐e is defined by

ee = tan 𝜐e. (1.17)

The values of 𝜐e lie between −𝜋/4 (left circular polarization) and 𝜋/4 (right circular polarization).

The azimuth 𝛾e and ellipticity angle 𝜐e are related to the complex polarization parameter 𝜒 as follows:

cos 2𝛾e =
1 − |𝜒|2√(

1 − |𝜒|2)2 + (2 Re𝜒)2

, sin 2𝛾e =
2 Re𝜒√(

1 − |𝜒|2)2 + (2 Re𝜒)2

, (1.18)

sin 2𝜐e = −
2 Im(𝜒)

1 + |𝜒|2 . (1.19)

Thus, given 𝜒 , the parameters 𝛾e, 𝜐e, and ee can be calculated by formulas (1.18), (1.19), and (1.17).
Note that for linearly polarized waves 𝜒 is purely real, while for circular polarizations it is purely
imaginary (𝜒 = −i for the right circular polarization and 𝜒 = i for the left circular polarization). We
stress that relations (1.18) and (1.19) and all other relations for polarization parameters presented in this
book correspond to the above choice of the convention on handedness and of the time factor in complex
representation (e−i𝜔t).

The spatial evolution of the amplitudes Ẽx and Ẽy in (1.14) can be described by the following equations:

Ẽx(z) = Ẽx(z
′)eik0n(z−z′), Ẽy(z) = Ẽy(z

′)eik0n(z−z′), (1.20)

where z′ is any given value of z. Even if the wave propagates in an absorbing medium (with complex
n) and, consequently, is damped, its parameter 𝜒 is independent of z. This means that 𝜒 and the other
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polarization parameters listed above are spatially invariant and characterize the wave as a whole, that is,
they are global characteristics of the wave.

Jones Vectors

The column

J̃(z) =

(
Ẽx(z)

Ẽy(z)

)
(1.21)

represents a Jones vector of the wave (1.14). Different kinds of Jones vectors are used in practice. Some
of them are considered in Section 5.4 and Chapter 8. Definition (1.21) corresponds to one of those kinds.
The Jones vector defined by (1.21) is a local characteristic of the wave, being dependent on z. According
to (1.20), its values for two arbitrary values of z, z′ and z′′ (z′′ > z′), are related by

J̃(z′′) = eik0n(z′′−z′)J̃(z′). (1.22)

This relation can be rewritten as

J̃(z′′) = tis,n(z′, z′′)J̃(z′), (1.23)

where

tis,n(z′, z′′) =
(

eik0n(z′′−z′) 0
0 eik0n(z′′−z′)

)
. (1.24)

The 2 × 2 matrix appearing here is a simple example of the Jones matrix.
If the medium where the wave propagates is nonabsorbing, the Jones vector J̃(z) can be represented as

J̃(z) = a
𝛿
(z)aI J, (1.25)

where

J =

(
Jx

Jy

)
(1.26)

is a spatially invariant Jones vector of the wave (see Section 5.4.3), a
𝛿

is a scalar complex phase coefficient
of unit magnitude (a

𝛿
a∗
𝛿
= 1), and aI is a real coefficient that makes the following relation valid:

I = J† J, (1.27)

where I represents a quantity (usually called intensity) that is regarded as a measure of irradiance
(see Section 5.2) for waves in a particular problem or a method; the symbol † denotes the Hermitian
conjugation operation (see Section 5.1.1). It is clear that, given J, the complex polarization parameter 𝜒
of the wave can be calculated by the formula

𝜒 =
Jy

Jx

. (1.28)

The use of such “global” and “fitted-to-intensity” [see (1.27)] Jones vectors for waves propagating in
isotropic nonabsorbing media is a feature of the classical Jones calculus (JC) [5] (see Section 1.4). In
JC, the quantity conventionally introduced to characterize irradiance is called intensity. Equation (1.27)
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is a standard expression for the intensity of a wave in terms of its Jones vector in this method. For many
problems, the “global” Jones vector J of a wave contains all the information about the wave that is
required for solving the problem, while the factors a

𝛿
and aI can be eliminated from the calculations.

These factors are absent in standard algorithms based on JC. One should remember the differences
between the vectors J̃ and J when trying to use JC in combination with rigorous techniques derived from
electromagnetic theory. Moreover, dealing with Jones vectors like J̃, one should recognize that in many
cases the use of the quantity

Ĩ = J̃
†
J̃ = |Ẽx|2 + |Ẽy|2 (1.29)

as a measure of irradiance is not justified. We will consider this issue in detail in Section 5.4. Here we
restrict ourselves to the following example. Suppose that we use as intensity I FEFD irradiance (see
Section 5.2), which is allowed by electromagnetic theory. In this case, the intensity I of the wave is
expressed in terms of Ĩ as follows:

I = cn
8𝜋

Ĩ. (1.30)

As seen from (1.30), waves of equal Ĩ, propagating in media with different refractive indices, will have
different “true” intensities I. Note that the coefficient aI [see (1.25)] in this case is given by

aI =
√

8𝜋
cn
. (1.31)

Polarization Jones Vector

Both the “global” and “fitted-to-intensity” Jones vector J and the local Jones vector J̃(z) can be represented
as the product of a scalar factor and a unit vector

j =

(
jx

jy

)
, (1.32)

unit in the sense that

j† j = 1. (1.33)

The vector j carries information only on the polarization state of the wave (𝜒 = jy∕jx) and may be called
the polarization Jones vector (see Section 5.4.3). In solving practical problems, the polarization Jones
vectors are often used to specify the polarization state of light incident on an optical system. Table 1.1
shows typical choices of the polarization vectors for different polarization states. The simplest choice of
the vector J for incident light is

J =
√

I j. (1.34)

A vector J′ and the vector J′′ = aJ′, where a is a complex number of unit magnitude, can be
regarded as equivalent apart from their phases. As a rule, when calculations for an optical system are
performed in terms of “global” Jones vectors, the phases of these vectors are unimportant and can be
assigned and transformed arbitrarily, owing to which there is a certain degree of freedom in choice of
the vectors j and J for incident light and the Jones matrices describing the interaction of light with optical
elements. In particular, this allows using reduced forms of Jones matrices for some kinds of elements
(see, e.g., Sections 1.3.5 and 1.3.6), which simplifies the calculations.
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Table 1.1 Variants of polarization Jones vectors for various polarization states

Polarization Polarization Jones vector j

Arbitrary elliptical jE(𝛾e, 𝜐e) ≡

(
cos 𝛾e cos 𝜐e + i sin 𝛾e sin 𝜐e

sin 𝛾e cos 𝜐e − i cos 𝛾e sin 𝜐e

)

Linear jP(𝛾e) ≡

(
cos 𝛾e

sin 𝛾e

)

Right circular jR ≡

⎛⎜⎜⎜⎜⎝
1√
2

− i√
2

⎞⎟⎟⎟⎟⎠
Left circular jL ≡

⎛⎜⎜⎜⎜⎝
1√
2

i√
2

⎞⎟⎟⎟⎟⎠
Stokes Parameters

In many cases, it is convenient to use Stoke vectors as state characteristics of light. Stokes vector is
a 4 × 1 column composed of the so-called Stokes parameters, four real quantities characterizing the
intensity and polarization state of light. In this subsection we present some useful expressions for Stokes
parameters of monochromatic plane waves in terms of the polarization parameters considered above.
Definitions for different kinds of Stokes vectors are given in Section 5.3. In particular, in Section 5.3
we define two types of Stokes vectors for plane waves. The Stokes vectors of these types for a wave
are simply related. In view of this, we consider here Stokes vectors of only one of these types, namely,
intensity-based Stokes vectors.

Using the x-axis as the polarization reference axis (see Section 5.3), after substitution of (1.14) into
(5.80) it is easy to obtain the following expression for the intensity-based Stokes vector of the wave (1.14):

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
= cn

8𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

|Ẽx|2 + |Ẽy|2|Ẽx|2 − |Ẽy|2
2 Re

(
ẼxẼ

∗
y

)
2 Im

(
ẼxẼ

∗
y

)
⎞⎟⎟⎟⎟⎟⎟⎠
. (1.35)

Since ẼxẼ
∗
y = |Ẽx||Ẽy|e−i𝛿 , we may rewrite this expression as follows:

S(I) =
cn
8𝜋

⎛⎜⎜⎜⎜⎜⎝

|Ẽx|2 + |Ẽy|2|Ẽx|2 − |Ẽy|2
2|Ẽx||Ẽy| cos 𝛿
−2|Ẽx||Ẽy| sin 𝛿

⎞⎟⎟⎟⎟⎟⎠
. (1.36)
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Another useful expression for S(I) can be obtained by using the following representation of the vector
J̃(z):

J̃(z) ≡

(
Ẽx(z)

Ẽy(z)

)
= a(z)

√
Ĩ jE(𝛾e, 𝜐e), (1.37)

where a is a complex phase factor of unit magnitude and jE(𝛾e, 𝜐e) is the polarization Jones vector given
in Table 1.1. Substitution from (1.37) into (1.35) gives

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
= cn

8𝜋

⎛⎜⎜⎜⎜⎜⎝

Ĩ

Ĩ cos 2𝛾e cos 2𝜐e

Ĩ sin 2𝛾e cos 2𝜐e

Ĩ sin 2𝜐e

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

I

I cos 2𝛾e cos 2𝜐e

I sin 2𝛾e cos 2𝜐e

I sin 2𝜐e

⎞⎟⎟⎟⎟⎟⎠
, (1.38)

where I is the intensity defined as the FEFD irradiance of the wave. This expression is convenient when
there is a need to construct the Stokes vector for given 𝛾e and 𝜐e or, vice versa, to find 𝛾e and 𝜐e from
calculated or measured Stokes parameters. Note that in the case of a quasimonochromatic partially
polarized wave, its Stokes vector can be represented as

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

I

Ip cos 2𝛾e cos 2𝜐e

Ip sin 2𝛾e cos 2𝜐e

Ip sin 2𝜐e

⎞⎟⎟⎟⎟⎟⎠
, (1.39)

where I is the total intensity of the wave and Ip is the intensity of the completely polarized component of
the wave. The intensity Ip is expressed in terms of the Stokes parameters as follows:

Ip =
√

S2
1 + S2

2 + S2
3, (1.40)

which allows one to easily find 𝛾e and 𝜐e from a given Stokes vector in this case as well.
If the Jones vector J is defined by (1.25) with aI given by (1.31), the vector S(I) is expressed in terms

of the J components as follows:

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

|Jx|2 + |Jy|2|Jx|2 − |Jy|2
2 Re

(
JxJ∗

y

)
2 Im

(
JxJ∗

y

)
⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

|Jx|2 + |Jy|2|Jx|2 − |Jy|2
2|Jx||Jy| cos 𝛿
−2|Jx||Jy| sin 𝛿

⎞⎟⎟⎟⎟⎟⎠
. (1.41)

Poincaré Sphere

Let us introduce the normalized Stokes parameters

s1 =
S1

S0

, s2 =
S2

S0

, s3 =
S3

S0

. (1.42)
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Figure 1.2 Representation of polarization states by points on the Poincaré sphere

According to (1.38), in the case of a completely polarized wave, these parameters can be expressed as
follows:

s1 = cos 2𝛾e cos 2𝜐e, s2 = sin 2𝛾e cos 2𝜐e, s3 = sin 2𝜐e. (1.43)

With 𝛾e and 𝜐e considered as free variables, equations (1.43) describe a unit sphere in a rectangular
Cartesian coordinate system (s1, s2, s3) (see Figure 1.2). This sphere is called the Poincaré sphere. The
points of this sphere represent all possible SOPs of completely polarized light. The north and south
poles on the Poincaré sphere represent the right and left circular polarizations, respectively. The equator
represents linear polarization states and all the other points on the sphere represent elliptical polarization
states. All left-handed polarization states are on the southern hemisphere, and the northern hemisphere
corresponds to right-handed polarizations.

1.1.3 Coordinate Transformation Rules for Jones Vectors. Orthogonal
Polarizations. Decomposition of a Wave into Two Orthogonally
Polarized Waves

Coordinate Transformation Rules for Cartesian Jones Vectors

Let x′ and y′ be unit vectors directed along mutually orthogonal axes x′ and y′ perpendicular to the axis
z. Using the reference frame (x′, y′, z) instead of (x, y, z), we can represent the wave (1.14) as

E(r, t) =
(
x′Ẽx′ (z) + y′Ẽy′ (z)

)
e−i𝜔t

. (1.44)

According to (1.44) and (1.14a),

xẼx + yẼy = x′Ẽx′ + y′Ẽy′ . (1.45)

Scalarly multiplying (1.45) by x′ and y′, we obtain the following equations:

Ẽx′ = (x′x)Ẽx + (x′y)Ẽy,

Ẽy′ = (y′x)Ẽx + (y′y)Ẽy.
(1.46)
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Introducing the column vector

J̃′ =

(
Ẽx′

Ẽy′

)
(1.47)

and the matrix

Rxy→x′y′ =

(
x′x x′y

y′x y′y

)
, (1.48)

we may write (1.46) in matrix form(
Ẽx′

Ẽy′

)
=

(
x′x x′y

y′x y′y

)(
Ẽx

Ẽy

)
(1.49)

or

J̃′ = Rxy→x′y′ J̃. (1.50)

Considering the space of Jones vectors as a space of states of a wave where each Jones vector represents
a unique state, we may say that the columns J̃ and J̃′ represent the same Jones vector (as they describe
the same state) referred to different bases. Relation (1.49) represents the law of transformation of the
elements of this Jones vector under the change of basis (x, y) → (x′, y′). In view of this, it would be more
correct to rewrite relation (1.50) as follows:

J̃x′y′ = Rxy→x′y′ J̃xy (1.51)

with obvious notation.
If the system (x′, y′, z), like the system (x, y, z), is right-handed (as in Figure 1.3), the matrix Rxy→x′y′

can be expressed as

Rxy→x′y′ =
⌢

RC(𝜙), (1.52)

where 𝜙 is the angle between the axes x and x′ (Figure 1.3), and
⌢

RC is the rotation matrix defined as

⌢

RC(𝛼) ≡

(
cos 𝛼 sin 𝛼

− sin 𝛼 cos 𝛼

)
(1.53)

z x

x'

yy'

y' y

x

x'

ϕ

Figure 1.3 Reference frames (x, y, z) and (x′, y′, z)
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for any 𝛼. Thus, in this case, the law of coordinate transformation can be expressed by the relation

J̃x′y′ =
⌢

RC(𝜙)J̃xy. (1.54)

For the inverse change (x′, y′) → (x, y),

J̃xy =
⌢

RC(𝜙)−1J̃x′y′ =
⌢

RC(−𝜙)J̃x′y′ . (1.55)

Expression (1.48) for the coordinate transformation matrix Rxy→x′y′ is valid irrespective of the handed-
ness of the systems (x, y, z) and (x′, y′, z). For example, if the system (x, y, z) is, as before, right-handed,
choosing the axes x′ and y′ so that x′ = x and y′ = –y, we will obtain a left-handed system (x′, y′, z). In
this case, equation (1.48) gives

Rxy→x′y′ =

(
1 0

0 −1

)
. (1.56)

We should note that many formulas presented in this book, in particular in the previous section, are
valid for right-handed coordinate systems only. In this book, we deal with left-handed systems very
rarely, and it is always stated; if the handedness of a coordinate system is not specified, this system is
assumed to be right-handed.

Orthogonal Polarizations

Two waves propagating in the same direction are said to be orthogonally polarized if their ellipses of
polarization have the same shape but mutually orthogonal major axes and are traced in opposite senses
(Figure 1.4). The right circular polarization is orthogonal with respect to the left circular polarization.
For a wave with 𝛾e = 𝛾

′
e, 𝜐e = 𝜐

′
e, and 𝜒 = 𝜒

′, where 𝛾 ′e, 𝜐′e, and 𝜒 ′ are arbitrary, a wave with the corre-
sponding orthogonal polarization will have 𝛾e = 𝛾

′
e ± 𝜋∕2, 𝜐e = −𝜐′e, and 𝜒 = −1∕𝜒 ′∗ [2]. By checking

that

jE(𝛾 ′e ± 𝜋∕2,−𝜐′e)
† jE(𝛾 ′e, 𝜐′e) = 0,

l

Figure 1.4 Polarization ellipses of mutually orthogonal polarizations
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where jE is the polarization vector defined in Table 1.1, it is easy to verify that the polarization Jones
vectors of two orthogonally polarized waves, these vectors being denoted by j and jort, are orthogonal in
the sense that

j†ort j = j† jort = 0. (1.57)

It is clear that the Jones vectors of the other above-mentioned kinds (J and J̃) for these waves will also
be orthogonal in the same sense (J̃

†
ortJ̃ = 0, J†

ort J = 0).

Decomposition of a Wave into Two Orthogonally Polarized Waves

The equation for the electric field of the wave (1.14) can be rewritten in the form

E(r, t) = E(x)(r, t) + E(y)(r, t), (1.58)

where

E(x)(r, t) = x (xE(r, t)) = xẼx(z)e−i𝜔t,

E(y)(r, t) = y (yE(r, t)) = yẼy(z)e−i𝜔t
.

E(x)(r, t) and E(y)(r, t) represent linearly polarized plane waves, each satisfying the wave equation (1.8).
These waves have mutually orthogonal polarizations: the field E(x)(r, t) vibrates along a line parallel to x,
while the field E(y)(r, t) oscillates along a line parallel to y. Thus, we can regard the representation (1.58)
as a decomposition of the wave E(r, t) into two waves with given mutually orthogonal polarizations. A
similar decomposition can be performed with the use of any other pair of orthogonal polarizations.

Let

j1 =

(
j1x

j1y

)
and j2 =

(
j2x

j2y

)

be a pair of mutually orthogonal polarization Jones vectors (j1
†j2 = 0). Introduce the vectors

⌢e1 = j1x x + j1y y,

⌢e2 = j2x x + j2y y,

which are three-dimensional analogs of the vectors j1 and j2. The vectors ⌢e1 and ⌢e2 are unit vectors in
the sense that

⌢e∗j
⌢ej = 1, j = 1, 2, (1.59)

and mutually orthogonal in the sense that

⌢e∗1
⌢e2 =

⌢e∗2
⌢e1 = 0. (1.60)

Using these vectors, we can represent the wave (1.14) as follows:

E(r, t) = E1(r, t) + E2(r, t), (1.61)
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where

E1(r, t) = ⌢e1

(
⌢e∗1E(r, t)

)
= ⌢e1Ã1(z)e−i𝜔t,

E2(r, t) = ⌢e2

(
⌢e∗2E(r, t)

)
= ⌢e2Ã2(z)e−i𝜔t,

Ãj(z) = Ãj(z
′)eik0n(z−z′), j = 1, 2.

(1.62)

E1(r, t) and E2(r, t) represent waves with polarizations j1 and j2, respectively. The column

J̃j1 j2
=

(
Ã1

Ã2

)
(1.63)

is yet another representation of the Jones vector of the wave. From the relation

xẼx + yẼy =
⌢e1Ã1 +

⌢e2Ã2 =
(
j1x x + j1y y

)
Ã1 +

(
j2x x + j2y y

)
Ã2

it follows that(
Ẽx

Ẽy

)
=

(
x⌢e1 x⌢e2

y⌢e1 y⌢e2

)(
Ã1

Ã2

)
=

(
j1x j2x

j1y j2y

)(
Ã1

Ã2

)
=
(

j1 j2

)( Ã1

Ã2

)
= j1Ã1 + j2Ã2. (1.64)

The column J̃j1 j2
can be expressed in terms of the column J̃xy as follows:

(
Ã1

Ã2

)
=
(

j1 j2

)−1

(
Ẽx

Ẽy

)
=

(
j†1

j†2

)(
Ẽx

Ẽy

)
. (1.65)

It is clear that the Cartesian Jones vectors J̃xy and J̃x′y′ can also be defined in the same way as the
vector J̃j1 j2

: the vector J̃xy corresponds to the choice

j1 =

(
1

0

)
, j2 =

(
0

1

)

(⌢e1 = x, ⌢e2 = y), and the vector J̃x′y′ to

j1 =

(
cos𝜙

sin𝜙

)
, j2 =

(
− sin𝜙

cos𝜙

)

(⌢e1 = x′, ⌢e2 = y′) in the coordinate system (x, y, z,).
The representation of wave fields in terms of basis wave modes (basis eigenwaves) is widely used

in rigorous methods of polarization optics and optics of stratified media (see Chapter 8). State vectors
introduced in the same manner as J̃j1 j2

[see (1.61)–(1.63)] are natural elements of these methods, where
they are employed for description of homogeneous waves propagating in isotropic media as well as
homogeneous waves propagating along the optic axis in uniaxial media. Choosing the basis polarization
vectors in such a way that the Jones vector can be treated as a Cartesian Jones vector referred to a right-
handed coordinate system makes it possible to use the formulas relating the components of Cartesian
Jones vectors and the polarization ellipse parameters of Section 1.1.2 in such calculations.
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General Coordinate Transformation Rules for Jones Vectors

The column J̃j1 j2
[see (1.63)] is a particular representation of the Jones vector of the wave; to introduce

this column we used the polarization basis (j1, j2) [or, what is the same, (⌢e1, ⌢e2)]. Let (j′1, j′2) [(⌢e′1, ⌢e′2)] be
another polarization basis [with j′†1 j′2 = 0 (⌢e′∗1

⌢e′2 = 0)], and let the column J̃j′1j′2
represent the same Jones

vector in this new basis. One can show that

J̃j′1 j′2
=

(
j′†1 j1 j′†1 j2

j′†2 j1 j′†2 j2

)
J̃j1 j2

(1.66)

or, equivalently,

J̃j′1 j′2
=

(
⌢e′∗1

⌢e1
⌢e′∗1

⌢e2

⌢e′∗2
⌢e1

⌢e′∗2
⌢e2

)
J̃j1 j2

. (1.67)

Relation (1.66) can readily be derived by using (1.64) and (1.65).

1.2 Interface Optics for Isotropic Media
Many problems of LCD optics involve considering the optical effect of interfaces. In this book, we
will deal with interfaces of different kinds—from interfaces between isotropic media to those between
arbitrary anisotropic media. The simplest problem, the problem on reflection and transmission of a plane
monochromatic wave incident on a plane interface between isotropic media, is considered in detail in
many textbooks (e.g., [1, 4]). In Section 1.2.1, we present, without derivation, the basic laws and formulas
relating to this problem. In Section 1.2.2, we use this problem to show some options of modern variants
of the Jones matrix method.

1.2.1 Fresnel’s Formulas. Snell’s Law
Let a homogeneous plane monochromatic wave propagating in an isotropic homogeneous nonabsorbing
medium with refractive index n1 be obliquely incident at angle 𝛽 inc on a plane surface of another
isotropic homogeneous nonabsorbing medium with refractive index n2. First we consider the case when
n1 < n2, which is illustrated by Figure 1.5. In this case, at any 𝛽 inc, the reflected and transmitted fields
will be homogeneous plane waves. Considering amplitude relations between the incident, reflected,
and transmitted waves, it is convenient to decompose each of these waves into two linearly polarized
constituents: the wave with its electric field vector parallel to the plane of incidence, it is the so-called
p-polarized component, and the wave with electric field vector perpendicular to the plane of incidence, it
is the so-called s-polarized component (the plane of incidence is the plane containing the incident light
wave vector and a normal to the interface). One can use the following variant of decomposition of the
electric fields of the incident, reflected, and transmitted wave fields:

Incident wave: Einc(r, t) =
[
e(inc)

p A(inc)
p (r) + e(inc)

s A(inc)
s (r)

]
e−i𝜔t,

Reflected wave: Eref (r, t) =
[
e(ref)

p A(ref)
p (r) + e(ref)

s A(ref)
s (r)

]
e−i𝜔t,

Transmitted wave: Etr(r, t) =
[
e(tr)

p A(tr)
p (r) + e(tr)

s A(tr)
s (r)

]
e−i𝜔t,

(1.68)

where e(inc)
p , e(inc)

s , e(ref)
p , e(ref)

s , e(tr)
p , and e(tr)

s are unit real vectors which specify vibration directions of the
electric fields of the p- and s-components of the waves and are oriented as indicated in Figure 1.5, and
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Figure 1.5 Transmission and reflection at a plane interface between isotropic media. Geometry of the
problem

A(inc)
p , A(inc)

s , A(ref)
p , A(ref)

s , A(tr)
p , and A(tr)

s are the scalar complex amplitudes of these components. The spatial
evolution of the scalar amplitudes in the regions where the corresponding waves exist can be described
by the equations

A(inc)
j (r) = A(inc)

j (r′)eik0minc(r′−r), A(ref)
j (r) = A(ref)

j (r′′)eik0mref (r′′−r),

A(tr)
j (r) = A(tr)

j (r′′′)eik0mtr(r
′′′−r),

j = s, p,

(1.69)

where minc, mref , and mtr are the refraction vectors (see Section 8.1.2) of the incident, reflected, and
transmitted waves, respectively. The refraction vectors are related to the corresponding wave vectors by
the equations

minc = k−1
0 kinc, mref = k−1

0 kref , mtr = k−1
0 ktr. (1.70)

Using the quantities

𝜁 ≡ mincL = n1 sin 𝛽inc, b = L𝜁 , 𝜎inc ≡ mincN = n1 cos 𝛽inc, (1.71)

where N and L are unit vectors oriented as shown in Figure 1.5 (N is normal to the interface surface; L is
tangent to this surface), one may represent the vector minc as follows:

minc = Ln1 sin 𝛽inc + Nn1 cos 𝛽inc = L𝜁 + N𝜎inc = b + N𝜎inc. (1.72)

According to (1.12),

mincminc = n2
1, mrefmref = n2

1, mtrmtr = n2
2. (1.73)
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It follows from the symmetry of the problem (see Section 8.1.3) that the vectors mref and mtr are coplanar
with the vectors minc and N and have their tangential components equal to the tangential component
(b = L𝜁 ) of the vector minc, that is, the vectors mref and mtr can be represented as follows:

mref = L𝜁 + N𝜎ref , mtr = L𝜁 + N𝜎tr. (1.74)

According to (1.73) and (1.74), 𝜎ref = −𝜎inc and

𝜎tr =
√

n2
2 − 𝜁 2. (1.75)

If n2 is real and 𝜁 < n2, as in the case under consideration, the vector mtr can be represented as

mtr = Ln2 sin 𝛽tr + Nn2 cos 𝛽tr. (1.76)

Then from the condition of equality of the tangential components of minc and mtr it follows that

n2 sin 𝛽tr = n1 sin 𝛽inc, (1.77)

which is the well-known Snell’s law.
Let the plane of the interface coincide with the plane zS = zINT in a rectangular Cartesian coordinate

system (xS, yS, zS) with the zS-axis directed as shown in Figure 1.5. From the requirement of continuity
of the tangential components of the electric and magnetic fields across the interface surface (see Sec-
tion 8.1.1), one can find that amplitudes of the p-polarized components of the transmitted and reflected
waves depend only on the amplitude of the p-polarized component of the incident wave and the same is
true for the s-polarized components and that the ratios

tpp ≡
A(tr)

p (xS, yS, zINT + 0)

A(inc)
p (xS, yS, zINT − 0)

, tss ≡
A(tr)

s (xS, yS, zINT + 0)

A(inc)
s (xS, yS, zINT − 0)

,

rpp ≡
A(ref)

p (xS, yS, zINT − 0)

A(inc)
p (xS, yS, zINT − 0)

, rss ≡
A(ref)

s (xS, yS, zINT − 0)

A(inc)
s (xS, yS, zINT − 0)

,

(1.78)

where zS = zINT − 0 and zS = zINT + 0 stand for the sides of the plane zS = zINT facing the half-spaces
zS < zINT and zS > zINT respectively (or for corresponding planes infinitely close to the plane zS = zINT),
are independent of xS and yS and can be expressed as follows:

tpp =
2n1n2 cos 𝛽inc

n1

√
n2

2 − n2
1 sin

2
𝛽inc + n2

2 cos 𝛽inc

, (1.79)

tss =
2n1 cos 𝛽inc

n1 cos 𝛽inc +
√

n2
2 − n2

1 sin
2
𝛽inc

, (1.80)

rpp = −
n1

√
n2

2 − n2
1 sin

2
𝛽inc − n2

2 cos 𝛽inc

n1

√
n2

2 − n2
1 sin

2
𝛽inc + n2

2 cos 𝛽inc

, (1.81)

rss =
n1 cos 𝛽inc −

√
n2

2 − n2
1 sin

2
𝛽inc

n1 cos 𝛽inc+
√

n2
2 − n2

1 sin
2
𝛽inc

. (1.82)
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The quantities tpp, tss, rpp, and rss are called the amplitude transmission and reflection coefficients.
Expressions (1.79)–(1.82) are the Fresnel formulas written in a special form.

In the case under consideration (nonabsorbing media, n1 < n2), the coefficients tpp, tss, rpp, and rss

have real values at any 𝛽 inc. At 𝛽 inc ≠ 0, the amount of the reflected light and that of the transmitted light
depend on the polarization state of the incident light.

Transmissivity and Reflectivity of the Interface

Let E(inc)(zINT − 0) be the irradiance produced by the incident wave on the plane zS = zINT − 0, E(ref)(zINT −
0) the irradiance produced by the reflected wave on the same plane, and E(tr)(zINT + 0) the irradiance
produced by the transmitted wave on the plane zS = zINT + 0 (note that we deal here with another kind of
irradiance than FEFD irradiance used in Section 1.1.2; see Sections 5.2, 5.4.2, and 8.5). The quantities

TI ≡
E(tr)(zINT + 0)

E(inc)(zINT − 0)
and RI ≡

E(ref)(zINT − 0)

E(inc)(zINT − 0)
(1.83)

are called respectively the transmissivity and reflectivity of the interface. In the case under consideration,
the irradiances entering into (1.83) can be expressed as follows:

E(inc)(zINT − 0) =
cn1 cos 𝛽inc

8𝜋

(|||A(inc)
p (xS, yS, zINT − 0)|||2 + |||A(inc)

s (xS, yS, zINT − 0)|||2) , (1.84a)

E(ref)(zINT − 0) =
cn1 cos 𝛽inc

8𝜋

(|||A(ref)
p (xS, yS, zINT − 0)|||2 + |||A(ref)

s (xS, yS, zINT − 0)|||2) , (1.84b)

E(tr)(zINT + 0) =
cn2 cos 𝛽tr

8𝜋

(|||A(tr)
p (xS, yS, zINT + 0)|||2 + |||A(tr)

s (xS, yS, zINT + 0)|||2) (1.84c)

at arbitrary xS and yS. Using the above formulas, it is easy to find that if the incident wave is p-polarized,

TI = Tpp ≡
n2 cos 𝛽tr

n1 cos 𝛽inc

|tpp|2, (1.85a)

RI = Rpp ≡ |rpp|2 (1.85b)

and, if the incident wave is s-polarized,

TI = Tss ≡
n2 cos 𝛽tr

n1 cos 𝛽inc

|tss|2, (1.86a)

RI = Rss ≡ |rss|2. (1.86b)

Here we have denoted the transmissivities and reflectivities of the interface for a p-polarized incident wave
by Tpp and Rpp and those for an s-polarized incident wave by Tss and Rss. As an illustration, Figure 1.6
shows the dependences of these transmissivities and reflectivities on the angle of incidence 𝛽 inc at
n1 = 1 (vacuum or air) and n2 = 1.5 (e.g., glass).

At any polarization of the incident wave and at any 𝛽 inc,

TI + RI = 1. (1.87)
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Figure 1.6 Transmissivities Tpp and Tss and reflectivities Rpp and Rss versus the angle of incidence 𝛽 inc

at n1 = 1 and n2 = 1.5

The Brewster Angle
The angle

𝛽B = arctan
n2

n1

(1.88)

is called the polarizing or Brewster angle. As can be seen from (1.81), at 𝛽 inc = 𝛽B the coefficient rpp

is equal to zero, as is the reflectivity Rpp [see (1.85b)]. If 𝛽 inc = 𝛽B, whatever the polarization of the
incident wave, the reflected wave will be s-polarized. In the example illustrated by Figure 1.6 (n1 = 1 and
n2 = 1.5), 𝛽B ≈ 56.3◦.

The Case n1 > n2. Critical Angle

So far it has been assumed that n1 < n2. All the formulas presented above for the case n1 < n2 are also
valid in the case n1 > n2 for 𝛽 inc < 𝛽c, where

𝛽c = arcsin
(

n2

n1

)
(1.89)

is the critical angle of total internal reflection. At 𝛽 inc > 𝛽c, in contrast to the case 𝛽 inc < 𝛽c, the vector
mtr will be complex and have nonparallel real and imaginary parts [from (1.74) and (1.75) it is easy to
see that Re(mtr) and Im(mtr) will be parallel to L and N, respectively], that is, the transmitted wave will
be inhomogeneous (see Section 8.1.2). In this case, decomposing the field Etr [see (1.68)], we can use
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the same real vector e(tr)
s as in the above cases but cannot use a real vector e(tr)

p since with a real e(tr)
p Etr

will not meet (1.10). To satisfy (1.10), one can take the following vector e(tr)
p :

e(tr)
p = 1√

mtrm
∗
tr

e(tr)
s × mtr (1.90)

with e(tr)
s being chosen the same as in the previous cases (i.e., real, unit, and oriented as shown in

Figure 1.5). The vector e(tr)
p given by (1.90) is such that mtre

(tr)
p = 0, which is necessary for (1.10) to be

satisfied, and unit in the sense that
√

e(tr)
p e(tr)∗

p = 1. With the choice of e(inc)
p , e(inc)

s , e(ref)
p , e(ref)

s , and e(tr)
s as in

Figure 1.5 and e(tr)
p as in (1.90) [note that the vector e(tr)

p used above in the case of real mtr satisfies (1.90)],
expressions (1.80)–(1.82) for the coefficients tss, rpp, and rss remain valid in the case 𝛽 inc > 𝛽c (but these
coefficients become complex), while the expression for tpp takes a more general form, namely,

tpp = Cn2

2n1n2 cos 𝛽inc

n1

√
n2

2 − n2
1 sin

2
𝛽inc + n2

2 cos 𝛽inc

, (1.91)

where

Cn2 =
√

C∗
𝛽n2C

𝛽n2 + S∗
𝛽n2S

𝛽n2 (1.92)

with

C
𝛽n2 = 1

n2

√
n2

2 − n2
1 sin

2
𝛽inc, S

𝛽n2 =
(

n1

n2

)
sin 𝛽inc.

As seen from these formulas, at 𝛽 inc < 𝛽c, Cn2 = 1 and expression (1.91) becomes identical to (1.79).

Total Internal Reflection (TIR)

In the case 𝛽 inc > 𝛽c, it is convenient to rewrite expressions (1.81) and (1.82) as follows:

rpp = −
in1

√
n2

1 sin
2
𝛽inc − n2

2 − n2
2 cos 𝛽inc

in1

√
n2

1 sin
2
𝛽inc − n2

2 + n2
2 cos 𝛽inc

, (1.93)

rss =
n1 cos 𝛽inc − i

√
n2

1 sin
2
𝛽inc − n2

2

n1 cos 𝛽inc + i
√

n2
1 sin

2
𝛽inc − n2

2

. (1.94)

It is easy to see from (1.93) and (1.94) that |rpp|=|rss|=1. Since, as before, the incident and reflected
waves are assumed to be homogeneous and the medium where they propagate to be nonabsorbing,
expressions (1.84a) and (1.84b) and hence (1.85b) and (1.86b) remain applicable. According to (1.85b)
and (1.86b), when |rpp|=|rss|=1, Rpp = Rss = 1, that is, total reflection takes place. Expression (1.84c)
is not applicable when 𝛽 inc > 𝛽c because in this case the transmitted wave is inhomogeneous. One can
show that at 𝛽 inc > 𝛽c, E(tr) = 0 and consequently Tpp = Tss = 0 (although tpp and tss are different from
zero). Even at small deviations 𝛽 inc from 𝛽c and n2 from n1, the transmitted wave, having an imaginary

𝜎tr = i
√

n2
1 sin

2
𝛽inc − n2

2, has an appreciable amplitude only near the interface. Such waves are called
surface or evanescent waves.
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glass
n=1.5

air
n=1

Figure 1.7 A prism reflector using the TIR phenomenon

At 𝛽 inc > 𝛽c, rpp and rss, being complex, are different in phase and the difference of the phases of rpp and
rss gradually changes with 𝛽 inc. This means that the phase shifts introduced into the p- and s-components
of the reflected wave at reflection are different and that the difference of these phase shifts (and hence
the shape of the polarization ellipse of the reflected light) can be controlled by choosing 𝛽 inc. The latter
is used in polarization-transforming devices such as the Fresnel rhomb.

For a glass–air interface with n1 = 1.5 and n2 = 1, 𝛽c ≈ 41.8◦. Therefore a right-angle glass prism can
be used as a high-efficiency reflector as shown in Figure 1.7. Such a reflector may be almost lossless
provided that the entrance and exit surfaces have antireflection coatings. The TIR phenomenon is used
in many kinds of optical elements and devices. It is the principle of waveguides and optical fibers. In
liquid crystal display applications, TIR is exploited in elements of backlight units, in projection systems,
in beam steering, and so on. In Section 4.3, we will deal with an application of the TIR phenomenon in
the intensity-modulating unit of an LCD.

Incidence of a Homogeneous Wave from a Nonabsorbing Medium
on an Absorbing One

Formulas (1.80)–(1.82) and (1.91) can also be used for calculating the amplitude transmission and
reflection coefficients in the case when the second medium is absorbing; in this case, n2 is assumed to
be complex. These formulas correspond to the choice of the vectors e(inc)

p , e(inc)
s , e(ref)

p , e(ref)
s , e(tr)

p , and e(tr)
s

in accordance with the same rules that were just used in the case of TIR. The transmitted wave in the
absorbing medium will be inhomogeneous at any nonzero 𝛽 inc and has nonzero Re 𝜎tr and Im 𝜎tr at any 𝛽 inc.

1.2.2 Reflection and Transmission Jones Matrices for a Plane Interface
between Isotropic Media

In all the above cases, the interaction of the incident light with the interface can be described by the
relations

J̃
(tr)

(xS, yS, zINT + 0) = t̃IJ̃
(inc)

(xS, yS, zINT − 0), (1.95)

J̃
(ref)

(xS, yS, zINT − 0) = r̃IJ̃
(inc)

(xS, yS, zINT − 0), (1.96)

where

J̃
(inc) =

(
A(inc)

p

A(inc)
s

)
, J̃

(tr) =

(
A(tr)

p

A(tr)
s

)
, J̃

(ref) =

(
A(ref)

p

A(ref)
s

)
(1.97)
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are Jones vectors of the incident, transmitted, and reflected waves, and

t̃I =

(
tpp 0

0 tss

)
, r̃I =

(
rpp 0

0 rss

)
(1.98)

are the transmission and reflection Jones matrices of the interface corresponding to the representation
(1.97) of the Jones vectors. The vectors J̃

(inc)
and J̃

(ref)
in all the considered cases as well as the vector J̃

(tr)

when it characterizes a homogeneous wave are Jones vectors of the same kind as the vector J̃ considered
in Section 1.1.2. It is clear that the presented variant of transmission and reflection Jones matrices for
the interface is not unique. Other kinds and representations of Jones matrices for interfaces may be more
suitable in solving particular problems. For example, when considering transmission and reflection at an
interface between nonabsorbing media in a situation where the waves in both media are homogeneous, it
may be convenient to deal with the transmission and reflection matrices corresponding to the following
Jones vectors:

J̃
(inc)

F =
√

2n1 cos 𝛽inc J̃
(inc)

, J̃
(ref)

F =
√

2n1 cos 𝛽inc J̃
(ref)

, J̃
(tr)

F =
√

2n2 cos 𝛽tr J̃
(tr)
. (1.99)

We denote these Jones matrices by t̃I(F) and r̃I(F). From (1.95), (1.96) and the relations

J̃
(tr)

F (xS, yS, zINT + 0) = t̃I(F) J̃
(inc)

F (xS, yS, zINT − 0), (1.100)

J̃
(ref)

F (xS, yS, zINT − 0) = r̃I(F) J̃
(inc)

F (xS, yS, zINT − 0), (1.101)

it follows that

t̃I(F) =
√

n2 cos 𝛽tr√
n1 cos 𝛽inc

t̃I, r̃I(F) = r̃I. (1.102)

According to (1.84), (1.97), and (1.99), the irradiances E(inc), E(ref), and E(tr)can be expressed as follows:

E(inc) =
cn1 cos 𝛽inc

8𝜋
J̃

(inc)†
J̃

(inc) = c
16𝜋

J̃
(inc)†
F J̃

(inc)

F ,

E(ref) =
cn1 cos 𝛽inc

8𝜋
J̃

(ref)†
J̃

(ref) = c
16𝜋

J̃
(ref)†
F J̃

(ref)

F ,

E(tr) =
cn2 cos 𝛽tr

8𝜋
J̃

(tr)†
J̃

(tr) = c
16𝜋

J̃
(tr)†
F J̃

(tr)

F .

(1.103)

Substitution of these expressions into (1.83) gives the following expressions for the transmissivity TI and
reflectivity RI of the interface in terms of the Jones vectors:

TI =
(

n2 cos 𝛽tr

n1 cos 𝛽inc

)
J̃

(tr)
(r+INT)†J̃

(tr)
(r+INT)

J̃
(inc)

(r−INT)†J̃
(inc)

(r−INT)
=

J̃
(tr)

F (r+INT)†J̃
(tr)

F (r+INT)

J̃
(inc)

F (r−INT)†J̃
(inc)

F (r−INT)
, (1.104)

RI =
J̃

(ref)
(r−INT)†J̃

(ref)
(r−INT)

J̃
(inc)

(r−INT)†J̃
(inc)

(r−INT)
=

J̃
(ref)

F (r−INT)†J̃
(ref)

F (r−INT)

J̃
(inc)

F (r−INT)†J̃
(inc)

F (r−INT)
, (1.105)
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where r−INT =
(
xS, yS, zINT − 0

)
and r+INT =

(
xS, yS, zINT + 0

)
. Defining the length ||J̃|| of a Jones vector J̃

as

||J̃|| ≡√J̃
†
J̃, (1.106)

we can rewrite expressions (1.104) and (1.105) in the following form:

TI =
(

n2 cos 𝛽tr

n1 cos 𝛽inc

) |||J̃(tr)
(r+INT)|||2|||J̃(inc)
(r−INT)|||2 =

|||J̃(tr)

F (r+INT)|||2|||J̃(inc)

F (r−INT)|||2 , (1.107)

RI =
|||J̃(ref)

(r−INT)|||2|||J̃(inc)
(r−INT)|||2 =

|||J̃(ref)

F (r−INT)|||2|||J̃(inc)

F (r−INT)|||2 . (1.108)

Denote a polarization Jones vector of the incident wave in the basis (e(inc)
p , e(inc)

s ) by j(inc). By definition,

the vectors J̃
(inc)

(r−INT) and J̃
(inc)

F (r−INT) are related to j(inc) as follows:

J̃
(inc)

(r−INT) = a(r−INT)j(inc), J̃
(inc)

F (r−INT) = aF(r−INT)j(inc), (1.109)

where a(r−INT) and aF(r−INT) are scalar factors. Substitution from (1.109) into (1.95), (1.96), (1.100),
and (1.101) gives expressions for the Jones vectors of the transmitted and reflected waves in terms
of j(inc). Substituting these expressions into (1.107) and (1.108) and using the fact that |J̃(inc)

(r−INT)|2 =|a(r−INT)|2 and |J̃(inc)

F (r−INT)|2 = |aF(r−INT)|2, we obtain the following expressions for the transmissivity and
reflectivity: in terms of t̃I and r̃I,

TI =
(

n2 cos 𝛽tr

n1 cos 𝛽inc

) |||t̃I j(inc)|||2 , (1.110)

RI =
|||r̃I j(inc)|||2 (1.111)

and, in terms of t̃I(F) and r̃I(F),

TI =
|||t̃I(F) j(inc)|||2 , (1.112)

RI =
|||r̃I(F) j(inc)|||2 . (1.113)

Employing the Jones vectors and matrices labeled by the subscript F, we include all the information
required for finding TI, apart from that contained in j(inc), in the Jones matrix and can use the uni-
fied and algebraically simplest expressions for calculating the transmissivity and reflectivity from the
corresponding Jones matrices. Note that we could introduce the vectors J̃

(inc)

F , J̃
(tr)

F , and J̃
(ref)

F as

J̃
(inc)

F =

(
A(inc)

p

A(inc)
s

)
, J̃

(tr)

F =

(
A(tr)

p

A(tr)
s

)
, J̃

(ref)

F =

(
A(ref)

p

A(ref)
s

)
(1.114)
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[see (1.68)] by adopting the following normalization conditions for the basis vibration vectors:

e(inc)
p

∗e(inc)
p = e(inc)

s
∗e(inc)

s = e(ref)
p

∗e(ref)
p = e(ref)

s
∗e(ref)

s = 1
2n1 cos 𝛽inc

, (1.115)

e(tr)
p

∗e(tr)
p = e(tr)

s
∗e(tr)

s = 1
2n2 cos 𝛽tr

. (1.116)

Special normalizations of the basis vibration vectors, like this one, able to simplify a problem are
considered in Chapters 8–12.

1.3 Wave Propagation in Anisotropic Media
Needless to say, the propagation of electromagnetic waves in optically anisotropic (birefringent) media
and transmission characteristics of anisotropic layers are extremely important subjects to LCD optics.
These subjects are considered in detail in Chapters 8 and 9, where we discuss rigorous methods of
optics of stratified media applicable to both isotropic and anisotropic media. In the present section, we
want to give an overview of basic features of light propagation in anisotropic media and shortly discuss
transmission properties of anisotropic layers at normal incidence of light. The latter is directly concerned
with the classical Jones matrix method (CJMM). In this section and almost everywhere in this book,
we restrict our attention to anisotropic media that are nonmagnetic and nongyrotropic in the optical
region.

1.3.1 Wave Equations
The basic difference of anisotropic media from isotropic ones from the standpoint of the Maxwell
electromagnetic theory lies in relation between the electric field strength vector E and the electric
displacement vector D (see Section 8.1.1). In the case of an arbitrary nongyrotropic medium, the vector
D can be expressed in terms of the vector E as follows:

D = εE, (1.117)

where ε is the permittivity tensor, ε being symmetric (ε = εT, where T denotes the matrix transposition).
If the medium is isotropic, the tensor ε can be represented as ε = 𝜀U, where 𝜀 is a scalar (the permittivity
coefficient) and U is the unit matrix. This, in particular, means that D is parallel to E and that the ratio
|D|/|E| is independent of the direction of E. In the case of an anisotropic medium, the representation
ε = 𝜀U is not applicable, D and E may be unparallel, and the ratio |D|/|E| depends on the E direction.

An analogue of equation (1.8) for the case of a homogeneous anisotropic medium is

∇ × (∇ × E) − k2
0εE = ⌢

0. (1.118)

The wave vectors and vibration modes of the electric field of plane waves that can exist inside the
anisotropic medium—such waves are called natural waves, eigenwaves, or proper waves—can be found
from the equation

k × (k × E) + k2
0εE = ⌢

0 (1.119)



JWST441-c01 JWST441-Yakovlev Printer: Markono December 30, 2014 7:44 Trim: 244mm × 170mm

24 Modeling and Optimization of LCD Optical Performance

which can be obtained by substituting (1.1) into (1.118). It is convenient to rewrite this equation in
terms of the refraction vector m = k/k0 and electric vibration vector e [E(r,t) = eA(r,t), see (8.38) and
definitions in Section 8.1.2]:

m × (m × e) + εe = ⌢

0. (1.120)

This equation can be written in the following form:

QEe = ⌢

0. (1.121)

The matrix QE is expressed in terms of the elements of

m ≡

⎛⎜⎜⎜⎝
m1

m2

m3

⎞⎟⎟⎟⎠ and ε ≡

⎛⎜⎜⎜⎝
𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

⎞⎟⎟⎟⎠
as follows:

QE = Qm + ε =
⎛⎜⎜⎜⎝
𝜀11 − m2

2 − m2
3 𝜀12 + m1m2 𝜀13 + m1m3

𝜀12 + m1m2 𝜀22 − m2
1 − m2

3 𝜀23 + m2m3

𝜀13 + m1m3 𝜀23 + m2m3 𝜀33 − m2
1 − m2

2

⎞⎟⎟⎟⎠ , (1.122)

where

Qm =
⎛⎜⎜⎜⎝
−m2

2 − m2
3 m1m2 m1m3

m1m2 −m2
1 − m2

3 m2m3

m1m3 m2m3 −m2
1 − m2

2

⎞⎟⎟⎟⎠ . (1.123)

In some cases, it is simpler to use the following form of equation (1.120):

QDd = ⌢

0, (1.124)

where d = εe is the displacement vibration vector [D(r,t) = dA(r,t), see (8.38)], and

QD = QEε−1 = Qmε−1 + U. (1.125)

The vector d (as well as D) of a plane wave is always orthogonal to its refraction vector m in the sense
that

m ⋅ d = 0, (1.126)

as it follows from the Maxwell equation ∇D = 0. According to (1.120),

d = −m × (m × e) = e(m ⋅ m) − m(m ⋅ e),

that is, the vector d is a linear combination of the vectors e and m. If the wave is homogeneous and
linearly polarized, this means simply that the vectors d, e, and m are coplanar.
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Equations (1.120) and (1.121) have a nontrivial solution only if

det QE = 0. (1.127)

This condition can also be written as

det QD = 0. (1.128)

From (1.127) or (1.128), the refraction vectors of natural waves are found.
In the next two sections we will consider some situations when the above equations are readily solved.

1.3.2 Waves in a Uniaxial Layer
In the case of a uniaxial medium with optic axis parallel to a unit vector c, the tensor ε can be represented
as

ε ≡

⎛⎜⎜⎜⎝
𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
𝜀
⊥
+ Δ𝜀c2

1 Δ𝜀c1c2 Δ𝜀c1c3

Δ𝜀c1c2 𝜀
⊥
+ Δ𝜀c2

2 Δ𝜀c2c3

Δ𝜀c1c3 Δ𝜀c2c3 𝜀
⊥
+ Δ𝜀c2

3

⎞⎟⎟⎟⎠ ,

Δ𝜀 = 𝜀|| − 𝜀⊥,

(1.129)

where 𝜀∥ and 𝜀⟂ are the principal permittivities of the medium (D = 𝜀∥E if E∥c, and D = 𝜀⟂E if E⟂c),

and cj (j = 1,2,3) are the elements of the vector c ≡

⎛⎜⎜⎝
c1

c2

c3

⎞⎟⎟⎠. The principal permittivities are related to the

principal refractive indices of the medium, n∥ and n⟂, by

𝜀|| = n2||, 𝜀
⊥
= n2

⊥
. (1.130)

Ordinary and Extraordinary Waves

Natural waves in uniaxial media are divided into two classes: ordinary waves and extraordinary waves.
The refraction vectors of the ordinary waves are independent of the optic axis orientation and satisfy
the equation m⋅m = 𝜀⟂. The refraction vectors of the extraordinary waves depend on the optic axis
orientation and meet the equation m⋅(εm) = 𝜀⟂𝜀∥ (see Section 9.3). Let mo and eo be the refraction
vector and an electric vibration vector of an ordinary wave, and let me and ee be those of an extraordinary
wave. In general, the vector eo satisfies the conditions c⋅eo = 0 and mo⋅eo = 0, while the vector ee can
be represented as a linear combination of the vectors me and c. If the medium is nonabsorbing and the
waves are homogeneous (not evanescent), the vectors mo and me are real (see Section 9.3). In this case,
the electric field of the ordinary wave performs oscillations along a straight line perpendicular to c and
mo, while the electric field of the extraordinary wave vibrates along a straight line parallel to the plane
spanned by the vectors me and c (Figure 1.8). For homogeneous waves, the plane containing the wave
normal and c is referred to as the principal plane [1].

If a natural wave is homogeneous, one can associate with it a refractive index (see Section 8.1.2). For
a homogeneous wave, the vector m can be represented as m = nwl, where l is the wave normal and nw is
the refractive index for the wave. We will denote refractive indices for ordinary and extraordinary waves
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ordinary wave 

ee

eo

l

l

extraordinary wave 

⊥

Θ⊥ c

optic axis

l

n||>n
n||<n

Figure 1.8 Homogeneous natural waves in a nonabsorbing uniaxial medium. l is the wave normal

by no and ne, respectively. The refractive indices of a homogeneous ordinary wave and a homogeneous
extraordinary wave can be expressed as

no =
√
𝜀
⊥
= n

⊥
, (1.131)

ne =
√
𝜀
⊥
𝜀||√

𝜀
⊥
+ Δ𝜀 cos2 Θ

=
n||n⊥√

n2|| cos2 Θ + n2
⊥
sin2 Θ

, (1.132)

where Θ is the angle between the wave normal of the extraordinary wave and the optic axis (Figure 1.8).
At Θ = 90◦, ne = n∥. At Θ = 0, ne = n⟂, and the extraordinary wave turns into an ordinary one. Waves
propagating along the optic axis (m∥c) can have different polarizations (linear, elliptical, circular) as if
the medium were isotropic.

Geometry of the Problem for a Layer

Let us consider a homogeneous uniaxial layer whose boundaries coincide with the planes zc = z1 and
zc = z2 (z2 > z1) in a coordinate system (xc, yc, zc) and whose optic axis is parallel to the xc−zc plane
(Figure 1.9a). In this case, the vector c can be represented as

c =
⎛⎜⎜⎜⎝
cos 𝜃

0

sin 𝜃

⎞⎟⎟⎟⎠ , (1.133)

where 𝜃 is the angle between the xc–yc plane and the vector c, and, according to (1.129),

ε =
⎛⎜⎜⎜⎝
𝜀
⊥
+ Δ𝜀 cos2

𝜃 0 Δ𝜀 cos 𝜃 sin 𝜃

0 𝜀
⊥

0

Δ𝜀 cos 𝜃 sin 𝜃 0 𝜀
⊥
+ Δ𝜀 sin2

𝜃

⎞⎟⎟⎟⎠ (1.134)

in the system (xc, yc, zc). Let this layer be surrounded by a homogeneous nonabsorbing isotropic medium
with refractive index n1, and let a plane homogeneous wave with refraction vector minc fall on this layer
from the half-space zc < z1. As in Section 1.2.1, we represent the vector minc as

minc = Ln1 sin 𝛽inc + Nn1 cos 𝛽inc = L𝜁 + N𝜎inc (1.135)
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yc

xc

anisotropic 
medium

isotropic medium

isotropic medium

optic axis

eε

zc

zc

z1

z2

n1

n1

n||, n||<

n||>

N

β

θ

inc

L

n1

n1

(a)

(b)

⊥n ⊥n

⊥n

n||, ⊥n

Figure 1.9 Geometry of the problem. The dotted arrows in sketch (b) show the directions of wave
normals of the incident and induced waves

[see (1.72)], the unit vectors L and N being oriented as in Figure 1.5 (Figure 1.9b). The symmetry of
the problem (see Section 8.1.3) implies that the refraction vector of any of natural waves produced by
the incident wave inside or outside the layer will have the form m = L𝜁 + N𝜎, where 𝜁 = n1 sin 𝛽inc. In
particular, this means that all emergent waves in the half-space zc > z2, the components of the transmitted
field, will have the same refraction vector, which allows considering any combination of these waves as
a single plane wave. The same can be said about emergent waves propagating in the half-space zc < z1.

Normal Incidence

In the case of normal incidence (𝛽inc = 0), the refraction vectors of the waves propagating inside the
layer, being represented in the system (xc, yc, zc), will have the form

m =
⎛⎜⎜⎜⎝

0

0

𝜎

⎞⎟⎟⎟⎠ . (1.136)
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With such m,

Qm =
⎛⎜⎜⎜⎝
−𝜎2 0 0

0 −𝜎2 0

0 0 0

⎞⎟⎟⎟⎠ (1.137)

and, according to (1.122) and (1.134),

QE =
⎛⎜⎜⎜⎝
𝜀
⊥
+ Δ𝜀 cos2

𝜃 − 𝜎2 0 Δ𝜀 cos 𝜃 sin 𝜃

0 𝜀
⊥
− 𝜎2 0

Δ𝜀 cos 𝜃 sin 𝜃 0 𝜀
⊥
+ Δ𝜀 sin2

𝜃

⎞⎟⎟⎟⎠ . (1.138)

Equation (1.127) is a quartic equation in 𝜎. It is easy to find that the roots of this equation with QE

given by (1.138) are

𝜎1 =
√
𝜀
⊥
𝜀||√

𝜀
⊥
+ Δ𝜀 sin2

𝜃

, 𝜎2 =
√
𝜀
⊥

, 𝜎3 = −
√
𝜀
⊥
𝜀||√

𝜀
⊥
+ Δ𝜀 sin2

𝜃

, 𝜎4 = −
√
𝜀
⊥
. (1.139)

The first two roots correspond to waves propagating in the +zc-direction, and in particular to the waves
transmitted through the frontal interface of the layer. The waves reflected from the rear interface will
have 𝜎 = 𝜎3 and 𝜎 = 𝜎4. The roots 𝜎1 and 𝜎3 correspond to extraordinary waves, and 𝜎2 and 𝜎4 to
ordinary waves. In the situation under consideration, be the uniaxial medium nonabsorbing or absorbing,
the induced natural waves in the layer are homogeneous, which allows one to associate with each of
them a refractive index. As seen from (1.139), (1.136), and (1.130), for both ordinary modes, as it must,
no = n

⊥
. For both extraordinary modes,

ne =
√
𝜀
⊥
𝜀||√

𝜀
⊥
+ Δ𝜀 sin2

𝜃

=
n||n⊥√

n2|| sin2
𝜃 + n2

⊥
cos2 𝜃

, (1.140)

which conforms with (1.132)—in this example, the angle Θ can expressed as Θ = 90◦−𝜃.
Substituting solutions (1.139) into (1.121), one can check that the electric vibration vectors of the

ordinary waves must be chosen parallel to the yc-axis, while those of the extraordinary waves must be
perpendicular to the yc-axis. It can also be seen that the electric vibration vector of any of the extraordinary
waves can be represented as the product of the vector

e
𝜀
=
⎛⎜⎜⎜⎝
𝜀
⊥
+ Δ𝜀 sin2

𝜃

0

−Δ𝜀 cos 𝜃 sin 𝜃

⎞⎟⎟⎟⎠ (1.141)

[in the system (xc, yc, zc)] and a scalar. Note that the vector e
𝜀

is parallel to the xc-axis only when either
cos𝜃 or sin𝜃 is equal to zero. In any other case, this vector is not perpendicular to the refraction vectors.
If the medium is nonabsorbing, the vector e

𝜀
is real and the electric fields of the extraordinary modes

vibrate along a line parallel to e
𝜀
. The fact that the vibration direction of the electric field of such a wave

is not perpendicular to its refraction vector, in particular, suggests that the direction of energy transfer by
the wave—this direction is perpendicular to the electric field vector [see (8.16)]—is different from the
direction of the refraction vector. For any homogeneous ordinary wave, the direction of energy transfer
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coincides with the direction of its refraction vector. A difference of the directions of energy transfer for
an ordinary wave and an extraordinary wave having codirectional refraction vectors is a manifestation of
the phenomenon of double refraction or birefringence. A difference in refractive indices for these waves
is another manifestation of this phenomenon.

If the uniaxial medium is absorbing and the vector e
𝜀

is not parallel to the xc-axis, the vector e
𝜀

is
complex and Re e

𝜀
is in general not parallel to Ime

𝜀
. It implies that the end of the true (real) electric

field vector of the wave describes with time an ellipse in the plane parallel to the xc−zc plane. In
contrast to the elliptically polarized waves considered in Section 1.1, for which the plane of the vibration
ellipse is perpendicular to the refraction vector, in this case the vibration ellipse plane is parallel to
the refraction vector. Really, we have dealt with waves having a similar polarization in some examples
of Section 1.2.1. These are the “p-polarized” waves in the second medium in the cases where these
waves are inhomogeneous (TIR mode, absorbing medium at oblique incidence). Such waves cannot be
called linearly polarized. At the same time, the term “plane-polarized wave” as applied to them seems
acceptable. The linearly polarized waves are also often called plane-polarized. Where convenient, we
will also do so.

Thus, if the optic axis is not perpendicular to the layer boundaries, be the layer nonabsorbing or
absorbing, all natural waves induced inside it by a normally incident plane wave are plane-polarized.
The plane of polarization of the extraordinary waves is the xc−zc plane (the principal plane), and that of
the ordinary waves is the yc−zc plane.

Oblique Incidence

When a plane wave falls obliquely from an isotropic medium on a plane interface with an anisotropic
medium, it produces in general two transmitted waves with nonparallel wave normals in the anisotropic
medium. This is one more manifestation of double refraction. As an illustration, returning to the uniaxial
layer, we consider the simple situation when the plane of incidence is parallel to the xc−zc plane, that
is, the optic axis is parallel to the plane of incidence. Let the vector L be codirectional with the positive
xc-axis (Figure 1.10). In this case, the refraction vectors of the natural waves induced in the layer, being
represented in the system (xc, yc, zc), have the form

m =
⎛⎜⎜⎜⎝
𝜁

0

𝜎

⎞⎟⎟⎟⎠ , (1.142)

ordinary waveoptic axis

zc

xc

yc

zc=z1

β

βθ

β

inc

L

n1

n||,

o

e

extraordinary wave

⊥n

Figure 1.10 Double refraction at oblique incidence
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where 𝜁 = n1 sin 𝛽inc. As seen from (1.123), (1.122), and (1.134), with such m,

QE =
⎛⎜⎜⎜⎝
𝜀
⊥
+ Δ𝜀 cos2

𝜃 − 𝜎2 0 Δ𝜀 cos 𝜃 sin 𝜃 + 𝜁𝜎

0 𝜀
⊥
− 𝜁 2 − 𝜎2 0

Δ𝜀 cos 𝜃 sin 𝜃 + 𝜁𝜎 0 𝜀
⊥
+ Δ𝜀 sin2

𝜃 − 𝜁 2

⎞⎟⎟⎟⎠ .
The solutions of (1.127) with this QE that correspond to waves propagating away from the frontal
boundary of the layer are

𝜎1 =
−𝜁Δ𝜀 cos 𝜃 sin 𝜃 +

√
(𝜁Δ𝜀 cos 𝜃 sin 𝜃)2 +

(
𝜀
⊥
+ Δ𝜀 sin2

𝜃

) [
𝜀
⊥
𝜀|| − 𝜁 2

(
𝜀
⊥
+ Δ𝜀 cos2 𝜃

)]
𝜀
⊥
+ Δ𝜀 sin2

𝜃

(1.143)

for extraordinary waves and

𝜎2 =
√
𝜀
⊥
− 𝜁 2 =

√
n2
⊥
− 𝜁 2 (1.144)

for ordinary waves. If the optic axis is parallel to the layer boundaries (𝜃 = 0), 𝜎1 can be expressed as
follows:

𝜎1 =

√
𝜀|| (𝜀⊥ − 𝜁 2

)
𝜀
⊥

=
n||
n
⊥

√
n2
⊥
− 𝜁 2. (1.145)

If the uniaxial medium is nonabsorbing and 𝜁 is such that the radicands in the above expressions for 𝜎1

and 𝜎2 are positive (e.g., this is the case at any 𝛽inc when n∥ and n⟂ is greater than n1), the corresponding
waves are homogeneous. In this case, the angle of refraction for the transmitted extraordinary wave, 𝛽e,
and that for the transmitted ordinary wave, 𝛽o (see Figure 1.10), can be calculated by the formulas

𝛽e = arctan 𝜁

𝜎1

, 𝛽o = arctan 𝜁

𝜎2

. (1.146)

As clearly seen from (1.144)–(1.146), the difference between 𝛽e and 𝛽o increases with increasing the
ratio 𝛿n = |n∥ – n⟂|/n⟂. At 𝛿n values of the order of 0.1, which is typical of the liquid crystals used in
LCDs, the difference between 𝛽e and 𝛽o may be appreciable. For example, taking n1 = 1, n∥ = 1.7, n⟂ =
1.5, 𝜃 = 0, and 𝛽 inc = 60◦, we obtain 𝛽o ≈ 35.3◦ and 𝛽e ≈ 32◦.

1.3.3 A Simple Birefringent Layer and Its Principal Axes

A Biaxial Layer at Normal Incidence

As noted in the previous section, the natural waves induced in a uniaxial layer by a normally incident
plane wave are in general plane-polarized, and each of these waves has its polarization plane coincident
with one of two fixed, mutually perpendicular, planes. The same can be said about natural waves in a
biaxial layer if the biaxial medium

(i) is nonabsorbing or
(ii) being absorbing has a plane of symmetry perpendicular to the layer boundaries.
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To show this we refer to (1.124). If any of the two conditions is satisfied, there exists a coordinate
system (xc, yc, zc), with the zc-axis perpendicular to the layer boundaries, such that the components
�̄�12 and �̄�21 of the tensor ε−1 ≡ [�̄�jk] in this system are zero1. In this coordinate system, the matrix Qm

[see (1.123)] has the form (1.137), and, according to (1.125), the matrix QD can be written as follows:

QD =
⎛⎜⎜⎜⎝

1 − 𝜎2
�̄�11 0 −𝜎2

�̄�13

0 1 − 𝜎2
�̄�22 −𝜎2

�̄�23

0 0 1

⎞⎟⎟⎟⎠ . (1.147)

The roots of equation (1.128) in this case are

𝜎1 =
1√
�̄�11

, 𝜎2 =
1√
�̄�22

, 𝜎3 = − 1√
�̄�11

, 𝜎4 = − 1√
�̄�22

. (1.148)

It is easily seen from (1.147) that at �̄�22 ≠ �̄�11, the displacement vibration vectors d for the waves with 𝜎
equal to 𝜎1 and 𝜎3 are parallel to the xc-axis, and, consequently, the electric vibration vectors (e = ε−1d)
of these waves lie in the xc−zc plane [recall that �̄�12 = �̄�21 = 0 in the system (xc, yc, zc)], while the waves
with 𝜎 equal to 𝜎2 and 𝜎4 have displacement vibration vectors parallel to the yc-axis, and, consequently,
their electric vibration vectors lie in the yc−zc plane, which is what we set out to prove.

A Simple Birefringent Layer and Its Principal Axes. Fast and Slow Axes

Thus, there is a broad class of homogeneous anisotropic layers such that any natural wave induced in the
layer by a normally incident plane monochromatic wave is plane-polarized and has its polarization plane
parallel to one of two fixed mutually perpendicular planes. Such layers will be called simple birefringent
layers. The two fixed planes showing the possible orientations of the polarization planes of natural waves
will be called the basic planes of the layer. Two mutually orthogonal axes each of which is parallel to
the layer boundaries and one of the basic planes of the layer are called the principal axes of the layer.
The principal axes of a layer should not be confused with the principal axes of the medium in the layer,
although in many cases a principal axis of a layer is parallel to a principal axis of the medium. For
example, the principal axis of a uniaxial medium is its optic axis. For the uniaxial layer considered in
the previous section (see Figure 1.9a), one of the principal axes of the layer is parallel to the xc-axis, and
the other to the yc-axis (as well as in the above example for a biaxial layer). If the optic axis is parallel
to the layer boundaries, the former principal axis of the layer is parallel to its optic axis. A principal
axis of a simple birefringent layer is called the fast axis or the slow axis according to whether the phase
velocity of the natural waves with polarization plane parallel to this axis is greater or smaller than that of
the natural waves whose polarization plane is perpendicular to this axis. For a layer of a nonabsorbing
positive uniaxial medium (n∥ > n⟂), the fast axis is perpendicular to the optic axis. For a layer of a
nonabsorbing medium with negative birefringence (n∥ < n⟂), the slow axis is perpendicular to the optic
axis (in both cases, we assume that the optic axis is not perpendicular to the layer boundaries).

If the wave normally incident on a simple birefringent layer is linearly polarized along one of the
principal axes of the layer, this wave induces in the layer only waves with polarization plane coincident
with the polarization plane of the incident wave, and the wave transmitted by the layer has the same
polarization state as the incident wave. The truth of this assertion can be proved by using the requirement
of continuity of the tangential components of the electric and magnetic fields across interfaces (see
Sections 8.1.1 and 12.2). This property of the simple birefringent layers is one of the cornerstones of
the classical JC [5] where it is used in the mathematical description of the optical action of anisotropic

1 In the presence of the plane of symmetry, the xc-axis of such a system is parallel or perpendicular to this plane.
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homogeneous layers (plates, films, etc.) functioning as linear retarders and linear polarizers in optical
systems.

1.3.4 Transmission Jones Matrices of a Simple Birefringent Layer at
Normal Incidence

Consider a simple birefringent layer sandwiched between nonabsorbing isotropic media. As in the above
examples, we assume that the boundaries of the layer coincide with the planes zc = z1 and zc = z2 (z2 >

z1) in a coordinate system (xc, yc, zc) whose xc-axis and yc-axis are parallel to the principal axes of the
layer. Let a plane monochromatic wave fall in the normal direction on the boundary zc = z1 of the layer
from the medium of refractive index n1. The refractive index of the medium beyond the layer will be
denoted by n2. Let reference frames (x, y, z) and (x′, y′, z) be introduced as in Section 1.1 (Figure 1.3)
to represent the Jones vectors of the incident and transmitted waves. In the case under consideration, the
z-axis is codirectional with the zc-axis. Let the axes of the frame (x′, y′) be parallel to the principal axes
of the layer (the x′-axis may be parallel to the xc-axis or yc-axis). We denote the Jones vectors—of the
kind (1.21), referred to the system (x′, y′)—of the incident and transmitted waves by

J̃
′(inc)

≡

(
J̃(inc)

x′

J̃(inc)
y′

)
and J̃

′(tr)
≡

(
J̃(tr)

x′

J̃(tr)
y′

)
, (1.149)

respectively. Since the axes x′ and y′ are parallel to the principal axes, the components of the vector J̃
′(tr)

are related to those of J̃
′(inc)

by

J̃(tr)
x′

(z2 + 0) = t̃Lx′ J̃
(inc)
x′

(z1 − 0), J̃(tr)
y′

(z2 + 0) = t̃Ly′ J̃(inc)
y′

(z1 − 0), (1.150)

where t̃Lx′ and t̃Ly′ are transmission coefficients depending on parameters of the layer and the wavelength
𝜆. Here the Jones vectors are considered as functions of zc. According to (1.150),

J̃
′(tr)

(z2 + 0) = t̃′LJ̃
′(inc)

(z1 − 0), (1.151)

where

t̃′L =

(
t̃Lx′ 0

0 t̃Ly′

)
. (1.152)

The matrix t̃′L is the transmission Jones matrix of the layer, corresponding to the chosen kind and
representation of the Jones vectors. Let us find the equivalent Jones matrix relating the input and output
Jones vectors referred to the frame (x, y). Denote the Jones vectors of the incident and transmitted waves
referred to the (x, y) frame by J̃

(inc)
and J̃

(tr)
, respectively. According to (1.54),

J̃
′(inc) = ⌢

RC(𝜙)J̃
(inc)

, J̃
′(tr) = ⌢

RC(𝜙)J̃
(tr)

, (1.153)

where 𝜙 is the angle between the axes x and x′ (see Figure 1.3). On substituting (1.153) into (1.151) and
premultiplying the obtained equation by

⌢

RC(−𝜙) [recall that
⌢

RC(−𝜙) = ⌢

RC(𝜙)−1], we have

J̃
(tr)

(z2 + 0) = ⌢

RC(−𝜙)t̃′L
⌢

RC(𝜙)J̃
(inc)

(z1 − 0). (1.154)
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The transmission Jones matrix t̃L of the layer for the input and output Jones vectors represented in the
system (x, y) is defined by the relation

J̃
(tr)

(z2 + 0) = t̃LJ̃
(inc)

(z1 − 0). (1.155)

From (1.154) it is seen that the matrix t̃L can be expressed in terms of the matrix t̃′L as follows:

t̃L = ⌢

RC(−𝜙)t̃′L
⌢

RC(𝜙). (1.156)

In principle, in modeling of a polarization system, the matrix t̃′L of an optical element can be defined
in such a way as to take account of the whole variety of the optical effects involved in the process
of light propagation through the layer, including multiple reflections from the boundaries of the layer.
But usually, when employing the Jones matrix method, the multiple reflections are neglected and the
transmitted light is considered as a result of the following sequence of operations: transmission of the
frontal boundary of the layer → transmission of the bulk of the layer → transmission of the rear boundary
of the layer. In this case, the amplitude transmission coefficients t̃Lx′ and t̃Ly′ [see (1.150)] of the layer
can be expressed as follows:

t̃Lx′ = t̃LBx′ exp
(
ik0nwx′d

)
, t̃Ly′ = t̃LBy′ exp

(
ik0nwy′d

)
, (1.157)

where the factors t̃LBx′ and t̃LBy′ describe the transmission of the boundaries, nwx′ is the refractive index
for the natural waves of the layer that have polarization planes parallel to the x′-axis, nwy′ is that for the
natural waves whose polarization planes are parallel to the y′-axis, and d = z1 − z2 is the thickness of the
layer. The zc-dependences of the electric fields of the natural waves traveling inside the layer from the
plane zc = z1 toward the plane zc = z2 are given by

E(x′)(xc, yc, zc, t) = E(x′)(xc, yc, z1 + 0, t) exp
[
ik0nwx′

(
zc − z1

)]
(1.158)

for a wave polarized in the plane parallel to the x′-axis and

E(y′)(xc, yc, zc, t) = E(y′)(xc, yc, z1 + 0, t) exp
[
ik0nwy′

(
zc − z1

)]
(1.159)

for a wave polarized in the plane parallel to the y′-axis, which explains the presence and the form of the
exponential factors in (1.157). If in the above examples for the uniaxial and biaxial layers we direct the
x′-axis along the xc-axis, the refractive indices nwx′ and nwy′ can be expressed as

nwx′ = ne =
n||n⊥√

n2|| sin2
𝜃 + n2

⊥
cos2 𝜃

, nwy′ = no = n
⊥

(1.160)

for the uniaxial layer and

nwx′ = 𝜎1, nwy′ = 𝜎2 (1.161)

with 𝜎1 and 𝜎2 given by (1.148) for the biaxial layer.
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The transmittance2 (or the transmissivity) of the layer can be expressed as

TL =
n2

n1

|||t̃L j(inc)|||2 = n2

n1

|||t̃′L j′(inc)|||2 (1.162)

[cf. (1.110)], where j(inc) is the polarization Jones vector of the incident wave referred to the frame (x, y)
and j′(inc) is the same vector but referred to the frame (x′, y′).

Let us consider analogous relations for other kinds of Jones vectors, namely, for the local “fitted-to-
irradiance” (see Section 5.4.2) Jones vectors of the incident and transmitted waves defined by analogy
with (1.99) as

J̃
(inc)

F =
√

2n1J̃
(inc)

, J̃
(tr)

F =
√

2n2J̃
(tr)

(1.163)

and the “global” Jones vectors of these waves, J(inc) and J(tr), defined in the same way as the vector J in
Section 1.1.2. Neglecting the multiple reflections, the matrix t̃L(F) such that

J̃
(tr)

F (z2 + 0) = t̃L(F) J̃
(inc)

F (z1 − 0) (1.164)

can be represented as follows:

t̃L(F) =
⌢

RC(−𝜙)t̃′L(F)

⌢

RC(𝜙), (1.165)

where

t̃′L(F) =

(
t̃Lx′(F) 0

0 t̃Ly′(F)

)
(1.166)

with

t̃Lx′(F) = t̃LBx′(F) exp
(
ik0nwx′d

)
, t̃Ly′(F) = t̃LBy′(F) exp

(
ik0nwy′d

)
. (1.167)

The transmittances of the layer for waves linearly polarized along its principal axes will be referred to
as the principal transmittances of the layer. In the case under consideration, the principal transmittances
can be expressed as TLx′ = t̃∗

Lx′(F)
t̃Lx′(F) and TLy′ = t̃∗

Ly′(F)
t̃Ly′(F). For any given polarization of the incident

wave, the transmittance of the layer can be calculated by the formula

TL = |||t̃L(F) j(inc)|||2 = |||t̃′L(F) j′(inc)|||2 . (1.168)

One of the principal transmittances is equal to the maximum value of TL over all possible polarization
states of the incident wave, and the other to the minimum one. The quantities TLBx′ ≡ t̃∗

LBx′(F)
t̃LBx′(F) and

TLBy′ ≡ t̃∗
LBy′(F)

t̃LBy′(F) are equal to the products of the transmittances of the frontal and rear boundaries
of the layer for the corresponding polarizations of the incident wave. If the layer is nonabsorbing, t̃LBx′(F)

and t̃LBy′(F) are real. For absorbing layers, these coefficients are in general complex but most often have

2 The term “transmittance” which is commonly used in CJMM corresponds to the treatment of the incident light
as a beam of finite diameter (see Section 7.1). At the same time, CJMM uses a plane-wave approximation which
involves the possibility to evaluate a transmittance as the corresponding transmissivity (see Section 7.1). The notion
of transmittance is closer to practice than transmissivity and we will use it where convenient, even when this implies
an approximation (as in this case).
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very small imaginary parts and, to a good approximation, can be considered real (see examples in Section
12.2). Therefore, almost always, the matrix t̃′L(F) can be represented as

t̃′L(F) =

(√
TLBx′ exp

(
ik0nwx′d

)
0

0
√

TLBy′ exp
(
ik0nwy′d

)) . (1.169)

The representations (1.166) and (1.169) take into account polarization-dependent losses (diattenuation)
at the interfaces. However, in most cases of practical interest the coefficients t̃LBx′(F) and t̃LBy′(F) are of the
order of 1 and very close to each other (see Section 12.2), which allows one to neglect the diattenuation
at the interfaces and to use the following approximation:

tLBx′ = tLBy′ = tLB, (1.170)

where tLB is the average over the actual values of
√

TLBx′ and
√

TLBy′ . With this approximation, the
matrix t̃′L(F) can be written as

t̃′L(F) = tLB

(
exp

(
ik0nwx′d

)
0

0 exp
(
ik0nwy′d

)) . (1.171)

On omitting the factor tLB, we arrive at the form of t̃′L(F) usual for the classical JC, namely,

t̃′L(F) = t̃′LU, (1.172)

where

t̃′LU ≡

(
exp

(
ik0nwx′d

)
0

0 exp
(
ik0nwy′d

)) . (1.173)

Omission of the factor tLB is often quite a reasonable step, but one should remember that, almost always,
this step is far out of the rigorous theory. In the case of a nonabsorbing layer, one can avoid serious
contradictions with the rigorous theory by using the matrix t̃′LU as the operator relating the polarization
Jones vectors of the incident and transmitted waves:

j′(tr) = t̃′LU j′(inc), (1.174)

where both vectors are referred to the frame (x′, y′). In terms of the polarization Jones vectors of the
incident and transmitted waves referred to the frame (x, y), respectively j(inc) and j(tr), the same relation
can be written as

j(tr) = t̃LU j(inc), (1.175)

where

t̃LU = ⌢

RC(−𝜙)t̃′LU

⌢

RC(𝜙). (1.176)

Jones matrices relating polarization Jones vectors will be called polarization Jones matrices. Note that
polarization Jones matrices are always unitary because polarization Jones vectors are unit in the sense
(1.33) (see Section 5.1.3).
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The Jones matrix tL intended for linking the “global” Jones vectors of the incident and transmitted
waves,

J(tr) = tL J(inc), (1.177)

can be taken equal to t̃L(F). Since the phase of “global” Jones vectors is unimportant, any other matrix
tL representable as tL = aP t̃L(F), where aP is a complex number of unit magnitude (||aP

|| = 1), can also be
used for this purpose. The same can be said about matrices relating polarization Jones vectors.

The above representations are used in constructing transmission Jones matrices of various polarization
elements, in particular linear retarders and linear absorptive polarizers.

In closing, we note the following relations. In general, the coefficients t̃LBx′ and t̃LBy′ entering into
(1.157) are related to the coefficients t̃LBx′(F) and t̃LBy′(F) as follows:

t̃LBx′ =
√

n1

n2

t̃LBx′(F), t̃LBy′ =
√

n1

n2

t̃LBy′(F). (1.178)

When the refractive indices n1 and n2 differ greatly from each other, the coefficients t̃LBx′ and t̃LBy′ , even
when the reflection losses are small and t̃LBx′(F) and t̃LBy′(F) are close to unity, may differ greatly from
unity. For example, if n1 = 1, n2 = 1.5, and the principal refractive indices of the layer are real and about
1.5, the coefficients t̃LBx′(F) and t̃LBy′(F) will be about 0.98, while the coefficients t̃LBx′ and t̃LBy′ will be
close to 0.8. If, with the same layer, n1 = 1.5 and n2 = 1, t̃LBx′ and t̃LBy′ will be about 1.2, while the
coefficients t̃LBx′(F) and t̃LBy′(F) will be the same as in the previous case. The matrices t̃L and t̃L(F) are
related by

t̃L =
√

n1

n2

t̃L(F) (1.179)

and are equal to each other at n1 = n2. Let (x′′, y′′) be a reference frame with the x′′-axis parallel to the
x′-axis and the y′′-axis parallel to the y′-axis. Whatever the values of n1 and n2, the transmission Jones
matrix of the layer for the local “fitted-to-irradiance” Jones vectors referred to the system (x′′, y′′) for
the reverse propagation direction (that is, for the case when the incident wave normally falls on the layer
from the half-space zc > z2) is equal to the matrix t̃′L(F). For the Jones matrices associated with the Jones
vectors of the kind (1.21), such a relation will take place only at n1 = n2.

1.3.5 Linear Retarders

Linear retarders—retardation films and retardation plates—are common optical elements used to convert
the polarization state of passing light. Retardation films are used in LCDs for color dispersion compen-
sation and to improve the viewing angle characteristics. Detailed discussion of the standard applications
of retarders in polarization optics and terminology connected with retarders can be found in the books
[2, 6] and many others. Here we briefly discuss the action of linear retarders at normal incidence.

A simple linear retarder is a nonabsorbing birefringent layer. When light enters such a layer, in general it
splits into two plane-polarized natural waves propagating through the layer with different phase velocities.
These waves experience different phase retardation as they propagate through the layer and, upon exiting
the layer, recombine into a new wave with a new polarization state. This is the operating principle of
linear retarders. The most important characteristic of a retarder is the relative phase retardation

Γ =
2𝜋(ns − nf )d

𝜆
, (1.180)
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where ns and nf are the refractive indices for the natural waves with polarization planes parallel to the
slow axis and to the fast axis, respectively; d is the thickness of the birefringent layer. If, at a given 𝜆,
(ns – nf)d = 𝜆/4 and, consequently, Γ = 𝜋/2, the retarder is called a quarter-wave plate (film) for the
given 𝜆. The retarders with (ns – nf)d = 𝜆/2 (Γ = 𝜋) are called half-wave plates (films).

Let the x′-axis of the frame (x′, y′) attached to the principal axes of a nonabsorbing simple birefringent
layer be oriented along its slow axis. In this case, the polarization Jones matrix of the layer for the input
and output Jones vectors referred to the frame (x′, y′) [see (1.174)] may be written as

t̃′LU =
⎛⎜⎜⎝

ei
2𝜋nsd
𝜆 0

0 ei
2𝜋nf d
𝜆

⎞⎟⎟⎠ (1.181)

or

t̃′LU = ei
𝜋(ns+nf )d

𝜆

(
ei𝛿 0

0 e−i𝛿

)
, (1.182)

where

𝛿 ≡
Γ
2
=
𝜋(ns − nf )d

𝜆
. (1.183)

Since the phase of a polarization Jones vector is inessential, we can omit the common exponential factor
in expression (1.182) to deal with the mathematically simplest expression for t̃′LU:

t̃′LU =

(
ei𝛿 0

0 e−i𝛿

)
. (1.184)

On substituting (1.184) into (1.176), we obtain

t̃LU = ⌢

RC(−𝜙)t̃′LU

⌢

RC(𝜙) =

(
cos 𝛿 + i sin 𝛿 cos 2𝜙 i sin 𝛿 sin 2𝜙

i sin 𝛿 sin 2𝜙 cos 𝛿 − i sin 𝛿 cos 2𝜙

)
; (1.185)

here 𝜙 can be treated as the angle between the x-axis of the frame (x, y), to which the input and output
polarization Jones vectors are referred [see (1.175)], and the slow axis of the layer. This is a general
expression for the polarization Jones matrix of the linear retarder in a reference frame arbitrarily oriented
with respect to its principal axes.

Let us illustrate the ability of retarders to convert polarization by some examples, using the Jones
matrix method.

Half-Wave Plate

In this case, 𝛿 = 𝜋/2 and the matrix t̃′LU can be written as

t̃′LU = i

(
1 0

0 −1

)
. (1.186)
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Suppose that the frame (x, y) coincides with the frame (x′, y′), so that t̃LU = t̃′LU. Assume that the incident
wave has an arbitrary elliptical polarization. Taking the polarization vector j(inc) in the form

j(inc) = jE(𝛾inc, 𝜐inc) (1.187)

(see Table 1.1), where 𝛾inc and 𝜐inc are the values of the azimuth 𝛾e and ellipticity angle 𝜐e (see Section
1.1.2) of the incident wave, it is easy to find that

j(tr) = t̃LU j(inc) = i

(
1 0

0 −1

)
jE(𝛾inc, 𝜐inc) = ijE(−𝛾inc,−𝜐inc). (1.188)

Since the vector jE(−𝛾inc,−𝜐inc) represents just the same polarization state as the vector j(tr) =
ijE(−𝛾inc,−𝜐inc), we may conclude that the transmitted wave will have an azimuth 𝛾e = −𝛾inc and an
ellipticity angle 𝜐e = −𝜐inc. If the incident wave is linearly polarized, the transmitted wave will also be
linearly polarized, the polarization plane of the transmitted wave being the mirror image of that of the
incident wave with respect to the x′–z plane. If the incident wave has the left circular polarization, the
transmitted wave will have the right circular polarization and vice versa.

Quarter-Wave Plate

The main application of quarter-wave plates is in transforming linearly polarized light into circularly
polarized one and vice versa. To illustrate these options, we again, for simplicity, assume that the frames
(x, y) and (x′, y′) are coincident. For a quarter-wave plate, 𝛿 = 𝜋/4 and the matrix t̃LU can be represented
as

t̃LU = ei 𝜋
4

(
1 0

0 −i

)
. (1.189)

It is easy to verify that the polarization vectors from Table 1.1 satisfy the following relations:(
1 0

0 −i

)
jP

(
𝜋

4

)
= jR,

(
1 0

0 −i

)
jP

(
−𝜋

4

)
= jL,

(
1 0

0 −i

)
jR = jP

(
−𝜋

4

)
,

(
1 0

0 −i

)
jL = jP

(
𝜋

4

)
.

(1.190)

As is seen from these relations, a quarter-wave plate can perform the following conversions:

P
𝜋∕4 → R, P−𝜋∕4 → L, R → P−𝜋∕4, L → P

𝜋∕4, (1.191)

where the symbols P
𝜋∕4, P−𝜋∕4, R, and L denote respectively the linear polarization with 𝛾e = 𝜋∕4, the

linear polarization with 𝛾e = −𝜋∕4, the right circular polarization, and the left circular polarization.

1.3.6 Jones Matrices of Absorptive Polarizers. Ideal Polarizer

Absorptive polarizers are used in most kinds of liquid crystal displays. The main element of the usual
absorptive polarizer is an absorbing anisotropic film exhibiting high diattenuation due to absorption
anisotropy. In the spectral region where this film acts effectively as polarizer, one of the two principal
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transmittances of the film is close to zero, while the other is sufficiently high (ideally, equal to 1). The
principal axis of the film corresponding to the higher principal transmittance is called the transmission
axis of the polarizer [6].

A standard optical model of the polarizing film or the polarizer as a whole is a uniaxial layer whose
optic axis is parallel to the layer boundaries (see Section 7.3). In the rigorous methods which are
considered in Chapters 8–10, the specification of such a model includes the specification of the principal
complex refractive indices of the layer. In calculations performed for the case of normal incidence using
the classical Jones calculus, as a rule, simpler variants of specification of polarizers are used. Here we
consider some of them.

Let the x′-axis of the reference frame (x′, y′) be parallel to the transmission axis of the layer being
a model of the polarizer. We denote the principal transmittances of the layer by t∥ and t⟂, where t∥
corresponds to the polarization along the transmission axis. Assuming that Re(nwx′ ) = Re(nwy′ ), in
accordance with (1.171) we may write the matrix t̃′L(F) of the layer as follows:

t̃′L(F) = exp
[
ik0 Re

(
nwx′

)
d
]( tLB exp

[
−k0 Im

(
nwx′

)
d
]

0

0 tLB exp
[
−k0 Im

(
nwy′

)
d
]) . (1.192)

In this case, the principal transmittances of the layer can be expressed as

t|| = t2
LB exp

[
−2k0 Im

(
nwx′

)
d
]

, t
⊥
= t2

LB exp
[
−2k0 Im

(
nwy′

)
d
]

, (1.193)

and consequently the matrix t̃′L(F) can be represented as follows:

t̃′L(F) = exp
[
ik0 Re

(
nwx′

)
d
](√t|| 0

0
√

t
⊥

)
. (1.194)

According to (1.194), the simplest variant of the Jones matrix of the polarizer for the “global” Jones
vectors referred to the system (x′, y′) is

t′L =

(√
t|| 0

0
√

t
⊥

)
(1.195)

[see the remark after (1.177)]. The corresponding Jones matrix for the “global” Jones vectors referred to
the system (x, y) rotated with respect to the system (x′, y′) can be calculated by the formula

tL = ⌢

RC(−𝜙)t′L
⌢

RC(𝜙), (1.196)

where 𝜙 is the angle between the x-axis and the x′-axis (the transmission axis of the polarizer). Thus, in
this case, to specify the polarizer we need only the principal transmittances and orientation angle 𝜙. It is
sometimes convenient to represent the principal transmittances t∥ and t⟂ as follows:

t|| = Cpt||p, t
⊥
= Cpt

⊥p, (1.197)

where t||p and t
⊥p are the principal bulk transmittances of the layer,

t||p = exp
[
−2k0 Im

(
nwx′

)
d
]

, t
⊥p = exp

[
−2k0 Im

(
nwy′

)
d
]

, (1.198)

and Cp = t2
LB is a factor taking account of the reflection losses at the boundaries.
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As a rule, the real parts of the refractive indices nwx′ and nwy′ of a real polarizing film are different. To
take this circumstance into account one can use the following form of the matrix t′L:

t′L =

(√
t|| exp (i𝛿w

)
0

0
√

t
⊥
exp

(
−i𝛿w

)) , (1.199)

where 𝛿w = 𝜋

[
Re
(
nwx′

)
− Re

(
nwy′

)]
d∕𝜆. Although the situation when Renwx′ ≠ Renwy′ is common, in

solving typical problems for LCDs, as a rule, there is no need to use the representation (1.199) instead
of (1.195) because the phase factors in (1.199) contribute nothing to the quantities to be estimated, such
as the transmittance of the LCD panel, or their influence on the LCD characteristics is negligible.

The above matrices t′L at t⟂ ≠ 0 describe partial polarizers. All real absorptive polarizers are partial
ones. However, for many practical polarizers, t⟂ is so small that it can be taken as zero in calculations.
In such a case, the matrix t′L can be written as

t′L =

(√
t|| 0

0 0

)
=
√

t||
(

1 0

0 0

)
. (1.200)

Often a still further idealized model of a linear polarizer is used. This model is an ideal linear polarizer
whose matrix t′L is as follows:

t′L =

(
1 0

0 0

)
. (1.201)

The matrix tL (1.196) in this case can be written as

tL =

(
cos2

𝜙 cos𝜙 sin𝜙

cos𝜙 sin𝜙 sin2
𝜙

)
. (1.202)

The concept of an ideal polarizer as an ideal device that transmits the light of a given polarization only,
without losses, is applied to polarizers extracting an elliptical or a circular polarization as well [2].

With a given matrix tL of a polarizer, the transmittance of the polarizer for an incident wave with a
given polarization Jones vectors j(inc) can be calculated by the following general formula:

TL = |||tL j(inc)|||2 . (1.203)

In the case of an ideal polarizer, a simpler expression for the transmittance can be used:

TL = |||j†tp j(inc)|||2 , (1.204)

where jtp is the polarization Jones vector of waves that are transmitted by the polarizer. For example, the
vector jtp for the ideal linear polarizer with matrix tL given by (1.202) can be expressed as jtp = jP(𝜙)
(see Table 1.1) in the system (x, y). Assuming that the light incident on this polarizer is linearly polarized
and taking j(inc) = jP(𝛾), we readily obtain from (1.204)

TL = cos2
𝛾
𝜙
, (1.205)
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where 𝛾
𝜙
= 𝛾 − 𝜙 is the angle between the transmission axis of the polarizer and the polarization direction

of the incident light. Equation (1.205) expresses the familiar law of Malus. For a partial polarizer whose
matrix t′L is expressed by (1.195) or (1.199) the dependence of the polarizer transmittance on 𝛾

𝜙
is as

follows:

TL = t|| cos2
𝛾
𝜙
+ t

⊥
sin2

𝛾
𝜙
. (1.206)

This expression can easily be derived by using the following representation of TL:

TL = |||t′L jP(𝛾
𝜙
)|||2 = jP(𝛾

𝜙
)†
(
t′†L t′L

)
jP(𝛾

𝜙
). (1.207)

1.4 Jones Calculus
The classical Jones matrix method (CJMM) includes two fundamental methods. The first method is
a calculus for treatment of optical systems containing plane-parallel layers of anisotropic materials,
homogeneous or with continuously varying parameters [5, 7, 8]. The second is a general method of
description of the interaction of polarized light with nondepolarizing linear optical systems [9]: an action
of the optical system is described by a 2 × 2 matrix (t) relating the Jones vector of a wave incident on
the system (Jinc) and the Jones vector of the wave emerging from the system that is considered as the
result of this action with respect to the incident wave (Jout) as follows:

Jout = tJinc. (1.208)

Jones matrices are adequate characteristics in any situation where waves incident on a system and
emerging from it can be adequately represented by Jones vectors. For instance, in optics of stratified
media, Jones matrices are commonly used to characterize transmission and reflection of such media, as
transmission and reflection operators, including the case of oblique light incidence. If the incident and
emergent waves are homogeneous and propagate in isotropic nonabsorbing media, they can be described
by classical Cartesian Jones vectors. The description in terms of Jones vectors and Jones matrices is
entirely consistent with electromagnetic theory. The rigorous methods discussed in Chapter 8 enable
calculation of transmission and reflection Jones matrices of layered systems in strict accordance with
this theory. The transmission and reflection Jones matrices for the interface between isotropic media in
Section 1.2.2 are examples of exact Jones matrices.

In contrast to the matrix description [9], the Jones calculus (JC) is a semiempirical method and is limited
to the case of normal incidence. This method was developed for calculating transmission characteristics
of optical systems consisting of retarders and polarizers and other systems for which the transformation
of the polarization state of the passing light by their elements is of paramount importance. In JC, the
effect of an optical element of an optical system on a light beam is considered as a transformation of a
plane wave incident on the element into a plane wave emerging from it and is characterized by a Jones
matrix that relates Jones vectors of these waves. The action of an optical system consisting of two or
more elements is considered as a chain of such transformations. JC is not strongly tied to electromagnetic
theory and takes into account only basic functions of the elements and basic optical effects connected
with performing these functions by the elements. In contrast to the electromagnetic methods where
elements of an optical system are specified by their material parameters, in JC the elements are specified
through description of their transfer characteristics which are specified using material parameters where
it is convenient. When JC is used in solving optimization problems for finding optimal values of key
parameters of polarization elements (such as orientation angles for polarizers, orientation angles and
retardances for retarders, the twist angle and thickness for an LC layer), as a rule, the model system
for direct analysis is composed of ideal elements such as an ideal polarizer, an ideal retarder, an ideal
lossless LC cell, and so on.
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JC has played and is playing a very important role in LCD optics. Many fundamental formulas in
optics of liquid crystals and LCD optics were derived and many optimization problems were solved
using this method. A lot of extremely useful and beautiful mathematics have appeared in polarization
optics thanks to JC. That is why much attention in this book is given to this method and its applications
in modeling and optimization of LCDs.

There are many points in JC that seem to be or really are inconsistent with the rigorous theory. On the
other hand, based on the rigorous theory, one can prove that JC gives accurate results for many practical
optical systems including LCDs. Starting from Maxwell’s equations, using approximations that are fully
justified in the context of electromagnetic theory, one may arrive at a technique which is mathematically
(but not in every respect physically) equivalent to JC. This will be shown in Chapters 8, 11, and 12. The
formal equivalence of JC and the more rigorous technique allows one to use the mathematical apparatus
of JC, very rich and convenient, in the latter technique, or, what is practically the same, to use JC as it is
but taking into account the amendments and refinements concerning the physical interpretation of some
quantities and procedures involved in this method. Note that many helpful mathematical elements of
JC are successfully used within the more rigorous method in considering both normal and oblique light
incidence (see Chapter 11 and Section 12.4).

In this section, we consider some basic concepts of JC as well as some mathematical tricks useful
when JC is applied to LCDs.

1.4.1 Basic Principles of the Jones Calculus

As has been said, in JC the action of an optical system is considered as a series of transformations to
which the light is subjected as it passes through the system. Each of these elementary transformations
is characterized by a Jones matrix. The Jones matrices are chosen in such a way that the output Jones
vector for the Jones matrix describing the first or any intermediate transformation is the input Jones
vector for the Jones matrix of the next transformation, which allows one to relate the Jones vector of the
light incident on the system (Jinc) and that of the light emerging from the system (Jout) by the following
chain of equations:

J1 = t1Jinc, J2 = t2J1,… , JM−1 = tM−1JM−2, Jout = tMJM−1, (1.209)

where M is the number of the elementary transformations and tj is the Jones matrix of the jth transfor-
mation (j = 1,2,… , M). The substitutions of the expression for J1 in (1.209) (the first equation) into the
second equation, of the obtained expression for J2 in terms of Jinc into the third equation, and so on lead
to the following relation:

Jout = tMtM−1 … t2t1Jinc. (1.210)

Due to the associativity of the matrix product, this relation can be rewritten as

Jout = (tMtM−1 … t2t1)Jinc (1.211)

or

Jout = tsysJinc, (1.212)

where

tsys = tMtM−1 … t2t1 (1.213)
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is the matrix that is regarded in JC as the Jones matrix of the system. Thus, the validity of (1.209) allows
one to calculate the Jones matrix of the system by multiplying the Jones matrices of the elementary
transformations in accordance with (1.213).

In Sections 1.3.4–1.3.6, we gave many expressions for Jones matrices of different optical elements,
which can be used in such calculations. In all the cases considered in those sections, we assumed that
the light incident on an element and the light emerging from the element propagate in isotropic media,
so that we could legitimately use usual Cartesian Jones vectors to describe the waves regarded as the
operand and the result of the transformation performed by the element. A peculiarity of the classical JC
is that in any case the Jones matrix describing the transformation performed by an element is calculated
as if the input and output media for this transformation (i.e., the medium from which the light falls on
the element and the medium into which the transformed light passes leaving the element) were isotropic.
Thus, for example, the transmission Jones matrix of a system consisting of two contiguous anisotropic
layers is calculated as if there were an isotropic layer between the anisotropic layers but ignoring the
effect of this intermediate isotropic layer on the passing light. It is clear that this approach is somewhat
artificial. Some arguments for this approach from the standpoint of electromagnetic theory can be found
in Chapter 12.

In principle, in considerations using the above algorithm, different kinds of Jones vectors (see Section
1.1.1) can be used. In the classical JC, the ordinary Jones vectors are assumed to be “fitted-to-intensity,”
the following relation between the Jones vector J and intensity I of a wave being adopted:

I = |J|2 ≡ J†J. (1.214)

In the further consideration of JC and its applications, we will adhere to this convention and other
prescriptions and principles of the classical variant of this method.

Standard Definition and Usual Representations of Transmittance in the Jones
Calculus. Average Transmittance. “Unpolarized” Transmittance

The transmittance t of a device (a system or an element) is defined as

t ≡ Iout∕Iinc, (1.215)

where Iinc and Iout are the intensities of the light incident on the device and the light transmitted by the
device, respectively. According to (1.214) and (1.215), the transmittance t can be expressed as

t = |Jout|2∕|Jinc|2, (1.216)

where Jinc and Jout are the Jones vectors of the incident light and transmitted light, respectively.
The substitution of the expression

Jout = tJinc, (1.217)

where t is the Jones matrix of the device, into (1.216) gives the following expression for t:

t = |tJinc|2∕|Jinc|2. (1.218)

Yet another standard expression for the transmittance is

t = |t jinc|2, (1.219)
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where jinc is the polarization Jones vector of the incident light (|jinc| = 1). We have dealt with expressions
of this kind in the previous sections. The product t jinc is a normalized Jones vector whose squared norm
is equal to the transmittance t.

Let t1 = |t j1|2 and t2 = |t j2|2 be the values of the transmittance of the device for two arbitrary
mutually orthogonal polarizations of the incident light, described by polarization Jones vectors j1 and j2

(j2
†j1 = 0). It is easy to verify that the magnitude of the average transmittance of the device defined as

tavr = (t1 + t2)∕2 is independent of the choice of the pair of incident orthogonal polarizations and

tavr =
1
2

(
t∗11t11 + t∗12t12 + t∗21t21 + t∗22t22

)
= 1

2
‖t‖2

E , (1.220)

where tjk are elements of the matrix t and ‖t‖E is the Euclidean norm of t (see Section 5.1.4). The trans-
mittance of the device for quasimonochromatic unpolarized incident light, tunp, according to prescriptions
of JC, is calculated as tavr in (1.220), that is, by the formula

tunp =
1
2

(
t∗11t11 + t∗12t12 + t∗21t21 + t∗22t22

)
. (1.221)

The unpolarized quasimonochromatic incident wave can be represented as a superposition of two mutu-
ally incoherent quasimonochromatic orthogonally polarized waves of equal intensity, with polarization
Jones vectors j1 and j2. Denoting the transmittances of the device for these polarized constituents as t1

and t2, we may express tunp as tunp = (t1 + t2)∕2. Then the assumption that the transmittances t1 and t2

can be calculated as t1 = |t j1|2 and t2 = |t j2|2, that is, just as in the case of monochromatic waves, leads
us to (1.221).

Lossless Transformations and Transformations Without Diattenuation

Solving many problems is significantly simplified by using specific mathematical properties of Jones
matrices describing certain kinds of transformations. Here we consider two important classes of trans-
formations. One of them is the class of transformations for which the output light intensity is equal to
the input light intensity whatever the SOP of the incident light. Such transformations are called lossless.
Definition (1.214) of intensity determines that the Jones matrix describing such a transformation is a
unitary matrix (see Section 5.1.3). Actually, let t be the Jones matrix of an operation, and let Jinc and
Jout = tJinc be the Jones vectors of the incident and output waves for this operation. Then, according to
(1.214), the condition of equality of intensities of the incident and output waves can be written as

J†
outJout = J†

incJinc (1.222)

or

(tJinc)
†tJinc = J†

incJinc. (1.223)

Using the identity (tJinc)
† = Jinc

†t† [see (5.15)], we can rewrite (1.223) as follows:

J†
inc(t

†t)Jinc = J†
incJinc. (1.224)

This relation holds at any Jinc only if

t†t = U, (1.225)
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where U is the unit matrix. A square matrix A satisfying the condition A†A = U is called unitary. A
summary of properties of unitary matrices is given in Section 5.1.3. Devices that are assumed to perform
lossless transformations are often called lossless or unitary.

Lossless transformations belong to the class of transformations without diattenuation (i.e., without
polarization-dependent losses). A transformation can be called a transformation without diattenuation if
the ratio of the output light intensity to the input light intensity is independent of the SOP of the incident
light. This determining condition implies that at any Jinc,

J†
inc(t

†t)Jinc = tlJ
†
incJinc, (1.226)

where t is the Jones matrix of the transformation, tl is a real constant independent of Jinc. In the presence
of losses, tl < 1. The transmittance t [see (1.216)] associated with this transformation in any case is equal
to tl. Relation (1.226) will hold at any Jinc only if

t†t = tlU. (1.227)

Any matrix satisfying (1.227) can be represented as t = 𝜍tU, where tU is a unitary matrix and 𝜍 is a scalar
factor such that 𝜍𝜍∗ = tl. In this book, such matrices are referred to as STU matrices (see Section 5.1.3).

A chain of lossless transformations is a lossless transformation. The product of unitary matrices is
always a unitary matrix. A chain of transformations without diattenuation is a transformation without
diattenuation. The product of STU matrices is always an STU matrix.

An interesting feature of transformations without diattenuation is that under such transformations
orthogonally polarized waves are converted into orthogonally polarized ones: if t is an STU matrix and
Jinc1 and Jinc2 are arbitrary mutually orthogonal Jones vectors (Jinc1

†Jinc2 = 0), the vectors Jout1 = tJinc1

and Jout2 = tJinc2 will be also mutually orthogonal (Jout1
†Jout2 = 0) (see Section 5.1.3). This feature

explains the following well-known property of transmissive devices (layers or layered systems) without
diattenuation. If such a device is placed between linear polarizers (ideal or with zero transmittance for
the unwanted polarization), the transmittance of the polarizer–device–polarizer system is invariant under
rotations of the device about the axis of light propagation by 90◦. Actually, due to the mentioned feature
of transformations without diattenuation, such a rotation changes only the handedness of the polarization
ellipse of the light emerging from the device. The transmittance of a linear polarizer is independent of
the handedness of the polarization of light incident on it. Therefore, the intensity of the light transmitted
by the second polarizer will remain unchanged after the rotation of the device.

Many practical optical elements and systems whose purpose is to convert the SOP of light with
minimal losses (wave plates, polarization rotators, LC layers in most kinds of LCDs, compensation
systems in LCDs, etc.) can be considered to a good approximation as devices that transmit light, at
normal incidence, without diattenuation.

Idealized Systems in the Jones Calculus. Unitary Systems

As a rule, the object for JC is an idealized system whose transmittance multiplied by a certain attenuation
factor is considered to be equal to the transmittance of a real (realistic) lossy system of interest. The
attenuation factor may take account of absorption losses in isotropic layers of the lossy system, reflection
losses, and some other kinds of losses. Almost always, the losses on the polarization-converting elements
that are considered to perform transformations without diattenuation are taken into account in the
attenuation factor, so that these elements are represented in the idealized system by lossless elements. An
idealized system consisting of only lossless elements is clearly lossless. Such systems are called unitary
systems. Representing the Jones matrix of a realistic lossy system with negligible diattenuation in the
form 𝜍tU, where tU is a unitary matrix and 𝜍 is a scalar, we can use the matrix tU as operator relating
polarization Jones vectors of the incident and emergent waves (we have used this in Section 1.3.5). If
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tU is the Jones matrix of a unitary system associated with the lossy system, we may regard this unitary
system as a model system that transforms polarization in the same manner as the realistic lossy system.
The concept of a unitary system is widely used in LCD optics (see Chapters 2, 3, 6, and 12).

The typical idealized optical system for JC is a sequence of elements each of which is able to convert
the polarization state of light. The effect of spaces between the elements is usually disregarded, because,
as a rule, there is no need to trace the changes in the absolute phase of the passing light.

1.4.2 Three Useful Theorems for Transmissive Systems

The usual model of an inhomogeneous LC layer is a pile of homogeneous birefringent layers (see
Sections 2.1 and 11.1.1). The standard idealized model of a transmissive LCD to treat by means of JC is
also a pile of homogeneous anisotropic layers. In this section, we present three theorems showing how
the transmission Jones matrix of such a system changes under certain transformations of the system.
Applied to inhomogeneous LC layers, these theorems are useful when there is a need to compare the
optical properties of similar layers whose structures (LC director fields) are mapped into each other
by a rotation, a reflection, or the inversion (see, e.g., [10]). For systems invariant under any of the
transformations considered here, by using these theorems, it is easy to find restrictions imposed by this
invariance on the Jones matrices of these systems. Knowledge of such restrictions simplifies solving
some optimization problems for LCDs (see Chapter 6).

Consider a system S consisting of N simple birefringent layers (Figure 1.11) (say, a system of linear
polarizers and linear retarders) whose boundaries are perpendicular to an axis z. The effect of spaces
between the layers will be ignored here. Let the elements of the system (birefringent layers) be numbered
as shown in Figure 1.11, and let a light wave X⃗i propagating in the positive z direction be incident on the
system (Figure 1.11a). We can calculate the Jones matrix of the system,

t⃗S ≡

(
t⃗S11 t⃗S12

t⃗S21 t⃗S22

)
, (1.228)

ziXoX

{ } { }io SJ J= tX X

1 2 N

S(b)

iX oX

1 2 NN−1

N−1

{ } { }io SJ J= tX XS(a)

z

Figure 1.11 A transmissive system of birefringent layers. J{X} stands for the Jones vector of a wave
X. Parts (a) and (b) show the two cases compared in Jones’s reversibility theorem
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as

t⃗S = t⃗N t⃗N−1 … t⃗2 t⃗1, (1.229)

where t⃗j is a Jones matrix of layer number j, if the input reference frame3 of the matrix t⃗j (at j=2,… ,

N) is the same as the output reference frame of the matrix t⃗j−1. This condition will be satisfied if we use

a fixed frame as the input and output one for all the matrices t⃗j. Take the frame (xI, yI) of a rectangular
right-handed Cartesian system (xI, yI, zI) with the zI-axis codirectional with the z-axis as such a fixed
frame. Let (x′j , y′j) be a frame whose axes are parallel to the principal axes of the jth layer, and let

t′j =

(
txj 0

0 tyj

)
(1.230)

be the transmission Jones matrix of the jth layer for Jones vectors referred to the frame (x′j , y′j). Then the

matrices t⃗j can be represented as

t⃗j =
⌢

RC(−𝜙j)t
′
j

⌢

RC(𝜙j), (1.231)

where 𝜙j is the angle between the axes xI and x′j .

Note that at any 𝜙j, the matrix t⃗j is symmetric, that is,

t⃗j = t⃗ T
j . (1.232)

Actually, according to (1.231),

t⃗ T
j =

(
⌢

RC(−𝜙j)t
′
j

⌢

RC(𝜙j)
)T
. (1.233)

Using matrix identity (5.14), the relation
⌢

RC(𝜙)T = ⌢

RC(−𝜙), and the fact that t′Tj = t′j , we can rewrite this
expression as

t⃗ T
j = ⌢

RC(𝜙j)
Tt′Tj

⌢

RC(−𝜙j)
T = ⌢

RC(−𝜙j)t
′
j

⌢

RC(𝜙j). (1.234)

Comparing (1.234) and (1.231), we see that t⃗ T
j = t⃗j.

Theorem 1.1 The Jones matrix t⃗S′ of a system S′ that can be obtained from the system S by
the permutation of the elements that provides the inverse order of the elements and, possibly, by
rotating some elements by 180◦ about the z-axis is related to the Jones matrix of the system S as
follows:

t⃗S′ = t⃗ T
S . (1.235)

3 Considering a Jones matrix, we will call the reference frames to which the input and output Jones vectors for this
matrix are referred respectively the input frame and output frame of this Jones matrix. A frame that is used as both
the input one and the output one for a Jones matrix will be called the input and output frame.
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Proof. The rotation of any element about the z-axis by 180◦ does not change the Jones matrix of this
element. Therefore, in any case, the matrix t⃗S′ can be expressed in terms of the Jones matrices of the
elements of the system S as

t⃗S′ = t⃗1 t⃗2 … t⃗N−1 t⃗N . (1.236)

Using the fact that all the matrices t⃗j are symmetric and identity (5.14), we can transform this expression
as follows:

t⃗S′ = t⃗ T
1 t⃗ T

2 … t⃗ T
N−1 t⃗ T

N =
(⃗
tN t⃗N−1 … t⃗2 t⃗1

)T
. (1.237)

As is seen from (1.237) and (1.229), the matrix t⃗S′ is really equal to t⃗ T
S .

If the system S is such that t⃗N = t⃗1, t⃗N−1 = t⃗2, and so on, the inversion of the order of its elements will
give a system whose Jones matrix is equal to t⃗S. It follows from Theorem 1.1 that the matrix t⃗S in this
case satisfies the condition t⃗S = t⃗ T

S , that is, it is symmetric.

Going to the next theorem, denote the values of the azimuthal angles 𝜙j and matrices t⃗j (j=1,2,… , N)

for the system S by 𝜙(S)
j and t⃗(S)

j respectively. With this notation, the matrix t⃗S is expressed as

t⃗S = t⃗(S)
N t⃗(S)

N−1 … t⃗(S)
2 t⃗(S)

1 , (1.238)

where

t⃗(S)
j = ⌢

RC

(
−𝜙(S)

j

)
t′j
⌢

RC

(
𝜙

(S)
j

)
. (1.239)

Theorem 1.2 Suppose that a system S′ consists of the same layers as the system S and their order is
the same as in S, but the layers are rotated about the z-axis so that for the jth layer (j = 1,2,… , N) the
angle 𝜙j is equal to −𝜙(S)

j or −𝜙(S)
j + 180◦. Then the Jones matrices of the systems S′ and S are related

by

t⃗S′ = I1 t⃗SI1, (1.240)

where

I1 =

(
1 0

0 −1

)
. (1.241)

Note that I1I1 = U, where, as before, U is the unit matrix, that is, I−1
1 = I1. According to (1.240),

t⃗S′ =

(
t⃗S11 −t⃗S12

−t⃗S21 t⃗S22

)
.

Proof. The Jones matrix t⃗(S′)
j of the jth layer of the system S′ for Jones vectors referred to the frame

(xI, yI), whether 𝜙j for this layer be equal to −𝜙(S)
j or −𝜙(S)

j + 180◦, can be expressed as follows:

t⃗(S′)
j = ⌢

RC

(
𝜙

(S)
j

)
t′j
⌢

RC

(
−𝜙(S)

j

)
. (1.242)
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It is easy to check that, at any 𝜙,
⌢

RC (𝜙) = I1
⌢

RC (−𝜙) I1. Using this relation, we can rewrite (1.242) as

t⃗(S′)
j = I1

⌢

RC

(
−𝜙(S)

j

)
I1t′jI1

⌢

RC

(
𝜙

(S)
j

)
I1. (1.243)

Since t′j is a diagonal matrix, I1t′jI1 = t′j . Consequently, from (1.243) we have

t⃗(S′)
j = I1

⌢

RC

(
−𝜙(S)

j

)
t′j
⌢

RC

(
𝜙

(S)
j

)
I1. (1.244)

From (1.244) and (1.239), we see that

t⃗(S′)
j = I1 t⃗(S)

j I1. (1.245)

In the case under consideration, the matrix t⃗S′ is expressed in terms of the matrices t⃗(S′)
j as follows:

t⃗S′ = t⃗(S′)
N t⃗(S′)

N−1 … t⃗(S′)
2 t⃗(S′)

1 . (1.246)

On substituting from (1.245) into (1.246), we obtain

t⃗S′ = I1 t⃗(S)
N I1I1 t⃗(S)

N−1I1 … I1 t⃗(S)
2 I1I1 t⃗(S)

1 I1 = I1

(⃗
t(S)
N t⃗(S)

N−1 … t⃗(S)
2 t⃗(S)

1

)
I1, (1.247)

where we have made use of the property I1I1 = U.

Theorem 1.3 Suppose that a system S′′ differs from a system S′ that satisfies the conditions of the
previous theorem only in that it has the inverse order of elements, and, consequently, the Jones matrix of
the system S′′, t⃗S′′ , can be expressed in terms of the matrices t⃗(S′)

j as follows:

t⃗S′′ = t⃗(S′)
1 t⃗(S′)

2 … t⃗(S′)
N−1 t⃗(S′)

N . (1.248)

Then the matrix t⃗S′′ is related to the Jones matrix t⃗S of the system S by

t⃗S′′ = I1 t⃗ T
S I1. (1.249)

According to (1.249),

t⃗S′′ =

(
t⃗S11 −t⃗S21

−t⃗S12 t⃗S22

)
. (1.250)

Proof. By Theorem 1.1, t⃗S′′ = t⃗ T
S′

. According to Theorem 1.2, t⃗S′ = I1 t⃗SI1. Therefore,

t⃗S′′ =
(
I1 t⃗SI1

)T
= IT

1 t⃗ T
S IT

1 = I1 t⃗ T
S I1.

Note that a system S′′ satisfying the conditions of Theorem 1.3 can be obtained by the rotation of the
system S by 180◦ about an axis parallel to the xI-axis. Thus, Theorem 1.3 makes clear how the Jones
matrix of a system of birefringent layers is transformed under such a rotation. Starting from Theorem
1.3, by means of standard basis transformations, it is easy to find the rule of transformation of the Jones
matrix of such a system under the 180◦ rotation of this system about a given axis perpendicular to the
light propagation direction for the case of an arbitrary orientation of this axis with respect to the axes of
the reference frame for the Jones matrix.



JWST441-c01 JWST441-Yakovlev Printer: Markono December 30, 2014 7:44 Trim: 244mm × 170mm

50 Modeling and Optimization of LCD Optical Performance

If the rotation of the system S by 180◦ about an axis parallel to the xI-axis maps the system S into
itself, that is, yields a system that is equivalent to S in its initial state, then, according to Theorem 1.3,

t⃗S = I1 t⃗ T
S I1, (1.251)

which implies the following form of the matrix t⃗S:

t⃗S =

(
t⃗S11 t⃗S12

−t⃗S12 t⃗S22

)
. (1.252)

Applying this conclusion to the standard model of an inhomogeneous LC layer as a pile of homogeneous
uniaxial layers with a varying, from layer to layer, orientation of the optic axis (see Section 11.1.1), one
can readily show that the transmission Jones matrix of an LC layer that is invariant with respect to the
180◦ rotation about an axis parallel to the layer boundaries (this kind of symmetry is typical of LC layers
of practical LCDs, see Figure 6.7 and Section 6.2.3) has the form (1.252) if the axis xI of a reference
frame (xI, yI) which is used as the input and output one for this Jones matrix is parallel to the symmetry
axis (axis C2 in Figure 6.7).

Certainly, the matrix t⃗S has the form (1.252) not only when the system S is symmetrical in the
mentioned sense. For any variant of S for which t′N−j+1 = t′j and 𝜙(S)

N−j+1 is equal to −𝜙(S)
j or −𝜙(S)

j ± 180◦

(j = 1,2,… , N), the matrix t⃗S will be of the form (1.252).
For completeness, we must also mention here the following obvious relation. If a system S′ is composed

of the same elements as the system S, arranged in the same order, but these elements are rotated about
the z-axis so that for them the angles 𝜙j are equal to 𝜙j

(S) + 𝛼R or 𝜙j
(S) + 𝛼R + 180◦, where 𝛼R is a fixed

angle, the matrices t⃗S′ and t⃗S are related by

t⃗S′ =
⌢

RC(−𝛼R)⃗tS
⌢

RC(𝛼R). (1.253)

1.4.3 Reciprocity Relations. Jones’s Reversibility Theorem
In the previous section, we supposed that light is incident on the system S in the positive direction of
the z-axis. Denote the transmission Jones matrix of this system for light incident on this system from
the other side in the opposite direction (Figure 1.11b) by t⃖S. Using Theorem 1.3 of the previous section,
we can easily determine the relation between the matrices t⃗S and t⃖S. Let a system S′′ be identical to the
system S rotated by 180◦ about an axis parallel to the xI-axis and let a coordinate system (xR, yR, zR)
whose frame (xR, yR) is used as the input and output basis of the matrix t⃖S be identical to the system (xI,
yI, zI) rotated by 180◦ about the xI-axis (Figure 1.12a). With this choice of the frame (xR, yR) the matrix
t⃖S is obviously equal to the matrix t⃗S′′ which is referred to the frame (xI, yI). Since the system S′′ satisfies
the conditions of Theorem 1.3, t⃗S′′ = I1 t⃗ T

S I1 and, consequently,

t⃖S = I1 t⃗ T
S I1.

Considering three choices of the basis (xR, yR, zR) that are shown in Figure 1.12 and named C1, C2, and
C3, the relationship between the matrices t⃗S and t⃖S can be expressed as follows:

t⃖S = Ur t⃗
T

S Ur, (1.254)
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xI

yI

zI

zR

yR

xR
xI

yI

zI

zR

yR

xR

xI

yI

zI

zR

yR

xR

Variant C1 Variant C2 Variant C3

(a) (b) (c)

Figure 1.12 Three choices of reference frames for the Jones vectors of waves propagating in opposite
directions. The axes zI and zR indicate the propagation directions of the waves. The system (xI, yI, zI)
is right-handed. The system (xR, yR, zR) is right-handed in the cases C1 and C2 and left-handed in the
case C3

where

Ur =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 0

0 −1

)
in the case C1

(
−1 0

0 1

)
in the case C2

(
1 0

0 1

)
in the case C3.

(1.255)

In the cases C1 and C2, the matrix t⃖S is expressed in terms of the elements of t⃗S as

t⃖S =

(
t⃗S11 −t⃗S21

−t⃗S12 t⃗S22

)
. (1.256)

In the case C3,

t⃖S =

(
t⃗S11 t⃗S21

t⃗S12 t⃗S22

)
. (1.257)

Equations that relate a transfer characteristic of an optical system to the characteristic of the same kind
but for the reverse passage of light through the system, such as (1.254), are usually called reciprocity
relations.

In the literature, reciprocity relations for Jones matrices of polarization devices are often written in
the form t⃖ = t⃗ T (see, e.g., [11]) and correspond to the situation when the input reference frame for the
matrix t⃗ is the same (geometrically) as the output reference frame for the matrix t⃖ and vice versa (as is
the case in the above example for the variant C3). Devices for which such a reciprocity relation holds are
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sometimes called reciprocal. The usual polarization elements of LCDs—LC layer, film polarizers, and
compensation films—are reciprocal devices. A layer of an isotropic medium with natural optical activity
can also be considered as a reciprocal optical element. An example of a polarization-converting device
that is not reciprocal is a Faraday rotator.

Jones’s Reversibility Theorem

Certainly, relation (1.254) can be deduced by using the only requirement to the elements of the system
S—each of them must be reciprocal. Actually, assuming that the elements of the system S are reciprocal,
we can express the matrix t⃖S as follows:

t⃖S =
(
Ur t⃗

T
1 Ur

) (
Ur t⃗

T
2 Ur

)
…
(
Ur t⃗

T
N−1Ur

) (
Ur t⃗

T
N Ur

)
= Ur t⃗

T
1

(
UrUr

)
t⃗ T
2

(
UrUr

)
…
(
UrUr

)
t⃗ T
N−1

(
UrUr

)
t⃗ T
N Ur,

where the product Ur t⃗
T

j Ur represents the Jones matrix of the jth element for the reverse direction of light
propagation. For all the three variants of Ur, UrUr = U. Consequently,

t⃖S = Ur t⃗
T

1 t⃗ T
2 … t⃗ T

N−1 t⃗ T
N Ur = Ur

(⃗
tN t⃗N−1 … t⃗2 t⃗1

)T
Ur = Ur t⃗

T
S Ur,

which shows that the system S is reciprocal. The statement that a system composed of reciprocal elements
is reciprocal expresses the essence of Jones’s reversibility theorem [5, 11].

In Section 8.6.2, we consider analogous reciprocity relations of the rigorous electromagnetic theory
of light propagation in stratified media.

The reciprocity relations for Jones matrices are used, for example, in calculations for reflective devices,
and in particular RLCDs (see, e.g., [12]).

Application to Reflective Devices

Consider a reflective device consisting of a transmissive system S and a specular reflector (mirror) R

which reflects the light transmitted by the system S back to S (Figure 1.13). Denote the transmission
Jones matrices of the system S for the propagation directions toward the reflector and from it by t⃗S and
t⃖S, respectively. The Jones matrix describing reflection from the mirror will be denoted by rR. Let a
frame (xI, yI), chosen as in the above consideration, be used as the input and output reference frame for
the matrix t⃗S and the input reference frame for the matrix rR, and let a reference frame (xR, yR) be used
as the input and output one for the matrix t⃖S and the output one for the matrix rR. Then we can express

iX

oX

S R

tSX

rRX

{ } { }t iS SJ JX X= t

{ } { }r tR R SJ JX X= r

{ } { }o rS RJ JX X= t

{ } { }o iS R+J JX X= r

Figure 1.13 A reflective system. Geometry and notation
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the Jones matrix rS+R that relates the Jones vector of the wave X⃗i incident on the reflective system and
that of the wave X⃖o emerging from this system (see Figure 1.13) as follows:

rS+R = t⃖SrR t⃗S. (1.258)

For the three variants of the frame (xR, yR) shown in Figure 1.12, the Jones matrix of the reflector can
be represented as

rR = rRUr, (1.259)

where rR =
√

RR with RR being the reflectivity of the reflector, and Ur, as before, is the matrix defined
by (1.255). In the case of an ideal lossless reflector, one can take

rR = Ur. (1.260)

Using the reciprocity relation t⃖S = Ur t⃗
T

S Ur and (1.259), we can modify expression (1.258) as follows:

rS+R = t⃖SrR t⃗S =
(
Ur t⃗

T
S Ur

) (
rRUr

)
t⃗S = rRUr

(⃗
t T
S t⃗S

)
. (1.261)

Thus, one can compute the matrix rS+R without dealing with the matrix t⃖S. Note that the matrix t⃗ T
S t⃗S is

symmetric, as is the matrix rS+R in the case C3. In the cases C1 and C2, the off-diagonal elements of
rS+R are equal but opposite in sign.

The following theorem is also useful in considering RLCDs.

1.4.4 Theorem of Polarization Reversibility for Systems
Without Diattenuation

Let Xd and Xr be plane monochromatic waves of the same frequency propagating in an isotropic medium
in opposite directions. We will say that the polarization of the wave Xr is reverse with respect to the
polarization of the wave Xd, or that the waves Xd and Xr are reversely polarized, if the shape and
orientation of the polarization ellipses of these waves are identical, but these ellipses are described
in opposite senses (Figure 1.14). Note that the handedness of the polarization ellipses of waves with
mutually reverse polarizations is the same (recall that oppositely propagating waves are compared here).
For example, the waves Xd and Xr can be called reversely polarized if they both have the right circular
polarization or left circular polarization. If the waves Xd and Xr are linearly polarized and have the
same polarization plane, they can also be called reversely polarized. If waves Xd and Xr have mutually

Xd Xr

Figure 1.14 Reversely polarized waves. The dotted arrows show the propagation directions of the
waves
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reverse polarizations and reference frames to which the Jones vectors of these waves, J{Xd} and J{Xr},
are referred, are chosen as in Figure 1.12, the relationship between these vectors can be expressed as
follows:

J{Xd} = kUrJ{Xr}
∗, (1.262)

where k is a scalar factor depending on the intensities and phases of the waves; the matrix Ur is defined
in (1.255).

If a reciprocal system is free of polarization-dependent losses, for this system a theorem, which we
will call the theorem of polarization reversibility, is valid [11, 12]. With the notation of Figure 1.11
for the incident (X⃗i, X⃖i) and transmitted (X⃗o, X⃖o) waves, this theorem can be formulated as follows:
whatever the polarization of X⃗i, if the polarization of X⃖i is reverse with respect to the polarization of
X⃗o, the polarization of X⃖o will be reverse with respect to that of X⃗i. This theorem can be proved in the
following way.

Suppose that the polarization of the wave X⃖i is reverse to that of the wave X⃗o. By making use of
(1.262), we can express the Jones vector of X⃖i as follows:

J
{

X⃖i

}
= kUrJ

{
X⃗o

}∗
. (1.263)

By definition,

J
{

X⃗o

}
= t⃗SJ

{
X⃗i

}
, (1.264)

J
{

X⃖o

}
= t⃖SJ

{
X⃖i

}
. (1.265)

On substituting (1.263) into (1.265), we have

J
{

X⃖o

}
= k t⃖SUrJ

{
X⃗o

}∗
. (1.266)

According to (1.264) and identity (5.13),

J
{

X⃗o

}∗
= t⃗∗SJ

{
X⃗i

}∗
.

Substitution of this expression into (1.266) leads to the following relation:

J
{

X⃖o

}
= k t⃖SUr t⃗

∗
SJ
{

X⃗i

}∗
. (1.267)

Using (1.254), we can rewrite this relation as follows:

J
{

X⃖o

}
= kUr

(⃗
t T
S t⃗∗S
)

J
{

X⃗i

}∗
. (1.268)

Since the system under consideration is free of polarization-dependent losses, the matrix t⃗S satisfies the
relations

t⃗†S t⃗S = (⃗t†S t⃗S)∗ = t⃗ T
S t⃗∗S = tSU, (1.269)
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where tS is the transmittance of the system. From (1.268) and (1.269), we obtain

J
{

X⃖o

}
= k′UrJ

{
X⃗i

}∗
, (1.270)

where k′ = ktS. Relation (1.270) [cf. (1.262)] shows that with the chosen polarization of X⃖i, the polar-
ization of X⃖o is really reverse to that of X⃗i.

This theorem explains the following properties of reflective systems without diattenuation, which are
very important in considering single-polarizer reflective LCDs and transflective LCDs.

Two Important Properties of Reflective Systems Without
Polarization-Dependent Losses

To present these properties, we return to the problem illustrated by Figure 1.13 and assume that the
system S is free of diattenuation.

Property 1 Suppose that the wave X⃗i incident on the reflective system is linearly polarized and the
transmitted wave X⃗tS is also linearly polarized. Then the reflected wave X⃖rR is linearly polarized and has
the same polarization plane as X⃗tS, that is, the waves X⃖rR and X⃗tS are reversely polarized. According to
the theorem of polarization reversibility, the wave X⃖o in this case is linearly polarized and has the same
polarization plane as the incident wave X⃗i.

Property 2 Let the wave X⃗i incident on the system be linearly polarized and let the transmitted
wave X⃗tS be circularly polarized. In this case, the output wave X⃖o will be linearly polarized and have a
polarization plane perpendicular to that of X⃗i. To elucidate this situation, we assume, for definiteness,
that the wave X⃗tS has the right circular polarization. In this case, the reflected wave X⃖rR will have the
left circular polarization. It follows from the theorem of polarization reversibility that if the wave X⃖rR

had the right circular polarization, the output wave X⃖o would have the linear polarization and the same
polarization plane as X⃗i. However, X⃖rR has polarization orthogonal to the right circular one, and the
wave X⃖o, being linearly polarized, will have its polarization plane orthogonal to the polarization plane
of X⃗i, which is clear in view of the fact that transformations without diattenuation convert orthogonally
polarized waves into orthogonally polarized ones (see item Lossless transformations and transformations
without diattenuation in Section 1.4.1).

1.4.5 Particular Variants of Application of the Jones Calculus. Cartesian
Jones Vectors for Wave Fields in Anisotropic Media

Reduced Transmittance of a System

When dealing with optical devices in which the input and output elements are polarizers (e.g., double-
polarizer LCDs, single-polarizer reflective LCDs, reflective LCDs with polarizing beam splitters), the
following approach is often used.

A scheme of light passage through an idealized system used in considering such a device can be
written as follows: input polarizer → polarization-converting system → output polarizer. As for LCDs,
typical elements of polarization-converting systems (PCSs), along with LC layer, are compensation films
(retarders) and reflector in the case of reflective LCDs. On the assumption that the polarizers are ideal,
the transmittance T defined as

T ≡ Iout∕IincPCS, (1.271)
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where IincPCS is the intensity of the light incident on the PCS and Iout is the intensity of the light emerging
from the output polarizer, is considered as a key characteristic of the system. This kind of transmittance
will be referred to as reduced transmittance. The reduced transmittance can be expressed in terms of the
Jones matrix of the PCS, tPCS, as

T = |||j†tp2tPCS jtp1
|||2 , (1.272)

where jtp1 and jtp2 are the polarization Jones vectors of waves that are transmitted by the input polarizer
and the output polarizer, respectively [cf. (1.204)]. Sometimes, equation (1.272) is directly used for
computation of T. When using this expression, it should be remembered that the vectors jtp1 and jtp2 must
be referred, respectively, to the input and output reference frames of the matrix tPCS. In Chapter 6, we
give convenient explicit expressions for the reduced transmittance in terms of orientation angles of the
polarizers for different kinds of LCDs and present optimization methods using these expressions.

Unimodular Representation of Unitary Jones Matrices

In Chapters 2 and 3 and some other places of this book, PCSs of LCDs are considered as systems of
lossless optical elements, that is, as unitary systems. The absence of losses allows one to calculate the
Jones matrices of PCSs dealing with only unitary Jones matrices. Such calculations as well as further
analysis and calculations are simplified when all elements of the PCS are represented by unimodular
unitary (UU) Jones matrices, because such matrices are simple in form and their product is a matrix of a
simple form (see Section 5.1.3). Any optical element that can be represented by a unitary Jones matrix
can be represented in such calculations by a UU Jones matrix that describes the same transformation of
polarization. In the most compact and convenient variants of representation of Jones matrices for lossless
elements, these matrices are unimodular (see, e.g., expressions (1.184) and (1.185) for wave plates). The
product of UU matrices is a UU matrix. Therefore, the Jones matrix of a unitary system that is calculated
as the product of UU Jones matrices is also a UU matrix. By definition, the determinant of any unimodular
matrix is equal to 1 or –1. All UU 2 × 2 matrices of determinant 1 have the form (5.31). This is the case,
for example, for rotation matrices

⌢

RC [see (1.53)] and Jones matrices for wave plates given by (1.184) and
(1.185). The product of such UU matrices is always a matrix of determinant 1, that is, a matrix of the form
(5.31). All UU 2 × 2 matrices of determinant −1 have the form (5.33). This is the case, for example, for
the reflection Jones matrix of a lossless reflector given by (1.260) in the cases C1 and C2. In calculations
involving such Jones matrices, the sign of the determinant of the resultant matrix of the system and,
consequently, the form of this matrix can be predicted by using property (5.17) of determinants. In the
context of the optical equivalence theorem that is presented in Section 3.1, it is important that any unitary
system can be represented by a UU Jones matrix with determinant 1 (the multiplication of a UU 2 × 2
matrix by the imaginary unit gives a UU matrix with the opposite sign of the determinant) and that only
three real parameters are in general required to fully specify such a matrix [(see (5.32)].

Cartesian Jones Vector for a Wave Field Propagating in an Anisotropic Medium

So far we dealt only with Cartesian Jones vectors that describe waves propagating in isotropic media, for
example, in an isotropic medium surrounding an optical system or in isotropic spaces between optical
elements. In the classical JC, Cartesian Jones vectors are used to characterize wave fields propagating
inside anisotropic regions as well. In particular, this variant of description underlies the differential JC
[8] (see Sections 2.1 and 11.1.1) which is used for treatment of inhomogeneous layers whose local
optical parameters are continuous functions of spatial coordinates, such as inhomogeneous LC layers.
The use of Cartesian Jones vectors for describing wave fields propagating in anisotropic media raises
some questions. To explain, we return to the example illustrated by Figure 1.9a.
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Suppose that the light falls on the uniaxial layer in the normal direction and is polarized so that both
ordinary and extraordinary waves are induced. In accordance with the classical JC, the state of the wave
field consisting of the forward propagating ordinary and extraordinary waves at an arbitrary point inside
the layer can be described by a “fitted-to-intensity” Cartesian Jones vector J = (Jx′′ Jy′′ )

T referred to
an arbitrary rectangular coordinate system (x′′, y′′, z′′) with the z′′-axis directed along the wave normal
of the incident wave. A Cartesian Jones vector of any kind is a column composed of two Cartesian
components of a vector collinear to the complex electric field strength vector of the wave field to be
characterized. In our case, the wave field to be characterized is a superposition of two waves and its
electric field strength vector, we denote it by Ee+o, is equal to Ee + Eo, where Ee and Eo are the electric
fields strength vectors of the extraordinary wave and ordinary wave, respectively. By definition, we have

Jx′′ = b(x′′Ee+o), Jy′′ = b(y′′Ee+o), (1.273)

where x′′ and y′′ are unit vectors along the axes x′′ and y′′, and b is a complex coefficient. If the optic
axis of the layer is parallel to its boundaries and, consequently, the vector Ee+o is perpendicular to the
z′′-axis, the Jones vector J characterizes the wave field to the same extent as the Jones vector, of the same
kind, characterizing a wave propagating in an isotropic medium. However, there is a serious difference.
The contributions of the extraordinary and ordinary components into the intensity, with any reasonable
choice of the physical quantity considered as intensity (see Sections 5.2 and 5.4), depend on their phase
velocities which are different. Therefore the ratio of |J|2 to the intensity is dependent on J. This means that
the vector J cannot be “fitted-to-intensity” in principle. This vector can be considered to be approximately
“fitted-to-intensity” only when the principal refractive indices of the anisotropic medium are very close
to each other or, more precisely, when |n∥ – n⟂| ≪ n∥,n⟂. Thus, defining a Cartesian Jones vector as in
(1.273) and postulating that this vector is “fitted-to-intensity,” we thereby restrict the consideration to the
case of a weakly anisotropic medium. The assumption that the medium is weakly anisotropic also allows
us to disregard the fact that at 𝜃 ≠ 0, 90◦ the field Ee has a nonzero z′′-component [see (1.141)], since
at |n∥ – n⟂| ≪ n∥,n⟂ this component is very small compared with the transverse constituent of Ee. Note
that liquid crystals in most display applications cannot be considered as a weakly anisotropic medium.

It is possible to remove the mentioned restriction by using another, somewhat artificial, definition of
Cartesian Jones vector for anisotropic media. To illustrate this, we proceed with the above example.

To define the Cartesian vector J(𝜉) at points of a plane zc = 𝜉 inside the uniaxial layer, we may imagine
that we replaced the rest of the layer beyond this plane by an isotropic medium and let the light pass
the boundary zc = 𝜉 without losses. Then we may take as J(𝜉) the Jones vector of the emergent wave
just beyond the plane zc = 𝜉. It is clear that this kind of definition of Jones vectors is applicable in
considering inhomogeneous layers as well. We should note that this definition, where the Jones vector
characterizes the wave field inside the anisotropic medium indirectly, is to the greatest extent consistent
with the standard apparatus of JC developed for considering continuously inhomogeneous media, which
is used in LCD optics for calculating Jones matrices for inhomogeneous LC layers (see Sections 2.1 and
11.1.1).
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2
The Jones Calculus: Solutions for
Ideal Twisted Structures and Their
Applications in LCD Optics

In most practical types of LC displays, LC layers have a twisted structure. These are twisted nematic
(TN) LCDs, supertwisted nematic (STN) LCDs, and so on. As a rule, in the field-off state, the structure of
the LC layer in such a display is close to an ideal twisted one. Here we use the term “an ideal twisted LC
structure” for structures that have a uniform tilt of the LC director throughout the LC layer and a uniform
twist, a uniform rotation of the LC director through the layer thickness. An ideal twisted structure is one
of a few kinds of inhomogeneous LC structures for which analytical solutions of optical problems can
be obtained. In this chapter, we consider analytical solutions that were obtained for LC layers with ideal
twisted structure by using the Jones calculus. These solutions enable one to gain an insight into a variety
of existing modes of displays with twisted LC layers and help in finding new modes. Furthermore, they
underlie many measurement methods for determining the parameters of twisted LC layers, including
those used for process control in the production of LCD panels.

2.1 Jones Matrix and Eigenmodes of a Liquid Crystal Layer with an
Ideal Twisted Structure

Consider a nonabsorbing nematic layer with an ideal twisted structure. Let (x, y, z) be a right-handed
Cartesian coordinate system with the planes z = 0 and z = d, where d is the thickness of the layer,
coincident with the boundaries of the layer, and the x–z plane parallel to the LC director at the boundary
z = 0. Then the orientation of the LC director (and local optic axis) in the layer can be represented
as follows:

𝜑 (z) =
( z

d

)
Φ,

𝜃 (z) = 𝜃0,
(2.1)

where 𝜃 is the tilt angle of the LC director, 𝜑 is the azimuthal angle of the LC director measured from
the x–z plane, Φ is the twist angle of the LC structure, and 𝜃0 is the pretilt angle.
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The Jones calculus gives the following expression for a unimodular transmission Jones matrix of this
layer, referred to the frame (x, y), for light propagating in the positive z direction:

tLC =
(

a + ib −c + id
c + id a − ib

)
, (2.2)

where

a = cos𝜒 cos𝜙 + Φ
𝜒

sin𝜒 sinΦ,

b = 𝛿

𝜒
sin𝜒 cosΦ,

c = cos𝜒 sinΦ − Φ
𝜒

sin𝜒 cosΦ,

d = 𝛿

𝜒
sin𝜒 sinΦ,

(2.3)

with

𝜒 =
√
Φ2 + 𝛿2 (2.4)

and 𝛿 being the half phase retardation of the LC layer, defined as

𝛿 = 𝜋dΔn
𝜆

, (2.5)

Δn = ne − n
⊥

, ne =
n||n⊥√

n2
⊥
cos2 𝜃0 + n2|| sin2

𝜃0

, (2.6)

where n|| and n
⊥

are the principal refractive indices of the liquid crystal. The matrix tLC can also be
represented as

tLC = ⌢

RC (−Φ) t′LC, (2.7)

where

t′LC =
⎛⎜⎜⎜⎝
cos𝜒 + i

𝛿

𝜒
sin𝜒 Φ

𝜒
sin𝜒

−Φ
𝜒

sin𝜒 cos𝜒 − i
𝛿

𝜒
sin𝜒

⎞⎟⎟⎟⎠ (2.8)

and
⌢

RC is the rotation matrix defined in (1.53). t′LC is the Jones matrix of the layer whose input reference
frame is (x, y) and output one is a frame (xΦ, yΦ) that is obtained by rotation of the frame (x, y) by the
angle Φ.

There are several ways to derive the above expressions [1–6]. For example, following an approach
used in References 2–5, the LC layer can be considered as a stack of N (N →∞) identical homogeneous
birefringent layers each of which produces the phase retardation equal to 2𝛿/N; the azimuthal angle of
the optic axis of the j-th layer (j = 1, 2,…, N), measured from the x–z plane, 𝜙j, is assumed to be equal
to jΦ/N (Figure 2.1).

In this case, the matrix tLC can be expressed as

tLC = ⌢

RC(−𝜙N)t′
⌢

RC(𝜙N)
⌢

RC(−𝜙N−1)t′
⌢

RC(𝜙N−1) ⋅… ⋅
⌢

RC(−𝜙2)t′
⌢

RC(𝜙2)
⌢

RC(−𝜙1)t′
⌢

RC(𝜙1),

(2.9)
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λ

x
y

z

Slow axis 

Figure 2.1 Stack of plate approximation for the LC cell

where

t′ =
(

ei𝛿∕N 0
0 e−i𝛿∕N

)
. (2.10)

Since
⌢

RC(𝜙j)
⌢

RC(−𝜙j−1) = ⌢

RC(Φ∕N),
⌢

RC(𝜙1) = ⌢

RC(Φ∕N), and
⌢

RC(𝜙N) = ⌢

RC(Φ), Equation (2.9) can be
rewritten in the form (2.7) with

t′LC =
[
t′
⌢

RC (Φ∕N)
]N
. (2.11)

The use of Sylvester’s matrix theorem leads to relatively simple explicit formulas for the elements of a
matrix being a power of a 2 × 2 matrix A in terms of the elements of A, which are especially simple
when the determinant of A is equal to 1, as in the case under consideration. Using such formulas to
express the matrix [t′

⌢

RC (Φ∕N)]N and proceeding to the limit as N →∞, one can arrive at (2.8) [2–5].
The fact that the optical constants of the liquid crystal, thickness of the layer, and light wavelength

enter into (2.8) only in the combination dΔn∕𝜆 [see (2.5)] much simplifies understanding the effect of
these parameters and is often used in analysis of optical properties of twisted LC layers.

It is useful to examine the eigenvectors of t′LC (see Section 5.1.1), which can provide some interesting
insights on the optical properties of twisted LC layers. The eigenvalue problem is given by

t′LCJ
𝜅
= 𝜅J

𝜅
, (2.12)

where J
𝜅

is an eigenvector and 𝜅 is the eigenvalue corresponding to J
𝜅
. The solutions of this

equation are

𝜅1 = ei𝜒 , 𝜅2 = e−i𝜒 , (2.13)

J
𝜅1

= 1√
(𝛿 + 𝜒)2 + Φ2

(
𝛿 + 𝜒

iΦ

)
, J

𝜅2
= 1√

(𝛿 + 𝜒)2 + Φ2

(
iΦ
𝛿 + 𝜒

)
. (2.14)

Here the eigenvectors are normalized so that J†
𝜅j

J
𝜅j
= 1 (j = 1,2). It is easy to see that J†

𝜅1
J
𝜅2

= 0

(eigenvectors corresponding to different eigenvalues of a unitary matrix are always orthogonal). Thus
the eigenvectors J

𝜅1
and J

𝜅2
of t′LC describe orthogonal elliptical polarizations. The output reference

frame of the matrix is rotated with respect to the input one by Φ. Therefore, it follows from (2.12) that
if the incident light has polarization described by J

𝜅1
or J

𝜅2
, the transmitted light will have the same

polarization ellipse but rotated by Φ.
There are two limits of the above solution that are noteworthy. It can be checked that in the limit

of 𝛿 ≫ Φ, the eigenvectors describe almost linear polarizations: J
𝜅1

along x at entry and along xΦ at
exit, and J

𝜅2
along y at entry and along yΦ at exit. In this case, a linearly polarized incident wave with
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polarization direction parallel or perpendicular to the tangential constituent of the LC director at the
frontal boundary of the LC layer (z = 0) produces the output wave which has linear or almost linear
polarization with polarization direction respectively parallel or perpendicular to the tangential constituent
of the LC director at the rear boundary of the layer. This is the usually quoted result for TN cells. This
mode of light propagation in twisted layers is called in the literature the Mauguin mode, adiabatic
following mode, and waveguiding mode.

In the opposite limit of 𝛿 ≪ 𝛷, the eigenvectors describe nearly circular polarizations.

Derivation by using the differential Jones Calculus
The same results can easily be obtained by using the differential Jones calculus [1, 6] (see also Section
11.1.1). Consider a very thin slice of the LC layer, occupying the space between an arbitrary plane z = 𝜏
and the plane z = 𝜏 + Δz (Δz → 0). The optical effect of this slice may be represented by the relation

J (𝜏 + Δz) = t
𝜏,𝜏+ΔzJ (𝜏) , (2.15)

where J (𝜏) and J (𝜏 + Δz) are the Jones vectors of the passing light, referred to the frame (x, y), at z = 𝜏
and z = 𝜏 + Δz, t

𝜏,𝜏+Δz is the corresponding Jones matrix of the slice. Then, neglecting the variation of
the angle 𝜑 [see (2.1)] within the slice, we can express the matrix t

𝜏,𝜏+Δz as

t
𝜏,𝜏+Δz =

⌢

RC (−q𝜏)

(
eikΔz 0

0 e−ikΔz

)
⌢

RC (q𝜏) (2.16)

where k = 𝜋Δn∕𝜆 and q = Φ/d. To the first order in Δz,

t
𝜏,𝜏+Δz = U + ik

⌢

RC (−q𝜏)

(
1 0
0 −1

)
⌢

RC (q𝜏)Δz, (2.17)

where U is the unit matrix. Substitution of (2.17) into (2.15) gives

J (z + Δz) = J (z) + ik
⌢

RC (−q𝜏)

(
1 0
0 −1

)
⌢

RC (q𝜏)ΔzJ (z) . (2.18)

Rearrangement of (2.18) and proceeding to the limit as Δz → 0 lead to the following equation:

dJ
dz

||||z=𝜏 = lim
Δz→0

J (𝜏 + Δz) − J (𝜏)
Δz

= ik
⌢

RC (−q𝜏)

(
1 0
0 −1

)
⌢

RC (q𝜏) J (𝜏) . (2.19)

Since 𝜏 is arbitrary, this equation can be rewritten as

dJ (z)
dz

= H (z) J (z) , (2.20)

where

H(z) = ik
⌢

RC (−qz)

(
1 0
0 −1

)
⌢

RC (qz) . (2.21)

A transformation of variable from J(z) to

JR (z) = ⌢

RC (qz) J (z) (2.22)
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can be made (see Section 11.1.1). The propagation equation (2.20) is thus converted to a simpler looking
equation:

dJR (z)

dz
=
(

ik q
−q −ik

)
JR (z) = H′JR (z) , (2.23)

where

H′ =
(

ik q
−q −ik

)
. (2.24)

Since the matrix H′ is independent of z, Equation (2.23) can be easily solved. At any 𝜏, the Jones
vector JR(𝜏) represents the same state of the light as the vector J(𝜏) but, in contrast to J(𝜏), is referred
to a local reference frame (x′(𝜏), y′(𝜏)) that can be obtained by rotation of the frame (x, y) by the angle
𝜑(𝜏) = q𝜏.

A fundamental system of solutions for (2.23) can be composed of the following linearly independent
particular solutions of this equation:

J+
R (z) = J+

R (0) ei𝜉z, J−
R (z) = J−

R (0) e−i𝜉z, (2.25)

where

𝜉 =
√

k2 + q2, (2.26)

J+
R (0) = 1√

(k + 𝜉)2 + q2

(
k + 𝜉

iq

)
, J−

R (0) = 1√
(k + 𝜉)2 + q2

(
iq

k + 𝜉

)
. (2.27)

The vectors J+
R and J−

R are eigenvectors of H′. The corresponding eigenvalues of H′ are equal to i𝜉
and –i𝜉 respectively. Note that J+

R (0) = J
𝜅1

and J−
R (0) = J

𝜅2
. Any particular solution of (2.23) can be

written as

JR (z) = c1J+
R (z) + c2J−

R (z) , (2.28)

where c1 and c2 are scalar factors.
By definition,

JR (d) = t′LCJR (0) . (2.29)

By making use of (2.25), it is easy to find the elements of t′LC ≡ [t′LCjl]. This can be done in the following

way. If we take JR (0) =
(

1
0

)
, the output Jones vector JR (d), according to (2.28), will be equal to(

t′LC11

t′LC21

)
. The values of the coefficients c1 and c2 for the particular solution with JR (0) =

(
1
0

)
can be

found from equation

c1J+
R(0) + c2J−

R(0) =
(

1
0

)
. (2.30)
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The solution of (2.30) is

c1 =
k + 𝜉√

(k + 𝜉)2 + q2

, c2 =
−iq√

(k + 𝜉)2 + q2

. (2.31)

From (2.28) and (2.25), we have

JR (d) = c1J+
R (0) ei𝜉d + c2J−

R (0) e−i𝜉d
. (2.32)

Upon substituting (2.31) in (2.32), we obtain the following expression:(
t′LC11

t′LC21

)
= k + 𝜉

(k + 𝜉)2 + q2

(
k + 𝜉

iq

)
ei𝜉d −

iq

(k + 𝜉)2 + q2

(
iq

k + 𝜉

)
e−i𝜉d, (2.33)

from which we find that

t′LC11 = cos (𝜉d) + i
k
𝜉
sin (𝜉d) , (2.34)

t′LC21 = −
q

𝜉
sin(𝜉d). (2.35)

The elements t′LC12 and t′LC22 in this case can be expressed as follows:

t′LC12 =
q

𝜉
sin(𝜉d), (2.36)

t′LC22 = cos (𝜉d) − i
k
𝜉
sin (𝜉d) . (2.37)

The expressions (2.34)–(2.37) are identical to those given by (2.8) because

𝜉d =
√
𝛿2 + Φ2 = 𝜒 ,

q

𝜉
= Φ√

𝛿2 + Φ2
= Φ
𝜒

,

k
𝜉
= 𝛿√

𝛿2 + Φ2
= 𝛿

𝜒
.

(2.38)

The presented expressions for the matrix tLC or other ones equivalent to them underlie much of the
analytical analysis of twisted LC layers in LCDs that does not rely on full numerical calculations.

2.2 LCD Optics and the Gooch–Tarry Formulas
The simplest liquid crystal display consists of an input polarizer, the LC cell, and an output polarizer.
The definition of the various angles are shown in Figure 2.2, where the input director azimuthal direction
is defined as the x-axis, as in the previous section.

The transmittance of this system is given by

T = T (𝛼, 𝛾 ,𝜙, 𝛿) =
||||| (cos 𝛾 sin 𝛾) ⋅ tLC ⋅

(
cos 𝛼
sin 𝛼

)|||||
2

, (2.39)
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Input director 

Input polarizer 

Output

polarizer 

Output

director

Figure 2.2 Definition of various directions in an LCD

where 𝛼 and 𝛾 are the input and output polarizer directions [see (1.272)]. In all considerations in this
chapter and Chapter 3, transmittances and reflectances of LCDs are defined as the reduced transmittance
in (1.271).

Gooch and Tarry [7, 8] analyzed the optics of twisted nematic cells and derived certain important
results related to waveguiding modes. In the original Gooch–Tarry configuration, the input polarizer for
a twist angle Φ cell is along the input director and the output polarizer is perpendicular to the output
director of the LC cell as shown in Figure 2.3.

Thus the transmittance is given by

T =
||||| (cos (Φ + 𝜋∕2) sin (Φ + 𝜋∕2) ) ⋅ tLC ⋅

(
1
0

)|||||
2

. (2.40)

The substitution of (2.2) in (2.40) gives the following expression for the transmittance:

T = Φ2

𝜒2
sin2

𝜒 = 1
1 + u2

sin2
(
Φ
√

1 + u2
)

, (2.41)

where

u = 𝛿

Φ
= 𝜋dΔn

𝜆Φ
. (2.42)

x

y

DIn , Pin 

Dout 

Pout 

Figure 2.3 Gooch and Tarry conditions
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Figure 2.4 Transmittance of the LCD as a function of dΔn for Φ = 90◦, 180◦, and 270◦

This is identical to the original Gooch–Tarry result, as it should. The minimum transmittance points
of this equation (T = 0) are the Mauguin minima, and are given by

dΔn
𝜆

= Φ
𝜋

√
N2𝜋2 − 1, (2.43)

for integer values of N. In particular for a 90◦ TN cell, the first two Mauguin minima at 𝜆 = 550 nm
are given by dΔn = 0.475, 1.065 μm. They are known as the first and second minima for TN displays.
In practice, the output polarizer is along the output director to achieve a normally white state. Thus the
transmittance is the complementary value, that is,

T = 1 − 1
1 + u2

sin2
(
Φ
√

1 + u2
)
. (2.44)

So in fact the Mauguin minima correspond to maximum transmission of the LCD. The name Mauguin
minima is still used though by common practice. Figure 2.4 shows the transmittance of the LC cell as
a function of dΔn for three typical twist angles. It can be seen that the transmittance approaches unity
always for large values of dΔn. These modes are therefore referred to as the waveguiding modes. Notice
that the 90◦ twist case is normally called the TN LCD, the 180◦ case is exactly the OMI (optical mode
interference) display [9], and the 270◦ case is the original supertwisted birefringence effect (SBE) display
[10, 11]. They are all waveguiding modes.

If the input polarizer is at 45◦ to the input director, and the output polarizer is perpendicular to the
input polarizer, we have the electrically controlled birefringent (ECB) mode display. These modes are
interference modes. The transmittance is given by

T = 1
4

||||| (1 −1) ⋅ tLC ⋅
(

1
1

)|||||
2

= sin2
𝜒 cos2 Φ + cos2

𝜒 sin2 Φ − 2Φ
𝜒

sin𝜒 cos𝜒 sinΦ cosΦ.
(2.45)
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Figure 2.5 Transmission as a function of dΔn for Φ = 0, 90◦, 180◦, and 270◦

For twist angles that are even multiples of 𝜋/2, the transmittance reduces to

T = sin2
√
Φ2 + 𝛿2. (2.46)

For twist angles that are odd multiples of 𝜋/2, the transmittance is given by

T = cos2
√
Φ2 + 𝛿2. (2.47)

For these interference modes, unlike the waveguiding modes, the transmittance never reaches a constant
value as dΔn increases. This is shown in Figure 2.5 for twist angles of 0, 90◦, 180◦, and 270◦. It should
be noted that the ordinary STN LCD is really closer to an ECB mode than a TN mode. With an input
polarizer at 45◦ and a twist angle near 240◦, this STN LCD is rather dispersive.

The waveguiding and the interference modes are different not only in the behavior of the transmittance
at large dΔn. They are also very different in the wavelength dependence of the output. The waveguiding
modes have small wavelength dependence while the interference modes are quite wavelength dispersive.
The transmission spectra of the waveguiding and interference modes are shown in Figures 2.6 and 2.7.
It can be seen that for a 90◦ TN display, both the first minimum and the second minimum give rather flat
spectra. However, for the ECB mode in Figure 2.7, the transmittance has strong wavelength dependence
for both the bright and dark states. Notice that the optical mode interference (OMI) mode is actually a
waveguiding mode and the word “interference” used in its name is a misnomer.

2.3 Interactive Simulation
The Jones matrix formulation of the liquid crystal cell is useful in modeling of the display under no
voltage bias conditions. Because of its simplicity, simulation results can almost be obtained in real
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Figure 2.6 Transmission spectra for the waveguiding modes

time. Thus, it is very convenient to model the operation of an LCD by tuning its many parameters. In
particular, it is useful to examine the effect of placing retardation films inside the LC cell for wavelength
compensation. In general, when no voltage is applied, the transmittance of the LC cell is given by

T =
||||| (cos 𝛾 sin 𝛾) ⋅… ⋅ tFILMj+1 ⋅ tLC ⋅ tFILMj ⋅… ⋅

(
cos 𝛼
sin 𝛼

)|||||
2

, (2.48)

where a number of films can be placed inside the LC display between the input and output polarizers,
in addition to the liquid crystal layer. Each Jones matrix in (2.48) represents an optical element. In
this equation, there are four parameters 𝛼, 𝛾 , 𝛿LC, Φ, for the LC layer. For each retardation film,
there are two additional parameters 𝜒 , 𝛿, where 𝜒 is the angle of the film axis relative to the x-axis
and 𝛿 is the retardation value. Since matrix multiplication can be performed very fast in a personal
computer, it is possible to write a relatively simple software to calculate the transmittance spectrum
as a function of all the parameters, 𝛼, 𝛾 , 𝛿LC, Φ, 𝜒 , 𝛿. In such a program, the parameters can be
varied as a slide bar as shown in Figure 2.8. The transmission spectrum can be shown instantly as the
parameters are varied one at a time. Good user graphic interface can be constructed as well. The color
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Figure 2.7 Transmission spectra for the interference modes
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Figure 2.8 User graphics interface for a software that calculates (2.48) in real time

corresponding to the particular spectrum and the standard CIE coordinates can be given instantly. This
software is useful for obtaining birefringent color displays or for compensating the dispersion of the
transmittance.

The idea of “instantaneous simulator” is a powerful one. Due to the increasing processing and
computational power of computers, solutions of differential equations can be obtained very rapidly.
Thus it is possible to use the concept of a “sliding bar” as in Figure 2.8 to vary various parameters
and examine their effects instantaneously. This is extremely useful both as a pedagogical tool and as a
practical simulator for device optimization. One such possible simulator is the solution of the Euler–
Lagrange equations for obtaining the elastic deformation results of an LC cell under an applied voltage.
Using appropriate approximations to simplify the nonlinear coupled equations, it is possible to obtain the
elastic deformation of the LC cell in less than 1-sec computation time using a desktop computer. Though
approximate, this is a very useful tool to visualize the effects of changing the various parameters on the
deformation of the LC alignment inside the LC cell. Traditional non-interactive method of setting the
values of various parameters and performing a computer run in order to see the results are only needed
when more accurate and exact solutions are desired.

2.4 Parameter Space
The transmittance or reflectance of an LC cell depends on many parameters. In Section 2.3, we describe
one approach to examine the parametric dependence of the optics of an LC cell on the various variables 𝛼,
𝛾 , 𝛿LC, Φ, 𝜒 , 𝛿 using an instantaneous solution simulator method. The entire transmission or reflectance
spectrum can be visualized instantaneously. However, if one needs to know only the reflectance or
transmittance at a single wavelength, another approach can be used to obtain the parametric dependence,
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that is, the use of a parameter space. In the parameter space, we plot the T or R of an LC cell as a function
of all parameters in a single or a series of parameter space diagrams.

Let us use the transmittance parameter space as an example. As indicated before, the transmittance of
an LC cell sandwiched between the input and output polarizers is given by

T = T (𝛼, 𝛾 ,𝜙, 𝛿) =
||||| (cos 𝛾 sin 𝛾) tLC

(
cos 𝛼
sin 𝛼

)|||||
2

. (2.49)

There are four independent parameters in this expression. If we assume that the input and output
polarizers are perpendicular to each other, which is often the case for an LCD, then there are only three
independent parameters left. Thus it is possible to plot the transmittance in a parameter space as shown
in Figure 2.9 [12]. Here we fix the input polarizer angle 𝛼 and plot the constant transmittance contour
curves of T(Φ, 𝛿). The values of 𝛼 are 0, 15◦, 30◦, 45◦ successively in the four panels. Notice also that
there is no explicit 𝜆 dependence in this parameter space. The wavelength dependence is hidden in the
value of 𝛿.

Since the parameter space include all operating points of an LCD, all the useful modes can be
represented as points in Figure 2.9. For example, the normal TN display has an operating point of
𝛼 = 0, Φ = 90◦, and dΔn = 0.475 μm. It is also very interesting to note the systematic trend of how
the transmittance varies in the parameter space. In these parameter spaces, the transmittance increases
in steps of 0.1. Along the x-axis, the transmittance is obviously zero. From the first panel with 𝛼 = 0, it
is evident that T = 0 also along the y-axis. There are peaks of transmittance at Φ = 90◦ and 270◦. These
are the TN modes. In fact a vertical cut of the 𝛼 = 0 panel along Φ = 90◦, 180◦, and 270◦ has been given
in Figure 2.4.

Now as 𝛼 increases, it can be seen that the peaks and valleys begin to break up and move sideways. The
T = 1 point moves in a circle in the parameter space. At 𝛼 = 45◦, the parameter space is totally different
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Figure 2.9 Parameter space diagrams for the transmittance of an LCD
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in nature. In fact a cut along 𝜙 = 0, 90◦, 180◦, and 360◦ again will be exactly as the transmittance curves
given in Figure 2.5. These are the interference modes. The exact trajectory of the T = 1 point in the
parameter space as 𝛼 is varied in fact can be obtained easily. We simply calculate the T = 0 points for
parallel polarizers. They are identical to the T = 1 points for perpendicular polarizers. So

T =
||||| (cos 𝛼 sin 𝛼) tLC

(
cos 𝛼
sin 𝛼

)|||||
2

= 0. (2.50)

Equating both the real and imaginary parts to zero, we obtain two equations

cos𝜙 cos𝜒 + 𝜙

𝜒
sin𝜙 sin𝜒 = 0, (2.51)

sin𝜒 cos (𝜙 − 2𝛼) = 0. (2.52)

As 𝛼 is varied, these two equations describe a trajectory in the (Φ, 𝛿) parameter space. In the next chapter,
we shall see that these are actually the LP1 polarization conserving modes.

We can also examine the parameter space for reflective displays with one polarizer [13–17]. The single
polarizer reflective display can either be used in conjunction with a polarizing beam splitter (PBS) or in
direct view as shown in Figure 2.10.

For the former case of using a PBS, the reflectance is given by

R =
||||| (sin 𝛼 −cos 𝛼) tT

LCtLC

(
cos 𝛼
sin 𝛼

)|||||
2

(2.53)

[see (1.272) and (1.261)]. For the latter, the reflectance is given by

R =
||||| (cos 𝛼 sin 𝛼) tT

LCtLC

(
cos 𝛼
sin 𝛼

)|||||
2

. (2.54)

They are actually complementary to each other. Obviously the PBS case is used for projectors and
the direct view case is for direct view applications. In both cases, R depends on only three independent
parameters (𝛼, Φ, 𝛿). The output polarizer is either perpendicular or parallel to the input polarizer (they
are the same polarizer). The parameter space can be obtained readily as shown in Figure 2.11.

In Figure 2.11, the value of 𝛼 also varies as 0◦, 15◦, 30◦, and 45◦. The constant reflectance contours
increase in steps of 0.1. The reflectance of the x-axis is R = 1 for the case of (2.53) and R = 0 for the
case of (2.54). There are peaks in R which correspond to R = 1 modes for projection applications. In this

PBS

Mirror 

LC cell 

Pol

Figure 2.10 Different viewing options for the reflective display
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Figure 2.11 Parameter space for a reflective display

diagram, we also indicate all the known useful reflective modes found. Sonehara [13] found the TN-ECB
modes originally, with 𝛼 = 0. Later the mixed TN (MTN) mode [14] and self-compensated TN (SCTN)
mode [15, 16] are reported. In the parameter space diagram, the relationships between these modes are
clearly seen. In fact, there are a lot of modes with R = 1 that can be used for projection application. They
can be collectively called the mixed TN-birefringent (MTB) modes [17–21]. In the same figure, we also
indicate the reflective TN (RTN), reflective STN (RSTN) and hybrid field effect (HFE) modes. These
modes are off the peaks and are the operating modes for direct view applications.

One somewhat useful application of the parameter space is that when a voltage is applied, 𝛿 approaches
zero. Thus in the parameter space, increasing voltage can be regarded as moving the point of operation
vertically down toward the x-axis. Thus the transmission–voltage curve (TVC) of the LCD can be simply
predicted qualitatively. We should emphasize that it is qualitative as the LC alignment will change as a
voltage is applied and the parameter space will no longer be valid.

Another useful application of the parameter space is in predicting the wavelength dependence of the

transmittance. The parameter space is calculated at a certain wavelength since 𝛿 = 𝜋dΔn
𝜆

. For Figures

2.9 and 2.11, the value used is 𝜆 = 550 nm. Now obviously, if we let 𝜆 increase, it is equivalent to
making 𝛿 smaller, and vice versa. Thus changing of 𝜆 is exactly as moving the operating point in the
parameter space up and down. Thus how rapidly the value of T changes in the vertical direction will give
the wavelength dependence of the transmittance spectrum.
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3
Optical Equivalence Theorem

3.1 General Optical Equivalence Theorem
As noted in Section 1.4.5, any lossless (unitary) polarization system may be represented by a unitary
Jones matrix of the form

t =
(

A −B∗

B A∗

)
, (3.1)

or equivalently,

t =
(

a + ib −c + id
c + id a − ib

)
, (3.2)

where a, b, c, and d are real numbers such that a2 + b2 + c2 + d2 = 1 [1]. Suppose that a transmissive
unitary system is characterized by a Jones matrix t of the form (3.1), referred to a Cartesian reference
frame (xI, yI). The general optical equivalence theorem [2–8] states that the matrix t can be represented
in the form

t = R (Ω) WP (Γ,𝜓) , (3.3)

where

R (Ω) =
(
cosΩ − sinΩ
sinΩ cosΩ

)
is the Jones matrix of a polarization rotator rotating a polarization ellipse by angle Ω, and

WP (Γ,𝜓) =
(
cos𝜓 − sin𝜓
sin𝜓 cos𝜓

)⎛⎜⎜⎝
exp

(
− iΓ

2

)
0

0 exp
( iΓ

2

) ⎞⎟⎟⎠
(
cos𝜓 sin𝜓
− sin𝜓 cos𝜓

)
(3.4)
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is the Jones matrix of a wave plate (WP) with phase retardation Γ and with its fast axis at an angle 𝜓 to
the xI-axis. In other words, the action of a unitary system on monochromatic light of a given wavelength
is equivalent to the action of a wave plate in tandem with a polarization rotator.

The relations between parameters of a unitary optical system and its equivalent wave plate and rotator
can be derived readily. According to (3.3),

t =
(
cosΩ − sinΩ
sinΩ cosΩ

)(
cos𝜓 − sin𝜓
sin𝜓 cos𝜓

)⎛⎜⎜⎝
exp

(
− iΓ

2

)
0

0 exp
( iΓ

2

) ⎞⎟⎟⎠
(
cos𝜓 sin𝜓
− sin𝜓 cos𝜓

)
. (3.5)

Expanding (3.5), we obtain

A = cos Γ
2
cosΩ − i sin Γ

2
cos (Ω + 2𝜓) , (3.6)

B = −cos Γ
2
sinΩ − i sin Γ

2
sin (Ω + 2𝜓) . (3.7)

Consequently,

a = cos Γ
2
cosΩ, (3.8)

b = − sin Γ
2
cos (Ω + 2𝜓) , (3.9)

c = cos Γ
2
sinΩ, (3.10)

d = − sin Γ
2
sin (Ω + 2𝜓) . (3.11)

We can also invert (3.8) and (3.11) to express the equivalent WP and rotator parameters in terms of
the a, b, c, d coefficients.

cos2 Γ
2

= a2 + c2, (3.12)

tanΩ = c
a

, (3.13)

tan 2𝜓 = ad − bc
ab + cd

. (3.14)

The existence of these solutions indicates that we can always determine the equivalent wave plate and
polarization rotator parameters once we know the unitary matrix of an optical system. The exception is
for the case of a = c = 0. Under this condition, Equations (3.8)–(3.11) are reduced to

b = − sin Γ
2
cos (Ω + 2𝜓) , (3.15)

cos Γ
2
= 0, (3.16)

b2 + d2 = 1, (3.17)

which indicates that the equivalent wave plate is a half-wave plate with Γ = (2N + 1)𝜋, and Ω and 𝜓
cannot be uniquely determined. There is an infinite set of pairs of values of Ω and 𝜓 satisfying (3.15).
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Of the three parameters in the equivalent model, Ω and Γ are independent of the orientation of the
reference frame (xI, yI). Ω is called the characteristic angle and Γ the characteristic phase of the unitary
optical system [9].

This optical equivalence theorem is very useful to study some LCD modes as well as in developing
LCD measurement methods.

3.2 Optical Equivalence for the Twisted Nematic Liquid Crystal Cell
In the previous chapter it is shown that the Jones matrix tLC of a twisted LC layer referred to a reference
frame (x, y) chosen as indicated in Section 2.3 (the x axis is parallel to the tangential constituent of the
input LC director) is uniquely determined by the parameters Φ and 𝛿 of the LC layer. If we choose the
reference frame (xI, yI) so that it is coincident with the system (x, y), we have

a = cos𝜒 cos𝜙 + Φ
𝜒

sin𝜒 sinΦ, (3.18)

b = 𝛿

𝜒
sin𝜒 cosΦ, (3.19)

c = cos𝜒 sinΦ − Φ
𝜒

sin𝜒 cosΦ, (3.20)

d = 𝛿

𝜒
sin𝜒 sinΦ (3.21)

[see (2.3)], and, according to (3.12)–(3.14),

cos2 Γ
2

= cos2
𝜒 + Φ2

𝜒2
sin2

𝜒 , (3.22)

tanΩ =
tanΦ − Φ

𝜒
tan𝜒

1 + Φ
𝜒

tanΦ tan𝜒
, (3.23)

tan 2𝜓 = Φ
𝜒

tan𝜒. (3.24)

Thus, given the parameters (Φ, 𝛿) of the LC cell, the equivalent WP and polarization rotator parameters
can be determined. We emphasize that in this case, 𝜓 is the angle between the fast axis of the equivalent
wave plate and the x axis that is attached to the input LC director.

It is interesting to examine graphically the relationship between the parameters (Φ, 𝛿) and (Ω, Γ). The
results are shown in Figure 3.1. For any pair of values of (Φ, 𝛿), the corresponding values of (Ω, Γ) can
be obtained, and vice versa. In that figure, the circular contours are constant retardation curves, while
the other set of contours is the constant Ω curves. Retardation values are given in units of dΔn/𝜆. For
example, the first minimum TN mode will have a coordinate of (90◦, 0.9), which corresponds to a Γ
of 0 and a Ω of 90◦ in Figure 3.1. As a matter of fact, the Γ = 0 contour in Figure 3.1 gives all the
Gooch–Tarry waveguiding modes for a general twisted nematic LC layer. This is a useful nomograph
similar to a Smith chart in microwave design [10, 11]. It can be also applied to LCD measurements as
will be shown later.

3.3 Polarization Conserving Modes
Applied to a twisted liquid crystal layer, the optical equivalence theorem can be used to obtain the
conditions for achieving particular output polarization state. If a linearly polarized light is provided at
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Figure 3.1 Nomograph of the equivalence parameters

the input, the output from the LC cell will in general be elliptically polarized. However, there are some
conditions such that the output polarization state is either linearly polarized or circularly polarized. We
shall call these, the polarization preserving modes. They are of interest in analyzing the operation of an
LCD, as well as in measurement of LC cell parameters.

In the following consideration, we assume that the light incident on the layer is linearly polarized.
The angle between the polarization plane of the incident light and the x axis (the input polarizer angle)
is denoted by 𝛼.

3.3.1 LP1 Modes
If the equivalent wave plate has a retardation value that is a multiple of 2𝜋, the LC layer acts as a
pure polarization rotator regardless of the value of 𝛼. This is exactly the waveguiding, or Gooch–Tarry
condition [12, 13]. Using (3.22), it can be seen that this even wave plate condition gives

cos2
𝜒 + Φ2

𝜒2
sin2

𝜒 = 1 (3.25)

or (
1 − Φ2

𝜒2

)
sin2

𝜒 = 0. (3.26)

This is possible only if 𝜒 = N𝜋, or

dΔn
𝜆

=
√

N2 −
(Φ
𝜋

)2

(3.27)
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Figure 3.2 Solution space for LP1 modes

for integer values of N. This is exactly the classical Mauguin minima condition. Thus the LP1 modes are
the generalization of the waveguiding modes. From (3.23),

Ω = Φ. (3.28)

Thus the output polarization angle 𝛾 is given by

𝛾 = Φ + Ω. (3.29)

That is, the polarization plane of linearly polarized input light is rotated by an angle of Φ which is the
twist angle of LC cell. This is again the same as the previously derived result for the waveguiding mode.
The beauty of this optical equivalence approach is that one can find generalizations of the Gooch–Tarry
waveguiding modes easily. Basically, for any input polarizer angle, there are a number of waveguiding
modes that are possible. The solution space of LP1 modes is shown in Figure 3.2. From (3.27) the
solution consists of circles in the (𝛿/𝜋, Φ/𝜋) space. Figure 3.2 shows all the combinations of Φ and 𝛿
that can give waveguiding effects. Each point on the LP1 curve corresponds to a value of 𝛼 that will give
the waveguiding effect [14–17]. One can in fact imagine a solution space for the LP1 modes in three
dimensions. The solutions are then spirals in the vertical direction with a period of 2𝜋.

3.3.2 LP2 Modes
Another interesting condition is when the input light is linearly polarized and is parallel to the fast axis
of the equivalent wave plate, that is, 𝜓 = 𝛼. In this case, the LC cell behaves as a pure polarization rotator
and the output light will also be linearly polarized. From (3.24), we have

tan 2𝛼 = Φ
𝜒

tan𝜒. (3.30)

Using (3.23), it is easy to see that

tanΩ = tan (Φ − 2𝛼) . (3.31)

Thus the output polarization 𝛾 is given by

𝛾 = Ω + 𝛼 = Φ − 𝛼. (3.32)
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Figure 3.3 Solution space for LP2 modes

Notice that this case gives a different output polarization orientation from the LP1 solution. This fact
can be applied to the design of bistable twisted nematic displays which will be discussed in a later
section. For each value of 𝛼, Equation (3.30) can be solved to get a relationship between 𝛿 and Φ. Thus
the parameter space for LP2 mode is an area. This is different from the LP1 mode where the solution
space is described by a line. The solution space for LP2 modes is shown in Figure 3.3. Again, each value
of 𝛼 corresponds to a set of (Φ, 𝛿) values that will provide the LP2 type linear polarization output. It
should be noted in this case, there is no waveguiding effect.

From (3.32) it can be seen that if we require the input and output polarizations to be perpendicular to
each other, as in most LCD, then 𝛼 has to be 45◦. Thus the LP2 modes correspond to the interference
modes for LCD operation as discussed in Section 2.2. It should be mentioned that the STN LCD belongs
to this class of LP2 solution. For such modes, Equation (3.30) gives

𝜒 =
(

N − 1
2

)
𝜋. (3.33)

Thus the retardation values of such special LP2 modes are given by

dΔn
𝜆

=
√(

N − 1
2

)2

−
(Φ
𝜋

)2

. (3.34)

The solution looks similar to (3.27) for the LP1 modes except for the odd integer inside the square
root.

3.3.3 LP3 Modes

Yet another possibility for a linearly polarized output is when the equivalent wave plate is a half-wave
retardation plate. The output will also be linearly polarized. From (3.22), this is possible only if

cos2
𝜒 + Φ2

𝜒2
sin2

𝜒 = 0. (3.35)

The only way for (3.35) to hold is when 𝜒 = (N − 1/2)𝜋 and Φ = 0. Thus the equivalent wave plate is
a half-wave plate only if the LC layer is a uniform cell and has a half-wave retardation. This is actually
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obvious. The LP3 solutions are therefore a trivial subset of the LP1 and LP2 solutions. But the interesting
conclusion is that there are no other conditions that can lead to a half-wave retardation situation.

Another way of expressing this result is to find the condition for Ω = 0, that is, when the system is a
pure retardation plate without polarization rotation. From (3.22), it is seen that this condition is possible
only if Φ = 0. This result is the same as the conclusion reached in (3.35).

3.3.4 CP Modes

Finally, let us examine the conditions for obtaining a circularly polarized output, given a linearly polarized
input light. In the equivalence model, the output will be circularly polarized if the equivalent wave plate
has a quarter-wave retardation and the input light is polarized at 45◦ to its c-axis. From (3.22) and (3.23),
we therefore obtain

𝛿

𝜒
sin𝜒 = 1√

2
(3.36)

and

Φ
𝜒

tan𝜒 = cot 2𝛼. (3.37)

Therefore, given the polarization of the incoming light, conditions for (Φ, 𝛿) can be obtained by
solving (3.35) and (3.37). These are the same conditions for the MTB (mixed TN-birefringence) modes
derived previously in Chapter 2 for single polarizer reflective liquid crystal displays [10]. The solution
space for the CP modes is shown in Figure 3.4. They are actually the same as the MTB modes. Notice
that when 𝛼 = 0, Equation (3.37) will imply that 𝜒 = (N − 1/2)𝜋. Substituting in (3.36) therefore gives
Φ = 𝛿. These solutions correspond exactly to the TN-ECB modes derived by Sonehara [18, 19]. This is
indicated in Figure 3.4 as the tip of the solution contour touching the 𝛿 =Φ line. Thus it can be seen again
that the TN-ECB modes are a subset of the more general MTB modes. Such MTB modes are essential
for the operation of reflective LCD such as those used in liquid crystal on silicon (LCOS) devices. Of
course, the results discussed here are for a single wavelength. More numerical analysis is needed for the
optimization of reflective modes used in LCOS, using the CP and MTB modes as guidance. This will be
discussed in more detail in Section 3.5.
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The LP1, LP2, and CP modes are most useful in the analysis of reflective LCD and in bistable displays.
They are also valuable in developing techniques to measure the characteristic parameters of an unknown
LC cell. We shall discuss them in the following sections.

3.4 Application to Nematic Bistable LCDs
Bistable LCDs are interesting because they can be used as e-paper [20–35]. There are many types of
bistable LCDs such as cholesteric and ferroelectric LC. One particular class of bistable LCD is based
on nematic LC cell which has two stable alignment states under zero bias voltage. There are quite a
number of possibilities for this to happen [36,37]. Essentially since the elastic deformation of the liquid
crystal layer can either be splay (S), bend (B), or twist (T), it is possible to have bistable bend-splay
(BBS), bistable splay-twist (BST), bistable bend-twist (BBT), and bistable twist-twist (BTT). BTT is
also traditionally known as bistable TN (BTN) display. We shall keep the traditional name BTN even
though the name BTT is more accurate.

For the optical optimization to be discussed here, we shall only be concerned with the BTN display.
This can be possible if the d/P ratio of the LC cell is such that both LC alignment configurations have the
same elastic energy. There are two possible BTN configurations. In the original discovery of bistability,
it was found that the zero twist and 2𝜋 twist states can have the same deformation elastic energy and can
be bistable [20]. They shall be called the 2𝜋-BTN display. It was found that the zero twist and 𝜋-twist
states can also be bistable. They shall be known as the 𝜋-BTN display. In this book, we shall not be
concerned with the physics of the bistable configuration or their switching mechanisms. We shall just
examine the optics of such displays using the polarization conserving modes discussed above to optimize
the optical properties of such displays. Since the BTNs have no applied voltage, they are ideally suited
for such optimization studies.

3.4.1 2𝜋 Bistable TN Displays
It was found that in addition to (0, 2𝜋) bistability, it is possible to have (Φ0, Φ0 + 2𝜋) bistability. As
long as the two twist states differ by an angle of 2𝜋, bistable conditions can be maintained. Here Φo can
be any angle. Thus Φo can be used as an independent parameter to optimize the optical properties of the
2𝜋-BTN.

From the above discussions on polarization conserving modes, it is obvious that if the input light is
linearly polarized, then an optimal condition can be achieved if one of the bistable states is an LP1 mode
and the other an LP2 mode. The output polarization angles are respectively

𝛾 = Φ + 𝛼 (3.38)

and

𝛾 = Φ − 𝛼 (3.39)

for the two conditions. So if we let the two output polarizations be perpendicular to each other, the optical
property will be the best. One twist state will have T = 1 and other will have T = 0. Suppose we let the
Φo twist state be LP2 and the Φo + 2𝜋 state be LP1, then

𝛼 = (2N − 1)
𝜋

4
. (3.40)
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Table 3.1 2𝜋−BTN LCD construction conditions using LP solutions

Mode number dΔn (μm) Φ1 (◦) Φ2 (◦) 𝛼 (◦) 𝛾 (◦)

1 0.3995 −124 236 45 −79
2 0.765 −101 259 45 34
3 1.0735 −79 281 45 −34
4 1.364 −57 303 45 78
5 1.647 −33 327 45 12
6 0.273 −11 349 45 −56
7 1.925 −11 349 45 −56
8 2.200 11 371 45 56
9 2.473 34 394 45 −11

10 2.745 56 416 45 −79
11 0.522 56 416 45 −79
12 0.733 124 484 45 79
13 0.932 191 551 45 56

That is, the input polarizer should be placed at odd multiples of 𝜋/4 to the input director. Without loss
of generality, we can set 𝛼 = 𝜋/4. From (3.27) and (3.34), the retardation of the LC cell is given by

𝛿
2 + Φ2

o =
(

N − 1
2

)2

𝜋
2, (3.41)

𝛿
2 +

(
Φo + 2𝜋

)2 = M2
𝜋

2, (3.42)

where M, N are integers. So every possible combination of M and N, there will be a solution of the
2𝜋-BTN where one twist state will have T = 0 and the other twist state has T = 1. Table 3.1 shows some
possible solutions.

One can also reverse the situation and allow the Φo twist state be LP1 and the Φo + 2𝜋 state be LP2
solutions. Then another set of possible operating conditions can be obtained. Figure 3.5 shows the optical
transmittance of the on- and off-states of several 2𝜋-BTN modes.

3.4.2 𝜋 Bistable TN Displays
The 2𝜋-BTN LCD is not truly bistable as both twist states will always decay to the middle 𝜋-twist state
which is more stable [22,23]. The 𝜋-BTN LCD is therefore a more attractive alternative. Here the stable
twist states are zero twist and 𝜋-twist. Again, we can generalize the stable twist states to be (Φo, Φo +
𝜋). Again, solutions for Φo can be obtained readily if we assume one twist state to be an LP1 mode and
the other to be an LP2 mode.

As in the case of 2𝜋-BTN LCD, the input polarizer angle should be given by 𝛼 = 𝜋/4. The retardation
value of the cell is also governed by the LP1 and LP2 solutions as

𝛿
2 + Φ2

o =
(

N − 1
2

)2

𝜋
2, (3.43)

𝛿
2 +

(
Φo + 𝜋

)2 = M2
𝜋

2, (3.44)

for integer values of M and N. Table 3.2 shows some of the solutions and Figure 3.6 shows the transmission
spectra of the first two of these solutions. The first solution of mode #1 is very good in giving an almost
TN mode like low dispersion transmission spectra.



JWST441-c03 JWST441-Yakovlev Printer: Markono November 27, 2014 10:27 Trim: 244mm × 170mm

84 Modeling and Optimization of LCD Optical Performance

0.4 0.6 0.8
0

0.5

1

Wavelength (micron)

T
ra

n
s
m

itt
a
n
c
e

0.4 0.6 0.8
0

0.5

1

Wavelength (micron)

T
ra

n
s
m

itt
a
n
c
e

0.4 0.6 0.8
0

0.5

1

Wavelength (micron)

T
ra

n
s
m

itt
a
n
c
e

0.4 0.6 0.8
0

0.5

1

Wavelength (micron)

T
ra

n
s
m

itt
a
n
c
e

(a) (b)

(c) (d)

Figure 3.5 Optically optimized 2𝜋-BTN LCD

One can also derive conditions for the single polarizer bistable TN display. In this case, one of the
modes should be a CP mode. Thus the two modes should be LP1-CP or LP2-CP. This is left as an exercise
for the reader.

3.5 Application to Reflective Displays
A reflective display is defined as one with only a front polarizer [38–52]. There is a reflector in the
back but no rear polarizer. They are useful when either the substrate of the LCD is opaque or when the
reflector is inside the LC cell. The former is the case for silicon substrate and the latter case will arise
for transflective displays. Such reflective displays are applied in two possible optical arrangements as
shown in Figure 2.10. The case of using a PBS is used in reflective microdisplay projectors. The direct
view case is used in a transflective display where a single polarizer reflective sub-pixel may be needed.

Table 3.2 The optical optimized 𝜋-configuration parameters

Mode Φ1 (◦) Φ2 (◦) dΔn (μm) 𝛼 (◦) 𝛾 (◦)

#1 −22.5 157.5 0.266 45 −67.5
#2 22.5 202.5 0.546 45 67.5
#3 67.5 247.5 0.799 45 22.5
#4 112.5 292.5 1.045 45 −22.5
#5 157.5 337.5 1.288 45 −67.5
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Figure 3.6 Transmission spectra of the first two 𝜋-BTN modes

For the reflective display, the LC cell has to function as a quarter-wave plate (QWP). Then linearly
polarized input light will be turned into circular polarization after going through the LC cell. Upon
reflection, the handedness of the wave changes. Therefore when it goes through the LC cell again, it
become linearly polarized but is rotated by 90◦. This situation is described in Section 1.4.4 (property 2).

Thus for a reflective LCD, the LC cell parameters (𝛼, Φ, 𝛿) should be that of a CP mode. The CP mode
parameter space is shown in Figure 3.4. It shows the solution for R = 0 with a direct view configuration
or R = 1 for a PBS projector configuration. The situation is shown in Table 3.3 which indicates the
reflectance of the LCD for solutions given in Figure 3.4 which corresponds to the CP mode.

If we want to have a normally bright display for direct view, then a totally different mode needs to be
used. That mode has to situate between the CP mode contours of Figure 3.4 and will not be discussed
here. Now each point on the solution contour corresponds to a particular value of 𝛼. Any point along the
solution contour can function as a reflective mode. Thus there are infinite combinations of (𝛼, Φ, 𝛿) that
can be used. Obviously the parameter space for CP mode is only valid for the no bias voltage situation.
For the design of a reflective display, the reflectance–voltage curve has to be taken into consideration. So
one should take all possible solutions of (𝛼, Φ, 𝛿) and then perform the full voltage-on simulation using
numerical software as shown in Chapter 4 to obtain the RVC. This is obviously a very tedious procedure.

Another consideration is that instead of requiring R = 1 for the no-bias voltage condition, it may be
better to allow for some compromises in R. For example, it may be better to allow R to be 0.9 and achieve
a better contrast. The complete regions of R > 0.9 for various (𝛼, Φ, 𝛿) are shown in the parameter space
in Section 2.4. Here we examine the case of the reflective LCD near the first TN-ECB mode. The R = 0.9
curves are shown in Figure 3.7 for various values of 𝛼. All (𝛼, Φ, 𝛿) inside the small circles are possible
solutions. Indeed, the TN-ECB mode of Sonehara [40], the MTN mode of Wu and Wu [45, 46], and the
SCTN mode of Yang [47,48] can all be found inside this parameter space. The practical reflective mode
used in commercial products is also within this range of parameters.

It should also be mentioned that single polarizer reflective modes can also be useful in the analysis
of transflective liquid crystal displays [53–56]. In such transflective displays, the reflective mode quite

Table 3.3 Reflectance of the single polarizer LCD

Projector Direct view

No voltage applied R = 1 R = 0
Voltage applied R = 0 R = 1
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Figure 3.7 Parameter space for reflective LCD

often is of a single polarizer design as in the present case. There is only one front polarizer and the
rear reflector is partially reflecting. Thus is is useful to invoke CP modes in the design of transflective
displays as well.

3.6 Measurement of Characteristic Parameters of an LC Cell
The optical equivalence theorem can also be applied to measure the properties of an unknown LC cell
with unknown twist angle and unknown retardation value. Using the optical equivalence theorem, one
can understand better the operational principles of conventional techniques of LC cell measurement
[57–65], and discover new methods for such measurements. Here we shall discuss the idea of measuring
the characteristic angle Ω and the characteristic phase Γ of the equivalent WP and polarization rotator.
Equations (3.11) and (3.12) can then be used to find Φ and 𝛿. It is also possible to simply read the
results of the nomograph in Figure 3.1. Here the retardation is normalized by the incident wavelength.
It is important to note that the sign of the characteristic angle Ω is critical. It includes information on
the twist sense of the LC layer. In Figure 3.1, the sense of the LC twist angles is used as the reference.
Characteristic angle of the same sense are said to be positive and vice versa.

There have been some methods proposed for the determination of characteristic parameters of an
optical gadget [3–5]. The simplest method to determine the characteristic angle Ω is the iterative method
of Srinath and Keshavan [65]. A modified Senarmont method is suitable for determining the characteristic
phase Γ. When determining the characteristic angle Ω, the direction of the fast axis of the equivalent
wave plate, FWP, is also determined.

3.6.1 Characteristic Angle Ω
The characteristic angle is determined if we can align the input polarizer with the axis of the equivalent
WP. The experimental set-up is shown in Figure 3.8. The unknown LC cell S and the analyzer A are
mounted on rotary stages. The two rotary stages were rotated iteratively until a minimum transmission
(should be zero theoretically) is obtained. Then the polarizer direction is parallel (or perpendicular) to
FWP, and the angle between the analyzer and the polarizer is equal to Ω ± 90◦. In other words, the LC
cell and the input polarizer can be regarded as a single element operating in the LP2 condition.
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Figure 3.8 Measurement setup for the characteristic parameters

The trick for this measurement is that there are two rotation stages. They have to be varied systemati-
cally to find the minimum. By using the iterative procedure, the final analyzer direction can converge by
a factor approximately equal to sin2(Γ/2). Usually two to three iterations will be needed to arrive at the
final analyzer position.

3.6.2 Characteristic Phase Γ
The conventional Sernamont method of finding the phase value of a waveplate is as follows. It makes
use of a quarter wave plate (QWP) as an analyzer. The input polarizer is set parallel to the QWP and then
the unknown wave plate is oriented at 45◦ to the input polarizer. The analyzer is then rotated to find the
null or maximum transmission direction. The unknown wave plate phase angle Γ is equal to two times
the angle between the maximum transmission analyzer direction and the input polarizer direction. To
obtain the equivalent wave plate characteristic phase Γ, it is possible to employ a modified Sernamont
method. The set-up is the same as in Figure 3.8. The equivalent wave plate axis is again set 45◦ to the
input polarizer. Then the following procedure can be used:

1. Complete the procedure to obtain the characteristic angle Ω first.
2. Further rotate the unknown optical media by 45◦.
3. Insert a QWP in between the optical media and the analyzer. The QWP axis is parallel to the analyzer.

That is at Ω angle to the input polarizer.
4. Rotate the analyzer to get the minimum transmission (should be zero theoretically). Then rotate 90◦

to get the maximum transmission direction.
5. The angle between the QWP and the analyzer is equal to half the characteristic phase Γ.
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4
Electro-optical Modes: Practical
Examples of LCD Modeling and
Optimization

In this chapter, we consider different LC electro-optical modes which are used in various LC devices.
Many practical examples of modeling and optimization of the LCD performance for different kinds of
LCD are presented.

4.1 Optimization of LCD Performance in Various
Electro-optical Modes

4.1.1 Electrically Controlled Birefringence

Director Distribution

The most important geometries of electrically controlled birefringence (ECB) are shown in Figure 4.1.
A compromise between dielectric and elastic torques results in the reorientation of the director from

the initial alignment 𝜃(z) with the maximum deviation 𝜃m at the center of the layer (the Fréedericksz
transition). The effect occurs when the electric field exceeds a certain threshold value:

UF = 𝜋(4𝜋 Kii∕Δ𝜀)1∕2, (4.1)

where the LC elastic constant Kii = K11 or K33 for the splay (S) and bend (B) Fréedericksz transitions,
respectively (Figures 4.1a and b), and Δ𝜀 = 𝜀|| − 𝜀⟂ is the LC dielectric anisotropy. The initial director
alignment is homogeneous planar for the S-effect (E ⟂ L0) and homeotropic for the B-effect (E || L0).
The action of the electric field on the LC layer results in the deformation of the initial molecular (LC
director) distribution and a corresponding variation in the LC cell optical properties [1–3]. Director L
reorients in an electric field under the action of the dielectric torque, which is proportional to the dielectric
anisotropy Δ𝜀. The corresponding contribution g

𝜀
to the density of the nematic free energy gives [1–3]

g
𝜀
= −DE∕8𝜋 = −𝜀

⊥
E2∕8𝜋 − Δ𝜀 (EL)2∕8𝜋, (4.2)
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Figure 4.1 Electrically controlled birefringence (ECB) mode for various LC configurations:
(a) S-effect (homogeneous planar alignment, electric field vertical or perpendicular to the substrates);
(b) B-effect or vertically aligned nematic (VAN) effect (homeotropic alignment) [1–3]

that is, director L tends to align itself along the field (L∥E) if Δ𝜀 > 0 and is perpendicular to it (L ⟂ E),
provided that Δ𝜀 < 0.

The elastic torque supports the initial director orientation, fixed by the boundary conditions on the
surface (S), which in case of a strong surface anchoring is

L|S = L0. (4.3)

As a result of this a compromised director profile appears, which satisfies to the condition of the minimum
free energy:

FV =
∫
V

(gk + g
𝜀
)d𝜏, (4.4)

where

gk = 1∕2{K11(∇ ⋅ L)2 + K22[L ⋅ (∇ × L) − q0]2 + K33[L × (∇ × L)]2}

is the elastic energy density and Kii are the elastic moduli; q0 = 2𝜋/p0 characterizes the “natural
chirality” and equals zero in pure nematics. p0 is the natural helix pitch in the LC mixture induced by
a chiral dopant; usually the value of the helix pitch is inversely proportional to the concentration of the
dopant [1–3].

In the more general case of a finite director anchored at the boundaries, we can write the total energy
F of LCs as follows:

F = Fv + Fs, (4.5)

where Fs is the surface energy, usually characterized by different anchoring terms known as “polar”
and “azimuthal” anchoring energies [1–3]. The corresponding contributions to the anchoring Fs on the
surface S are often written as (Figure 4.2)

W
𝜃
= 1∕2 W

𝜃0 sin
2 (𝜃 − 𝜃d), W

𝜑
= 1∕2 W

𝜑0 sin2(𝜑 − 𝜑d), (4.6)
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Figure 4.2 LC interaction with a solid surface [1–3]

where 𝜃 and 𝜑 are the corresponding polar and azimuthal angles of the LC director at the surface S; 𝜃d

and 𝜑d are, respectively, the polar and azimuthal angles of the so-called easy direction (easy axis) [1–3]
on S; and W

𝜃
and W

𝜑
are the corresponding anchoring energies.

The dynamics of nematic LCs is described by (i) the director field L(r,t) and (ii) velocities of the
centers of the molecules V(r,t). These variables in general obey the following equations:

1. The equation of continuity in incompressible liquids:

∇ ⋅ V = 0. (4.7)

2. The Navier–Stokes equation in an anisotropic viscous liquid:

𝜌(𝜕vi∕𝜕t + 𝜕vi∕𝜕xk) = fi + 𝜕𝜎′
ki∕𝜕xk, (4.8)

where i, k, xi, xk = x, y, z, and

fi = −𝜕P∕𝜕xi + QEi (4.9)

is the external force in the anisotropic liquid dielectric and 𝜎′
ki is the viscous stress tensor:

𝜎
′
ki = 𝛼1LkLiAmnLmLn + 𝛼2LkNi + 𝛼3Li Nk + 𝛼4Aki + 𝛼5LkLmAmi + 𝛼6LiLmAkm. (4.10)

P is an external pressure

Aij = 1∕2(𝜕vi∕𝜕xj + 𝜕vj∕𝜕xi) (4.11)

and is analogous to the viscous stress tensor for the anisotropic liquid, and

N = dL∕dt − 1∕2[L × (∇ × v)] (4.12)

is the rate of motion of the director L, which vanishes when the entire fluid is under uniform rotation
with an angular velocity 1/2∇ × v.
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The coefficients of the proportionality between the viscous stress derivatives and the time derivative
of velocity in (4.10) are called viscosity coefficients, namely:

𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, and 𝛼6.

It can be shown that

𝛼2 + 𝛼3 = 𝛼6 − 𝛼5,

that is, only five independent viscosity coefficients exist.
3. The equation for director rotation in a nematic LC is

IdΩ∕dt = [L × h] − Γ, (4.13)

where Ω = [L × dL/dt] is the angular velocity of the director rotation; I is the moment of inertia for
the molecular reorientation, normalized to a unit volume;

h = −𝛿F∕𝛿L (4.14)

is the functional derivative of the LC volume free energy with respect to the director components L
or the so-called molecular field; and

Γ = [L × (𝛾1N + 𝛾2A ⋅ L] (4.15)

is the frictional torque, which is analogous to the viscous term in the Navier–Stokes equation, while
the matrix A = [Aij] is defined by (4.11) and vector N by (4.12). Here 𝛾1 = 𝛼3 – 𝛼2, 𝛾2 = 𝛼3 + 𝛼2 are
viscosity coefficients, and

𝛾1 = 𝛼3 − 𝛼2 (4.16)

is the so-called rotational viscosity, which characterizes the pure rotation of the nematic LC director
without any movement of the centers of the molecules, that is, the so-called “back-flow” effect.

Typical plots of LC director distributions for the ECB effect are shown in Figure 4.3.

Effect of a Weak Anchoring at the Boundaries

In the case of planar and homeotropic initial orientations,1 the threshold for the Fréedericksz transition
remains for a weak director boundary anchoring, but has a lower value. The Fréedericksz transition
thresholds for finite (W) and infinite (∞) polar anchoring energies, respectively UF(W) and UF(∞), are
related by

cotan[𝜋UF(W)∕UF(∞)] = 𝜋KiiUF(W)∕[WdUF(∞)] (4.17)

[1–3]; the effective elastic coefficient Kii and UF(∞) are defined in (4.1). For large anchoring energies,
expression (4.17) reduces to

UF(W) = UF(∞)[1 − 2Kii∕(Wd)], Wd∕Kii ≫ 1. (4.18)

1 In the case of a tilted orientation there is no threshold, irrespective of the surface anchoring [2].
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Figure 4.3 Top: LC director distributions for the relative thickness of the cell, 0 ≤ z/d ≤ 1. Bottom:
LC molecular arrangement inside LC cell

For sufficiently small values of anchoring energy, the electro-optical response of the nematic cell
becomes infinitely steep, so that for a certain critical value of W, a hysteresis and first-order Fréedericksz
transition becomes possible [1–3].

In the case of finite anchoring, there also exists a saturation voltage for the total reorientation of the
director, parallel (Figure 4.1a) or perpendicular (Figure 4.1b) to the field, when the boundary regions
disappear [1–3]. Development of the nematic cells with a good and reliable control of anchoring energy
is of great importance for applications, as very steep transmission–voltage curves, memory states, and
improved response times could be realized [1–3].
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Dynamics of the Director Motion; Back-flow Effect

It is easiest to examine the kinetics of the director motion for a pure twist or T deformation, which is
not accompanied by a change in position of the centers of gravity of the molecules. In this case, the
electric or magnetic field is applied parallel to the substrates, exerting a torque, which causes a pure
T deformation of the initially homogeneous planar director alignment. In contrast, for S- and B-effect
Fréedericksz transitions, the rotation of the director is accompanied by such a change in position, that
is, by a movement of the liquid (back-flow). In order to allow for this back-flow effect, the equation of
motion of the director is coupled with that of the fluid.

For a pure T deformation, the equation of motion of the director expresses the balance between the
torques due to the elastic and viscous forces and the external field (and does not contain the fluid velocity)
[1–3]:

K22𝜕
2
𝜑∕𝜕z2 + Δ𝜀E2

4𝜋
sin𝜑 cos𝜑 = 𝛾1𝜕𝜑∕𝜕t. (4.19)

This equation describes the director rotation in an electric field E with the inertia term I𝜕2
𝜑/𝜕t2, which

is omitted, 𝛾1 = 𝛼3 – 𝛼2 is a rotational viscosity, and 𝛼i are Leslie viscosity coefficients. Equation (4.19)
in the limit of small 𝜑 angles transforms to

K22𝜕
2
𝜑∕𝜕z2 + Δ𝜀E2

4𝜋
𝜑 = 𝛾1𝜕𝜑∕𝜕t (4.20)

with the solution

𝜑 = 𝜑m exp(t∕𝜏r) sin(𝜋z∕d), (4.21)

where 𝜏r = 𝛾1∕
(
Δ𝜀E2∕4𝜋 − K22𝜋

2∕d2
)

is the reaction or switching-on time, and 𝜑m is the maxi-
mum twist angle at the center of the layer. Solution (4.21) satisfies the strong anchoring boundary
conditions

𝜑(z = 0) = 𝜑(z = d) = 𝜑m

and assumes a maximum value at the center of the layer 𝜑(z = d/2) = 𝜑m.
The corresponding relaxation or decay times are found from (4.21) for E = 0 in a similar way:

𝜏d = 𝛾1d2∕(K22𝜋
2). (4.22)

Unlike T deformation, the reorientation of the director in S- and B-effects is always accompanied
by a macroscopic flow of a nematic LC (back-flow) with velocity V = (V(z), 0, 0), where the z-axis is
perpendicular to the substrates and the deformations take place in the xz-plane. The velocity V includes
only the x-component, because the z-component is zero according to the continuity equation (∇ ⋅ V =
0), and the y-component vanishes due to the symmetry of the problem.

For small variations of the angle 𝜃, the characteristic times of the S- and B-effects can be found from
solutions of the coupled dynamic equations of the nematic director 𝜃(z) and velocity V(z) in the following
form:

𝜏r = 𝛾
∗
1∕(Δ𝜀E2∕4𝜋 − Kii𝜋

2∕d2), 𝜏d = 𝛾
∗
1∕(Kii𝜋

2∕d2), (4.23)
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where 𝛾∗1 is the effective rotational viscosity. We have

𝛾
∗
1 = 𝛾1 − 2𝛼2

3∕(𝛼3 + 𝛼4 + 𝛼6), Kii = K11 for the S-effect,

𝛾
∗
1 = 𝛾1 − 2𝛼2

2∕(𝛼4 + 𝛼5 − 𝛼2), Kii = K33 for the B-effect.
(4.24)

The relationships in (4.24) show that back-flow considerably alters the response times and should be
taken into account.

The relative difference (𝛾1 – 𝛾∗1 )/𝛾1 is close to zero for voltages slightly above the threshold in the
S-effect and for very high voltages in the B-effect, but can hardly exceed 50% within the whole voltage
interval. The results of computer simulation were confirmed by experiment [1–3].

Weak boundary anchoring decreases a rise time 𝜏 r and increases the relaxation time 𝜏d. This can be
easily understood by making the substitution Kii 𝜋

2/d2 ⇒ 2W/d in (4.22)–(4.23), which proves to be
correct for sufficiently low anchoring energies of the director [1–3].

Optical Response

Splay Mode (S-effect)
To understand the optical characteristics of a LC layer in the ECB effect, let us consider the geometry of
Figure 4.1a with the initial homogeneous director orientation along the x-axis. If the applied voltage is
below the threshold, the nematic LC layers manifest birefringence, Δn = ne – no= n|| – n⟂. When the field
exceeds its threshold value, the director deviates from its orientation along the x-axis while remaining
perpendicular to the y-axis. The refractive index for the ordinary wave remains unchanged, no = n⟂. At
the same time, the refractive index for the extraordinary wave (ne) decreases, tending toward n⟂. The
local extraordinary refractive index ne(z) can be expressed in terms of the angle of orientation of the
director 𝜃(z) as follows:

ne(z) = n||n⊥∕
√

n2|| sin2
𝜃(z) + n2

⊥
cos2 𝜃(z) (4.25)

[1–3] (see Section 1.3.2). The phase difference between the extraordinary and the ordinary waves for
monochromatic light of wavelength 𝜆 is found by integrating over the layer depth:

ΔΦ = (2𝜋∕𝜆)

d

∫
0

(ne(z) − no)dz = 2𝜋d ⟨Δn(z)⟩ ∕𝜆, (4.26)

where

⟨Δn(z)⟩=1
d

d

∫
0

(ne(z) − no)dz

and d is the thickness of the LC layer. The intensity of the light passing through the cell and the output
polarizer (analyzer) depends on the angle 𝜑0 between the polarization vector of the incident wave and
the initial orientation of the director of the nematic LC,

I = I0 sin
2 2𝜑0 sin

2(ΔΦ∕2), (4.27)

where I0 is the intensity of the plane polarized light incident on the cell. Hence, the external magnetic
or electric field changes the orientation of the director and, consequently, the values of ⟨Δn⟩ and ΔΦ.
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Figure 4.4 ECB in a homogeneous LC cell (S-effect). Polarizer (P) is crossed with analyzer (A) and
set at the angle 𝜑0 with respect to the initial LC director. The intensity I of the transmitted light and phase
difference 𝛿 are shown below versus the applied voltage. The phase 𝜋-switching regime is indicated,
which results in the variation of the intensity from Imax to Imin [1–3]

A change in the phase difference ΔΦ, in turn, results in an oscillatory dependence of the optical signal
at the exit of the analyzer. The maximum amplitude of these oscillations corresponds to an angle 𝜑0 =
45◦ and the maximum possible number of oscillations (e.g., the number of maxima during a complete
reorientation of the director) is approximately (n|| − n⟂)d/𝜆.

The characteristic curves of transmitted intensity in the ECB effect are shown in Figure 4.4. The light
emerging from the LC cell, in general, becomes elliptically polarized, so that its ellipticity e and the
angle 𝜓 , between the long ellipse axis and the polarizer, also depend on 𝜑0 and ΔΦ [1–3]:

e = tan[(1∕2) arcsin(sin 2𝜑0 sinΔΦ)],
tan 2𝜓 = tan2𝜑0 cosΔΦ.

(4.28)

The experimental dependences of e(U) and 𝜓(U) on the applied voltage resemble those shown in
Figure 4.4 for the intensity curve I(U) [1–3].

The effect of phase modulation for an initial planar orientation of the director (along x) with positive
dielectric anisotropy (Δ𝜀 > 0) and with the field applied along the z-axis (Figure 4.1a) is called the
S-effect [1–3], since the initial deformation is a splay deformation, even though a bend deformation is
also induced above the threshold.

The applied field causes a phase difference to arise between the ordinary and extraordinary waves
and the intensity of the light oscillates in accordance with (4.27). As the bend deformation is now in
the initial stages of its development (Figure 4.1b), the corresponding electro-optical effect is called the
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B-effect, occurring for negative values of the dielectric anisotropy (Δ𝜀 < 0). However, here the final
orientation of the director is not defined (degenerate), and the sample does not remain as monodomain
and contains many specific defects [1–3]. In principle, the preferred direction of the final orientation of
the director can be established, and these defects in the structure are eliminated by a special preparation
of the surfaces with a slight pretilt.

The important point of the ECB effect is to provide full switching from Imax to Imin with minimal
response times. According to (4.27), such a switching is stipulated when the phase difference ΔΦ is
changed by as much as 𝜋. If a nematic cell is subjected to a voltage U corresponding to a maximum
intensity Imax, then to attain another state with Imin, we have to supply an additional voltage U

𝜋
≥ ΔU,

where ΔU is the minimum possible value of U
𝜋

(Figure 4.4).
The main disadvantage of the S-effect for display applications is the strong dependence of the

transmitted intensity on the light wavelength, and the nonuniform transmission–voltage characteristics
at oblique light incidence. It is possible, however, to avoid them by placing a compensating birefringent
plate between the LC cell and one of the polarizers or by using two nematic S-cells in series which have
perpendicular initial directors [1–3].

𝝅-cells
Special attention should be paid to the so-called 𝜋-cells when the intensity is switched in the last fall
of the oscillation curve (see Figures 4.4 and 4.5) [1–3]. In this case, the switching is attained due to
the very slight variation of the director distribution within the narrow regions near the boundaries, thus
resulting in a very fast response speed. The corresponding switching times can be estimated according
to the formula [1–3]

𝜏 ≈ (Δ∕𝜋∕2𝜋)2 1∕(1 − 𝛽U
𝜋
∕U0)2

𝛾1𝜆
2∕K11Δn2, (4.29)

where Δ/𝜋 ≈ 1 is a relative phase difference for the last intensity fall, and 𝛽 ≈ 1 is the LC material
constant. As we can see, the response time does not depend on the cell thickness. By combining 𝜋-cells
with phase retardation plates, both with a positive and negative phase shifts, it is possible to optimize the
contrast and color uniformity of a LC device [1–3].

Bend Mode (B-effect)
The B-effect in homeotropic or quasi-homeotropic (slightly tilted) nematic samples remains attractive for
applications, including displays with high information content [1–3]. With good homeotropic orientation
of a nematic LC, the B-effect is characterized by a steep growth in optical transmission with voltage,
that is, the threshold is very sharp. This is due to the very weak light scattering of the homeotropically

0

0.1

0.5

1.0

2 4 6 8 10
V, volts

T, arb. units

Figure 4.5 The regime of switching in a 𝜋-cell. For the last intensity fall the controlling voltage has to
change from U

𝜋
to U0 [1–3]
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oriented layer and the complete absence of birefringence in the initial state [1–3]. Basically, the patterns
observed experimentally are similar to the S-effect, including dynamic behavior. Let us consider the
transmission–voltage curves for the B-effect at voltages slightly exceeding the threshold value, which
are important for applications. To avoid degeneracy in the director reorientation a slight initial pretilt
from the normal to the substrate is needed, 𝜃0 ≈ 0.5◦−1◦ (Figure 4.1b).2 The electro-optical response
is very sensitive to the 𝜃0 value: that is, small 𝜃0 < 0.5◦ do not allow us to avoid defects, while larger
angles, 𝜃0 > 1◦, strongly reduce the contrast [1–3]. According to (4.19), for voltages slightly exceeding
the threshold, the contrast is

C = Ion∕Ioff ≈ sin2(A⟨𝜃2
on⟩)∕ sin2(A𝜃2

off ) ≈ 𝜃
4
m∕4𝜃2

0 , (4.30)

where
⟨
𝜃

2
on

⟩
= d−1 ∫

d

0 𝜃
2(z)dz ≈ 𝜃

2
m∕2 for small 𝜃 and 𝜃off = 𝜃0 are the director angles in the switched-

on and switched-off states; A = 𝜋dn⟂(1 − n⟂
2/n||

2)/(2𝜆) is a phase factor. The contrast ratio C crucially
depends on the pretilt angle 𝜃0. We can obtain the following relation for 𝜃2

m in the B-effect:

𝜃
2
m = 4(U∕UB − 1)(K11∕K33 + 𝜀||∕𝜀⊥ − 1)−1, (4.31)

where UB = 𝜋(4𝜋 K33/|Δ𝜀|)1/2 is the B-effect threshold voltage. Using expression (4.27) for 𝜑0 = 𝜋/4,
we can derive the following relationship for the optical transmission T = I/I0 in the ECB effect in a
homeotropic nematic (B-effect):

T = sin2
𝜋dΔn𝜆−1 ⟨𝜃on⟩2 ≈ 4A2(U∕UB − 1)2(K11∕K33 + 𝜀⊥∕𝜀|| − 1)−2

≈ [2𝜋d𝜆−1(n|| − n
⊥

)∕(K11∕K33 + 𝜀⊥∕𝜀|| − 1)]2(U∕UB − 1)2
. (4.32)

As can be seen from (4.32), a steep electro-optical response of the cell is attained for sufficiently large
values of the optical path difference d(n|| − n⟂) and the elasticity anisotropy K33/K11, as well as for small
dielectric anisotropy |Δ𝜀|/𝜀||. However, the values of d cannot be too large, since the latter results in an
increase in response times (see (4.23)), while small values of the dielectric anisotropy lead to a growth in
operating voltages. Thus, to develop a good ECB material, a compromise is needed. In order to obtain the
steep electro-optical characteristics required for displays with high information content, together with a
fast response and uniformity of transmission for the oblique light incidence, the following parameters
of nematic cells for the B-effect can be proposed [1–3]: small thickness, d < 5 μm; small pretilt angle
𝜃0 ≈ 0.5◦−1◦; large optical retardation dΔn≈ 1 micron; large K33/K11 ratio; and small dielectric anisotropy
|Δ𝜀|/𝜀∥ < 0.5.

Hybrid Aligned Nematic Mode
It is also interesting to consider a hybrid aligned nematic (HAN) mode (Figure 4.6). In this mode, the
director alignment is planar on one LC substrate and homeotropic on the other (Figure 4.6), so the
combination of S and B deformations takes place as a result. The HAN mode has no threshold and
possesses smooth electro-optical characteristics with a number of gray levels (Figure 4.6). The geometry
of this mode is similar to the S-effect. The maximum possible transmission is obtained when the structure
is placed between crossed polarizers and the polarizer angle is 45◦ with respect to the plane of S and B
deformation (Figure 4.6).

2 Note that when considering the B-effect here we measure the angles 𝜃, 𝜃0, and 𝜃m from the z-axis (Figure 4.1b)
rather than from the xy-plane as usual (see Figure 4.1a). The changes in (4.25), connected with this redefinition, are
obvious.



JWST441-c04 JWST441-Yakovlev Printer: Markono November 25, 2014 7:58 Trim: 244mm × 170mm

Electro-optical Modes: Practical Examples of LCD Modeling and Optimization 101

0.4

0.3

0.2

0.1

0.0
0 5

Voltage, Volts

T
ra

n
s
m

itt
a
n
c
e

10 15

90

60

30

0
0.0 0.5

z/L

L
C

 d
ir
e
c
to

r 
o
ri

e
n
ta

ti
o
n
, 
d
e
g

1.0

Figure 4.6 HAN LC configuration (top) and its electro-optical response (bottom), including the director
orientation angles (bottom left) and transmittance in crossed polarizers for unpolarized light (bottom
right)

4.1.2 Twist Effect
If the x and y directions of the planar orientation of nematic LC molecules on opposite electrodes are
perpendicular to each other and the material has a positive dielectric anisotropy Δ𝜀 > 0, then, when an
electric field is applied along the z-axis (Figure 4.7), a reorientation effect occurs that is a combination
of the S, B, and T deformations [1–3].

In the absence of the field, the light polarization vector follows the director and, consequently, the
structure rotates the polarization plane up to the angle characterizing the structure,𝜑m = 𝜋/2 (Figure 4.7).
This specific waveguide regime (the Mauguin regime) takes place when

Δnd∕𝜆 ≫ 1. (4.33)

When the applied voltage exceeds a certain threshold value,

Utw = 𝜋[𝜋(4K11 + K33 − 2K22)∕Δ𝜀]1∕2, (4.34)
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the director L deviates from the initial orientation so that the linear dependence of the azimuthal angle
𝜑(z) disappears and the tilt angle 𝜃(z) becomes nonzero (Figure 4.8). The qualitative character of the
functions 𝜑(z) and 𝜃(z) for different voltages is shown in Figure 4.8.

Since the director tends to orient perpendicular to the substrates, the effective values of Δn decrease
and, for a certain voltage (optical threshold of the twist Uopt), the waveguide regime no longer remains.
Note that, despite the fact that the director starts to reorient at U = Utw, a visible change in the twist-cell
transmission is observed only for U = Uopt > Utw (Figure 4.9).

Figure 4.9 shows the dependence of the optical transmission of a twist cell for both the conventional
geometry P ∥ L(0) and when the polarizer transmission axis P forms an angle of 45◦ with respect to
the orientation of the director at z = 0 [1–3]. The deformation threshold, Utw = 6 V, determined by
extrapolating the linear section of the phase delay curve to 𝛿(U) = 0, coincides with that calculated from
(4.34). The optical threshold for the twist effect increases on decreasing the wavelength (Uopt = 8.9 V
and 10.2 V for 𝜆 = 750 and 450 nm, respectively), since the cut-off implied by the Mauguin condition
occurs at higher voltages for shorter wavelengths (see (4.33)).

Twist-Cell Geometry for Zero Voltage; Mauguin Conditions

A twist cell is usually formed by placing orienting glasses on top of each other. Then twist directions at
angles 𝜋/2 and −𝜋/2 are equally probable. This degeneracy in the sign of the twist can be removed if
small amounts of optically active material are added to the nematic LC. In this case, the walls disappear
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(a) U ≤ Utw; (b) Utw < U1 < U2 < U3 [1–3]

and the twist cell has a uniform structure throughout its entire area. A nonzero tilt of the molecules to
the cell surface 𝜃0 also results in a nonuniform twisting.

At zero field, the waveguide (Mauguin) regime is violated for small values of Δnd/𝜆. Figure 4.10
shows the corresponding dependence of the transmitted light intensity (I), ellipticity (e), and rotation
angle (𝜓) of the major ellipse axis with respect to the polarizer transmission axis (P) on the parameter
Δnd/𝜆 [1–3]. (The director at the first substrate is parallel (or perpendicular) to the transmission axis of
the polarizer (P) and analyzer (A), and the analyzer (A) is parallel to the polarizer (P)). As seen from
Figure 4.10, the exact Mauguin mode conditions

I = 0, 𝜓 = 𝜋∕2, e = 0 (4.35)
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Figure 4.9 Optical response of the twist cell between parallel polarizers [1–3]: curve 1, polarizers are
parallel to the director on the input surface of the cell (conventional orientation); curve 2, polarizers are
at an angle of 45◦ to the director on the input surface (maximum birefringence intensity); curve 3, phase
retardation in (4.26) calculated from curve 2 [1–3]
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Figure 4.10 Optical characteristics of the twist cell in the absence of the field. I, intensity (solid line),
e, ellipticity (dashed line), and 𝜓 , rotation angle (dotted line) versus the parameter Δnd/𝜆. Without the
twist cell (d = 0), the intensity between the parallel polarizer (P) and the analyzer (A) is taken to be equal
to one. The director at the first substrate of the twist cell is parallel to the polarizer transmission axis (P)
[1–3]

take place not only for infinitely large Δnd/𝜆 values, but also at some discrete points

Δnd∕𝜆 = (4m2 − 1)1∕2∕2, m = 1, 2, 3, (4.36)

usually called Mauguin minima.
We can consider the transmission of the twist cell for white light, thus eliminating 𝜆 from the

characteristic dependence of the twist-cell transmission. Writing T(Δnd/𝜆), it is possible to average T(𝜆),
together with the function for the sensitivity of the human eye ȳ(𝜆), and the wavelength distribution
of the illumination source H(𝜆) [1–3]. The corresponding optimal points, which provide the minimum
transmission of the twist cell between parallel polarizers, are very close to those defined by (4.36), if we
take the wavelength of the maximum sensitivity of the human eye in the range 𝜆 ≈ 550–580 nm.

Transmission–Voltage Curve for Normal Light Incidence

The typical transmission–voltage curve (TVC) of the twist effect for normal light incidence is shown
in Figure 4.11 for a twist cell placed between parallel polarizers. As has been mentioned, a significant
visible variation in the transmittance of the polarizer–twist-cell–analyzer system at normal incidence
begins at a larger voltage (optical threshold) than Utw. In view of the Mauguin requirement (see (4.33)),
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Figure 4.11 Optical transmission of the twist cell versus voltage for crossed (curve 1) and parallel
(curve 2) polarizers [1–3]. The voltages U90, U50, and U10 correspond to the 90%, 50%, and 10%
transmission levels of curve 1, respectively [1–3]

the optical threshold of the twist effect decreases for smaller values of the cell thickness and the optical
anisotropy of the LC [1–3].

One of the most important parameters of a twist cell is the steepness of the TVC. Usually, the steepness
parameter p is defined from the TVC of the twist cell, placed between crossed polarizers (Figure 4.11),

p50 = U50∕U90 − 1, p10 = U10∕U90 − 1, (4.37)

where U90, U50, and U10 correspond to the 90%, 50%, and 10% levels, respectively, of the optical
transmission. As in (4.37), the steeper TVCs correspond to the smaller values of p50 and p10.

The steepness of the TVC can be optimized for any specific case. There is no need to perform numerous
experiments as a computer simulation can solve the problem to a high degree of accuracy. At present,
many researchers are considering the problem of calculating the performance of twist nematic (TN)
LCDs [1–3]. The common procedure for the simulation of the electro-optical behavior of TN-LCDs and
most other kinds of LCDs involves two steps. First, the distributions of the LC director are found for
given conditions. The second step is the calculation of the optical performance of the LCD with the
obtained LC director distributions. Different optical methods are used to accomplish the latter step [4–6].
We will consider these methods and their applications to LCDs in detail in Chapters 7–11. At present,
several groups [6–9] have provided a set of computer programs as commercially available products for
the simulation of the electro-optical behavior of TN-LCDs and other kinds of LCDs. MOUSE-LCD
(Modeling Universal System of LCD Electrooptics) [4], developed by the authors of this book, is one of
these programs. The detailed analysis of TVC steepness p50 and p10, based on computer simulation, was
proposed in [1–3].

Note that a number of addressing lines N in the matrix LCDs, with a high information content or
multiplexing capability sharply increases for steep TVCs, that is, low p values. The precise dependence
N(p) is defined by the type of driving scheme and will be discussed below.

The number of addressing lines N can be calculated from the relation [1–3]

N = [(1 + p)2 + 1]2∕[(1 + p)2 − 1]2, N ≈ 1∕p2 for p ≪ 1, (4.38)

which is the result of optimization of the driving conditions.
Our calculations show that decreasing K33/K11 from 2 to 0.5 results in a considerable growth in the

number of addressed lines of the passively addressed LCD.
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The TVC steepness depends only on the product of Δnd, so we can vary Δn and d independently,
keeping Δnd and the multiplexing capability constant.

The low-frequency dielectric anisotropy of LCs is also important. The twist-cell multiplexing capa-
bility depends differently on Δ𝜀/𝜀⟂, depending on the number of Mauguin’s minimum, m. For m = 1
a number of addressed lines decreases considerably with Δ𝜀/𝜀⟂, while for m = 3, on the contrary, the
maximum values of N are obtained for the largest Δ𝜀/𝜀⟂ ratios.

The TVC steepness increases for lower values of the angle 𝜂p between the polarizer and analyzer [1–3].
For 𝜂p = 70◦ (instead of the typical 𝜋/2 value, Figure 4.7) a number of addressed lines are, however,
doubled at the cost of a small (≈10%) decrease in the transmission in the off-state. TVC steepness is
also very sensitive to variations in the total twist angle and grows in more twisted cells. However, twist
angles exceeding 𝜋/2 are unstable in pure nematic cells.

The larger values of the layer thickness lead to higher operating voltages of the twist effect [1–3].
This is evident, because the Mauguin parameter Δnd/𝜆 increases in the “off”-state and in order to break
Mauguin’s condition (see (4.33)) smaller Δn values in the “on”-state are needed, corresponding to the
stronger director deformation in higher fields. As mentioned above, TVCs in parallel and perpendicular
polarizers are complementary (Figure 4.11). This is not true, however, for contrast ratios as functions
of applied voltages for a nonmonochromatic (white) light. The contrast ratio C is defined as the ratio of
transmitted luminances in the on- and off-state [1–3]:

C = Bon∕Boff , (4.39)

where

B =
∫
𝜆

H(𝜆)ȳ(𝜆)t(𝜆)d𝜆

/
∫
𝜆

H(𝜆)ȳ(𝜆)d𝜆.

The LCD transmittances t(𝜆) in the on- and off-states are averaged with the function for the sensitivity
of the human eye ȳ(𝜆) and the energy distribution of illumination source H(𝜆) over the visible spectrum
(380–780 nm). The electro-optical effect in the twist cell placed between parallel and crossed polarizers
is called the “normally black” and “normally white” mode [1–3], in accordance with the appearance of
the twist cell in the off-state (dark or bright). Contrast ratios in the white mode are considerably higher
than in the black mode, as the transmission in the on-state for a normally white mode can be very small,
limited only by the quality of polarizers and LC orientation.

Viewing Angle Dependences of Twist LCD

Twist-cell transmission at oblique incidence depends on the values of the polar i
𝜃

and azimuthal i
𝜑

angles
of light incidence (Figure 4.12). This can be interpreted in terms of the corresponding Mauguin parameter
Δnd/𝜆, which becomes a function of the light direction. The Mauguin parameter in the direction e is
estimated by averaging the value of pΔn/𝜆 along e, where p = (d𝜑/de)−1 is a local value of the pitch, that
is, the distance of the total director azimuthal rotation by 2𝜋 (for e parallel to the twist axis p = 4d) and
the effective optical anisotropy Δn = (sin2

𝜃∕n2|| + cos2
𝜃∕n2

⊥
)−1∕2 − n

⊥
with the polar 𝜃 and azimuthal 𝜑

angles of the director with respect to the e-axis.
The characteristics of transmission for oblique incidence i

𝜃
≠ 0 can be described in terms of the

azimuthal dependence of the transmittance T(i
𝜑
) for a given polar angle of incidence i

𝜃
and applied

voltage U. For directors parallel to the boundaries the twist-cell transmission is symmetric with respect
to the plane located at an angle of 45◦ to the director orientation on the boundaries [1–3]. However, for
nonzero director pretilt angles, the symmetry is broken. In the TVCs obtained for oblique light incidence
there appears to be a minimum of transmission, which goes to lower voltages for higher incidence angles
(Figure 4.13). Indeed, for a certain voltage the direction of light propagation may coincide with the
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director at the center of the layer, thus providing very low values of the Mauguin parameter. As seen in
Figure 4.13, a twist cell for oblique light incidence is most sensitive to an external voltage for azimuthal
angles i

𝜑
= 180◦ (Figure 4.12), while i

𝜑
= 0◦ corresponds to quite the opposite case.

The most crucial parameter that affects the uniformity of transmission is the Mauguin number m
(see (4.36)). For low Δnd/𝜆 values, the anisotropy of transmission for oblique incidence is weak [1–3].
According to this, LC mixtures with low Δn values and the first Mauguin minimum Δnd/𝜆 =

√
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Figure 4.13 TVC of the twist cell for oblique light incidence [1–3]. Curve 1 corresponds to the light
incidence angles i

𝜃
= 15◦, i

𝜑
= 0◦; curve 2 to i

𝜃
= 0◦, i

𝜑
= 0◦; curve 3 to i

𝜃
= 15◦, i

𝜑
= 180◦; and curve

4 to i
𝜃
= 30◦, i

𝜑
= 180◦ [1–3]
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as an operating point are preferable. We do not consider the influence of the parameters K33/K11 and
Δ𝜀/𝜀⟂ on the transmission characteristics of the twist cell, as their effect is very small compared to the
above-mentioned case of normal incidence.

Note that coloration, that is, dependence of the light transmission on the wavelength, and the stronger
temperature dependence of 𝛿n make the operation in the first Mauguin minimum less attractive. Some-
times it seems more convenient to choose

√
3/2 < Δnd/𝜆 <

√
5/2 (between the first and second minima)

even at the cost of a partial loss of the contrast.
The dependence of TVCs on the angles of incidence is taken into account as one of the positive

characteristics of twist-effect mixtures. Figure 4.13 shows that for a certain azimuth of an oblique
incidence (i

𝜑
= 180◦), the optical threshold of the twist effect is lower than for normal incidence. Thus,

it is possible to consider new definitions of the switching-off voltage on a nonselected display element
and switching-on voltage on a selected one. For instance, Figure 4.13 demonstrates that the optical
threshold can be U90,30 (i

𝜃
= 30◦, i

𝜑
= 180◦, transmission 90%), while the selected voltage can be U50,15

(i
𝜃
= 15◦, i

𝜑
= 180◦, transmission 50%) or U10,0 (i

𝜃
= 0◦, transmission 10%). Similar limitations are

imposed on TVC steepness by the temperature dependence of the operating voltages. As a result, the
multiplexing capability of the twist effect remains several times lower than that estimated from TVC at
normal incidence and room temperature.

For applications it is convenient to evaluate the angular dependence of the transmission by isocontrast
curves, which show the levels of equal contrast ratio for different angles of incidence. Examples of these
curves for the normally white mode (twist cell between crossed polarizers) and normally black mode
(twist cell between parallel polarizers) are given in Figure 4.14. The radial coordinate in the isocontrast
diagram defines the value of the incidence angle i

𝜃
, while the azimuthal one defines the azimuthal

incidence angle i
𝜑
. As seen in Figure 4.14, the normally black mode provides wider viewing and more

uniform viewing angles than the normally black mode in twist LC cells.

Interface of MOUSE-LCD for TN LC Cell Deformations; Effect of a
Weak Anchoring Energy

The director deformation in a TN cell is shown in Figure 4.15. As mentioned above in calculating the
equilibrium LC director distributions (Figure 4.8), generally we need to know all the LC elastic constants
K11, K22, and K33 and dielectric parameters 𝜀|| and 𝜀⟂. To obtain the time dependence of the LC director
distribution, we should also specify the viscosity coefficients 𝛼i (see (4.10)). If we are not interested
in the back-flow effect, information on the rotation viscosity 𝛾1 = 𝛼3 – 𝛼2 (see (4.16)) will be quite
sufficient. Needless to say, the LC configuration parameters, such as the ratio of the LC thickness to the
natural helix pitch of the LC material, the angles describing the orientation of the easy axes as well as
azimuthal and planar anchoring energies on the boundaries (see (4.6)), are also very important parameters
which determine the LC director distributions. In particular, twisted structure, which still remains even
at very high voltages in a strong anchoring case (Figure 4.16), can practically disappear for a low polar
anchoring energy on one of the substrates (Figure 4.17).

Stress TN Mode

A special “stress” configuration of TN-LCDs can both decrease the driving voltage (power consumption)
and improve response time (Figure 4.18) [10, 11]. The twist sense of TN-LCDs is determined by the
directions of pretilt angles on both alignment layers. In commercially available TN-LCDs, the chiral
material is used to stabilize the LC twist sense. The LC materials for TN-LCDs possess a twisting
property in the same direction as the one determined by the combination of pretilt angle directions. On
the contrary, by adding a chiral reagent in which the twist direction is opposite to the one determined by
the combination of pretilt angle directions, the splayed twist state is formed (Figure 4.18). The stability
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Figure 4.14 Viewing angles of normally white (above) and normally black (below) TN-LCDs. The
TVC curves of the modes are shown on the left. The viewing angles are defined by contrast ratios at
different viewing angles

of the “stress” TN state structure depends largely on the pitch length and pretilt angle. The larger pitch
length and pretilt angle can stabilize the new mode.

4.1.3 Supertwist Effect

A picture of the supertwist LC configuration [1–3] is shown in Figure 4.19. A small voltage difference
transforms a highly twisted (supertwist) LC state to almost a homeotropic configuration.

The TVCs in a supertwist LC cell become steeper, and the angle dependence sometimes becomes
smoother, than in a TN LC cell (Figure 4.20).

The general scheme of realization of supertwist LC cells is shown in Figure 4.21. Here the general
scheme of supertwist display geometry shows the input and output orientations of the molecules or
their projections (Lin, Lout) as well as the input and ouput orientations of the polarizers (Pin, Pout). The
angle 𝜑m is the twist angle, and 𝛽 and 𝜂 define the location of the polarizers: 𝜂 is the angle between
the polarizers and 𝛽 the angle of the first polarizer with respect to the director on the front substrate. As
seen in Figure 4.21, various supertwist geometries can be obtained by altering the supertwist angle 𝜑m

and polarizer angles 𝛽, 𝜂. Furthermore, we can change such parameters of the supertwist mixtures as the
optical path difference Δnd and the director pretilt at the boundaries 𝜃0.
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Figure 4.15 Director deformation in TN cell. The interface of the MOUSE-LCD program [4]

Figure 4.16 Evolution of the TN structure for a sufficiently high anchoring energy. The 90◦ angle
between LC directors at the boundaries remains the same, even for a very high electric field
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Figure 4.17 Evolution of the TN structure in the case of a low polar anchoring energy on one of the
substrates. The HAN structure occurs at very high voltages
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Figure 4.18 Stress splay twist (SST) [11] or Reverse TN [10] mode. Top: common TN (left), SST/
Reverse TN mode (right). Bottom: comparison of response time (left) [11] and applied voltage (right)
[10] between common TN and SST/Reverse TN mode
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Figure 4.19 Director deformation in a supertwist LC cell. Left: “off”-state; right: “on”-state. The
voltage difference between off- and on-states is rather small in comparison with a TN LC cell
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Figure 4.21 This general scheme of supertwist display geometry shows the input and output orientations
of the molecules or their projections (Lin, Lout) as well as the input and ouput orientations of the polarizers
(Pin, Pout). The angle 𝜑m is the twist angle; 𝛽 and 𝜂 define the location of the polarizers [1–3]



JWST441-c04 JWST441-Yakovlev Printer: Markono November 25, 2014 7:58 Trim: 244mm × 170mm

Electro-optical Modes: Practical Examples of LCD Modeling and Optimization 113

Table 4.1 Supertwist structures for passively addressed high-information-content LCDs [1–3]

Supertwist mode
Supertwist

angle

Thickness-to-
pitch ratio,

d/P

Optical path
length, Δnd

(μm)
Polarizer

angles 𝛽, 𝜂

Pretilt angles on
the substrates,

𝜃0

Supertwist
birefringent effect
(SBE) [12]

270◦ 0.75 0.85 −32.5◦, 65◦ 28◦

Supertwist nematic
effect (STN)

240◦ 0.66 0.82 45◦, 60◦ 4◦−6◦

Optical mode
interference (OMI)
effect [13]

180◦ −0.3 0.46 0◦, 90◦ 2◦−3◦

Optical mode
interference (OMI)
effect

240◦ 0.43 0.54 4◦−6◦

Various realizations of supertwist structures for passively addressed high-information-content LCDs
are presented in Table 4.1 [1–3].

New methods for the realization of the electro-optical effects in supertwist LC cells such as supertwist
nematic (STN) or optical mode interference (OMI) avoid certain limitations and disadvantages which are
observed in supertwist birefringence (SBE) LC cells. For example, the boundary tilt angles for preventing
the appearance of domain structures are not as large as in the SBE case and the requirements of thickness
nonuniformity become softer. Consequently, the manufacture of LCDs becomes easier. Both STN and
OMI mixtures have the same or even better steepness as the SBE prototype, which in accordance with
(4.38) means addressing the larger number of lines in LCDs with passive addressing [1–3].

The OMI effect provides a weak wavelength dependence of the transmission in the visible region [13].
The effect requires a low optical path difference, which leads to a strong interference of two polarization
modes when propagating through an OMI cell. (Mauguin’s waveguide regime (4.33) is not valid.) The
transmission spectra of the OMI cell enable us to realize the black and white appearance of the two
display states, which is impossible in STN or SBE cells. The electro-optical characteristics of the OMI
cells are much more tolerant to cell gap nonuniformity than in the STN case and are less temperature
dependent. However, one of the main disadvantages of the OMI display is low brightness in the off-state.
For instance, if we take the brightness of two parallel polarizers equal to 100%, then the off-states of the
90◦ twist cell and the 240◦ STN cell would correspond to 95% and 64%, respectively, while the brightness
of the 180◦ OMI cell does not exceed 40% [14]. However, the brightness of OMI displays can be greatly
improved up to 77% by increasing the twist angles up to 270◦, if we make an appropriate choice of Δnd
and the angular position of the polarizers [15]. Further, OMI displays possess response times about 1.5
times lower than STN-LCDs for the same value of the contrast and multiplexing capability. Surprisingly,
the viewing angles of OMI displays for high-information-content screens are not much wider than in the
STN case, despite the lower values of Δnd. Thus OMI displays are competitive with STN displays for
high-information-content passively addressed LCDs.

Supertwisted LCDs with Improved Characteristics

Parameter Space Approach
The parameter space approach was proposed in [16] to help optimize the characteristics of LCDs that use
twisted (and supertwisted) LC structures (see Section 2.4). This approach often simplifies the localization
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Table 4.2 Various optimal modes for LCD operation [17]

Retardation

Acronym Name Twist angle Polarizer angle NW NB

HFE Hybrid field effect 45◦ 0◦ 0.362 0.968
RTN Reflective twisted nematic 54◦ 0◦ 0.359 0.9515
TN-ECB TN electrically controlled birefringence 63.7◦ 0◦ 0.354 0.935
MTN Mixed mode twisted nematic ∼80◦ ∼20◦ 0.45 0.864
SCTN Self-compensated twisted nematic 60◦ 30◦ 0.61 0.943

NW, Normally White; NB, Normally Black.

of optimal values of Δnd and twist angle for such devices. Various modes of transmissive and reflective
LCDs are considered using the parameter space approach in Section 2.4. Some of these modes are
presented in Table 4.2.

Film-Compensated STN
One of the main goals is to attain black and white switching of a supertwist cell with a high contrast ratio
and an acceptable brightness. At the same time, we need to maintain a sufficiently high steepness of the
TVC to enable a sufficient resolution of STN-LCD (see (4.38)). One possible solution of the problem
is to use phase retardation plates in combination with a STN panel. Supertwisted displays with one and
two phase retardation plates have been reported [1–3]. The orientation of the retardation plates and their
optical path differences are optimized to provide both black and white switching and wide viewing angles.
The double plates provide better achromatic appearance and contrast ratio than a single plate, especially
when they are placed on both sides of the STN cell. Thin polymer films (polycarbonate, polyvinyl
alcohol, etc.) are used today as phase retardation plates. Biaxial compensator films and optically negative
polymeric films composed of discotic molecules have also been developed [18]. The contrast ratios of
the STN-LCD with negative birefringence films achieve 100:1 for normally incident light. However, it
is very difficult to realize such a film with a uniform phase retardation over a large surface area.

The typical performance of a high-resolution film-compensated STN (FSTN)-LCD with phase retarda-
tion plates and antireflective layers is shown in Figure 4.22. The calculations were done using MOUSE-
LCD [4] which offers many useful optimization utilities (theoretical approaches and representations
underlying some of them are presented in Chapters 6 and 12). The multiplexing duty ratio N = 32:1 (the
number of addressing lines can be 2N = 64 [1–3]), and the contrast ratio is more than 300:1 for normally
incident light.

Double-STN-Cell Configuration
The main problem with the STN-LCD using the phase retardation plate is a limited temperature range
over which a good compensation is possible due to the different temperature dependence of Δn in the
LC and polymer layers [14]. The latter disadvantage is avoided when, instead of the phase compensator,
another supertwist cell of the same thickness is used which has no electrode and is twisted in the
opposite direction. Thus the second passive layer optically compensates the active STN layer in the
off-state and the light passing through the two cells becomes linearly polarized perpendicular to the input
polarizer direction. As a result, this light is absorbed by the analyzer, which is crossed with the polarizer
(Figure 4.23) [1–3].

The device consisting of two supertwist cells is called a double-layer STN-LCD or double STN
(DSTN)-LCD and in the off-states looks dark for all wavelengths in the visible region. DSTN-LCDs
demonstrate both higher contrast ratios and wider viewing angles than STN-LCDs with phase retarders.
Due to the double-cell construction, the requirement of gap nonuniformity in DSTN-LCDs is more
strict than in STN-LCDs. Other drawbacks are increased display thickness and weight, which are not
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Figure 4.22 An optimized variant of a FSTN-LCD

convenient, especially in applications in portable computers. The TVC of a DSTN cell possesses the
same steepness as that for a STN-LCD, but the viewing angles are considerably wider [14]. Of course
supertwist LCDs in general have much higher contrast ratios and better viewing angles than TN-LCDs
for passive matrix addressing with a high information content. However, TN-LCDs in a double-cell
configuration, similar to that shown in Figure 4.23, also have much better viewing angle characteristics
than a single TN cell (Figure 4.24) because the same phase compensation principle within the whole
visible spectra works in this case too.

Polarizer

Analyzer

V appl.

Driven cell

(left-handed)

Compensator cell

(right-handed)

ϕ = 90°

Figure 4.23 DSTN-LCD configuration [1–3]
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Figure 4.25 Reflective LCD [19]

4.1.4 Optimization of Optical Performance of Reflective LCDs

Typical Optimization Procedure

Let us consider the following steps in the optimization of reflective LCDs (Figure 4.25): (i) selection of
optimal birefringence and twist angle using the parameter space approach; (ii) insertion of the antireflec-
tive layers; and (iii) compensation with phase retarders. As a first operation, we choose the optimal values
of LC birefringence and twist angle by the parameter space approach (Figure 2.11) for various angles of
the polarizer, 𝛼 = 0◦, 15◦, and 30◦. The optimal values of the birefringence and twist angle calculated for
𝜆 = 550 nm (green light) are given in Table 4.3.

Table 4.3 Optimal values of LC birefringence and twist angle for various angles of the polarizer
calculated for a reflective TN-LCD (RTN)

𝛼 = 0◦
𝛼 = 15◦

𝛼 = 30◦

Twist angle (deg) 63 190 73 190 55 −90
dΔn (μm) 0.2 0.585 0.26 0.685 0.38 0.65
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𝜑 = 63◦ (left) and 190◦ (right). The contrast ratio for the green light 𝜆 = 550 nm is the same

The corresponding spectral dependence of the RTN-LCD for 𝛼 = 0◦ and two optimal LC twist angles
𝜑 = 63◦ and 190◦ are shown in Figure 4.26. It is clear that the contrast for the green light 𝜆 = 550 nm
is the same, while for other wavelengths of the visible spectrum it is considerably different. It looks
like LC twist angles 𝜑 = 63◦ provide more uniform and higher contrast in the whole visible spectrum
(Figure 4.26).

The second step is the optical matching of various films of the RTN-LCD with antireflective (AR)
layers (Figure 4.27). The idea of such matching is well known [20]. To eliminate the reflection on the
boundary with two layers having the refractive indexes n = n1 and n = n2 at the wavelength 𝜆, we need
to insert between them a quarter-wave plate with the refractive index nm =

√
n1n2 a thickness 𝜆/4nm. It

is most important in this case to avoid parasitic reflection on the first boundary (air–glass), where usually
about 4% of light is reflected. Figure 4.28 shows a considerable improvement in the spectral dependence
and the contrast ratio of the RTN-LCD after insertion of the AR layers shown in Figure 4.27.

The third step of the optimization operation is the application of phase retardation plates, which
considerably improves the contrast ratio of the RTN-LCD and makes the dark state almost independent
of the wavelength in the whole visible spectrum (Figure 4.29). Both the angles of the compensators, their

Reflector

Aligning layer

Glass substrate

LC layer

Glass substrate

System conductive and

aligning layers

Polarizer

Antireflective layer

LC layer

Aligning layer

Electrode

AR-layer 1

AR-layer 2

Figure 4.27 RTN-LCD with antireflective (AR) layers [19]



JWST441-c04 JWST441-Yakovlev Printer: Markono November 25, 2014 7:58 Trim: 244mm × 170mm

118 Modeling and Optimization of LCD Optical Performance

Figure 4.28 RTN-LCD after insertion of the AR layers. The calculations were done using MOUSE-
LCD [19]

thickness, and the polarizer angle can be optimized. The best parameters of the phase compensation are
obtained when we apply the two uniaxial compensators.

The three-step optimization operations performed for the RTN-LCD can in principle be applied for
any LCD electro-optical modes described above, namely, ECB, HAN, VAN, TN, and STN, which are
used in both transmissive and reflective regimes (see Table 4.4).
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Table 4.4 Contrast ratio of various LC electro-optical modes after three-step
optimization

Electro-optical mode Transmissive LCD Reflective LCD

TN 433 79
STN 302 34
VAN 408 38
HAN 434 50
ECB 397 52

4.2 Transflective LCDs
Transflective LCDs combine the characteristics of transmissive and reflective LCDs. The pixels of the
transflective LCD are divided into transmissive and reflective sub-pixels. The transmissive sub-pixels in
a transflective display transmit the backlight illumination and the reflective sub-pixels reflect light from
the environment under ambient illumination (Figure 4.30).

Conventional transflective LCDs are commonly fabricated using a double-cell-gap approach to main-
tain the same optical characteristics on increasing the voltage. In the double-cell-gap approach, the cell
gap for the transmissive mode is double that for the reflective mode. Thus, both reflective and transmis-
sive modes have the same optical path difference. On the other hand, fabrication would be much more
complicated. In a single-cell-gap approach matching the TVC with the reflectance–voltage curve (RVC),
different LC modes in the transmissive and reflective sub-pixels have been suggested recently and their
optical parameters optimized [21].

In the next two subsections, we consider two transflective configurations based on the dual-mode
single-cell-gap approach as well as another two transflective configurations based on the single-mode
single-cell-gap approach. The simulations show that all the configurations work very well, as was
confirmed by experiment [22].

4.2.1 Dual-Mode Single-Cell-Gap Approach

In dual-mode single-cell-gap transflective LCD configurations, different LC modes can be applied to the
transmissive and reflective sub-pixels of the display. Ideally all conventional LC modes can be applied
and adjusted in this approach, including ECB, TN, optically compensated birefringence (OCB), VAN,
and in-plane switching (IPS). However, for easy fabrication purposes, ECB and TN modes with different
twist angles are studied first. Two dual-mode configurations are introduced.

Dark Environment Bright Environment

• Backlight is ON

• Backlight is the

 primary source for

 displaying the

 image

• Use ambient light

 alone for displaying

 image

• Backlight is ‘off’ to

 conserve power

BacklightBacklight

Figure 4.30 Transflective LCD [21]
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Figure 4.31 TN-ECB single-cell-gap transflective LCD configuration

TN-ECB Configuration

The first one is called the TN-ECB configuration, which applies ECB mode in the transmissive sub-pixel
and TN mode in the reflective sub-pixel. The LC material in all the simulation processes is ZLI-4792
from E. Merck. The principal refractive indexes of ZLI-4792 are n⟂ = 1.4939 and n∥ = 1.5987, n⟂ =
1.4819 and n∥ = 1.5809, and n⟂ = 1.4774 and n∥ = 1.5734 at wavelengths of 436, 546, and 633 nm,
respectively. The low-frequency dielectric anisotropy and the elastic constants are Δ𝜀= 5.2, K11 = 1.32 ×
10−6, K22 = 6.5 × 10−7, and K33 = 1.38 × 10−6 dynes, respectively. The cell gap for both transmissive and
reflective parts is 2.5 μm, and their surface pretilt angle is 2◦. The spectrum of the light source used in the
simulation (in all examples considered in this and the next subsection) is that of the standard illuminant
D65 for both the transmissive and reflective parts. Typical absorption characteristics of polarizers and
typical dispersion characteristics of the compensation films were used in the calculations (in all the
examples).

Figure 4.31 shows the configuration of the TN-ECB single-cell-gap transflective LCD. The twist angle
in the reflective part is equal to 70◦, while there is no twist in the transmissive part. The top polarizer is
coated with an AR layer to lower the surface reflection. One 𝜆/4 compensation film is added in between
the front glass and front polarizer. Another 𝜆/4 compensation film is added in between the rear glass and
rear polarizer, which works only for the transmissive part since the light in the reflective part is blocked
by the reflector. The optimized parameters are given in Table 4.5.

Figure 4.32 shows the simulated performance of the TN-ECB transflective LCD. The experimental
results confirmed that the TVC and RVC match very well.

Table 4.5 Optimized parameters of the transflective LCD [22]

Parameter Transmissive (ECB) Reflective (TN)

Top polarizer orientation (deg) 45 45
Top compensator (140 nm) orientation (deg) 90 90
LC twist angle (deg) 0 70
Cell gap (μm) 2.5 2.5
Bottom compensator (140 nm) orientation (deg) 0 —
Bottom polarizer orientation (deg) −45 —
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Figure 4.32 Simulated performance of the TN-ECB transflective LCD: (a) spectrum of the reflective
part; (b) spectrum of the transmissive part; (c) contrast ratio distribution of the reflective part; (d) contrast
ratio distribution of the transmissive part; (e) TVC and RVC
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Figure 4.33 LTN-TN transflective LCD configuration [22]

Low twist nematic (LTN)-TN Configuration

Figure 4.33 shows the scheme for the LTN-TN configuration. The LC in the reflective sub-pixel is twisted
by 40◦, while in the transmissive sub-pixel the twist angle is equal to 90◦. The in-cell retardation film
as well as the patterned reflector are produced on the rear glass. The optimized parameters are given in
Table 4.6.

Figure 4.34 shows the simulated performance of this LTN-TN transflective LCD. For the reflective
part, the reflectance is 60% of the polarized light, and the maximum contrast is 80. For the transmissive
part, the transmittance is 74% of the polarized light, and the maximum contrast is 15 considering all
reflections from each layer.

4.2.2 Single-Mode Single-Cell-Gap Approach

In this approach, in contrast to the previous case, a patterned alignment layer is not necessary. Instead,
in-cell patterned retardation film is used. The in-cell retarders in the following two examples are patterned
films with different orientations of the optical axis in the reflective sub-pixel and the transmissive sub-
pixel. In the first single-mode configuration, called the TN 75◦ configuration, TN mode with a 75◦ twist
angle is applied to the whole LC cell and a patterned retardation film is used to adjust the performance
of the reflective part. The other configuration is called the TN 90◦ configuration, in which TN mode with
a 90◦ twist angle is applied to the whole LC cell and two patterned in-cell retardation films are used to

Table 4.6 Optimized parameters of the transflective LCD [22]

Parameter Transmissive Reflective

Top polarizer orientation 90◦ 90◦

LC twist angle 90◦ 40◦

Cell gap 5 μm 5 μm
In-cell retardation film (132 nm) orientation 88◦ 88◦

Bottom polarizer orientation 90◦ —
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Figure 4.34 Simulated performance of the LTN-TN transflective LCD: (a) spectrum of the reflective
part; (b) spectrum of the transmissive part; (c) contrast ratio distribution of the reflective part; (d) contrast
ratio distribution of the transmissive part; (e) simulated TVC and RVC
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Figure 4.35 TN 75◦ single-cell-gap transflective configuration

adjust the performance of the display. As before, the LC material is ZLI-4792. The cell gap for both
transmissive and reflective parts is 2.5 μm, and the surface pretilt angle is 2◦.

TN 75◦ Single-Cell-Gap Configuration

In this case, one patterned in-cell retardation film is fabricated on the front glass to improve the electro-
optical characteristics of the LCD in the reflective mode (Figure 4.35). The TVCs and RVCs are
matched by changing the orientation of the front and rear polarizers, as well as the retardation and the
azimuthal optical axis orientation of the retardation film. The optimized parameters are given in Table
4.7. Figure 4.36 shows the simulated performance of the optimized variant of the LCD.

TN 90◦ Configuration

Figure 4.37 shows the scheme for the TN 90◦ transflective configuration. There are two patterned in-cell
retardation films in this configuration, one fabricated on the front glass and the other fabricated on the rear
glass. The parameters of the retardation films are adjusted to optimize the reflective part. The optimized
parameters are given in Table 4.8.

Figure 4.38 shows the simulated performance of the TN 90◦ transflective LCD. For the reflective part,
the reflectance is about 60% of the polarized light, and the maximum contrast is 300 with 5 V applied
voltage. For the transmissive part, the transmittance is 74% of the polarized light, and the maximum
contrast is 21 with 5 V applied voltage, considering all the reflections from each layer.

4.3 Total Internal Reflection Mode
In the LC devices considered in the previous sections, the LC layers are employed to control the
polarization state of light and the output polarizers are necessary to obtain the desired light intensity
modulation. In this section, we consider a LCD in which the LC layer is used directly as a modulator of

Table 4.7 Optimized parameters of the transflective LCD

Parameter Transmissive Reflective

Front polarizer orientation (deg) 90 90
Front compensator (125 nm) orientation (deg) 90 45
LC twist angle (deg) 75 75
Cell gap (μm) 3 3
Bottom polarizer orientation (deg) 0 —
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Figure 4.36 Simulated performance of the TN 75◦ transflective LCD: (a) spectrum of the reflective
part; (b) spectrum of the transmissive part; (c) contrast ratio distribution of the reflective part; (d) contrast
ratio distribution of the transmissive part; (e) simulated TVC and RVC
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Figure 4.37 TN 90◦ single-cell-gap transflective configuration

the light intensity. This device, whose design was proposed in [23], exploits the total internal reflection
(TIR) phenomenon.

Figure 4.39 shows the scheme of our TIR-based display design. In this design, the backlight comes
from a LED array through a collimating lens, enters the waveguide via a coupling diffraction grating,
transmits through the LC switch, and reaches human eye after passing through a decoupling diffraction
grating and moving lens attached to the exit waveguide. The LC switch works under the electric field
between the patterned electrode on the exit waveguide and the common electrode on the entrance
waveguide. The waveguide used in both the simulation and experiment is glass with a high refractive
index. For feasible operation of the coupling diffraction grating, the critical angle between the entrance
waveguide and LC layer cannot be too large. Thus, the optimal refractive index of the waveguide should
be much larger than the ordinary refractive index of the LC layer. Figure 4.40 shows the critical angle
change due to a reorientation of LC molecules under the electric field. In this situation, the LC cell
has a quasi-planar surface alignment, the rubbing direction is parallel to the plane of incidence, and the
incident light is p-polarized (see Section 1.2). It should be noted that only one polarization component
in situations like this can be modulated because an s-polarized wave will not see any modulation of the
refractive indexes of the LC layer.

A transmission window is formed between two states which can be seen clearly in Figure 4.40. If the
external electric field is off, TIR occurs when the incidence angle is larger than 64◦. Any incident light
with an angle larger than 64◦ will be totally reflected, which forms the dark state for the display. If the
external electric field is on (larger than the threshold voltage, here 4 V), the critical angle increases to
about 80◦. Any incident light with an angle less than 80◦ will be transmitted through the LC layer, which
forms a bright state for the display. Therefore, light incident at an angle between these two critical values
can be switched on or off by applying the external electric field.

Table 4.8 Structure of TN 90◦ transflective configuration

TN 90◦ transmissive TN 90◦ reflective

Polarizer 1 0◦ 0◦

Compensation film 1 90 nm 34◦ 0◦

LC cell Cell gap 5 μm 5 μm
Twist angle 90◦ 90◦

Compensation film 2 60 nm 48◦ 90◦

Polarizer 2 90◦
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Figure 4.38 Simulated performance of the TN 90◦ transflective LCD: (a) spectrum of the reflective
part; (b) spectrum of the transmissive part; (c) contrast ratio distribution of the reflective part; (d) contrast
ratio distribution of the transmissive part; (e) simulated TVC and RVC
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Figure 4.39 TIR-based LCD [23]

The operational mode of the LC layer is an important issue in the design [24]. One concern is the change
of polarization state after light goes through the LC switch. If the reorientation of LC molecules involves
in-plane rotation, the polarization state of output light cannot be kept unchanged. This is undesirable
for the output optical coupling component, for example, a moving lens, which is polarization sensitive.
Thus, only those modes which involve no in-plane rotation are suitable as candidates for the display
application. The other concern is the interference peaks appearing in the curve of the dependence of
transmission on incident angle. The presence of these peaks is connected with the multiple reflections
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Figure 4.40 LC cell TIR transmission for two applied voltages as a function of the incidence
angle [23]
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Figure 4.41 Dependence of TIR transmittance of LC cell on incident angle for different cell gaps:
(a) d = 0.5 μm; (b) d = 1 μm; (c) d = 2 μm [23]

in the layered structure sandwiched between the glass plates. The interference pattern may significantly
deteriorate the bright state transmission. The negative effect of this interference can be minimized by
using quasi-homeotropic surface alignment, that is, the VAN mode. The next example deals with a
VAN-mode TIR-based display.

To obtain a wide transmission window for the display, large optical anisotropy Δn is preferable for
LC material such as MLC-7029 from Merck KGaA. The properties of MLC-7029 are as follows: optical
anisotropy Δn = 0.1265 and extraordinary refractive index n|| = 1.6157 at 𝜆 = 589.3 nm; low-frequency
dielectric anisotropy Δ𝜀 = −3.6, low-frequency dielectric constant 𝜀|| = 3.6; and rotational viscosity
𝛾1 = 175 mPa s. Preparation of the LC cell includes no twist, and the pretilt angle is 88◦ for both top and
bottom substrates. To reduce the interference pattern and minimize response time for high-resolution
driving, the cell gap was chosen to be from 0.5 to 2.0 micron [23]. The glass used in the calculation is
S-TIH1, whose refractive index n= 1.7118 at 650 nm. The incident light in the simulation is a p-polarized
monochromatic wave with 𝜆 = 633 nm. The voltage applied for the on-state is Von = 0 V, and Voff = 4 V
for the off-state.

Figures 4.41a–c show the dependence of transmittance on incident angle for different cell gaps. It can
be seen from Figure 4.41a that when the cell gap is 0.5 μm, no very obvious interference pattern can
be observed near the critical angle. This is because the cell gap of the LC layer is comparable to the
wavelength of the incident light. Further, a skew transmission window can be observed in the figure.
The non-steep transmission curve is caused by the increasing reflectivity near the critical angle and light
leakage of the evanescent wave due to a wavelength-order cell gap in the LC layer. The skew transmission
curves narrow down the effective transmission window. To make the display with this cell gap work, the
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Figure 4.42 Response time of TIR LC switch for different cell gaps: (a) d = 0.5 μm; (b) d = 1 μm;
(c) d = 2 μm [23]

chosen incident angle has to be larger than the critical angle 𝜃c = sin−1(no∕ng) = sin−1(1.4892∕1.7118) =
60.45◦. Also the contrast ratio deteriorates due to the dimmer bright state at this incident angle. When
the cell gap increases to 1 μm, the interference pattern consequently becomes more obvious and the
skewness of the transmission window improves as shown in Figure 4.41b. Strong interference results in
a significant vibration of the transmission curve in the vicinity of the critical angle, which impairs the
width of the transmission window. Similarly, more interference peaks and steeper transmission curves
can be observed in Figure 4.41c for a larger cell gap of LC layer where d = 2 μm. From Figure 4.41, it
can be deduced that too small a cell gap, less than 1 μm, is not appropriate for the display application
since the effective transmission window is narrow due to the skewness. The difficulty of preparing a LC
cell using a spacer of less than 1 μm is also an issue in fabrication.

Figures 4.42a–c show the response time of the LC switch for different cell gaps. It should be noted
that the dynamic response behavior of the LC switch is related to the chosen incident angle. For instance,
in Figure 4.42a, since the transmission window is skew, an incident angle larger than critical angle
𝜃c = sin−1(no∕ng) = 60.45◦ has to be chosen to achieve a good dark state. In the calculation, the switch
is sufficiently dark when the incident angle is 69◦. However, at this incident angle, the transmission
for a bright state is less than half of the maximum value. Due to the advantage of a small cell gap,
a total response time about 1.8 ms can be achieved for the 0.5 μm LC switch, which is very fast in
application a of nematic LCs. Although the total response times of the 1 and 2 μm LC switch are much
slower compared to that of the 0.5 μm one, due to the quadratic relationship between response time and
thickness of LC cell, a 10–90% gray-level response is still fast seen from, as can be seen in Table 4.9.
To obtain a compromise between a fast response time and wide transmission window, a cell gap range
from 1 to 2 μm is a good choice for fabricating TIR LCDs.
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Table 4.9 Total and 10–90% response time of TIR LC switch for different cell gaps [23]

0.5 μm cell (ms) 1 μm cell (ms) 2 μm cell (ms)

Dark to full whitea 1 1 2.95
Full white to darka 0.8 2.95 9.8
10–90% 0.59 0.45 1.7
90–10% 0.24 0.4 3

a0.1% of transmission is defined as full dark.

Features of Optical Calculations for TIR-Based LC Devices

Adequate simulation of TIR-based LC devices like that described above can only be performed with
the aid of rigorous electromagnetic methods which accurately describe transmission and reflection
at interfaces and multiple reflections. It is significant that some methods satisfying the mentioned
requirements, namely, methods belonging to the class of transfer matrix methods (see Sections 7.2.1,
8.2.2, and 8.3), such as the Berreman method [25] and the 4 × 4 matrix method proposed by Yeh [26], are
inapplicable to such devices because of the numerical instability of these methods in the TIR mode [27]
(see Section 7.2.1). Appropriate methods for solving such problems are the scattering matrix method
developed by Ko and Sambles [27] and a method using the adding (S-matrix) technique see also [28],
which is described in Section 8.4.3. The application of the method in [27] to the above TIR-based LC
device was described in detail in Xu et al. 23. In the MOUSE-LCD software [4], the method presented
in Section 8.4.3 is used for calculations of this kind. For the above LC device and, as far as we know,
in any other case, these methods give the same results. Useful information concerning the calculation
of the optical characteristics of layered systems in which the TIR mode is realized can also be found in
Section 8.1.3.

4.4 Ferroelectric LCDs

4.4.1 Basic Physical Properties

Symmetry

The symmetry of the ferroelectric smectic C∗ phase corresponds to the polar symmetry group C2,
Figure 4.43, so that when going along the z-coordinate parallel to a helix axis and perpendicular to the
smectic layers, the director L and the polarization vector P, directed along the C2-axis, rotate, as follows:

L(z + R) = L(z), P(z + R) = P(z), (4.40)

that is, the helix pitch R is equal to a spatial period of the FLC structure. In the absence of external fields,
the FLC equilibrium helix pitch is R0 and the average polarization of the FLC volume is equal to zero,
Figure 4.43.

Main Physical Parameters

The main physical parameters which define FLC electro-optical behavior are:

(i) tilt angle, 𝜃;
(ii) spontaneous polarization, Ps;

(iii) helix pitch, R0;
(iv) rotational viscosity, 𝛾

𝜑
;
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Figure 4.43 Ferroelectric liquid crystal (FLC) structure [1–3]

(v) dielectric anisotropy, Δ𝜀;
(vi) optical anisotropy, Δn;

(vii) elastic moduli; and
(viii) anchoring energy of the director with a solid substrate.

Let us briefly characterize each of these parameters.

Tilt Angle

The value of the tilt angle can vary from several degrees to 𝜃 ≈ 45◦ in some FLCs. Usually, in electro-
optical FLC materials, 𝜃 ≈ 22.5◦ is an operating temperature range. However, for some electro-optical
applications, it is desirable to have the value of 𝜃 as high as possible. The temperature (T) dependence near
the phase transition point Tc to the more symmetric LC phase (smectic A, nematic, or chiral nematic)

𝜃 ∝ (Tc − T)1∕2 (4.41)

is typical of second-order phase transitions.

Spontaneous Polarization

The value of the spontaneous polarization depends on the molecular characteristics of the FLC substance
itself and the achiral dopant introduced into the matrix, and can vary from 1 to more than 200 nC/cm2.
The value of the spontaneous polarization is one of the main FLC characteristics which define the FLC
electro-optical response.
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Rotational Viscosities

The switching times of the electro-optical effects in FLCs is defined by the rotational viscosity 𝛾
𝜑

which
characterizes the energy dissipation in the director reorientation process. According to FLC symmetry,
two viscosity coefficients should be taken into account, 𝛾

𝜃
and 𝛾

𝜑
, which determine the corresponding

response rates with respect to the director angle 𝜑 (Figure 4.43). The relevant dynamic equations take
the form [1–3]

𝛾
𝜑

d𝜑∕dt − Ps E sin 𝜑 = 0, 𝜏
𝜑
= 𝛾

𝜑
∕(Ps E), (4.42)

where 𝜏
𝜑

are the characteristic response times for the FLC director. The viscosity coefficient 𝛾
𝜑

can be
rewritten as

𝛾
𝜑
= 𝛾

′
𝜑
sin2

𝜃, (4.43)

where 𝛾 ′
𝜑

is independent of the angle 𝜃. According to (4.43), 𝛾
𝜑
⇒ 0 for 𝜃⇒ 0, that is, 𝛾

𝜑
is very low for

small tilt angles 𝜃.
Near Tc one can change the angle 𝜃, for example, by applying an electric field E; this effect is known

as the electroclinic effect [29]. However, we will not consider the electroclinic effect in this book.
The rotational viscosity 𝛾

𝜑
can be estimated from the experimental dependence of the electro-optical

response as follows [30]:

𝛾
𝜑
= PsE𝜏𝜑,

𝜏
𝜑
= (t90 − t50)∕ ln

√
5,

(4.44)

where t90 and t50 are the corresponding times for 90% and 50% transmission from the maximum level
(Figure 4.44).

One possible way to increase the switching rate in FLCs includes minimizing the viscosity with a
simultaneous rise in polarization. However, this way is not very promising, because (i) the increase
in polarization is hardly compatible with the lower values of rotational viscosity [30], and (ii) the
repolarization component of the alternating current grows rapidly with the value of polarization, that is,

iP ∼ Ps∕𝜏𝜑 ∼ P2
s∕𝛾𝜑, (4.45)

which is always undesirable for applications.

10%

50%

90%

I(
t)

t10 t50 t90 t

100%

Figure 4.44 Dynamics of FLC cell transmission [1–3]
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Helix Pitch

The helix pitch value R0 is easily controlled by varying the concentration of a chiral dopant in a smectic
C matrix. To vary the helix pitch from 0.1 more than to 100 μm, we require a chiral dopant with a high
twisting power and good solubility. At the same time, the chiral dopant should not depress the smectic
C temperature range [7]. Moreover, the growth of polarization should be more pronounced than that of
the rotational viscosity 𝛾

𝜑
with an increasing concentration of the chiral dopant. The inverse pitch of the

FLC helix, for reasonably large concentrations of the helix of the chiral dopant cD, is proportional to the
concentration:

R−1
0 ∝ cD. (4.46)

Dielectric and Optical Properties

It is important for applications to have negative dielectric anisotropy, Δ𝜀 = 𝜀|| – 𝜀⟂ < 0, which stabilizes
the relevant director structures [1–3]. Usually values of the negative dielectric anisotropy Δ𝜀 in FLC
mixtures are between −0.5 and −2 in the kilohertz region, decreasing at higher frequencies [1–3].

The effect of nonzero dielectric anisotropy can be taken into account, by inserting an additional term
into (4.42) for the azimuthal director motion in the electric field E [1–3]:

𝛾
𝜑
d𝜑∕dt = PsE sin𝜑 + (Δ𝜀∕4𝜋)E2 sin2

𝜃 sin𝜑 cos𝜑. (4.47)

The dielectric tensor of a FLC at optical frequencies can be regarded as uniaxial [1–3] (see also Section
7.3). Then the FLC possesses only two refractive indexes, n|| along the director and n⟂ perpendicular to
it. The electro-optical behavior of a FLC is mainly defined by the optical anisotropy Δn = n|| – n⟂. The
birefringence value Δn can be obtained from electro-optical measurements, where the dependence of
the transmitted intensity on the phase factor Δnd/𝜆 (d is the cell thickness and 𝜆 is the light wavelength)
is used [1–3]. The dispersion law for the optical birefringence can be represented by the two-coefficient
Cauchy formula [20]

Δn(𝜆) = Δn(∞) + C∕𝜆2, C = const. (4.48)

Elastic Properties and Anchoring Energy

The elastic properties of FLCs are usually discussed using the density of the elastic energy gel as
follows [1–3]:

gel = 1∕2[K11(∇ ⋅ L)2 + K22(L ⋅ (∇ × L) − t)2 + K33 (L × (∇ × L) − b)2], (4.49)

where parameters t and b characterize the spontaneous twist and bend of the FLC director L, and Kii are
FLC elastic moduli. The values of t > 0 and t < 0 hold for the right- and left-handed FLCs, respectively.
The general continuum theory of FLC deformations must take into account not only deformations of the
FLC director L, but also possible distortions of the smectic layers, which can be described in terms of
the variation of the layer normal v [1–3].

The FLC free energy should also include the surface terms, which are the polar wp = −Wp(Pv) and
dispersion wd = −Wd(Pv)2 contributions, where Wp and Wd are the corresponding anchoring strength
coefficients, v is the layer normal, and P is the FLC polarization [31]. Thus the total free energy Fd of
the FLC director deformations is

Fd = ∫v
gel d𝜏 +

∫s
(wp + wd)d𝜎. (4.50)
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In the presence of the external field, the total free energy includes the energy of the director deforma-
tions Fd and the energy FE of the interaction of the ferroelectric phase with the field E:

F = Fd + FE = Fd + ∫v
[−(PE) − DE∕8𝜋] d𝜏. (4.51)

Various textures of FLC are observed [1–3]: a helical state in sufficiently large thickness d ≫ R0,
where R0 is the helix pitch and d is the FLC layer thickness; uniform states with R0 > d due to the
parallel orientation order effect on the substrates (“up” and “down” states differ by the direction of the
FLC polarization P); and a twisted state for large values of Wp/Wd ≫ 1, which favors antiparallel surface
aligning of the FLC director.

The anchoring energy of FLC can be determined either by measuring the width of the coercivity loop
ΔV in the P(E) dependence in a static field according to the relation ΔV = 8Wd/Ps, or by measuring the
free relaxation times 𝜏 r of the FLC director in the bistable states 𝜏 r = 𝛾

𝜑
d/4Wd, where 𝛾

𝜑
is the FLC

rotational viscosity (Figure 4.44) [32]. The results of these two methods coincide with each other to an
accuracy of 30%.

4.4.2 Electro-optical Effects in FLC Cells

Clark–Lagerwall Effect

Let us consider the main electro-optical phenomena in FLC. The best known is the Clark–Lagerwall
effect [33], which results in the reorientation of the director from one bistable state to the other when
an external electric field changes its sign (Figure 4.45). In this case, the FLC layers are perpendicular
to the substrates and the director moves along the surface of a cone whose axis is normal to the layers
and parallel to the cell substrates. In each final position of its deviation, the director remains parallel to
the substrates, thus transforming the FLC cell into a uniaxial phase plate. The origin of electro-optical
switching in the FLC cell is the interaction of the polarization P perpendicular to the director with the
electric field E. The maximum variation of the transmitted intensity is achieved when the FLC cell
is placed between crossed polarizers, so that an axis of the input polarizer coincides with one of the
final director positions. The total angle of switching equals the double tilt angle 𝜃 (Figure 4.45). The
Clark–Lagerwall effect is observed in so-called surface-stabilized FLC (SSFLC) structures. In SSFLC
cells d ≪ R0 and the situation arises where the existence of the helix is unfavorable, that is, the helix is
unwound by the walls.
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Figure 4.45 Clark–Lagerwall effect in FLC cell [1–3]
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The variation of the azimuthal director angle𝜑 in the Clark–Lagerwall effect (Figure 4.45) is described
by the equation of the torque equilibrium (see (4.47)), which comes from the condition of the minimum
of the FLC free energy (see (4.51)). The total model of FLC reorientation in a “bookshelf” geometry
(Figure 4.45) with appropriate boundary conditions is

𝛾
𝜑
𝜕𝜑∕𝜕t = K𝜕2

𝜑∕𝜕x2 + PsE sin𝜑 + [Δ𝜀∕(4𝜋)]E2 sin2
𝜃 sin𝜑 cos𝜑,

K𝜕𝜑∕𝜕x + Wp sin𝜑 ± Wd sin 2𝜑 ||z=0,d = 0.
(4.52)

For typical values of polarizations, Ps ≈ 20 nC/cm2, the driving fields E ≈ 10 V/μm, and the dielectric
anisotropy Δ𝜀 ≈ 1, we have

|Δ𝜀E∕(4𝜋)| < Ps, (4.53)

and, consequently, the dielectric term in (4.52) can be omitted. If the inequality (4.53) is invalid, which
occurs for sufficiently high fields, then for |Δ𝜀 E/(4𝜋)| ≅ Ps the response times of the Clark–Lagerwall
effect sharply increase for positive Δ𝜀 values [1–3]. Experiments show that for negative values of Δ𝜀
the slope of the FLC dynamic response increases, that is, the corresponding switching times become
shorter. This is especially important for practical applications, because it promotes an increase in the
information capacity of FLCDs. If the driving field increases, the FLC response time passes through a
minimum, then grows, passes through a maximum at |Δ𝜀 E/(4𝜋)| ≅ Ps, and then decreases again.

For |Δ𝜀 E/(4𝜋)| ≫ Ps the FLC switching times 𝜏 are approximately governed by the field squared,
𝜏 ≅ 4𝜋𝛾

𝜑
/(Δ𝜀 E2), as in the ECB effect in nematic LC (see (4.23)). FLC mixtures with negative dielectric

anisotropy Δ𝜀 < 0 are also used for the dielectric stabilization of the initial orientation in FLCDs [34].
As shown in (4.42), response times in the Clark–Lagerwall effect are determined by 𝜏

𝜑
= 𝛾

𝜑
/(PsE).

The values of t90 – t10 and t90 – t50, measured in experiments (Figure 4.44), are fairly close to 𝜏
𝜑
.

Comparing the response times in nematics (N)

𝜏
(N)
r ≅ 4𝜋𝛾1∕(Δ𝜀E2), 𝜏

(N)
d ≅ d2

𝛾1∕(K𝜋2) (4.54)

and FLCs

𝜏
(FLC)
r ≅ 𝜏

(FLC)
d ≅ 𝜏

𝜑
≅ 𝛾

𝜑
∕(PsE), (4.55)

we can conclude that the electro-optical switching in the Clark–Lagerwall effect in FLCs is much faster
than in nematic LCa. The slower response of nematic LCs is mainly due to the relatively large decay
times 𝜏 (N)

d , which in the FLC case can be very short in sufficiently high electric fields E.
The optical transmittance I in the Clark–Lagerwall effect is calculated as follows [1–3]:

I = sin2 4𝜃 sin2(ΔΦ∕2), (4.56)

where ΔΦ = 2𝜋Δnd/𝜆 is the phase difference, Δn = n|| – n⟂. As follows from (4.56), the maximum
contrast is obtained for 𝜃 = 𝜋/8 (22.5◦), Δnd/𝜆 = 1/2, which, for Δn = 0.125, 𝜆 = 0.5 μm, gives
d = 2 μm. We should note that the variation in the cell thickness Δd = 𝜆/(8Δn) from the optimum value
d = 𝜆/(2Δn) results in a considerable difference in the FLC electro-optical response (Figure 4.46)
[1–3]. The practical criteria of an FLCD quality, however, require more precise limitations of
d = 2 ± 0.2 μm.

Bistable and Multistable Switching in FLC Cells

Bistable switching in the SSFLC geometry (Figure 4.45) takes place above a certain threshold field Eth

∝ Wd/K1/2, where K is an average elastic constant and Wd is a dispersion anchoring energy with the polar
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Figure 4.46 Electro-optical response of a FLC cell in the Clark–Lagerwall effect for different phase
factors dΔn/𝜆 = k/4, k = 1,… , 9 [1–3]

anchoring energy taken equal to zero, Wp = 0 [1–3]. Thus with increasing anchoring, we have to increase
the switching amplitude of the electric field. As the energy of switching electric torque is proportional to
the product of PsE, the bistability threshold is inversely proportional to the value of the FLC spontaneous
polarization Ps.

The problems we meet in using the Clark–Lagerwall effect include not only severe restrictions on the
optimum layer thickness and requirements for defect-free samples, but also difficulties in the realization
of a perfect bistability or optical memory switched by the electric field and also providing the gray scale.
The latter problem is a most crucial one, because it is very inconvenient to provide the gray scale either
using complicated driving circuits or increasing the number of working elements (pixels) in FLCD [34].
This problem arises in the Clark–Lagerwall effect because the level of transmission is not defined by the
amplitude of the driving voltage pulse U, but by the product U𝜏, where 𝜏 is the electric pulse duration.

A SSFLC structure with bistable switching cannot provide an intrinsic continuous gray scale, unless a
time- or space-averaging process is applied [35]. The inherent physical gray scale of passively addressed
FLC cells can be obtained if the FLC possesses multistable electro-optical switching with a sequence of
ferroelectric domains, which appear if the spontaneous polarization Ps is high enough [36]. Ferroelectric
domains in a helix-free FLC form a quasi-periodic structure with a variable optical density as it appears
between crossed polarizers [36] (Figure 4.47). The bookshelf configuration (Figure 4.45) of smectic
layers is preferable for the observation of these domains. If the duration of the electric pulse applied to
a helix-free SSFLC layer containing ferroelectric domains is shorter than the total FLC switching time,
the textures shown in Figure 4.47 are memorized after switching off this pulse and short-circuiting the
FLC cell electrodes. The domains appear as a quasi-regular structure of bright and dark stripes parallel
to the smectic layer planes. The bright stripes indicate spatial regions with a complete switching of the
FLC director, while the dark stripes indicate regions that remain in the initial state. The sharp boundaries
between the black and white domain stripes seem to illustrate the fact that only two stable director
orientations exist. The variation in the occupied area between bright and dark stripes depends on the
energy of the applied driving pulses. The total light transmission of the structure is the result of a spatial
averaging over the aperture of the light passing through the FLC cell and is always much larger than the
period of the ferroelectric domains. Both the amplitude and the duration of the driving pulses can be
varied to change the switching energy, which defines the memorized level of FLC cell transmission in
a multistable electro-optical response. Therefore, any level of the FLC cell transmission, intermediate
between the maximum and minimum transmissions, can be memorized after switching off the voltage
pulses and short-circuiting of cell electrodes (Figure 4.47).



JWST441-c04 JWST441-Yakovlev Printer: Markono November 25, 2014 7:58 Trim: 244mm × 170mm

138 Modeling and Optimization of LCD Optical Performance

0 V 3 V 4 V

5 V 6 V 15 V

Figure 4.47 Continuous variation of the width of ferroelectric domains with a change in the applied
voltage of the FLC layer between crossed polarizers [36]

Optical Transmission of Multistable FLC Cell

The necessary conditions of multistable switching modes are (i) sufficiently high FLC spontaneous
polarization Ps > 50 nC/cm2 and (ii) a relatively low energy of the boundaries between the two FLC
states existing in FLC domains (Figure 4.47), which is usually typical for the antiferroelectric phase
[1–3]. The multistability is responsible for three new electro-optical modes with different shapes of the
gray-scale curve that can be either S-shaped (double or single depending upon the applied voltage pulse
sequence and boundary conditions) or V-shaped depending upon the boundary conditions and FLC cell
parameters (Figure 4.48).

The simple approach describes well the experimental curves of average intensity of multistable FLC
states (S- and V-shapes) for various positions of the FLC texture between crossed polarizers. Consider a
homogeneous smectic C∗ layer as shown in Figure 4.49. The analyzer is crossed with the polarizer. The
normal of the smectic C∗ layer (z-axis) is placed at an angle 𝛽 to the polarizer.

The director L of the LC rotates around the z-axis with cone angle 𝜃0, which can be described by (4.42),
where elastic terms have been neglected since the applied field E and FLC spontaneous polarization Ps

are sufficiently large in our case.
Equation (4.42) can be solved as

𝜑(t) = 2 arctan

(
A ⋅ exp

(E𝜏pPs

𝛾
𝜑

))
, (4.57)

where A = tan(𝜑0∕2) with 𝜑0 (𝜑(t = 0)) is the initial phase angle, and 𝜏p is the pulse duration of the
driving rectangular voltage. The relative light transmission I = J/J0 (where J and J0 are the FLC cell
input and output intensity) of the smectic C∗ layer placed between crossed polarizers (Figure 4.49) can
be written as [35]

I = sin2 2(𝛽 − 𝜃0 cos𝜑) sin2

(
𝜋ΔndFLC

𝜆

)
, (4.58)
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Figure 4.48 S-shaped (above) and V-shaped (below) FLC multistable switching [35]
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where 𝜆 is the wavelength, Δn is the birefringence index, dFLC is the FLC layer thickness, and 𝛽 is an
angle between the polarizer transmission axis and a normal to the smectic layers as shown in Figure 4.49.
According to (4.58) the necessary condition for maximum light transmission is

ΔndFLC

𝜆
= 1

2
,

3
2
⋯ (4.59)

Taking into account (4.59) as a necessary condition we consider two cases:

𝛽 = 𝜃0 (4.60)

and

𝛽 = 0 (4.61)

The memorized transmission level I evaluated according to (4.58)–(4.60) can be written as

I = sin2

(
4𝜃0

f 2

1 + f 2

)
sin2

(ΔΦ0

2
− 2𝛿0

f 2

(1 + f 2)2

)
, (4.62)

where

f = A ⋅ exp
(E𝜏pPs

𝛾
𝜑

)
, f ≫ 1. (4.63)

Further, in (4.62) we have

𝛿0 =
𝜋dn||
𝜆

(
n2||
n2
⊥

− 1

)
𝜃

2
0 , (4.64)

where n∥ and n⟂ are the principal refractive indexes, parallel and perpendicular to the long molecular
axis correspondingly, and

ΔΦ0 =
2𝜋d
𝜆

(n|| − n
⊥

). (4.65)

If conditions (4.59) and (4.61) are satisfied then the memorized FLC cell transmission level I evaluated
according to (4.58) can be written as

I = sin2

(
2𝜃0

f 2 − 1
f 2 + 1

)
sin2

(ΔΦ0

2
− 2𝛿0

f 2

(1 + f 2)2

)
. (4.66)

Numerical evaluations according to our simple model show that I(E) dependence calculated from
(4.62) is S-shaped, while the evaluations from (4.66) give the V-shaped mode (Figure 4.49). Thus the
theoretical and experimental investigation of reversible and memorized S- and V-shaped multistable
FLC electro-optical modes was proposed on this basis [35]. New electro-optical modes are based on the
multistable electro-optical modes in the FLC cell (Figure 4.47).

Deformed Helix Ferroelectric Effect

The geometry of the FLC cell with a DHF effect is presented in Figure 4.50 [37]. The polarizer (P) on
the first substrate makes an angle with the helix axis and the analyzer (A) is crossed with the polarizer.
The FLC layers are perpendicular to the substrates and the layer thickness d is much higher than the
value of the helix pitch R0 (see also Figure 4.43):

d ≫ R0. (4.67)
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Figure 4.50 Deformed helix ferroelectric (DHF) effect [1–3]

The light beam with aperture a ≫ R0 passes parallel to the FLC layers through a FLC cell placed
between the polarizer and analyzer. In an electric field, the FLC helical structure becomes deformed, so
that the corresponding dependence of the director distribution cos𝜑, as a function of coordinate 2𝜋z/R0,
oscillates symmetrically in ±E electric fields (Figure 4.50). These oscillations result in a variation of the
effective refractive index, that is, ECB appears.

The effect takes place up to the FLC helix unwinding field

Eu = (𝜋2∕16) K22q2
o∕Ps, (4.68)

where K22 is the FLC twist elastic constant, and qo = 2𝜋/R0 is the helix wave vector.
The characteristic response times 𝜏c of the effect in small fields E/Eu ≪ 1 are independent of the FLC

polarization Ps and the field E, and defined only by the rotational viscosity 𝛾
𝜑

and the helix pitch R0:

𝜏c = 𝛾
𝜑
∕K22q2

o. (4.69)
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The dependence (4.69) is valid, however, only for very small fields E. If E≤Eu, the FLC helix becomes
strongly deformed and 𝜏c ∝ E−𝛿 , where 0 < 𝛿 < 1 [38]. If E is close to the unwinding field Eu the helix
pitch R increases sharply, R ≫ Ro. Consequently, the times of the helix relaxation 𝜏d to the initial state
also rise,

𝜏d∕𝜏c ∝ R2∕R2
o, (4.70)

that is, for E ≈ Eu it is possible to observe the memory state of the FLC structure [37]. In this regime,
electro-optical switching in the DHF effect reveals a pronounced hysteresis, especially for E ⇒ Eu.

However, if the FLC helix is not over-deformed, fast and reversible switching in the DHF mode can be
obtained [1–3]. The switching time, less than 10 μs at the controlling voltage of ±20 V, can be provided,
and is temperature independent over the broad temperature range [39]. Fast FLC cells (DHF effect) with
a response time of less than 1 μs in a broad temperature range from 20 to 80◦C have been developed [40]
(Figure 4.51). We believe that DHF FLC is the fastest electro-optical mode in LC cells for photonics and
display applications.

The optical transmission of the DHF cell can be calculated as follows:

I = sin2 (𝜋Δn(z)d∕𝜆) sin2[2(𝛽 − 𝛼(z))], (4.71)

where 𝛽 is the angle between the z-axis and the polarizer transmission axis (Figure 4.50),

𝛼(z) = arctan(tan 𝜃 cos 𝜑(z)) (4.72)
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Figure 4.51 Switching time of DHF LC cells [40]



JWST441-c04 JWST441-Yakovlev Printer: Markono November 25, 2014 7:58 Trim: 244mm × 170mm

Electro-optical Modes: Practical Examples of LCD Modeling and Optimization 143

is the angle between the projection of the optical axis on the yz-plane and the z-axis, and Δn(z) =
neff(z) – n⟂ is the effective birefringence:

neff = n||n⊥∕[n2
⊥
+ (n2|| − n2

⊥
) sin2

𝜃 sin2
𝜑]1∕2

. (4.73)

In the case of small angles |𝜃| ≪ 1, the transmission in (4.71) can be expanded as a series in 𝜃,

I ∝ (sin2 2𝛽 − 2𝜃 sin 4𝛽 cos𝜑 + 4𝜃2 cos 4𝛽 cos2
𝜑) sin2(𝜋Δnd∕𝜆) (4.74)

As shown in [1–3], for small values of the applied field cos 𝜑 ∝ E/Eu and it changes its sign for the
field reversal E ⇒ –E (Figure 4.50). Thus according to (4.74), for sin 4𝛽 = 0 we have a quadratic gray
scale, that is,

ΔI ∝ 𝜃
2 cos2

𝜑 ∝ 𝜃
2 E2∕E2

u (4.75)

and for other values of 𝜃 the gray scale is linear. For cos 4𝛽 = 0 the quadratic component in the modulated
intensity I is absent, that is,

ΔI ∝ 𝜃 cos𝜑 ∝ 𝜃 E∕Eu. (4.76)

If E(t) = Eo cos(wt), then in the case of (4.75) we come to the modulation regime, which doubles
the frequency of the applied field. Relationships (4.75) and (4.76) were confirmed by experiment [37].
Using a “natural” gray scale of the DHF mode, many gray levels have been obtained with fast switching
between them [41]. New ferroelectric mixtures with a helix pitch R0 < 0.3 μm and tilt angle 𝜃 >
30◦ have recently been developed for the DHF effect [41, 42]. The helix unwinding voltage was about
2–3 V. Short-pitch FLC mixtures can also be used to obtain pseudo-bistable switching in FLC samples.
Using these new FLCs, electrically controlled V-shaped switching in the DHF mode can be applied for
new active-matrix LCDs with field sequential colors (FSCs).

A geometry with 𝛽 = 0 was selected in all experiments to provide a non-sensitive electro-optical
response to the driving voltage polarity. Maximum light transmission under this condition, as follows
from (4.71), occurs if 𝛼(z) = 45◦ and Δn(z)d = 𝜆/2. It is easy to show from (4.72) that the tilt angle 𝜃
of the FLC should be close to 45◦ to provide maximum light transmission at 𝛽 = 0. Typical V-shaped
symmetrical (voltage-sign-independent) DHF switching is shown in Figure 4.52 [41].

Let us point out certain advantages of the DHF electro-optical effect for applications as compared to
the Clark–Lagerwall mode:

1. High operating speed is achieved for low driving voltages. This takes place because a slight dis-
tortion of the helix near the equilibrium state results in a considerable change in the transmission.
Consequently, an instantaneous response of the FLC cell is provided without the so-called delay time
inherent in the Clark–Lagerwall effect.

2. The DHF effect is also less sensitive to surface treatment and more tolerant of cell gap inhomogeneity.
As follows from experiment and qualitative estimations [1–3], the effective birefringence value Δneff

is approximately twice as low as Δn = n|| − n⟂ in the Clark–Lagerwall effect.
3. The DHF effect allows the implementation of a “natural” gray scale (i.e., dependent on voltage

amplitude) that is both linear and quadratic in voltage. Moreover, at E ≈ Eu long-term optical memory
states are possible.

Transflective FLCD

A new optical configuration of transflective bistable display using FLC cells with a single cell gap has
been developed [43, 44]. This configuration provides high brightness and high contrast ratio for both
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Figure 4.52 Symmetric (voltage-sign-independent) electro-optical response of DHF-FLC [41]. Left:
top, the driving voltage waveform applied to the cell; bottom, the electro-optical response of the cell.
Right: V-shaped mode in the envelope curve of light transmission saturation states measured at electro-
optical response frequency 2 kHz. Light transmission Th evaluated in comparison with transmission of
empty cell placed between parallel polarizers; this transmission is defined as Th = 1

reflective and transmissive modes. Since there are no double-cell-gap structure and patterning polarizers
or retarders, this configuration is very easy to fabricate (Figure 4.53). The optimized parameters of a
transflective FLC configuration are given in Table 4.10.

The structure of a transflective FLCD is shown in Figure 4.53. It is composed of two polarizers, a
retardation film, a transflective film, and a FLC cell. The transflective film is used as a reflector in the
sunlight or a bright place and as a transmitter at night or in a dark place. An antireflection layer is inserted
at the top of the configuration in order to reduce surface reflectance. The optical anisotropy for the FLC
material is as follows: Δn = 0.0875 + (12 251 nm2)/𝜆2. This FLC has a spontaneous polarization of
Ps ∼ 100 nC/cm2 and a tilt angle of 𝜃 = 26◦ at T = 23◦C. MOUSE-LCD was used for the simulations
[43, 44]. The optimal values of the parameters are given in Table 4.10. The single-cell-gap FLC cell
serves as a quarter-wave plate. Figure 4.54 shows the simulated spectrum for bright and dark states of
the transflective FLCDs.

The viewing angle for the reflective and transmissive modes respectively in a transflective FLCD are
shown in Figure 4.55. The transmissive part has a wider viewing angle than the reflective one. For the
normal light incidence, the contrast can be as large as 28:1 for the reflective and 200:1 for the transmissive
part of the transflective FLCD [43, 44].

Polarizer

Polarizer

Transflector

Compensation

film

FLC-layer

Figure 4.53 The structure of a transflective FLCD



JWST441-c04 JWST441-Yakovlev Printer: Markono November 25, 2014 7:58 Trim: 244mm × 170mm

Electro-optical Modes: Practical Examples of LCD Modeling and Optimization 145

Table 4.10 Optimized parameters of the configuration of a transflective FLCD

Angle of first polarizer (transmission axis) 25◦

Angle of compensation film (slow axis) 90◦

Retardation of compensation film 140 nm
Thickness of FLC514 layer 1 μm
Angle of FLC514 layer 0◦

Angle of second polarizer (transmission axis) −65◦
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Figure 4.54 The spectrum of bright and dark states for transflective FLCDs: (a) reflective part and
(b) transmissive part

4.5 Birefringent Color Generation in Dichromatic Reflective FLCDs
The potential of simple constructions of dichromatic bistable FLCDs using just phase retardation plates
and one or two polarizers has been studied [45]. The results obtained will allow us to judge the possibilities
of a FLCD to achieve any two desired colors and will clear up the question of how many retardation
plates are enough to generate these colors.
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Figure 4.55 Simulated angular dependence of the contrast ratio for (a) the transmissive and (b) the
reflective part of our transflective FLCD [44]
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The structures of the FLCD are shown in Figure 4.56. The double-polarizer FLCD (Figure 4.56, top)
consists of a top polarizer (P1), several retardation plates (Ret1,… ,RetN), a layer of FLC, a rear polarizer
(P2), and a reflector (R). The single-polarizer FLCD has a similar structure (Figure 4.56, bottom) except
for the rear polarizer. Using only one polarizer allows us to increase reflectivity of the bright state and
avoid parallax effects [1–3].

The spectrum of the reflected light depends on retardations and orientations of the FLC and birefringent
plates as well as orientations of the polarizers, and the spectrum of an illuminator. Earlier, several
techniques were proposed for the synthesis of birefringent optical filters [1–3, 20]. As a rule, the filter
consists of a set of identical retardation plates having different orientations or the retardation values
have a common multiple. Therefore, due to the symmetric properties of the considered birefringent
plates, the proposed techniques look elegant. The disadvantage is that a large number of birefringent
plates (more than four) are required. However, optimal parameters of the FLCD structures generating
desirable colors can be found. The calculation of the optical characteristics for a particular structure, that
is, the forward problem, is straightforward. The inverse problem is significantly more difficult because it
already includes the need to solve many times the forward problem with different starting values of the
variable parameters. From a mathematical point of view, the solution of the inverse problem reduces to
finding a global minimum of a multivariable function.

There are two requirements for a display: to provide a desired color and to have the greatest possible
brightness. Color and brightness of a display can be described simultaneously by the color coordinates
in RGB space [45, 46]:

⎡⎢⎢⎣
R
G
B

⎤⎥⎥⎦ = ∫

⎡⎢⎢⎣
r(𝜆)
g(𝜆)
b(𝜆)

⎤⎥⎥⎦S(𝜆)d𝜆, (4.77)

where r(𝜆), g(𝜆), b(𝜆) are the spectral tristimulus values, and S(𝜆) is the spectral distribution of the
intensity of the light reflected from the display. The relative values of the coordinates correspond to a
display color, whereas the absolute values are proportional to the brightness.

R

R

FLC

FLC

RetN

RetN

Ret1

Ret1

P1

P1

P2

Figure 4.56 Structures of the considered reflective FLCD. Top: double-polarizer FLCD. Bottom:
single-polarizer FLCD [45]
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Let the desirable color of the first stable state of the FLCD be characterized by the coordinates

⎡⎢⎢⎢⎣
Rd

1

Gd
1

Bd
1

⎤⎥⎥⎥⎦ ,

whereas the desirable color of the second stable state is characterized by the coordinates

⎡⎢⎢⎢⎣
Rd

2

Gd
2

Bd
2

⎤⎥⎥⎥⎦ .
By varying the parameters of the FLCD, we achieve the limits:

⎡⎢⎢⎣
R1

G1

B1

⎤⎥⎥⎦ →
⎡⎢⎢⎢⎣

Rd
1

Gd
1

Bd
1

⎤⎥⎥⎥⎦ and
⎡⎢⎢⎣

R2

G2

B2

⎤⎥⎥⎦ →
⎡⎢⎢⎣

Rd
2

G2

Bd
2

⎤⎥⎥⎦ , (4.78)

where

⎡⎢⎢⎣
R1
G1
B1

⎤⎥⎥⎦ and
⎡⎢⎢⎣

R2
G2
B2

⎤⎥⎥⎦
and are coordinates of the FLCD in the first and the second states, respectively.

Let R(𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1, 𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N , 𝜆) be the reflectivity of a FLCD that depends on the
polarizer orientations described by the angles 𝛼, 𝛽, the retardation of the FLC dΔn(𝜆), the orientation
of the optical axis of the FLC described by the angle 𝜑, and the orientations and retardations of the
birefringent plates 𝛾1, 𝛾2,… , 𝛾N and Γ1, Γ2,… , ΓN, respectively. The spectral intensity S(𝜆) of the
reflected light in this case is expressed as

S(𝜆) = Lr(𝜆)R(𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1, 𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N𝜆), (4.79)

where Lr(𝜆) is the spectral intensity of the illuminant light. Reflectivity R(𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1,
𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N𝜆) consists mainly of two components: the Fresnel reflectivity of the top surface
of the FLCD rar(𝜆) and the reflectivity 𝜌(𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1, 𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N𝜆) caused by the reflec-
tor of the FLCD:

R(𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1, 𝛾1,… ,ΓN , 𝛾N𝜆) = rar(𝜆) + 𝜌(𝛼, 𝛽,Δnd,𝜑,Γ1, 𝛾1,… ,ΓN , 𝛾N , 𝜆).

The reflected components caused by the reflection from the interfaces between the layers
can be neglected. Applying the formalism of the Jones matrices, the reflectivity 𝜌(𝛼, 𝛽, dΔn(𝜆),
𝜑,Γ1, 𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N𝜆) can be expressed as

𝜌(𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1, 𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N𝜆) = 1
2
‖‖‖M̂‖‖‖2

E
, (4.80)
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Figure 4.57 Dichromatic FLCD: from top to bottom, green/black, yellow/black, and green/pink. Left:
experimental samples and spectral characteristics of the two bistable states. Right: color coordinates

where ‖M̂‖E is the Euclidean norm (see Section 5.1.4 and Equation 5.44 there) of the Jones matrix M̂ of
the FLCD [47] that is calculated as [47]

M̂ = rRM̂
T

LCPM̂LCP, (4.81)

where rR is the reflectivity of the reflector,T denotes transposition, and M̂LCP is the transmission Jones
matrix of the LCD panel (except the reflector). In the case of the double-polarizer FLCD (Figure 4.56,
top),

M̂LCP =M̂p2M̂FLCM̂Γ1
M̂Γ2

… , M̂ΓN
M̂p1,
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and in the case of the single-polarizer FLCD (Figure 4.56, bottom), and

M̂LCP =M̂FLCM̂Γ1
M̂Γ2

… , M̂ΓN
M̂p1.

where M̂FLC and M̂Γj
(j = 1,… , N) are the Jones matrices of the FLC layer and the jth retardation plate,

respectively; M̂p1 and M̂p2 are the Jones matrices of the top and rear polarizers, respectively.
There are two vector functions or six coordinates (scalar functions) in the optimization criterion

(Equation 4.78). In order to use one variable as a criterion for the minimization task (Equation 4.78), let
us introduce the scalar function

f =
∑
i=1,2

∑
J=R,G,B

(
Ji − Jd

i

)2
, (4.82)

where Ji and Jd
i are the calculated and desired color coordinates, respectively.

It can be seen that the function f reaches its global minimum (zero in the ideal case) when condition
(4.78) is satisfied. Thus, Equation (4.78) will be equivalent to the requirement

f (𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1, 𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N , 𝜆) → 0. (4.83)

Thus, the further task under consideration reduces to finding the global minimum of the multivariable
function f (𝛼, 𝛽, dΔn(𝜆),𝜑,Γ1, 𝛾1,Γ2, 𝛾2,… ,ΓN , 𝛾N , 𝜆).

According to the procedure described above, any dichromatic reflective LCD can be modeled
and reproduced experimentally. Figure 4.57 shows several examples: green/black, yellow/black, and
green/pink. It was demonstrated that good color characteristics and high brightness can be achieved
simultaneously using the structures including one or two retardation plates only.
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5
Necessary Mathematics.
Radiometric Terms. Conventions.
Various Stokes and Jones Vectors

It is needless to stress the importance of matrix algebra in LCD optics. For the convenience of the reader,
in Section 5.1 we give a brief review of the notions and relations of matrix algebra used in this book.
This section can be considered as a mathematical appendix to the preceding part of the book and a
mathematical preliminary to what follows.

In Section 5.2, we give definitions of some radiometric quantities and a summary of the optical
conventions adopted in this book. In Sections 5.3 and 5.4, some notions concerning the characterization
of wave fields by Stokes and Jones vectors are introduced which are important in our consideration of
LCD optics.

5.1 Some Definitions and Relations from Matrix Algebra

5.1.1 General Definitions
An m × n matrix A is an array of numbers:

A = [ajk] =
⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n

a21 a22 … a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ⋯ amn

⎞⎟⎟⎟⎠ .
Its entries ajk (j = 1, 2,… , m; k = 1, 2,… , n) are called matrix elements; the element ajk is situated in the
jth row and in the kth column of the matrix A. Sometimes we use the notation [A]jk ≡ ajk.

n × 1 matrices are called column matrices [column (n-) vectors].
1 × n matrices are row matrices [row (n-) vectors].
A matrix having the same number of rows and columns is called a square matrix.
A scalar may be formally considered as a 1 × 1 matrix.

Modeling and Optimization of LCD Optical Performance, First Edition.
Dmitry A. Yakovlev, Vladimir G. Chigrinov and Hoi-Sing Kwok.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Website Companion: www.wiley.com/go/yakovlev/modelinglcd
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A square matrix A = [ajk] is said to be diagonal if ajk = 0 for all j and k at k ≠ j, that is, if

A =
⎛⎜⎜⎜⎝

a11 0 ⋯ 0
0 a22 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ann

⎞⎟⎟⎟⎠ .
A diagonal matrix U = [ujk] with all diagonal elements equal to 1, that is,

U =
⎛⎜⎜⎜⎝

1 0 ⋯ 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞⎟⎟⎟⎠ ,

is called a unit matrix or an identity matrix.
Matrices all of whose elements are equal to 0 are called zero (or null) matrices.
The transpose of an m × n matrix A = [ajk] is the n × m matrix AT ≡ [akj], that is, the rows of A are

the columns of AT.
A matrix A = [ajk] is said to be symmetric if A = AT, that is, if ajk = akj.
The complex conjugate of an m × n matrix A = [ajk] is the m × n matrix A∗ ≡ [ajk

∗].
The Hermitian conjugate of a matrix A = [ajk] is defined as the complex conjugate of the transpose of

the matrix A, that is,

A† = (AT)∗ = [a∗
kj].

Addition and Subtraction of Matrices

Let A = [ajk] and B = [bjk] be m × n matrices. The sum A + B and difference A – B of these matrices
are the m × n matrices defined as

A + B ≡ [ajk + bjk], A − B ≡ [ajk − bjk].

Multiplication by a Scalar

The product of an m × n matrix A = [ajk] by a scalar 𝛼 is the m × n matrix

𝛼A ≡ A𝛼 ≡ [𝛼ajk].

Matrix Product

The matrix product of an m × n matrix A = [ajk] and an n × r matrix B = [bkl] is the m × r matrix

AB =

[
cjl ≡

n∑
k=1

ajkbkl

]
.

Example 1 Let A and B be 2 × 2 matrices:

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
.
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For these matrices,

AB =
(

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
and

BA =
(

b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

)
.

It is seen that in general BA ≠ AB. But, taking the product ATBT,

ATBT =
(

a11 a21

a12 a22

)(
b11 b21

b12 b22

)
=
(

a11b11 + a21b12 a11b21 + a21b22

a12b11 + a22b12 a12b21 + a22b22

)
,

one may notice that for any A and B

BA = (ATBT)T
.

Example 2 Let A be a 2 × 2 matrices, and B a 2 × 1 column vector:

A =
(

a11 a12

a21 a22

)
, B ≡

(
b11

b21

)
≡

(
b1

b2

)
.

The matrix product AB in this case is the column vector

AB =
(

a11b1 + a12b2

a21b1 + a22b2

)
.

The matrix product of the row vector BT and the matrix A is the row vector

BTA = ( a11b1 + a21b2 a12b1 + a22b2 ).

Example 3 Let A be a 1 × 2 row vector, and B a 2 × 1 column vector:

A ≡ ( a11 a12 ) ≡ ( a1 a2 ), B ≡

(
b11

b21

)
≡

(
b1

b2

)
.

The matrix product AB of these vectors is the scalar

AB = a1b1 + a2b2.

Example 4 Matrix representation of operations with Euclidean vectors. By definition, the scalar
product of Euclidean vectors a = (a1, a2, a3) and b = (b1, b2, b3) is the scalar

a ⋅ b ≡ ab ≡ a1b1 + a2b2 + a3b3.
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Representing the vectors a and b by the column vectors

A =
⎛⎜⎜⎝

a1

a2

a3

⎞⎟⎟⎠ and B =
⎛⎜⎜⎝

b1

b2

b3

⎞⎟⎟⎠ ,

we can represent the scalar product a ⋅ b as a matrix product:

a ⋅ b = ATB = BTA.

The vector product of the vectors a and b is the vector

a × b =
(
a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1

)
.

Writing the vector a × b as the column

C =
⎛⎜⎜⎝

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎞⎟⎟⎠ ,

we can represent the vector product as follows:

C =
⎛⎜⎜⎝

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

b1

b2

b3

⎞⎟⎟⎠ = A×B,

where

A× =
⎛⎜⎜⎝

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞⎟⎟⎠ .
The standard operation 𝜶b, where 𝜶 is a tensor, is usually treated as the matrix multiplication of a

matrix 𝚲 representing the tensor 𝜶 and a column vector B representing the vector b, 𝚲B. Following
this line, the operation b𝜶, which appears in some equations of Chapters 8 and 9, can be treated as the
multiplication of the row vector BT and the matrix 𝚲, BT𝚲.

For any n × n matrix A and the unit n × n matrix U, AU = UA = A.

Trace

The trace (spur) of an n × n matrix A = [ajk] is

TrA =
n∑

j=1

ajj.

Determinant

The determinant of an n × n matrix A = [ajk] is the sum of the n! terms (−1)ra1k1
a2k2

… ankn
each

corresponding to one of the n! different ordered sets {k1, k2,…, kn} obtained by r interchanges of
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elements from the set {1, 2,…, n}. The number n is called the order of the determinant. The nth order
determinant can be represented in terms of the (n − 1)th order determinants. For instance, the determinant
of the n × n matrix A may be written as

det A =
n∑

k=1

(−1)l+kalk det Alk =
n∑

j=1

(−1)j+lajl det Ajl (5.1)

at any l∈{1, 2,…, n} (simple Laplace development), where Ajk is the (n − 1) × (n − 1) matrix obtained
from the matrix A by erasing the jth row and the kth column.

Examples

det(a11) = a11,

det
(

a11 a12

a21 a22

)
= a11a22 − a12a21,

det
⎛⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎠ = a11a22a33 + a12a31a23 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31,

det
⎛⎜⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞⎟⎟⎟⎠ = a11 det
⎛⎜⎜⎝

a22 a23 a24

a32 a33 a34

a42 a43 a44

⎞⎟⎟⎠ − a12 det
⎛⎜⎜⎝

a21 a23 a24

a31 a33 a34

a41 a43 a44

⎞⎟⎟⎠
+a13 det

⎛⎜⎜⎝
a21 a22 a24

a31 a32 a34

a41 a42 a44

⎞⎟⎟⎠ − a14 det
⎛⎜⎜⎝

a21 a22 a23

a31 a32 a33

a41 a42 a43

⎞⎟⎟⎠ .
We note the following properties of determinants:

det(AT) = detA, (5.2)

det(A†) = (detA)∗, (5.3)

det(A−1) = (detA)−1
. (5.4)

If A is an n × n matrix,

det(𝛼A) = 𝛼
ndetA, (5.5)

where 𝛼 is an arbitrary number.
The determinant of any diagonal matrix is equal to the product of the diagonal elements of this matrix.

The determinant of a unit matrix is equal to 1.

Adjugate

The adjugate of an n × n matrix A = [ajk] is the n × n matrix

adjA ≡ [cjk ≡ ( − 1)j+kdetAkj],

where the (n − 1) × (n − 1) matrices Ajk are defined as in (5.1).
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Examples

adj

(
a11 a12

a21 a22

)
=
(

a22 −a12

−a21 a11

)
,

adj
⎛⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎠ =
⎛⎜⎜⎝

a22a33 − a23a32 a32a13 − a12a33 a12a23 − a13a22

a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23

a21a32 − a31a22 a12a31 − a11a32 a11a22 − a21a12

⎞⎟⎟⎠ .
The main feature of the matrix adjA is that this matrix satisfies the relations

AadjA = adj(A)A = det(A)U. (5.6)

When dealing with the equation

AX = 0, (5.7)

where A = [ajk] is a given n × n matrix with detA = 0, X = [xj] is the n × 1 column vector of unknowns
xj (j = 1,2,…, n), and 0 is the null n × 1 column vector,

X =
⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠ , 0 =
⎛⎜⎜⎜⎝

0
0
⋮
0

⎞⎟⎟⎟⎠ ,

we can choose a solution of (5.7) among the columns of the matrix adjA because, according to (5.6), any
column of adjA taken as X satisfies (5.7).

Inverse

The inverse of an n × n matrix A = [ajk] is the matrix A−1 such that

A−1A = AA−1 = U,

where U is the unit n × n matrix. The matrix A has the inverse if detA ≠ 0. According to (5.6), the matrix
A−1 may be expressed as follows:

A−1 = 1
det A

adjA.

Example

(
a11 a12

a21 a22

)−1

= 1
a11a22 − a12a21

(
a22 −a12

−a21 a11

)
.



JWST441-c05 JWST441-Yakovlev Printer: Markono December 29, 2014 7:32 Trim: 244mm × 170mm

Necessary Mathematics. Radiometric Terms. Conventions. Various Stokes and Jones Vectors 159

Eigenvalues

The characteristic (secular) equation of an n × n matrix A = [ajk] is

det (A − 𝜆U) ≡ det
⎛⎜⎜⎜⎝

a11 − 𝜆 a12 ⋯ a1n

a21 a22 − 𝜆 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann − 𝜆

⎞⎟⎟⎟⎠ = 0, (5.8)

where U is the unit n × n matrix. The roots of this equation are called eigenvalues of the matrix A.

Example The characteristic equation of a 2 × 2 matrix A = [ajk] is

𝜆
2 − 𝜆TrA + det A = 0. (5.9)

It may also be written as

𝜆
2 − 𝜆(a11+a22) + (a11a22 − a12a21) = 0. (5.10)

The roots of (5.9), 𝜆1 and 𝜆2, the eigenvalues of A, are

𝜆1,2 = TrA ±
√

(TrA)2 − 4 det A
2

=
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

2
. (5.11)

Eigenvectors

For an n × n matrix A = [ajk] with an eigenvalue 𝜆, a nonzero n × 1 vector X satisfying the equation

AX = 𝜆X

or, equivalently,

(A − 𝜆U)X = 0,

where 0 is the zero n × 1 vector [see (5.7)], is called an eigenvector of A corresponding to or associated
with the eigenvalue 𝜆.

Singular Values

The singular values 𝜎j(A) (j = 1, 2, …) of a square matrix A are the nonnegative square roots of the
eigenvalues of the matrix A†A.

Example The singular values of a 2 × 2 matrix A, 𝜎1(A) and 𝜎2(A), may be expressed as follows:

𝜎1,2(A) =

√√√√‖A‖2
E ±

√‖A‖4
E − 4 |det A|2

2
, (5.12)

where ‖A‖E is the Euclidean norm of A [see Section 5.1.4 and (5.44)].
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5.1.2 Some Important Properties of Matrix Products
For any matrices A, B, and C of appropriate dimensions

A(BC) = (AB)C,

therefore the products A(BC) and (AB)C may be written simply as ABC.
As already noted, in general AB ≠ BA.
Let a matrix T be the product of (not necessarily square) matrices T1, T2,…, and TN:

T = T1T2T3 …TN−1TN .

The following relations are valid:

T∗ ≡ (T1T2T3 …TN−1TN)∗ = T∗
1T∗

2T∗
3 …T∗

N−1T∗
N , (5.13)

TT ≡ (T1T2T3 …TN−1TN)T = TT
NTT

N−1 …TT
3 TT

2 TT
1 , (5.14)

T† ≡ (T1T2T3 …TN−1TN)† = T†
NT†

N−1 …T†
3T†

2T†
1, (5.15)

T−1 ≡ (T1T2T3 …TN−1TN)−1 = T−1
N T−1

N−1 …T−1
3 T−1

2 T−1
1 , (5.16)

det(T1T2T3 …TN−1TN) = detT1 ⋅ detT2 ⋅ detT3 … detTN−1 ⋅ detTN . (5.17)

5.1.3 Unitary Matrices. Unimodular Unitary 2 × 2 Matrices. STU Matrices

Unitary Matrices

A square matrix A is said to be unitary if for this matrix

A−1 = A†, (5.18)

that is,

A†A = AA† = U, (5.19)

where U is the unit matrix.
A key property of a unitary n × n matrix A is that for any n × 1 vector X and the vector

Y = AX the following relation holds:

Y†Y = X†X. (5.20)

Using the notion of the Euclidean norm of a vector (see Section 5.1.4), this property can be expressed
by the relation

‖AX‖E = ‖X‖E . (5.21)

Another important property of the unitary matrix A is the following. For any n × 1 vectors X1

and X2

Y†
2Y1 = X†

2X1, (5.22)
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where Y1 = AX1 and Y2 = AX2. Relation (5.22) can easily be derived from the defining relation (5.19).
Using property (5.15) of matrix products, we may represent the Hermitian conjugate of the vector Y2 as
follows:

Y†
2 = (AX2)† = X†

2A†
. (5.23)

Using (5.23) and (5.19), we obtain

Y†
2Y1 = X†

2A†AX1 = X†
2(A†A)X1 = X†

2UX1 = X†
2X1. (5.24)

Since relation (5.22) is equivalent to (5.20) at X1 = X2 = X, derivation (5.24) also proves (5.20).
The product of any number of unitary matrices is a unitary matrix. To prove this it suffices to show

that the product of two unitary matrices is a unitary matrix. Let C = AB, where A and B are arbitrary
unitary matrices. Again using (5.15), we represent C† as B†A†. Then, using relations A†A = U and
B†B = U, we obtain

C†C = (B†A†)(AB) = B†(A†A)B = B†B = U,

that is, the matrix C satisfies the condition C†C = U and hence is a unitary matrix.
According to (5.17) and (5.3),

det(A†A) = det(A†)detA = (detA)∗detA. (5.25)

From (5.19) and (5.25), we see that |detA| = 1 for any unitary matrix A.

Unimodular Matrices

Matrices whose determinant equals 1 or –1 are sometimes called unimodular. We, throughout this book,
also use the term unimodular matrix in this sense.

As is seen from (5.17), the product of any number of unimodular matrices is a unimodular matrix.
The determinant of the product of unimodular matrices T1, T2,…, and TN may be expressed as

det(T1T2 …TN) = ( − 1)N′
,

where N′ is the number of matrices with negative determinant in the set {Tj; j = 1,2,…, N}.
Any unitary matrix A can be represented as

A = aUAUM, (5.26)

where aU is a number with |aU| = 1 and AUM is a unimodular unitary matrix. For instance, if A is an
n × n matrix, we may take

AUM = (det A)−1∕n A, (5.27)

aU = (det A)1∕n , (5.28)

because, according to (5.5),

det
(
(det A)−1∕n A

)
=
[
(det A)−1∕n]n det A = (det A)−1 det A = 1,
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and |||(det A)1∕n||| = 1 as |detA| = 1. In this case, detAUM = 1. An alternative choice of the factors in (5.26),
with detAUM = –1, is as follows:

AUM = (−det A)−1∕n A, (5.29)

aU = (−det A)1∕n
. (5.30)

Unitary Unimodular 2 × 2 Matrices

Any unitary 2 × 2 matrix whose determinant is equal to 1 has the form(
a b

−b∗ a∗

)
, (5.31)

where a and b are complex numbers such that a∗a + b∗b = 1, and can be represented as(
ei𝜑 cos 𝜌 ei𝜓 sin 𝜌

−e−i𝜓 sin 𝜌 e−i𝜑 cos 𝜌

)
, (5.32)

where 𝜌, 𝜑, and 𝜓 are real numbers. Any unitary 2 × 2 matrix with determinant –1 has the form(
a b
b∗ −a∗

)
, (5.33)

where also a∗a + b∗b = 1, and can be represented as(
ei𝜑 cos 𝜌 ei𝜓 sin 𝜌
e−i𝜓 sin 𝜌 −e−i𝜑 cos 𝜌

)
. (5.34)

STU Matrices

The class of matrices that we call STU matrices is not a standard class of matrices in matrix algebra.
Nevertheless the notion of an STU matrix is very important in our consideration of LCD optics. We say
that a matrix is an STU matrix (a Scalar Times a Unitary matrix) if this matrix can be represented as
the product of a unitary matrix and a scalar. If a matrix A is represented as A = aAU, where AU is a
unitary matrix and a is a (possibly complex) scalar, the scalar multiplier a and matrix AU will be called
the loss factor and base matrix of the STU matrix A, respectively. Peculiar properties of STU matrices
are clearly connected with properties of unitary matrices.

Most important for us are the following properties of STU matrices.
An arbitrary n × n STU matrix A with a loss factor a and a base matrix AU satisfies the relations

A†A = AA† = |a|2U. (5.35)

Actually,

A†A = (aAU)†aAU = a∗A†
UaAU = a∗aA†

UAU = |a|2U.

For any n × 1 vector X and the vector Y = AX,

Y†Y = |a|2X†X (5.36)
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[cf. (5.20)]. For any n × 1 vectors X1 and X2 and the vectors Y1 = AX1 and Y2 = AX2,

Y†
2Y1 = |a|2X†

2X1 (5.37)

[cf. (5.22)]. One may notice that, as in the case of unitary matrices,

Y†
2Y1 = 0 if X†

2X1 = 0. (5.38)

The product of any number of STU matrices is an STU matrix. If n × n STU matrices T1, T2,…, and
TN are given by their loss factors tj and base matrices TUj, the loss factor t and base matrix TU of the
matrix T = T1T2 … TN can evidently be calculated as

t = t1t2 … tN , TU = TU1TU2 …TUN . (5.39)

The loss factor and base matrix representing an STU matrix can always be chosen so that the base
matrix is unimodular and has a desired determinant (1 or –1).

5.1.4 Norms of Vectors and Matrices

Norms are real-valued nonnegative-valued quantities introduced to characterize the “magnitude” of
vectors and matrices. There are many types of norms for vectors and matrices. In this book we use one
type of vector norms (Euclidean norm) and two types of matrix norms (Euclidean norm and spectral
norm).

Euclidean Norm and Length of a Vector

The Euclidean norm of an n-vector A = (a1, a2,…, an) is defined as

‖A‖E =

√√√√ n∑
j=1

|||aj
|||2 =

√√√√ n∑
j=1

a∗
j aj. (5.40)

If A is a column vector, its Euclidean norm may be expressed as

‖A‖E =
√

A†A. (5.41)

If A is a Euclidean vector, ‖A‖E may be represented as follows:

‖A‖E =
√

A∗ ⋅ A =
√

A ⋅ A∗, (5.42)

where the dot “⋅” denotes the scalar (dot) multiplication. The length of a vector is usually defined as the
Euclidean norm of this vector.
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Euclidean Norm of a Matrix

The Euclidean norm of an m × n matrix A = [ajk] is calculated as

‖A‖E =

√√√√ m∑
j=1

n∑
k=1

|||ajk
|||2 =

√√√√ m∑
j=1

n∑
k=1

a∗
jkajk. (5.43)

Example If A is a 2 × 2 matrix,

‖A‖E =
√

a∗
11a11 + a∗

12a12 + a∗
21a21 + a∗

22a22. (5.44)

The Euclidean norm of a square matrix A may be represented as

‖A‖E =
√

Tr(A†A). (5.45)

From (5.45), the following useful expression can easily be obtained:

‖C − B‖2
E = ‖C‖2

E + ‖B‖2
E − Tr

(
C†B + B†C

)
, (5.46)

where C and B are arbitrary square matrices.
For a unitary n × n matrix AU, by definition, AU

† AU = U and, consequently, Tr(AU
† AU ) = n. Therefore,

according to (5.45), ‖‖AU
‖‖E =

√
n.

Spectral Norm of a Matrix

The spectral norm of a square matrix A may be defined as

‖A‖S ≡

√
𝜆max[A†A] ≡ 𝜎max(A), (5.47)

where 𝜆max[A
†A] is the largest eigenvalue of the matrix A†A, and 𝜎max(A) is the largest singular value

of A.

Example 1 For a 2 × 2 matrix A,

‖A‖S =

√√√√‖A‖2
E +

√‖A‖4
E − 4 |det A|2

2
. (5.48)

Example 2 For a unitary matrix AU, AU
†AU = U. Hence all singular values of AU are equal to 1, and,

consequently, ‖‖AU
‖‖S = 1.

A very useful property of spectral norm is

‖AX‖E ≤ ‖A‖S ‖X‖E , (5.49)

where A is an arbitrary n × n matrix and X is an arbitrary n × 1 vector.
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For any 2 × 2 matrix A,

1√
2
‖A‖E ≤ ‖A‖S ≤ ‖A‖E . (5.50)

Some Properties of Norms

For any norm,

‖A‖ > 0 if A ≠ 0, ‖0‖ = 0, (5.51)‖𝛼A‖ = |𝛼| ⋅ ‖A‖ , (5.52)‖A + B‖ ≤ ‖A‖ + ‖B‖ , (5.53)‖AC‖ ≤ ‖A‖ ⋅ ‖C‖ , (5.54)

where 𝛼 is an arbitrary number, A, B, and C are arbitrary matrices of appropriate dimensions, and 0 is a
zero matrix. These are defining properties of matrix norms.

According to (5.53), for any m × n matrices C and D,

‖C‖ = ‖(C + D) − D‖ ≤ ‖C + D‖ + ‖D‖ , (5.55)‖D‖ = ‖(C + D) − C‖ ≤ ‖C + D‖ + ‖C‖ . (5.56)

From (5.55) we have

‖C‖ − ‖D‖ ≤ ‖C + D‖ .
On the other hand, according to (5.56),

‖D‖ − ‖C‖ ≤ ‖C + D‖ .
Therefore, in general,

|‖C‖ − ‖D‖| ≤ ‖C + D‖ . (5.57)

Combining (5.53) and (5.57), we may write the following general relation for norms of the sum of two
matrices:

|‖A‖ − ‖B‖| ≤ ‖A + B‖ ≤ ‖A‖ + ‖B‖ . (5.58)

This relation allows one to approximately estimate ‖A + B‖ when ‖A‖ and ‖B‖ are known.
In this book, we also use the following properties of Euclidean and spectral matrix norms:

‖AB‖E ≤ ‖A‖S ‖B‖E , ‖AB‖E ≤ ‖A‖E ‖B‖S , (5.59)‖‖CUADU
‖‖E = ‖A‖E , (5.60)‖‖CUADU
‖‖S = ‖A‖S , (5.61)

where A and B are arbitrary square matrices and CU and DU are arbitrary unitary matrices of the
same size.
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5.1.5 Kronecker Product of Matrices
In this book, along with the usual matrix product considered above, we sometimes deal with another
type of product of matrices, namely, with the Kronecker (or direct) product.

For any n × m matrix A and p × q matrix B,

A =
⎛⎜⎜⎝

a11 ⋯ a1m

⋮ ⋱ ⋮
an1 ⋯ anm

⎞⎟⎟⎠ , B =
⎛⎜⎜⎝

b11 ⋯ b1q

⋮ ⋱ ⋮
bp1 ⋯ bpq

⎞⎟⎟⎠ , (5.62)

their Kronecker product, denoted as A⊗B, is the following np × mq matrix (in block form):

A⊗ B =
⎛⎜⎜⎝

a11B ⋯ a1mB
⋮ ⋱ ⋮

an1B ⋯ anmB

⎞⎟⎟⎠ . (5.63)

Example 1 For

A =
(

a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
,

A⊗ B =
⎛⎜⎜⎜⎝

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎞⎟⎟⎟⎠ .
(5.64)

Example 2 For

A =
(

a1

a2

)
and B =

(
b1

b2

)
,

A⊗ B =
⎛⎜⎜⎜⎝

a1b1

a1b2

a2b1

a2b2

⎞⎟⎟⎟⎠ .
(5.65)

Example 3 The dyadic product [see (8.26)] can be regarded as a special case of the Kronecker
product. For

A =
⎛⎜⎜⎝

a1

a2

a3

⎞⎟⎟⎠ and B =
(

b1 b2 b3

)
,

A⊗ B =
⎛⎜⎜⎝

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎞⎟⎟⎠ .
(5.66)

Note the following properties of the Kronecker product. For any matrices A and B,

(A⊗ B)T = AT
⊗ BT, (5.67)

(A⊗ B)† = A†
⊗ B†

. (5.68)
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If matrices A and B are square and nonsingular (i.e., detA ≠ 0 and detB ≠ 0),

(A⊗ B)−1 = A−1
⊗ B−1

. (5.69)

For any matrices A, B, C, and D of appropriate dimensions,

(AB)⊗ (CD) = (A⊗ C)(B⊗ D). (5.70)

5.1.6 Approximations

For a square matrix H with ‖H‖E < 1, the following relation is valid:

(U + H)−1 = U +
∞∑

k=1

(−H)k, (5.71)

where U is the unit matrix. Suppose that A is a nonsingular matrix for which the inverse A−1 is known
and we need to estimate the inverse of the matrix A + B, where B is a matrix with ‖B‖E ≪ ‖A‖E (i.e.,
B may be considered as a small perturbation for A). We may represent the matrix A + B as

A + B = A(U + H), (5.72)

where H = A−1B, and the inverse of A + B as

(A + B)−1 = (U + H)−1A−1
. (5.73)

Then, provided that ‖H‖E < 1, we may use (5.71) to get

(A + B)−1 = (U + H)−1 A−1 =

(
U +

∞∑
k=1

(−H)k

)
A−1 = A−1 +

( ∞∑
k=1

(−H)k

)
A−1

. (5.74)

If ‖H‖E ≪ 1, we may neglect the terms with k > 1 in (5.74), which gives the following approximate
expression:

(A + B)−1 ≈ A−1 − A−1BA−1
. (5.75)

Sources for Section 5.1: References [1–3]

5.2 Some Radiometric Quantities. Conventions
Radiant energy, Q, is the amount of energy propagating onto, through, or emerging from a specified
surface of given area in a given period of time [4].

Spectral radiant energy, Q
𝜆
, is the spectral density of radiant energy:

Q
𝜆
≡

dQ
d𝜆
.
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Radiant flux (it is also called radiant power), 𝛷, is the time rate of the flow of radiant energy:

𝛷 ≡
dQ
dt
.

Radiant flux characterizes the amount of energy transferred through a surface or region of space per unit
time.

Spectral radiant flux (power), 𝛷
𝜆
, is the spectral density of radiant flux:

𝛷
𝜆
≡

d𝛷
d𝜆

=
dQ

𝜆

dt
.

Irradiance, E, at a point on a surface S (physical or geometrical) is the ratio of the radiant flux incident
on an element dS of the surface S containing this point to the area ds of the element dS:

E ≡
d𝛷
ds
.

Irradiance depends not only on properties of the radiation but also on the orientation of the surface
element dS. One can specify this orientation by indicating the direction of the normal to dS. Therefore,
specifying a particular irradiance, one may use the term irradiance along a direction, understanding the
direction of the normal to dS. In textbooks on physical optics, the term “irradiance” is often used only
in a narrow sense, in the sense of “irradiance along the direction of energy flow” (this quantity is often
called intensity). In this book, we use the term “irradiance” in the standard sense that is prescribed by
the definition given at the beginning of this paragraph. The mentioned irradiance along the direction
of energy flow is called, throughout this book, fitted-to-energy-flow-direction (FEFD) irradiance or
sometimes, in what follows, simply intensity. The applicability of FEFD irradiance is limited to simple
wave fields that have a unique direction of energy flow in each point. In this book, we often deal with
the net irradiance produced by a set of waves carrying energy in different directions. Considering light
propagation in layered media, we will deal mainly with irradiances along the stratification direction.
Such irradiances (irradiances along the stratification direction) will be denoted simply by symbol E (we
hope that the reader will not confuse irradiance with electric field strength which is denoted by similar
symbols). Stokes vectors defined in terms of such irradiances will be labeled by subscript (E) (see, e.g.,
Sections 5.3, 7.1, and 10.1).

Conventions

In Chapters 1–3 and in what follows:

� For time periodic fields, in complex representation, the time-dependent factor exp(−i𝜔t) is assumed.
� The polarization of light is called right-handed (left-handed) if to an observer looking against the

direction of propagation of the light, the end-point of the electric vector would appear to describe the
ellipse in the clockwise (anticlockwise) sense (this convention is adopted, e.g., in [5–7]).

� The term wavelength and the symbol 𝜆 are used only for wavelengths in free space, that is, wavelengths
defined as 𝜆 = c/𝜈, where c is the velocity of light in vacuum and 𝜈 is the frequency.
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5.3 Stokes Vectors of Plane Waves and Collimated Beams Propagating
in Isotropic Nonabsorbing Media

In this book, we use several different characteristics called “Stokes vector.” Really, in modern optics,
Stokes vector is treated rather as a form of representation of properties of wave fields than as a particular
characteristic. In different cases, irradiances, radiances, radiant fluxes, and so on are represented by
Stokes vectors. There are a few defining forms of Stokes vectors. In this section, we will deal with two
of them, most important for us.

Stokes Vectors of a Plane Wave

Consider an undamped monochromatic or quasimonochromatic plane wave X with wave normal l
propagating in an isotropic nonabsorbing homogeneous medium with refractive index n. Let x̃ be the
unit vector directed along a reference axis PRA (Polarization Reference Axis) perpendicular to l. The
wave X allows the following decompositions:

X = X|| + X
⊥
= X+𝜋∕4 + X−𝜋∕4 = Xr + Xl, (5.76)

where X∥, X⟂, X+𝜋/4, X–𝜋/4, Xr, and Xl are fully polarized components of X:

X∥ is linearly polarized along x̃,

X⟂ is linearly polarized along ỹ, where ỹ = l × x̃,

X+𝜋/4 is linearly polarized along x̃ + ỹ,

X–𝜋/4 is linearly polarized along x̃ − ỹ,

Xr has the right circular polarization, and

Xl has the left circular polarization.

The usual, intensity-based, Stokes vector of the wave is defined as

S(I){X} =

⎛⎜⎜⎜⎜⎝
I {X}

I
{

X∥
}
− I

{
X
⊥

}
I
{

X+𝜋∕4

}
− I

{
X−𝜋∕4

}
I
{

Xr

}
− I

{
Xl

}
⎞⎟⎟⎟⎟⎠

, (5.77)

where I{…} is the intensity (FEFD irradiance) (see Section 5.2) of the wave field indicated in the
curly brackets. In subsequent chapters, when considering layered media, we deal mainly with Stokes
vectors defined in terms of irradiances along the stratification direction (z) of the layered medium under
consideration (see Section 5.2). The Stokes vector of this kind for the wave X is defined as follows:

S(E){X} =

⎛⎜⎜⎜⎜⎝
E {X}

E
{

X∥
}
− E

{
X
⊥

}
E
{

X+𝜋∕4

}
− E

{
X−𝜋∕4

}
E
{

Xr

}
− E

{
Xl

}
⎞⎟⎟⎟⎟⎠

, (5.78)

where E is irradiance along z. Such Stokes vectors will be called irradiance-based. The vectors S(E){X}
and S(I){X} are related by

S(E){X} = |lz|S(I){X}. (5.79)
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The vectors S(E){X} and S(I){X} may be expressed in terms of the electric field of the wave:

S(I){X} = cn
8𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⟨x̃(r, t)x̃(r, t)∗⟩ + ⟨
ỹ(r, t)ỹ(r, t)∗

⟩
⟨x̃(r, t)x̃(r, t)∗⟩ − ⟨

ỹ(r, t)ỹ(r, t)∗
⟩

2 Re
⟨
x̃(r, t)ỹ(r, t)∗

⟩
2 Im

⟨
x̃(r, t)ỹ(r, t)∗

⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.80)

S(E){X} = cn |lz|
8𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⟨x̃(r, t)x̃(r, t)∗⟩ + ⟨
ỹ(r, t)ỹ(r, t)∗

⟩
⟨x̃(r, t)x̃(r, t)∗⟩ − ⟨

ỹ(r, t)ỹ(r, t)∗
⟩

2 Re
⟨
x̃(r, t)ỹ(r, t)∗

⟩
2 Im

⟨
x̃(r, t)ỹ(r, t)∗

⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.81)

x̃(r, t) ≡ x̃E(r, t), ỹ(r, t) ≡ ỹE(r, t),

where E(r,t) is the electric field strength vector of the wave X in complex representation and the brackets⟨ ⟩ denote time averaging. In the case under consideration (an undamped plane wave), S(I){X} and S(E){X}
are independent of r.

The Stokes vectors S(I){X} and S(E){X} as defined by (5.77) and (5.78) correspond to the following
defining form of Stokes vectors:

⎛⎜⎜⎜⎜⎝
X {X}

X
{

X∥
}
− X

{
X
⊥

}
X
{

X+𝜋∕4

}
− X

{
X−𝜋∕4

}
X
{

Xr

}
− X

{
Xl

}
⎞⎟⎟⎟⎟⎠

, (5.82)

where X is a scalar characteristic. The template (5.82) is usually used to introduce Stokes-vector-form
analogs of various radiometric characteristics (irradiance, radiant flux, radiance, etc.).

Expressions (5.80) and (5.81) show another defining form of Stokes vectors, namely,

k

⎛⎜⎜⎜⎝
⟨a1(t)a1(t)∗⟩ + ⟨a2(t)a2(t)∗⟩⟨a1(t)a1(t)∗⟩ − ⟨a2(t)a2(t)∗⟩

2 Re ⟨a1(t)a2(t)∗⟩
2 Im ⟨a1(t)a2(t)∗⟩

⎞⎟⎟⎟⎠ , (5.83)

where a1(t) and a2(t) are scalar complex functions and k is a real constant. This form is widely used in
statistical optics. We use it in Section 10.1 to introduce eigenwave (EW) Stokes vectors.

Flux-Based Stokes Vector of a Beam

The form (5.82) originates from historically the first, phenomenological, definition of the Stokes parame-
ters for a beam [8]. The Stokes vectors of beams corresponding to that definition of the Stokes parameters
will be called flux-based Stokes vectors. Let X be a well-collimated (having a very narrow angular spec-
trum) monochromatic or quasimonochromatic beam with nominal propagation direction l propagating
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in an isotropic nonabsorbing medium. On the assumption that the decompositions (5.76) of the beam X
are possible, the flux-based Stokes vector of this beam is defined as

S(𝛷){X} =

⎛⎜⎜⎜⎜⎝
𝛷 {X}

𝛷

{
X∥
}
−𝛷

{
X
⊥

}
𝛷

{
X+𝜋∕4

}
−𝛷

{
X−𝜋∕4

}
𝛷

{
Xr

}
−𝛷

{
Xl

}
⎞⎟⎟⎟⎟⎠

, (5.84)

where 𝛷 is radiant flux (power) across a plane perpendicular to l or across any tilted geometrical plane
crossed by X (the incidence of X on which is not glancing).

5.4 Jones Vectors
In this book, we consider several variants of the Jones matrix method and different variants of their
application, which use different types of Jones vectors. In this section, we discuss some important
general aspects of application of Jones vectors for describing wave fields and introduce some terminology.
Discussing here Jones vectors of wave fields propagating in anisotropic media, we restrict ourselves to
considering fields induced in an anisotropic layer by a normally incident wave. The application of Jones
vectors in the case of oblique incidence is considered in Chapters 8, 11, and 12. It should be noted
that in this section we deal only with Jones vectors that are precisely defined from the standpoint of
electromagnetic theory and examine them in the context of this theory. We have discussed the application
of Jones vectors for describing fields in anisotropic media within the framework of the classical Jones
calculus in Section 1.4.5 and have noted its drawbacks. We will not return to that discussion here, because
the current discussion is oriented to methods that are more consistent with electromagnetic theory than
the classical Jones calculus.

5.4.1 Fitted-to-Electric-Field Jones Vectors and
Fitted-to-Transverse-Component-of-Electric-Field
Jones Vectors

Isotropic medium. A homogeneous (see Section 8.1.2) plane monochromatic wave propagating in an
isotropic nonabsorbing medium is strictly electrically transverse, that is, the electric field strength vector
E of the wave is strictly perpendicular to its wave normal, and therefore the electric field of the wave can
be represented as

E(r, t) =
(
⌢xA0⌢x +

⌢yA0⌢y

)
ei(k0nlr−𝜔t) =

(
⌢xA⌢x(r) + ⌢yA⌢y(r)

)
e−i𝜔t, (5.85)

where l is the wave normal, ⌢x and ⌢y are mutually orthogonal unit vectors both perpendicular to l, r is a
position vector, and n is the refractive index of the medium. The column vector composed of the scalar
complex amplitudes A⌢x and A⌢y

J⌢x⌢y =
(

A⌢x

A⌢y

)
(5.86)

is one of the common variants of Jones vector (see Section 1.1).
Uniaxial medium. Suppose that the wave (5.85) is incident normally on a layer of a uniaxial nonab-

sorbing medium occupying the space between the planes z = z1 and z = z2 in a Cartesian coordinate
system (x, y, z). To be specific, we assume that the z-axis is codirectional with the wave normal l and
z1 < z2. If the optic axis of the layer—we specify the direction of this axis by a unit vector c—is not
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parallel to l, the wave field propagating in the positive z direction inside the layer will in general be
a superposition of two plane waves having identical wave normals but different propagation speeds,
namely, an extraordinary wave with electric field

Ee(r, t) = ⌢eeA0ee
i(k0nelr−𝜔t) = ⌢eeAe(r)e−i𝜔t (5.87)

and an ordinary wave with electric field

Eo(r, t) = ⌢eoA0oei(k0nolr−𝜔t) = ⌢eoAo(r)e−i𝜔t, (5.88)

where ⌢ee and ⌢eo are unit vectors specifying the vibration directions of the electric fields of these waves,
and ne and no are the corresponding refractive indices. The vector ⌢eo, whatever the orientation of the
optic axis c, is perpendicular to l and c. The vector ⌢ee is coplanar with l and c and, except for the case l ⟂
c, is not perpendicular to l, that is, the extraordinary wave is in general not strictly electrically transverse
(see Section 1.3.2). Here we note two variants of Jones vectors, which can be used to describe this pair
of waves. One is

Jeo =
(

Ae

Ao

)
. (5.89)

The other is

Jeo−t =
(

Aet

Ao

)
, (5.90)

where

Aet = Aecos 𝛾et,

with 𝛾et being the angle between ⌢ee and the x–y plane. The amplitude Ae directly characterizes the
magnitude of the field Ee (|Ae| is equal to the length |Ee| of the vector Ee; |Ee| ≡ (Ee

∗⋅Ee)
1/2, where

“⋅” denotes the dot multiplication), while the amplitude Aet directly characterizes the magnitude of the
transverse component of this field Eet = Ee − l(l⋅Ee) (|Aet| = |Eet| ≡ (Eet

∗⋅Eet)
1/2). Since the ordinary wave

is strictly transverse, the amplitude Ao directly characterizes both the magnitude of the field Eo and that of
its transverse component. In what follows, the Jones vectors whose components directly characterize the
magnitudes of electric fields will be referred to as fitted-to-electric-field (FEF) Jones vectors. The Jones
vectors whose components directly characterize the magnitudes of the transverse components of electric
fields will be called fitted-to-transverse-component-of-electric-field (FTCEF) Jones vectors. The column
Jeo [see (5.89)] is an example of FEF Jones vector. The column Jeo−t [see (5.90)] is an FTCEF Jones
vector. Since the wave in the isotropic medium [see (5.85)] in the above example is strictly transverse,
the Jones vector J⌢

x
⌢
y

[see (5.86)] is both FEF and FTCEF.

5.4.2 Fitted-to-Irradiance Jones Vectors

One of the important aspects of light propagation is energy transfer. In considering the interaction of a
plane wave and a stratified medium, the basic quantity characterizing the amount of energy carried by a
wave field is the irradiance along the stratification direction, E (see Sections 5.2 and 5.3). This irradiance
may be expressed in terms of the time-averaged Poynting vector of the field (see Section 8.1)

⟨S⟩ = c
8𝜋

Re (E × H∗) , (5.91)
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where E and H are respectively the electric and magnetic field strength vectors (the field is assumed to
be time-harmonic), and c is the velocity of light in free space, as follows:

E = |z ⟨S⟩| ,

where z is the unit vector along the stratification direction.
It is usual to employ for characterization of plane waves propagating in isotropic media the irradiance

along the wave normal, which is expressed as

El = |l ⟨S⟩| ,

where l is the wave normal. Irradiance of this kind may also be used to characterize a pair of equinormal
(having identical wave normals) natural waves propagating in an anisotropic layer, such as (5.87) and
(5.88). In the case of normal incidence, l∥z and consequently

El = E.

The magnetic field of a homogeneous plane wave propagating in an isotropic nonabsorbing medium
with refractive index n can be expressed as

H = n(l × E), (5.92)

where, as before, l is the wave normal. Substitution of (5.92) into (5.91) gives

⟨S⟩ = cn
8𝜋

Re (E × (l × E∗)) = cn
8𝜋

Re (l (E ⋅ E∗) − E∗ (l ⋅ E)) . (5.93)

Since the wave is strictly transverse, l ⋅ E = 0 and consequently

⟨S⟩ = c
8𝜋

nl (E ⋅ E∗) . (5.94)

For the wave (5.85), ⟨S⟩ can be expressed in terms of A⌢x and A⌢y:

⟨S⟩ = cn
8𝜋

l
(
A⌢xA

∗
⌢x + A⌢yA

∗
⌢y

)
. (5.95)

The quantity A⌢x A∗
⌢x + A⌢y A∗

⌢y may be written as

A⌢x A∗
⌢x + A⌢y A∗

⌢y = J†
⌢x⌢y J⌢x⌢y ≡ ||J⌢x⌢y||2 , (5.96)

where ||J⌢x⌢y|| ≡ ‖‖J⌢x⌢y‖‖E is the length (the Euclidean norm) of the vector J⌢x⌢y (see Section 5.1.4). Therefore,
the time-averaged Poynting vector of the wave (5.85) and irradiance El can be expressed in terms of its
FEF Jones vector as follows:

⟨S⟩ = cn
8𝜋

l
(
J†
⌢x⌢y J⌢x⌢y

)
, (5.97)

El =
cn
8𝜋

J†
⌢x⌢y J⌢x⌢y. (5.98)

In the case of normal incidence, the irradiance E can also be expressed as

E = cn
8𝜋

J†
⌢x⌢y J⌢x⌢y. (5.99)
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One may notice that the factor required to calculate irradiances from the FEF Jones vector depends on
the refractive index of the medium where the wave propagates. Two waves with the same irradiance
El propagating in media with different refractive indices will be characterized by FEF Jones vectors of
different length [see (5.95) and (5.96)]. For example, a wave propagating in glass with n = 1.5 will have

a
√

1.5 times smaller, in length, FEF Jones vector than a wave of the same irradiance El propagating
in air (n = 1). Therefore, we cannot compare the irradiances of waves propagating in different media
comparing their FEF Jones vectors only.

In the case of an anisotropic medium, the relationship between FEF Jones vectors and irradiances is
still more complicated. For example, in the simplest situation when c⟂l, the irradiance E of the wave
field consisting of the waves (5.87) and (5.88) (l∥z) is given by

E = c
8𝜋

(
n||AeA

∗
e + n

⊥
AoA∗

o

)
, (5.100)

where n∥ and n⟂ are the principal refractive indices of the uniaxial medium. As is seen from (5.100),
in this case, if |Ae| is equal to |Ao|, the contributions of the ordinary wave and extraordinary wave to the
irradiance E will be different. According to (5.100), the irradiance may be expressed in terms of the FEF
Jones vector Jeo [see (5.89)] as follows:

E = c
16𝜋

J†
eon0Jeo, (5.101)

where

n0 =
(

2n|| 0
0 2n

⊥

)
. (5.102)

The factor 2 is introduced in n0 to provide the consistency of these formulas with analogous formulas
in next sections. Matrices specifying the relationship between amplitude characteristics and power
characteristics of wave fields, such as n0, will be called metric matrices. Relation (5.99) may be rewritten
using the metric matrix

n0 =
(

2n 0
0 2n

)
as

E = c
16𝜋

J†
⌢x⌢y n0J⌢x⌢y. (5.103)

In the above cases and many other cases, it is possible to define Jones vectors so that the metric
matrix is equal to the unit matrix. For instance, in the above cases we may define the Jones vector as
follows:

J =
(

A1

A2

)
, (5.104)

where

A1 =
√

2nA⌢x, A2 =
√

2nA⌢y (5.105)
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for the field in the isotropic medium, and

A1 =
√

2n||Ae, A2 =
√

2n
⊥

Ao (5.106)

for the field in the uniaxial medium. In both cases, the irradiance E can be expressed as

E = c
16𝜋

J†J. (5.107)

Jones vectors defined so that relation (5.107) is applicable to them will be referred to as fitted-to-
irradiance (FI) Jones vectors. An FI Jones vector contains all the information required to estimate the
corresponding irradiance. Wave fields of equal irradiance are characterized by FI Jones vectors of equal
length. If a wave field normally incident on a layered system and the wave field transmitted by the system
are represented by their FI Jones vectors, Jinc and Jtr respectively, the transmittance t of this system for
this incident field may be calculated by the formula

t(Jinc) =
J†

trJtr

J†
incJinc

(5.108)

even when the media in which the incident and transmitted fields travel are different. Another profit
of the use of FI Jones vectors is a simple mathematical form of corresponding Jones matrices when
they characterize lossless operations or operations without diattenuation (just as in the classical Jones
calculus, see Section 1.4). In the former case, these matrices are unitary. In the latter case, they are STU
matrices (see Sections 5.1.3). In general this is not the case for Jones matrices operating with FEF Jones
vectors. The fact that the operations performed by certain elements of the optical system being considered
are described by unitary or STU Jones matrices often greatly simplifies analysis and calculations. The
reader can find many examples of this in previous and next chapters.

5.4.3 Conventional Jones Vectors

It is often convenient to use, as state characteristics, Jones vectors (J) related to corresponding true Jones
vectors (J) as follows:

J = tJJ, (5.109)

where tJ is a scalar quantity which is usually complex-valued and is a function of position. The use
of such vectors significantly simplifies solving many problems and is customary for the classical Jones
matrix method (see Chapter 1). We will call such vectors conventional Jones vectors. Let us consider
some types of conventional Jones vectors.

Polarization Jones Vectors

Conventional Jones vectors j of unit length, i.e., such that

j†j = 1, (5.110)

are usually called polarization Jones vectors. This name fully corresponds to the meaning of such vectors
when they are used for description of waves propagating in isotropic media, because in this case such a
vector really characterizes the state of polarization of a wave (see Section 1.1.2). In any case, we will use
the following general definition: the polarization Jones vector of a wave field is a unit vector collinear to
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the true FI Jones vector of the field. This definition removes an ambiguity appearing when wave fields in
anisotropic media are considered. In this book, the polarization Jones vectors of plane waves propagating
in isotropic homogeneous media are always considered as spatially invariant.

True-Phase and Prescribed-Phase Jones Vectors

The Jones vectors (5.86), (5.89), and (5.90) contain information about the magnitude and relative phase
of the field components as well as about the absolute phase of the corresponding fields. Such vectors
may be called true-phase Jones vectors. In many cases, information about the absolute phase of wave
fields is unnecessary. This permits one to perform calculations without tracing the absolute phase and to
operate with Jones vectors having an arbitrary, no matter what or some convenient, phase. Such Jones
vectors will be called prescribed-phase.

Spatially Invariant Jones Vectors

The Jones vectors (5.86), (5.89), and (5.90) are local characteristics of the wave fields, being functions
of position. When a homogeneous plane wave propagates in an isotropic nonabsorbing medium, its true-
phase Jones vectors at different points differ from each other only in absolute phase, and it is possible to
define a conventional, prescribed-phase, Jones vector of this wave so that this vector is spatially invariant.
The use of such Jones vectors allows one to avoid the necessity of tracing the spatial evolution of Jones
vectors inside isotropic nonabsorbing media. The polarization Jones vector of a plane wave propagating
in a homogeneous isotropic medium can be defined as spatially invariant even if the medium is absorbing,
thanks to normalization (5.110).
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6
Simple Models and
Representations for Solving
Optimization and Inverse Optical
Problems. Real Optics of LC Cells
and Useful Approximations

In many kinds of LCDs (TN LCDs, STN LCDs, etc.), the liquid crystal layer in its working state has
a distorted chiral structure and, because of this, exhibits rather intricate polarization-optical properties.
Optimization of the optical performance of such LCDs involves finding optimal parameters of the polariz-
ers and elements of the compensation system (compensation films) and is a complicated multiparametric
problem. The main aim of this chapter is to present a set of concepts, models, and representations helpful
in solving such optimization problems. Some of the representations considered here are also useful in
solving inverse problems for LC layers with twisted structure (experimental determination of the twist
angle, surface orientation of the LC director, thickness of LC layers, etc.). In this chapter, we consider
only the case of normal incidence of light. Possible applications of some concepts presented here in the
case of oblique incidence are discussed in succeeding chapters.

In Chapters 1 and 2, some simple optical models for LCDs were considered. In this chapter, we will
arrive at the same and allied models and approximations underlying these models starting from real
optical properties of LC cells. The discussion of the real optics of LC cells is illustrated by experimental
examples. These experimental examples are interesting not only in the context of this chapter. They
allow one to estimate the effects of some secondary factors that are taken into account or neglected in
different optical models of LCDs.
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6.1 Polarization Transfer Factor of an Optical System
Let us consider a layered optical system M described by a Mueller matrix M = [mij] that relates the
Stokes vector SI of a quasimonochromatic light beam normally incident on this system and the Stokes
vector SO of a light beam emerging from the system:

SO = MSI. (6.1)

The media where the incident and output beams propagate are assumed to be isotropic and nonabsorbing.
The Stokes vectors SI and SO are assumed to be flux-based ones (see Section 5.3). Let the polarization
reference axis (Section 5.3) for the vector SI be codirectional with the axis xI of a right-handed coordinate
system (xI, yI, zI) with the axis zI directed along the nominal propagation direction of the incident beam
and that for the vector SO be codirectional with the axis xO of a right-handed coordinate system (xO, yO, zO)
whose axis zO is directed along the nominal propagation direction of the output beam. Suppose that the
incident beam is linearly polarized with polarization direction at angle 𝜗 from the axis xI (the positive
direction for 𝜗 is taken to be from the positive xI-axis toward the positive yI-axis; we will use this rule in
all similar cases in what follows). The vector SI is then can be represented as

SI = 𝛷I

⎛⎜⎜⎜⎝
1

cos 2𝜗
sin 2𝜗

0

⎞⎟⎟⎟⎠ , (6.2)

where 𝛷I is the radiant flux carried by the incident beam along zI. Let us assume that the output light
is passed through an ideal linear polarizer (analyzer). We denote the angle between the axis xO and the
transmission axis of the analyzer by 𝜗′. According to the Stokes vector–Mueller matrix formalism [1],
the radiant flux 𝛷OA (along zO) transmitted by the analyzer can be expressed as follows:

𝛷OA = 1
2

( 1 cos 2𝜗′ sin 2𝜗′ 0 )SO. (6.3)

The quantity

tPA(𝜗, 𝜗′) = 𝛷OA∕𝛷I (6.4)

will be called the polarization transfer factor of the system. From (6.1)–(6.4), one can derive the following
expression for the polarization transfer factor in terms of elements of the matrix M and the angles 𝜗
and 𝜗′:

tPA(𝜗, 𝜗′) = B0 + B1 cos 𝜂− + B2 cos 𝜂+ + B3 sin 𝜂− + B4 sin 𝜂+
+B5 cos 2𝜗 + B6 sin 2𝜗 + B7 cos 2𝜗′ + B8 sin 2𝜗′,

(6.5)

𝜂
− = 2(𝜗 − 𝜗′), 𝜂

+ = 2(𝜗 + 𝜗′), (6.6)

where

B0 = m11∕2,
B1 = (m22 + m33)∕4,
B2 = (m22 − m33)∕4,
B3 = (m23 − m32)∕4,
B4 = (m23 + m32)∕4,
B5 = m12∕2, B6 = m13∕2,
B7 = m21∕2, B8 = m31∕2.

(6.7)
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From (6.7), we see an unambiguous correspondence between the parameters Bj ( j = 0,1,…, 8) and nine
elements mjk ( j, k = 1,2,3) of the Mueller matrix. Expression (6.5) is very general. It is applicable to
both nondepolarizing and depolarizing optical systems, including systems with polarization-dependent
losses. The coefficients Bj will be referred to as polarization transport coefficients of the system.

Assuming that the incident linearly polarized light is obtained by using an ideal polarizer, we will call
the angle 𝜗 the polarizer orientation angle. The angle 𝜗′ will be called the analyzer orientation angle.

Polarization-Dependent Losses (Diattenuation)

Suppose that the light incident on the system M is unpolarized. Then the transmittance of the combined
system consisting of the system M and the ideal polarizer (analyzer) can be expressed as follows:

tUP-A(𝜗′) = 1
2

(
tPA(𝜐, 𝜗′) + tPA(𝜐 + 90◦, 𝜗′)

)
(6.8)

at any 𝜐 (𝜐 is an arbitrary value of the variable 𝜗). Substituting (6.5) into (6.8), we obtain

tUP-A(𝜗′) = B0 + B7 cos 2𝜗′ + B8 sin 2𝜗′. (6.9)

It is clear that tUP-A can vary with 𝜗′ only if the light transmitted by M is polarized, at least, partially,
that is, when the system M is able to polarize the light, i.e., exhibits polarization-dependent losses
(diattenuation). On the other hand, if the light incident on M is linearly polarized, the transmittance of M
can be expressed as follows:

tP(𝜗) = tPA(𝜗, 𝜐′) + tPA(𝜗, 𝜐′ + 90◦) (6.10)

at any 𝜐′. From (6.10) and (6.5), we find that

tP(𝜗) = 2(B0 + B5 cos 2𝜗 + B6 sin 2𝜗). (6.11)

The dependence of this transmittance on 𝜗 also implies the presence of polarization-dependent losses.
It is thus obvious that the coefficients B5, B6, B7, and B8 are nonzero only for systems exhibiting
polarization-dependent losses and characterize their amount and effect. See also [2].

In the absence of diattenuation, the function tPA(𝜗, 𝜗′) in general has the following form:

tPA(𝜗,𝜗′) = B0 + B1 cos 2(𝜗 − 𝜗′) + B2 cos 2(𝜗 + 𝜗′) + B3 sin 2(𝜗 − 𝜗′) + B4 sin 2(𝜗 + 𝜗′). (6.12)

Analyzing this expression, one can see that the minimum (tPA min) and maximum (tPA max) values of the
function tPA(𝜗, 𝜗′) are:

tPA min = B0 − B13 − B24, tPA max = B0 + B13 + B24, (6.13)

where

B13 =
√

B2
1 + B2

3, B24 =
√

B2
2 + B2

4. (6.14)
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Hence, the range of the function tPA(𝜗, 𝜗′) has a width equal to 2

(√
B2

1 + B2
3 +

√
B2

2 + B2
4

)
. Moreover,

it can be noticed that, according to (6.12), the function tPA(𝜗, 𝜗′) in this case satisfies the following
equation:

tPA(𝜐, 𝜐′) = tPA(𝜐 ± 90◦, 𝜐′ ± 90◦), (6.15)

where 𝜐 and 𝜐′ are arbitrary values of 𝜗 and 𝜗′. This is the well-known general property of optical systems
without diattenuation, which has been mentioned in Section 1.4.1.

Coefficients Bj and Jones Matrix

Let us assume that the matrix M is a Mueller–Jones matrix, that is, a matrix representable in the form

M = L (t⊗ t∗) L−1, (6.16)

where t is a Jones matrix, L is the 4 × 4 matrix given by (10.6) (Section 10.1), ⊗ denotes the Kronecker
matrix multiplication (see Section 5.1.5). Conditions under which this representation is adequate are
discussed in detail in subsequent chapters. Here we only note that this representation is often used for
Mueller matrices of LC cells when the analysis is performed with the use of the classical Jones calculus
(JC) [3] (Section 1.4). It is clear that the Jones matrix in (6.16) is assumed to have the input and output
bases identical to those of the matrix M.

According to (6.7) and (6.16), the coefficients Bj can be expressed in terms of the elements of the
matrix t = [tjk] as follows:

B0 =
1
4

(|t11|2 + |t12|2 + |t21|2 + |t22|2) ,

B1 =
1
8

(|t11 + t22|2 − |t12 − t21|2) ,

B2 =
1
8

(|t11 − t22|2 − |t21 + t12|2) ,

B3 =
1
4

Re
((

t12 − t21

) (
t∗11 + t∗22

))
,

B4 =
1
4

Re
((

t12 + t21

) (
t∗11 − t∗22

))
,

B5 =
1
4

(|t11|2 − |t12|2 + |t21|2 − |t22|2) , B6 =
1
2

Re
(
t∗11t12 + t∗21t22

)
,

B7 =
1
4

(|t11|2 + |t12|2 − |t21|2 − |t22|2) , B8 =
1
2

Re
(
t11t∗21 + t12t∗22

)
.

(6.17)

This representation implies that the system does not manifest any depolarizing action, that is, the
output light is always completely polarized when the incident light is completely polarized.

Unitary Approximation. Unitary Systems

Suppose that the matrix t in (6.16) can be represented as

t = 𝜍tU, (6.18)
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where tU is a unitary matrix, and 𝜍 is a scalar, possibly complex, coefficient. With this representation,
the operation described by the matrices M and t is without depolarization and diattenuation. Possible
polarization-independent losses in the system are taken into account via the coefficient 𝜍. Rewrite
expression (6.18) in the form

t = 𝜍UMtUM, (6.19)

where

𝜍UM = 𝜍

√
det tU, tUM = 1√

det tU

tU. (6.20)

The matrix tUM is unitary and has determinant 1, and, consequently [see (5.31)], can be written as

tUM =
(

a′ + ia′′ b′ + ib′′

−b′ + ib′′ a′ − ia′′

)
, (6.21)

where a′, a′′, b′, and b′′ are real scalars satisfying the equation

a′2 + a′′2 + b′2 + b′′2 = 1. (6.22)

Since ||det tU
|| = 1 (see Section 5.3),

|𝜍UM| = |𝜍|. (6.23)

By making use of (6.19)–(6.23), we can obtain the following expressions for the coefficients Bj for this
case:

B0 =
K
2

, B1 =
K
2

(a′2 − b′2), B2 =
K
2

(a′′2 − b′′2),

B3 = Ka′b′, B4 = Ka′′b′′,

B5 = B6 = B7 = B8 = 0,

(6.24)

where K = 𝜍𝜍∗. The coefficient K is equal to the ratio of the radiant flux of the beam emerging from the
system M to that of the incident beam. As can be seen from (6.24) and (6.22), coefficients Bj in this case
satisfy the following relation:

B0 =
√

B2
1 + B2

3 +
√

B2
2 + B2

4. (6.25)

According to (6.23), (6.13), and (6.14), for the case under consideration,

tPA min = 0, (6.26)

tPA max = 2B0 = K. (6.27)

The zero tPA is reached when 𝜗 [at B13 ≠ 0, see (6.14)] and 𝜗′ (at B24 ≠ 0) are such that

cos 2(𝜗 − 𝜗′) = −
B1

B13

, sin 2(𝜗 − 𝜗′) = −
B3

B13

,

cos 2(𝜗 + 𝜗′) = −
B2

B24

, sin 2(𝜗 + 𝜗′) = −
B4

B24

.

(6.28)
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The maximum tPA is reached at 𝜗 and 𝜗′ satisfying the relations

cos 2(𝜗 − 𝜗′) =
B1

B13

, sin 2(𝜗 − 𝜗′) =
B3

B13

,

cos 2(𝜗 + 𝜗′) =
B2

B24

, sin 2(𝜗 + 𝜗′) =
B4

B24

.

(6.29)

The assumption that a Jones matrix can be represented in the form (6.18) will be called the unitary
approximation. Recall that in Section 5.1.3 matrices representable in the form (6.18) have been called
STU matrices. The unitary approximation naturally leads to the concepts of a unitary system (see
Section 1.4), a system which changes only the state of polarization of the passing light. An imaginary
optical system whose action is described by the unitary matrix tU in (6.18), by definition, is a unitary
system. Unitary Jones matrices, such as tU and tUM, can be regarded as polarization Jones matrices. Recall
that polarization Jones matrices were defined in Section 1.3.4 as operators that relate the polarization
Jones vectors (see Sections 1.1.2 and 5.4.3) of the input and output light.

In the case of the unitary approximation, the factor tPA can be expressed as follows:

tPA(𝜗, 𝜗′) = K[BU0 + BU1 cos 2(𝜗 − 𝜗′) + BU2 cos 2(𝜗 + 𝜗′)

+BU3 sin 2(𝜗 − 𝜗′) + BU4 sin 2(𝜗 + 𝜗′)],
(6.30)

where

BU0 =
1
2

, BU1 =
a′2 − b′2

2
, BU2 =

a′′2 − b′′2

2
, BU3 = a′b′, BU4 = a′′b′′

. (6.31)

The coefficients BUj here meet the condition

√
B2

U1 + B2
U3 +

√
B2

U2 + B2
U4 = 0.5 (6.32)

and characterize the imaginary unitary system associated with the system in question. These coefficients
will be called unitary polarization transport coefficients. Polarization transfer factors of the associated
unitary system (tPAU = tPA∕K) will be referred to as unitary polarization transfer factors.

Now we will give some experimental examples in which representation (6.5) is used to describe
transmission properties of LC cells. These examples will be used by us as illustrations in discussions of
different models, approximations, and methods. In passing, we will note some important properties of
the coefficients Bj for transmissive systems.

6.2 Optics of LC Cells in Terms of Polarization
Transport Coefficients

In the experiments the results of which are presented in this section, we used the standard measurement
scheme shown in Figure 6.1. The light beam from a broadband light source passed through the polarizer
and normally fell on the LC cell. The light transmitted by the LC cell passed through the second polarizer
(analyzer), and, after that, its spectrum was registered by a spectrometer. The devices employed in the
measurements are described in [4]. The reference systems (xI, yI, zI) and (xO, yO, zO) are taken to be
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LC cell Polarizer

Analyzer

ϑ

ϑ'

xI

zIyI

P

A

φ 1

xI

ϑ
ϑ'

Φ

yI

n1

n2P
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Figure 6.1 Geometry of the experiment. P and A are the transmission axes of the polarizer and analyzer,
respectively

equivalent. The polarization transfer factors measured using this scheme will be called the polarized
transmittances. The polarized transmittance associated with particular values of the angles 𝜗 and 𝜗′ (see
Figure 6.1), say 𝜗 = 𝜐 and 𝜗′ = 𝜐′, was calculated as

tPA(𝜐, 𝜐′) = It𝜐𝜐′ ∕Ii𝜐, (6.33)

where It𝜐𝜐′ is the registered intensity of the light transmitted by the polarizer–LC cell–analyzer system
at 𝜗 = 𝜐 and 𝜗′ = 𝜐′, and Ii𝜐 is the registered intensity of the light transmitted by the polarizer–analyzer
system at 𝜗′ = 𝜗 = 𝜐 for the same incident light. The spectral resolution of the spectrometer in the
measurements was about 4 nm. Therefore the measured value of tPA for a wavelength 𝜆 = �̃� on the
spectrometer scale can be regarded as an estimate of tPA for a quasimonochromatic incident light with
mean wavelength equal to �̃� and spectral bandwidth Δ𝜆 ≈ 4 nm (see Section 7.1).

Figure 6.2 presents experimental spectra of tPA for a twisted nematic cell which will be called
cell E1. This cell has the usual sandwich-type structure (as well as the other cells considered in this
chapter) and is electrically controllable (see Figure 6.3). Plates of commercial indium tin oxide (ITO)-
coated glass for LC displays were used as substrates. The glass thickness is 1.1 mm. The thickness
of the ITO films is about 0.07 μm. The alignment films in this cell are photoaligned layers of sul-
fonic azo-dye SD-1 [5] with a thickness of the order of 10 nm. The cell was filled with nematic
LC ZLI-5700-000 (Merck) (this LC material has n⟂ = 1.4894 and n|| = 1.6122 for 𝜆 = 589.3 nm
at 20◦C). The parameters of the LC layer are the following: twist angle Φ ≈ 87◦, pretilt angles
≈ 0◦, and thickness d ≈ 5.3 μm. In the experiment the results of which are presented in Figure 6.2, the
cell was oriented so that the LC director on the LC layer boundary nearest to the input polarizer was
nearly perpendicular to the reference axis for the angles 𝜗 and 𝜗′.

Figure 6.4a shows the spectral dependences of the coefficients Bj computed from the spectra of the
polarized transmittances presented in Figure 6.2. In principle, the nine coefficients Bj can be found from
nine spectra of the polarized transmittance measured for nine different settings of the polarizer and
analyzer. However, in our experiments the error of measurement of the polarized transmittances was
relatively large (∼2%), in particular, because of fluctuations of the light source intensity. To decrease
the effect of measurement errors caused by random factors, we calculated the coefficients Bj from 16
experimental polarized transmittances corresponding to 𝜗 = −45◦, 0◦, 45◦, 90◦ and 𝜗′ = −45◦, 0◦, 45◦,
90◦ by the least-squares method. The standard deviation between the measured values of the polarized
transmittance and the tPA values calculated by formula (6.5) with the experimental values of Bj in our
experiments was of the order of 3 × 10−3. This testifies to both a relatively high experimental accuracy
and a high degree of correspondence of the experimental data to representation (6.5).



JWST441-c06 JWST441-Yakovlev Printer: Markono December 30, 2014 7:58 Trim: 244mm × 170mm

184 Modeling and Optimization of LCD Optical Performance

700650600550500450400

0.0

0.2

0.4

0.6

0.8

1.0

t
PA

t
PA

t
PA

t
PA

t
PA

t
PA

t
PA

t
PA

P
o
la

ri
z
e
d
 t

ra
n
s
m

it
ta

n
c
e

Wavelength (nm)

700650600550500450400

0.0

0.2

0.4

0.6

0.8

1.0

t
PA

t
PA

t
PA

t
PA

t
PA

t
PA

t
PA

t
PA

(–45°,0°)

(45°,90°)

(–45°,90°)

(–45°,–45°)

(0°,0°)
(90°,90°)

(0°,45°)

(0°,–45°)(90°,45°)

(90°,0°)

(0°,90°)

(90°,–45°)

(45°,45°)
(45°,–45°)

(–45°,45°)

(45°,0°)

P
o

la
ri
z
e

d
 t

ra
n

s
m

it
ta

n
c
e

Wavelength (nm)

Figure 6.2 Experimental spectra of the polarized transmittances for cell E1 (with ZLI-5700-000) [4]
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Figure 6.3 Structure of cell E1. EL labels the electrodes, and AF the alignment films

6.2.1 Polarization-Dependent Losses and Depolarization.
Unpolarized Transmittance

Polarization-Dependent Losses

Figure 6.2 shows eight pairs of the spectra: {tPA(0◦,0◦), tPA(90◦,90◦)}, {tPA(0◦,45◦), tPA(90◦,−45◦)},
{tPA(0◦,90◦), tPA(90◦,0◦)}, {tPA(0◦,−45◦), tPA(90◦,45◦)}, {tPA(45◦,0◦), tPA(−45◦,90◦)}, {tPA(45◦,45◦),
tPA(−45◦,−45◦)}, {tPA(45◦,90◦), tPA(−45◦,0◦)}, and {tPA(45◦,−45◦), tPA(−45◦,45◦)}. In the absence of
diattenuation, spectra in each pair would be identical to each other [see (6.15)]. As is seen from the figure,
the spectra in each pair are close to each other, but in some pairs, for example, in the pair {tPA(0◦,90◦),
tPA(90◦,0◦)}, the difference between the spectra is significant, which points to the presence of diatten-
uation in the cell. The presence of polarization-dependent losses is also evidenced by the noticeable
deviation of the coefficients B5 and B7 from zero (see Figure 6.4a).

The diattenuation in cell E1 is determined by the following three factors. The first factor is the
multiple-beam interference in the LC layer or, more precisely, the interference of the waves passing
through the LC layer once and waves that arise from the multiple reflections from the thin-film systems
surrounding the LC layer and pass through the LC layer many times. A feature of this interference is a
dependence of the position of the interference extrema on the incident light polarization. The significant
effect of this interference is explained by a relatively high reflectivity of the alignment film–electrode
systems due to a large difference of the refractive index of ITO (nITO ∼ 2.0) from the refractive indices
of the glass substrates and alignment layers. This multiple-beam interference appears as relatively fast
oscillations in the spectra of the transmittances and Bj. In a real experiment, these oscillations may be
somewhat smoothed owing to the finite resolution of the spectrometer used; this effect becomes more
pronounced with increasing the LC layer thickness. The second factor leading to the diattenuation is a
polarization-dependent transmittance of the liquid crystal–alignment film interfaces. The effect of this
factor, as a rule, is smaller than the effect of the first factor, but it is also usually perceptible. In our
case, for instance, this factor should be regarded as the reason why in the region from 500 to 700 nm
the average value of tPA(90◦,0◦) is a little higher than the average value of tPA(0◦,90◦). The significant
diattenuation in the spectral region 𝜆 < 470 nm is caused by the action of the third factor; this factor
is linear dichroism of the photoalignment films: a polarized absorption band of oriented SD-1 occupies
the violet–blue region of the visible spectrum [5]. Another factor of diattenuation in real experiments,
more typical than the dichroism of alignment layers, is linear dichroism of the LC material (this factor
was absent in the considered experimental example). The diattenuation caused by the first two factors is
always present to a greater or lesser extent.

Depolarization

Even if we assume that the LC layer and the other layers of the LC cell in the probed region have no
variations in thickness and that the LC layer in this region is strictly 2D-homogeneous, that is, its local
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Figure 6.4 Experimental spectra of the coefficients Bj for cell E1 (a) and their transformation after
rotation of the cell by ∼45◦ (b). The symbols are only to mark the lines
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LC cell 

1 2

Figure 6.5 To the discussion of the depolarizing action of LC cells

optical parameters depend only on the coordinate along the normal to the interfaces (z), in this experiment,
where we measure the overall transmission characteristics of the cell (see Section 7.1), strictly speaking,
we cannot consider the LC cell as a nondepolarizing system for quasimonochromatic incident light
with bandwidth of the order of 1 nm and larger. Thus, the state of polarization of the fraction of the
transmitted beam whose way within the LC cell is shown in Figure 6.5 as way 1 will in general be different
from the state of polarization of the fraction whose way is way 2. At the same time, because of a large
thickness of the substrates, these fractions are mutually incoherent and add incoherently (see Section 7.1).
The incoherent adding of differently polarized components in such situations gives rise to the partial
depolarization of the whole transmitted beam. At normal incidence (which we consider in this section),
the contribution of the components arising from the multiple reflections at the external surfaces of the LC
cell to the net power of the transmitted light is small and often negligible. However, in the case of oblique
incidence, the contribution of these components and, consequently, the depolarization may be noticeable.
Methods described in Chapter 10 enable a realistic modeling of such situations with due consideration
for both coherent and incoherent effects accompanying the propagation of quasimonochromatic light in
layered systems.

Unpolarized Transmittance

The transmittance of the sample (the LC cell) for unpolarized incident light (unpolarized transmittance,
tunp) can be expressed as

tunp = 2B0.

The average level and the trend line of the spectrum of tunp in the visible region for cells with the
structure shown in Figure 6.3 and negligible absorption, scattering, and reflection losses in the LC layer
are determined mainly by the reflection losses at the external interfaces of the cell (∼8%) and the losses
caused by the multiple-beam interference and absorption in the ITO layer–alignment layer systems
(usually of the order of 5–20%). The losses caused by absorption in the glass substrates in the visible
region are usually of the order of 1–2%.

6.2.2 Rotations

Azimuthal Rotations of the Sample. Rotational Invariants

Analyzing expressions (6.5) as applied to the measurement geometry shown in Figure 6.1, one can easily
see that the rotation of the sample by an arbitrary angle 𝛼 about the axis of the incident beam (parallel
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to the zI-axis and perpendicular the cell boundaries), ZBEAM, results in the following transformations of
the parameters Bj:

B0AR = B0BR, B1AR = B1BR, B3AR = B3BR,

B2AR = B2BR cos 4𝛼 − B4BR sin 4𝛼,

B4AR = B2BR sin 4𝛼 + B4BR cos 4𝛼,

B5AR = B5BR cos 2𝛼 − B6BR sin 2𝛼,

B6AR = B5BR sin 2𝛼 + B6BR cos 2𝛼,

B7AR = B7BR cos 2𝛼 − B8BR sin 2𝛼,

B8AR = B7BR sin 2𝛼 + B8BR cos 2𝛼,

(6.34)

where BjBR (j = 0,1,…, 8) is the value of the coefficient Bj before the rotation (BR—Before Rotation),
and BjAR is the value of Bj after the rotation (AR—After Rotation).

Relations (6.34) indicate that three coefficients, B0, B1, and B3, retain their values upon arbitrary
azimuthal rotations of the sample; in other words, these coefficients are rotational invariants. The
other coefficients are not invariant with respect to arbitrary azimuthal rotations; however, some of
their combinations are also rotational invariants. For example, one can easily see from (6.34) that the
quantities

√
B2

2 + B2
4,

√
B2

5 + B2
6, and

√
B2

7 + B2
8 (6.35)

are rotational invariants of this kind. It is also seen that the coefficients B2 and B4 are invariant with
respect to the rotation by 90◦ (𝛼 = 90◦) and assume the opposite values under rotation by 45◦, while the
coefficients B5, B6, B7, and B8 do not change under rotation by 180◦ and assume the opposite values
under rotation by 90◦.

In Figure 6.4b we show, for illustration, the experimental spectra of the coefficients Bj for the cell E1
rotated by ∼45◦ with respect to its position for which the spectra presented in Figure 6.4a were obtained.
We see that the results of the measurements are in very good agreement with formulas (6.34).

Rotations of the Coordinate System

The rules of transformation of the parameters Bj under rotations of the reference axis for the angles 𝜗
and 𝜗′ (xI in the geometry under consideration) are similar to (6.34). If we denote the value of Bj before
rotation by BjBR and the value of Bj after the rotation of the reference frame (xI, yI, zI) by an angle 𝛼
about the zI-axis by BjAR, these transformation rules can be written as follows:

B0AR = B0BR, B1AR = B1BR, B3AR = B3BR,

B2AR = B2BR cos 4𝛼 + B4BR sin 4𝛼,

B4AR = −B2BR sin 4𝛼 + B4BR cos 4𝛼,

B5AR = B5BR cos 2𝛼 + B6BR sin 2𝛼,

B6AR = −B5BR sin 2𝛼 + B6BR cos 2𝛼,

B7AR = B7BR cos 2𝛼 + B8BR sin 2𝛼,

B8AR = −B7BR sin 2𝛼 + B8BR cos 2𝛼.

(6.36)

It is clear that the relations (6.36) can be obtained from (6.34) by the replacement 𝛼 → –𝛼.
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Turning Over of the Sample

In the experiments under consideration, we characterize the overall transmission of the sample for the
light incident on the sample in the positive direction of the zI-axis. The LC cells consist of only optically
reciprocal materials (Section 8.1.1), so that the operators characterizing the overall transmission of the
cell for the beam incident on the cell in the +zI-direction and for an identical beam but incident on the cell
in –zI-direction obey certain reciprocity relations. Let MD = [mDjk] and MR = [mRjk] be the transmission
Mueller matrices of the sample for the beams incident on it in the +zI- and –zI-directions, respectively.
Recall that we use the system (xI, yI, zI) as the input and output reference system for the matrix MD

(Figure 6.1). Let a system (xR, yR, zR) chosen as shown in Figure 6.6a or 6.6b be used as the input and
output reference system for MR. With any of the indicated choices, the matrix MR can be composed of
the elements of the matrix MD as follows:

MR =
⎛⎜⎜⎜⎝

mD11 mD21 −mD31 mD41

mD12 mD22 −mD32 mD42

−mD13 −mD23 mD33 −mD43

mD14 mD24 −mD34 mD44

⎞⎟⎟⎟⎠ . (6.37)

This expression is consistent with (1.256). The rotation of the system (xR, yR, zR) shown in Figure 6.6b
by 180◦ about the xR-axis makes it coincident with the system (xI, yI, zI). In view of this it is clear that
the matrix MR is equal to the Mueller matrix of the sample rotated by 180◦ about an axis parallel to the
xI-axis for the beam incident on the sample in the +zI-direction in the system (xI, yI, zI). This gives the
following rules of transformations of the coefficients Bj under the rotation of the sample by 180◦ about
an axis parallel to the xI-axis:

B0AR = B0BR, B1AR = B1BR, B2AR = B2BR, B3AR = B3BR, B4AR = −B4BR,

B5AR = B7BR, B6AR = −B8BR, B7AR = B5BR, B8AR = −B6BR,
(6.38)

where, as in (6.34), BjBR and BjAR (j = 0,1,…,8) are the values of Bj before and after the rotation of
the sample. The same rules are valid for the rotation of the sample by 180◦ about an axis parallel to
the yI-axis. If the axis about which the sample is rotated by 180◦ makes an angle 𝛽 with the positive
xI-axis, this rotation can be represented as the sequence of the rotation of the sample by 180◦ about an

(a) (b)

zI

xIxR

yIyR

zR

+R +I

xI

zI

zR

yI

yR

xR

+I

+R

Figure 6.6 Two variants of the reference system for the backward propagating light. The arrows +I
and +R indicate positive directions for the angles measured from the xI-axis and xR-axis, respectively
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C2

U

Figure 6.7 Fréedericksz transition in a twisted nematic layer, retaining the symmetry axis C2

axis parallel to the xI-axis and the rotation by the angle 2𝛽 about the axis ZBEAM [see (6.34)]. As is seen
from (6.38) and (6.34), under such rotations the coefficients B0, B1, and B3 retain their values.

6.2.3 Symmetry of the Sample
Here we will restrict our consideration to two cases of symmetry, which are most interesting for LCD
optics.

LC Cells with the LC Layer Structure Invariant with Respect to the Rotation by 180◦

About an Axis Parallel to the Layer Boundaries

This kind of symmetry is inherent to TN and STN layers with symmetrical boundary conditions. The
second-order symmetry axis C2 in such layers is perpendicular to the bisector of the twist angle (see
Figure 6.7). This symmetry is usually not broken after applying voltage to the LC layer. Let us assume
that the properties of a sample are invariant with respect to its rotation by 180◦ about an axis parallel
to the xI-axis. Then, according to (6.37), the transmission Mueller matrix of the sample must have the
following structure:

⎛⎜⎜⎜⎝
m11 m12 m13 m14

m12 m22 m23 m24

−m13 −m23 m33 m34

m14 m24 −m34 m44

⎞⎟⎟⎟⎠ . (6.39)

With such a form of the Mueller matrix, the coefficients Bj meet the conditions:

B4 = 0, (6.40)

B5 = B7, B6 = −B8 (6.41)

[see (6.7)]. After rotation of the sample by 90◦ about the axis ZBEAM, the Mueller matrix retains the
symmetry (6.39), and relations (6.40) and (6.41) remain valid. In Figure 6.8, we show the experimental
spectra of the coefficients B0, B1, B2, B3, and B4 for cell E1 at different values of the applied voltage
(U). The cell is oriented so that the bisector of the twist angle is nearly parallel to the xI-axis. With this
orientation, we can expect to observe zero values of B4 at any wavelength both for the field-off state and
the field-on states of the LC cell. As is seen from the figure, B4 is really very close to zero throughout the
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Figure 6.8 Experimental spectra of coefficients Bj for cell E1 at different values of applied voltage
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considered spectral region for all the chosen values of the applied voltage. The results shown in Figure
6.8 and those shown in Figures 6.2 and 6.4 were obtained for zones with slightly different thicknesses
of the LC layer.

LC Layers with a Nontwisted Structure: LC Configurations with a Symmetry Plane
Perpendicular to the Layer Boundaries

An elementary analysis shows that if the LC layer of an LC cell has a nontwisted structure and the xI-axis
is parallel or perpendicular to the symmetry plane of the structure, the coefficients Bj for this cell meet
the conditions

B3 = 0, B4 = 0, B6 = 0, B8 = 0. (6.42)

For an arbitrary orientation of the xI-axis with respect to the symmetry plane of the structure,

B3 = 0. (6.43)

Recall that the coefficient B3 is invariant with respect to any azimuthal rotations [see (6.34) and (6.36)].
This case is illustrated by the experimental results presented in Figure 6.9. These measurements were

performed for a cell filled with nematic MLC-6080 (Merck) (Δn = 0.2024 for 𝜆 = 589.3 nm at a tem-
perature of 20◦C). The alignment films are rubbed polyimide (PI) layers providing pretilt angles ≈2–4◦.
The LC layer thickness is about 3.6 μm. The director field configuration in the LC layer is nearly uni-
form. Detailed examination (see Section 12.5) has shown that the twist angle Φ in this cell is about 0.4◦.
Figure 6.9a is for the position of the cell when the angle between the xI-axis and the rubbing direction
on the frontal substrate is about 1.5◦. The data presented in Figure 6.9b correspond to the position of the
cell when the xI-axis is parallel to the bisector of the twist angle. These data were calculated from the
spectra of Bi shown in Figure 6.9a by formulas (6.34). The maximum regular deviation of |B3| from zero
within the visible region for this cell is about 0.008.

As is seen from the spectrum of B4 in Figure 6.9a, this coefficient in the spectral region where

the magnitude of
√

B2
2 + B2

4 is large is very sensitive to variations of the azimuthal orientation of the

LC layer. This reflects a common useful feature of the coefficients B2 and B4; if
√

B2
2 + B2

4; is large,

knowledge of these coefficients allows accurate estimation of the azimuthal orientation of LC structures
(the orientation of the symmetry elements for symmetrical LC structures of the two considered kinds or
the relative orientation of LC structures otherwise).

An example of using polarization transport coefficients in solving inverse problems for twisted nematic
layers will be given in Section 12.5.

In Section 6.4, we consider some applications of representation (6.5) in solving optimization prob-
lems for LCDs. Before proceeding to the optimization problems, we need to discuss some features of
representation (6.5) when it is applied to the retroreflection geometry (Section 6.3).

6.3 Retroreflection Geometry
Let us consider the case where the vector SO in (6.1) characterizes the light reflected from a layered sys-
tem consisting of layers of optically reciprocal materials at normal incidence. If we use one of the frames
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Figure 6.9 Experimental spectra of coefficients Bj for a nematic cell with a nearly zero twist angle.
Description is given in the text
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Figure 6.10 Single-polarizer geometry (a) and PBS geometry (b) of the experiment. P and A are the
transmission axes of the polarizer and analyzer, respectively

(xR, yR, zR) shown in Figure 6.6 as the reference frame for SO, due to the absence of the nonrecip-
rocal optical effects in the layered system, the Mueller matrix M in (6.1) will have the form (6.39),
and we can write the following reduced form of expression (6.5) for the case of the retroreflection
geometry:

tPA(𝜗, 𝜗′) = B0 + B1 cos 2(𝜗 − 𝜗′) + B2 cos 2(𝜗 + 𝜗′) + B3 sin 2(𝜗 − 𝜗′)
+B5 (cos 2𝜗 + cos 2𝜗′) + B6 (sin 2𝜗 − sin 2𝜗′) .

(6.44)

The arrows +I and +R in Figure 6.6 show the positive directions for the angles 𝜗 and 𝜗′ (measured
from the reference axes xI and xR, respectively). For obvious reasons, of principal interest for us will
be the following two configurations: one where the transmission axes of the polarizer and analyzer are
parallel (the single-polarizer geometry, see Figure 6.10a), and the other where these axes are perpen-
dicular (the PBS geometry, Figure 6.10b). The factor tPA for these cases will be denoted as 𝜌∥ and 𝜌⟂,
respectively.

In the case of the single-polarizer geometry, we may take 𝜗′ = –𝜗 (see Figure 6.10a). By making
use of this relation and (6.44), we can express the dependence of 𝜌∥ on the angle of orientation of the
polarizer 𝜗 as follows:

𝜌∥(𝜗) = B0 + B2 + B1 cos 4𝜗 + B3 sin 4𝜗 + 2B5 cos 2𝜗 + 2B6 sin 2𝜗. (6.45)

In the case of the PBS geometry, we may take 𝜗′ = 90◦ – 𝜗, which gives

𝜌
⊥

(𝜗) = B0 − B2 − B1 cos 4𝜗 − B3 sin 4𝜗. (6.46)
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Azimuthal Rotations and Rotational Invariants

The rules of transformation of the polarization transport coefficients under the rotation of the system by
an angle 𝛼 about the axis ZBEAM are

B0AR = B0BR, B2AR = B2BR,

B1AR = B1BR cos 4𝛼 − B3BR sin 4𝛼,

B3AR = B1BR sin 4𝛼 + B3BR cos 4𝛼,

B5AR = B5BR cos 2𝛼 − B6BR sin 2𝛼,

B6AR = B5BR sin 2𝛼 + B6BR cos 2𝛼,

(6.47)

where we use the same notation as in (6.34).
As is seen from (6.47), the quantities

B0, B2,
√

B2
1 + B2

3, and
√

B2
5 + B2

6 (6.48)

are invariant with respect to arbitrary azimuthal rotations for the retroreflection geometry.

6.4 Applications of Polarization Transport Coefficients in
Optimization of LC Devices

To begin with, we consider the following experimental example.

Search for Optimal Polarizer Orientation for an Experimental SSFLC Cell

Figure 6.11 shows experimental spectra of the coefficients B0 through B4 for two stable states (states 1
and 2) of an SSFLC cell. The coefficients B5 through B8, which are not shown in this figure, for both
states fluctuate near zero; the absolute values of these coefficients were less than 0.025 throughout the
visible region. The cell exhibited an imperfect bookshelf switching. The structures realized in the LC
layer in both stable states were inhomogeneous and chiral; this is evidenced by significant deviations of
the experimental values of the coefficient B3 from zero (see Figure 6.11).

Suppose that we wish to use this cell in an optical shutter, with the polarizer–LC cell–polarizer scheme,
for white light. Knowledge of the wavelength dependences of the polarization transport coefficients can
help us to find an optimal polarizer orientation and estimate how good the optical characteristics of the
device can be. In particular, we can find the polarizer orientation providing the maximum contrast ratio
as well as the polarizer orientation providing the maximum contrast ratio attainable at a given level of a
wavelength-averaged transmittance in the bright state. In calculations the results of which are presented
below, we used the quantity

tPA = 1
𝜆2 − 𝜆1

𝜆2

∫
𝜆1

tPAd𝜆, (6.49)
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Figure 6.11 Measured spectra of coefficients Bj for two stable states of an SSFLC cell

where 𝜆1 = 400 nm and 𝜆2 = 700 nm, to characterize the average transmittance of the shutter and the
quantity

Ca =
tPA-bright

tPA-dark

, (6.50)

where tPA-bright and tPA-dark are the values of tPA in the bright and dark states, respectively, to characterize
the contrast. State 1 was taken as the dark state. It was found that the unconditional maximum of the Ca is
achieved at 𝜗 = –85.91◦ and 𝜗′ = 23.51◦. For this variant of polarizer orientation, called variant A, Ca =
20.51 and tPA-bright = 0.367. The spectra of tPA of the cell in the dark and bright states for this variant are
shown in Figure 6.12. Figures 6.13 and 6.14 demonstrate the results of the conditional optimization of
the contrast ratio. Figure 6.13 shows the maximum values of Ca reachable at different values of tPA-bright
greater than 0.367. Figure 6.14 shows the values of 𝜗 and 𝜗′ providing the maximum Ca for different
tPA-bright values, that is, corresponding to the curve Ca (tPA-bright) presented in Figure 6.13. In Figure
6.12, along with the spectra corresponding to the unconditional maximum of the Ca, for comparison,
we show the spectra corresponding to the maximum Ca (Ca = 14.9) attainable at tPA-bright = 0.42
(𝜗 = – 81.88◦, 𝜗′ = 26.49◦, variant B).

Representation (6.5) is very convenient in solving problems of this kind because it enables one to
express the dependences of some characteristics of LCDs defined through integrals over a spectral region
on the orientation angles of the polarizers in a simple analytical form. Thus, if a characteristic to be
analyzed can be expressed as

tf =

𝜆b

∫
𝜆a

f (𝜆)tPA(𝜆)d𝜆, (6.51)
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Figure 6.12 Wavelength dependences of tPA of the SSFLC cell in the dark and bright states for two
optimized variants of polarizer orientation
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Figure 6.14 The orientation of the polarizers providing the maximum contrast ratio (Ca) at different
values of tPA-bright

where f (𝜆) is some function of 𝜆, the dependence of tf on the angles 𝜗 and 𝜗′ can be represented as

tf = B0f + B1f cos 𝜂− + B2f cos 𝜂+ + B3f sin 𝜂− + B4f sin 𝜂+

+B5f cos 2𝜗 + B6f sin 2𝜗 + B7f cos 2𝜗′ + B8f sin 2𝜗′,
(6.52)

where, according to (6.51) and (6.5),

Bjf =

𝜆b

∫
𝜆a

f (𝜆)Bj(𝜆)d𝜆 j = 0, 1,… , 8. (6.53)

For LC devices having no dichroic elements except for the input and output polarizers, often, especially
when the integration is performed over the entire visible region and f(𝜆) is a broadband function, the
coefficients B5f through B8f characterizing the system situated between the polarizers1 are very small
and can be ignored in calculations, which makes the analysis still simpler. The use of the unitary
approximation also leads to formula (6.52) without the terms containing the coefficients B5f through B8f

1 In the above experimental example, the coefficients Bj characterize the cell surrounded by air. It is clear that in solving
such a problem by means of numerical modeling, corresponding coefficients Bj must describe the transformation of
the light on its path from the input polarizer to the output polarizer with the medium just after the input polarizer as
the input one and the medium preceding the output polarizer as the output one. The model of the device should be
chosen so that these input and output media are isotropic and nonabsorbing.
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Figure 6.15 PCSs of the transmissive (a) and reflective (b) LC devices under consideration and the
“useful” channels of these PCSs. Cmp1, Cmp2—compensators, LC—LC layer, R—reflector

[see (6.30)]. The rest of this section is devoted to examples of application of formulas derived from (6.5)
with the use of the unitary approximation in solving optimization problems for LCDs.

“Useful” Channel and Unitary Approximation

Polarization-optical devices that we consider here have the common scheme: input polarizer–
polarization-converting system (PCS)–output polarizer (analyzer). Standard polarization elements of
PCSs of LCDs are the LC layer and phase compensators (retarders). The SSFLC cell in the above
example was regarded as the PCS of the shutter. The coefficients Bj described the overall transmission
of that PCS. In solving optimization problems, when the optics of a PCS is modeled, as a rule, it is
more reasonable to deal with the coefficients Bj characterizing a “useful” channel of light propagation
in this PCS rather than its overall transmission or overall reflection (see Section 7.1). In considering
such optical elements as dichroic polarizers, retarders, LC layers in TN and STN LCDs, the useful effect
of the element, in an act of interaction of light with it, is associated with a single passage of the light
through the bulk of the element. Light beams arising from reflections at surfaces of such elements and
circulating within and between them are considered as parasitic. In this context, considering the optical
action of an optical system without taking the light circulation within polarization elements and between
them into account is, in fact, considering a “useful” channel of light propagation in this optical system.
Consideration of “useful” channels of optical systems is inherent in the classical JC [3] and is usual in
polarization optics. The analysis and optimization of transfer characteristics of the “useful” channels of
LCDs at normal incidence are major problems that are solved with the help of the classical JC for LCDs.
The improved general variant of the Jones matrix method considered in Chapters 8, 11, and 12 enables
one to solve these problems more accurately and for the case of oblique incidence.

As for the PCSs of LC displays, the Mueller matrices of their “useful” channels for monochromatic
light are relatively slow functions of the wavelength. This allows one to rather accurately represent the
Mueller matrix of the “useful” channel of such a PCS for incident quasimonochromatic light with mean
wavelength 𝜆c and bandwidth of the order of a few nanometers as follows:

M = L
(
t(𝜆c)⊗ t(𝜆c)

∗)L−1 (6.54)

[see (6.16) and Sections 7.1 and 11.1], where t(𝜆c) is the corresponding Jones matrix of this channel for
𝜆 = 𝜆c relating FI Jones vectors (see Section 5.4.2). Note that using (6.54), we assume that the “useful”
channel is nondepolarizing. The assumption of the absence of depolarization is, as a rule, justified for the
“useful” channels of layered polarization-optical systems, although may be inadequate in considering
their overall transmission and reflection (see the above example illustrated by Figure 6.5).

In what follows, we will consider two general schemes of PCSs of LCDs shown in Figure 6.15.
The first scheme (Figure 6.15a) is the most general one in the case of double-polarizer transmissive
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LCDs. The second one (Figure 6.15b) is typical for single-polarizer reflective LCDs. The phase com-
pensators (Cmp1 and Cmp2) may be single homogeneous birefringent films, systems of such films, or
1D-inhomogeneous birefringent films. We assume that the input and output media in both cases are
isotropic and nonabsorbing and have refractive indices close in magnitude to the refractive indices of the
adjacent layers of the PCSs. All anisotropic layers of these systems are assumed to be nonabsorbing. The
reflection losses in the “useful” channels of such systems at normal incidence [and, in many practically
interesting cases, at oblique incidence as well (see Sections 12.2 and 12.4)] depend only weakly on the
state of polarization of the incident light and can be approximately considered polarization-independent.
Note that considering the “useful” channels, we ignore the multiple-beam interference in the LC layer
and thereby exclude one of the main sources of the polarization-dependent losses from consideration.
A negligibly small diattenuation in the channels allows one to use the factorization (6.18) for their
Jones matrices. As has been noted, in many cases the effects described by the scalar loss factor and
the polarization Jones matrix in (6.18) can be estimated and analyzed separately. Sometimes, to solve
a problem, the evaluation of the loss factor is not required or rough estimates of this factor can be
used. At the same time, an accurate estimation of the polarization Jones matrix can be performed by
using a simplified unitary model of the PCS, which includes only polarization-converting elements (LC
layer, phase compensators, reflector) which are represented in the calculations by their polarization Jones
matrices. The separate consideration of the polarization effects in terms of polarization Jones matrices
(the consideration of associated unitary systems) is customary for the classical JC (see Section 1.4.1).
In Chapter 12, we will show that this approach can be effectively used within the framework of a more
rigorous and general theory as well.

Transmissive Devices

Let us consider a double-polarizer LC device whose PCS is as in Figure 6.15a or simpler, without one or
both of the phase compensators. Taking into account real properties of film polarizers, the transmittance
of the “useful” channel of this device for quasimonochromatic incident light linearly polarized along
the transmission axis of the input polarizer can be expressed in terms of the factors tPA of the “useful”
channel of the PCS as follows:

t|| = Cpt||p1

(
t||p2tPA(𝜐, 𝜐′) + t

⊥p2tPA(𝜐, 𝜐′ + 90◦)
)

, (6.55)

where t∥pj and t⟂pj are the principal (bulk) transmittances, respectively the maximum and minimum ones,
of the input ( j = 1) and output ( j = 2) polarizers, 𝜐 and 𝜐′ are the orientation angles of the input and
output polarizers, respectively, and Cp is a coefficient taking into account reflection losses at the surfaces
of the polarizers. Analogously, the transmittance of the device for an unpolarized quasimonochromatic
incident light can be expressed in terms of tPA as

tunp =
Cp

2

[
t||p1

(
t||p2tPA(𝜐, 𝜐′) + t

⊥p2tPA(𝜐, 𝜐′ + 90◦)
)

+ t
⊥p1

(
t||p2tPA(𝜐 + 90◦, 𝜐′) + t

⊥p2tPA(𝜐 + 90◦, 𝜐′ + 90◦)
)]
.

(6.56)

Suppose that the diattenuation in the PCS is negligible. Then, using (6.12), we may represent the function
tPA(𝜗, 𝜗′) as follows:

tPA(𝜗,𝜗′) = B0 + B(𝜗,𝜗′), (6.57)

where

B(𝜗, 𝜗′) = B1 cos 2(𝜗 − 𝜗′) + B2 cos 2(𝜗 + 𝜗′) + B3 sin 2(𝜗 − 𝜗′) + B4 sin 2(𝜗 + 𝜗′), (6.58)
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with coefficients Bj characterizing the “useful” channel of the PCS. Note that, according to (6.58),

B(𝜐, 𝜐′) = B(𝜐 + 90◦, 𝜐′ + 90◦) = −B(𝜐, 𝜐′ + 90◦) = −B(𝜐 + 90◦, 𝜐′). (6.59)

Substituting (6.57) into (6.55) and (6.56) and using (6.59), we obtain the following expressions for t∥
and tunp:

t|| = Cpt||p1[(t||p2 + t
⊥p2)B0 + (t||p2 − t

⊥p2)B(𝜐, 𝜐′)] (6.60)

and

tunp =
Cp

2
[(t||p1 + t

⊥p1)(t||p2 + t
⊥p2)B0 + (t||p1 − t

⊥p1)(t||p2 − t
⊥p2)B(𝜐, 𝜐′)]. (6.61)

It is convenient to rewrite these expressions as follows:

t|| = 2Cpt||p1tp2(B0 + pp2B(𝜐, 𝜐′)), (6.62)

tunp = 2Cptp1tp2(B0 + pp1pp2B(𝜐, 𝜐′)), (6.63)

or

t|| = 2Cpt||p1tp2

[
B0 + pp2

(
B1 cos 𝜂− + B2 cos 𝜂+ + B3 sin 𝜂− + B4 sin 𝜂+

)]
, (6.64)

tunp = 2Cptp1tp2

[
B0 + pp1pp2

(
B1 cos 𝜂− + B2 cos 𝜂+ + B3 sin 𝜂− + B4 sin 𝜂+

)]
, (6.65)

𝜂
− ≡ 2(𝜐 − 𝜐′), 𝜂

+ ≡ 2(𝜐 + 𝜐′), (6.66)

where tpj and ppj are respectively the average (bulk) transmittance and polarizing efficiency of the jth
polarizer, which are defined as

tpj =
t||pj + t

⊥pj

2
, ppj =

t||pj − t
⊥pj

t||pj + t
⊥pj

. (6.67)

In the ideal case of the polarizers of unit polarizing efficiency (ppj = 1),

t|| = 2Cpt||p1tp2

(
B0 + B1 cos 𝜂− + B2 cos 𝜂+ + B3 sin 𝜂− + B4 sin 𝜂+

)
, (6.68)

tunp = 2Cptp1tp2

(
B0 + B1 cos 𝜂− + B2 cos 𝜂+ + B3 sin 𝜂− + B4 sin 𝜂+

)
. (6.69)

The coefficients Bj entering into the above expressions can be calculated from the Jones matrix, cor-
responding to the mean wavelength of the incident light and relating FI Jones vectors, of the “useful”
channel of the PCS by formulas (6.17) or (6.19)–(6.24).

The quantities t∥ and tunp are transmittances of the device for quasimonochromatic light (quasi-
monochromatic transmittances). For LCDs, which work with broadband light sources, as a rule, it is
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desired to estimate a set of integral transmission characteristics defined as weighted means of a quasi-
monochromatic transmittance (t∥, tunp, or a linear combination of t∥ and tunp) over the visible region with
appropriate weighting functions. In particular, such a set may include the following quantities:

tX = 1
SY ∫

x
𝜆
(𝜆)S(𝜆)t(𝜆)d𝜆,

tY = 1
SY ∫

y
𝜆
(𝜆)S(𝜆)t(𝜆)d𝜆,

tZ = 1
SY ∫

z
𝜆
(𝜆)S(𝜆)t(𝜆)d𝜆,

(6.70)

where

SY =
∫

y
𝜆
(𝜆)S(𝜆)d𝜆 (6.71)

with t(𝜆) being the quasimonochromatic transmittance, S(𝜆) the spectral distribution of the incident
light, and x

𝜆
(𝜆), y

𝜆
(𝜆), and z

𝜆
(𝜆) the color matching functions; the function y

𝜆
(𝜆) is called the photopic

luminous efficiency function for the standard observer. The parameter tY is usually treated as the average
transmission of the device [6–8]. For displays with primary color (RGB) filters, to estimate transmission
properties of the device taking into account the effect of any of the filters, the function S(𝜆) may be taken
as

S(𝜆) = tF(𝜆)S0(𝜆), (6.72)

where S0(𝜆) is the spectral distribution of the light from the light source and tF(𝜆) is the transmittance
of the filter. It is clear that in this case, the transmittance t(𝜆) should be calculated for the LCD model
without the filters. This trick is fully justified when the “useful” channel of the LCD is considered. The
profit from the use of it is evident: the same function t(𝜆) can be used to obtain the results for all the
filters.

Substitution of the above expressions for the transmittances t∥ and tunp [(6.64), (6.65), (6.68), or (6.69)]
into (6.70) gives explicit expressions for the dependences of tX, tY, and tZ on the polarizer orientation
angles. Thus, for example, in the case t = tunp, using (6.65), we obtain the following expression for the
average transmission tY:

tY = B0 + B1 cos 𝜂− + B2 cos 𝜂+ + B3 sin 𝜂− + B4 sin 𝜂+, (6.73)

where

B0 =
2
SY ∫

Cptp1tp2B0y
𝜆
Sd𝜆,

Bj =
2
SY ∫

Cptp1tp2pp1pp2Bjy𝜆Sd𝜆 j = 1, 2, 3, 4.

(6.74)

In many cases, with the help of expressions of this kind, it is easy to estimate the effect of polarizer
orientation, ascertain to what extent the PCS at given values of its parameters is appropriate in view
of stated goals and criteria, and find optimal polarizer orientation. Some such problems can be solved
without scanning the polarizer orientation. Some benefits from using expressions like (6.73) in LCD
optimization can be seen from the following example.
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Suppose that we are optimizing an LCD whose average transmission tY can be expressed by (6.73),
considering as principal characteristics of the LCD the values of tY in the bright (tB) and dark (tD) states
and the contrast ratio

C ≡
tB

tD

, (6.75)

and have calculated the coefficients Bj for the bright state (BjB) and dark state (BjD) for a given set
of values of the parameters of PCS elements. First of all, we can estimate the minimum dark-state
transmittance

tDmin ≡ min tD(𝜂−, 𝜂+) = tD

(
𝜂
−
Dmin, 𝜂

+
Dmin

)
(6.76)

that can be attained at the given BjD. According to (6.73),

tDmin = B0D − B13D − B24D, (6.77)

where

B13D =
√

B
2

1D + B
2

3D, B24D =
√

B
2

2D + B
2

4D.

It is clear that this estimate may be sufficient to reject the given set of values of PCS parameters. The
condition

B0D − B13D − B24D ≤ tD acceptable, (6.78)

where tD acceptable is a maximum acceptable value of tD, can be used as a primary criterion in an algorithm
of automatic optimization of the PCSs. If condition (6.78) is satisfied, it is reasonable to estimate the
bright-state transmittance for the polarizer orientation giving tD = tD min. According to (6.73), the values
of 𝜂− (if B13D ≠ 0) and 𝜂+ (if B24D ≠ 0) corresponding to the minimum of tD [see (6.76)] satisfy the
relations

cos 𝜂−Dmin = −B1DB
−1

13D, sin 𝜂−Dmin = −B3DB
−1

13D,

cos 𝜂+Dmin = −B2DB
−1

24D, sin 𝜂+Dmin = −B4DB
−1

24D.

(6.79)

Hence, tB(𝜂−Dmin, 𝜂
+
Dmin) can be calculated by the formula

tB

(
𝜂
−
Dmin, 𝜂

+
Dmin

)
= B0B − (B1BB1D + B3BB3D)B

−1

13D − (B2BB2D + B4BB4D)B
−1

24D. (6.80)

Using the obtained values of tDmin = tD(𝜂−Dmin, 𝜂
+
Dmin) and tB(𝜂−Dmin, 𝜂

+
Dmin), we can calculate the contrast

ratio corresponding to tD = tDmin:

CDmin ≡
tB

(
𝜂
−
Dmin, 𝜂

+
Dmin

)
tD

(
𝜂
−
Dmin, 𝜂

+
Dmin

) . (6.81)
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Let Cacceptable be an acceptable level of the contrast ratio C. A simple way to ascertain whether the
condition

C ≥ Cacceptable (6.82)

can be satisfied given BjB and BjD or not is the following. It is obvious that condition (6.82) can be
satisfied only if for some values of the variables 𝜂− and 𝜂+, the function

Δts(𝜂
−, 𝜂+, s) = tB(𝜂−, 𝜂+) − stD(𝜂−, 𝜂+) (6.83)

at s = Cacceptable has positive values, that is, if the maximum value of the function Δts(𝜂
−, 𝜂+, Cacceptable)

is positive. Using (6.73), we can represent the function Δts(𝜂
−, 𝜂+, s) as follows:

Δts(𝜂
−, 𝜂+, s) = B0B − sB0D + (B1B − sB1D) cos 𝜂− + (B2B − sB2D) cos 𝜂+

+(B3B − sB3D) sin 𝜂− + (B4B − sB4D) sin 𝜂+.
(6.84)

According to (6.84), the greatest value of Δts(𝜂
−, 𝜂+, s) at a fixed s is equal to

Δts max(s) = Δ0(s) + Δ13(s) + Δ24(s), (6.85)

where

Δ13(s) =
√
Δ1(s)2 + Δ3(s)2, Δ24(s) =

√
Δ2(s)2 + Δ4(s)2,

Δj(s) = BjB − sBjD, j = 0, 1, 2, 3, 4.
(6.86)

Thus, in order to examine whether condition (6.82) can be satisfied or not at the given BjB and BjD, it
suffices to calculate Δtsmax(Cacceptable): Δtsmax(Cacceptable) ≥ 0 means that condition (6.82) can be met. The
condition

Δts max(s) = 0 (6.87)

is satisfied at s = Cmax, where Cmax is the maximum value of the contrast ratio C that can be attained at
the given BjB and BjD. Therefore, one of the possible ways to find Cmax is to solve (6.87). The root of this
equation can readily be found by numerical methods.

Denote values of 𝜂− and 𝜂+ at which Δts(𝜂
−, 𝜂+, s) = Δts max(s) by 𝜂−s (s) and 𝜂+s (s), respectively. It

follows from (6.84) that 𝜂−s (s) and 𝜂+s (s) can be found from the equations

cos 𝜂−s (s) = Δ1(s)Δ13(s)−1, sin 𝜂−s (s) = Δ3(s)Δ13(s)−1, (6.88)

cos 𝜂+s (s) = Δ2(s)Δ24(s)−1, sin 𝜂+s (s) = Δ4(s)Δ24(s)−1 (6.89)

provided that Δ13(s) ≠ 0 and Δ24(s) ≠ 0. We denote

tBs(s) ≡ tB

(
𝜂
−
s (s), 𝜂+s (s)

)
, tDs(s) ≡ tD

(
𝜂
−
s (s), 𝜂+s (s)

)
, (6.90)

and

Cs(s) ≡
tBs(s)

tDs(s)
≡

tB

(
𝜂
−
s (s), 𝜂+s (s)

)
tD

(
𝜂−s (s), 𝜂+s (s)

) . (6.91)
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According to (6.88), (6.89), and (6.73),

tBs(s) = B0B +
B1BΔ1(s) + B3BΔ3(s)

Δ13(s)
+

B2BΔ2(s) + B4BΔ4(s)

Δ24(s)
, (6.92)

tDs(s) = B0D +
B1DΔ1(s) + B3DΔ3(s)

Δ13(s)
+

B2DΔ2(s) + B4DΔ4(s)

Δ24(s)
. (6.93)

It can be proved that at any value of s from the range 0 < s ≤ Cmax, tBs(s) is the maximum value of
tB(𝜂−, 𝜂+) attainable at C = Cs(s), which allows one to easily obtain solutions for trade-off choice, like
that presented in Figures 6.13 and 6.14.

In calculations of this kind, the symmetry properties of the PCS can be used and sometimes must be
taken into account. Thus, if the optical properties of the PCS are invariant with respect to the rotation of
it by 180◦ about an axis C parallel to its boundaries [it will take place, for instance, when the PCS is a
TN or STN cell with a symmetrical boundary conditions (see Section 6.2.3)] and the xI-axis [the input
and output polarization bases for the PCS, (xI, yI, zI) and (xO, yO, zO), are assumed to be equivalent] is
parallel or perpendicular to the axis C, the Mueller matrix of the “useful” channel of the PCS will have
the form (6.39), and the Jones matrix of this channel, t, will have the following form:(

t11 t12

−t12 t22

)
(6.94)

[see (1.252)]2. In this case,

B2 ≥ 0, B4 = 0 (6.95)

[see (6.17)]. With such B2 and B4, in (6.73), B2 ≥ 0 and B4 = 0. According to (6.73), the maximum
and minimum values of tY in this case are reached at 𝜂+ = 2𝜋j ( j = 0, ±1, ±2,…) and 𝜂

+ = 𝜋 +
2𝜋j ( j = 0, ±1, ±2,…), respectively. For a TN or STN LCD, the axis C will be common for dark and
bright states and we will have B4D = B4B = 0 when the xI-axis is parallel or perpendicular to C, and,
according to (6.36),

B2BB4D − B4BB2D = 0 (6.96)

for an arbitrary orientation of xI with respect to C. If relation (6.96) holds, Δ24(s) [see (6.86), (6.89), and
(6.93)] at a certain value of s may be equal to zero, which should be taken into account in calculations.

In optimizing PCSs, it is often reasonable to consider a reduced quasimonochromatic transmittance
of the “useful” channel of the LC device. In Section 1.4.5, we have defined the reduced transmittance
by (1.271) in terms of intensities used in the classical JC. Dealing with more rigorous methods, like that
considered in Chapter 12, it is convenient to define the reduced quasimonochromatic transmittance of an
LC device by (1.272) with tPCS being the polarization Jones matrix of the “useful” channel of the PCS
of this device. In what follows, we will deal only with thus defined reduced transmittance, which will
be denoted by tU. For a model of an LC device in which the polarizers are taken to be ideal (Cp = 1,

2 This form of the matrix t is determined by the symmetry of the PCS and the reciprocity properties of its “useful”
channel. In Section 1.4.2, we arrived at (1.252) considering a particular system within the framework of the classical
JC. An analogous general relation for exact Jones matrices, relating FI Jones vectors, of transfer channels in layered
systems with the symmetry in question can be obtained using the reciprocity relations of Section 8.6.2.
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t||pj = 1, t
⊥pj = 0, j = 1,2), tU = t|| = 2tunp. tU is equal to 1 for a perfect bright state and to 0 for a perfect

dark state. The reduced transmittance of a transmissive LC device can be expressed as follows:

tU = 0.5 + BU1 cos 𝜂− + BU2 cos 𝜂+ + BU3 sin 𝜂− + BU4 sin 𝜂+, (6.97)

where BUj are the unitary polarization transport coefficients [see (6.30)–(6.32)] for the “useful” channel
of the PCS of this device. In terms of tU, corresponding reduced integral characteristics are defined which
are used in optimization procedures.

Reflective Devices

The Jones matrix of the “useful” channel of the PCS shown in Figure 6.15b can be expressed as follows:

t = tBrRtF, (6.98)

where tF is the Jones matrix relating the FI Jones vectors of the light incident on the PCS (Jinc) and the
light incident on the reflector (JiR; JiR = tFJinc), tB is the Jones matrix linking the FI Jones vectors of
the light reflected from the reflector (JrR) and the light emerging from the PCS (Jout; Jout = tBJrR), and
rR is the Jones matrix characterizing reflection from the reflector (JrR = rRJiR). We assume that there is
an isotropic nonabsorbing layer between the LC layer and the reflector (see Figure 6.15b). This layer is
considered as the medium of incidence for the reflector. In the case of normal incidence, using the frame
(xI, yI) as the reference frame for the vectors Jinc and JiR and the frame (xR, yR) oriented with respect to
the frame (xI, yI) as shown in Figure 6.6a or 6.6b as the reference frame for the vectors JrR and Jout, we
may express the matrices rR and tB as

rR = RR

(
∓1 0
0 ±1

)
, (6.99)

tB =
(

tF11 −tF21

−tF12 tF22

)
. (6.100)

In (6.99), RR is the amplitude reflection coefficient of the reflector; the upper signs correspond to the
orientation of the frame (xR, yR) shown in Figure 6.6a, and the lower signs to that shown in Figure 6.6b.
In (6.100), tFjk are the elements of the matrix

tF =
(

tF11 tF12

tF21 tF22

)
. (6.101)

Equation (6.100) holds due to the absence of nonreciprocal optical effects in the system (see Sections
1.4.2 and 8.6.2). It follows from (6.98) that with rR and tB expressed by (6.99) and (6.100), the matrix
t has the form (6.94) [the corresponding Mueller matrix of the channel will have the form (6.39)].
Neglecting the diattenuation in the “useful” channel of the PCS, we obtain the following expressions for
the factors 𝜌∥ and 𝜌⟂ (see Section 6.3) associated with this channel:

𝜌∥(𝜗) = B0 + B2 + B1 cos 4𝜗 + B3 sin 4𝜗, (6.102)

𝜌
⊥

(𝜗) = B0 − B2 − B1 cos 4𝜗 − B3 sin 4𝜗, (6.103)

with Bj expressed by (6.17). In this case, Bj satisfy the relations

B0 = B2 +
√

B2
1 + B2

3, (6.104)

B2 ≥ 0. (6.105)
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How to use expressions (6.102) and (6.103) in optimization procedures is obvious from the above
consideration of transmissive devices. The reduced quasimonochromatic transmittance of the “useful”
channel of a single-polarizer RLCD can be expressed as follows:

tU = 0.5 + BU2 + BU1 cos 4𝜗 + BU3 sin 4𝜗. (6.106)

In the case of an RLCD with PBS, the reduced transmittance can be expressed as

tU = 0.5 − BU2 − BU1 cos 4𝜗 − BU3 sin 4𝜗. (6.107)

The unitary polarization transport coefficients of the PCS entering into these expressions can be computed
by formulas (6.31) from the polarization Jones matrix of this channel, tUM [see (6.21)], calculated as
follows:

tUM = tUB

(
−i 0
0 i

)
tUF, (6.108)

where tUF and tUB are the unimodular polarization Jones matrices of determinant 1 characterizing the
sections of the “useful” channel described by the matrices tF and tB, respectively.

6.5 Evaluation of Ultimate Characteristics of an LCD that
can be Attained by Fitting the Compensation System.
Modulation Efficiency of LC Layers

For many types of LCDs, the best performance is achieved by using appropriate compensation systems.
The usual compensation system is a set of homogeneous or inhomogeneous birefringent films situated
between the LC layer and the polarizers. In most cases, the function of the compensation system is to
ensure a black–white switching, as good as possible, for a given pair of working states of the LC layer
corresponding to the dark state and the bright state of the LCD. In the case of 90◦ TN LCDs, where
compensators are generally not required to obtain good black–white switching for the normal viewing
direction, the primary purpose of compensation systems is to ensure satisfactory dark and bright states for
a wide range of viewing angles. In the case of STN LCDs, in practically interesting situations the “bright”
and “dark” states of the LC layer are not suited for a good black–white switching without compensators
even for the normal viewing direction. In this case, the primary purpose of the compensation system is to
improve the transmission spectra of the LCD panel in the dark and bright states for the normal viewing
direction.

Almost always, with the help of an appropriate compensation system, it is possible to obtain very
good dark-state performance. However, the improvement of the dark state is often accompanied by
unacceptable deterioration or insufficient improvement of the bright-state performance. It is clear that
the possibility to obtain a good dark state and a good bright state with the same compensation system is
fully determined by properties of the LC layer in the “bright” and “dark” states. We will call the ability
of an LC layer, in two specified states, to give a good bright state along with a good dark state, with a
proper compensation system, the modulation efficiency. Two different, but closely related, parameters
characterizing the modulation efficiency of LC layers were proposed in [9, 10]. In this section, we will
consider in detail one of them, introduced in [10]. This parameter, called the modulation efficiency
factor (MEF), is proportional to the maximum transmittance of the “useful” channel of the LCD in the
bright state that can be obtained with the help of polarization–compensation systems (polarizers and
compensators) providing a zero dark-state transmittance. As everywhere in this chapter, we restrict our
consideration to the case of normal incidence. The case of oblique incidence in this context will be
considered in Section 12.6.
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Transmissive Devices

Let us consider a transmissive device with the structure: polarizer–compensator–LC layer–compensator–
polarizer. The polarizer and compensator that are passed by the light first will be called polarizer 1 and
compensator 1. The second polarizer and second compensator will be called polarizer 2 and compensator
2. The polarizers are assumed to be ideal. We consider the light propagation through the “useful” channel
of this device. The diattenuation in the compensators and LC layer is assumed to be negligible. We
denote the polarization Jones matrices of the LC layer in the “dark” and “bright” states by tLC-D and
tLC-B, respectively, the polarization Jones matrix of compensator 2 by tC2, the polarization Jones vector
of the light transmitted by polarizer 1 and compensator 1 and incident on the LC layer by ji, and the
polarization Jones vectors of the light emerging from the PCS of the device and incident on polarizer 2
for the “dark” and “bright” states of the LC layer by jtD and jtB, respectively. The vectors jtD and jtB are
related to ji by

jtD = t2D ji, (6.109)

jtB = t2B ji, (6.110)

where

t2D = tC2tLC-D, (6.111)

t2B = tC2tLC-B. (6.112)

We denote the polarization Jones vectors of the polarizations fully transmitted and fully extinguished
by polarizer 2 by P and P̃, respectively (P̃

†
P = 0). The transmittance of this polarizer for a wave with

polarization Jones vector j, incident on it, can be expressed as

t = |P† j|2 (6.113)

and

t = 1 − |P̃†
j|2. (6.114)

In view of this, we may express the reduced transmittances of the device in the dark (tU-D) and bright
(tU-B) states as follows:

tU-D = |||P† jtD
|||2 , (6.115)

tU-B = |||P† jtB
|||2 = 1 − |||P̃†

jtB
|||2 . (6.116)

The transmittance of the device in the dark state will be zero, that is,

tU-D = |||P† jtD
|||2 = 0, (6.117)

when jtD and P̃ are such that

P̃ = kjtD, (6.118)

where k is a scalar factor with |k|2 = 1 (since, by definition, | jtD|2 = 1 and |P̃|2 = 1). Assume that
parameters of the polarizers and compensators are chosen so that the transmittance of the device in the
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dark state is zero. We denote the reduced transmittance of the device in the bright state under these
conditions by tU-B0. It follows from (6.116) and (6.118) that

tU-B0 = 1 − ||| j†tD jtB
|||2 . (6.119)

Substituting (6.109)–(6.112) into (6.119), using the matrix identity (5.15), and taking into account that
the matrix tC2 is unitary (i.e., t†C2 tC2 = U, where U is the unit matrix), we obtain

tU-B0 = 1 − ||| j†i t†2D t2B ji
|||2 = 1 − ||| j†i t†LC-D t†C2 tC2 tLC-B ji

|||2 = 1 − ||| j†i t†LC-D tLC-B ji
|||2 . (6.120)

We may therefore express the transmittance tU-B0 as follows:

tU-B0 = 1 − ||| j†i tD-B ji
|||2 , (6.121)

where

tD-B = t†LC-D tLC-B. (6.122)

We see that tU-B0 depends only on properties of the LC layer and the state of polarization of the light
incident on the LC layer. Using suitable compensator 1, and properly orienting polarizer 1, one can set
any desired polarization of the light incident on the LC layer. The largest value of the transmittance tU-B0
as a function of ji will be referred to as the modulation efficiency factor (MEF) of the LC layer for the
given pair of its states. In the case under consideration, the MEF can be estimated using the following
mathematics.

Let A be a unitary 2 × 2 matrix of the form

A =
(

a′ + ia′′ b′ + ib′′

−b′ + ib′′ a′ − ia′′

)
, (6.123)

where a′, a′′, b′, and b′′ are real numbers, and let

X(𝛼, 𝛽) =
(

cos 𝛼
ei𝛽 sin 𝛼

)
, (6.124)

where 𝛼 and 𝛽 are real variables. It is easy to find that the minimum value of the function

f (𝛼, 𝛽) = |X(𝛼, 𝛽)†AX(𝛼, 𝛽)|2 (6.125)

is equal to a′2. Actually, substitution of (6.123) and (6.124) into (6.125) gives the following
expression:

f (𝛼, 𝛽) = a′2 + [a′′ cos 2𝛼 + (b′ sin 𝛽 + b′′ cos 𝛽) sin 2𝛼]2
. (6.126)

As can be seen from this expression, at any given value of 𝛽, there exist values of 𝛼 such that the
term in the square brackets in (6.126) is equal to zero and hence f (𝛼, 𝛽) = a′2. By making use of this
property, we can easily find the maximum value of the function tU-B0( ji) (6.121). Any polarization state
of polarized light can be represented by a polarization Jones vector of the form (6.124). At the same time,
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the matrix tD-B, being the product of two unitary matrices [see (6.122)], is unitary and, consequently,
can be represented as

tD-B = (det tD-B)1∕2tD-B(UM), (6.127)

where the matrix tD-B(UM) = (det tD-B)−1∕2tD-B is unitary and of determinant 1 and, consequently, has
the form (6.123) (see Section 5.1.3). Since the matrix tD-B is unitary, |det tD-B| = 1, and hence

||| j†i tD-B ji
|||2 = ||| j†i tD-B(UM) ji

|||2 . (6.128)

From the aforesaid, the minimum of | j†i tD-B(UM) ji|2 as function of ji is equal to (Re[tD-B(UM)]11)2 ([t]kj

stands for the element (k, j) of a matrix t). Therefore, the MEF of the LC layer,

Q ≡ max tU-B0( ji), (6.129)

can be expressed as follows:

Q = 1 − (Re[tD-B(UM)]11)2, (6.130)

or, equivalently,

Q = 1 −

[
1
2

Tr

(
1√

det tD-B

tD-B

)]2

. (6.131)

The maximum modulation of the transmittance, that is, an ideal switching, can be attained when the
modulation efficiency factor Q is equal to 1. If Q ≪ 1, it is impossible to obtain a good switching in
principle: under conditions providing a good dark state, the bright-state transmittance will be small,
whatever compensators are used. The minimum fraction of the light that will be lost in the bright state
with polarizers and compensators maintaining zero transmittance in the dark state is equal to 1 – Q.
Note that, according to (6.131) and (6.122), for two arbitrary states of an LC layer, state 1 and state 2,
considered as the dark and bright states, the choice of state 1 as the dark state and state 2 as the bright
state and the choice of state 2 as the dark state and state 1 as the bright state will give the same values
of the MEF. One can show that the maximum difference of the reduced transmittances in the bright and
dark states, tU-B − tU-D, that can be reached by variation of parameters of polarizers and compensators is
equal to

√
Q. A characteristic of the modulation efficiency of LC layers, derived by maximization of the

difference tU-B − tU-D and equivalent to that which we could define here as QΔ ≡
√

Q, was introduced
in [9].

An arbitrary linear polarization can be represented by a polarization Jones vector of the form (6.124)
with 𝛽 = 0. We have noted that the least value of the function f (𝛼, 𝛽) [see (6.126)], equal to a′2, can be
reached at any 𝛽. From this it is clear that the limit tU-B0( ji) = Q can be attained, in particular, for certain
linear polarizations of the incident light, that is, in the absence of compensator 1. This limit can also be
attained with compensator 1 only (without compensator 2), which is evident in view of the reciprocity
of the “useful” channel transmission.

The factor Q in general varies with wavelength. For example, for a nontwisted nematic LC layer, the
wavelength dependence of Q can be described by the formula

Q = sin2
[
𝜋d
𝜆

(ne(B)(𝜆) − ne(D)(𝜆))
]

, (6.132)
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where ne(B) and ne(D) are the values of the effective extraordinary refractive index of the LC layer

ne =

z2

∫
z1

n∥n
⊥√

n2
⊥
cos2 𝜃(z) + n2

∥ sin
2
𝜃(z)

dz (6.133)

in the bright and dark states, respectively. In (6.133), n∥ and n⟂ are the principal refractive indices of the
liquid crystal, and 𝜃 is the tilt angle of the LC director; z = z1 and z = z2 are the planes of the boundaries
of the LC layer (see Figure 6.3).

A good black–white switching can be obtained if the modulation efficiency factor Q is close to 1
throughout the visible region. For the dark and black states of a typical 90◦ TN LCD, the values of
Q in the visible region lie between about 0.8 and 1. For STN LCDs, there exist combinations of the
values of parameters of the LC layer at which satisfactory black–white switching can be reached as well.
However, in this case, in contrast to the case of TN LCDs, it is impossible to obtain sufficiently high
and achromatic bright-state transmission in combination with sufficiently small dark-state transmission
throughout the visible region without compensators. Moreover, domains in the parameter space of the LC
layer (including the working voltages) that are suitable for good black–white switching for STN LCDs
are much narrower than for 90◦ TN LCDs. The assessment of appropriateness of LC layers and working
voltages for black–white switching by examination of the MEF spectrum significantly simplifies finding
such domains.

If the wavelength dependence of Q for two working states of the LC layer is suitable for black–white
switching, by using optimization methods, it is possible to find parameters of compensation systems
providing a small dark-state transmittance (tU-D ≈ 0) and tU-B(𝜆) ≈ Q(𝜆) throughout the visible
region (optimization engines of our program MOUSE-LCD successfully and rather quickly solve
problems of this kind). As an illustration, let us consider the following example. Figure 6.16 shows
results of solving the deformation problem for an STN layer with the following parameters: K11 =
1.28 × 10−6 dyn, K22 = 7.25 × 10−7 dyn, K33 = 2.06 × 10−6 dyn, 𝜀|| = 11.07, 𝜀⟂ = 3.61, twist angle
Φ = 240◦, pretilt angles 𝜃1 = 𝜃2 = 4◦, and d/p0 = 0.5, where d is the thickness of the LC layer and
p0 is the natural helix pitch of the LC; the anchoring is assumed to be infinitely strong. The drastic
changes of the LC director field configuration with voltage in the narrow voltage range 2.35–2.5 V
allow us to choose the dark-state voltage and bright-state voltage rather close to each other to have a
high multiplex ratio N. Our aim was to find a thickness of the LC layer, dark- and bright-state voltages, a
compensation system, and orientation angles of the polarizers providing good black–white switching at
N ≈ 400. The wavelength dependences of the principal refractive indices of the LC were represented by
the three-coefficient Cauchy equations3 with coefficients calculated from the following data:

Wavelength (nm) n⟂ n||

400 1.5012 1.6086
550 1.4816 1.5805
700 1.4752 1.5696

By examination of the dependence of the MEF spectrum on the LC layer thickness and working
voltages, we found that the situation most suitable for black–white switching under the given conditions
is realized at d = 8.17 μm and working voltages U1 = 2.35 V and U2 = 2.47 V (N ≈ 400). The LC

3 We use this kind of approximation of wavelength dependences of refractive indices in all numerical examples in this
and following chapters where the spectrum of a refractive index for a nonabsorbing medium is specified by values of
this index for three wavelength values.



JWST441-c06 JWST441-Yakovlev Printer: Markono December 30, 2014 7:58 Trim: 244mm × 170mm

212 Modeling and Optimization of LCD Optical Performance

(a)

(b)

3.02.52.01.5
0

30

60

90

U1 U2

M
id

pl
an

e 
LC

 d
ire

ct
or

 ti
lt 

an
gl

e 
(d

eg
)

Applied voltage (V)

0

30

60

90

φ

θ

θ

z2
z1

φθ

Z

0

60

120

180

240

(deg)(deg)

Figure 6.16 (a) Voltage dependence of the midplane tilt angle of the LC director in the LC layer under
consideration. (b) LC director profiles in this layer at voltages 2.35 V (U1, solid lines) and 2.47 V (U2,
dashed lines); 𝜃 and 𝜑 are respectively the tilt angle and azimuthal angle of the LC director

director field configurations for these voltages are shown in Figure 6.16b. We denote the dark-state and
bright-state voltages by UD and UB, respectively. The spectrum of Q corresponding to the choice (UB =
2.35 V, UD = 2.47 V) or (UB = 2.47 V, UD = 2.35 V) at d = 8.17 μm is shown in Figures 6.17–6.19
along with the reduced transmittance spectra for four optimized variants of the device in the dark and
bright states. The structure and parameters of the optimized variants of the device are shown in Table 6.1.
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Figure 6.17 Spectrum of the modulation efficiency factor Q (MEF, dashed line) of the LC layer at
working voltages U1 = 2.35 V and U2 = 2.47 V and the reduced transmittance spectra for variant 1 (no
compensators) of the LCD at these voltages (solid lines)
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Figure 6.18 The reduced transmittance spectra for variants 2 (one compensation film) and 3 (two
compensation films) of the LCD at UB = 2.35 V and UD = 2.47 V (normally white mode)
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Figure 6.19 The reduced transmittance spectra for variant 4 (four compensation films, normally black
mode) of the LCD at UD = 2.35 V and UB = 2.47 V

Table 6.1 Optimized variants of the STN LCD under consideration

Variant Schemea Parametersb

1 P1–LC–P2 P1 𝜑L = −37.99◦

P2 𝜑L = 7.99◦

2 P1–C1–LC–P2 P1 𝜑L = 21.98◦

C1 𝜑L = −99.82◦ dL = 32.97 μm
P2 𝜑L = 11.36◦

3 P1–C1–C2–LC–P2 P1 𝜑L = 85.67◦

C1 𝜑L = −64.39◦ dL = 22.93 μm
C2 𝜑L = −88.05◦ dL = 8.69 μm
P2 𝜑L = 12.69◦

4 P1–C1–C2–LC–C3–C4–P2 P1 𝜑L = 1.97◦

C1 𝜑L = −26.36◦ dL = 42.36 μm
C2 𝜑L = −60.62◦ dL = 16.73 μm
C3 𝜑L = −91.34◦ dL = 16.73 μm
C4 𝜑L = 28.18◦ dL = 42.36 μm
P2 𝜑L = 89.75◦

aLC—LC layer; Pj—polarizer; Cj—compensation film.
bFor a compensation film, 𝜑L is the azimuthal angle of the optic axis of the film, measured from the
reference axis PLC (see below)—for any of the compensation films here, it is simply the angle between
PLC and the optic axis of the film, dL is the thickness of the film. For a polarizer, 𝜑L is the angle between
the axis PLC and transmission axis of the polarizer. The reference axis PLC is parallel to the boundaries
and oriented so that this axis, the easy axis at the frontal boundary of the LC layer, and the normal to this
boundary are coplanar and the angle between PLC and the easy axis is acute.
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Parameters of the compensation systems and polarizers were calculated with the help of the optimization
instruments of MOUSE-LCD. Figure 6.17 shows the spectra for a variant with no compensation system
(variant 1) at UB = 2.35 V and UD = 2.47 V. In this case, the polarizers are oriented in such a way as to
maximize the contrast ratio C calculated as

C =

700 nm

∫
400 nm

tU-Bd𝜆

/ 700 nm

∫
400 nm

tU-Dd𝜆. (6.134)

As can be seen from Figure 6.17, black–white switching is not attained in this case: the bright-state
transmission of the LCD is too low in the blue and red regions, while the dark-state transmission is too
high in the blue region. The contrast ratio C in this case is as low as 5.5. All these defects can be easily
corrected by using compensation films. The bright- and dark-state spectra which can be obtained by
introducing compensation films are shown in Figure 6.18 (variants 2 and 3). In all examples presented
here, compensation systems are composed of homogeneous uniaxial films with optic axis parallel to the
film surfaces and the following principal refractive indices:

Wavelength (nm) n⟂ n||

400 1.5578 1.5673
550 1.5461 1.5554
700 1.5407 1.5554

In variant 2, only one film is employed for compensation. As is seen from Figure 6.18, the use of this
film significantly improves both the dark- and bright-state spectra. The contrast ratio C for this variant is
about 98. The double-layer compensation system used in variant 3 increases C up to 818 and makes the
bright-state spectrum rather close to the spectrum of the MEF of the LC layer. In variants 1, 2, and 3, the
bright-state voltage is less than the dark-state voltage (UB = 2.35 V, UD = 2.47 V). As has been noted,
MEF is invariant with respect to the swap of working states, that is, the ultimate characteristics for the
cases (UB = U1, UD = U2) and (UB = U2, UD = U1) are equivalent. As an illustration, we took UB =
2.47 V and UD = 2.35 V in variant 4 (see Table 6.1 and Figure 6.19). In this case, four compensation
films are used, which provides C > 1000 and, again, tU-B(𝜆) ≈ Q(𝜆) throughout the visible region. We
should note that compensation systems providing such good correction of the spectra for the normal
direction as for variants 3 and 4 often give viewing angle characteristics that are far from the best ones
attainable for the given LC layer and working voltages. This is the case for all the variants presented.
Examples of compensation systems for the LC layer and working voltages taken in the above examples
that improve the viewing angle characteristics of the LCD will be given in Section 12.6.

Reflective Devices

In an analogous way, one can show that for reflective devices with PCSs having the structure shown in
Figure 6.15b, the maximum reduced transmittance of the “useful” channel of the device in the bright
state (tU-B) attainable at zero transmittance of this channel in the dark state (i.e., at tU-D = 0) can be
expressed as follows:

Q = 1 −

[
1
2

Tr

(
1√

det t′D-B

t′D-B

)]2

, (6.135)
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where

t′D-B = t†LCR-D tLCR-B (6.136)

with tLCR-B and tLCR-D being the values of the polarization Jones matrix tLCR characterizing the chain of
operations {(forward) transmission of the LC layer–reflection from the reflector–(backward) transmission
of the LC layer} (see Figure 6.15b) in the bright state and dark state, respectively. The matrix tLCR can
be expressed as

tLCR = t↑LCrt↓LC, (6.137)

where t↓LC and t↑LC are the polarization Jones matrices characterizing respectively the forward and back-
ward transmission of the LC layer and r is the polarization Jones matrix of the reflector. In the case of
normal incidence, which we consider here, the matrix tLCR can be expressed in terms of the elements of

the matrix t↓LC =
[
t↓ij

]
as follows

tLCR = ci

⎛⎜⎜⎝
−t↓2

11 − t↓2
21 −t↓11t↓12 − t↓21t↓22

t↓11t↓12 + t↓21t↓22 t↓2
12 + t↓2

22

⎞⎟⎟⎠ , (6.138)

where we have used the reciprocity relation for the matrices t↓LC and t↑LC (see Sections 1.4.3 and 8.6.2).
Depending on the choice of the polarization reference system for backward propagating light (see Figure
6.6) and the matrix r, the coefficient ci in (6.138) may be equal to 1, –1, i, –i, or other complex number
of magnitude 1. In any case, the coefficients ci for the matrices tLCR-B and tLCR-D are the same, and
they cancel out in (6.136). One can show that both in the case of a single-polarizer RLCD and in
the case of an RLCD with PBS, the polarization–compensation system can be chosen such that the
conditions tU-B = Q and tU-D = 0 are satisfied. Furthermore, one can prove that in the former case, to
obtain tU-B = Q it suffices to satisfy the condition tU-D = 0.

Examples of using estimates of MEF in optimization of RLCDs can be found in [10].
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7
Some Physical Models and
Mathematical Algorithms Used in
Modeling the Optical Performance
of LCDs

A key point in the modeling of optical characteristics of an optical system is the choice of the physical
model of the interaction of the optical system and light. The physical model is a set of physical laws,
assumptions, and approximations used in constructing the corresponding mathematical model. One of
few optical problems that can be solved exactly starting from the Maxwell equations is the problem
on interaction of a plane monochromatic wave and an ideal stratified medium, a medium that is 2D-
homogeneous and infinitely extended in the transverse directions. Known methods, some of which are
considered in detail in Chapter 8, provide an accurate and fast estimation of various transmission and
reflection characteristics of ideal stratified media for incident plane monochromatic waves. In most cases,
the physical model for estimating an optical characteristic of a real layered system is what prescribes
how to use such easily obtainable solutions to get the desired estimates. Physical models of this sort are
of primary importance in LCD optics. In Section 7.1, we discuss some standard approximations used in
such models.

In many cases, the accurate modeling of the optical behavior of LC devices involves taking account of
multiple reflections. In Section 7.2, we consider two general algorithms used for calculating transmission
and reflection characteristics of layered structures with allowance for multiple reflections.

In Section 7.3, optical models of some basic elements of LCDs are considered.

7.1 Physical Models of the Light–Layered System Interaction Used in
Modeling the Optical Behavior of LC Devices. Plane-Wave
Approximations. Transfer Channel Approach

Usually, considering a real optical layered system such as an LC cell or an LCD panel, one starts from a
realistic model of this system, which takes into account the real geometry of elements of the system. One
of the basic tricks used in modeling is a direct approximation of the values of a transmission or reflection
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PD

D

Figure 7.1 Scheme of the experiment considered in problems P1 and P2. D is a diaphragm; PD is a
photodetector

characteristic of such a realistic model system by the values of an allied characteristic describing the
interaction of a plane monochromatic or quasimonochromatic wave (approximating incident field) and
an ideal stratified medium whose optical properties are identical or close to those of the realistic model
system in the region being considered; we will call this ideal medium the approximating medium. Thus,
the use of this approximation involves choosing the approximating medium, approximating incident field,
and approximating characteristic. As we will see below, depending on the conditions of the problem, the
optimal choice of these items may be very different even for the same layered system.

Power-Based Plane-Wave Approximations

Most often, the direct optical problem consists in evaluating measurable optical characteristics of the
optical system under consideration (e.g., transmittance, reflectance). Therefore, when choosing the
physical model, one should take into consideration the experimental conditions under which these
characteristics are measured. In the present discussion, we will turn repeatedly to the following two
problems: Let us need to estimate theoretically the values of the transmittance of a homogeneous
layer (problem P1) or a multilayer system including anisotropic layers (problem P2) that might be
obtained using the experimental scheme shown in Figure 7.1. The incident beam is well-collimated
and quasimonochromatic. Its power (radiant flux) is assumed to be known. The photodetector measures
the net power of the radiation passing through the diaphragm D. The diameter of the opening of the
diaphragm D is somewhat larger than the diameter of the probe beam in the plane of the diaphragm and
hence the net transmitted power can be measured at least in the case of normal incidence.

In these problems, we deal with finite light beams, and the main characteristic of a beam for us is
its power. Our aim is to estimate the ratio of the power of the detected part of the transmitted light to
the power of the incident beam by making use of the knowledge on the interaction of plane waves, of
infinite extension and infinite power, and ideal stratified media. The problem P1 (a homogeneous layer),
in most cases, can be successfully solved using the geometrical optics approximation: by considering the
incident beam and the derivative beams as bundles of rays and using the known laws of transformation
of the amplitudes and phases of plane waves inside homogeneous layers and at interfaces to calculate the
amplitudes and phases associated with the rays (solutions of this kind may be found in many textbooks
on optics). In the case of a multilayer structure (problem P2), especially when oblique incidence is
considered, this approach is usually not efficient or not applicable at all.

A more general method of solving such problems is based on considering the incident beam as a
superposition of plane waves with different propagation directions, whose wave normals l are confined
within a narrow cone around the unit vector lc indicating the nominal propagation direction of the beam.
A quasimonochromatic beam1 is regarded as a superposition of monochromatic beams with wavelengths

1 Any of the quasimonochromatic light fields considered in this book is assumed to allow treating it as a realization
of an ergodic stationary random process [2–4].
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Figure 7.2 To approximation 1: situation 1

𝜆 filling a narrow spectral interval around a mean wavelength 𝜆c. Using known transfer functions of the
layered system for plane monochromatic waves, one calculates the characteristics of the emergent wave
fields of interest. It is a method of Fourier optics [1]. The computation of spatial distributions of local
characteristics, for example, irradiance, of the emergent fields by this method is rather laborious. But
when such a structural detailing of the fields is not required and the problem is stated in terms of nonlocal
characteristics of radiation, such as radiant power, as in the problems P1 and P2, the Fourier optics
approach may lead to very simple, reliable, and accurate methods of solution—methods based on the
approximation formulated above in terms of “approximating characteristic,” “approximating medium,”
and “approximating incident field.” Methods of this kind are successfully used for accurate modeling of
the optical performance of LCDs. In this section, we start presenting these methods, focusing attention on
physical aspects of the modeling. The consideration of these methods will be continued in Chapters 8–11.

Before we proceed we need to define the notions of the “effective spectral range” and “effective angular
spectrum” of a beam. The effective spectral range of a quasimonochromatic beam is the wavelength (or
frequency) range filled by the wavelengths (frequencies) of the monochromatic components giving a
significant contribution to the radiant power of this beam. Analogously, the effective angular spectrum of
a beam is the set of the wave normals of the plane-wave components of the beam that give a significant
contribution to the radiant power of this beam.

To begin with, we consider the following two approximations:

Approximation 1 (an interface) Let us consider two situations. Situation 1: A monochromatic, uni-
formly polarized light beam with a wavelength 𝜆 and nominal propagation direction lc impinges on
a plane interface between two nonabsorbing homogeneous isotropic media (Figure 7.2). The interface
coincides with the plane z = z0 in a Cartesian coordinate system (x, y, z). We denote the incident beam by
XB

inc, the transmitted beam by XB
tr , and the reflected beam by XB

ref (the superscript B serves as a reminder
that we are dealing with a beam). Situation 2: A plane monochromatic wave whose wave normal l = lc

and whose wavelength and polarization state are identical to the incident beam in situation 1 falls on the
same interface. We denote the incident wave as XMPW

inc , transmitted wave as XMPW
tr , and reflected wave as

XMPW
ref , where MPW reminds that we are dealing with a monochromatic plane wave. Almost always, to a

good approximation,

𝛷

{
XB

tr (z0 + 0)
}

𝛷

{
XB

inc(z0 − 0)
} ≈

E
{

XMPW
tr (z0 + 0)

}
E
{

XMPW
inc (z0 − 0)

} , (7.1a)

𝛷

{
XB

ref(z0 − 0)
}

𝛷

{
XB

inc(z0 − 0)
} ≈

E
{

XMPW
ref (z0 − 0)

}
E
{

XMPW
inc (z0 − 0)

} , (7.1b)
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lc
Xinc

B

Xref
B

Xtr
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z

Figure 7.3 To approximation 2: situation 1

where 𝛷{X(z′)} denotes the radiant flux of a wave field X across the plane z = z′, and E{XPW(z′)}
denotes the irradiance produced by a plane wave XPW at points of the plane z = z′. Since the media are
nonabsorbing, these relations may be rewritten as follows:

P
{

XB
tr

}
P
{

XB
inc

} ≈
E
{

XMPW
tr (z0 + 0)

}
E
{

XMPW
inc (z0 − 0)

} , (7.2a)

P
{

XB
ref

}
P
{

XB
inc

} ≈
E
{

XMPW
ref (z0 − 0)

}
E
{

XMPW
inc (z0 − 0)

} , (7.2b)

where P{X} denotes the power of a beam X in the traditional engineering sense. This is a well-known
approximation, which is mentioned in some textbooks on optics (see, e.g., Reference 5). In [5], this
approximation is treated using representations of geometrical optics.

Approximation 2 (a thin layered system) Again we will consider two similar situations differing
in illumination conditions only. Situation 1: A monochromatic, uniformly polarized light beam XB

inc
of wavelength 𝜆 and nominal propagation direction lc falls on an ideal stratified medium sandwiched
between two homogeneous nonabsorbing isotropic media (Figure 7.3). The external boundaries of the
stratified medium coincide with the planes z = z0 and z = zn. As in the previous case, we denote the
incident beam by XB

inc. The total transmitted field and total reflected field, XB
tr and XB

ref , at oblique incidence
will have a rather complicated structure, each being a set of beams spatially shifted with respect to each
other. Situation 2: The same ideal stratified medium is illuminated by a plane monochromatic wave
XMPW

inc with wave normal l = lc and wavelength and polarization state identical to the incident beam
in situation 1. The symbols XMPW

tr and XMPW
ref in this case will denote respectively the total transmitted

and total reflected fields. Although each of the fields XMPW
tr and XMPW

ref is a superposition of an infinite
number of waves, both XMPW

tr and XMPW
ref are plane waves. It can be shown that under certain rather general

conditions, the following relations are valid:

𝛷

{
XB

tr (zn + 0)
}

𝛷

{
XB

inc(z0 − 0)
} ≈

E
{

XMPW
tr (zn + 0)

}
E
{

XMPW
inc (z0 − 0)

} , (7.3a)

𝛷

{
XB

ref(z0 − 0)
}

𝛷

{
XB

inc(z0 − 0)
} ≈

E
{

XMPW
ref (z0 − 0)

}
E
{

XMPW
inc (z0 − 0)

} , (7.3b)
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and, since the surrounding media are nonabsorbing,

P
{

XB
tr

}
P
{

XB
inc

} ≈
E
{

XMPW
tr (zn + 0)

}
E
{

XMPW
inc (z0 − 0)

} ,
P
{

XB
ref

}
P
{

XB
inc

} ≈
E
{

XMPW
ref (z0 − 0)

}
E
{

XMPW
inc (z0 − 0)

} . (7.4)

Relations (7.1)–(7.4) can be derived using the plane-wave decomposition of the incident beam on the
assumption that the angular spectrum of the incident beam is so narrow that the transmissivities (reflec-
tivities) of the layered system for different plane-wave components of the effective angular spectrum of
the incident beam are almost the same. This condition may be satisfied if aB ≫ dsys|sin 𝛽c|, where aB

is the minimum diameter of the incident beam, dsys is the net thickness of the layered system, and 𝛽c is
the angle of incidence (the angle between the z-axis and the vector lc). Regarding a plane interface as
the simplest variant of the stratified medium, we will consider approximation 1 as a particular case of
approximation 2.

The ratios on the left-hand side of relations (7.1)–(7.4) are transmittances and reflectances defined for
beams. The ratios on the right-hand side of these relations are quantities usually called “transmissivity”
and “reflectivity” [2], which are defined in terms of irradiances for plane waves. Thus, these relations
allow us to estimate the transmittances and reflectances by approximating their values by the values of
the corresponding transmissivities and reflectivities.

In situation 1 of approximation 2, we have assumed that the layered system is an ideal strati-
fied medium. But it is obvious that relations (7.3) and (7.4) will remain valid if in situation 1 we
replace the ideal stratified medium by a more realistic model medium, supposing that this medium is
2D-homogeneous at least throughout the region where significant parts of the reflected and transmit-
ted wave fields are formed, while in situation 2 we take the approximating medium, an ideal stratified
medium whose parameters are identical to the realistic model of situation 1 in the 2D-homogeneous
region. Further, relations (7.3) and (7.4) may remain valid if in situation 1 we replace the monochromatic
incident beam by a quasimonochromatic one with a mean wavelength 𝜆c, while in situation 2 we take
the incident wave with 𝜆 = 𝜆c. The conditions of validity of relations (7.3) and (7.4) in this case are

t̃(𝜆) ≈ t̃(𝜆c), r̃(𝜆) ≈ r̃(𝜆c) ∀𝜆 ∈ Ω
𝜆
, (7.5)

where t̃(𝜆′) and r̃(𝜆′) denote respectively the transmissivity and reflectivity in situation 2 for the incident
wave with 𝜆= 𝜆′, andΩ

𝜆
= [𝜆c –Δ𝜆/2, 𝜆c +Δ𝜆/2] (Δ𝜆≪𝜆c) is the effective spectral range of the incident

beam in situation 1. In other words, relations (7.3) and (7.4) hold if variations of the transmissivity and
reflectivity within the spectral range Ω

𝜆
are negligible. After the replacements, situation 1 becomes quite

realistic. At the same time, relations (7.3) enable us to evaluate the transmittance and reflectance for this
realistic situation using estimates of the transmissivity and reflectivity (approximating characteristics)
for the incident plane monochromatic wave (approximating incident field) and the approximating ideal
stratified medium as follows:

t
𝛷
≈ t̃(lc, 𝜆c), r

𝛷
≈ r̃(lc, 𝜆c), (7.6)

where

t
𝛷
≡
𝛷

{
XB

tr (zn + 0)
}

𝛷

{
XB

inc(z0 − 0)
} , r

𝛷
≡
𝛷

{
XB

ref(z0 − 0)
}

𝛷

{
XB

inc(z0 − 0)
} , (7.7)

t̃ ≡
E
{

XMPW
tr (zn + 0)

}
E
{

XMPW
inc (z0 − 0)

} , r̃ ≡
E
{

XMPW
ref (z0 − 0)

}
E
{

XMPW
inc (z0 − 0)

} . (7.8)
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The same approximation but in terms of Mueller matrices is

Mtr(𝛷) ≈ M̃tr(E)(lc, 𝜆c), Mref(𝛷) ≈ M̃ref(E)(lc, 𝜆c), (7.9)

where Mtr(𝛷), M̃tr(E), Mref(𝛷), and M̃ref(E) are the transmission and reflection Mueller matrices such that

S(𝛷)

{
XB

tr (zn + 0)
}
= Mtr(𝛷)S(𝛷)

{
XB

inc(z0 − 0)
}

, (7.10)

S(𝛷)

{
XB

ref(z0 − 0)
}
= Mref(𝛷)S(𝛷)

{
XB

inc(z0 − 0)
}

, (7.11)

S(E)

{
XMPW

tr (zn + 0)
}
= M̃tr(E)S(E)

{
XMPW

inc (z0 − 0)
}

, (7.12)

S(E)

{
XMPW

ref (z0 − 0)
}
= M̃ref(E)S(E)

{
XMPW

inc (z0 − 0)
}

, (7.13)

where S(𝛷){XB(z′)} denotes the flux-based Stokes vector for a beam XB and the plane z = z′, and
S(E){XPW(z′)} the irradiance-based Stokes vector of a plane wave XPW at points of the plane z = z′

(see Section 5.3). Approximations (7.6) and (7.9) are widely used in modeling optical characteristics
of thin films and thin-film systems (AR-coatings, multilayer dielectric mirrors, multilayer transflective
polarizers, etc.), optical systems in which multiple-beam (Fabry–Perot, FP) interference plays a key role.

The class of approximations that use a monochromatic plane wave (MPW) as the approximating
incident field will be called the MPW approximation. We have considered a variant of the application of
the MPW approximation in the problem on the overall transmittance and overall reflectance of a layered
system. This approximation may also be used in calculating the characteristics of partial transmission
and reflection (see below). A general formula of this approximation may be written as

M(𝛷) ≈ M̃(E)(lc, 𝜆c), (7.14)

where M(𝛷) and M̃(E) are the Mueller matrices characterizing the same operation (overall or partial
transmission or overall or partial reflection) performed by a realistic layered medium and the corre-
sponding approximating medium, respectively. The matrix M(𝛷) relates the flux-based Stokes vectors of
the incident and emergent beams and corresponds to incident quasimonochromatic beams with nominal
propagation direction lc and mean wavelength 𝜆c. The matrix M̃(E)(l, 𝜆) relates the irradiance-based
Stokes vectors of the incident and emergent plane waves and corresponds to incident monochromatic
waves with wave normal l and wavelength 𝜆. The condition of applicability of approximation (7.14) may
be expressed as follows:

M̃(E)(l, 𝜆) ≈ M̃(E)(lc, 𝜆c) ∀𝜆 ∈ Ω
𝜆
, l ∈ Ωl, (7.15)

where Ω
𝜆

and Ωl are respectively the effective spectral range and effective angular spectrum of the
incident beam.

Let us consider the following example. The transmissivity of an ideal homogeneous nonabsorbing
isotropic layer surrounded by isotropic media with refractive index 1 for an incident monochromatic
linearly polarized plane wave with an arbitrary orientation of the polarization plane in the case of normal
incidence and with polarization plane parallel (p-polarization) or perpendicular (s-polarization) to the
plane of incidence at oblique incidence may be expressed as follows:

t̃ =
T2

I

1 + R2
I − 2RI cos

(
4𝜋d
𝜆

√
n2 − sin2

𝛽

) , (7.16)



JWST441-c07 JWST441-Yakovlev Printer: Markono December 29, 2014 12:59 Trim: 244mm × 170mm

Physical Models and Mathematical Algorithms Used in Modeling Optical Performance of LCDs 223

where 𝛽 is the angle of incidence, n and d are respectively the refractive index and thickness of the layer,
and TI and RI are respectively the transmissivity and reflectivity of the frontal interface for the incident
wave (in this example, both the transmissivities and reflectivities of the two interfaces are identical; TI

+ RI = 1). Let this layer be considered as the approximating medium in solving the problem P1 (Figure
7.1). Assume that the incident beam in the experiment is perfectly collimated and its effective angular
spectrum is bounded by a cone with a half-angle of the order of 𝜆c/aB, where, as before, aB is the
minimum diameter of the beam (aB ≫ 𝜆c). TI and RI usually vary relatively slowly with 𝛽 and 𝜆 for a
wide domain of values of 𝛽 and 𝜆, and, as a rule, the neglect of the variation of TI and RI in the ranges
𝜆 ∈ Ω

𝜆
and l ∈ Ωl is fully justified. In such cases, the rate of change of t̃ with 𝛽 and 𝜆 is determined by

the cosine term in (7.16). Representing 𝛽 as 𝛽 = 𝛽c + Δ𝛽, where, as before, 𝛽c is the nominal angle of
incidence of the beam and Δ𝛽 is a small angle, we find that√

n2 − sin2(𝛽c + Δ𝛽) = 𝜎c −
sin 𝛽c cos 𝛽c

𝜎c

Δ𝛽 + O(Δ𝛽2), (7.17)

where

𝜎c =
√

n2 − sin2
𝛽c. (7.18)

Taking Δ𝛽 = 𝜆c/aB, it is easy to see from (7.16) and (7.17) that the changes in t̃ over the range Ωl will
be small if

aB ≫
d|sin 𝛽c|

n
. (7.19)

From (7.16), we also see that the variation of t̃ with 𝜆 in the range Ω
𝜆
= [𝜆c – Δ𝜆/2, 𝜆c + Δ𝜆/2] may be

neglected if

2𝜎cd ≪
𝜆

2
c

Δ𝜆
. (7.20)

Hence, provided that in the experiment (Figure 7.1) all significant components of the transmitted field fall
into the detector, we may expect to obtain a good agreement of the theoretical estimates of t

𝛷
obtained

according to (7.6), that is, by using the MPW approximation, and the measured values of t
𝛷

if conditions
(7.19) and (7.20) are satisfied in the experiment.

In most cases, condition (7.20) is essentially equivalent to the following one: the coherence length
lcoh (lcoh ∼ 𝜆c

2/Δ𝜆) of the incident beam is many times larger than the thickness of the layer.
Real light has a random nature and cannot be perfectly monochromatic in principle. Irradiance

produced by the superposition of two real light fields depends on the degree of their mutual coherence
[2–5]. If these fields, call them field X1 and field X2, are fully or partially coherent, the irradiance produced
by their superposition, E{X1 + X2}, is in general not equal to the sum of the irradiances produced by
each of these fields individually, E{X1} + E{X2}, that is, the fields X1 and X2 interfere with each other. If
the fields are incoherent, E{X1 + X2} = E{X1} + E{X2}, that is, there is no interference. Two perfectly
monochromatic fields of the same frequency are completely mutually coherent.

In solving the practical optical problems entering into the scope of this book, as a rule, one can rely
on the following simple concepts of the interaction of quasimonochromatic light with optical systems.

Wavetrain Representation

Quasimonochromatic light incident on an optical system is considered as a swarm of mutually incoherent
wavetrains within each of which the electromagnetic field is similar to the field of a monochromatic



JWST441-c07 JWST441-Yakovlev Printer: Markono December 29, 2014 12:59 Trim: 244mm × 170mm

224 Modeling and Optimization of LCD Optical Performance

lcoh
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Reflected wavetrains

Transmitted wavetrains

Figure 7.4 Interaction of a quasimonochromatic beam with a “thin” layer (a) and a “thick” layer (b)

wave. The length of each wavetrain is approximately equal to the coherence length lcoh. When the light
propagates in the optical system, only derivatives of the same wavetrain are able to interfere with each
other and interfere more effectively at smaller spatial shift with respect to each other.

In Figure 7.4 we try, based on this concept, to illustrate the fact that for a layer with a thickness d ≪
lcoh, the conditions for interference of components of the emergent fields that undergo a different number
of reflections from the interfaces are fulfilled, while for a layer with a thickness d > lcoh such components
are mutually incoherent. In engineering optics, layers with d ≪ lcoh are customarily called “thin,” and
layers with d > lcoh “thick.” Hereinafter, where we use the terms “thin” and “thick” in this sense, we
retain the quotes. Thus, for example, layered systems with a net thickness many times smaller than lcoh

will be referred to as “thin” layered systems. The classification “thin”/“thick” is very important for us
because, supposing the usual conditions of measuring optical characteristics of LCD panels, the LCD
panel should be considered as a system including both “thin” layered systems and “thick” layers and, in
most cases, can be regarded as a system consisting only of elements of these classes. It is needless to say
that in such situations, real statistical properties of the light must be taken into account in modeling.

Spectral Representation

Another fruitful concept of the interaction of quasimonochromatic light with optical systems is based on
the spectral representation: The incident light is regarded as a composition of monochromatic components
of different frequencies, each of which interacts with the optical system independently of the others.
The validity of this representation is rigorously proved in the theory of coherence [3, 4]. Considering
a wave field emerging from the system as a mixture of monochromatic components produced by the
corresponding monochromatic components of the incident light, one can calculate characteristics of the
system for incident quasimonochromatic light in terms of those for incident monochromatic light. For
instance, let t

𝜆
, in the scalar variant of the problem, be the transmittance of a system for monochromatic

light, 𝛷inc and 𝛷
𝜆 inc respectively the radiant power and spectral radiant power of the incident light, and

𝛷tr and 𝛷
𝜆 tr the radiant power and spectral radiant power of the transmitted light. By definition,

𝛷inc =
∫
𝛷
𝜆 inc(𝜆)d𝜆, (7.21)

𝛷tr = ∫
𝛷
𝜆 tr(𝜆)d𝜆. (7.22)
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On substituting the expression

𝛷
𝜆 tr(𝜆) = t

𝜆
(𝜆)𝛷

𝜆 inc(𝜆) (7.23)

into (7.22), we obtain

𝛷tr = ∫
t
𝜆
(𝜆)𝛷

𝜆 inc(𝜆)d𝜆. (7.24)

Using the spectral form-factor of the incident light

g(𝜆) ≡ 𝛷
𝜆 inc(𝜆)

/
𝛷 inc, (7.25)

we may rewrite (7.24) as follows:

𝛷tr =
[
∫

t
𝜆
(𝜆)g(𝜆)d𝜆

]
𝛷inc.

We see from this equation that the transmittance of the system for the quasimonochromatic light, t ≡
𝛷tr/𝛷inc, may be calculated as

t =
∫

t
𝜆
(𝜆)g(𝜆)d𝜆. (7.26)

Provided that the spectral density S
𝜆 inc of the Stokes vector of the incident light, Sinc, can be represented

in the form

S
𝜆 inc(𝜆) = g(𝜆)Sinc, (7.27)

an analogous expression can be written for the Mueller matrix describing the interaction of the system
with the quasimonochromatic light:

M =
∫

M
𝜆
(𝜆)g(𝜆)d𝜆 (7.28)

with obvious notation. Quantities that characterize the interaction of an optical system with monochro-
matic light, such as t

𝜆
and M

𝜆
, will be called monochromatic, and quantities characterizing the interaction

of a system with quasimonochromatic light, such as t and M, quasimonochromatic.
If the variations of t

𝜆
and M

𝜆
within the effective spectral range are small, one may use the approxi-

mations

t ≈ t
𝜆
(𝜆c), (7.29)

M ≈ M
𝜆
(𝜆c). (7.30)

This kind of approximations will be referred to as the monochromatic approximation. The monochromatic
approximation is one of those involved in the MPW approximation.

In general, the thicker a layer, the closer peaks of the FP interference pattern in its spectra of monochro-
matic transmittance (transmissivity) and reflectance (reflectivity). For “thin” layers, distances between
neighbor interference peaks in the monochromatic spectra are much greater than the bandwidth of the
incident quasimonochromatic light and variations of the “monochromatic” characteristics within the
effective spectral range are very small, which justifies the use of the monochromatic approximation. For
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“thick” layers, many FP interference extrema of the monochromatic spectra fall at the effective spectral
range of the incident quasimonochromatic light and consequently the monochromatic approximation is
not applicable. The number of periods of the FP interference oscillations falling at the effective spectral
range of quasimonochromatic light with coherence length lcoh for a “thick” homogeneous isotropic layer
of thickness d and refractive index n at normal incidence is approximately equal to 2nd∕lcoh.

Experimental Transmission Spectra of “Thin” and “Thick” Layers

One of the problems that require the nonmonochromaticity of the incident light to be allowed for is
the modeling of the transmission spectra of LCD panels. As a rule, it is necessary to calculate them so
that they correspond to those that might be obtained in a real experiment under typical measurement
conditions.

With some idealization, the relationship between the measured spectrum of the transmittance2 of
an optical system, tmeas, obtained using a wide-band light source and a spectrometer, and the actual
transmittance spectrum of this system for monochromatic light tact(𝜆) may be expressed as follows:

tmeas(𝜆m) =
∫

fapp(𝜆m, 𝜆)tact(𝜆)d𝜆, (7.31)

where fapp(𝜆m, 𝜆) is an instrument function of the spectrometer, such that at any 𝜆m

∫
fapp(𝜆m, 𝜆)d𝜆 = 1,

the variable 𝜆m represents the nominal values of wavelength which the measured transmittance tmeas is
associated with. At a given 𝜆m, fapp(𝜆m, 𝜆) as function of 𝜆 assumes its maximum value at 𝜆 = 𝜆m and
has values significantly different from zero only for 𝜆 values from a small neighborhood of 𝜆m of width
Δ𝜆app (Δ𝜆app ≪ 𝜆m). In the simplest case, fapp(𝜆m, 𝜆) is the rectangular function:

fapp(𝜆m, 𝜆) =

{
1∕Δ𝜆app if ||𝜆 − 𝜆m

|| ≤ Δ𝜆app∕2

0 if ||𝜆 − 𝜆m
|| > Δ𝜆app∕2.

(7.32)

With such a function fapp(𝜆m,𝜆), tmeas(𝜆m) is equal to the average of tact(𝜆) over the interval𝜆m − Δ𝜆app∕2 ≤

𝜆 ≤ 𝜆m + Δ𝜆app∕2. With other functions fapp(𝜆m, 𝜆), tmeas(𝜆m) is a weighted average of tact(𝜆) over a small
interval including 𝜆m. In any case, the spectrum tmeas(𝜆m) is a result of smoothing the spectrum tact(𝜆).
If tact(𝜆) has fast interference oscillations, with a large number of interference maxima falling at a
spectral interval of width Δ𝜆app, such oscillations will be absent in the spectrum tmeas(𝜆m). Comparing
expressions (7.31) and (7.26), we see that the measured transmittance tmeas(𝜆m) may be treated as the
true transmittance of the system for incident quasimonochromatic light with spectral form-factor g(𝜆) =
fapp(𝜆m, 𝜆), or, a little rougher, for light with 𝜆c = 𝜆m and lcoh ≈ 𝜆m

2∕Δ𝜆app. If we use such an estimation
of lcoh to sort the layers of a layered system into “thick” ones and “thin” ones, we may be sure that
we will not see the pattern of the FP interference in the “thick” layers or this pattern will be greatly
smoothed in the experimental spectra of this system (see an example in Figure 7.5). We should note that
in real situations, the absence of FP interference in relatively thick layers may be caused not only by
the nonmonochromaticity of the incident light, but also by other factors, for instance, by spatial shift
of emergent beams, components of the transmitted (reflected) wave field, with respect to each other at
oblique incidence (as in Figure 7.6).

2 The same might be said about reflectance.



JWST441-c07 JWST441-Yakovlev Printer: Markono December 29, 2014 12:59 Trim: 244mm × 170mm

Physical Models and Mathematical Algorithms Used in Modeling Optical Performance of LCDs 227

400
0.0

0.1

0.2

0.3

0.4

0.5

T
ra

n
s
m

itt
a
n
c
e 0.6

0.7
Sample 1

Sample 2

Glass substrate

ITO-coated glass substrate

0.8

0.9

1.0

500

Wavelength (nm)

600 700

Figure 7.5 Experimental transmittance spectra of an uncoated glass substrate and ITO-coated glass
substrates with different thicknesses of ITO layer (samples 1 and 2) (Merck). In all the cases, the glass
(soda lime) substrate has a thickness of 1.1 mm. The ITO layer thickness in samples 1 and 2 is about
45 nm and 100 nm, respectively. There is a barrier SiO2 layer with a thickness of about 20 nm and
a refractive index of about 1.55 between the glass substrate and ITO layer in both samples with ITO
coating. The optical effect of the barrier layer is relatively small since its refractive index is close to
that of soda lime glass (∼1.52). The glass substrate is a typical example of a “thick” layer in spectral
measurements. ITO and barrier layers are typical “thin” layers. There are no manifestations of the FP
interference in the glass plates in the presented experimental spectra. At the same time, we clearly
see the effect of FP interference in the “thin” layered systems consisting of the barrier layer and ITO
layer

Usually, spectra of LCDs are measured with Δ𝜆app of the order of 4–8 nm and consequently the
measured spectra correspond to incident light with a coherence length of the order of 30–150 μm. Based
on this estimate, considering real sizes of LCD components and their optical action, one may conclude
that in most cases it is possible to approximate the LCD panel, when modeling its transmission spectra,
by a stratified medium consisting only of “thin” and “thick” layers.

When estimating the overall transmittance or overall reflectance of a layered system including “thin”
and “thick” layers, both coherent and incoherent interactions between different waves propagating in
the layered system must be taken into account. This may be made by using the spectral averaging, as
in (7.26) and (7.28). However, the spectral averaging is very time-consuming when applied to such
complicated and relatively thick layered systems as LCD panels, because in this case, to obtain accurate
results, it is necessary to compute the spectrum of the monochromatic transmittance (reflectance) of
the approximating stratified medium with a very small step. Dealing with layered systems consisting
only of “thin” and “thick” layers, one may use significantly more efficient methods of calculating the
overall transmittance and overall reflectance than the spectral averaging. Such methods are considered
in Section 10.2. In substance, these are methods of calculating the transmission (Mtr(E)) and reflection
(Mref(E)) Mueller matrices characterizing the interaction of a quasimonochromatic plane wave and an
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Figure 7.6 Examples of situations that require considering a partial transmission

ideal stratified medium consisting of “thin” and “thick” layers. The spectral averaging method, provided
(7.27), implies computing these Mueller matrices by the formulas

Mtr(E) = ∫
M̃tr(E)(𝜆)g(𝜆)d𝜆, (7.33)

Mref(E) = ∫
M̃ref(E)(𝜆)g(𝜆)d𝜆 (7.34)

[see (7.12) and (7.13)]. The methods presented in Section 10.2 do not require computing M̃tr(E)(𝜆) and
M̃ref(E)(𝜆). In the “realistic” modeling in terms of beams, the matrices Mtr(E) and Mref(E) are used to
approximate the matrices Mtr(𝛷) and Mref(𝛷) [see (7.10) and (7.11)]:

Mtr(𝛷) ≈ Mtr(E), Mref(𝛷) ≈ Mref(E) (7.35)

[cf. (7.9)]. The approximating incident field in this case is a quasimonochromatic plane wave.
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The class of approximations where a quasimonochromatic plane wave (QMPW) is used as the approx-
imating incident field will be referred to as the QMPW approximation. By analogy with (7.14), we write
the principal formula of the QMPW approximation as follows:

M(𝛷) ≈ M(E)(lc), (7.36)

where M(E)(l) is the Mueller matrix describing the operation under consideration when it is performed
by the approximating medium with respect to incident quasimonochromatic plane waves with wave
normal l and mean wavelength and coherence length equal to the mean wavelength and coherence length
of the incident beam in the realistic situation described by the matrix M(𝛷). The general condition of
applicability of (7.36) is

M(E)(l) ≈ M(E)(lc) ∀l ∈ Ωl (7.37)

[cf. (7.15)].
The MPW and QMPW approximations allow effective solving of a very large number of practical

problems of LCD optics, and we confine our attention to these kinds of problems in this book.
As examples of solutions for characteristics of the interaction of a quasimonochromatic plane wave

and an ideal layered medium, different from those that can be obtained by immediate use of the MPW
approximation, we give a few useful simple expressions for the overall transmissivity tE of different
“thick” layers. The surrounding medium in all the cases is assumed to be isotropic and of refractive
index 1.

1. An isotropic nonabsorbing “thick” layer (any polarization in the case of normal incidence, s- or
p-polarization at oblique incidence):

tE =
T2

I

1 − R2
I

(7.38)

with the same notation as in (7.16)
2. An isotropic weakly absorbing “thick” layer (any polarization in the case of normal incidence, s- or

p-polarization at oblique incidence):

tE =
T2

I TB

1 − R2
I T2

B

, (7.39)

where

TB = exp
(
−4𝜋d
𝜆c

Im
√

n2 − sin2
𝛽

)
≈ exp

(
− 4𝜋dn′′

𝜆c cos 𝛽L

)
(7.40)

is the transmissivity of the bulk of the layer. In (7.40), n = n′ + in′′ is the complex refractive index of
the layer (n′ and n′′ are real), and

cos 𝛽L =
√

n′2 − sin2
𝛽

n′ . (7.41)

3. A uniaxial dichroic “thick” layer with optic axis parallel to the layer boundaries (e.g., a model of a
polarizer) at normal incidence of a linearly polarized wave with polarization plane
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(i) parallel to the optic axis:

tE|| = T2
I||TB||

1 − R2
I||T2

B|| with TB|| = exp

(
−

4𝜋dn′′||
𝜆c

)
, (7.42)

(ii) perpendicular to the optic axis:

tE⊥ =
T2

I⊥TB⊥

1 − R2
I⊥T2

B⊥

with TB⊥ = exp
(
−

4𝜋dn′′
⊥

𝜆c

)
, (7.43)

where n′′|| and n′′
⊥

are the imaginary parts of the principal refractive indices of the layer, TI||,
TI⟂, RI||, and RI⟂ are the transmissivities and reflectivities of the frontal interface for the corre-
sponding polarizations of the incident wave, and tE|| and tE⟂ denote tE in the cases (i) and (ii),
respectively.

Partial Transmission and Partial Reflection. Transfer Channel Approach

In the above discussion, we considered mainly characteristics of the overall transmission and overall
reflection of layered media. But often of primary interest are characteristics of a partial transmission
or a partial reflection of a layered system. Such situations are typical in LCD optics. In many cases,
characteristics of partial transmission and reflection are much easier to analyze than those of overall
transmission and reflection.

Characteristics3 of a partial transmission (reflection) of a layered medium describe the relation between
incident light parameters and parameters of a certain part of the transmitted (reflected) light. The
part of the transmitted (reflected) light of interest can often be specified by indicating the chain of
operations (transmission, reflection) performed by elements of the layered medium that produce this
part of the emergent light. For instance, in the situation shown in Figure 7.6a, the detected component
of the transmitted light corresponds to the following chain of operations: the transmission of the frontal
interface of the layer → the transmission of the bulk of the layer → the transmission of the rear interface
of the layer. The way of radiation transfer defined by such a chain of operations will be referred to as
an elementary transfer channel. The formulation of the optical problem in terms of transmission and
reflection operations performed by units of the optical system being considered and solving it by using
operators describing these operations are among the main features of a general approach called here the
transfer channel approach.

Let us introduce some notions and notation. First we define the notions of a TR unit and an OTR unit.
The TR unit is a separate domain of a stratified medium about which we can say that this domain

transmits and/or reflects light. It may be the interface between layers, the bulk of a homogeneous or an
inhomogeneous layer, a layer (interface + bulk + interface), or a system of layers. Generally, we may
associate with a TR unit four types of operations (see Figure 7.7): two operations of transmission T↓ and
T↑ and two operations of reflection R↓ and R↑. The “operand” of the operations T↓ and R↓ is the forward
propagating light incident on this unit; that of the operations T↑ and R↑ is the backward propagating
incident light. If necessary, we will write down in the brackets following the symbols of operations
and operators for a TR unit the coordinates of the boundaries of this TR unit or the symbol denoting
this unit.

The OTR unit is a TR unit that is characterized in calculations by operators of the overall transmission
and/or overall reflection.

3 Jones matrix, Mueller matrix, transmittance (reflectance), and so on.
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Figure 7.7 Transmission (T↓, T↑) and reflection (R↓, R↑) operations performed by a TR unit. Con-
vention: If, as in this figure, a coordinate axis z attached to the layered system under consideration and
perpendicular to its interfaces is introduced, we will call wave fields traveling to greater ones z forward
propagating, and those going to lesser ones z backward propagating

For brevity, we will use the following notation. The fact that a wave field X′′ is the result of an operation
O performed on a wave field X′ may be expressed by the symbolic relation X′′ = OX′. If a wave field X
is the result of an operation O2 on a wave field X′′ (i.e., X = O2X′′), and the field X′′ is the result of an
operation O1 on a wave field X′ (X′′ = O1X′), the field X may be represented as the result of the sequence
of operations (O1, O2) on X′ (X = O2O1X′) or as a result of the operation O (X = OX′) being the product
of the operations O1 and O2 (O = O2O1). If a wave field X is a composition of wave fields X1 and X2

(X = X1 + X2) such that X1 = O′
1X′ and X′

2 = O′
2X′, then the operation O that being performed on X′ gives

X may be represented as the sum of O′
1 and O′

2 (O = O′
1 + O′

2). Transfer channels will be specified by
indicating the corresponding operations.

In the situation shown in Figure 7.6a, the channel Mt1 giving rise to the detected component Xt1 (Xt1 =
Mt1Xinc) can be represented as

Mt1 = T↓(z1 − 0, z1 + 0)T↓(z0 + 0, z1 − 0)T↓(z0 − 0, z0 + 0). (7.44)

In this case, we deal with three TR units: the interface (z0 − 0, z0 + 0), the bulk of the layer (z0 + 0, z1 −
0), and the interface (z1 − 0, z1 + 0).

If an emergent wave field is the result of action of two or more elementary transfer channels, this set
of channels can be regarded as a combined transfer channel. Thus, for example, in the situation shown
in Figure 7.6b, it is reasonable to consider the combined channel Mt1 + Mt2, where

Mt2 = T↓(z1 − 0, z1 + 0)T↓(z0 + 0, z1 − 0)R↑(z0 − 0, z0 + 0)T↑(z0 + 0, z1 − 0)

⋅R↓(z1 − 0, z1 + 0)T↓(z0 + 0, z1 − 0)T↓(z0 − 0, z0 + 0)

(Xt2 = Mt2Xinc).
In the case shown in Figure 7.6c, the layered system consists of a “thin” layered system with external

interfaces at z = z0 and z = z1 and a thick layer. Since the optical action of “thin” layered systems is
determined, to a greater or smaller extent, by FP interference, we must take into account the multiple
reflections that cause it. Therefore, in this case, it is natural to regard the domain (z0 − 0, z1 + 0), to some
approximation, as an OTR unit and to define the channel Mt1′ to be considered as follows:

Mt1′ = T↓(z2 − 0, z2 + 0)T↓(z1 + 0, z2 − 0)T↓(z0 − 0, z1 + 0). (7.45)

The transfer channel approach is widely used in the framework of the ray-tracing methods. Some
matrix methods of polarization optics of layered systems also use this approach. A well-known example
of such a method is the extended Jones matrix method developed by Yeh [6]. In essence, this is a method
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of calculating the Jones matrix of the elementary transfer channel that is determined by the chain of the
transmission operations performed by the interfaces and bulks of the layers of the layered system under
consideration. Each of these operations is described by a 2 × 2 matrix. A more general variant of this
method, which allows considering all kinds of TR units listed above, and recipes of fast and accurate
calculation of the transmission and reflection operators for various TR units will be presented in Chapters
8–11. This technique enables one to accurately calculate the Jones matrix of any transfer channel of
any ideal stratified medium. The Jones matrix of a channel may be used to calculate the transmissivity
or Mueller matrix for this channel, which in turn may be used as approximating characteristics or for
calculating approximating characteristics in the realistic modeling in terms of beams.

If the chain of operations determining an elementary channel includes only operations of the following
kinds:

(i) transmission and reflection of an interface,
(ii) transmission and reflection of a “thin” layered system4,

(iii) transmission of the bulk of a homogeneous layer,
(iv) transmission of the bulk of a “thin” layer with continuously varying parameters,

the Mueller matrix of this channel for plane monochromatic waves is, as a rule, a relatively slow function
of 𝜆 and l. This is almost always the case for approximating media for LCD panels. The slow change of
the monochromatic Mueller matrix allows using the MPW approximation (7.14), which always greatly
simplifies the calculations.

The transfer channel method, as a general method of optics of layered systems, is based on tracing the
transformation of a basic state characteristic of light (traced characteristic)—a characteristic suitable for
individual description of the wave fields that are operands and results of the transmission and reflection
operations performed by TR units—as the light propagates in the system, interacting with its elements
(TR units). The role of the traced characteristic in different cases may be played by a scalar amplitude,
irradiance, Jones vector, Stokes vector, and so on. The operations performed by TR units are described
by the corresponding operators. If the operators of transmission and reflection are represented by scalars
(transmittance, reflectance, etc.) or matrices (Jones matrix, Mueller matrix, etc.), and O is such an
operator, defined for a traced state characteristic X and describing an operation O, the corresponding
transformation of the traced characteristic is represented as follows:

X{OX} = OX{X}, (7.46)

where X is a wave field, an operand of O; X{X′} denotes the state characteristic X of a wave field X′. The
operator OM characterizing an elementary channel

M = ONON−1 …O2O1

is calculated as

OM = ONON−1 …O2O1, (7.47)

where Oj is the operator of the operation Oj. If M is the combined channel consisting of channels M1 and
M2, and state characteristic X for the components M1Xinc and M2Xinc (Xinc is the incident light) is additive,
that is,

X{M1Xinc + M2Xinc} = X{M1Xinc} + X{M2Xinc}, (7.48)

4 Individual “thin” layers are included in this category.
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the operator OM of the channel M can by calculated as follows:

OM = OM1 + OM2, (7.49)

where OM1 and OM2 are the operators characterizing the channels M1 and M2, respectively. Whether a
state characteristic is additive or not depends on particular conditions. For example, let the layered system
under consideration be an ideal stratified medium, and let Xinc be a plane quasimonochromatic wave.
Such characteristics as irradiance and Stokes vector will be additive for the fields M1Xinc and M2Xinc

only if these fields are mutually incoherent. If Xinc is a plane monochromatic wave, a properly defined
Jones vector will be additive characteristic for the fields M1Xinc and M2Xinc. In the situation shown in
Figure 7.6b, radiant power is additive characteristic for the beams Xt1 and Xt2, irrespective of whether
the incident beam is nonmonochromatic or monochromatic.

Using Power-Based Plane-Wave Approximations in Considering Optical Systems
Consisting of a Layered System and a Scattering Reflector

When considering direct-view reflective and transflective LCDs with bumpy reflectors [7], a problem
of importance is to estimate the optical performance of the LCD under given conditions of the ambient
illumination. Figure 7.8 illustrates a subproblem involved, directly or indirectly, in modeling in such
cases. A quasimonochromatic beam Xinc with narrow angular spectrum and nominal direction li falls on
a layered system LS behind which a scattering reflector R is situated. The light leaving this combined
system (LS + R) consists of a specular component and a diffuse one. The specular component (not
shown in Figure 7.8) is caused by reflections from interfaces of the layered system LS. The diffuse
component occurs due to the reflector R. The diffuse component, as well as the specular one, has a
complicated structure due to multiple reflections. Let us consider the part of the diffuse component that
can be expressed as Xdif = T↑

LS
RRT↓

LS
Xinc, where T↓

LS
and T↑

LS
are the operations of transmission (overall

or partial) of the system LS for light incident in a forward direction (as Xinc) and for light incident in

D

li

ls

ΔΩs

ΔXdif(ls,ΔΩs)

Xinc

Xdif

z
LS+R

LS

R
Cim

z

zref

Figure 7.8 To the problem on light scattering by the system consisting of a layered system (LS) and a
scattering reflector (R)
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a backward direction (as the light scattered from R), respectively, and RR is the reflection from R. Let
ΔXdif (ls,ΔΩs) be the portion of Xdif whose angular spectrum is bounded by a narrow cone with solid angle
ΔΩs around a direction ls. To some degree of approximation, the beam ΔXdif (ls,ΔΩs) may be thought
of as a part of Xdif falling into a distant detector whose input diaphragm D is arranged as in Figure
7.8 (cf. Figure 7.1). The problem is to estimate the ratio of the radiant power of ΔXdif (ls,ΔΩs) to the
radiant power of Xinc. Commonly, the optical action of bumpy reflectors and transflectors of LCDs can be
described using the microfacet model approach [8–10]. In this approach, the scattering surface is regarded
as a collection of differently oriented reflecting microfacets. Each microfacet, an interface between a
surrounding substance (the medium of incidence) and the substance of the reflector, is assumed to reflect
and transmit light in accordance with Snell’s law and Fresnel’s formulas for interfaces. Following this
approach, we assume that the rear endpoint medium for the system LS, the medium of incidence for
the reflector R (see Figure 7.8), is an isotropic nonabsorbing substance with refractive index nim, call it
Cim, and that the material of the reflector has a complex refractive index nR. The refractive index of the
external medium (where Xinc and Xdif propagate) is assumed to be equal to 1.

According to Snell’s law (see Sections 1.2.1 and 8.1.3), the result of the operation T↓
LS

performed by
an ideal stratified medium approximating LS on an incident plane wave with wave normal li will be a
plane wave with the wave normal

l′i =
1

nim

li⊥ + z

√
1 −

li⊥ ⋅ li⊥

n2
im

, (7.50)

where li⊥ = li − z(zli) and z is a unit vector codirectional with the positive z-axis (see Figure 7.8), in Cim.
To give an output wave with the wave normal ls, the incident wave being the operand of the operation
T↑

LS
must have the wave normal

l′s =
1

nim

ls⊥ − z

√
1 −

ls⊥ ⋅ ls⊥

n2
im

, (7.51)

where ls⊥ = ls − z(zls). According to (7.51), the solid angle of the cone of wave normals of the component
ΔX′

dif (l
′
s,ΔΩ′

s) of the light scattered by the reflector that, being an operand of the operation T↑
LS

, gives
ΔXdif (ls,ΔΩs), that is, such that

ΔXdif (ls,ΔΩs) = T↑
LS
ΔX′

dif (l
′
s,ΔΩ′

s), (7.52)

satisfies the relation

ΔΩ′
s =

zls

n2
imzl′s

ΔΩs. (7.53)

Let z = zref be the tangent plane to the surface of the reflector. Let 𝝈ref be the region of the plane z =
zref illuminated by the beam T↓

LS
Xinc, 𝜎ref the area of 𝝈ref, and ΔS(l′i, l′s,ΔΩ′

s) the area of the projection
of the microfacets that lie within the reflector region covered by 𝝈ref and reflect the incident light to the
solid angle ΔΩ′

s around l′s onto a plane perpendicular to l′i. Then, if diffraction effects and multiple
scattering among microfacets are negligible, in view of the fact that ΔΩ′

s is small, the Mueller matrix
MR(l′i, l′s,ΔΩ′

s) relating the flux-based Stokes vectors of the wave fields T↓
LS

Xinc and ΔX′
dif (l

′
s,ΔΩ′

s),

S(𝛷)

{
ΔX′

dif (l
′
s,ΔΩ′

s)
}
= MR(l′i, l′s,ΔΩ′

s)S(𝛷)

{
T↓

LS
Xinc

}
, (7.54)
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may be represented as follows (see, e.g., Reference 10):

MR(l′i, l′s,ΔΩ′
s) = fF(l′i, l′s,ΔΩ′

s)MFR(l′i, l′s), (7.55)

where

fF(l′i, l′s,ΔΩ′
s) =

ΔS(l′ i, l′s,ΔΩ′
s)

𝜎refzl′ i
(7.56)

and MFR(l′i, l′s) is the Mueller–Jones matrix5 describing the Fresnel reflection from a plane interface
between media with refractive indices nim and nR perpendicular to l′ i − l′s.

In common situations, in view of the narrowness of the angular spectra of Xinc and ΔXdif (ls,ΔΩs), one
can calculate the Mueller matrix M↓

LS
(li) relating S(𝛷)

{
Xinc

}
and S(𝛷)

{
T↓

LS
Xinc

}
,

S(𝛷)

{
T↓

LS
Xinc

}
= M↓

LS
(li)S(𝛷)

{
Xinc

}
, (7.57)

and the Mueller matrix M↑
LS

(ls) linking S(𝛷)

{
ΔX′

dif (l
′
s,ΔΩ′

s)
}

and S(𝛷)

{
ΔXdif (ls,ΔΩs)

}
,

S(𝛷)

{
ΔXdif (ls,ΔΩs)

}
= M↑

LS
(ls)S(𝛷)

{
ΔX′

dif (l
′
s,ΔΩ′

s)
}

, (7.58)

using the QMPW approximation.
From (7.54), (7.55), (7.57), and (7.58), we have

S(𝛷)

{
ΔXdif (ls,ΔΩs)

}
= fF(l′i, l′s,ΔΩ′

s)M
↑
LS

(ls)MFR(l′i, l′s)M
↓
LS

(li)S(𝛷)

{
Xinc

}
. (7.59)

As can be seen from (7.59), the problem under consideration may be split into two problems. The first
problem is to calculate fF(l′i, l′s,ΔΩ′

s). As a rule, this problem can easily be solved by using approaches
described in References 8–10. The second problem is the calculation of the matrix

MLS-R(li, ls) = M↑
LS

(ls)MFR(l′i, l′s)M
↓
LS

(li). (7.60)

This matrix may be interpreted as that describing the corresponding transfer channel for a system con-
sisting of LS and a tilted plane interface between media with refractive indices nim and nR perpendicular
to l′i − l′s, which is characterized by the matrix MFR(l′i, l′s). An example of using such an approach for
modeling direct-view reflective LCDs can be found in Reference 7.

Field-Based Plane-Wave Approximations. Direct-Ray Approximation

The power-based plane-wave approximations considered above are fully justified from the standpoint
of the rigorous theory and their applicability is restricted only by the aforementioned rather general
conditions. Among other things, these conditions allow one to solve the problem ignoring diffraction
effects, which is used in the power-based plane-wave approximations. When dealing with LCDs having
a fine transverse structure where parameters of the LC layer vary significantly along the transverse
directions over a distance of the order of a light wavelength, the corresponding diffraction effects must
be taken into account and the above power-based plane-wave approximations are not applicable, at least
to the LC layer. Relatively accurate modeling of the optical action of such LC layers with allowance

5 See Section 10.1.
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Figure 7.9 An application of the direct-ray approximation

for the diffraction effects can be carried out using finite-difference methods or grating methods (see
references in Chapter 13). However, these methods are very time-consuming. For this reason, in practice,
developers prefer to use, instead of these methods, simpler but less accurate methods utilizing techniques
developed for ideal stratified media. These simple methods are derived with a serious departure from the
rigorous theory and are almost always based on a heuristic application of the picture of light propagation
in very weakly birefringent inhomogeneous media to media with stronger birefringence. One of such
methods is the direct-ray approximation (DRA) method. Different variants of this method are presented
and used in many works (see, e.g., References 11 and 12).

To show the basic idea of the DRA method, we consider the following problem: Let a layer of a
uniaxial liquid crystal with LC director field n(r) inhomogeneous in more than one dimension and
principal refractive indices n|| and n⟂ be sandwiched between nonabsorbing isotropic media G1 and
G2, and let the planes z = z1 and z = z2 be the planes of the interfaces between the LC layer and the
media G1 and G2, respectively (Figure 7.9). Let a well-collimated monochromatic beam Xinc with nominal
propagation direction along a unit vector linc fall on the LC layer from the medium G1. Neglecting multiple
reflections, the transmitted field Xtr propagating in G2 is considered to be a result of the sequence of
the transmission operations carried out by the frontal interface (z = z1), the LC layer bulk, and the rear
interface (z = z2). The direct-ray approximation as applied to this problem includes the assumption that
the state of the field Xtr at an arbitrary point r′′ = (x′′, y′′, z2 + 0) at the interface z = z2 is fully determined
by (i) the state of the field Xinc at the point r′ = (x′, y′, z1 – 0) that lies on the straight line passing
through the point r′′ and parallel to a unit vector la specifying a conventional dominant direction of light
propagation in the LC layer and (ii) parameters of the medium at the points of the straight-line segment
(r′, r′′). The vector la is usually chosen to be parallel to the wave normal of the ordinary wave in the
LC layer [12] or to the wave normal of the wave that would propagate in the LC layer if this layer were
isotropic and had a refractive index nm = (n|| + n⟂)∕2 [11]; in both cases, when determining la, the
incident field Xinc is assumed to be a plane wave with wave normal linc. In the former case,

la =
ng

n
⊥

linc⊥ + z

√√√√1 −
n2

glinc⊥ ⋅ linc⊥

n2
⊥

, (7.61)

in the latter,

la =
ng

nm

linc⊥ + z

√
1 −

n2
glinc⊥ ⋅ linc⊥

n2
m

, (7.62)
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where linc⊥ = linc − z(zlinc), and ng is the refractive index of the medium G1. The Jones matrix tJ(r′, r′′)
linking the Jones vectors J{Xinc(r

′)} and J{Xtr(r
′′)} as

J{Xtr(r
′′)} = tJ(r′, r′′)J{Xinc(r

′)} (7.63)

is approximated by the transmission Jones matrix tJ1D(r′, r′′) of a fictitious ideal stratified medium
occupying the region (z1 + 0, z2 − 0) whose local optical parameters at any given z, say z = 𝜉, are
identical to those of the original medium at the point of intersection of the straight-line segment (r′, r′′)
and the plane z = 𝜉. The spatial dependence of the local optic axis c in this ideal stratified medium may
be expressed as follows:

c(z) = n
(

r′ + la
(z − z′)

zla

)
, (7.64)

where n(r) is the LC director field in the original LC layer. Calculation of the matrix tJ1D(r′, r′′) is
usually performed with the aid of some variant of the Jones matrix method. Techniques providing fast
and accurate estimation of tJ1D(r′, r′′) are considered in Chapters 8 and 11.

Given J{Xinc(r)} at the plane z = z1 (at z = z1 – 0), one calculates J{Xtr(r)} at the plane z = z2 (at z =
z2 + 0). Further, by using standard approaches of Fourier optics, the field Xtr(r) may be decomposed into
plane-wave components. Considering the interaction of these plane-wave components with following
elements of the device being modeled, one may find the parameters of plane-wave components of the
output light. Finally one may calculate, for instance, the distribution of the output light in the far-field
region (see, e.g., Reference 12).

There are simpler variants of application of DRA in modeling LCDs (see, e.g., Reference 11). One
of them is considered in Chapter 13. Though rough, DRA methods often provide very useful estimates.
DRA is widely used in modeling many kinds of LC devices, including PDLC (polymer-dispersed liquid
crystal) devices. In the case of PDLCs, DRA is used in calculations of the scattering cross-sections of
LC droplets in the anomalous diffraction approximation [13, 14].

DRA as presented above and other approximations that involve plane-wave approximations of wave
fields on the level of local amplitude characteristics belong to the class of field-based plane-wave
approximations.

7.2 Transfer Matrix Technique and Adding Technique
In this section, we consider two general techniques, the transfer matrix technique and the adding tech-
nique, which underlie many practical methods of calculating transmission and reflection characteristics
of layered systems with allowance for multiple reflections. Like the channel technique described in the
previous section, the adding technique is an algorithm of calculating transmission and reflection opera-
tors (Jones matrix, Mueller matrix, etc.) of the layered system using known transmission and reflection
operators (of the same kind) of its TR units. A flexible variant of the adding technique, which will be
presented here, can be used for calculating characteristics of both overall and partial transmission and
reflection of layered systems. The transfer matrix technique is intended for calculating operators of the
overall reflection and transmission of layered systems. Like the channel technique, the transfer matrix
technique and adding technique are not restricted by any particular choice of the traced characteristic
of light. For this reason, as in the above description of the channel technique, we will not specify the
traced characteristic, denoting it simply by X and assuming that it may be Jones vector, Stokes vector,
irradiance, or any other suitable characteristic of light.
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7.2.1 Transfer Matrix Technique

TR-Additivity

Let us consider a TR unit (z′, z′′) of a layered medium. Let X↓(z′) and X↑(z′′) be wave fields incident on
this unit from the regions z < z′ and z > z′′, respectively. The arrow ↓ (↑) at a symbol or a characteristic
of a wave field indicates that this wave field propagates to greater (lesser) z. The outgoing fields X↑(z′)
and X↓(z′′) generated by the fields X↓(z′) и X↑(z′′) may be represented as

X↓(z′′) = X↓
tr(z

′′) + X↓
ref (z

′′), X↑(z′) = X↑
tr(z

′) + X↑
ref (z

′), (7.65)

where

X↓
tr(z

′′) ≡ T↓(z′, z′′)X↓(z′), X↓
ref (z

′′) ≡ R↑(z′, z′′)X↑(z′′),

X↑
tr(z

′) ≡ T↑(z′, z′′)X↑(z′′), X↑
ref (z

′) ≡ R↓(z′, z′′)X↓(z′)

(see Figure 7.10), that is, we can write

X↓(z′′) = T↓(z′, z′′)X↓(z′) + R↑(z′, z′′)X↑(z′′), (7.66)

X↑(z′) = T↑(z′, z′′)X↑(z′′) + R↓(z′, z′′)X↓(z′). (7.67)

Let the chosen traced characteristic X be a scalar quantity or a quantity represented by a column vector,
and let the transmission and reflection operators be correspondingly represented by scalars or square
matrices. We will say that characteristic X is TR-additive for the unit (z′, z′′) if the interaction of the
outgoing wave fields is such that

X↑(z′) = X↑
tr(z

′) + X↑
ref (z

′), X↓(z′′) = X↓
tr(z

′′) + X↓
ref (z

′′), (7.68)

where X↓
tr(z

′′), X↓
ref (z

′′), X↑
tr(z

′), and X↑
ref (z

′) are the X-characteristics of the wave fields X↓
tr(z

′′), X↓
ref (z

′′),
X↑

tr(z
′), and X↑

ref (z
′), respectively. For example, irradiance can be considered as a TR-additive characteristic

X↑(z')

X↓(z")

X↑(z")

X↓(z')

z"

z'

Xtr
↑ (z')

Xref
↑ (z')

Xtr
↓ (z")

Xref
↓ ( z" )

z

Figure 7.10 A TR unit of a layered medium
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for the unit (z′, z′′) only if the superposed outgoing fields, X↓
tr(z

′′) and X↓
ref (z

′′) as well as X↑
tr(z

′) and X↑
ref (z

′),
are mutually incoherent. It follows from (7.65)–(7.68) that

X↓(z′′) = T↓(z′, z′′)X↓(z′) + R↑(z′, z′′)X↑(z′′),

X↑(z′) = T↑(z′, z′′)X↑(z′′) + R↓(z′, z′′)X↓(z′),
(7.69)

where T↓(z′, z′′), T↑(z′, z′′), R↑(z′, z′′), and R↓(z′, z′′) are the operators of the operations T↓(z′, z′′), T↑(z′,
z′′), R↑(z′, z′′), and R↓(z′, z′′).

Transfer Matrix Approach

Consider a layered system consisting of n OTR units for each of which the chosen traced characteristic X
is TR-additive. The TR-additivity allows one to link the X-characteristics of the incoming and outgoing
fields for each unit by relations of the form (7.69):

X↓(z̄j) = T↓(z̄j−1, z̄j)X
↓(z̄j−1) + R↑(z̄j−1, z̄j)X

↑(z̄j),

X↑(z̄j−1) = T↑(z̄j−1, z̄j)X
↑(z̄j) + R↓(z̄j−1, z̄j)X

↓(z̄j−1),

j = 1, 2,… , n,

(7.70)

where z̄j−1 and z̄j (z̄j−1 < z̄j) are the z-coordinates of the boundaries of the jth OTR unit. Relations (7.70)
may be treated as a basic set of equations for finding the operators of the overall transmission and
reflection of the layered system when the transmission and reflection operators for each of the OTR units
are known. Here is one of simple ways to find the overall transmission and reflection operators of the
layered system, T↓(z̄0, z̄n), R↓(z̄0, z̄n), T↑(z̄0, z̄n), and R↑(z̄0, z̄n), starting from (7.70).

If the operator T↑(z′, z′′)−1 exists, the system of equations (7.69) is equivalent to the following one:

X↓(z′′) = N11(z′′, z′)X↓(z′) + N12(z′′, z′)X↑(z′),

X↑(z′′) = N21(z′′, z′)X↓(z′) + N22(z′′, z′)X↑(z′),
(7.71)

where

N11(z′′, z′) = T↓(z′, z′′) − R↑(z′, z′′)T↑(z′, z′′)−1R↓(z′, z′′),

N12(z′′, z′) = R↑(z′, z′′)T↑(z′, z′′)−1,

N21(z′′, z′) = −T↑(z′, z′′)−1R↓(z′, z′′), N22(z′′, z′) = T↑(z′, z′′)−1
.

(7.72)

Introducing the state vector

↔
X(z) =

(
X↓(z)

X↑(z)

)
(7.73)

and the matrix

N̄(z′′, z′) =

(
N11(z′′, z′) N12(z′′, z′)

N21(z′′, z′) N22(z′′, z′)

)
,
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we may write the system (7.71) as follows:

↔
X(z′′) = N̄(z′′, z′)

↔
X(z′). (7.74)

This relation represents the vector
↔
X(z′′) characterizing the state of the radiation in the plane z = z′′ as

the result of a linear transformation of the vector
↔
X(z′) describing the state of the radiation in the plane z

= z′. The operator N̄(z′′, z′) may be called the transfer matrix of state vector
↔
X for the fragment (z′, z′′).

Note that here and in what follows, specifying transfer matrices, we write down the arguments in the
reverse order.

If each of the units (z̄j−1, z̄j) (j = 1, 2,…, n) of the layered structure under consideration can be
described by the corresponding transfer matrix, N̄(z̄j, z̄j−1), we may replace the set of equations (7.70) by
the following one:

↔
X(z̄j) = N̄(z̄j, z̄j−1)

↔
X(z̄j−1) j = 1, 2,… ,n. (7.75)

According to (7.75), the vectors

↔
X(z̄0) =

(
X↓(z̄0)

X↑(z̄0)

)
and

↔
X(z̄n) =

(
X↓(z̄n)

X↑(z̄n)

)
,

must satisfy the equation

↔
X(z̄n) = N̄(z̄n, z̄0)

↔
X(z̄0), (7.76)

where

N̄(z̄n, z̄0) =

(⌢

N11
⌢

N12
⌢

N21
⌢

N22

)
= N̄nN̄n−1 ⋅ ... ⋅ N̄2N̄1, N̄j ≡ N̄(z̄j, z̄j−1). (7.77)

Thus, the set of equations (7.70) is reduced to the following one

X↓(z̄n) = ⌢

N11X↓(z̄0) + ⌢

N12X↑(z̄0), (7.78a)

X↑(z̄n) = ⌢

N21X↓(z̄0) + ⌢

N22X↑(z̄0). (7.78b)

The sought overall transmission and reflection operators of the layered system can readily be expressed
in terms of

⌢

Nkl. Thus, to find the operators T↓(z̄0, z̄n) and R↓(z̄0, z̄n), we should put X↑(z̄n) = 0, where 0
is zero or the zero vector, in (7.78b), which gives

⌢

N22X↑(z̄0) = −⌢

N21X↓(z̄0). (7.79)

In this case, X↓(z̄n) characterizes the field transmitted by the system, X↑(z̄0) describes the reflected field,
and, by definition,

X↓(z̄n) = T↓(z̄0, z̄n)X↓(z̄0), (7.80a)

X↑(z̄0) = R↓(z̄0, z̄n)X↓(z̄0). (7.80b)

Premultiplying (7.79) by
⌢

N−1
22 we have

X↑(z̄0) = −⌢

N−1
22

⌢

N21X↓(z̄0). (7.81)
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Comparing (7.81) with (7.80b), we see that

R↓(z̄0, z̄n) = −⌢

N−1
22

⌢

N21. (7.82a)

Substituting (7.81) into (7.78a) gives

X↓(z̄n) =
(⌢
N11 −

⌢

N12
⌢

N−1
22

⌢

N21

)
X↓(z̄0),

that is,

T↓(z̄0, z̄n) = ⌢

N11 −
⌢

N12
⌢

N−1
22

⌢

N21. (7.82b)

The expressions for the operators T↑(z̄0, z̄n) and R↑(z̄0, z̄n), obtained on putting X↓(z̄0) = 0 in (7.78), are

T↑(z̄0, z̄n) = ⌢

N−1
22 , (7.82c)

R↑(z̄0, z̄n) = ⌢

N12
⌢

N−1
22 . (7.82d)

It is convenient to introduce the following notation. Let T be a 2m × 2m matrix with m × m blocks
t11, t12, t21, and t22,

T =

(
t11 t12

t21 t22

)
. (7.83)

By t↓{T}, r↓{T}, t↑{T}, and r↑{T} we will denote the m × m matrices calculated as

t↓{T} = t11 − t12t−1
22 t21, r↓{T} = −t−1

22 t21,

t↑{T} = t−1
22 , r↑{T} = t12t−1

22 .
(7.84)

Using this notation, we may rewrite expressions (7.82) as follows:

T↓(z̄0, z̄n) = t↓
{

N̄(z̄n, z̄0)
}

, R↓(z̄0, z̄n) = r↓
{

N̄(z̄n, z̄0)
}

,

T↑(z̄0, z̄n) = t↑
{

N̄(z̄n, z̄0)
}

, R↑(z̄0, z̄n) = r↑
{

N̄(z̄n, z̄0)
}
.

It is worth mentioning another example of application of the transfer matrix N̄(z̄n, z̄0). Assume that we
deal with a combined system (see Figure 7.11) consisting of the layered medium considered above and
a reflector characterized by the reflection operator R↓(z̄n,∞) such that

X↑(z̄n) = R↓(z̄n,∞)X↓(z̄n). (7.85)

zn

z0

z
Reflector

Figure 7.11 A layered system with a reflector
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According to (7.78) and (7.85), the operator of the overall reflection for this combined system, R↓(z̄0,∞),
can be calculated as follows:

R↓(z̄0,∞) = −
(⌢
N22 − R↓(z̄n,∞)

⌢

N12

)−1 (⌢
N21 − R↓(z̄n,∞)

⌢

N11

)
. (7.86)

Relations (7.77) and (7.72) show a way of calculating
⌢

Nkl (k, l = 1, 2) when we know the transmission
and reflection operators of the units of the layered structure. In many cases, it is possible to calculate the
transfer matrices N̄(z̄j, z̄j−1) more efficiently than via transmission and reflection operators of the units.
We will see examples of this in the next chapters.

The feature of the vector
↔
X is that it describes the state of both the forward and backward propagating

fields, that is, the total field, in a given plane. In the literature, methods in which transmission and
reflection characteristics of the layered structure are calculated from operators linking state vectors of the
total fields, such as

↔
X or reducible to such as

↔
X by a linear transformation, at the outer boundaries of the

structure are customarily referred to the class of transfer matrix methods. Well-known representatives
of this class are Abelès’s method [15, 3] and the method of Hayfield and White [16, 17] for isotropic
layered systems as well as the more general Berreman’s method [18] and Yeh’s method [19].

The main disadvantage of the transfer matrix methods is their numerical instability in situations when
strong attenuation (because of absorption or realization of TIR mode) takes place in a layer or layers of
the system characterized by the resulting transfer matrix. This instability is connected with the presence
of very large components in certain transfer matrices and the necessity to compute small quantities as
the difference of very large numbers; computations of this kind are known to lead to critical loss of
accuracy. In the above algorithm, the appearance of large elements in the matrix N̄(z′′, z′) is connected
with the presence of the term T↑(z′, z′′)−1 in (7.72). This can easily be seen from (7.72) on taking, for
simplicity, radiant flux as the traced characteristic. In this case, the operators T↓, T↑, R↓, and R↑ are
transmittances and reflectances, and, as seen from (7.72), some or all of the elements of the matrix
N̄(z′′, z′) tend to infinity as T↑(z′, z′′)→0. The adding technique (also called the S-matrix algorithm [20])
described in the next section and some other allied techniques, such as the scattering matrix technique
[21], are numerically stable in such situations.

7.2.2 Adding Technique

Let us consider two adjacent fragments (TR units) A and B of a layered medium (Figure 7.12). Denote
the transmission and reflection operators of the fragment A by T↓

A, R↓
A, T↑

A, and R↑
A, and those of the

X0
↓

A

B

X1
↓

X0
↑

X1
↑

X2
↓

(a)

A

B

X1
↑

X2
↓

X1
↓

X2
↑

X0
↑

(b)

Figure 7.12 To the description of the adding technique
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fragment B by T↓
B, R↓

B, T↑
B, and R↑

B. The corresponding state characteristic X is assumed to be TR-additive
for both fragments. One of ways to calculate the transmission and reflection operators of the system
A + B, T↓

A+B, R↓
A+B, T↑

A+B, and R↑
A+B, when we know the transmission and reflection operators of the

fragments A and B is the following.
In order to find the operators T↓

A+B and R↓
A+B, consider the fields generated in the system A + B

by the field X↓
0 (here, to refer to a particular field we use the symbol denoting the state vector of this

field) incident on the fragment A (see Figure 7.12a; there is no gap between the fragments A and B; we
disjoined these fragments in Figure 7.12 only to make this figure clearer). Using the notation introduced
in Figure 7.12a, we may write the following relations for the state vectors of the fields involved in the
process:

X↑
0 = R↓

AX↓
0 + T↑

AX↑
1, (7.87)

X↓
1 = T↓

AX↓
0 + R↑

AX↑
1 = T↓

AX↓
0 + R↑

AR↓
BX↓

1, (7.88)

X↓
2 = T↓

BX↓
1. (7.89)

From (7.88), we have

(U − R↑
AR↓

B)X↓
1 = T↓

AX↓
0, (7.90)

where U is the unit matrix. Therefore, we may express the vector X↓
1 as follows:

X↓
1 = (U − R↑

AR↓
B)−1T↓

AX↓
0. (7.91)

Since X↑
1 = R↓

BX↓
1, using (7.91), we may write

X↑
1 = R↓

B(U − R↑
AR↓

B)−1T↓
AX↓

0. (7.92)

On substituting (7.91) and (7.92) into (7.89) and (7.87), respectively, we obtain

X↓
2 = T↓

B(U − R↑
AR↓

B)−1T↓
AX↓

0, (7.93)

X↑
0 = [R↓

A + T↑
AR↓

B(U − R↑
AR↓

B)−1T↓
A]X↓

0. (7.94)

From these relations we see that

T↓
A+B = T↓

B(U − R↑
AR↓

B)−1T↓
A, (7.95)

R↓
A+B = R↓

A + T↑
AR↓

B(U − R↑
AR↓

B)−1T↓
A. (7.96)

The operators T↓
A+B and R↓

A+B expressed by formulas (7.95) and (7.96) allow for all re-reflections
between the fragments A and B. If we want to ignore these re-reflections at all, we should use, instead of
(7.91), the following expression for X↓

1,

X↓
1 = T↓

AX↓
0, (7.97)

which leads to the following expressions for the operators T↓
A+B and R↓

A+B

T↓
A+B = T↓

BT↓
A, (7.98)

R↓
A+B = R↓

A + T↑
AR↓

BT↓
A. (7.99)
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We note that in this case, we ignore only re-reflections, that is, the sequences R↑
AR↓

B. As seen from (7.99),
the contribution of reflection from B to the field X↑

0 is taken into account. Neglecting this contribution,
we have simply

R↓
A+B = R↓

A.

If we want to take account of the re-reflections up to n-fold ones, we should express X↓
1 as follows:

X↓
1 =

[
U +

n∑
k=1

(
R↑

AR↓
B

)k

]
T↓

AX↓
0. (7.100)

This gives the following expressions for T↓
A+B and R↓

A+B:

T↓
A+B = T↓

B

[
U +

n∑
k=1

(
R↑

AR↓
B

)k

]
T↓

A, (7.101)

R↓
A+B = R↓

A + T↑
AR↓

B

[
U +

n∑
k=1

(
R↑

AR↓
B

)k

]
T↓

A. (7.102)

Formulas (7.101) and (7.102) are consistent with formulas (7.95) and (7.96), because

lim
n→∞

[
U +

n∑
k=1

(
R↑

AR↓
B

)k

]
=
(
U − R↑

AR↓
B

)−1
(7.103)

[see (5.71)].
In a similar way, considering the situation shown in Figure 7.12b, one may obtain the following

expressions for the operators T↑
A+B and R↑

A+B:

(i) taking account of all re-reflections between A and B,

T↑
A+B = T↑

A(U − R↓
BR↑

A)−1T↑
B, (7.104)

R↑
A+B = R↑

B + T↓
BR↑

A(U − R↓
BR↑

A)−1T↑
B; (7.105)

(ii) ignoring all re-reflections between A and B,

T↑
A+B = T↑

AT↑
B, (7.106)

R↑
A+B = R↑

B + T↓
BR↑

AT↑
B; (7.107)

(iii) taking account of all the re-reflections up to n-fold ones,

T↑
A+B = T↑

A

[
U +

n∑
k=1

(
R↓

BR↑
A

)k

]
T↑

B, (7.108)

R↑
A+B = R↑

B + T↓
BR↑

A

[
U +

n∑
k=1

(
R↓

BR↑
A

)k

]
T↑

B. (7.109)
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Flexible Adding Algorithm

The above consideration suggests the following flexible recursion technique for calculating transmission
and reflection operators of multicomponent systems. Let us deal with a system A(N) consisting of N
fragments (TR units) Aj characterized by their reflection and transmission operators Tj

↓, Rj
↓, Tj

↑, and
Rj

↑ (j = 1,2,…,N). Denote the part of the system A(N) that includes the first j fragments of this system by

A(j) and the reflection and transmission operators of A(j) by T↓
(j), R↓

(j), T↑
(j), and R↑

(j) (j = 1,2,…,N–1). We
may use the following variants of calculation of the reflection and transmission operators for the system
A(j+1) from those for the system A(j) and fragment Aj+1:

(i) if we want to take all re-reflections between A(j) and Aj+1 into account,

T↓
(j+1) = T↓

j+1

(
U − R↑

(j)R
↓
j+1

)−1
T↓

(j), (7.110a)

R↓
(j+1) = R↓

(j) + T↑
(j)R

↓
j+1

(
U − R↑

(j)R
↓
j+1

)−1
T↓

(j), (7.110b)

T↑
(j+1) = T↑

(j)

(
U − R↓

j+1R↑
(j)

)−1
T↑

j+1, (7.110c)

R↑
(j+1) = R↑

j+1 + T↓
j+1R↑

(j)

(
U − R↓

j+1R↑
(j)

)−1
T↑

j+1; (7.110d)

(ii) if we want to ignore all re-reflections between A(j) and Aj+1,

T↓
(j+1) = T↓

j+1T↓
(j), (7.111a)

R↓
(j+1) = R↓

(j) + T↑
(j)R

↓
j+1T↓

(j), (7.111b)

T↑
(j+1) = T↑

(j)T
↑
j+1, (7.111c)

R↑
(j+1) = R↑

j+1 + T↓
j+1R↑

(j)T
↑
j+1; (7.111d)

(iii) if we want to ignore all re-reflections between A(j) and Aj+1 and contributions of reflections Rj
↓
+1

and R↑
(j) to the fields emerging from the system A(N),

T↓
(j+1) = T↓

j+1T↓
(j), (7.112a)

R↓
(j+1) = R↓

(j), (7.112b)

T↑
(j+1) = T↑

(j)T
↑
j+1, (7.112c)

R↑
(j+1) = R↑

j+1; (7.112d)

(iv) if we want to take account of only one-fold re-reflection between A(j) and Aj+1,

T↓
(j+1) = T↓

j+1

(
U + R↑

(j)R
↓
j+1

)
T↓

(j), (7.113a)

R↓
(j+1) = R↓

(j) + T↑
(j)R

↓
j+1

(
U + R↑

(j)R
↓
j+1

)
T↓

(j), (7.113b)

T↑
(j+1) = T↑

(j)

(
U + R↓

j+1R↑
(j)

)
T↑

j+1, (7.113c)

R↑
(j+1) = R↑

j+1 + T↓
j+1R↑

(j)

(
U + R↓

j+1R↑
(j)

)
T↑

j+1; (7.113d)

and so on. There are many other, rather obvious, variants of involving a fragment.
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Starting from

T↓
(1) = T↓

1, R↓
(1) = R↓

1, T↑
(1) = T↑

1, R↑
(1) = T↑

1 (7.114)

and using the above formulas successively for j = 2, . . . , N–1, we may find the operators T↓
(N), R↓

(N),

T↑
(N), and R↑

(N), which characterize the whole system A(N).
We have successfully used this very convenient and reliable algorithm within different methods with

various state vectors. Some particular examples of application of this algorithm may be found in the next
chapters.

7.3 Optical Models of Some Elements of LCDs
In examples given in this book, we, as a rule, consider standard models of LCD elements. In this
section, giving a summary on the standard models, we will mention some more complicated models (for
polarizers, glass plates, ITO layers) which are used in practice.

LC Layers

In this book, we deal with three classes of liquid crystals: nematics, cholesterics (chiral nematics), and
chiral smectics C∗ (FLC). Nematics and cholesterics are considered to be locally uniaxial media with
local optic axis c directed along the LC director n. When considering a nematic or cholesteric LC layer
of an LCD, it is usually assumed that throughout the volume occupied by the liquid crystal, the principal
refractive indices and, consequently, the principal values of the permittivity tensor of the LC at optical
frequencies are spatially invariant. The spatial dependence of the complex permittivity tensor of such a
medium at optical frequencies can be represented as follows:

ε(r) = 𝜀
⊥

U + (𝜀|| − 𝜀⊥)n(r)⊗ n(r),

𝜀|| = n2||, 𝜀⊥ = n2
⊥

,

where n|| and n⟂ are the principal refractive indices of the medium, 𝜀|| and 𝜀⟂ are the principal values of
the permittivity tensor, and U is the unit matrix [see also (5.66)]. Therefore, specification of a nematic or
cholesteric layer in a typical optical problem is a specification of the principal refractive indices of the
LC, the layer geometry, and the LC director field n(r).

Smectics C∗ are locally biaxial media, and the real permittivity tensor of a smectic C∗ at optical
frequencies has in general three different principal values (𝜀1, 𝜀2, 𝜀3) corresponding to three mutually
orthogonal principal axes (see Section 9.4). One of the principal axes is perpendicular to the LC director
and parallel to boundaries of smectic monomolecular layers. For most smectics C∗, the principal axis
corresponding to the largest principal value of the tensor ε (let it be 𝜀3) is approximately parallel to the
LC director n, and 𝜀2 is very close to 𝜀1 (the difference of the corresponding principal refractive indices
does not exceed 10−3), that is, the optical properties of a typical smectic C∗ are very close to those of a
locally uniaxial medium with n|| = 𝜀1∕2

3 , n⟂ = 𝜀1∕2
1 , and optic axis directed along n [22]. For this reason,

in modeling optical characteristics of thin (with a thickness less than 10 μm) layers of smectics C∗, the
LC medium is usually considered as optically locally uniaxial. When an inhomogeneous smectic layer is
considered as an optically locally biaxial medium, the principal values of its permittivity tensor at optical
frequencies are usually assumed to be spatially invariant, just as in the case of nematics and cholesterics.
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Film Polarizers

The simplest model of a film polarizer is a uniaxial absorbing layer whose optic axis is parallel to the
layer boundary. In calculations, this layer is specified by the azimuth of the optic axis and the complex
principal refractive indices, n|| and n⟂, of the layer. Polarizers of o-type are modeled by layers with
|Im(n||)| ≫ |Im(n⟂)|, and polarizers of e-type by layers with |Im(n||)| ≪ |Im(n⟂)|. The real parts of n||
and n⟂ are usually chosen close to 1.5 and equal or almost equal to each other, for example, Re(n||) =
1.50001 and Re(n⟂) = 1.5. When it is necessary to model a particular polarizer with given spectra of
the principal transmittances at normal incidence, the imaginary parts of the principal refractive indices
may be calculated from the given principal transmittance spectra by using formulas (7.42) and (7.43);
an alternative way is described in Reference 23. The simplest model reflects only the main property
of polarizers, namely, diattenuation. Real film polarizers include a few optically anisotropic layers and,
in many cases, the phase retardation introduced by the elements of real polarizers must be taken into
account. This leads to more realistic layered models of polarizers. For example, the usual polarization film
for LCDs is a stretched iodine(or dye)-doped PVA (polyvinyl alcohol; the refractive indices are ∼1.48
to 1.52) film—this film plays the role of a polarizing element—sandwiched between two protective
TAC (cellulose triacetate; the refractive indices are ∼1.48 to 1.51) films. The protective TAC films of
usual polarizers behave as uniaxial layers with negative birefringence and optic axis perpendicular to
the layer boundaries [24–26]. The optical anisotropy of TAC films is taken into account in modeling and
optimization of LCDs with phase compensators (retarders) improving their viewing angle characteristics.
As shown in Reference 25, in some applications, TAC films of polarizers are able to act as protective layers
and compensators simultaneously. The stretched PVA film may also introduce a nonzero retardation,
having significantly different Re(n|| ) and Re(n⟂). There are some situations where this retardation has to
be taken into account as well (mainly, for polarizers with weak absorbance for both principal components
in a part of the visible region).

Compensation Films

There are many kinds of homogeneous compensation films: uniaxial films of positive and negative bire-
fringence with various polar orientation of the optic axis, various biaxial films [26–28]. The choice of
optical models for such films does not require any comments. Some variants of combined compensators
containing anisotropic layers with continuously varying optical parameters along the stratification direc-
tion are described in References 29–34. The most-used compensators of this kind are Fuji wide view
(WV) films [29,30]. The Fuji WV film consists of a polymerized discotic layer with a splay-bend hybrid
alignment and a TAC substrate. In most cases, smoothly inhomogeneous layers of such combined com-
pensators are modeled in the same way as inhomogeneous liquid crystal layers. Experimental estimates
of parameters of such models for Fuji WV films can be found, for example, in works [29, 35, 36]. In
References 29 and 35 the discotic layer is regarded as a locally uniaxial medium, and in Reference 36 as
a locally biaxial one. As shown in Reference 36, the biaxial model better agrees with the experimental
data presented in this work than the uniaxial one.

Glass Substrates

The standard model of a glass plate of an LCD is a homogeneous isotropic nonabsorbing layer. Real glass
substrates used in LCDs slightly absorb the light, usually, to a greater extent at the edges of the visible
region (∼1% to 2% for 1.1-mm thick soda-lime glass plates). Sometimes these absorption losses are
required to be taken into account. In such cases, in models, glass plates are specified by the wavelength-
dependent complex refractive index. The usual float glass plate has a thin (∼6 to 10 μm) surface layer
with a significant gradient of the refractive index on the so-called tin side of the plate [37]. If necessary,
this surface layer can be modeled by a pile of thin homogeneous sublayers of different refractive indices
(see Section 8.3.3).
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ITO Layers

The simplest model of an ITO layer is a homogeneous nonabsorbing isotropic layer with a refractive
index of the order of 2. This model does not provide an accurate description of the optical effect of
ITO layers. Real ITO layers are absorbing and have a complicated (graded) microstructure. The optical
constants of ITO layers significantly vary along the axis normal to the boundaries and strongly depend
on the wavelength. Description of models taking account of the grading and experimental data on the
optical constants of ITO layers can be found in References 38 and 39.

Alignment Layers

Alignment layers are commonly modeled by homogeneous nonabsorbing isotropic layers. Optical man-
ifestations of the inhomogeneity and anisotropy of real alignment layers are, as a rule, very weak. But
sometimes, as we saw in an experimental example considered in Section 6.2.1 [the cell with photoalign-
ment (SD-1) films], the optical anisotropy of alignment layers and absorption losses in them must be
taken into account.
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8
Modeling Methods Based on the
Rigorous Theory of the Interaction
of a Plane Monochromatic Wave
with an Ideal Stratified Medium.
Eigenwave (EW) Methods. EW
Jones Matrix Method

A firm foundation for an accurate modeling of the optical performance of LCDs is the classical electro-
magnetic theory. This chapter is devoted to modeling methods that are rigorously derived from the basic
equations of electromagnetic theory, considering the interaction of a plane monochromatic wave and a
1D-inhomogeneous medium. Such methods, in different variants, were used for solving a huge number
of problems of LCD optics. It cannot but be mentioned that some of these methods were developed in
solving problems of optics of liquid crystals and LCDs.

In this chapter, starting from Maxwell’s equations (Section 8.1.1) and basic notions of crystal optics
(Section 8.1.2), we arrive at classical transfer matrix methods (Sections 8.1.3, 8.2.4, and 8.3) and a
method based on the use of 2 × 2 transmission and reflection matrices (Sections 8.2.1 and 8.4) for
describing the optical effect of constituents of the layered system. The latter method exploits the former
ones along with other tools for calculation of the transmission and reflection operators. This 2 × 2
matrix method, called in this book the eigenwave (EW) Jones matrix method, may be considered as an
implementation of basic ideas of the classical Jones matrix method within the framework of the rigorous
electromagnetic theory. A sufficiently complete description of this method is given for the first time.
In Section 8.2.1, we present the basic concepts of the EW Jones matrix method and briefly outline the
capabilities of this method in the context of LCD modeling.

In Section 8.3, devoted mainly to Berreman’s transfer matrix method, we also discuss a staircase
approximation of smoothly inhomogeneous media. An understanding of the nature of this approximation
is very important for us, because in most cases, the optical properties of inhomogeneous liquid crystal
layers are modeled with the use of this approximation.
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In Section 8.1.3, we introduce the notion of an eigenwave basis as used in the methods described
in this and following chapters. The eigenwave representation allows a versatile and flexible use of
solutions obtained with the aid of electromagnetic theory in modeling the optical properties of com-
plicated layered systems such as LCDs, in particular enabling use of the transfer channel technique
and other general techniques described in Chapter 7. The eigenwave decomposition is exploited in
most matrix techniques used for modeling the optical behavior of LCDs. In Section 8.4.1, we con-
sider some specific properties of eigenwave bases, the use of which greatly simplifies calculations
and analysis. Sections 8.2.2, 8.4.2, and 8.4.3 are devoted to the methods of calculation of the trans-
mission and reflection operators for different types of elements of layered structures. In Section 8.5,
we discuss the calculation of transmissivities and reflectivities in the EW Jones matrix method. In
Section 8.6, we consider mathematical properties of the transfer matrices as well as transmission and
reflection matrices peculiar to nonabsorbing media and reciprocal (see Section 8.1.1) media. Knowledge
of these properties helps in analysis, algorithm optimization, and testing computer programs. In Sec-
tions 8.7 and 8.8, we discuss some special topics connected with application of methods presented in
this chapter.

Where convenient, we give references to the literature at the end of sections, as “Relevant sources.”

8.1 General Properties of the Electromagnetic Field Induced by a
Plane Monochromatic Wave in a Linear Stratified Medium

8.1.1 Maxwell’s Equations and Constitutive Relations

The starting point of considering the propagation of time-harmonic (monochromatic) electromagnetic
fields in stratified media in the framework of the classical electromagnetic theory is the Maxwell equations
for curls of electric and magnetic fields with appropriate constitutive relations.

Maxwell’s Equations

Using the complex representation of the electromagnetic fields, the Maxwell equations for curls for a
source-free region may be written in the following form:

∇ × H = −ik0D, (8.1)

∇ × E = ik0B, (8.2)

where E is the electric field strength vector, H the magnetic field strength vector, D the electric displace-
ment vector, and B the magnetic induction vector; ∇× is the curl operator (∇ is the nabla operator);
k0 ≡ 𝜔/c with c being the velocity of light in free space and 𝜔 being the angular frequency. The complex
electric displacement D here is defined so that it involves the effects of the conduction current (if an
absorbing medium is considered) [1]. Therefore, the term with the conduction current density is absent
in (8.1). The Maxwell equations for the divergences of D and B,

∇ ⋅ D = 0, (8.3)

∇ ⋅ B = 0, (8.4)

where ∇⋅ is the divergence operator, in the case of harmonic fields cannot be treated as independent,
because they can be derived from equations (8.1) and (8.2).
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Constitutive Relations

The constitutive relations describe the effect of the medium on the electromagnetic field by establishing
the relationship between E, H, D, and B in terms of material parameters of the medium. One of the most
general forms of constitutive relations for linear media is

D = εE + ρH,
B = ρ′E + μH,

(8.5)

where ε is the permittivity tensor, μ is the permeability tensor, ρ and ρ′ are tensors characterizing the
optical activity of the medium. These tensors are assumed to be independent of the amplitudes and
directions of the vectors E and H but in general dependent on the frequency of the field. The constitutive
relations of the form (8.5) were adopted in the classical Berreman’s paper on the optics of stratified
media [2]. When modeling the LCD optics, we always deal with media that are specified with much
simpler constitutive relations, namely

D = εE,
B = H,

(8.6)

where ε is a symmetric tensor, that is,

ε = εT, (8.7)

where the symbol T, as usual, denotes the matrix transpose operation. Nevertheless, before we concentrate
our attention on such media, let us mention some fundamental classes of optical media and general
restrictions on the form of the material tensors involved in the constitutive relations (8.5) for media of
these classes. First of all, we note the classes of reciprocal media and nonreciprocal media. In contrast
to nonreciprocal media, the material tensors of reciprocal media satisfy the following relations:

ε = εT, μ = μT, ρ′ = −ρT (8.8)

[3]. Most optical media, including all those that we see in LC displays, are reciprocal. With condition
(8.8), the constitutive relations (8.5) allow consideration of natural optical activity (which is a reciprocal
phenomenon) but cannot describe nonreciprocal optical phenomena such as the Faraday rotation.

Next we should mention the class of optically locally centrosymmetric media, for which at optical
frequencies

ρ′ = ρ = O, (8.9)

where O is the zero tensor. It is clear that with this restriction, relations (8.5) cannot describe natural
optical activity.

The material tensors of nonabsorbing media meet the following conditions (see, e.g., Reference 3):

ε = ε†, μ = μ†, ρ′ = ρ†, (8.10)

where, as before, † is the symbol of Hermitian conjugation. For absorbing media, one or more of the
conditions (8.10) are violated.

The great majority of optical materials, including all optical materials of LC displays, are nonmagnetic
at optical frequencies, that is, for them

μ = U, (8.11)

where U is the unit tensor.
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Thus, adopting the constitutive relations in the form (8.6)–(8.7), we accept that the medium under
consideration, when interacting with optical electromagnetic fields, behaves as nonmagnetic, reciprocal,
and locally centrosymmetric. From now on we consider only such media unless otherwise stated. In view
of (8.11), we will sometimes omit equations for B, assuming that B = H.

In the case of a nonabsorbing medium, the permittivity tensor in (8.6)–(8.7) must be real [according
to conditions (8.7) and ε = ε† (8.10)], that is,

ε = Re(ε) = εR, (8.12)

where εR is the real permittivity tensor which is used in the constitutive relations corresponding to the
real representation of electromagnetic fields. For absorbing media,

ε = εR + iεI (8.13)

with

εI = (4𝜋∕𝜔)σ, (8.14)

where σ is the conductivity tensor. In the case of an isotropic medium,

ε = 𝜀U = n2U, (8.15)

where n and 𝜀 = n2 are respectively the complex refractive index and scalar complex permittivity of the
medium. For any nonabsorbing anisotropic medium, any uniaxial absorbing medium, and any biaxial
absorbing medium of orthorhombic symmetry, the tensor ε can be expressed in terms of the principal
refractive indices of the medium (see Sections 9.3 and 9.4 of the next chapter). Such a representation
cannot in general be used for biaxial absorbing media of lower symmetry, because for such media
the system of principal axes of the tensor σ may not coincide with the system of principal axes of
the tensor εR. The system of principal axes of a tensor includes three mutually orthogonal axes that
show the directions of the axes of Cartesian coordinate systems in which the matrix of this tensor is
diagonal. If the systems of principal axes of σ and εR are different, the tensor ε cannot be diagonalized
and, consequently, the principal complex refractive indices cannot be defined. Note that the material
symmetry of some liquid crystals, for example, smectics C*, allows such a situation.

Poynting Vector

The quantity

⟨S⟩ = c
8𝜋

Re (E × H∗) (8.16)

represents the time-averaged Poynting vector of a field {E, H}. In optics, time-averaged Poynting vector
is interpreted, with some reservations [4], as time-averaged energy flux density vector [1, 4–6] and serves
as a connecting link between electromagnetic theory and radiometry, allowing one to express radiometric
quantities, such as irradiance, in terms of quantities of electromagnetic theory (see, e.g., Sections 5.4.2
and 8.5).

Energy Flux in Nonabsorbing Media

According to Poynting’s theorem [3, 4], the time-averaged Poynting vector of a field in a nonabsorbing
medium satisfies the equation

∇ ⋅ ⟨S⟩ = 0. (8.17)
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〈S〉

n

S

V

d

{E,H}

Figure 8.1 To relation (8.18). Flux of the time-averaged Poynting vector ⟨S⟩ through a closed
surface S

Properties (8.10) of material tensors as conditions for this equation to be satisfied are derived in Appendix
B.1. On the assumption that (8.17) holds throughout some volume region V of the medium (possibly
inhomogeneous), integrating ∇ ⋅ ⟨S⟩ over V and applying the divergence theorem give the following
equation:

∫∫
○

S

⟨S⟩ ñds = 0, (8.18)

where S is the surface bounding the region V, and ñ is the unit outward normal to S (see Figure 8.1).

Lorentz’s Lemma for Reciprocal Media

This lemma is a version of the Lorentz reciprocity theorem [3, 7] for the case of a source-free region.
Let {E1, H1} and {E2, H2} be arbitrary fields each satisfying the Maxwell equations (8.1)–(8.2) in some
volume region V; the medium in V may be inhomogeneous and absorbing. The Lorentz lemma states
that

∫∫
○

S

(E1 × H2 − E2 × H1)ñds = 0, (8.19)

where, as in (8.18), S is the boundary of V, and ñ is the unit outward normal. The differential form of
this lemma is

∇ ⋅ (E1 × H2 − E2 × H1) = 0. (8.20)

In this case, too, the integral form (8.19) can be derived from the differential one (8.20) by integrating
(8.20) over V and applying the divergence theorem. The Lorentz lemma may be violated if the material
tensors of the medium do not satisfy (8.8) (see Appendix B.2).

We will see in later sections of this chapter that relations (8.17)–(8.20) are very useful in optics of
stratified media.

Boundary Conditions at Interfaces

The differential equations (8.1) and (8.2) hold only for points at which the fields are continuous functions
of the spatial coordinates. At surfaces across which the properties of the medium change stepwise,
some of the components of the field vectors exhibit discontinuities. Transition of the fields across such
surfaces of discontinuity is usually described using the familiar boundary conditions for the tangential
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components of E and H and the normal components of D and B, derived from the integral Maxwell
equations [4, 7]. For our problems, these boundary conditions may be formulated as follows: Across a
surface of discontinuity, the components of E and H tangential to the surface as well as the components
of D and B normal to the surface must be continuous. In the case of harmonic fields, the conditions
for the tangential components of E and H are sufficient conditions for the conditions for the normal
components of D and B to be satisfied, so there is no need to consider the latter ones. In the case of an ideal
stratified medium, the field components discontinuous at interfaces can be excluded from simultaneous
differential equations describing the spatial evolution of the field, as is done in Berreman’s formalism,
the property of continuity of the tangential components being directly expressed by those equations (see
Section 8.1.3). Let us note another, more physical, interpretation of the boundary conditions. A stepwise
change in ε is nothing more than a mathematical idealization. A more physically justified model of a
region with a sharp change in ε, say, from εA to εB, is a transition layer in which ε varies rapidly but
continuously from εA to εB. Almost always the transition layer can be treated as infinitesimally thin in
the physical (but not mathematical) sense. Considering the interfaces as infinitesimal transition layers,
we extend the region of validity of equations (8.1) and (8.2) to the whole space. The boundary conditions
are then used as a means for describing the transition of the fields across transition layers.

8.1.2 Plane Waves

A key role in optics of stratified media is played by plane waves. By a common convention, the term
“plane wave” can be used for any field of the form

E(r, t) = Eei(kr−𝜔t), H(r, t) = Hei(kr−𝜔t), D(r, t) = Dei(kr−𝜔t) (8.21)

(see Section 1.1.1). Substituting (8.21) into the Maxwell equations (8.1)–(8.2) and carrying out the
differentiation with respect to the coordinates, we have

k × H = −k0D, (8.22)

k × E = k0H. (8.23)

Eliminating from these equations H and D, the latter by using (8.6), we can obtain the well-known wave
equation

k ×
(
k × E
)
= −k2

0εE (8.24)

[8, 9]. The left-hand side of this equation can be rewritten as follows:

k ×
(
k × E
)
= k
(
k ⋅ E
)
− (k ⋅ k) E = k⊗ kE − k2E =

(
k⊗ k − k2U

)
E, (8.25)

where k2 ≡ k⋅k. In (8.25), the so-called dyadic product is used [see equation (5.66)]. For arbitrary vectors
a and b, the dyadic product a⊗b is the tensor whose components are

[a⊗ b]kj = [a]k [b]j . (8.26)

For arbitrary vectors a, b, and c,

a(b ⋅ c) = (a⊗ b)c. (8.27)

This property has been employed in (8.25). Now, using (8.25), we can rewrite (8.24) in the form

(
k⊗ k − k2U + k2

0ε
)

E =
⌢

0, (8.28)
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where
⌢

0 is the zero vector. Equation (8.28) has nontrivial solutions (E ≠
⌢

0) only if

det
(
k⊗ k − k2U + k2

0ε
)
= 0. (8.29)

This equation defines the set of all wave vectors allowed at a given ε.

Refraction Vector

For our purposes, it is convenient to represent the wave vector k as follows

k = k0m (8.30)

and consider the vector m rather than k as a basic parameter describing the spatial dependence of
the fields in a wave. This simplifies many important computational formulas, making them free of the
factor k0. For example, equations (8.22) and (8.23) in terms of m are simply

m × H = −D, (8.31)

m × E = H. (8.32)

Following Reference 10, we will call m the refraction vector. The appropriateness of this term will be
seen from our discussion of homogeneous plane waves below in this section. Equations (8.24), (8.28),
and (8.29) in terms of m are respectively

m ×
(
m × E
)
= −εE, (8.33)(

m⊗m − m2U + ε
)

E =
⌢

0, (8.34)

and

det
(
m⊗m − m2U + ε

)
= 0, (8.35)

where m2 ≡ m⋅m. Equation (8.35) can be cast into a more convenient form [10], namely,

m2(mεm) − m[Tr(εadj)U − εadj]m + det(ε) = 0 (8.36)

or, equivalently,

m2mεm − m[Tr(ε)ε − ε2]m + det(ε) = 0, (8.37)

where Tr(t) denotes the trace of a matrix t. In (8.36), εadj is the adjugate of ε (see Section 5.1.1),

εadj=
⎛⎜⎜⎝
𝜀22𝜀33 − 𝜀23𝜀32 𝜀32𝜀13 − 𝜀12𝜀33 𝜀12𝜀23 − 𝜀13𝜀22

𝜀23𝜀31 − 𝜀21𝜀33 𝜀11𝜀33 − 𝜀13𝜀31 𝜀13𝜀21 − 𝜀11𝜀23

𝜀21𝜀32 − 𝜀31𝜀22 𝜀12𝜀31 − 𝜀11𝜀32 𝜀11𝜀22 − 𝜀21𝜀12

⎞⎟⎟⎠ ,
where 𝜀kj are components of ε. Equation (8.36) is a fundamental equation in optics of nongyrotropic
media [10, 11]; it is sometimes called the generalized Fresnel equation. The classical Fresnel equation
for transparent crystals [4] can easily be derived from (8.36).
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Scalar Amplitude and Vibration Vectors

It is also convenient to introduce a common scalar amplitude characteristic of the wave. Equations (8.21)
can be rewritten in the form

E(r, t) = A(r, t)e, H(r, t) = A(r, t)h, D(r, t) = A(r, t)d, (8.38)

where A(r,t) is a scalar complex function such that

A(r, t) = A(r′, t′)ei[k0m(r−r′)−𝜔(t−t′)] (8.39)

at any r and r′ within the region where the wave exists and at any t and t′, and e, h, and d are vectors
satisfying the equations

m × h = −d, (8.40)

m × e = h, (8.41)

d = εe, (8.42)

and a normalization condition, for example,

e∗ ⋅ e = 1. (8.43)

The quantity A(r, 0) will be referred to as the scalar amplitude of the wave. The vectors e, h, and d
will be called, respectively, the electric vibration vector, magnetic vibration vector, and displacement
vibration vector.

Notation: In this and the following chapters, we consider many quantities which are functions of
position and time. To simplify notation, when indicating explicitly arguments of such functions in
brackets, we will drop the arguments that are assumed to be zero. For example, for a function f(r, t),
where r = (x, y, z), or, what is the same, f(x, y, z, t),

f (r) ≡ f (r, 0), (8.44)

f (z) ≡ f (0, 0, z, 0). (8.45)

Using this convention, we may describe the spatial evolution of the local scalar complex amplitude of
a wave in a homogeneous medium by the equation

A(r) = A(r′)eik0m(r−r′)
. (8.46)

Homogeneous and Inhomogeneous Plane Waves

Waves of the form (8.21) for which (i) m is real or (ii) m is complex but Im(m) is parallel to Re(m) are
called homogeneous plane waves. All other waves of the form (8.21), that is, waves having a complex
m with Im(m) nonparallel to Re(m), are called inhomogeneous plane waves. These definitions are
illustrated by Figure 8.2. For a homogeneous plane wave, the surfaces on which the field is constant are
planes perpendicular to the wave normal, that is, the wave is literally plane. The refraction vector of such
a wave can be represented as

m = nwl, (8.47)
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Figure 8.2 Refraction vectors of homogeneous and inhomogeneous plane waves

where l is the wave normal, and nw is the complex refractive index of the medium for this wave. If we
define the length of m as

m =
√

m2, (8.48)

we have

m = nw. (8.49)

Thus, in the case of a homogeneous plane wave, the refraction vector is a vector directed along the
wave normal and having a length m [see (8.48)] equal to the complex refractive index of the medium for
this wave. In the case of an inhomogeneous plane wave, it is impossible to define “complex refractive
index for the wave”; therefore, this simple interpretation of the refraction vector is inapplicable. It should
be noted that inhomogeneous plane waves are called “plane waves” purely conventionally, because the
surfaces of constant field in them are not plane.

Mutual Orientation of the Vibration Vectors and Refraction Vector of a Wave

Taking the scalar products of (8.40) and (8.41) with m, (8.40) with h, and (8.41) with e, we find that

m ⋅ d = 0, (8.50)

m ⋅ h = 0, (8.51)

d ⋅ h = 0, (8.52)

e ⋅ h = 0. (8.53)

In the case of a homogeneous wave, these relations have a clear geometrical meaning, indicating that m,
d, and h are mutually perpendicular and that e is perpendicular to h. In the case of an inhomogeneous
wave, the real and imaginary constituents of any of these vectors may be nonparallel, and relations
(8.50)–(8.53) therefore do not have such a simple interpretation.

8.1.3 Field Geometry
In this section, we consider the general properties of the wave fields induced in an arbitrary 1D-
inhomogeneous medium by an incident plane monochromatic wave, properties which make the analysis
of the spatial evolution of such fields relatively simple and are of fundamental importance in the context
of the modeling methods presented in this chapter.
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Figure 8.3 Geometry of the problem

Translational Invariance

Let us consider a 1D-inhomogeneous medium MSM sandwiched between two semiinfinite homogeneous
media Minc and Mtr (Figure 8.3). Let the medium Minc be nonabsorbing and isotropic, and let a homoge-
neous plane monochromatic wave Xinc fall on MSM from Minc. What can we say about the resulting field
based on these conditions?

Let us introduce a rectangular Cartesian coordinate system (x, y, z) with the z-axis parallel to the
direction of stratification, so that ε(r) = ε(z), and directed from Minc to Mtr and represent the refraction
vector of the incident wave, minc, as

minc = b + z𝜎inc, (8.54)

where z is the unit vector along the z-axis and b is the component of minc perpendicular to z (see
Figure 8.4a). Since the medium Minc is assumed to be nonabsorbing and the incident wave to be
homogeneous, minc and b are real vectors. Using (8.54), we may write the field of the incident wave in
the form (

Einc(r, t)
Hinc(r, t)

)
=
(

Einc(z)
Hinc(z)

)
exp
[
i𝜔
(br

c
− t
)]
. (8.55)

Because b is real, the incident field, as may be seen from (8.55), is invariant with respect to the translations

(r, t) →

(
r + Δr

⊥
, t +

bΔr
⊥

c

)
, (8.56)

where Δr⟂ is an arbitrary vector perpendicular to the z-axis. We illustrate this statement by Figure 8.4b
where we use, instead of the system (x, y, z) or as a particular choice of this system, a coordinate system
(x, y, z) with basis vectors (x, y, z), oriented so that x||b with 𝜁 ≡ x⋅b being nonnegative. The material
properties of the media Minc, MSM, and Mtr are independent of t and invariant under any translations in
directions perpendicular to the z-axis. Therefore, the resulting field must be invariant under translations
(8.56). According to (8.56), we have(

E(r)
H(r)

)
exp (−i𝜔t) =

(
E(r + Δr

⊥
)

H(r + Δr
⊥

)

)
exp
[
−i𝜔

(
t +

bΔr
⊥

c

)]
,
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Figure 8.4 (a) Refraction vector of the incident wave. (b) Illustration of the translational invariance of
the incident wave–stratified medium system. The field inside the stratified medium is not shown

that is, (
E(r + Δr

⊥
)

H(r + Δr
⊥

)

)
=
(

E(r)
H(r)

)
exp
(
ik0bΔr

⊥

)
.

Thus, the translational symmetry of the system determines the following form of the resulting field

E(r, t) = Ẽ(z) exp
{

i
(
k0br − 𝜔t

)}
, H(r, t) = H̃(z) exp

{
i
(
k0br − 𝜔t

)}
. (8.57)

This means in particular that the refraction vectors of all plane waves induced by the incident wave in
any homogeneous layer of the medium MSM and in the media Minc and Mtr have the same tangential
component, equal to the tangential component b of the refraction vector of the incident wave. It is easy
to see a connection between this conclusion and Snell’s law remembering that, according to (8.54) and
(8.47),

𝜁 ≡ x ⋅ b ≡ |b| = ninc sin 𝛽inc,

where ninc is the refractive index of the medium MSM, and 𝛽 inc is the angle of incidence (see Figure 8.4).
The special form of the fields (8.57) greatly simplifies the problem, as the dependence of the fields on the
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transverse coordinates, x and y, is known, and, when seeking solutions, we can deal with functions of only
one variable z. The system of equations consisting of the Maxwell equations (8.1)–(8.2), constitutive
relations, and restriction (8.57) will be referred to as the basic equation system of optics of stratified
media.

In the above discussion, we assumed for simplicity that the medium Minc was isotropic and nonabsorb-
ing and that the incident wave was homogeneous. It is obvious that those conditions are not necessary
conditions for the resulting field to be of the form (8.57). If the incident field has the form (8.57), the
resulting field will also be of the form (8.57); this will be the case, in particular, when the incident wave
is inhomogeneous but has a real b as well as when the incident field is a superposition of two plane
waves having the same real b but different normal components of their refraction vectors. The latter is
possible when Minc is anisotropic.

The problems of optics of stratified media where all wave fields to be considered have the form (8.57)
will be called canonical problems. Optical methods presented in this chapter are methods of solving
canonical problems or employ solutions of such problems.

Principal Equations. Berreman’s Equation

Substitution of (8.6) and (8.57) into (8.1) and (8.2) gives the following equations for Ẽ(z) and H̃(z)

d
(
z × H̃
)

dz
= −ik0

(
εẼ + b × H̃

)
,

d
(
z × Ẽ
)

dz
= ik0

(
−b × Ẽ + H̃

)
.

(8.58)

These are the principal equations of a canonical problem for an ideal stratified medium described
by constitutive relations (8.6). The complete set of equations describing spatial evolution of the field
{E, H} includes equations (8.58) and (8.57). Equations (8.58) written in the coordinate form are

−
dH̃y

dz
= −ik0

(
𝜀xxẼx + 𝜀xyẼy + 𝜀xzẼz + byH̃z

)
, (8.59a)

dH̃x

dz
= −ik0

(
𝜀yxẼx + 𝜀yyẼy + 𝜀yzẼz − bxH̃z

)
, (8.59b)

−ik0

(
𝜀zxẼx + 𝜀zyẼy + 𝜀zzẼz + bxH̃y − byH̃x

)
= 0, (8.59c)

−
dẼy

dz
= ik0

(
−byẼz + H̃x

)
,

dẼx

dz
= ik0

(
bxẼz + H̃y

)
, (8.59d,e)

ik0

(
−bxẼy + byẼx + H̃z

)
= 0, (8.59f)

where Ẽj, H̃j, bj, and 𝜀jk (j, k = x, y) are components of Ẽ, H̃, b, and ε. In (8.58) there are no
derivatives of components of the field vectors that are discontinuous at interfaces, so that these
equations are valid over the whole space. In the more general case of constitutive relations (8.5),
the principal equations have the same structure as (8.58): they consist of two linear homogeneous
algebraic equations and four linear homogeneous first-order differential equations in the Cartesian
components of Ẽ(z) and H̃(z) (see, e.g., Reference 2). Using the algebraic equations, one can
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express two of the six field variables in terms of the other four. Thus, from (8.59c) and (8.59f) we
have

Ẽz = − 1
𝜀zz

(
𝜀zxẼx + 𝜀zyẼy + bxH̃y − byH̃x

)
, (8.60a)

H̃z = bxẼy − byẼx. (8.60b)

Substituting (8.60) into (8.59a,b,d,e) gives four linear homogeneous first-order differential equations in
four field variables:

dẼx

dz
= ik0

[(
−

bx𝜀zx

𝜀zz

)
Ẽx +
(
−

bx𝜀zy

𝜀zz

)
Ẽy +
(bxby

𝜀zz

)
H̃x +

(
1 −

b2
x

𝜀zz

)
H̃y

]
,

dẼy

dz
= ik0

[(
−

by𝜀zx

𝜀zz

)
Ẽx +
(
−

by𝜀zy

𝜀zz

)
Ẽy +

(
b2

y

𝜀zz

− 1

)
H̃x +
(
−

bxby

𝜀zz

)
H̃y

]
,

dH̃x

dz
= ik0

[(
𝜀yz𝜀zx

𝜀zz

− 𝜀yx − bxby

)
Ẽx +
(
𝜀yz𝜀zy

𝜀zz

− 𝜀yy + b2
x

)
Ẽy +
(
−

by𝜀yz

𝜀zz

)
H̃x +
(bx𝜀yz

𝜀zz

)
H̃y

]
,

dH̃y

dz
= ik0

[(
𝜀xx −

𝜀zx𝜀xz

𝜀zz

− b2
y

)
Ẽx +
(
𝜀xy −

𝜀zy𝜀xz

𝜀zz

+ bybx

)
Ẽy +
(by𝜀xz

𝜀zz

)
H̃x +
(
−

bx𝜀xz

𝜀zz

)
H̃y

]
.

(8.61)

This system of equations can be cast into the following form:

dΨ
dz

= ik0𝚫(z)Ψ, (8.62)

where

Ψ(z) ≡

⎛⎜⎜⎜⎜⎜⎝

Ẽx(z)

H̃y(z)

Ẽy(z)

−H̃x(z)

⎞⎟⎟⎟⎟⎟⎠xyz

(8.63)

is the so-called Berreman vector and

Δ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
bx𝜀zx

𝜀zz

1 −
b2

x

𝜀zz

−
bx𝜀zy

𝜀zz

−
bxby

𝜀zz

𝜀xx −
𝜀zx𝜀xz

𝜀zz

− b2
y −

bx𝜀xz

𝜀zz

𝜀xy −
𝜀zy𝜀xz

𝜀zz

+ bybx −
by𝜀xz

𝜀zz

−
by𝜀zx

𝜀zz

−
bxby

𝜀zz

−
by𝜀zy

𝜀zz

1 −
b2

y

𝜀zz

𝜀yx −
𝜀yz𝜀zx

𝜀zz

+ bxby −
bx𝜀yz

𝜀zz

𝜀yy −
𝜀yz𝜀zy

𝜀zz

− b2
x −

by𝜀yz

𝜀zz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠xyz

(8.64)

is the so-called differential propagation matrix [the notation (⋅)xyz is explained in Section 9.1]. Expression
(8.64) for the matrix 𝚫 corresponds to constitutive relations (8.6). The most general expressions for the
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components of 𝚫, corresponding to constitutive relations (8.5), were given by Berreman in [2]. It should
be noted that in [2], Berreman used the coordinate system with the x-axis parallel to b. This choice
simplifies computational formulas but, as we saw above, is not necessary for obtaining an equation of
the form (8.62) for the Berreman vector (8.63) (see also Section 8.3.4).

The Berreman equation is a shortened form of the principal equations. In practical calculations, the
algebraic equations of the principal equations are invoked only in rare cases when there is a need to
calculate Ẽz and H̃z from the Berreman vector.

Modal Representation

It follows from the theory of linear ordinary differential equations that a fundamental system of solutions
for (8.62) can be composed of four linearly independent particular solutions of this equation and that
such a set of four linearly independent solutions can always be found. By definition, given a fundamental
system (Ψ1(z), Ψ2(z), Ψ3(z), Ψ4(z)), any particular solution of (8.62) can be represented as a linear
combination of the fundamental solutions

Ψ(z) = c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z) + c4Ψ4(z). (8.65)

According to (8.65), (8.59), and (8.57), the field described by the function Ψ(z) can be expressed as

(
E(r, t)
H(r, t)

)
=

4∑
l=1

cl

(
El(r, t)
Hl(r, t)

)
, (8.66)

where {El(r, t), Hl(r, t)} (l = 1, 2, 3, 4) are fields characterized by functions Ψl(z). Thus, the set of the
four fields {El(r, t), Hl(r, t)} (l = 1, 2, 3, 4) is a fundamental system of solutions of the basic equation
system [Maxwell’s equations + constitutive relations + equations (8.57)].

Eigenwaves of a Homogeneous Layer. Eigenwave Representation

The fundamental system of solutions of the basic equation system for a homogeneous layer can almost
always be composed of four eigenwaves of the layer, four waves of the form (8.21). The representation
of a field in a homogeneous layer, or in an infinitesimally thin layer of an inhomogeneous medium with
continuously varying parameters, as a superposition of eigenwaves of this layer is referred to in this book
as the eigenwave representation. The set of basis functions used for eigenwave decomposition will be
referred to as the eigenwave basis. Eigenwave representation is used in most optical methods considered
in this book, including all those presented in the program library LMOPTICS (see Chapters 9 and 10
and the companion website). In this section we touch upon only key aspects of this representation. Much
useful information about eigenwave bases may be found in Section 8.4.1 and Chapter 9.

Using quantities defined in the previous section, we may write the basic formula of eigenwave
representation as follows:

(
E(r, t)
H(r, t)

)
=

4∑
l=1

Al(z)Ql(z) exp
{

i
(
k0br − 𝜔t

)}
, Ql(z) ≡

(
el(z)
hl(z)

)
, (8.67)

where el and hl are respectively the electric and magnetic vibration vectors of the lth basis eigenwave.
The functions el(z) and hl(z) are assumed to have constant values within homogeneous layers.
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From (8.67), (8.57), and (8.63), one may see that the four-component column-vector composed of the
scalar amplitudes of the eigenwave components,

A(z) =
⎛⎜⎜⎜⎝

A1(z)
A2(z)
A3(z)
A4(z)

⎞⎟⎟⎟⎠ , (8.68)

is related to the vector Ψ(z) characterizing the same field by the following equation

Ψ(z) = 𝚿(z)A(z), (8.69)

where

𝚿(z) =
(
𝝍1(z) 𝝍2(z) 𝝍3(z) 𝝍4(z)

)
(8.70)

is a 4 × 4 matrix with columns

𝝍 l(z) =
⎛⎜⎜⎜⎝

el(z) ⋅ x
hl(z) ⋅ y
el(z) ⋅ y
−hl(z) ⋅ x

⎞⎟⎟⎟⎠ , l = 1, 2, 3, 4. (8.71)

According to (8.57) and (8.67), refraction vectors of all eigenwaves used for eigenwave decomposition
(basis waves) must have the same tangential component, equal to b. The z-components of the refraction
vectors of the basis waves can be found from a quartic equation that is obtained by substitution of

m = b + z𝜎 (8.72)

into (8.35), (8.36), or (8.37). Thus, substituting (8.72) into (8.37) gives the following equation:

d4𝜎
4 + d3𝜎

3 + d2𝜎
2 + d1𝜎 + d0 = 0, (8.73)

where

d0 =
[
b2 − Tr(ε)

]
(bεb) + (εb)2 + det(ε),

d1 = 2
{[

b2 − Tr(ε)
]

(bεz) + (εb) (εz)
}

,

d2 =
[
b2 − Tr(ε)

]
(zεz) + bεb + (εz)2 ,

d3 = 2bεz, d4 = zεz.

This equation has four roots, including possible multiple roots; we denote them by 𝜎1, 𝜎2, 𝜎3, and 𝜎4.
Except some singular situations (see below), it is possible to find four eigenwaves with refraction vectors

ml = b + z𝜎l (l = 1, 2, 3, 4) (8.74)

(see Figure 8.5) that together constitute a fundamental system of solutions of the basic equation system.
The vibration vectors el and hl of the basis waves can be calculated by using (8.40)–(8.42) and an
appropriate normalization condition (see Sections 8.4, 8.5, and Chapter 9).
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Figure 8.5 (a) Numeration of basis eigenwaves adopted in this book. (b, c) Refraction vectors of the
basis eigenwaves for a nonabsorbing anisotropic layer out of TIR mode

The Berreman formalism offers an alternative way of calculating the parameters of the basis eigen-
waves. The function Ψ(z) characterizing a plane wave of the form (8.21) may be written as follows:

Ψ(z) = A(z′) exp
[
ik0𝜎(z − z′)

]
𝝍 , (8.75)

where

𝝍 =
⎛⎜⎜⎜⎝

e ⋅ x
h ⋅ y
e ⋅ y
−h ⋅ x

⎞⎟⎟⎟⎠ . (8.76)

Substitution of (8.75) into (8.62) leads to the following equation:

(𝚫 − 𝜎U)𝝍 =
⌢

0, (8.77)

where
⌢

0 is the zero column. This equation has nontrivial solutions only if

det(𝚫 − 𝜎U) = 0. (8.78)

This equation is a quartic in 𝜎 and has the same roots as (8.73). With known 𝜎l (l = 1, 2, 3, 4), vectors
𝝍 l [see (8.71)] corresponding to the basis eigenwaves can be found from the equation(

𝚫 − 𝜎lU
)
𝝍 l =

⌢

0. (8.79)

Equation (8.77) indicates that the z-components of refraction vectors of the basis eigenwaves, 𝜎l, and
corresponding vectors 𝝍 l are respectively eigenvalues and right eigenvectors of the matrix 𝚫.
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Spatial Evolution of the State Vector A in a Stratified Medium

Let {E(r, t), H(r, t)} be a field satisfying the basic equation system in the region za < z< zb of a stratified
medium (see Figure 8.6), and let the functions A(z) and Ψ(z) characterize this field. Let us consider
transformation of A within this region.

A. Interface. Let the plane z = zj (za < zj < zb) be the plane of the boundary between layers (a surface
of discontinuity of ε). In terms of Ψ, the continuity of the tangential components of E and H across
the surface z = zj may be expressed by the relation

Ψ(zj − 0) = Ψ(zj + 0), (8.80)

where z= zj – 0 and z= zj + 0, as usual, denote the sides of the plane z= zj facing the regions z< zj and
z > zj, respectively (see Figure 8.6). By making use of (8.69), we may rewrite (8.80) in terms of A:

𝚿(zj − 0) A(zj − 0) = 𝚿(zj + 0) A(zj + 0). (8.81)

From (8.81), we obtain the relation

A(zj + 0) = 𝚿(zj + 0)−1 𝚿(zj − 0) A(zj − 0), (8.82)

which describes the transformation of A at the interface.
B. Bulk of a homogeneous layer. Let z = zn−1 and z = zn (za < zn−1< zn < zb) be the planes of the

boundaries of a homogeneous layer (Figure 8.6). The bulk of this layer occupies the region (zn − 1 +
0, zn – 0). Using (8.46), we may write the following relations for the components of A:

Al(zn − 0) = Al(zn−1 + 0) exp(ik0𝜎
(n)
l hn) l = 1, 2, 3, 4, (8.83)

where 𝜎(n)
l is the value of 𝜎l(z) within the layer, and hn = zn – zn−1 is the thickness of the layer. In

matrix form, relations (8.83) can be written as follows:

A(zn − 0) = T̃(𝜎(n)
l , hn)A(zn−1 + 0), (8.84)

Matching fields in adjacent layers
z×E(zj–0) = z×E(zj+0), z×H(zj–0) = z×H(zj+0)

Ψ(zj–0)=Ψ(zj+0)
(zj–0)A(zj–0)= (zj+0)A(zj+0)

⇓

za

A(zj+0),Ψ(zj+0)

A(zj–0),Ψ(zj–0)
zj

zn-1 

zn

A(zn-1+0)

A(zn–0)

{E(r,t),H(r,t)}

zb

z

A1 A2 A3 A4 Propagation through a homogeneous layer
Al(zn–0)=Al(zn-1+0)exp(ik0σlhn)

l = 1,2,3,4 
hn = zn– zn-1

Figure 8.6 Eigenwave propagation through a stratified medium
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where

T̃(𝜎l, h) ≡

⎛⎜⎜⎜⎝
exp(ik0𝜎1h) 0 0 0

0 exp(ik0𝜎2h) 0 0
0 0 exp(ik0𝜎3h) 0
0 0 0 exp(ik0𝜎4h)

⎞⎟⎟⎟⎠ . (8.85)

C. Bulk of a smoothly inhomogeneous layer. Within a region with a continuously varying tensor ε, the
function A(z) obeys the following equation:

dA
dz

=
⌢

𝚫A(z)A(z), (8.86)

where

⌢

𝚫A(z) = ik0𝚫A(z) −𝚿(z)−1 d𝚿
dz

, (8.87)

𝚫A(z) =
⎛⎜⎜⎜⎝
𝜎1(z) 0 0 0

0 𝜎2(z) 0 0
0 0 𝜎3(z) 0
0 0 0 𝜎4(z)

⎞⎟⎟⎟⎠ . (8.88)

Here it is assumed that the functions 𝜎l(z) and 𝝍 l(z) (l = 1, 2, 3, 4) are chosen continuous. Equa-
tion (8.86) can easily be derived from (8.62). Substitution of (8.69) into (8.62) gives (8.86) with the

following expression for
⌢

𝚫A(z):

⌢

𝚫A(z) = ik0𝚿(z)−1𝚫(z)𝚿(z) −𝚿(z)−1 d𝚿
dz
. (8.89)

According to (8.79), we have

Δ(z)𝝍 l(z) = 𝜎l(z)𝝍 l(z) l = 1, 2, 3, 4. (8.90)

These four equations can be written in matrix form as follows:

𝚫(z)𝚿(z) = 𝚿(z)𝚫A(z). (8.91)

Consequently,

𝚿(z)−1𝚫(z)𝚿(z) = 𝚫A(z). (8.92)

Substitution of (8.92) into (8.89) leads to expression (8.87). Equation (8.86) is extremely useful in
developing approximate methods for calculation of transmission characteristics of smoothly inho-
mogeneous media (see Chapter 11).

Forward and Backward Propagating Basis Waves. Anomalous Singularities. TIR Mode

Eigenwave representation locally splits a field into forward propagating waves and backward propagating
ones, because two of the four basis eigenwaves are always forward propagating, and the other two
backward propagating. Recall that, by convention adopted in Chapter 7 (Figure 7.7), we say that a
wave field is forward propagating if it propagates to greater z, and fields propagating to lesser z are
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called backward propagating. In the context of the general approaches described in Chapter 7, it is
important that eigenwave representation allows one to characterize forward propagating and backward
propagating fields separately, using convenient state vectors with clear physical meaning, and to introduce
corresponding transmission and reflection operators in a natural way (see Section 8.2 and Chapter 10).

In what follows, we will always assign numbers 1 and 2 to forward propagating basis waves, and
numbers 3 and 4 to backward propagating ones (see Figure 8.5). With this numeration, the column-vector
A (8.68) can be written as

A =
(

a↓

a↑

)
, (8.93)

where two-component column-vectors

a↓ =
(

A1

A2

)
and a↑ =

(
A3

A4

)
(8.94)

characterize the forward propagating and backward propagating wave fields, respectively.
There are two main criteria that allow one to determine whether a wave is forward propagating or

backward propagating from its 𝜎, e and h (or 𝝍). The first criterion: when 𝜎 has a nonzero imaginary
part,

the wave is

{
forward propagating if Im(𝜎) > 0
backward propagating if Im(𝜎) < 0.

(8.95)

To formulate the second criterion, we introduce the quantity

sz ≡ 2Re[z (e × h∗)] = z (e∗ × h) + z (e × h∗) = 𝜓
∗
1𝜓2 + 𝜓∗

2𝜓1 + 𝜓∗
3𝜓4 + 𝜓∗

4𝜓3 = 𝝍†I0𝝍 , (8.96)

where 𝜓 l (l = 1, 2, 3, 4) are components of the vector 𝝍 [see (8.76)] and

I0 =
⎛⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ . (8.97)

The second criterion: when 𝜎 is real,

the wave is

{
forward propagating if its sz > 0
backward propagating if its sz < 0.

(8.98)

The sign of sz always coincides with the sign of the z-component of the time-averaged Poynting vector
of the wave; to see this, it suffices to substitute (8.38) into (8.16). From this the physical meaning of this
criterion is clear.

Figures 8.7–8.11 illustrate different situations encountered in specifying eigenwave bases, showing
values of the z-components of refraction vectors of the basis eigenwaves for some media under different
illumination conditions. In these examples, illumination conditions are specified by the propagation
parameter 𝜁 . Recall that b = 𝜁x and, if the medium Minc (see Figure 8.3) is isotropic, 𝜁 = nincsin𝛽 inc,
where ninc is the refractive index of Minc and 𝛽 inc is the angle of incidence (Figure 8.4). Figures 8.7–
8.9 show the results for isotropic media: a nonabsorbing medium with refractive index n = 1 (air)
(Figure 8.7), a nonabsorbing medium with n = 1.52 (soda-lime glass) (Figure 8.8), and a strongly
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Figure 8.7 The z-components of refraction vectors of the basis eigenwaves for a nonabsorbing medium
with refractive index n = 1 (air)
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Figure 8.8 The z-components of refraction vectors of the basis eigenwaves for a nonabsorbing medium
with refractive index n = 1.52 (soda-lime glass)
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Figure 8.9 The z-components of refraction vectors of the basis eigenwaves for a strongly absorbing
isotropic medium with complex refractive index n = 1.44 + i5.23 (aluminum)

absorbing medium with complex refractive index n = 1.44 + i5.23 (aluminum) (Figure 8.9). In the case
of an isotropic medium, equation (8.73) has the following roots:

𝜎1 = 𝜎2 = −𝜎3 = −𝜎4 =
√

n2 − 𝜁 2 (8.99)

(see Section 9.2). In Figures 8.7–8.9, we use the following notation: 𝜎↓ = 𝜎1 = 𝜎2, 𝜎↑ = 𝜎3 = 𝜎4.
Figures 8.10 and 8.11 show the results for nonabsorbing uniaxial media (see Section 9.3). The example
shown in Figure 8.10 is for a positive crystal (n|| > n⟂) with n|| = 1.7 and n⟂ = 1.5. Figure 8.11 presents
the results for a negative crystal (n|| < n⟂) with n|| = 1.5 and n⟂ = 1.7. In these figures, 𝜎↓

e and 𝜎↑
e denote

the values of 𝜎 for the forward and backward propagating extraordinary waves, and 𝜎↓
o and 𝜎↑

o those for
the forward and backward propagating ordinary waves, respectively.

In the case of a nonabsorbing isotropic medium, for 𝜁 < n, all 𝜎l are real; for 𝜁 > n, all 𝜎l are imaginary;
and at 𝜁 = n,

𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 0.

In the last case, the eigenwave representation is inapplicable, since here a fundamental system of solutions
of the basic equation system cannot be composed of four waves of the form (8.21) (i.e., eigenwaves).
The modal representation can still be used in this case, but it is impossible to select among the funda-
mental modes two forward propagating ones and two backward propagating ones (see Appendix B.3).
Situations where a fundamental system of solutions of the basic equation system cannot be formed of
four eigenwaves will be referred to as anomalous singularities. In the figures, values of 𝜁 corresponding
to anomalous singularities are marked as 𝜁 as. In each of the plots for uniaxial nonabsorbing media (Fig-
ures 8.10 and 8.11), we see a pair of anomalous singularities. One of them is at the confluence of 𝜎↓

e and
𝜎
↑
e , and the other at the confluence of 𝜎↓

o and 𝜎↑
o . Again, on passing a singularity point to greater 𝜁 , values

of 𝜎 for two corresponding eigenwaves become complex (and complex conjugates, since the coefficients
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Figure 8.10 The z-components of refraction vectors of the basis eigenwaves for a nonabsorbing positive
uniaxial medium with principal refractive indices n|| = 1.7 and n⟂ = 1.5. The optic axis of the medium
is parallel to the plane of incidence and makes an angle of 45◦ with the vector b. Plot (b) shows in detail
the neighborhood of the anomalous singularities
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Figure 8.11 The z-components of refraction vectors of the basis eigenwaves for a nonabsorbing
negative uniaxial medium with principal refractive indices n|| = 1.5 and n⟂ = 1.7. The optic axis of the
medium is parallel to the plane of incidence and makes an angle of 45◦ with the vector b. Plot (b) shows
in detail the neighborhood of the anomalous singularities



JWST441-c08 JWST441-Yakovlev Printer: Markono December 30, 2014 7:55 Trim: 244mm × 170mm

274 Modeling and Optimization of LCD Optical Performance

of equation (8.73) are real for nonabsorbing media). The field propagation regime in nonabsorbing layers
when Im(𝜎l) ≠ 0 for all or some of the basis waves will be called TIR mode. This term will also be
applied to weakly absorbing layers in situations when actual large values of |Im(𝜎l)| are caused by a
large 𝜁 . In the examples under consideration, the anomalous singularities take place just before or in the
TIR mode region. This is a common situation for most optical media [12]. Only in certain absorbing
biaxial media, anomalous singularities may be found far from the TIR mode region and even at normal
incidence (𝜁 = 0) [13, 14]. Thus it is clear that in actual practice, when modeling LCDs, we may expect
to encounter anomalous singularities only at 𝜁 ≥ 1. The region 𝜁 ≥ 1 is not often considered in LCD
modeling.1 In any case, the presence of anomalous singularities creates no difficulties, because any of
such singularities can easily be overcome by slightly altering (say, by 10−5) the refractive index (indices)
of the layer where this singularity makes itself felt or 𝜁 .

For a nonabsorbing anisotropic medium out of TIR mode, all four roots of (8.73) are real. In TIR
mode, under certain conditions, two of four roots are also real. When selecting roots corresponding to
forward and backward propagating waves among the real roots of (8.73), program developers sometimes
use, instead of (8.98), a simpler criterion:

a wave is

{
forward propagating if its 𝜎 > 0
backward propagating if its 𝜎 < 0.

(8.100)

This criterion is adequate far from the TIR mode region, but may fail near and in this region. Figures 8.10
and 8.11 illustrate this statement. In these two examples, criterion (8.100) is invalid in a narrow region
before the singularity denoted as 𝜁 as−e. For this singularity, 𝜎↓

e = 𝜎
↑
e . In Figures 8.10b and 8.11b, the

regions of invalidity of criterion (8.100) are hatched. Within the hatched region in Figure 8.10b, both 𝜎↓
e

and 𝜎↑
e are negative. Within the hatched region in Figure 8.11b, both 𝜎↓

e and 𝜎↑
e are positive. Note that in

the latter case all four roots of (8.73) are real, three of them being positive, which means that the location
of the refraction vectors for nonabsorbing anisotropic media near TIR mode may be different from that
shown in Figure 8.5.

Freedom in Choice of the Vibration Vectors of Basis Eigenwaves.
Polarization Degeneracy

From now on, we will consider only situations where eigenwave representation is applicable. When
considering an anisotropic layer, as a rule, we deal with a situation when all four roots of (8.73) are
different. In this case, to set the vibration vectors of the jth basis eigenwave (j = 1, 2, 3, 4), we may take
any pair (e, h) satisfying the set of equations (8.40)–(8.42) at 𝜎 = 𝜎j—we denote the taken (e, h) by (ej,
hj)—and calculate the vectors ej and hj by the formula(

ej

hj

)
= cj

(
ej

hj

)
, (8.101)

where the scalar factor cj must be chosen such that the vectors ej and hj satisfy an adopted normalization
condition and possibly other requirements [e.g., the requirement that the functions ej(z) and hj(z) must
be continuous in a smoothly inhomogeneous layer; see (8.86)]. In the case of an isotropic medium, we
face the situation where

𝜎1 = 𝜎2, 𝜎3 = 𝜎4. (8.102)

When dealing with anisotropic media, we may also encounter situations when one or both of these
relations are satisfied. This occurs when the refraction vectors of two or all of the four basis waves are

1 An LCD exploiting TIR mode in the LC layer is considered in Section 4.3.
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parallel to the (an) optic axis of the medium. To designate the fact that the refraction vectors of some
of the basis waves are identical, we will use the term “polarization degeneracy.” Literally this term
reflects the following feature. When (8.73) gives identical roots for the forward (backward) propagating
waves, the set of equations (8.40)–(8.42) admits a much wider variety of solutions than in the case when
these roots are different. For example, in the case of an isotropic medium, given m, any e satisfying
the condition m⋅e = 0 meets (8.40)–(8.42). In the case of polarization degeneracy, one can always find
two linearly independent solutions of the system (8.40)–(8.42) corresponding to the given m. Any linear
combination of these solutions will satisfy this system as well. Clearly, it provides a greater freedom in
choosing vibration vectors for the basis waves.

Suppose that polarization degeneracy takes place for the eigenwaves with numbers j and j + 1 (j = 1
or 3), that is, mj+1 = mj. Let the pairs (e′, h′) and (e′′, h′′) be two linearly independent solutions of the
system (8.40)–(8.42) at m = mj. Then we may write the following general expressions for the vectors
ej, hj, ej+1, and hj+1:

(
ej

hj

)
= c′j

(
e′

h′

)
+ c′′j

(
e′′

h′′

)
,

(
ej+1

hj+1

)
= c′j+1

(
e′

h′

)
+ c′′j+1

(
e′′

h′′

)
, (8.103)

where c′j , c′′j , c′j+1, and c′′j+1, are scalar coefficients whose region of possible values is determined by the
normalization condition and the requirement that the solutions (ej, hj) and (ej+1, hj+1) must be linearly
independent.

Relevant sources: References 2, 9, and 15–23.

8.2 Transmission and Reflection Operators of Fragments (TR Units)
of a Stratified Medium and Their Calculation

8.2.1 EW Jones Vector. EW Jones Matrices. Transmission
and Reflection Operators

One of the basic problems that are solved using the theory described in this chapter in the modeling
methods presented in this book is the calculation of transmission and reflection operators characterizing
TR units of approximating media (see Section 7.1). In this section we introduce an important class
of such operators, namely, eigenwave (EW) Jones matrices. State vectors with which operators of this
class work will be referred to as EW Jones vectors. We begin with definition of EW Jones vector.

EW Jones Vector

Let a complex vector

a(𝜉) =
(

a1(𝜉)
a2(𝜉)

)
, (8.104)

where 𝜉 is a given value of z, represent the field

(
E(r

𝜉
, t)

H(r
𝜉
, t)

)
=
[

a1(𝜉)

(
e1(𝜉)
h1(𝜉)

)
+ a2(𝜉)

(
e2(𝜉)
h2(𝜉)

)]
exp
{

i
(
k0br

𝜉
− 𝜔t
)}

(8.105)
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if this vector characterizes the state of a forward propagating wave field, or the field(
E(r

𝜉
, t)

H(r
𝜉
, t)

)
=
[

a1(𝜉)

(
e3(𝜉)
h3(𝜉)

)
+ a2(𝜉)

(
e4(𝜉)
h4(𝜉)

)]
exp
{

i
(
k0br

𝜉
− 𝜔t
)}

(8.106)

if this vector characterizes the state of a backward propagating wave field. Here, r
𝜉
= (x, y, 𝜉) is a

position vector on the plane z = 𝜉. Recall that the indices 1 and 2 are assigned to the forward propagating
basis waves, and 3 and 4 to the backward propagating ones. Any forward or backward propagating field
of the form (8.57) passing through the plane z = 𝜉 can be represented by the corresponding vector a(𝜉).
Such vectors will be called EW Jones vectors or a-vectors. We will mark a-vectors for forward and
backward propagating fields by the arrows ↓ (a↓) and ↑ (a↑), respectively. We have already met a-vectors
in expression (8.93). State vectors used in the extended Jones matrix method of Yeh and Gu [24–26] are
particular variants of EW Jones vector. Vectors (5.89), (5.90), and (5.104) are examples of EW Jones
vectors. Vectors (1.97) and (1.114) taken on the normal coordinate axis also meet the definition of EW
Jones vector. One may notice a close similarity of the EW Jones vectors to the canonical Jones vectors
(1.63). The conditions under which estimating a canonical Jones vector will be tantamount to estimating
a EW Jones vector are evident from the definitions presented. The EW Jones matrix method is a method
exploiting the general operator approaches described in Chapter 7 and using EW Jones vector as traced
characteristic.

EW Jones Matrices of Transmission and Reflection of a TR Unit

Let us consider a domain F of a stratified medium (Figure 8.12), whose boundaries, planes z = z′ and
z = z′′, do not coincide with interfaces, but, if zI is the z-coordinate of an interface, z′ (or z′′) may be
equal to zI – 0 or zI + 0, so that this domain can be regarded as a TR unit. We will call the homogeneous
layers containing the planes z = z′ and z = z′′ respectively layer MA and layer MB. Layers MA and MB

may be infinitely thin and may be the same layer (if F is the bulk of a homogeneous layer). In general,
domain F may perform four operations: the operations of transmission T↓{F} and reflection R↓{F} for
forward propagating incident light X↓

inc and the operations of transmission T↑{F} and reflection R↑{F}
for backward propagating incident light X↑

inc (see also the definition of TR units in Section 7.1). These
operations are precisely defined by symbolical relations in Figure 8.12. We define EW Jones matrices
t↓(z′, z′′), r↓(z′, z′′), t↑(z′, z′′), and r↑(z′, z′′) corresponding to operations T↓{F}, R↓{F}, T↑{F}, and
R↑{F} (see the tables in Figure 8.12) by the following relations:

a↓
tr(z

′′) = t↓(z′, z′′) a↓
inc(z

′), (8.107)

a↑
ref (z

′) = r↓(z′, z′′)a↓
inc(z

′), (8.108)

a↑
tr(z

′) = t↑(z′, z′′)a↑
inc(z

′′), (8.109)

a↓
ref (z

′′) = r↑(z′, z′′) a↑
inc(z

′′), (8.110)

where a↓
inc(z

′) is the a-vector of the incident field X↓
inc, a↓

tr(z
′′) and a↑

ref (z
′) are a-vectors characterizing,

respectively, the transmitted and reflected fields generated by the field X↓
inc, a↑

inc(z
′′) is the a-vector of

the incident field X↑
inc, and a↑

tr(z
′) and a↓

ref (z
′′) are the a-vectors of the transmitted and reflected fields

generated by the field X↑
inc.

In what follows, the symbols t↓, t↑, r↓, and r↑ will be used as generic symbols for EW Jones matrices
of the corresponding types of operations performed by TR units.

Before proceeding to methods of calculation of such transmission and reflection operators for different
elements, we wish to present a few typical variants of using such operators in modeling LCDs.
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F
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↓
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↑
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Xtr
↓ (z″) = T↓{F}Xinc

↓ (z′)                    Xtr
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R↑{F} r↑(z′,z″)

Figure 8.12 Transmission and reflection of a fragment of a stratified medium. Fields, operations, state
vectors, and operators

TR Units and Transfer Channels in Models of LCDs

The simplest way to use EW Jones matrices in the modeling of an LCD panel is suggested by the transfer
channel approach (this approach is basic in both the classical Jones matrix method and the extended
Jones matrix methods [24–31]): We should divide the stratified medium approximating the LCD panel
into elementary fragments so that a sequence of operations performed by these fragments defines a
transfer channel such that a characteristic of this channel is a good approximating characteristic for the
LCD panel characteristic to be estimated (see Section 7.1). Then we should calculate the corresponding
transmission and reflection operators for elementary fragments and, by multiplying these operators, the
operator characterizing the channel (and, using this operator, evaluate the approximating characteristic).
As an illustration, let us consider several simple examples. In these examples, we deal with (i) a
transmissive LCD containing an LC cell and two polarizers (Figure 8.13) and (ii) a single-polarizer LCD
including an LC cell with a metal reflector situated just after the LC layer, a retardation film, and a
polarizer (Figure 8.14). Polarizers and retardation film are regarded in these examples as homogeneous
anisotropic layers. The LC layers are considered to be inhomogeneous.

Figures 8.13a and 8.14a show the standard choices of approximating media and approximating
channels when calculations in such situations are performed by using the mentioned extended Jones
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Figure 8.13 Typical approximating channels for transmissive LC displays. P1 and P2—polarizers;
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Figure 8.14 Typical approximating channels for reflective LC displays. P—polarizer; G—glass
plate; C—retardation film; E1—ITO–alignment layer system; LC—LC layer; A2—alignment layer;
R—reflector
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Figure 8.15 Section of the approximating channels shown in Figures 8.13a, 8.13d, 8.14a, and 8.14d
within the layered medium approximating the LC layer

matrix methods. Figure 8.15 details a piece of these channels within the media approximating LC
layers. In these two cases, as in the other cases, staircase models (see Sections 8.3.3 and 11.3.1) are
used to represent inhomogeneous LC layers: the LC layer is regarded as a pile of very thin anisotropic
homogeneous layers with differently oriented optic axes. In both cases presented in Figures 8.13a and
8.14a, the elementary fragments (TR units) are the bulks of homogeneous layers and the interfaces. For
the transmissive LCD, the approximating channel is the chain of the elementary transmission operations
guiding the light from the frontal side of the interface between the air (the entrance medium) and the
frontal polarizer (P1) to the rear side of the interface between the rear polarizer (P2) and the air (the
exit medium). For the reflective LCD, the approximating channel includes the chain of the elementary
transmission operations leading the light from the frontal side of the interface [air–polarizer] to the
frontal side of the interface [LC–reflector], the operation of reflection from the interface [LC–reflector],
and the chain of the elementary transmission operations leading the light back, from the frontal side of
the interface [LC–reflector] to the frontal side of the interface [air–polarizer].

Let us wish to incorporate ITO and alignment layers in both models (see Figures 8.13d and 8.14d).
We have noted that in many cases, the optical characteristics of thin layers and systems of thin layers
(successive thin layers) should be modeled taking into consideration multiple reflections to account for
the effect of Fabry–Perot interference. In the case of ITO and alignment layers, we face such a situation.
We will refer to single layers and systems of layers in which we intend to take into account the multiple
reflections that result in Fabry–Perot interference as FP systems. A reasonable way of including an FP
system into the models in our case is to regard this whole system as an OTR unit (see Section 7.1), that is,
characterize it by operators describing the overall transmission and reflection of this system. This leads
to dealing with the approximating channels shown in Figures 8.13d and 8.14d. In the figures, FP systems
are marked by tildes. The channel depicted in Figure 8.13d includes, along with transmission operations
for interfaces and bulks, the operations of forward transmission performed by the ITO layer–alignment
layer system (E1) and the alignment layer–ITO layer system (E2). The channel shown in Figure 8.14d
contains, among other operations, the operations of forward and backward transmissions for the ITO
layer–alignment layer system (E1) and reflection from the rear alignment layer (A2)–reflector system. The
boundaries of the last TR unit are taken to be z = zLC2 – 0 and z = zA2-R + 0, where zLC2 is the z-coordinate
of the interface [LC–alignment layer A2] and zA2-R is the z-coordinate of the interface [alignment layer
A2–reflector].
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The other sketches in Figures 8.13 and 8.14 demonstrate variants of approximating channels where the
bulk reflection in the LC layer is taken into account. In these variants, LC layer is regarded as an individual
FP system (Figures 8.13c, 8.13f, 8.14c, and 8.14f) or as a part of an FP system (Figures 8.13b, 8.13e, 8.14b,
and 8.14e). In the former case, the boundaries of the FP system representing the LC layer are taken to be
z = zLC1 + 0 and z = zLC2 – 0, where zLC1 and zLC2 are the z-coordinates of the interfaces of the LC layer
with the adjacent layers (see Figure 8.15), and this FP system is characterized in calculations only by
transmission operators. With such a choice of the approximating channels, we leave out of account the
multiple reflections from the interfaces of LC layer (Figures 8.13c and 8.14c) or FP systems surrounding
the LC layer (Figures 8.13f and 8.14f) back to the LC layer. These multiple reflections are taken into
account in the variants shown in Figures 8.13b, 8.13e, 8.14b, and 8.14e. Each of the presented variants
of involving the LC layer has certain advantages and may be useful in practical modeling.

It should be noted that for any of the channels shown in Figures 8.13 and 8.14, the quasimonochro-
matic transmittance of the channel, as a rule, can be accurately estimated using the monochromatic
approximation (see Sections 7.1 and 10.1).

Channels similar to those shown in Figures 8.14a, 8.14c, 8.14d, and 8.14f can be used in modeling
reflective LCDs with nonspecular reflectors [31] (see also Section 7.1). In this case, the operators
characterizing the channel sections leading to the reflector and back in general correspond to different
values of b.

The above examples have displayed three main kinds of elementary fragments: interfaces, bulks of
homogeneous layers, and FP systems.

The calculation of EW Jones matrices for bulks of homogeneous layers does not require special
consideration: according to (8.83), for a homogeneous layer

t↓(zn−1 + 0, zn − 0) =
(
exp
(
ik0𝜎

(n)
1 hn

)
0

0 exp
(
ik0𝜎

(n)
2 hn

)) , (8.111)

t↑(zn−1 + 0, zn − 0) =
(
exp
(
−ik0𝜎

(n)
3 hn

)
0

0 exp
(
−ik0𝜎

(n)
4 hn

)) , (8.112)

r↓(zn−1 + 0, zn − 0) = r↑(zn−1 + 0, zn − 0) = 0, (8.113)

where, as in (8.83), zn−1 and zn (zn−1 < zn) are the z-coordinates of the interfaces of this layer with the
adjacent layers, hn = zn – zn−1 is the thickness of the layer, 𝜎l

(n) is the value of 𝜎l(z) within the layer (l =
1, 2, 3, 4), and 0 is the zero matrix.

Section 8.2.2 shows how the transmission and reflection EW Jones matrices characterizing the overall
transmission and overall reflection of a layered system can be calculated with the help of the eigenwave
4 × 4 transfer matrix method and the Berreman transfer matrix method. In Section 8.4.1, we present
a number of relations for eigenwave bases that are useful in calculating EW Jones matrices. Calcula-
tion of transmission operators for interfaces is a weak point of the popular variants of the extended
Jones matrix method [24–30] (see Section 11.1.2). In Section 8.4.2, we derive simple exact formulas
for these operators, which are a very good alternative to the approximate expressions for these matri-
ces used in References 24–30. In Section 8.4.3, we present a technique for calculating the reflection
and transmission operators of layered systems that exploits the adding algorithm. For systems with
strongly absorbing layers and layers being in TIR mode, this technique is much more reliable (numer-
ically stable) than the transfer matrix approach described in Section 8.2.2. In Chapter 11, we present
efficient methods of calculating transmission operators for inhomogeneous LC layers with negligible
bulk reflection.
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8.2.2 Calculation of Overall Transmission and Overall Reflection
Operators for Layered Systems by Using Transfer Matrices

Transfer Matrices

To find the operators characterizing the overall transmission and overall reflection of the fragment (z′, z′′)
(Figure 8.12), we should consider the fields that satisfy the basic equation system throughout the whole
region (z′, z′′). For any of such fields, the relationship between the values of the function A(z) at z = z′

and at z = z′′ can be expressed as follows:

A(z′′) = T(z′′, z′)A(z′), (8.114)

where T(z′′, z′) is the 4 × 4 transfer matrix of the fragment (z′, z′′) for A-vectors in the given eigenwave
bases. Such transfer matrices will be referred to as EW transfer matrices. The matrix T(z′′, z′) charac-
terizes the general solution and hence is common for all the fields under consideration. In Section 8.1.3,
we have dealt with a EW transfer matrix for the bulk of a homogeneous layer [see (8.84) and (8.85)].
According to (8.82), the transfer matrix of an interface can be calculated by the formula

T(z + 0, z − 0) = 𝚿(z + 0)−1𝚿(z − 0), (8.115)

where z is the z-coordinate of this interface. The EW transfer matrix of a fragment consisting of
subfragments can be calculated as the product of the EW transfer matrices of the subfragments. For
illustration, we return to the problem depicted in Figure 8.12 and suppose that N homogeneous layers
F1, F2, . . . , FN are situated between the layers MA and MB. Figure 8.16 shows a scheme and formulas
for calculation of the matrix T(z′′, z′) for this case. The following notation is used:

𝜎l[A] and 𝚿[A] denote the values of 𝜎l and 𝚿 for a layer A (A = MA, F1, F2, . . . , FN, MB);

zFj–1 and zFj are the z-coordinates of the interfaces of the layer Fj with the adjacent layers
(i = 1, 2, . . . , N);

h[Fj] is the thickness of the layer Fj (h[Fj] = zFj–zFj−1) (j = 1, 2, . . . , N);

h′ is the distance between the planes z = z′ and z = zF0 (h′ = zF0 – z′);

h′′ is the distance between the planes z = zFN and z = z′′ (h′′ = z′′ – zFN);

T[j] ≡ T(zFj – 0, zFj−1 + 0) (j = 1, . . . , N) is the EW transfer matrix for the bulk of the layer
Fj;

T[0] ≡ T(zF0 – 0, z′) is the EW transfer matrix for a part of the bulk of the layer MA;

T[N+1] ≡ T(z′′, zFN + 0) is the EW transfer matrix for a part of the bulk of the layer MB;

T|j ≡ T(zFj + 0, zFj – 0) is the EW transfer matrix for the interface z = zFj (j = 0, . . . , N).

The matrix pattern T̃(𝜎l, h) is given by (8.85).
If the boundaries of the fragment F are chosen right at the interfaces z = zF0 (z′ = zF0 – 0) and z = zFN

(z′′ = zFN + 0), the matrix T(z′′, z′) can be expressed as follows:

T(z′′, z′) = T|NT[N]T|N−1 ⋅… ⋅ T|2T[2]T|1T[1]T|0. (8.116)
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EW transfer matrix for the fragment (z′,z″)

MA

z′ 

z″

zF0

zF1

zF2

zFN

h[F1]

h[F2]

h′

h[FN]

h″

z

A ],h′)[Mlσ

11[F],h[F])lσ

22 ])],h[F[Flσ

NN ])],h[F[Flσ

B],h″)[Mlσ

MB

F1

F2

FN

[ ] [ ]A1|0

−1=T
T

[1] = T (

T
[2] T

[1] T
[0]

T
[N] = T (

T
[N+1]

T
[N]

MF

[ ] [ ]12|1

−1=T FF

[ ] [ ]23|2

−1=T FF

[ ] [ ]N−1N|N−1

−1=T FF

[ ] [ ]NB|N
−1=T FM

Layers EW transfer matrices  
for bulks 

EW transfer matrices  
for interfaces 

|0|1|2|N−1|N
. ... .TT(z″,z′)= T T T T

T
[0] = T (

T
[2] = T (

T
[N+1] = T (

Figure 8.16 Scheme of calculation of the EW transfer matrix for a layered fragment

We should mention another way of calculating T(z′′, z′). The relation analogous to (8.114) but written
in terms of Berreman vectors is

Ψ(z′′) = P(z′′, z′)Ψ(z′), (8.117)

where P(z′′, z′) is the Berreman transfer matrix of the fragment (z′, z′′). Calculation of Berreman transfer
matrices will be discussed in Section 8.3. Given P(z′′, z′), the matrix T(z′′, z′) can be calculated by the
formula

T(z′′, z′) = 𝚿(z′′)−1 P(z′′, z′)𝚿(z′) (8.118)

[see (8.69)].

Calculating the Overall Transmission and Overall Reflection Operators of a Fragment
from the EW Transfer Matrix of this Fragment

Given the matrix T(z′′, z′), the operators t↓(z′,z′′) and r↓(z′,z′′) can be found from the equation

⎛⎜⎜⎝
a↓

tr(z
′′)

⌢

0

⎞⎟⎟⎠ = T(z′′, z′)

(
a↓

inc(z
′)

a↑
ref (z

′)

)
(8.119)

which models the situation shown in the left part of the sketch in Figure 8.12, and the operators t↑(z′,z′′)
and r↑(z′,z′′) from the equation (

a↓
ref (z

′′)

a↑
inc(z

′′)

)
= T(z′′, z′)

⎛⎜⎜⎝
⌢

0

a↑
tr(z

′)

⎞⎟⎟⎠ (8.120)
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which describes the situation shown in the right part of that sketch; here
⌢

0 is the zero 2 × 1 column. Such
problems have been solved in Section 7.2.1. By using those solutions, we may write the results for the
case in question as follows:

t↓(z′, z′′) = t↓{T(z′′, z′)},

r↓(z′, z′′) = r↓{T(z′′, z′)},

t↑(z′, z′′) = t↑{T(z′′, z′)},

r↑(z′, z′′) = r↑{T(z′′, z′)},

(8.121)

where t↓{T}, r↓{T}, t↑{T}, and r↑{T} denote the 2 × 2 matrices calculated from a 4 × 4 matrix T by
the formulas

t↓{T} = t11 − t12t−1
22 t21,

r↓{T} = −t−1
22 t21,

t↑{T} = t−1
22 ,

r↑{T} = t12t−1
22 ,

(8.122)

where tkj (k, j = 1, 2) are 2 × 2 blocks of the matrix T:

T =
(

t11 t12

t21 t22

)
. (8.123)

In certain situations (see Section 8.4.2), it is convenient to calculate the transmission and reflection
operators from the inverse of the transfer matrix T(z′′, z′). The computational formulas for this case are

t↓(z′, z′′) = t̄↓
{

T(z′′, z′)−1
}

,

r↓(z′, z′′) = r̄↓
{

T(z′′, z′)−1
}

,

t↑(z′, z′′) = t̄↑
{

T(z′′, z′)−1
}

,

r↑(z′, z′′) = r̄↑
{

T(z′′, z′)−1
}

,

(8.124)

where t̄↓ {T}, r̄↓ {T}, t̄↑ {T}, and r̄↑ {T} denote the 2 × 2 matrices calculated from a 4 × 4 matrix T as
follows:

t̄↓ {T} = t−1
11 ,

r̄↓ {T} = t21t−1
11 ,

t̄↑ {T} = t22 − t21t−1
11 t12,

r̄↑ {T} = −t−1
11 t12,

(8.125)

where, as before, tkj are 2 × 2 blocks of the matrix T.

8.3 Berreman’s Method

8.3.1 Transfer Matrices

In the Berreman transfer matrix method [2, 16], transmission and reflection characteristics of a stratified
system—let us denote the z-coordinates of its external boundaries by za and zb (zb > za)—are calculated
from the transfer matrix P(zb, za) relating values of functions Ψ(z) [see (8.63)] satisfying equation (8.62)
throughout the region (za, zb) at the external boundaries of the system:

Ψ(zb) = P(zb, za)Ψ(za). (8.126)
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Computational formulas for characteristics of interest are obtained by solving a boundary-value problem;
examples may be found in Section 8.2.2. The central problem of this method is to find the transfer matrix.
In this section, we consider some basic concepts of Berreman’s approach to calculating transfer matrices
using his method.

Continuity of the functions Ψ(z) determines the following property of Berreman transfer matrices:

P(zb, za) = P(zb, zck)P(zck, zck−1) ⋅… ⋅ P(zc2, zc1)P(zc1, za), (8.127)

where zcj (j = 1, . . . , k) are arbitrary points on the z-axis satisfying the condition

za < zc1 < zc2 <… < zck−1 < zck < zb,

that is, the Berreman transfer matrix for the interval (za, zb) is equal to the product of the Berreman
transfer matrices for any complete series of subintervals between za and zb. This property makes it
possible to calculate the matrix P(zb, za) as the product of the transfer matrices characterizing elementary
regions of the region (za, zb). Thus, for a medium being a stack of homogeneous layers, the matrix
P(zb, za) can be calculated as the product of transfer matrices of homogeneous layers, for which relatively
simple computational formulas are known (see Section 8.3.2).

An important element of Berreman’s approach is a differential equation for transfer matrices. This
equation is derived from the basic equation of Berreman’s formalism (8.62) as follows. Since equation
(8.62) is linear and homogeneous, any function satisfying (8.62) can be represented in the form

Ψ(z) = P(z, z′)Ψ(z′), (8.128)

where P(z, z′) is a transfer matrix, which is considered here as a function of the coordinate of the point
which the column Ψ on the left-hand side of (8.128) is for; z′ is a given point on the z-axis within the
region being considered. Substitution of (8.128) into (8.62) gives the following equation for P(z, z′):

dP(z, z′)
dz

= ik0𝚫(z)P(z, z′) [P(z′, z′) = U]. (8.129)

Due to the condition P(z′, z′) = U, P(z, z′) is a unique solution. P(z, z′) represents the general solution
of (8.62): the columns of this matrix are four linearly independent solutions of equation (8.62), which
constitute a fundamental system of solutions for this equation. With any given Ψ(z′), expression (8.128)
yields a solution of the Maxwell equations for the given medium. According to (8.129), the matrix
P(z′′, z′) can be expressed as follows:

P(z′′, z′) = exp
⎛⎜⎜⎜⎝ik0

z′′

∫
z′

𝚫(z)dz

⎞⎟⎟⎟⎠ ≡ U +
∞∑

j=1

(ik0)j𝚫(j)(z
′′), (8.130)

where

𝚫(1)(𝜏) =
𝜏

∫
z′
𝚫(z)dz,

𝚫(j)(𝜏) =
𝜏

∫
z′
𝚫(z)𝚫(j−1)(z)dz j = 2, 3, 4,…

Equation (8.129) and expression (8.130) underlie many practical techniques for calculating Berreman
transfer matrices.
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8.3.2 Transfer Matrix of a Homogeneous Layer
If the medium between planes z = z′ and z = z′′ is homogeneous, the matrix 𝚫 in the region (z′, z′′) is
independent of z. In this case, P(z′′, z′) can be expressed in the form of a matrix exponential:

P
(
z′ + h, z′

)
= exp
(
ik0h𝚫
)
≡ U +

∞∑
j=1

(
ik0h
)j

j!
𝚫j, (8.131)

where h ≡ z′′ – z′ is the thickness of the layer under consideration. There are many mathematical methods
for computing matrix exponentials (for a review, see [32]). Some of these methods can be used in the
case in question. Here we consider those of them that have already been used in modeling LCDs, having
shown themselves efficient; all these methods provide exact closed-form expressions for the transfer
matrix.

Eigenvector Method

If the fields in the layer can be decomposed into eigenwaves and if a set of 𝜎j and 𝝍 j (j = 1, 2, 3, 4),
eigenvalues and eigenvectors of the matrix 𝚫, represents an eigenwave basis (see Section 8.1.3), the
matrix P(z′ + h, z′) can be calculated as follows:

P
(
z′ + h, z′

)
= 𝚿C𝚿−1, (8.132)

where

𝚿 =
(
𝝍1 𝝍2 𝝍3 𝝍4

)
,

C =
⎛⎜⎜⎜⎝
exp
(
ik0𝜎1h
)

0 0 0
0 exp

(
ik0𝜎2h
)

0 0
0 0 exp

(
ik0𝜎3h
)

0
0 0 0 exp

(
ik0𝜎4h
)
⎞⎟⎟⎟⎠ .

(8.133)

That this representation is possible is evident from discussion in Section 8.1.3.

Methods Employing a Third-Degree Polynomial in 𝚫
It follows from the Cayley–Hamilton theorem of matrix algebra that the matrix exponential in (8.131)
can be expressed in the form of a third-degree polynomial in 𝚫. Several techniques for calculation of
Berreman transfer matrices using this possibility were proposed [33–35]. Here are three basic algebraic
expressions for the Berreman matrix of a homogeneous layer used in these techniques.

1. Explicit Cayley–Hamilton formula [33]:

P(z′ + h, z′) = 𝛽0U + 𝛽1𝚫 + 𝛽2𝚫2 + 𝛽3𝚫3, (8.134)

where

𝛽0 = −
4∑

n=1

𝜎j𝜎k𝜎l f̄n, 𝛽1 =
4∑

n=1

(
𝜎j𝜎k + 𝜎j𝜎l + 𝜎k𝜎l

)
f̄n,

𝛽2 = −
4∑

n=1

(
𝜎j + 𝜎k + 𝜎l

)
f̄n, 𝛽3 =

4∑
n=1

f̄n,

f̄n =
exp
(
ik0𝜎nh
)

(𝜎n − 𝜎j)(𝜎n − 𝜎k)(𝜎n − 𝜎l)
,

n, j, k, l = 1, 2, 3, 4; i ≠ j ≠ k ≠ l.

(8.135)
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2. Lagrange-interpolation/Sylvester-theorem formula [34, 36]:

P
(
z′ + h, z′

)
=

4∑
n=1

exp
(
ik0𝜎nh
)∏

j≠n

(
𝚫 − 𝜎jU

)(
𝜎n − 𝜎j

) . (8.136)

3. Newton-interpolation/Newton–Putzler technique formula [32, 35]:

P(z′ + h, z′) = f1 + l12𝚫1 + l123𝚫12 + l1234𝚫123, (8.137)

where

𝚫12 = 𝚫1𝚫2, 𝚫123 = 𝚫12𝚫3,

𝚫1 = (𝚫 − 𝜎1U), 𝚫2 = (𝚫 − 𝜎2U), 𝚫3 = (𝚫 − 𝜎3U),

l1234 = (l123 − l234)∕(𝜎1 − 𝜎4),

l123 = (l12 − l23)∕(𝜎1 − 𝜎3), l234 = (l23 − l34)∕(𝜎2 − 𝜎4),

l12 = (f1 − f2)∕(𝜎1 − 𝜎2), l23 = (f2 − f3)∕(𝜎2 − 𝜎3), l34 = (f3 − f4)∕(𝜎3 − 𝜎4),

fn = exp(ik0𝜎nh) n = 1, 2, 3, 4.

(8.138)

Formulas (8.135), (8.136), and (8.138) can be used for computations only when all the eigenvalues 𝜎j

are distinct; therefore they cannot be directly applied, for example, for isotropic media or for anisotropic
media in the presence of polarization degeneracy (see Section 8.1.3). However, from these formulas,
using L’Hôspital’s rule, one may derive special computational formulas for different cases of coincidence
of 𝜎j. Thus, for example, in the case 𝜎1 = 𝜎2, l12 in (8.137)–(8.138) can be expressed as

l12 = ik0h exp(ik0𝜎1h).

Furthermore, explicit expressions for the matrix exponentials of 4 × 4 matrices with coincident eigen-
values are known [37], which can easily be adapted for calculations in such cases, including the case of
anomalous singularities (see Section 8.1.3). Therefore, the polynomial representation can be considered
absolutely universal.

Due to their generality and efficiency, the polynomial techniques are very popular among LCD
modelers. However, we should note that commonly, when used for calculating transfer matrices for
LC layers, optimized techniques based on the eigenwave representation (one of them is described in
Section 8.8.1) are not inferior to those based on the polynomial representation of Berreman matrices in
computational efficiency.

Explicit Expression for the Transfer Matrix of an Isotropic Layer

In the coordinate system (x, y, z), whose xz-plane is parallel to the plane of incidence (Figure 8.4b), the
differential propagation matrix of an isotropic layer is

𝚫 =

⎛⎜⎜⎜⎜⎝
0 1 − 𝜁

2

n2
0 0

n2 0 0 0
0 0 0 1
0 0 n2 − 𝜁 2 0

⎞⎟⎟⎟⎟⎠
xyz

, (8.139)
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where n is the complex refractive index of the medium. In this case, by using any of the above rep-
resentations, the following simple expression for the transfer matrix of the layer can be obtained:

P(z′ + h, z′) =

⎛⎜⎜⎜⎜⎜⎜⎝

pc

𝜎1ps

n2
0 0

n2ps

𝜎1

pc 0 0

0 0 pc

ps

𝜎1
0 0 𝜎1ps pc

⎞⎟⎟⎟⎟⎟⎟⎠
, (8.140)

where

𝜎1 =
√

n2 − 𝜁 2,

pc =
exp
(
ik0𝜎1h
)
+ exp
(
−ik0𝜎1h

)
2

, ps =
exp
(
ik0𝜎1h
)
− exp
(
−ik0𝜎1h

)
2

.

If the medium is nonabsorbing, the last two parameters may be expressed as

pc = cos
(
k0𝜎1h
)

, ps = i sin
(
k0𝜎1h
)
.

8.3.3 Transfer Matrix of a Smoothly Inhomogeneous Layer.
Staircase Approximation

The basic model of an inhomogeneous liquid crystal layer in LCD modeling is a medium whose
local optical parameters smoothly vary with position. Thus, in 1D models, the permittivity tensor ε

of the medium being a model of the LC layer is usually considered as a continuous function of the
longitudinal coordinate (the z-coordinate in our case). Many numerical techniques—common finite
difference techniques, such as the Runge–Kutta methods, and techniques that were specially developed
for the problem in question—have been examined to find a reliable and efficient method for calculating
the Berreman transfer matrices for inhomogeneous LC layers [2, 16, 38]. In this section, we consider only
one technique for calculation of transfer matrices of smoothly inhomogeneous layers, which is the most
common, if not the only, one in use now in LCD modeling. In this technique, the 1D-inhomogeneous
medium with smoothly varying parameters, which is regarded as the “true” model of an actual layer, is
divided into slices so thin that variations of ε within each slice are very small. Then, neglecting these
variations, the transfer matrix for the “true” model is calculated as for a system of homogeneous layers.
In other words, using this approach, we approximate the transfer matrix of the smoothly inhomogeneous
layer by the transfer matrix of a system of homogeneous layers, whose local optical parameters are close
to those of the “true” model but change stepwise. This kind of approximation is sometimes called the
staircase approximation. We will call the approximating layered medium involved in this approximation
the staircase model of the smoothly inhomogeneous layer, regardless of in what context this model is
used (in this book, staircase models are employed within different methods). The validity of the staircase
approximation is evident from a physical point of view. Here we will discuss the staircase approximation
technique as a mathematical method for integrating (8.129).

According to (8.130), the Berreman transfer matrix of a region (zK – hK/2, zK + hK/2) of a smoothly
inhomogeneous medium may be expressed as follows:

P
(

zK +
hK

2
, zK −

hK

2

)
= U + ik0

zK+ hK
2

∫

zK− hK
2

𝚫(z1)dz1 + (ik0)2

zK+ hK
2

∫

zK− hK
2

𝚫(z1)dz1

z1

∫

zK− hK
2

𝚫(z2)dz2

+ (ik0)3

zK+ hK
2

∫

zK− hK
2

𝚫(z1)dz1

z1

∫

zK− hK
2

𝚫(z2)dz2

z2

∫

zK− hK
2

𝚫(z3)dz3 +…

(8.141)
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Writing the function 𝚫(z) in the Taylor-series form

𝚫(z) = 𝚫(zK) +
∞∑

n=1

𝚫(n)(zK)
(z − zK)n

n!
, (8.142)

where 𝚫(n) = dn𝚫∕dzn, and substituting (8.142) into (8.141), we find that

P
(

zK +
hK

2
, zK −

hK

2

)
= P̃
(
𝚫(zK), hK

)
+ O(h3

K) as hK → 0, (8.143)

where

P̃ (𝚫, h) ≡ U +
∞∑

n=1

(ik0h)n

n!
𝚫n
. (8.144)

Here and in what follows, in matrix formulas, the asymptotic estimate expressed by the term O(⋅) (big O)
is applied to all elements of the matrix being estimated. It is easy to see that the matrix P̃

(
𝚫(zK), hK

)
is

equal to the Berreman transfer matrix of a homogeneous layer of thickness hK whose 𝚫 is equal to the
𝚫 of the inhomogeneous medium at z = zK. Let MC be a smoothly inhomogeneous medium of thickness
d, bounded by planes z = z′ and z = z′′ ≡ z′ + d. Denote the permittivity tensor of this medium by εC.
Divide the medium MC into slices by the planes z = zIj, where zIj = z′ + jd/N and j = 1, 2, . . . , N – 1.
Each slice has thickness h = d/N. The midplanes of the slices coincide with the planes z = zj, where

zj =
(

j − 1
2

) d
N
. (8.145)

According to (8.127), we may write the Berreman transfer matrix of the whole medium MC as follows

PC(z′′, z′) = PC(z′′, zIN−1)PC(zIN−1, zIN−2) ⋅… ⋅ PC(zI2, zI1)PC(zI1, z′), (8.146)

where the label C denotes that a matrix pertains to the medium MC. Now, we introduce a staircase model
MAN—let εA denote the permittivity tensor of this medium—so that εA(z) = εC(zj) for all z lying between
zIj–1 and zIj (j = 1,2, . . . , N), that is, so that the permittivity tensor within the jth slice of the medium MAN

is equal to that of the medium MC in the midplane of its jth slice (see Figure 8.17). In view of this, by
making use of (8.144), we may express the transfer matrix of the medium MAN, PAN(z′′, z′), as follows:

PAN(z′′, z′) = P̃
(
𝚫C(zN), h

)
P̃
(
𝚫C(zN−1), h

)
⋅… ⋅ P̃

(
𝚫C(z2), h

)
P̃
(
𝚫C(z1), h

)
, (8.147)

zNzN–1z2z1 z3 z4

εij

z′ z″

z

staircase model 

“true” model

zI1 zI2 zI3 zI4 zIN–2  zIN–1

Figure 8.17 Staircase approximation
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where 𝚫C denotes 𝚫 for the medium MC. On the other hand, according to (8.143), we have

PC

(
zIj, zIj−1

)
= P̃
(
𝚫C(zj), h

)
+ O(h3). (8.148)

Substituting (8.148) into (8.146) and comparing the expression thus obtained with (8.147), considering
that h = d/N, we find that

PC(z′′, z′) = PAN(z′′, z′) + O
( 1

N2

)
as N → ∞. (8.149)

We see that, as N tends to infinity, the transfer matrix of the staircase model MAN does approach the
transfer matrix of the smoothly inhomogeneous medium MC, and rather quickly. According to (8.149),
for sufficiently large values of N, doubling N increases the accuracy of the approximation

PC(z′′, z′) ≈ PAN(z′′, z′) (8.150)

by a factor of about four. Numerical estimates of the accuracy of different techniques which use the
staircase approximation for LC layers will be given in Chapter 11.

8.3.4 Coordinate Systems

In Berreman’s papers [2, 16], one of the axes of the coordinate system for representation of the field
vectors is perpendicular to the plane of incidence. The use of such a coordinate system simplifies the
calculations and final computational formulas. For example, in the system (x, y, z), which was introduced
(see Section 8.1.3 and Figure 8.4 therein) in the same manner as in [2, 16] (only, for our later purposes,
we imposed an additional requirement that the positive x-axis must be in the direction of b), the matrix
𝚫 has six elements equal to zero:

𝚫 =
⎛⎜⎜⎜⎝
Δ11 Δ12 Δ13 0
Δ21 Δ11 Δ23 0
0 0 0 Δ34

Δ23 Δ13 Δ43 0

⎞⎟⎟⎟⎠
xyz

, (8.151)

where

Δ11 = −𝜁
𝜀xz

𝜀zz

, Δ12 = 1 − 𝜁
2

𝜀zz

, Δ13 = −𝜁
𝜀yz

𝜀zz

,

Δ21 = 𝜀xx −
𝜀

2
xz

𝜀zz

, Δ23 = 𝜀xy −
𝜀xz𝜀yz

𝜀zz

,

Δ34 = 1, Δ43 = 𝜀yy −
𝜀

2
yz

𝜀zz

− 𝜁 2

with 𝜀xx, 𝜀xy, 𝜀xz, 𝜀yy 𝜀yz, and 𝜀zz being components of the tensor ε referred to the system (x, y, z). In
our consideration, we regard the coordinate system (x, y, z) only as a possible variant of the coordinate
system for representation of Berreman vectors. Thus, in Section 8.1.3, we did not attach the coordinate
system (x, y, z) to the plane of incidence. Such a choice will be convenient in Sections 8.4.1 and 8.6.2.
Formulas presented here help to transfer relations and estimates for vectors and matrix operators of
Berreman’s formalism obtained with the system (x, y, z) to the system (x, y, z) and vice versa.

Suppose that the system (x, y, z) may be obtained from a system (x, y, z) by rotating the latter through
an angle 𝛼x→x about the z-axis (Figure 8.18). Then the relationship between the column Ψxy representing
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Figure 8.18 To relations (8.152)–(8.159). Coordinate systems under consideration

a Berreman vector Ψ in the system (x, y, z) and the column Ψxy representing the same Berreman vector
in the system (x, y, z) can be expressed as follows:

Ψxy = RBR(𝛼x→x)Ψxy, (8.152a)

Ψxy = RBR(−𝛼x→x)Ψxy, (8.152b)

where

RBR(𝛼) =
⎛⎜⎜⎜⎝
cos 𝛼 0 sin 𝛼 0

0 cos 𝛼 0 sin 𝛼
− sin 𝛼 0 cos 𝛼 0

0 − sin 𝛼 0 cos 𝛼

⎞⎟⎟⎟⎠ .
Similarly, using the same notation, we may write

𝝍 jxyRBR(𝛼x→x)𝝍 jxy, 𝝍 jxy = RBR(−𝛼x→x)𝝍 jxy j = 1, 2, 3, 4; (8.153)

𝚿xy = RBR(𝛼x→x)𝚿xy, 𝚿xy = RBR(−𝛼x→x) 𝚿xy. (8.154)

Inverting (8.154) gives

𝚿−1
xy = 𝚿−1

xy RBR(−𝛼x→x), 𝚿−1
xy = 𝚿−1

xy RBR(𝛼x→x). (8.155)

With the help of (8.152), the following relations for differential propagation matrices and transfer matrices
of Berreman’s formalism can readily be obtained:

𝚫xy = RBR(𝛼x→x)𝚫xyRBR(−𝛼x→x), (8.156)

Pxy = RBR(𝛼x→x)PxyRBR(−𝛼x→x), (8.157)

and, conversely,

𝚫xy = RBR(−𝛼x→x)𝚫xyRBR(𝛼x→x), (8.158)

Pxy = RBR(−𝛼x→x)PxyRBR(𝛼x→x). (8.159)
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8.4 Simplifications, Useful Relations, and Advanced Techniques

8.4.1 Orthogonality Relations and Other Useful Relations
for Eigenwave Bases

In this section, we consider some specific geometrical properties of eigenwave bases determined by the
nature of the medium. As we will see in this and subsequent chapters, knowledge of these properties
helps in solving many problems.

Orthogonality Relations

One of the problems that we face dealing with eigenwave representation is inverting the matrix 𝚿. We see
the matrix 𝚿−1 in many key formulas. The problem of calculating 𝚿−1 is easily solved numerically by
standard mathematical methods but is a big obstacle in analysis. Very simple and convenient expressions
for the elements of 𝚿−1 in terms of the elements of 𝚿 can be obtained by using specific orthogonality
properties of eigenwave bases. For many optical media, the vectors 𝝍 j of the basis eigenwaves are
mutually orthogonal in a certain sense (in the absence of polarization degeneracy) or can be chosen to
be mutually orthogonal (in the presence of polarization degeneracy). Here we consider two kinds of
orthogonality of eigenwave bases. The first kind implies the fulfillment of the following relations for the
basis eigenwaves

𝝍
†
j I0𝝍 k ≡ z(e∗j × hk) + z(ek × h∗

j ) = 0 k ≠ j (8.160)

[19, 21]; the matrix I0 is defined by (8.97). In the absence of polarization degeneracy, any eigenwave
basis for a nonabsorbing medium out of TIR mode is orthogonal in the sense (8.160). The orthogonality
of the second kind is expressed by the following relations

𝝍
T
j I0𝝍 k ≡ z

(
ej × hk

)
+ z
(
ek × hj

)
= 0 k ≠ j (8.161)

[22, 23]. In the absence of polarization degeneracy, relations (8.161) hold for any eigenwave basis in
any reciprocal optically locally centrosymmetric medium [i.e., for any medium whose material tensors
satisfy conditions (8.8) and (8.9)]. Recall that all optical materials that we deal with in LCD modeling
belong to this class of media. We will derive relations (8.160) and (8.161) below. But first we will show
how these relations may be used in calculating the matrix 𝚿−1.

Let us denote the jth row of the matrix 𝚿−1 by �̄� j. Then the problem of finding the matrix 𝚿−1 can be
considered as the problem of finding four row-vectors �̄� j satisfying the condition

�̄� j𝝍 k = 𝛿jk, (8.162)

where 𝛿jk is the Kronecker delta. Turning back to relations (8.160), one can see that, subject to (8.160),
the vectors �̄� j may be expressed as follows:

�̄� j =
1

𝝍
†
j I0𝝍 j

𝝍
†
j I0 =

1

2Re
(
𝜓

∗
1j𝜓2j + 𝜓∗

3j𝜓4j

) (𝜓∗
2j 𝜓

∗
1j 𝜓

∗
4j 𝜓

∗
3j

)
,

j = 1, 2, 3, 4,

(8.163)

where 𝜓 kj are elements of the matrix 𝚿. If the eigenwave basis is normalized so that

𝝍
†
j I0𝝍 j ≡ 2Re

[
z(e∗j × hj)

]
=
{

1 j = 1, 2
−1 j = 3, 4,

(8.164)
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using (8.163), we may express the matrix 𝚿−1 in terms of the elements of the matrix 𝚿 as follows:

𝚿−1 =
⎛⎜⎜⎜⎝
𝜓

∗
21 𝜓

∗
11 𝜓

∗
41 𝜓

∗
31

𝜓
∗
22 𝜓

∗
12 𝜓

∗
42 𝜓

∗
32

−𝜓∗
23 −𝜓∗

13 −𝜓∗
43 −𝜓∗

33
−𝜓∗

24 −𝜓∗
14 −𝜓∗

44 −𝜓∗
34

⎞⎟⎟⎟⎠ . (8.165)

We will call normalization (8.164) the flux normalization or F-normalization [see also (8.96)].
Relation (8.161) suggests another representation of the rows �̄� j, namely,

�̄� j =
1

𝝍
T
j I0𝝍 j

𝝍
T
j I0 =

1

2
(
𝜓1j𝜓2j + 𝜓3j𝜓4j

) (𝜓2j 𝜓1j 𝜓4j 𝜓3j

)
,

j = 1, 2, 3, 4.

(8.166)

Using (8.166) together with the following normalization

𝝍
T
j I0𝝍 j ≡ 2z

(
ej × hj

)
=
{

1 j = 1, 2
−1 j = 3, 4,

(8.167)

we obtain the following simplest expression for the matrix 𝚿−1:

𝚿−1 =
⎛⎜⎜⎜⎝
𝜓21 𝜓11 𝜓41 𝜓31

𝜓22 𝜓12 𝜓42 𝜓32

−𝜓23 −𝜓13 −𝜓43 −𝜓33

−𝜓24 −𝜓14 −𝜓44 −𝜓34

⎞⎟⎟⎟⎠ . (8.168)

In terms of the vibration vectors ej and hj, this expression can be written as follows

𝚿−1 =
⎛⎜⎜⎜⎝

h1 ⋅ y e1 ⋅ x −h1 ⋅ x e1 ⋅ y
h2 ⋅ y e2 ⋅ x −h2 ⋅ x e2 ⋅ y
−h3 ⋅ y −e3 ⋅ x h3 ⋅ x −e3 ⋅ y
−h4 ⋅ y −e4 ⋅ x h4 ⋅ x −e4 ⋅ y

⎞⎟⎟⎟⎠ . (8.169)

The normalization (8.167) will be referred to as the symmetrical normalization or S-normalization. In
our programs, to calculate 𝚿−1, we use only formulas (8.166) and (8.168), because these formulas, being
applicable to absorbing media and in the case of TIR mode, are more general for our purposes than
(8.163) and (8.165). But we, of course, should mention that in the case of a nonabsorbing medium out
of TIR mode, the eigenwave basis can be chosen so that all the vectors 𝝍 j will be real. Dealing with
such “real” bases, there is no sense in distinguishing between relations (8.160) and (8.161), between
normalizations (8.164) and (8.167), and between expressions [(8.163), (8.165)] and [(8.166), (8.168)] in
view of identity of their implications in this case.

Derivation of Relations (8.161)

In Reference 22, relations (8.161) were derived with consideration of the general constitutive rela-
tions (8.5). Here, we will derive them in a simpler way, starting from the simpler constitutive rela-
tions (8.6) which are most important for our purposes. Let us consider two arbitrary eigenwaves, a wave
a and a wave b, in a medium with a given symmetrical permittivity tensor ε [see (8.7)]. Denote the vectors
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(m, e, h) of the waves a and b respectively (ma, ea, ha) and (mb, eb, hb). According to (8.40)–(8.42),
these vectors must satisfy the equations

ma × ha = −εea, (8.170)

ma × ea = ha, (8.171)

mb × hb = −εeb, (8.172)

mb × eb = hb. (8.173)

By multiplying (8.170), (8.171), (8.172), and (8.173) scalarly by eb, hb, ea, and ha, respectively, we
obtain

eb(ma × ha) = −ebεea, hb(ma × ea) = hbha,

ea(mb × hb) = −eaεeb, ha(mb × eb) = hahb.

(8.174)

Using the vector identities

a(b × c) = b(c × a) = c(a × b) = −a(c × b) = −b(a × c) = −c(b × a), (8.175)

we may rewrite (8.174) as follows:

−ma(eb × ha) = −ebεea, (8.176)

ma(ea × hb) = hbha, (8.177)

mb(ea × hb) = eaεeb, (8.178)

−mb(eb × ha) = −hahb. (8.179)

On adding (8.176) and (8.178) we obtain

− ma(eb × ha) + mb(ea × hb) = 0, (8.180)

where the fact that for a symmetrical ε (ε= εT) ebεea = eaεeb has been used. Adding (8.177) and (8.179)
gives

ma(ea × hb) − mb(eb × ha) = 0. (8.181)

Finally, by subtracting (8.181) from (8.180) we obtain(
mb − ma

) [
(ea × hb) + (eb × ha)

]
= 0. (8.182)

Let us consider any two basis waves of an eigenwave basis, say, jth and kth ones. In view of the fact that
for these waves

mj = b + z𝜎j, mk = b + z𝜎k, (8.183)

application of (8.182) to these waves gives(
𝜎k − 𝜎j

)
z
[
(ej × hk) + (ek × hj)

]
= 0. (8.184)
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Hence, at 𝜎k ≠ 𝜎j, the relation

z
[
(ej × hk) + (ek × hj)

]
= 0 (8.185)

is valid. Relation (8.185) is identical to relation (8.161).

Derivation of Relations (8.160)

In principle, we could derive relations (8.160) in the same manner as relations (8.161). But we will use
another way in order to demonstrate some useful resources of the Berreman formalism and show once
again the interrelation of this formalism with the eigenwave method. In this derivation, we will exploit
the fact that the matrix 𝚫 of an arbitrary nonabsorbing medium satisfies the relation

𝚫 = I0𝚫†I0 (8.186)

[19, 21]. Another form of this relation is

I0𝚫 = 𝚫†I0 (8.187)

(I0I0 = U). For an arbitrary pair of eigenvectors of the matrix 𝚫, say, 𝝍 j and 𝝍 k, according to (8.90), we
may write

𝚫𝝍 j = 𝜎j𝝍 j, (8.188)

𝚫𝝍 k = 𝜎k𝝍 k. (8.189)

Premultiply (8.188) and (8.189) respectively by the row-vectors 𝝍†
kI0 and 𝝍†

j I0,

𝝍
†
kI0𝚫𝝍 j = 𝜎j𝝍

†
kI0𝝍 j, (8.190)

𝝍
†
j I0𝚫𝝍 k = 𝜎k𝝍

†
j I0𝝍 k, (8.191)

and take the Hermitian conjugate of the former equation:

𝝍
†
j 𝚫

†I0𝝍 k = 𝜎
∗
j 𝝍

†
j I0𝝍 k. (8.192)

Subtracting (8.192) from (8.191), we obtain

𝝍
†
j

(
I0𝚫 − 𝚫†I0

)
𝝍 k = (𝜎k − 𝜎∗

j )𝝍†
j I0𝝍 k. (8.193)

According to (8.187) the left-hand side of this equation is equal to zero and consequently

(𝜎k − 𝜎∗
j )𝝍†

j I0𝝍 k = 0. (8.194)

Out of TIR mode all 𝜎l are real, and therefore, according to (8.194), at 𝜎k ≠ 𝜎j, we have

𝝍
†
j I0𝝍 k = 0, (8.195)

that is, we have arrived at relation (8.160). We could derive in a similar manner the relation (8.161),
using the fact that with a symmetrical ε (ε = εT) the matrix 𝚫 meets the condition

𝚫 = I0𝚫TI0. (8.196)
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The Case of Polarization Degeneracy. Optimal Basis

In the case of polarization degeneracy, thanks to (8.103), the vibration vectors of the basis waves with
identical refraction vectors can always be chosen such that a desired orthogonality relation [(8.160),
or (8.161), or both (in the case of a nonabsorbing medium)] for this pair of waves will be fulfilled.
This choice is optimal, because it allows a simple inversion of the matrix 𝚿. We will call eigenwave
bases satisfying relations (8.161) optimal. In Chapter 9, we will present variants of optimal bases for
isotropic, uniaxial, and biaxial media. Here, we present some general relations simplifying the choice
of the vibration vectors for optimal bases in the case of polarization degeneracy and some other allied
relations needed in future discussions. According to (8.171) and (8.173), for an arbitrary pair of waves
a and b, the vectors (ma, ea, ha) and (mb, eb, hb) satisfy the following relations:

z
(
eb × ha

)
+ z
(
ea × hb

)
=
(
zma + zmb

) (
ebea

)
−
(
zea

) (
ebma

)
−
(
zeb

) (
eamb

)
, (8.197)

z
(
e∗b × ha

)
+ z
(
ea × h∗

b

)
=
(
zma + zm∗

b

) (
e∗bea

)
−
(
zea

) (
e∗bma

)
−
(
ze∗b
) (

eam∗
b

)
, (8.198)

z
(
eb × ha

)
− z
(
ea × hb

)
=
(
zma − zmb

) (
ebea

)
−
(
zea

) (
ebma

)
+
(
zeb

) (
eamb

)
. (8.199)

Suppose that polarization degeneracy takes place for the jth and kth basis waves, that is,

mj = mk. (8.200)

In the case of an isotropic or a uniaxial medium, for these waves the conditions

mj ⋅ ej = 0 and mk ⋅ ek = 0 (8.201)

must be satisfied. In view of (8.200) and (8.201), we can write relation (8.197) for these waves as follows:

z
(
ej × hk

)
+ z
(
ek × hj

)
= 2zmj

(
ejek

)
. (8.202)

Hence, in this case, relation (8.161) will be fulfilled for the jth and kth basis waves if we choose the
vectors ej and ek such that

ej ⋅ ek = 0. (8.203)

If mj and mk are real (a nonabsorbing medium out of TIR mode), along with (8.201) the following
relations are valid:

mj ⋅ e∗j = 0, mk ⋅ e∗k = 0. (8.204)

Therefore, in this case, we may write relation (8.198) for the jth and kth basis waves as

z(e∗j × hk) + z(ek × h∗
j ) = 2zmj(e

∗
j ek). (8.205)

We see that in this situation, the choice of ej and ek in accordance with the condition

e∗j ek = 0 (8.206)

guarantees the fulfillment of relation (8.160) for these waves.
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Some Consequences of Reciprocity and Symmetry of the Medium

Here we will consider the parameters of basis eigenwaves as functions of the vector b. Let us consider
quadruples of eigenwaves corresponding to b = b̃, where b̃ is any of the possible values of the vector
b, and b = −b̃. One may notice that the coefficients of the equation (8.73) at b = b̃ and at b = −b̃ are
related as follows:

d0(−b̃) = d0(b̃), d1(−b̃) = −d1(b̃), d2(−b̃) = d2(b̃),
d3(−b̃) = −d3(b̃), d4(−b̃) = d4(b̃).

This means that the roots of this equation for b = b̃ and b = −b̃ differ only in sign. Generally speaking,
this is the case for any reciprocal medium [22]. Let us assign these roots to the basis eigenwaves so that
the relations

𝜎j(−b̃) = −𝜎k(b̃) (8.207)

and consequently

mj(−b̃) = −mk(b̃)

will hold for the pairs

(j, k) = (1, 3), (2, 4), (3, 1), (4, 2). (8.208)

Adding (8.180) and (8.181) gives (
ma + mb

) (
ea × hb − eb × ha

)
= 0. (8.209)

From (8.209) it follows that for the bases under consideration[
𝜎j(b̃) + 𝜎k(−b̃)

]
z ⋅
[
ej(b̃) × hk(−b̃) − ek(−b̃) × hj(b̃)

]
= 0 (8.210)

for any pair (j, k) of the basis waves. We should note that this relation might be derived directly from
Lorentz’s lemma (8.20) and holds for any reciprocal medium. As seen from (8.210), (8.207), and (8.208),
in the absence of polarization degeneracy the vibration vectors of these bases are such that

z ⋅
[
ej(b̃) × hk(−b̃) − ek(−b̃) × hj(b̃)

]
= 0| j − k| ≠ 2.

(8.211)

Equation (8.211) can be written in terms of the 𝝍 vectors as follows:

𝝍 j(b̃)TIr𝝍 k(−b̃) = 0, (8.212)

where

Ir =
⎛⎜⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎟⎠ . (8.213)

In (8.212), the vectors 𝝍 j(b̃) and 𝝍 k(−b̃) are referred to the same coordinate system (see Section 8.3.4).
We may notice that the vectors mb = –ma, eb = ea and hb = –ha, where ma, ea, and ha satisfy
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(8.170)–(8.171), meet (8.172) and (8.173). Therefore, for the pairs (8.208), in the absence of polarization
degeneracy,

ek(−b̃) = bkjej(b̃), hk(−b̃) = −bkjhj(b̃), (8.214)

where bkj are scalar factors whose presence in these relations is connected with the freedom in choice of
the vibration vectors [see (8.101)]. Let us assume that polarization degeneracy takes place and we have
an optimal polarization basis for b = b̃. If in this situation we choose the eigenwave basis for b = −b̃ so
that relations (8.214) are satisfied for all its basis waves, this basis will be optimal and satisfy condition
(8.211). If two optimal bases corresponding to opposite values of b satisfy (8.211), we will call them
optimal reciprocal bases.

8.4.2 Simple General Formulas for Transmission Operators of Interfaces

One of the most frequently executed operations in numerical calculations for LCDs is the calculation
of the transmission operators for interfaces. If the liquid crystal layer in the LCD being modeled is not
regarded as an FP system or an element of an FP system (see Section 8.2.1), the number of interfaces
whose transmission operators must be calculated is typically hundreds, and most of these interfaces
are the interfaces between anisotropic layers of a staircase model of the LC layer (see Figure 8.15).
In the well-known variants [24–30] of the extended Jones matrix method, transmission operators for
interfaces between anisotropic media are calculated by approximate formulas. However, even in the case
of normal incidence, the use of the approximate formulas employed in [24–30] may lead to large errors
(see Sections 11.1.2 and 12.2). In our programs, we, as a rule, calculate the transmission operators for
interfaces rigorously by using sufficiently simple and general exact formulas obtained in [39]. These
formulas are presented in this section.

General Computational Formulas for Transmission Operators of Interfaces

Let us consider the interface between arbitrary layers  and  characterized by symmetrical permittivity
tensors. Let the eigenwave bases in these layers be orthogonal in the sense of (8.161). Recall that in the
absence of polarization degeneracy the condition (8.161) is satisfied for any choice of the eigenwave
basis, while in the presence of polarization degeneracy the polarization basis can always be chosen so
that the condition (8.161) will be met. Let z = z be the plane of the interface. The transmission operators
t↓AB ≡ t↓(z – 0, z + 0) and t↑AB ≡ t↑(z – 0, z + 0) can be calculated from the transfer matrix T(z + 0, z – 0)
or from the inverse of this matrix [see (8.121) and (8.124)]. The simplest variants of the calculation are

t↓AB = 1

t(BA)
11 t(BA)

22 − t(BA)
12 t(BA)

21

(
t(BA)
22 −t(BA)

12

−t(BA)
21 t(BA)

11

)
, (8.215)

t↑AB = 1

t(AB)
33 t(AB)

44 − t(AB)
34 t(AB)

43

(
t(AB)
44 −t(AB)

34

−t(AB)
43 t(AB)

33

)
, (8.216)

where t(AB)
jk and t(BA)

jk are elements of the matrices T(z + 0, z – 0) and T(z + 0, z – 0)−1, respectively.

According to (8.115), we may represent the matrices T(z + 0, z – 0) and T(z + 0, z – 0)−1 as follows:

T(z + 0, z − 0) = 𝚿(z + 0)−1𝚿(z − 0), (8.217a)

T(z + 0, z − 0)−1 = 𝚿(z − 0)−1𝚿(z + 0), (8.217b)
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where

𝚿(z − 0) =
(
𝝍1A 𝝍2A 𝝍3A 𝝍4A

)
,

𝚿(z + 0) =
(
𝝍1B 𝝍2B 𝝍3B 𝝍4B

)
,

𝝍 jA =
⎛⎜⎜⎜⎝
𝜓1jA

𝜓2jA

𝜓3jA

𝜓4jA

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

ejAx
hjAy
ejAy
−hjAx

⎞⎟⎟⎟⎠ , 𝝍 jB =
⎛⎜⎜⎜⎝
𝜓1jB

𝜓2jB

𝜓3jB

𝜓4jB

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

ejBx
hjBy
ejBy
−hjBx

⎞⎟⎟⎟⎠ j = 1, 2, 3, 4.

(8.218)

Here and in what follows, the quantities pertaining to the layers  and  are labeled by the subscripts A
and B, respectively. Let us denote the rows of the matrices 𝚿(z – 0)−1 and 𝚿(z + 0)−1 by �̄� jA and �̄� jB,
respectively (j = 1, 2, 3, 4). Then, according to (8.217), the components of the matrices T(z + 0, z – 0)
and T(z + 0, z – 0)−1 can be represented as

t(BA)
jk = �̄� jA𝝍 kB, t(AB)

jk = �̄� jB𝝍 kA. (8.219)

Due to the orthogonality of both eigenwave bases, we may, using (8.166), express the rows �̄� jA and �̄� jB

as follows:

�̄� jA = 1

2
(
𝜓1jA𝜓2jA + 𝜓3jA𝜓4jA

) (𝜓2jA 𝜓1jA 𝜓4jA 𝜓3jA), (8.220)

�̄� jB = 1

2
(
𝜓1jB𝜓2jB + 𝜓3jB𝜓4jB

) (𝜓2jB 𝜓1jB 𝜓4jB 𝜓3jB) (8.221)

[see (8.218)]. Substitution of (8.220) and (8.221) into (8.219) gives the following simple expressions for
t(BA)
jk and t(AB)

jk :

t(BA)
jk =

𝜓2jA𝜓1kB + 𝜓1jA𝜓2kB + 𝜓4jA𝜓3kB + 𝜓3jA𝜓4kB

2
(
𝜓1jA𝜓2jA + 𝜓3jA𝜓4jA

) , (8.222)

t(AB)
jk =

𝜓2jB𝜓1kA + 𝜓1jB𝜓2kA + 𝜓4jB𝜓3kA + 𝜓3jB𝜓4kA

2
(
𝜓1jB𝜓2jB + 𝜓3jB𝜓4jB

) . (8.223)

These expressions can also be written in the form

t(BA)
jk =

z(ejA × hkB) + z(ekB × hjA)

2z(ejA × hjA)
, (8.224)

t(AB)
jk =

z(ejB × hkA) + z(ekA × hjB)

2z(ejB × hjB)
. (8.225)

Using these formulas for the elements of the transfer matrices T(z + 0, z – 0) and T(z + 0, z – 0)−1

simplifies the calculation of the reflection operators for interfaces by formulas (8.121) and (8.124)
as well.

With the symmetrical normalization (8.167) of the eigenwave bases, the expressions for t(BA)
jk and t(AB)

jk
become still simpler. Here we present expressions only for those elements of T(z + 0, z – 0) and T(z + 0,
z – 0)−1 that are required to calculate t↓AB and t↑AB [see (8.215) and (8.216)]. With normalization (8.167),
the elements required to calculate t↓AB are expressed as follows:

t(BA)
jk = 𝜓2jA𝜓1kB + 𝜓1jA𝜓2kB + 𝜓4jA𝜓3kB + 𝜓3jA𝜓4kB, (8.226a)
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or, equivalently,

t(BA)
jk = z(ejA × hkB) + z(ekB × hjA),

j = 1, 2, k = 1, 2;
(8.226b)

the elements required to calculate t↑AB:

t(AB)
jk = −

(
𝜓2jB𝜓1kA + 𝜓1jB𝜓2kA + 𝜓4jB𝜓3kA + 𝜓3jB𝜓4kA

)
, (8.227a)

or

t(AB)
jk = −

(
z(ejB × hkA) + z(ekA × hjB)

)
,

j = 3, 4, k = 3, 4.
(8.227b)

One may notice that in the above formulas for the transmission operators, the forward transmission
operator t↓AB is expressed in terms of parameters of only forward propagating basis eigenwaves, and the
backward transmission operator t↑AB in terms of parameters of only backward propagating ones. Therefore,
when simple transmission channels like those shown in Figures 8.13a and 8.15 are considered, parameters
of only forward propagating basis eigenwaves are required in calculations, as in the variants [24–30]
of the extended Jones matrix method (but we emphasize again that, in contrast to [24–30], in our case
transmission operators for interfaces are calculated rigorously).

Analytical Expressions for the Forward Transmission Operator of the Interface
Between Uniaxial Media

The above expressions for the transmission operators of interfaces are very convenient for computations,
but not for analysis. However, substitution of explicit expressions for parameters of eigenwaves in terms
of optical parameters of the media into these expressions may give useful analytical expressions for
the transmission operators of interfaces. As an example, we will obtain here such an expression for the
transmission operator t↓AB of the interface of two uniaxial media with identical principal refractive indices
but different orientation of the optic axes (Figure 8.19). We deal with such interfaces when considering
staircase models of inhomogeneous LC layers. This example allows us to see some analogy of the exact
expression for this operator with approximate ones used in different variants of the Jones matrix method.

In the calculations, we will utilize a template of eigenwave basis for uniaxial media that is presented in
Section 9.3. Applying the symmetrical normalization (8.167) to this template, we can set and represent
the parameters of the forward propagating basis waves in a uniaxial medium as follows:

𝜎1 =
−Δ𝜀(bc)(zc) +

√
[Δ𝜀(bc)(zc)]2 −

(
𝜀
⊥
+ Δ𝜀(zc)2

) (
𝜀
⊥
𝜁2 + Δ𝜀(bc)2 − 𝜀

⊥
𝜀∥
)

𝜀
⊥
+ Δ𝜀(zc)2

,

𝜎2 =
√
𝜀
⊥
− 𝜁 2,

Δ𝜀 = 𝜀∥ − 𝜀⊥, 𝜀∥ = n2
∥, 𝜀

⊥
= n2

⊥
,

e1 =
e1√

2z
(
e1 × h1

) , h1 =
h1√

2z
(
e1 × h1

) , e2 =
e2√

2z
(
e2 × h2

) , h2 =
h2√

2z
(
e2 × h2

) ,
e1 = c −

(m1c)

𝜀
⊥

m1, h1 = m1 × e1, e2 = m2 × c, h2 = m2 × e2,

m1 = b + z𝜎1, m2 = b + z𝜎2,

(8.228)
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Figure 8.19 To the problem on the transmission characteristics of the interface between uniaxial layers.
In (b), we assume, for simplicity, that the layers are nonabsorbing

where n|| and n⟂ are the principal complex refractive indices of the medium; c is a unit vector parallel to
the optic axis. The index 1 is assigned to the extraordinary basis wave, and the index 2 to the ordinary
one. Let us introduce the vectors

i = m2∕M2, j = (i × c) ∕p, k = i × j, (8.229)

where

M2 ≡

√
m2

2 = n
⊥

, p =
√

(i × c)2
. (8.230)

The vectors i, j, and k satisfy the conditions

i2 = j2 = k2 = 1, ij = jk = ik = 0. (8.231)

In the case of a nonabsorbing medium out of TIR mode, the vectors i, j, and k are real and have a
simple meaning: i is the wave normal of the ordinary basis wave; j is a unit vector parallel to the electric
vibration vector of the ordinary basis wave—the vector j is perpendicular to the optic axis c and the
wave normal i; k is a unit vector perpendicular to i and j and parallel to the magnetic vibration vector
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of the ordinary basis wave (Figure 8.19). In the general case, using these vectors, we may represent the
vibration vectors of the ordinary basis wave as follows:

e2 =
j√

2n
⊥

iz
, h2 =

n
⊥

k√
2n

⊥
iz
. (8.232)

Then, representing the refraction vector m1 as

m1 = m2 + zn
⊥
𝛾 , (8.233)

where

𝛾 = (𝜎1 − 𝜎2)
/

n
⊥

,

and substituting (8.233) into expressions for e1 and h1 in (8.228), we obtain

e1 = −
{

pk + 𝛾 [z(ic) + i(zc)] + 𝛾2z(zc)
}

,

h1 = n
⊥

[pj + 𝛾 (z × c)] .
(8.234)

By expressing the vectors ejA, hjA, ejB, and hjB (i = 1,2) in accordance with (8.228), (8.232), and
(8.234) and substituting the obtained expressions into (8.226), we obtain the following expressions for
the parameters t(BA)

jk :

t(BA)
11 =

C11

CACB

, t(BA)
12 =

C12

CA

, t(BA)
21 =

C21

CB

, t(BA)
22 = jBjA, (8.235a)

where

C11 = jBjA

(
1 +

𝛾A + 𝛾B

2iz

)
+ 𝛾A𝛾B

(i × z)
[(

z × cB

) (
zcA

)
+
(
z × cA

) (
zcB

)]
2izpApB

, (8.235b)

C12 = −jBkA

(
1 +

𝛾A

2iz

)
, C21 = jBkA

(
1 +

𝛾B

2iz

)
, (8.235c)

CA,B =

(
1 +

𝛾A,B

iz
+
𝛾

2
A,B (i × z)

(
z × cA,B

) (
zcA,B

)
(iz)p2

A,B

) 1
2

. (8.235d)

The subscripts A and B mark the values of the parameters c, j, k, 𝛾 , and p for the layers  and ,
respectively. From these expressions, a very simple approximate formula for the matrix t↓AB may be
derived for the case of small 𝛾A/iz and 𝛾B/iz. According to (8.235d),

1
CA,B

= 1 −
𝛾A,B

2iz
+ ..., (8.236)

where terms containing the factors 𝛾m
A,B with m ≥ 2 are omitted. Substituting (8.236), (8.235b), and

(8.235c) into (8.235a), one may see that(
t(BA)
11 t(BA)

12

t(BA)
21 t(BA)

22

)
≈

(
jBjA −jBkA

jBkA jBjA

)
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to a high accuracy in the case (𝛾A,B/iz)2
≪ 1. Using this approximation, we have

t↓AB ≈

(
jBjA jBkA

−jBkA jBjA

)
. (8.237)

In the absence of absorption, the matrix approximating the matrix t↓AB in (8.237) is equal to the matrix of
(coordinate) rotation (1.53) with 𝛼 equal to the angle between the vectors jA and jB. Such a matrix is used
to approximate the interface transmission operator in the variant of the extended Jones matrix method
developed by Yeh and Gu [17,18]. But, in that method, a different normalization of the eigenwave basis
is used, namely,

ej ⋅ ej = 1 j = 1, 2, 3, 4. (8.238)

The normalization (8.238) will be referred to as Yeh’s normalization. The exact matrices t↓AB correspond-
ing to Yeh’s normalization in general differ from those corresponding to the symmetrical normalization.
One may show that in common situations, the approximation (8.237), being relatively good in the case
of the symmetrical normalization, is not so good in the case of Yeh’s normalization. We illustrate this by
the following numerical example. Table 8.1 compares the values of the matrix

⌢

R(jA, jB) =
(

jBjA jBkA

−jBkA jBjA

)
and exactly calculated matrices t↓AB corresponding to the symmetrical normalization and Yeh’s normal-
ization for the interface between nonabsorbing uniaxial layers. The principal refractive indices of both
layers are n|| = 1.7 and n⟂ = 1.5. The angles of orientation of the optic axis for the layer  are 𝜃 = 20◦ and
𝜑 = 0◦ (see Figure 9.3 in Section 9.3 of the next chapter), those for the layer  are 𝜃 = 30◦ and 𝜑 = 10◦.
Here, to specify the optical system and illumination conditions, we use the reference system, quantities,
and notation adopted in Chapter 9. It is assumed that the light falls on a layered system that contains
the layers  and  from air at an angle of 45◦ (𝛽 inc). Table 8.1 shows results for three orientations of
the plane of incidence: 𝛼inc = 0◦, 45◦, 90◦ (see Figure 9.1). As seen from this table, in all the cases, the
matrix t↓AB calculated with symmetrical normalization is much closer to the rotation matrix

⌢

R(jA, jB) than
the matrix t↓AB calculated with Yeh’s normalization. We see also that even at relatively close parameters
of the adjacent layers, as in this example, the exact matrix t↓AB calculated with Yeh’s normalization may
significantly differ from the rotation matrix. Thus, in principle, we may use approximation (8.237), but
we should remember that this approximation is relatively good only for certain normalizations of the
eigenwave basis, such as the symmetrical normalization.

Table 8.1 The transmission matrices for interface between uniaxial layers and the rotation matrix
⌢

R(jA, jB)

𝛼inc

⌢

R(jA, jB) t↓AB, symmetrical normalization t↓AB, Yeh’s normalization

0◦

(
0.960124 0.279572
−0.279572 0.960125

) (
0.959964 0.279905
−0.279766 0.959958

) (
0.966793 0.283090
−0.278586 0.959958

)
45◦

(
0.995325 0.096583
−0.096583 0.995325

) (
0.995163 0.096749
−0.096678 0.995298

) (
1.015149 0.096384
−0.098993 0.995298

)
90◦

(
0.998768 0.049627
−0.049627 0.998768

) (
0.998600 0.049740
−0.049709 0.998758

) (
1.016518 0.047243
−0.053275 0.998758

)
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8.4.3 Calculation of Transmission and Reflection Operators of Layered
Systems by Using the Adding Technique

In Section 8.2.2, we described the technique in which the overall transmission and reflection operators of
a layered system are calculated from the EW transfer matrix or Berreman transfer matrix of this system.
In the transfer matrix methods, the spatial evolution of damped backward propagating waves is described
by exponentially growing functions. Therefore, the transfer matrices of layers where such waves are
present may contain very large elements. In numerical calculations, the presence of such elements may
cause severe loss of significant digits in the numerical values of elements of the resulting transfer matrix
of the layered system. That is why the transfer matrix technique is numerically unstable and may give a
huge error when applied to layered systems including strongly absorbing layers or layers in TIR mode.2

For such systems, the overall transmission and reflection operators can be accurately calculated with
the help of an adding-technique-based method that is presented in this section (the adding technique is
considered in detail in Section 7.2.2). The well-known method of Ko and Sambles [40] may be considered
as a variant of this method.

An Algorithm Using the Transmission and Reflection Matrices of Elements to be Added

In this algorithm, two kinds of elements of the layered system are considered: bulks of layers and
interfaces. The elements are presented in the calculations by their transmission and reflection operators
(EW Jones matrices). The transmission matrices for the bulks are calculated by formulas (8.111) and
(8.112). The transmission and reflection matrices for an interface may be computed by formulas (8.121)
from the transfer matrix of this interface (8.115) or somehow else (see Sections 8.2.2 and 8.4.2). Denoting
the reflection and transmission operators of the jth element by t↓j , r↓j , t↑j , and r↑j (j = 1,2, . . . , N, where
N is the number of the elements in the layered system), and the reflection and transmission operators of
the part of the system including its first j elements by t↓(j), r↓(j), t↑(j), and r↑(j) (j = 1,2, . . . , N − 1), we may
represent the procedure of involving the j + 1th element (see Section 7.3) as follows:

(i) if the j + 1th element is an interface,

t↓(j+1) = t↓j+1 (U − r↑(j) r↓j+1)−1t↓(j), (8.239a)

r↓(j+1) = r↓(j) + t↑(j) r↓j+1(U − r↑(j) r↓j+1)−1t↓(j), (8.239b)

t↑(j+1) = t↑(j)(U − r↓j+1 r↑(j))
−1 t↑j+1, (8.239c)

r↑(j+1) = r↑j+1 + t↓j+1 r↑(j)(U − r↓j+1 r↑(j))
−1t↑j+1; (8.239d)

(ii) if the j + 1th element is a bulk,

t↓(j+1) = t↓j+1 t↓(j), (8.240a)

r↓(j+1) = r↓(j), (8.240b)

t↑(j+1) = t↑(j) t↑j+1, (8.240c)

r↑(j+1) = t↓j+1 r↑(j) t↑j+1. (8.240d)

2 See also remarks at the end of Section 7.2.1.
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The computation starts from

t↓(1) = t↓1, r↓(1) = r↓1, t↑(1) = t↑1, r↑(1) = r↑1

if the first element is an interface, or from

t↓(1) = t↓1, r↓(1) = 0, t↑(1) = t↑1, r↑(1) = 0

if the first element is a bulk. Successive calculations by (8.239)–(8.240) for j = 2, . . . , N–1 give the
transmission and reflection operators for the whole layered system, which are t↓(N), r↓(N), t↑(N), and r↑(N).

An Algorithm Using the Transfer Matrices of Elements to be Added

The step (i) of the above algorithm, in principle, can be performed without calculating the matrices t↓j ,

r↓j , t↑j , and r↑j , but using directly the EW transfer matrix of the interface to be added. In particular, the

matrices t↓(j+1), r↓(j+1), t↑(j+1), and r↑(j+1) can be calculated as follows:

t↓(j+1) = (I11k − r↑(j) I21k)−1t↓(j),

r↑(j+1) = (I11k − r↑(j) I21k)−1 (r↑(j) I22k − I12k),

r↓(j+1) = r↓(j) + t↑(j) I21k t↓(j+1),

t↑(j+1) = t↑(j)(I21k r↑(j+1) + I22k),

I11k, I12k, I21k, and I22k being the 2 × 2 blocks of the matrix

Ik =
(

I11k I12k

I21k I22k

)
= 𝚿−1

k 𝚿k+1,

where 𝚿k and 𝚿k+1 are respectively the 𝚿-matrix for the last layer of the subsystem of j elements and that
for the next layer of the system (Ik is the inverse of the EW transfer matrix for the interface to be added).
With step (i) performed in this way, the method under consideration becomes practically equivalent to
the method of Ko and Sambles [40].

Being applied in ordinary situations (without TIR mode and strongly absorbing layers), both presented
variants of the method are somewhat more expensive in computational cost as compared with the transfer
matrix method; however, in view of their higher numerical stability, it is often reasonable to use them in
ordinary situations as well.

8.5 Transmissivities and Reflectivities
In this section, we consider how the transmissivities and reflectivities of OTR units (see Section 7.1)
and the transmissivities of transfer channels as well as the extreme values of these transmissivities and
reflectivities can be calculated from corresponding transmission and reflection EW Jones matrices.

Normal Flux

The time-averaged Poynting vector ⟨S⟩ of an arbitrary field {E, H} of the form (8.57) can be expressed
as follows:

⟨S(z, t)⟩ = c
8𝜋

Re
(
Ẽ(z) × H̃(z)∗

)
. (8.241)
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The time-averaged energy flux density of this field through the plane z = 𝜉, where 𝜉 is a given value of
z, can be represented as

Sz(𝜉) = z ⟨S(𝜉, t)⟩ = c
8𝜋

Re
[
z
(
Ẽ(𝜉) × H̃(𝜉)∗

)]
. (8.242)

Such flux densities will be called the normal fluxes. The notion of the normal flux is important for us here
since it is customary in optics of stratified media to define transmissivities and reflectivities for fields of
the form (8.57) as ratios of the absolute values of corresponding normal fluxes. In terms of the Berreman
vector Ψ the normal flux can be expressed as follows:

Sz(𝜉) = c
16𝜋

Ψ(𝜉)†I0Ψ(𝜉). (8.243)

In terms of the vector A (8.68)

Sz(𝜉) = c
16𝜋

A(𝜉)†Ñ0(𝜉)A(𝜉) = c
16𝜋

4∑
j=1

4∑
k=1

N0jk(𝜉)A∗
j (𝜉)Ak(𝜉), (8.244)

where

Ñ0 ≡

⎛⎜⎜⎜⎝
N011 N012 N013 N014

N021 N022 N023 N024

N031 N032 N033 N034

N041 N042 N043 N044

⎞⎟⎟⎟⎠ ≡ 𝚿†I0𝚿. (8.245)

The elements of the matrix Ñ0 can be represented as

N0jk = z(e∗j × hk) + z(ek × h∗
j ) = 𝝍†

j I0𝝍 k. (8.246)

If the plane z = 𝜉 lies within a nonabsorbing layer out of TIR mode, in the absence of polarization
degeneracy or otherwise with an optimal eigenwave basis (see Section 8.4.1), due to the orthogonality
(8.160) of the eigenwave basis, the matrix Ñ0 is diagonal:

Ñ0(𝜉) =
⎛⎜⎜⎜⎝

N011(𝜉) 0 0 0
0 N022(𝜉) 0 0
0 0 N033(𝜉) 0
0 0 0 N044(𝜉)

⎞⎟⎟⎟⎠ . (8.247)

In this case, expression (8.244) takes the form

Sz(𝜉) = c
16𝜋

4∑
j=1

N0jj(𝜉)A∗
j (𝜉)Aj(𝜉). (8.248)

If we denote the normal flux of a wave field X through the plane z = 𝜉 as Sz{X(𝜉)}, we may write,
according to (8.248), the following relation:

Sz

{
4∑

j=1

Xj(𝜉)

}
=

4∑
j=1

Sz

{
Xj(𝜉)
}

, (8.249)

where Xj (j = 1, 2, 3, 4) are the eigenwave constituents of the field {E, H}; that is, the contribution of
each eigenwave constituent to the normal flux of the field {E, H} is unaffected by the other eigenwave
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constituents. If relations (8.160) are violated, the matrix Ñ0(𝜉) is not diagonal and the sum in (8.244)
may contain nonzero interference terms N0jk(𝜉)A∗

j (𝜉)Ak(𝜉) (k ≠ j), and consequently the relation (8.249)

may also be violated. Estimates of the effect of off-diagonal elements of Ñ0 in the cases of an absorbing
medium and TIR mode may be found in Section 9.2.

According to (8.244), the normal flux of a forward propagating field X↓ through the plane z = 𝜉 may
be represented as follows:

Sz{X↓(𝜉)} = c
16𝜋

a↓(𝜉)†n↓
0(𝜉)a↓(𝜉), (8.250)

where a↓ is the a-vector of the field X↓ and

n↓
0 =
(

N011 N012

N021 N022

)
. (8.251)

Analogously, for a backward propagating field X↑, characterized by an a-vector a↑, we may write

Sz{X↑} = c
16𝜋

a↑†n↑
0a↑, (8.252)

where

n↑
0 =
(

N033 N034

N043 N044

)
. (8.253)

Since

||Sz{X↓}|| = Sz{X↓}, ||Sz{X↑}|| = −Sz{X↑}, (8.254)

the corresponding irradiances, the absolute values of Sz

{
X↓(z)
}

and Sz

{
X↑(z)
}

, can be expressed as
follows:

E{X↓} = c
16𝜋

a↓†n↓
0a↓, E{X↑} = c

16𝜋
a↑†n̄↑

0a↑, (8.255)

where

n̄↑
0 ≡ −n↑

0. (8.256)

In most cases of interest, the matrices n↓
0 and n̄↑

0 can be represented as

n↓
0 = q↓†q↓, n̄↑

0 = q↑†q↑
. (8.257)

Using (8.257), we may rewrite expressions (8.255) as follows:

E{X↓} = c
16𝜋

a↓†a↓, E{X↑} = c
16𝜋

a↑†a↑, (8.258)

where

a↓ = q↓a↓, a↑ = q↑a↑, (8.259)

q↓ and q↑ are matrices satisfying (8.257)—these matrices are discussed at the end of this section.
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Transmissivities and Reflectivities of an OTR unit

Returning to the general situation illustrated by Figure 8.12, we may define the transmissivities, t↓(z′,
z′′) and t↑(z′, z′′), and reflectivities, r↓(z′, z′′) and r↑(z′, z′′), of the fragment (z′, z′′) as

t↓(z′, z′′) ≡
E
{

X↓
tr(z

′′)
}

E
{

X↓
inc(z′)
} , r↓(z′, z′′) ≡

E
{

X↑
ref (z

′)
}

E
{

X↓
inc(z′)
} ,

t↑(z′, z′′) ≡
E
{

X↑
tr(z

′)
}

E
{

X↑
inc(z′′)
} , r↑(z′, z′′) ≡

E
{

X↓
ref (z

′′)
}

E
{

X↑
inc(z′′)
} . (8.260)

According to (8.255) and (8.107)–(8.110), given a-vectors of the incident fields, these transmissivities
and reflectivities can be calculated as

t↓(z′, z′′) =
a↓

tr(z
′′)†n↓

0(z′′)a↓
tr(z

′′)

a↓
inc(z′)†n

↓
0(z′)a↓

inc(z′)
, r↓(z′, z′′) =

a↑
ref (z

′)†n̄↑
0(z′)a↑

ref (z
′)

a↓
inc(z′)†n

↓
0(z′)a↓

inc(z′)
,

t↑(z′, z′′) =
a↑

tr(z
′)†n̄↑

0(z′)a↑
tr(z

′)

a↑
inc(z′′)†n̄

↑
0(z′′)a↑

inc(z′′)
, r↑(z′, z′′) =

a↓
ref (z

′′)†n↓
0(z′′)a↓

ref (z
′′)

a↑
inc(z′′)†n̄

↑
0(z′′)a↑

inc(z′′)
,

(8.261)

where

a↓
tr(z

′′) = t↓(z′, z′′)a↓
inc (z′), (8.262)

a↑
ref (z

′) = r↓ (z′, z′′)a↓
inc (z′), (8.263)

a↑
tr (z′) = t↑ (z′, z′′) a↑

inc(z
′′), (8.264)

a↓
ref (z′′) = r↑(z′, z′′)a↑

inc(z
′′). (8.265)

Evaluation of Extreme Values of Transmissivities and Reflectivities for an OTR unit

With a transmission (reflection) EW Jones matrix known, one may easily determine the maximum and
minimum values of the corresponding transmissivity (reflectivity) over the set of all possible states of the
incident field at the given𝜔 and b. We denote such extreme values of the transmissivities and reflectivities
for the fragment (z′, z′′) by max[t↓(z′, z′′)], min[t↓(z′, z′′)], max[r↓(z′, z′′)], min[r↓(z′, z′′)], and so on.
Let us find, for instance, max[t↓(z′, z′′)] and min[t↓(z′, z′′)]. From (8.261) and (8.262) we have

t↓(z′, z′′) =
a↓

inc(z
′)†t↓(z′, z′′)†n↓

0(z′′)t↓(z′, z′′)a↓
inc(z

′)

a↓
inc(z′)†n

↓
0(z′)a↓

inc(z′)
. (8.266)

To solve the problem, we must find the maximum and minimum values of t↓(z′, z′′) as a function of
a↓

inc(z
′). Substitution of a↓

inc(z
′) = q↓(z′)−1x into (8.266) gives the following equation:

t↓(z′, z′′) = (x† t̄↓(z′, z′′)x)
(x†x)

, (8.267)

where

t̄↓(z′, z′′) =
(
q↓(z′)−1

)†
t↓(z′, z′′)†n↓

0(z′′)t↓(z′, z′′)q↓(z′)−1
. (8.268)
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The problem now is to determine the extrema of t↓(z′, z′′) as a function of x. The matrix t̄↓(z′, z′′) is
Hermitian. According to the Rayleigh–Ritz theorem [41], for any Hermitian matrix t

max
x≠0

(
x†tx
x†x

)
= 𝜆max[t], min

x≠0

(
x†tx
x†x

)
= 𝜆min[t], (8.269)

where 𝜆max[t] and 𝜆min[t] are respectively the maximum and minimum eigenvalues of the matrix t.
Appliying this theorem, we find that

max[t↓(z′, z′′)] = 𝜆max[t̄
↓(z′, z′′)], min[t↓(z′, z′′)] = 𝜆min[t̄

↓(z′, z′′)]. (8.270)

This solution may be also represented in the following form (this form is often more convenient for
calculations):

max[t↓(z′, z′′)]

min[t↓(z′, z′′)]

}
= 1

2

⎡⎢⎢⎣
‖‖‖‖⌢t ↓

(z′, z′′)
‖‖‖‖2E ±

√‖‖‖‖⌢t ↓
(z′, z′′)

‖‖‖‖4E − 4
||||det ⌢t ↓

(z′, z′′)
||||2
⎤⎥⎥⎦ , (8.271)

where

⌢

t
↓
(z′, z′′) = q↓(z′′)t↓(z′, z′′)q↓(z′)−1,

‖∙‖E stands for the Euclidean norm [see Section 5.1.4 and Eq. (5.44) therein]. The matrices t̄↓(z′, z′′) and
⌢

t
↓
(z′, z′′) are related by

t̄↓(z′, z′′) =
⌢

t
↓
(z′, z′′)†

⌢

t
↓
(z′, z′′). (8.272)

Similarly, we may find that

max[t↑(z′, z′′)

min[t↑(z′, z′′)

}
= 1

2

⎡⎢⎢⎣
‖‖‖‖⌢t ↑

(z′, z′′)
‖‖‖‖2E ±

√‖‖‖‖⌢t ↑
(z′, z′′)

‖‖‖‖4E − 4
||||det ⌢t ↑

(z′, z′′)
||||2
⎤⎥⎥⎦ ,

max[r↓(z′, z′′)]

min[r↓(z′, z′′)]

}
= 1

2

[‖‖‖⌢r↓(z′, z′′)‖‖‖2E ±
√‖‖‖⌢r↓(z′, z′′)‖‖‖4E − 4 |||det ⌢r↓(z′, z′′)|||2

]
,

max[r↑(z′, z′′)

min[r↑(z′, z′′)

}
= 1

2

[‖‖‖⌢r↑(z′, z′′)‖‖‖2E ±
√‖‖‖⌢r↑(z′, z′′)‖‖‖4E − 4 |||det ⌢r↑(z′, z′′)|||2

]
,

(8.273)

where

⌢

t
↑
(z′, z′′) ≡ q↑(z′)t↑(z′, z′′)q↑(z′′)−1,

⌢

r↓(z′, z′′) ≡ q↑(z′)r↓(z′, z′′)q↓(z′)−1,
⌢

r↑(z′, z′′) ≡ q↓(z′′)r↑(z′, z′′)q↑(z′′)−1
.

Of course, when using these results, one should remember that here we consider the fragment (z′, z′′)
in isolation from the other elements of the system and neglect the interference effects connected with the
presence of the adjacent layers. Moreover, considering light incidence from an absorbing medium, let
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it be, for instance, the medium MA (see Figure 8.12), in the analysis of energy transfer, one should take
into account that in this case, the relation

Sz

{
X↓

inc(z
′) + X↑

ref (z
′)
}
= Sz

{
X↓

inc(z
′)
}
+ Sz

{
X↑

ref (z
′)
}

is in general violated.

Transmissivity of a Transfer Channel

The transmissivity of a transfer channel C for an input field Xinp can be defined as

t {C} ≡
E
{

Xout(zco)
}

E
{

Xinp(zci)
} , (8.274)

where Xout = CXinp is the output field; z = zci and z = zco are respectively the entrance and exit planes
of this channel. Denoting the a-vector of a wave field X at z = 𝜉 by ã {X(𝜉)}, we may express the
transmissivity t{C} in terms of the a-vectors of the fields Xinp and Xout as follows:

t {C} =
ã
{

Xout(zco)
}†

n̄
{

Xout, zco

}
ã
{

Xout(zco)
}

ã
{

Xinp(zci)
}†

n̄
{

Xinp, zci

}
ã
{

Xinp(zci)
} , (8.275)

where

n̄{X, z} =
{

n↓
0(z) if X is forward propagating

n̄↑
0(z) if X is backward propagating.

(8.276)

The vectors ã
{

Xinp(zci)
}

and ã
{

Xout(zco)
}

are related by

ã
{

Xout(zco)
}
= t {C} ã

{
Xinp(zci)

}
,

where t{C} is the EW Jones matrix of the channel C.
The extreme values of the transmissivity t{C} as a function of ã{Xinp(zci)} may be calculated from the

matrix t{C} by the following formulas:

max[t{C}]

min[t{C}]

}
= 1

2

⎡⎢⎢⎣
‖‖‖‖⌢t {C}

‖‖‖‖2E ±

√‖‖‖‖⌢t {C}
‖‖‖‖4E − 4

||||det ⌢t {C}
||||2
⎤⎥⎥⎦ , (8.277)

where

⌢

t {C} ≡ q̄
{

Xout, zco

}
⋅ t {C} ⋅ q̄

{
Xinp, zci

}−1
,

q̄{X, z} =
{

q↓(z) if X is forward propagating
q↑(z) if X is backward propagating.

The average transmissivity of the channel C may be expressed as

avr[t{C}] = 1
2

(
max[t{C}] + min[t{C}]

)
= 1

2

‖‖‖‖⌢t {C}
‖‖‖‖2E . (8.278)
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The quantity avr[t{C}] may be treated as the transmissivity of the channel C for unpolarized quasi-
monochromatic incident light with infinitely narrow bandwidth.

How to Simplify the Calculations

The matrices n↓
0, n̄↑

0, q↓, and q↑ entering into the above formulas depend on the parameters of the
eigenwave basis, and a suitable choice of the eigenwave basis may simplify calculations. In the case of
an isotropic medium, whether nonabsorbing or absorbing, the standard variant of the eigenwave basis
presented in Section 9.2 with any normalization gives the matrices n↓

0 and n̄↑
0 of the form

n↓
0 =
(

N011 0
0 N022

)
, n̄↑

0 =
(
−N033 0

0 −N044

)
. (8.279)

For nonabsorbing anisotropic media out of TIR mode in the absence of polarization degeneracy as well
as in the presence of polarization degeneracy provided that an optimal eigenwave basis is used (see
Sections 8.4.1, 9.1, 9.3, and 9.4), these matrices also have the form (8.279) under any normalization. In
all these cases, we can use the following matrices q↓ and q↑:

q↓ =
(√

N011 0
0
√

N022

)
, q↑ =

(√
−N033 0
0

√
−N044

)
. (8.280)

In any case where the flux normalization (8.164) is applicable (see Section 8.4.1), the use of this
normalization gives

n↓
0 =
(

1 N012

N∗
012 1

)
, n̄↑

0 =
(

1 −N034

−N∗
034 1

)
. (8.281)

If the eigenwave basis is orthogonal in the sense of (8.160), with the flux normalization

n↓
0 = U, n̄↑

0 = U. (8.282)

With such entrance and exit bases, we may omit the matrices n↓
0, n̄↑

0, q↓, and q↑ in the above formulas
for transmissivities and reflectivities. In the case of a nonabsorbing isotropic medium, with the standard
choice of the eigenwave basis and the standard “electrical” (E-) normalization

e∗j ej = 1 j = 1, 2, 3, 4, (8.283)

each of the matrices n↓
0 and n̄↑

0 is a product of a scalar and the unit matrix [see (9.27)]. With such entrance
and exit bases, we may replace the matrices n↓

0, n̄↑
0, q↓, q↑, (q↓)−1, and (q↑)−1 in the above formulas

for transmissivities and reflectivities by the corresponding scalar factors. In the case of an absorbing
anisotropic medium, using the flux normalization to have (8.281), one can use the following variant of
factorization to obtain q↓ and q↑: any matrix C of the form

C =
(

1 C
C∗ 1

)
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with |C| < 1 can be represented as C = q†q with

q =

( (
a1 + a2

)
∕2 b1

(
a1 − a2

)
∕2

b∗
1

(
a∗

1 − a∗
2

)
∕2
(
a1 + a2

)
∕2

)
,

where

a1 =
√

1 + b2b∗
2, a2 =

√
1 − b2b∗

2, b1 =
b2

b∗
2

, b2 =
√

C.

8.6 Mathematical Properties of Transfer Matrices and Transmission
and Reflection EW Jones Matrices of Lossless Media and
Reciprocal Media

In this section, we will consider properties of Berreman transfer matrices, EW transfer matrices, and
EW Jones matrices peculiar to reciprocal media (see Section 8.1.1) and nonabsorbing media. Relations
presented here play the same role in the rigorous theory as relation (1.225) for the Jones matrices of
lossless systems and reciprocity relation (1.254) do in the classical Jones calculus.

8.6.1 Properties of Matrix Operators for Nonabsorbing Regions

Let us assume that the medium in Figure 8.12 is nonabsorbing within the region (z′, z′′). Any field
satisfying the Maxwell equation throughout this region will also satisfy (8.18) for any volume domain
situated between the planes z = z′ and z = z′′. The time-averaged Poynting vector of a field of the form
(8.57) is independent of x and y, that is,

⟨S(r, t)⟩ = ⟨S(z, t)⟩ . (8.284)

In view of this, taking as S in (8.18) the surface of a rectangular parallelepiped two sides of which lie
on the planes z = z′ and z = z′′ and two sides are parallel to the plane of incidence (see Figure 8.20) and
substituting (8.57) into (8.18), we may see that the normal flux [see Section 8.5, Eq. (8.242)] through
the plane z = z′′ is equal to that through the plane z = z′, that is,

Sz(z
′′) = Sz(z

′). (8.285)

Let us consider how property (8.285) is manifested in properties of matrix operators characterizing this
region.

S

z=z'

z=z"

b
{E, H}

Figure 8.20 Nonabsorbing fragment. Geometry of the problem
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Transfer Matrices

According to (8.285) and (8.57), we have the following relation for Ẽ and H̃

z
(
Ẽ(z′′) × H̃(z′′)∗

)
+ z
(
Ẽ(z′′)∗ × H̃(z′′)

)
= z
(
Ẽ(z′) × H̃(z′)∗

)
+ z
(
Ẽ(z′)∗ × H̃(z′)

)
. (8.286)

Relation (8.286) is equivalent to the following ones:

Ψ(z′′)†I0Ψ(z′′) = Ψ(z′)†I0Ψ(z′), (8.287)

A(z′′)†Ñ0(z′′)A(z′′) = A(z′)†Ñ0(z′)A(z′), (8.288)

where

Ñ0(z) = 𝚿(z)†I0𝚿(z) (8.289)

[see (8.243)–(8.245)]. Using (8.287) and (8.288), we can easily find restrictions that are imposed by the
absence of absorption on the transfer matrices P(z′′, z′) and T(z′′, z′). Substitution of the expression

Ψ(z′′) = P(z′′, z′)Ψ(z′)

into (8.287) leads to the relation

Ψ(z′)†P(z′′, z′)†I0P(z′′, z′)Ψ(z′) = Ψ(z′)†I0Ψ(z′). (8.290)

Since this relation is an identity [i.e., it is satisfied at any Ψ(z′)], it determines the following property of
the matrix P(z′′, z′):

P(z′′, z′)†I0P(z′′, z′) = I0. (8.291)

This is a general property of the Berreman matrices for nonabsorbing regions. A more convenient form
of relation (8.291) is

P(z′′, z′)−1 = I0P(z′′, z′)†I0, (8.292)

where we have used the fact that I−1
0 = I0. From (8.288), we may derive an analogous relation for the

matrix T(z′′, z′):

T(z′′, z′)−1 = Ñ0(z′)−1T(z′′, z′)†Ñ0(z′′). (8.293)

If the waves passing across the planes z = z′ and z = z′′ are homogeneous, in the absence of polarization
degeneracy or otherwise with an optimal eigenwave basis, the matrices Ñ0 [see (8.289)] in (8.293) are
diagonal [see Section 8.5, Eq. (8.247)]. If, moreover, normalization (8.164) is used,

Ñ0 = Ñ−1
0 = Ũ0 ≡

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ . (8.294)
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↓t ↓r

(a)

↑t ( )• ( )•

( )• ( )•

↑r
(b)

Figure 8.21 Transmission and reflection matrices related by equations (8.295) and (8.296)

Transmission and Reflection Matrices

Let the nonabsorbing fragment (z′, z′′) be considered as an OTR unit (see Section 7.1), and let all the
eigenwaves in the planes z = z′ and z = z′′ be homogeneous. One can show [starting, say, from relation
(8.288); we will give a similar derivation in Section 8.6.2] that in this case, the matrices t↓(z′, z′′),
t↑(z′, z′′), r↓(z′, z′′), and r↑(z′, z′′) satisfy the following relations (see Figure 8.21):

t↓(z′, z′′)†n↓
0(z′′)t↓(z′, z′′) − r↓(z′, z′′)†n↑

0(z′)r↓(z′, z′′) = n↓
0(z′), (8.295a)

t↑(z′, z′′)†n↑
0(z′)t↑(z′, z′′) − r↑(z′, z′′)†n↓

0(z′′)r↑(z′, z′′) = n↑
0(z′′), (8.295b)

the matrices n↓
0 and n↑

0 have been defined and examined in Section 8.5. With normalization (8.164), the
relations (8.295) take the form

t↓(z′, z′′)†t↓(z′, z′′) + r↓(z′, z′′)†r↓(z′, z′′) = U, (8.296a)

t↑(z′, z′′)†t↑(z′, z′′) + r↑(z′, z′′)†r↑(z′, z′′) = U. (8.296b)

Relevant sources: References 19–21 and 42.

8.6.2 Properties of Matrix Operators for Reciprocal Regions

Transfer Matrices

Let us assume that within the region (z′, z′′) the medium is reciprocal, being possibly absorbing. Using
the Lorentz lemma (8.19), one can show that the transfer matrices for this region, considered as functions
of b, satisfy the conditions

P(z′′, z′,−b̃) = −Ir

(
P(z′′, z′, b̃)−1

)T
Ir, (8.297)

T(z′′, z′,−b̃) = Nr(z
′′, b̃)−1

(
T(z′′, z′, b̃)−1

)T
Nr(z

′, b̃), (8.298)

where

Nr(z, b̃) ≡ 𝚿(z, b̃)TIr𝚿(z,−b̃) (8.299)
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S

z=z'

z=z"

b
~

b
~ {E1, H1}{E2, H2}

Figure 8.22 Reciprocal fragment. Geometry of the problem

and b̃ is any given value of the vector b; in these and all other formulas of this section where there are P,
𝚿, and 𝝍 corresponding to different values of b, these quantities are assumed to be referred to the same
reference system (see Section 8.3.4). Let {E1, H1} and {E2, H2} be arbitrary fields of the form(

E1(r, t)
H1(r, t)

)
=
(

Ẽ1(z)
H̃1(z)

)
exp
[
i
(
k0b̃r − 𝜔t

)]
, (8.300a)(

E2(r, t)
H2(r, t)

)
=
(

Ẽ2(z)
H̃2(z)

)
exp
[
i
(
−k0b̃r − 𝜔t

)]
, (8.300b)

each satisfying the Maxwell equations throughout the space between the planes z = z′ and z = z′′.
Substituting (8.300) into (8.19) and choosing the surface of integration in the same manner as in the
previous section (see Figure 8.22), we may see that, according to the Lorentz lemma,

z
(
Ẽ1(z′) × H̃2(z′)

)
− z
(
Ẽ2(z′) × H̃1(z′)

)
= z
(
Ẽ1(z′′) × H̃2(z′′)

)
− z
(
Ẽ2(z′′) × H̃1(z′′)

)
.

(8.301)

We may rewrite this relation in terms of the Ψ- and A-vectors: labeling quantities pertaining to the fields
{E1, H1} and {E2, H2} with the subscripts 1 and 2, respectively, we have

Ψ1(z′)TIrΨ2(z′) = Ψ1(z′′)TIrΨ2(z′′), (8.302)

A1(z′)TNr(z
′, b̃)A2(z′) = A1(z′′)TNr(z

′′, b̃)A2(z′′); (8.303)

the matrix Ir has been defined in Section 8.4.1 [see (8.213)]. Substitution of the expressions

Ψ1(z′′) = P(z′′, z′, b̃)Ψ1(z′), Ψ2(z′′) = P(z′′, z′,−b̃)Ψ2(z′)

into (8.302) gives

Ψ1(z′)TIrΨ2(z′) = Ψ1(z′)TP(z′′, z′, b̃)TIrP(z′′, z′,−b̃)Ψ2(z′).

This relation must be satisfied at any Ψ1(z′) and Ψ2(z′), which is possible only if

Ir = P(z′′, z′, b̃)TIrP(z′′, z′,−b̃). (8.304)

Condition (8.304) is equivalent to condition (8.297). Similarly, starting from (8.303), one can prove the
validity of (8.298).
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Transmission and Reflection Matrices

For any z from the interval (z′, z′′), parameters of the eigenwave bases satisfy (8.210), which determines
the following form of the matrix Nr(z, b̃) [see (8.299)]:

Nr(z, b̃) =
(

O nr12(z, b̃)
nr21(z, b̃) O

)
, (8.305)

where

nr12 =
(

nr13 nr14

nr23 nr24

)
, nr21 =

(
nr31 nr32

nr41 nr42

)
, O =

(
0 0
0 0

)
, (8.306a)

nrjk(z, b̃) = 𝝍 j(z, b̃)TIr𝝍 k(z,−b̃) = z ⋅
[
ej(z, b̃) × hk(z,−b̃) − ek(z,−b̃) × hj(z, b̃)

]
. (8.306b)

Representing the vectors A1 and A2 as

A1 =

(
a↓

1

a↑
1

)
, A2 =

(
a↓

2

a↑
2

)

[see (8.93)] and using (8.305), we may rewrite (8.303) as follows:

a↓
1(z′)Tnr12(z′, b̃)a↑

2(z′) + a↑
1(z′)Tnr21(z′, b̃)a↓

2(z′)

= a↓
1(z′′)Tnr12(z′′, b̃)a↑

2(z′′) + a↑
1(z′′)Tnr21(z′′, b̃)a↓

2(z′′).
(8.307)

This relation must be satisfied at any values of the a-vectors characterizing the incident fields, which
implies the validity of the following equations:

t↑(z′, z′′,−b̃) = nr12(z′, b̃)−1t↓(z′, z′′, b̃)Tnr12(z′′, b̃), (8.308a)

t↓(z′, z′′,−b̃) = nr21(z′′, b̃)−1t↑(z′, z′′, b̃)Tnr21(z′, b̃), (8.308b)

r↓(z′, z′′,−b̃) = −nr12(z′, b̃)−1r↓(z′, z′′, b̃)Tnr21(z′, b̃), (8.308c)

r↑(z′, z′′,−b̃) = −nr21(z′′, b̃)−1r↑(z′, z′′, b̃)Tnr12(z′′, b̃) (8.308d)

(see Figure 8.23). Thus, at a↑
1(z′′) =

⌢

0 and a↓
2(z′) =

⌢

0, the following relations for the vectors a↓
1(z′),

a↓
1(z′′), a↑

2(z′), and a↑
2(z′′) are satisfied:

a↓
1(z′′) = t↓(z′, z′′, b̃)a↓

1(z′), a↑
2(z′) = t↑(z′, z′′,−b̃)a↑

2(z′′), (8.309)

a↓
1(z′)Tnr12(z′, b̃)a↑

2(z′) = a↓
1(z′′)Tnr12(z′′, b̃)a↑

2(z′′). (8.310)

On substituting from (8.309) into (8.310), we see that these relations cannot hold simultaneously at any
a↓

1(z′) and a↑
2(z′′) unless the transmission matrices meet (8.308a).

The operation characterized by the matrix t↑(z′, z′′,−b̃) may be considered as the reversed operation
in relation to the operation characterized by the matrix t↓(z′, z′′, b̃), the operation characterized by the
matrix r↓(z′, z′′,−b̃) may be considered as the reversed operation relatively to that characterized by the
matrix r↓(z′, z′′, b̃) (see Figure 8.23) and so on. Using the term “reversed operation” in this sense, we
may write any of relations (8.308) as follows:

t
{

OR
}
= nR

{
Xout(O

R), zout(O
R)
}−1

t {O}T nR

{
Xinp(OR), zinp(OR)

}
, (8.311)
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( , )↓t b• ( , )↑ −t b•

(a)

( , )↑t b• ( , )↓ −t b•

(b)

( , )↓r b• ( , )↓ −r b•

(c)

( , )↑r b• ( , )↑ −r b•
(d)

Figure 8.23 Transmission and reflection matrices related by equations (8.308)

where t{Ox} stands for the EW Jones matrix characterizing an operation Ox; O is a transmission or
reflection operation, OR is the reversed operation to the operation O; z = zinp(Ox) and z = zout(Ox) are
respectively the entrance and exit planes for the operation Ox; Xinp(Ox) and Xout(Ox) are respectively
input and output fields for the operation Ox;

nR{X, z} =
{

nr21(z,b̃) if X is forward propagating
−nr12(z,b̃) if X is backward propagating,

(8.312)

where b̃ is the value of b for the operation O.

General Reciprocity Relation for Elementary Transfer Channels

It is important that reciprocity relations similar to (8.311) are fulfilled not only for the operators of the
overall transmission and reflection but also for the operators of nonbranched transfer channels like those
shown in Figures 8.13–8.15. Let C be a chain of N elementary operations O1, O2, . . . , ON,

C = ONON−1 ⋅… ⋅ O3O2O1. (8.313)
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The reversed channel CR to the channel C may be defined as

CR = OR
1 OR

2 OR
3 ⋅… ⋅ OR

N−1 OR
N , (8.314)

where OR
j is the reversed operation to the operation Oj (j = 1,2, . . . , N); the operators of the operations

Oj and OR
j are assumed to satisfy (8.311). One can show that the transmission EW Jones matrices of the

channels C and CR are related by

t
{

CR
}
= nR

{
Xout(C

R), zout(C
R)
}−1

t {C}T nR

{
Xinp(CR), zinp(CR)

}
. (8.315)

Now we give a proof of (8.315) for the case N = 2. Generalization to the case of a channel being a
chain of an arbitrary number of elementary operations can trivially be done by induction. With N = 2,
we may represent the EW Jones matrices of the channels C and CR as follows:

t {C} = t
{

O2O1

}
= t
{

O2

}
t
{

O1

}
, (8.316)

t
{

CR
}
= t
{

OR
1 OR

2

}
= t
{

OR
1

}
t
{

OR
2

}
. (8.317)

From (8.311) we have

t
{

OR
1

}
= nR

{
Xout

(
OR

1

)
, zout

(
OR

1

)}−1
t{O1}TnR

{
Xinp

(
OR

1

)
, zinp

(
OR

1

)}
,

t
{

OR
2

}
= nR

{
Xout

(
OR

2

)
, zout

(
OR

2

)}−1
t{O2}TnR

{
Xinp

(
OR

2

)
, zinp

(
OR

2

)}
.

(8.318)

Substitution from (8.318) into (8.317) gives

t
{

CR
}
= nR

{
Xout

(
OR

1

)
, zout

(
OR

1

)}−1
t{O1}TnR

{
Xinp

(
OR

1

)
, zinp

(
OR

1

)}
⋅

nR

{
Xout

(
OR

2

)
, zout

(
OR

2

)}−1
t{O2}TnR

{
Xinp

(
OR

2

)
, zinp

(
OR

2

)}
.

(8.319)

Since Xinp(OR
1 ) = Xout(O

R
2 ) and zinp(OR

1 ) = zout(O
R
2 ), we may reduce (8.319) as follows:

t
{

CR
}
= nR

{
Xout

(
OR

1

)
, zout

(
OR

1

)}−1
t{O1}Tt{O2}TnR

{
Xinp

(
OR

2

)
, zinp

(
OR

2

)}
= nR

{
Xout

(
OR

1

)
, zout

(
OR

1

)}−1 (
t{O2}t{O1}

)T
nR

{
Xinp

(
OR

2

)
, zinp

(
OR

2

)}
= nR

{
Xout

(
OR

1

)
, zout

(
OR

1

)}−1
t{O2O1}TnR

{
Xinp

(
OR

2

)
, zinp

(
OR

2

)}
.

(8.320)

Taking into account that

Xout

(
OR

1

)
= Xout(C

R), zout

(
OR

1

)
= zout(C

R),

Xinp

(
OR

2

)
= Xinp(CR), zinp

(
OR

2

)
= zinp(CR)

and (8.316), we see that relation (8.320) is equivalent to (8.315).

Reciprocity Matrices and Particular Forms of the Reciprocity Relations

We will call the matrices nr12 and nr21 entering into the above equations the reciprocity matrices. In
the absence of polarization degeneracy, as well as in the presence of polarization degeneracy provided



JWST441-c08 JWST441-Yakovlev Printer: Markono December 30, 2014 7:55 Trim: 244mm × 170mm

318 Modeling and Optimization of LCD Optical Performance

that the optimal reciprocal bases [see Section 8.4.1, Eq. (8.214)] are used, the matrices nr12 and nr21 are
diagonal and, according to (8.306) and (8.214), can be represented as

nr12(z, b̃) =

(
−2z
[
e1(z, b̃) × h1(z, b̃)

]
b31(z) 0

0 −2z
[
e2(z, b̃) × h2(z, b̃)

]
b42(z)

)
, (8.321a)

nr21(z, b̃) =

(
−2z
[
e3(z, b̃) × h3(z, b̃)

]
b13(z) 0

0 −2z
[
e4(z, b̃) × h4(z, b̃)

]
b24(z)

)
. (8.321b)

It is seen from (8.321) that if the symmetrical normalization (8.167) is used,

nr12(z, b̃) =
(
−b31(z) 0

0 −b42(z)

)
, nr21(z, b̃) =

(
b13(z) 0

0 b24(z)

)
. (8.322)

If the eigenwave bases are chosen so that

e1(−b̃) = e3(b̃), e2(−b̃) = e4(b̃), e3(−b̃) = e1(b̃), e4(−b̃) = e2(b̃) (8.323)

(the argument z is omitted for brevity), according to (8.214) and (8.322)

nr12 = −U, nr21 = U. (8.324)

If the reciprocity matrices meet (8.324) in the entrance and exit planes of a channel C, the relation (8.315)
for this channel is reduced to

t
{

CR
}
= t {C}T , (8.325)

that is, the matrix t
{

CR
}

may be obtained by transposing the matrix t {C} [cf. (1.257)]. If the eigenwave
bases are such that

e1(−b̃) = e3(b̃), e2(−b̃) = −e4(b̃), e3(−b̃) = e1(b̃), e4(−b̃) = −e2(b̃), (8.326)

according to (8.214) and (8.322)

nr21 = −nr12 = I1 ≡

(
1 0
0 −1

)
. (8.327)

If the matrices nr12 and nr21 in the entrance and exit planes of a channel C satisfy (8.327), the relation
(8.315) for this channel takes the form

t{CR} = I1t{C}TI1, (8.328)

or, in components, (
t11{CR} t12{CR}

t21{CR} t22{CR}

)
=
(

t11{C} −t21{C}
−t12{C} t22{C}

)
, (8.329)

where tkj{C} and tkj{CR} are components of the matrices t{C} and t{CR}, respectively [cf. (1.256)].
The relation connecting t{C} and t{CR} may have a simple form, (8.325) or (8.328), not only with
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normalization (8.167), but also with the electrical normalization (8.283) provided that the entrance and
exit media of the channel C are isotropic and identical (see Section 9.2).

Berreman Transfer Matrices for a Nonabsorbing Reciprocal Region

Suppose that the medium within the region (z′, z′′) is not only reciprocal but also nonabsorbing. In
this case, P(z′′, z′, b) satisfies both (8.297) and (8.292). The conditions (8.297) and (8.292) together
determine the following property of P(z′′, z′, b)

P(z′′, z′,−b̃) = U0P(z′′, z′, b̃)∗U0, (8.330)

where

U0 =
⎛⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎠ .

The relations presented in this section are useful in analysis of situations like those discussed in Sections
1.4.2 and 1.4.3, allowing consideration of oblique incidence and much more complicated optical systems.
In many cases, with the help of these relations one can significantly reduce the computational cost in
calculating the viewing angle characteristics of LCDs.

Relevant sources: References 43–47 and 31.

8.7 Calculation of EW 4 × 4 Transfer Matrices for LC Layers
We should make some remarks concerning the calculation of EW 4 × 4 transfer matrices for LC layers
with the use of the staircase approximation.

As an example, we consider a 1D-inhomogeneous layer of a locally uniaxial LC with LC director field
n(z). Let z = z1 and z = z2 (z1 < z2) be the planes of the interfaces of this LC layer with the adjacent
layers. As usual, the principal refractive indices of the liquid crystal are assumed to be spatially invariant.

Another Variant of the Staircase Model

In Section 8.3.3, we considered a staircase model (approximating multilayer) consisting of homogeneous
slices of equal thickness. When dealing with LC layers, in many cases, it is more convenient to use
staircase models where the two outermost slices are half as thick as the other slices. The optical parameters
of these outermost slices are taken to be equal to the corresponding parameters of the LC layer just at
its boundaries. In the example under consideration, the internal interfaces of such an approximating
multilayer will coincide with the planes

z = zIj = z1 + h
(

j − 1
2

)
j = 1,… N − 1,

h = d∕(N − 1),
(8.331a)
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where N is the number of the slices and d is the thickness of the LC layer. Denote the thickness of the jth
slice and a unit vector directed along the optic axis of this slice by dj and cj, respectively. In our case,

dj =

{
h∕2 j = 1, N

h j = 2,… , N − 1.
(8.331b)

The optic axes of the slices are taken as

cj =
⎧⎪⎨⎪⎩

n(z1 + 0) j = 1

n
(
z1 + (j − 1) h

)
j = 2,… , N − 1

n(z2 − 0) j = N.

(8.331b)

In contrast to the staircase model described in Section 8.3.3, for this model (i) all parameters of the
outermost slices except their thicknesses are independent of N, and hence the eigenwave bases for these
slices can be chosen independent of N, (ii) at any N, the EW transfer matrices of the fragments adjacent
to the bulk of the LC layer (the fragments including the interfaces z = z1 and z = z2) are exact. It is these
points that make this variant of staircase model preferable. We employed this variant of staircase model
in all numerical examples given in this book where the EW 4 × 4 transfer matrix method is applied to
LC layers.

EW Transfer Matrices for Different Variants of OTR Units Including the LC Layer

Recall that the 4 × 4 transfer matrix methods are used for calculating characteristics of the overall
transmission and overall reflection of layered systems. In the modeling of LCDs, they are employed to
calculate transmission and reflection operators for fragments of LCD panels that are regarded as OTR
units (see Section 7.1). In different kinds of calculations, the OTR unit including the LC layer is chosen
differently (see, e.g., Figures 8.13b, 8.13c, 8.13e, and 8.13f and examples in Section 10.2). It may be
the bulk of the LC layer only, or the bulk of the LC layer + the interfaces of this layer with the adjacent
layers or one of them, or the bulk of the LC layer + the adjacent thin-layer systems or one of them, and
so on. Let us give expressions for EW transfer matrices for three of the listed variants of the OTR unit,
taken as examples, adopting the above staircase model for the LC layer.

Bulk of LC layer. The EW transfer matrix for the bulk of the LC layer, T(z2 – 0, z1 + 0), may be
expressed as follows:

T(z2 − 0, z1 + 0) = CN𝚿−1
N P(N−1,2)𝚿1C1, (8.332)

where Cj is the transfer matrix for the bulk of the jth slice of the staircase model of the LC layer, 𝚿j is
the 𝚿-matrix for the jth slice, and P(k,j) is the Berreman matrix of the pile consisting of the slices with
numbers from j to k. The diagonal matrix Cj can be represented as

Cj = T̃
(
𝜎

(j)
l , dj

)
(8.333)

[see (8.85)], where 𝜎(j)
l (l = 1, 2, 3, 4) are values of 𝜎l for the jth slice. The matrix P(k,j) can be expressed

by the recurrent formula

P(k,j) = PkP(k−1,j), (8.334)

where Pk is the Berreman matrix of the kth slice; P(j, j) = Pj.
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Another representation of the matrix T(z2 – 0, z1 + 0) is

T(z2 − 0, z1 + 0) = T(N,2)C1, (8.335)

where T(k,j) is the EW transfer matrix of the domain consisting of the fragments {interface with the
previous slice + bulk of the slice} for the slices with numbers from j to k. It is convenient to express the
matrix T(k ,j) by the following recurrent formulas

T(k,j) = CkB(k,j), (8.336a)

B(k,j) = T|k,k−1T(k−1,j), (8.336b)

T|k,k−1 = 𝚿−1
k 𝚿k−1, (8.336c)

B(j,j) = T|j,j−1. (8.336d)

Here the matrix T|k,k−1 is the EW transfer matrix of the interface between the kth and k–1th layers.
From the matrix T(z2 − 0, z1 + 0) determined to sufficient accuracy, one can find accurate values of

transmission and reflection EW Jones matrices of the LC layer bulk. This was used, for example, in
numerical experiments whose results are presented in Section 11.2

LC layer between thin-layer systems. Suppose that the LC layer is situated between two thin-layer
systems, a system A with external interfaces at z = zS1 and z = z1 and a system B with external interfaces
at z = z2 and z = zS2, characterized by the Berreman matrices PA and PB, respectively. Let the whole
system be surrounded by media S1 (z< zS1) and S2 (z> zS2) (usually S1 and S2 represent glass substrates)
characterized by their 𝚿-matrices 𝚿S1 and 𝚿S2, respectively. Then the EW transfer matrix characterizing
the whole system, T(zS2 + 0, zS1 – 0), can be expressed as follows:

T(zS2 + 0, zS1 − 0) = 𝚿−1
S2 PBP(N,1)PA𝚿S1 (8.337)

and

T(zS2 + 0, zS1 − 0) = 𝚿−1
S2 PB𝚿NT(N,2)C1𝚿−1

1 PA𝚿S1. (8.338)

Thin-layer system + bulk of LC layer. For the same layered system as in the previous example, the
EW transfer matrix of the fragment consisting of system A and the bulk of the LC layer can be expressed
as

T(z2 − 0, zS1 − 0) = CN𝚿−1
N P(N−1,1)PA𝚿S1 (8.339)

and

T(z2 − 0, zS1 − 0) = T(N,2)C1𝚿−1
1 PA𝚿S1. (8.340)

The last two variants of the OTR unit including the LC layer are used in examples of Section 10.2.

Efficient Techniques of Involving Slices of the Approximating Multilayer

It is seen from the above formulas that in numerical calculations of the transfer matrices, involving the
slices can be performed using the recursion (8.334) or the recursion (8.336). Numerical tests show that
optimized (in speed) computational techniques employing the recursion (8.334) with calculation of the
matrices Pj for slices by using the polynomial representations (see Section 8.3.2) and that employing the
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recursion (8.336) with the use of the fast method of inverting 𝚿-matrices described in Section 8.4.1 and
formulas for the parameters of the basis eigenwaves presented in Section 9.3 are alike in computational
cost. Our tests have shown that in the most interesting case of a nonabsorbing LC, the latter technique is a
little more efficient than the former ones. We note here some calculation details increasing the efficiency
of the technique based on the recursion (8.336).

In the case of a nonabsorbing LC, the recursion (8.336) allows performing the calculations without
matrix multiplications of general complex matrices, since the matrices 𝚿j are real and the matrices Cj are
diagonal: stage (8.336c) includes multiplying real matrices; stage (8.336b) is a multiplication of a real
matrix by a complex matrix; in stage (8.336a), a general complex matrix is pre-multiplied by a diagonal
complex matrix. For any diagonal n × n matrix C = [cjk] and any n × n matrix A = [ajk], the elements of
the matrix B = [bjk] = CA can be expressed as follows:

bjk = cjjajk j, k = 1,… , n. (8.341)

This formula is used in stage (8.336a) of the optimized technique. In our tests, when calculations by
this technique were performed without normalization of eigenwave bases (except for the outermost
slices), the computation times were ∼15% less than those for the techniques using (8.334). When basis
normalization was used for all slices (for various reasons, we prefer this variant in practical calculations),
the computation times for this technique were only a few percent smaller than for the techniques
using (8.334). Possibly, this difference can be compensated by further optimization of computational
procedures for the algorithm (8.334). In view of this, we regard the computational efficiencies of the
compared techniques as nearly the same.

8.8 Transformation of the Elements of EW Jones Vectors and EW
Jones Matrices Under Changes of Eigenwave Bases

As in the classical Jones matrix method, when dealing with EW Jones vectors and matrices, it is useful
to know how the elements of EW Jones vectors change with altering the eigenwave basis and how to
calculate from a given EW Jones matrix corresponding to one pair of input and output bases the EW
Jones matrix representing the same operator but corresponding to another pair of bases. In this section,
we give a set of conversion relations for EW Jones vectors and EW Jones matrices.

8.8.1 Coordinates of the EW Jones Vector of a Wave Field in Different
Eigenwave Bases

Let e(1)
a and e(1)

b be electric vibration vectors of a pair of basis waves of an eigenwave basis (basis 1)

used to represent a forward or backward propagating wave field, and let e(2)
a and e(2)

b be electric vibration
vectors of basis waves of another eigenwave basis (basis 2) that can be used to represent the same wave
field. Let columns

a(1) =

(
A(1)

a

A(1)
b

)
and a(2) =

(
A(2)

a

A(2)
b

)

represent the EW Jones vector of the field in basis 1 and basis 2, respectively. The problem is to express
a(2) in terms of a(1).

Since the columns a(1) and a(2) describe the same field, according to (8.105) or (8.106) we may write

e(1)
a A(1)

a + e(1)
b A(1)

b = e(2)
a A(2)

a + e(2)
b A(2)

b . (8.342)
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Multiplying (8.342) scalarly by e(2)∗
a and e(2)∗

b , we have

(
e(2)∗

a ⋅ e(1)
a

)
A(1)

a +
(
e(2)∗

a ⋅ e(1)
b

)
A(1)

b =
(
e(2)∗

a ⋅ e(2)
a

)
A(2)

a +
(
e(2)∗

a ⋅ e(2)
b

)
A(2)

b ,(
e(2)∗

b ⋅ e(1)
a

)
A(1)

a +
(
e(2)∗

b ⋅ e(1)
b

)
A(1)

b =
(
e(2)∗

b ⋅ e(2)
a

)
A(2)

a +
(
e(2)∗

b ⋅ e(2)
b

)
A(2)

b .

(8.343)

Casting (8.343) in matrix form, we get

(
e(2)∗

a ⋅ e(1)
a e(2)∗

a ⋅ e(1)
b

e(2)∗
b ⋅ e(1)

a e(2)∗
b ⋅ e(1)

b

)(
A(1)

a

A(1)
b

)
=

(
e(2)∗

a ⋅ e(2)
a e(2)∗

a ⋅ e(2)
b

e(2)∗
b ⋅ e(2)

a e(2)∗
b ⋅ e(2)

b

)(
A(2)

a

A(2)
b

)
, (8.344)

or, more concisely,

F(2∗1)a
(1) = F(2∗2)a

(2), (8.345)

where

F(j∗ l) =

(
e(j)∗

a ⋅ e(l)
a e(j)∗

a ⋅ e(l)
b

e(j)∗
b ⋅ e(l)

a e(j)∗
b ⋅ e(l)

b

)
. (8.346)

From (8.345) we find the desired expression:

a(2) = G1→2a(1), (8.347)

where

G1→2 = F−1
(2∗2)F(2∗1). (8.348)

The transformation matrix G1→2 may also be expressed as follows:

G1→2 = F−1
(1∗2)F(1∗1). (8.349)

We would have arrived at (8.349), had we multiplied (8.342) by e(1)∗
a and e(1)∗

b rather than by e(2)∗
a and

e(2)∗
b . Equation (8.347) may be regarded as the general law of coordinate transformation for EW Jones

vectors.
Of special interest are the following two cases of basis transformation.

Term-by-Term Transformation

Let basis 2 be such that

e(2)
a = c(2∕1)

a e(1)
a , e(2)

b = c(2∕1)
b e(1)

b , (8.350)
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where c(2∕1)
a and c(2∕1)

b are scalar (possibly complex) numbers; that is, the vectors e(1)
k and e(2)

k (k = a, b)
describe the same vibration mode but may have different lengths and phases. It is easy to find that in this
case, the transformation matrix G1→2 can be written as follows:

G1→2 =
⎛⎜⎜⎜⎝

1

c(2∕1)
a

0

0
1

c(2∕1)
b

⎞⎟⎟⎟⎠ . (8.351)

The coefficients c(j∕l)
k may be defined as

c(j∕l)
k =

e(l)∗
k ⋅ e(j)

k

e(l)∗
k ⋅ e(l)

k

k = a, b. (8.352)

Using this definition, we may also represent the matrix G1→2 as follows:

G1→2 =
(

c(1∕2)
a 0
0 c(1∕2)

b

)
. (8.353)

The matrix of the inverse transformation, a(2) → a(1), defined by the relation

a(1) = G2→1a(2), (8.354)

may be expressed as

G2→1 = G−1
1→2 =
⎛⎜⎜⎜⎝

1

c(1∕2)
a

0

0
1

c(1∕2)
b

⎞⎟⎟⎟⎠ =
(

c(2∕1)
a 0
0 c(2∕1)

b

)
. (8.355)

We may use (8.351), (8.353), and (8.355), for example, when changing the normalization of an EW
basis or when changing the direction of a basis e-vector to opposite.

A typical situation is that in which one of the bases is normalized using the electrical normalization
(8.283), and the other using the flux normalization (8.164), the vectors e(1)

k and e(2)
k being codirectional

(k = a, b). In this situation, if basis 1 has the electrical normalization, we may write

e(1)
a = e

a
, e(1)

b = e
b
, (8.356)

where e
a

and e
b

are unit vectors (e∗
k
e

k
= 1), for basis 1 and

e(2)
a = 1√

2 |||Re
(
z(e∗

a
× h a)
)||| e a

, e(2)
b = 1√

2 |||Re
(
z(e∗b × h b)

)||| eb
, (8.357)
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where hk = mk × e
k

with mk being the refraction vector of the kth basis wave (k = a, b), for basis 2,
which has the flux normalization. From (8.356) and (8.357) we see that in this situation

c(1∕2)
k = 1

c(2∕1)
k

=
√

2 |||Re
(
z(e∗k × hk)

)||| =
√

2 |||Re
(
z
(
e∗k ×
(
mk × e

k

)))|||
=
√

2 |||Re
(
z
(
mk

(
e∗k ⋅ e

k

)
− e

k

(
e∗k ⋅ mk

)))||| =√2 |||Re
(
𝜎k −
(
z ⋅ e

k

) (
mk ⋅ e∗k

))|||,
(8.358)

k = a, b. Here are some particularly simple cases where(
z ⋅ e

k

) (
mk ⋅ e∗

k

)
= 0. (8.359)

(i) Nonabsorbing isotropic medium, normal incidence. In this case, |𝜎k| = n, where n is the refractive
index of the medium. Hence we may write

c(1∕2)
k = 1

c(2∕1)
k

=
√

2n k = a, b. (8.360)

(ii) Nonabsorbing uniaxial medium whose optic axis is perpendicular to z, normal incidence. In this
case (see Section 9.3), if the wave a is extraordinary, |𝜎a| = n|| and |𝜎b| = n⟂, where n|| and n⟂ are
the principal refractive indices. Therefore,

c(1∕2)
a = 1

c(2∕1)
a

=
√

2n||, c(1∕2)
b = 1

c(2∕1)
b

=
√

2n
⊥
. (8.361)

(iii) Nonabsorbing uniaxial medium whose optic axis is parallel to z, normal incidence. In this case,

c(1∕2)
k = 1

c(2∕1)
k

=
√

2n
⊥

k = a, b. (8.362)

Unitary Transformations With Changing Basis Polarizations

As in the classical Jones matrix method, often useful are basis transformations with a change of basis
polarizations. The eigenwave representation permits such basis transformations only in the case of polar-
ization degeneracy, with some additional conditions. For example, for an absorbing isotropic medium,
such transformations are allowed only at normal incidence. In the case of a nonabsorbing isotropic
medium out of TIR mode, such transformations are possible at both normal and oblique incidence. Here
we restrict ourselves to considering the most typical situation when the vectors e(1)

a , e(1)
b , e(2)

a , and e(2)
b

have identical length (L), that is,

e(1)∗
a ⋅ e(1)

a = e(1)∗
b ⋅ e(1)

b = e(2)∗
a ⋅ e(2)

a = e(2)∗
b ⋅ e(2)

b = L2, (8.363)

and are orthogonal to the wave normal la (lb = la), that is,

la ⋅ e(1)
a = la ⋅ e(1)

b = la ⋅ e(2)
a = la ⋅ e(2)

b = 0, (8.364)

and, moreover, the vectors e(j)
a and e(j)

b (j = 1, 2) are mutually orthogonal in the sense that

e(j)∗
a ⋅ e(j)

b = 0. (8.365)
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According to (8.363) and (8.365), the matrices F(l*l) (l = 1, 2) entering into (8.348) and (8.349) may be
expressed as

F(l∗l) =
(

L2 0
0 L2

)
= L2

(
1 0
0 1

)
. (8.366)

In view of this, writing the matrices F(j*l) with l ≠ j in (8.348) and (8.349) as

F(j∗ l) = L2

⎛⎜⎜⎜⎜⎝
e(j)∗

a ⋅ e(l)
a

L2

e(j)∗
a ⋅ e(l)

b

L2

e(j)∗
b ⋅ e(l)

a

L2

e(j)∗
b ⋅ e(l)

b

L2

⎞⎟⎟⎟⎟⎠
, (8.367)

we obtain

G1→2 =

⎛⎜⎜⎜⎜⎝
e(2)∗

a ⋅ e(1)
a

L2

e(2)∗
a ⋅ e(1)

b

L2

e(2)∗
b ⋅ e(1)

a

L2

e(2)∗
b ⋅ e(1)

b

L2

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
e(1)∗

a ⋅ e(2)
a

L2

e(1)∗
a ⋅ e(2)

b

L2

e(1)∗
b ⋅ e(2)

a

L2

e(1)∗
b ⋅ e(2)

b

L2

⎞⎟⎟⎟⎟⎠

−1

. (8.368)

In the case of the electrical normalization (L2 = 1),

G1→2 =

(
e(2)∗

a ⋅ e(1)
a e(2)∗

a ⋅ e(1)
b

e(2)∗
b ⋅ e(1)

a e(2)∗
b ⋅ e(1)

b

)
=

(
e(1)∗

a ⋅ e(2)
a e(1)∗

a ⋅ e(2)
b

e(1)∗
b ⋅ e(2)

a e(1)∗
b ⋅ e(2)

b

)−1

(8.369)

[cf. (1.67)].

8.8.2 EW Jones Operators in Different Eigenwave Bases

Let t1−1′ be a given EW Jones matrix relating the input EW Jones vector represented in basis 1, a(1)
inp, and

the output EW Jones vector represented in basis 1′, a(1′)
out :

a(1′)
out = t1−1′ a(1)

inp. (8.370)

The problem is to find the matrix t2–2′ representing the same operator as t1–1′ but using basis 2 for the
input vector and basis 2′ for the output vector, that is, linking the vectors a(2′)

out and a(2)
inp as

a(2′)
out = t2−2′ a(2)

inp. (8.371)

By using the transformation matrices G2→1 = (G1→2)−1 and G1′→2′ = (G2′→1′ )
−1, we can express the

vectors a(1)
inp and a(2′)

out in terms of a(2)
inp and a(1′)

out as follows:

a(1)
inp = G2→1 a(2)

inp, (8.372)

a(2′)
out = G1′→2′ a(1′)

out . (8.373)
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Combining (8.370), (8.372), and (8.373) we obtain

a(2′)
out = G1′→2′ t1−1′ G2→1 a(2)

inp. (8.374)

Consequently,

t2−2′ = G1′→2′ t1−1′ G2→1. (8.375)

Relation (8.375) represents the law of transformation of EW Jones matrices under changes of the
eigenwave bases.

Cases of Identity of EW Jones Matrices Corresponding to Different Variants
of Normalization of the Eigenwave Bases

In many cases of practical interest, EW Jones matrices, of an operation, corresponding to different
variants of normalization of the input and output EW bases are identical. Let us consider a layered
system S, with the external interfaces coincident with the planes z = z1 and z = z2, confined between a
homogeneous isotropic nonabsorbing medium A (z < z1) and a homogeneous medium B (z > z2). Let
a homogeneous plane monochromatic wave Xinc fall on S from medium A. Let the wave field Xref =
RXinc be the total or a partial reflected field propagating in A and let Xtr = TXinc be the total or a partial
transmitted field propagating in B. Define operators r and t of the operations R and T by the relations

aref = r ainc, atr = t ainc,

where ainc is the EW Jones vector of the wave Xinc at z = z1 – 0, aref is the EW Jones vector of the wave
Xref at z = z1 – 0, and atr is the EW Jones vector of the wave Xtr at z = z2 + 0. With the standard choice
of the EW basis (Section 9.2), columns representing the vector ainc under E-, S-, and F-normalizations,
respectively ainc(E), ainc(S), and ainc(F), are related as follows:

ainc(S) = ainc(F) = cAainc(E), (8.376)

where cA =
√

2𝜎A with 𝜎A being the value of 𝜎1 in the medium A. Analogously, for aref(E), aref(S), and
aref(F),

aref(S) = aref(F) = cAaref(E). (8.377)

Relations (8.376) and (8.377) can easily be derived by using (8.350)–(8.359) or (9.23). Let the EW Jones
matrices r(E), r(S), and r(F) represent the operator r under E-, S-, and F-normalizations of the EW basis in
A, that is,

aref(E) = r(E)ainc(E), aref(S) = r(S)ainc(S), aref(F) = r(F)ainc(F). (8.378)

As can be seen from (8.376)–(8.378),

r(E) = r(S) = r(F). (8.379)

E-normalization of the input and output bases imparts to the matrix r(E) the sense of a canonical Jones
matrix, a matrix relating Jones vectors of the kind (1.21) or (1.63). It follows from (8.379) that in
the case under consideration, we may directly obtain the canonical Jones matrix of r not only with
E-normalization but also with S- and F-normalizations.
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In a similar way, one can find that in situations when medium B is isotropic, nonabsorbing, and out
of TIR mode, the matrices t(E), t(S), and t(F) representing the operator t under respectively E-, S-, and
F-normalizations of the input and output EW bases will satisfy the relations

t(E) = t(S), t(E) = t(F) (8.380)

if the refractive indices of media A and B are equal.
As an example, we refer to Figures 8.13 and 8.14. Relation (8.379) is valid for the transfer channels

shown in Figure 8.14, and relations (8.380) hold for the transfer channels shown in Figure 8.13.
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9
Choice of Eigenwave Bases for
Isotropic, Uniaxial, and
Biaxial Media

As we saw in Chapter 8 and will see in the next chapters, the eigenwave representation underlies several
highly flexible methods for accurate modeling of the optical characteristics of multilayer systems, such
as LCDs. All these methods require the specification of eigenwave bases (EWBs). In this chapter, we
discuss how to choose eigenwave bases for different types of optical media that we deal with in modeling
LCDs. Moreover, in this chapter, we describe the routines of the modeling library LMOPTICS (Fortran
90; see the companion website) that are intended for generating EWBs. In Section 9.1, we give some
common information concerning the specification of EWBs. In Sections 9.2, 9.3, and 9.4, the problem
of EWB specification is considered for isotropic, uniaxial, and biaxial media, respectively.

9.1 General Aspects of EWB Specification. EWB-generating routines

Coordinate Systems

Coordinate systems used in this chapter and in the EWB-generating routines of LMOPTICS are shown
in Figure 9.1. The (X, Y, Z) system is a reference system for specifying the orientation of the principal
axes of anisotropic layers and the plane of incidence. The coordinate system (x, y, z), as before, is
attached to the plane of incidence. This coordinate system is used in most computational formulas for
determining the EWB parameters. Writing a vector in coordinates, where necessary, we will indicate the
corresponding coordinate system by subscripts: (⋅)xyz or (⋅)XYZ. For example, for the wave normal linc of
the incident wave in Figure 9.1 we can write

linc =
⎛⎜⎜⎝
sin 𝛽inc cos 𝛼inc

sin 𝛽inc sin 𝛼inc

cos 𝛽inc

⎞⎟⎟⎠XYZ

=
⎛⎜⎜⎝
sin 𝛽inc

0
cos 𝛽inc

⎞⎟⎟⎠xyz

,

where 𝛽 inc and 𝛼inc are the polar and azimuthal angles of incidence.
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Z,z

Z,z

X

X

inc

inc

inc

inc

inc

x

x

Y

Y

y

y

(a)

b

minc

(b)

Figure 9.1 Geometry of the problem. Here and in Figure 9.2, sketches are given in two variants: one
variant is more visual (a); the other is more geometrically correct (b)

Propagation Constants

Under the conditions of the basic model problem (Section 8.1.3, Fig. 8.4), the refraction vector of
any basis eigenwave for any homogeneous layer of the layered system under consideration must have
the form

m = b + z𝜎, (9.1)

where z is the unit vector directed along the axes Z and z, and b is the tangential component of the
refraction vector of the incident wave minc = ninclinc with ninc being the refractive index of the medium
from which the light falls. In coordinates,

b =
⎛⎜⎜⎝
𝜁

0
0

⎞⎟⎟⎠xyz

=
⎛⎜⎜⎝
𝜁 cos 𝛼inc

𝜁 sin 𝛼inc

0

⎞⎟⎟⎠XYZ

, (9.2)

where

𝜁 = ninc sin 𝛽inc. (9.3)

The spatial frequency parameter 𝜁 and the angle 𝛼inc describing the orientation of the plane of
incidence are the only parameters of the incident field that are directly involved in calculating EWBs.
The frequency of the incident field, commonly specified in programs in terms of the free-space wavelength
𝜆 = c∕𝜈 = 2𝜋c∕𝜔 , at this stage of calculation is only used in specifying the material optical constants of
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the layers (real refractive indices, absorption coefficients). Because the parameters 𝜁 and 𝛼inc are constants
in the model problem under consideration and are used in many routines, we prefer to represent them
in programs by global variables. In LMOPTICS, these are variables MT (𝜁 ) and FIR (𝛼inc in radians),
which are declared in an auxiliary module MTWFIR of LMOPTICS. The EWB-generating routines are
contained in the main module OPTSM_1 of LMOPTICS.

Parameters to be Determined

In standard calculations, the specification of the jth basis wave for a homogeneous layer consists in
the specification of the normal component of the refraction vector, 𝜎j, and the four-component column
vector

𝝍 j =

⎛⎜⎜⎜⎜⎝
e jx

h jy

e jy

−h jx

⎞⎟⎟⎟⎟⎠xyz

composed of Cartesian components of the electric vibration vector ej (e jx, ejy, ejz) and magnetic vibration
vector hj (h jx, hjy, hjz) of this wave. Different algorithms of evaluating the optical characteristics of layered
media employ the parameters of whether the four basis waves or—for example, when the transmission
characteristics of a layered system are calculated ignoring the multiple reflections—only two basis waves
(usually, the forward propagating ones). In the first case, the calculation is performed using the matrices

𝚿 ≡ (𝝍1 𝝍2 𝝍3 𝝍4)

and

𝚿−1
≡

⎛⎜⎜⎜⎜⎝
𝝍1

𝝍2

𝝍3

𝝍4

⎞⎟⎟⎟⎟⎠
[see (8.162)]. An array of 𝜎j and the matrices 𝚿 and 𝚿−1 constitute a standard set of output parameters of
most EWB-generating routines of LMOPTICS; we will call the routines with this set of output parameters
standard-output routines. In the second case, if forward propagation is considered, only columns 𝝍1 and
𝝍2 and rows𝝍1 and𝝍2 are involved in the calculations (see Section 8.4.2). Due to orthogonality (8.161),
calculating the row 𝝍 j of the matrix 𝚿−1 requires knowledge of only the column 𝝍 j. Therefore, one can
deal with the parameters of only the first two basis waves. The EWB-generating routines can operate in
a mode when the parameters of only forward propagating basis waves are computed and only the first
two columns of 𝚿 and the first two rows of 𝚿−1 are specified. These routines have an input parameter
NWAVE (NWAVE may be set to 2 or 4) indicating the number of basis waves the parameters of which
will be computed.

Some routines of LMOPTICS return arrays containing all components of the vectors ej and hj. We will
call such routines full-output. We used these routines when debugging the standard-output routines and
preparing demonstration examples for this chapter. These routines are included in LMOPTICS because
they give the most complete and clear information on the eigenwaves. Furthermore, these routines
may be useful in modeling optical elements having nonparallel interfaces—in such calculations all the
components of ej and hj may be required.
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Orthogonality of the EWB

As we saw in Chapter 8, the orthogonality of the EWB expressed by the relations

𝝍
T
j I0𝝍 k ≡ z(ej × hk + ek × hj) = 0 j ≠ k (9.4)

allows one to greatly simplify calculations (see Section 8.4). In the absence of polarization degeneracy,
for the optical media considered in this book, orthogonality condition (9.4) is satisfied for any particular
choice of the basis waves. When polarization degeneracy occurs, the situation is different, but the
EWB can be chosen such that condition (9.4) is satisfied. Therefore, it is reasonable to consider the
orthogonality in the sense of (9.4) in the case of polarization degeneracy as a requirement to EWBs. In
the next three sections, we show how to construct EWBs satisfying this requirement in different cases.
The routines of LMOPTICS in the case of polarization degeneracy always give EWBs satisfying (9.4).

Normalization of the EWB

The normalization of EWBs is an optional (in many cases) but a very useful operation. The normalization
(i) defines exactly the physical meaning of the scalar complex amplitudes of the basis waves and matrix
operators describing the light propagation, (ii) simplifies calculations and analysis in most cases (Sections
8.4, 8.5, 11.2; Chapter 12), (iii) protects against computational errors caused by incommensurability of
the leading (largest in magnitude) elements in the columns of the matrix𝚿, and so on. In our programs, we
use the following three types of normalization, each of which provides advantages in certain situations:

1. Electrical (E-) normalization:

e∗j ej = 1 j = 1,2,3,4. (9.5)

When applied to homogeneous basis waves in an isotropic medium, this normalization defines the
EW Jones vectors as canonical Jones vectors (Jones vectors of the kind (1.21) or (1.63)) [1–4].
This makes the normalization (9.5) appropriate when the transmission and reflection matrices to be
calculated are canonical Jones matrices. For instance, if in the example in Figure 8.12 both layer A

and layer B are nonabsorbing, isotropic, and out of TIR mode and the normalization (9.5) is applied
to these layers, any of the matrices r↓, t↓, r↑, and t↑ of fragment F is a canonical Jones matrix. A
disadvantage of this normalization is that the corresponding metric matrices, which are used in the
energy transfer analysis (see Section 8.5), are dependent on the optical constants of the medium.

2. Flux (F-) normalization:

𝝍
†
j I0𝝍 j ≡ 2Re(z(e∗j × hj)) =

{
1 j = 1,2
−1 j = 3,4.

(9.6)

With this normalization, the mentioned metric matrices have their simplest form and are independent
of the optical constants of the medium, which greatly simplifies the energy transfer analysis [5]
and makes it very similar mathematically to that performed in the framework of the classical Jones
calculus. F-normalization should not be used in TIR mode, because in this case we, as a rule, deal
with the situation when

𝝍
†
j I0𝝍 j ≡ 2Re(z(e∗j × hj)) = 0,

that is, when an eigenwave, taken alone, gives a zero normal flux [see (8.242)].
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3. Symmetrical (S-) normalization:

𝝍
T
j I0𝝍 j ≡ 2z(ej × hj) =

{
1 j = 1,2

−1 j = 3,4.
(9.7)

This normalization simplifies many key formulas (Sections 8.4, 8.6.2, 11.2) [6, 7]. In contrast to the
flux normalization, S-normalization is applicable in the case of TIR mode. Out of TIR mode, for any
nonabsorbing medium of interest to us here (see Section 8.1.1), one can choose the vectors ej real.
With this choice, the vectors hj are also real, and hence basis waves satisfying (9.7) also satisfy (9.6),
so that normalization (9.7) gives the same benefits as (9.6). In some practically important situations,
S-normalization, being applied to the entrance and exit media, ensures a direct evaluation of the
canonical Jones matrices (see Section 8.8.2).

Assume that we know the normal components of the refraction vectors, 𝜎j, and nonnormalized or
arbitrarily normalized electric vibration vectors ej (e jx, ejy, ejz) for all four basis waves (j = 1,2,3,4). Here
is an example of a general algorithm for calculating the matrices 𝚿 and 𝚿−1 from 𝜎j and ej that allows
the choice of any of the three normalization conditions:

1. Calculating the electric vibration vectors e j (e jx, ejy, ejz) normalized by the condition e j
∗e j = 1. These

vectors are calculated from the vectors ej as follows:

e
j
= ej∕

√
e∗j ej.

2. Calculating components of the magnetic vibration vectors hj (h jx, hjy, hjz) corresponding to e j:

h j = mj × e
j
.

In the usual calculations, the z-components of the magnetic vectors are not used.
3. Determining the matrices 𝚿 and 𝚿−1. Calculations in this stage depend on which normalization is

chosen for the EWB.
A. Electrical normalization. Since the vectors e j satisfy (9.5), we set ej = e j and hj = hj and assign

to elements of the matrix 𝚿 (𝜓 jk) the following values:

𝜓1j = e
jx

, 𝜓2j = h jy, 𝜓3j = e
jy

, 𝜓 4j = −h jx j = 1,2,3,4.

Calculating 𝚿−1 is performed by the following general formula, which is valid owing to the
orthogonality (9.4):

𝚿−1 =
⎛⎜⎜⎜⎝
c1𝜓21 c1𝜓11 c1𝜓41 c1𝜓31

c2𝜓22 c2𝜓12 c2𝜓42 c2𝜓32

c3𝜓23 c3𝜓13 c3𝜓43 c3𝜓33

c4𝜓24 c4𝜓14 c4𝜓44 c4𝜓34

⎞⎟⎟⎟⎠ , (9.8)

where

cj =
1

2(𝜓1j𝜓2j + 𝜓3j𝜓 4j)
j = 1,2,3,4.
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B. Flux normalization. In this case, the elements of 𝚿 are calculated as follows:

𝜓ij = 𝜓
ij
∕Nj i, j = 1,2,3,4, (9.9)

Nj =
√

2|Re(𝜓∗
2j
𝜓

1j
+ 𝜓∗

4j
𝜓

3j
)| j = 1,2,3,4, (9.10)

where

𝜓
1j
= e

jx
, 𝜓

2j
= h jy, 𝜓

3j
= e

jy
, 𝜓

4j
= −h jx j = 1,2,3,4. (9.11)

The matrix 𝚿−1 is computed using the general formula (9.8).
C. Symmetrical normalization. In this case, the elements of the matrix 𝚿 are calculated by formula

(9.9) with

Nj =
⎧⎪⎨⎪⎩

√
2(𝜓

2j
𝜓

1j
+ 𝜓

4j
𝜓

3j
) j = 1,2√

−2(𝜓
2j
𝜓

1j
+ 𝜓

4j
𝜓

3j
) j = 3,4,

(9.12)

where, as in the previous case, 𝜓
ij

are given by (9.11). The matrix 𝚿−1 in this case is composed

of the elements of the matrix 𝚿:

𝚿−1 =
⎛⎜⎜⎜⎝
𝜓21 𝜓11 𝜓41 𝜓31

𝜓22 𝜓12 𝜓42 𝜓32

−𝜓23 −𝜓13 −𝜓43 −𝜓33

−𝜓24 −𝜓14 −𝜓44 −𝜓34

⎞⎟⎟⎟⎠ (9.13)

[see (8.168)].
If the electrical normalization is not required (as an option), step 1 is unnecessary, and 𝜓

ij
in

(9.9), (9.10), and (9.12) can be taken as

𝜓
1j
= e jx, 𝜓

2j
= h jy, 𝜓

3j
= e jy, 𝜓

4j
= −h jx j = 1,2,3,4, (9.14)

where components of the nonnormalized (or arbitrarily normalized) electric vibration vectors ej

and vectors hj (h jx, hjy, hjz) defined as

hj = mj × ej (9.15)

are used. We will call the vectors ej and hj as well as the vectors

dj = εej (9.16)

“raw” vibration vectors. The determination of the normal components of the refraction vectors,
𝜎j, and the “raw” electric vibration vectors ej is the main subject matter of the next three sections.
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If the electrical normalization must be provided for but the vectors e j are not required as output
parameters, step 1 is also unnecessary, because in this case the elements of the matrix 𝚿 can be
calculated by formula (9.9) with 𝜓

ij
given by (9.14) and Nj calculated as

Nj =
√

e∗j ej.

In standard-output EWB-generating routines of LMOPTICS, the type of normalization to be used is
indicated with the aid of an input parameter NRM (1, 2, or 3): NRM = 1 corresponds to the electrical
(E-) normalization, NRM = 2 to the flux (F-) normalization, and NRM = 3 to the symmetrical (S-)
normalization. In the full-output routines, only E-normalization is used.

Testing the EWB-Generating Routines. Orthogonality Test

Obvious ways to test an EWB-generating routine are (i) to consider situations for which the correct
answer is known and (ii) to examine how accurately the calculated EW bases satisfy corresponding
orthogonality relations: (8.160) in the absence of absorption and TIR mode and (9.4) [(8.161)] in the
general case. When calculation of the matrix 𝚿−1 is carried out by using the orthogonality relations
(9.4), as in our case, one can estimate the error of determining the EWB by evaluating an orthogonality
parameter

𝛿ort = max
j≠k

|||[𝚿c-ortinv𝚿c] jk
||| , (9.17)

where 𝚿c is a computed value of 𝚿, 𝚿c-ortinv is the value of 𝚿−1 obtained from 𝚿c by formula (9.8) or
(9.13). Errors in the computed matrix 𝚿 violate the orthogonality and lead to deviation of off-diagonal
elements of the matrix 𝚿c-ortinv⋅𝚿c from zero, so we can use the values of these elements to estimate the
error in the computed 𝚿. We will call this way of error estimation the orthogonality test. In Sections 9.3
and 9.4, devoted to uniaxial and biaxial media, we give many numerical examples with tabulated results,
demonstrating EWBs generated by routines of LMOPTICS. In the tables, we present rounded values of
components of the refraction and vibration vectors and the 𝛿ort values calculated using double-precision
values of the matrices 𝚿 and 𝚿−1. Since in all the examples, the orthogonality test indicates very good
accuracy of the results, these tables may be used as a collection of “correct answers” [see item (i)].

Routines for Isotropic, Uniaxial, and Biaxial Media. “Real-Arithmetic” Routines

The library LMOPTICS contains three sets of EWB-generating routines. The first set of routines is for
calculating EWBs for isotropic media, the second for uniaxial media, and the third for biaxial media. In
the case of a nonabsorbing medium out of TIR mode, calculating the EWB can be performed without
using complex arithmetic. In this case, the use of real-type variables instead of complex-type ones (used
in the general case) reduces the computational cost. For this reason, we include in the library, along with
universal routines, “real-arithmetic” routines for nonabsorbing media out of TIR mode.

Data Types

Table 9.1 shows the names and types of some variables that are input or output parameters of the
standard-output EWB-generating routines of LMOPTICS. The other input parameters of these routines
are of real(8) type.
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Table 9.1 Data types of some input and output parameters of the EWB-generating routines

Variable

Parameter General routines Real-arithmetic routines

𝚿 complex(8) YY(4,4) real(8) YY(4,4)
𝚿−1 complex(8) YI(4,4) real(8) YI(4,4)
𝜎j, j = 1,2,3,4 complex(8) X(4)
NRM integer(4) NRM
NWAVE integer(4) NWAVE

9.2 Isotropic Media
In the case of an isotropic medium, the roots of (8.73) are

𝜎1 = 𝜎2 =
√

n2 − 𝜁 2, 𝜎3 = 𝜎4 = −
√

n2 − 𝜁 2, (9.18)

where n is the complex refractive index of the medium. Since polarization degeneracy takes place, there
is much freedom in choosing the vibration vectors of the basis waves. The only restriction on the vectors
ej is

mjej = 0 j = 1,2,3,4 (9.19)

[see (1.10)]. We use the following set of ej:

e1 =
⎛⎜⎜⎝

C
𝛽n

0
−S

𝛽n

⎞⎟⎟⎠xyz

, e2 =
⎛⎜⎜⎝

0
1
0

⎞⎟⎟⎠xyz

, e3 =
⎛⎜⎜⎝
−C

𝛽n

0
−S

𝛽n

⎞⎟⎟⎠xyz

, e4 =
⎛⎜⎜⎝

0
1
0

⎞⎟⎟⎠xyz

, (9.20)

where

S
𝛽n = 𝜁∕n, C

𝛽n = 𝜎1∕n =
√

1 − S2
𝛽n. (9.21)

Figure 9.2 shows the orientation of the vectors ej corresponding to this choice in a situation when the
basis waves are homogeneous. For a nonabsorbing medium, at 𝜁 < n, S

𝛽n and C
𝛽n equal respectively

(a) (b)

n

m1,2

m1,2

m3,4

m3,4

e2,4

e1

e3

e3(p)

e1(p)

e2(s)

e4(s)
b

yy

zz

xx

Figure 9.2 Eigenwave basis in an isotropic medium
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Table 9.2 Expressions for the normalizing factors aψj

aψj

Nonabsorbing medium
Normalization type General case out of TIR mode

Electrical (E-) normalization

⎧⎪⎨⎪⎩
√

C∗
𝛽nC

𝛽n + S∗
𝛽nS

𝛽n j = 1,3

1 j = 2,4 1

Flux (F-) normalization

⎧⎪⎨⎪⎩
√

2Re
(
n∗C

𝛽n

)
j = 1,3√

2Re
(
nC

𝛽n

)
j = 2,4

√
2nC

𝛽n

Symmetrical (S-) normalization
√

2nC
𝛽n

√
2nC

𝛽n

the sine and cosine of the angle 𝛽n between the axis z and m1 (see Figure 9.2b). This choice of the
electric vibration vectors of the basis waves is consistent with the usual choice of the basis orthogonal
polarizations for incident, transmitted, and reflected waves in the problem on reflection and transmission
of a plane wave obliquely incident on a plane boundary between two homogeneous isotropic media
[8–10, 4] (see Section 1.2): basis waves 1 and 3 have electric vectors parallel to the plane of incidence,
that is, are p-polarized, and waves 2 and 4 have electric vectors perpendicular to the plane of incidence,
that is, are s-polarized (see Figure 9.2a). The magnetic vibration vectors hj = mj × ej for ej expressed by
(9.20) are

h1 = n
⎛⎜⎜⎝

0
1
0

⎞⎟⎟⎠xyz

, h2 = n
⎛⎜⎜⎝
−C

𝛽n

0
S
𝛽n

⎞⎟⎟⎠xyz

, h3 = n
⎛⎜⎜⎝

0
1
0

⎞⎟⎟⎠xyz

, h2 = n
⎛⎜⎜⎝

C
𝛽n

0
S
𝛽n

⎞⎟⎟⎠xyz

. (9.22)

Using (9.20) and (9.22), we obtain the following expression for the columns of the matrix 𝚿:

𝝍1 = 1
aψ1

⎛⎜⎜⎜⎝
C
𝛽n

n
0
0

⎞⎟⎟⎟⎠
xyz

, 𝝍2 =
1

aψ2

⎛⎜⎜⎜⎝
0
0
1

nC
𝛽n

⎞⎟⎟⎟⎠
xyz

, 𝝍3 = 1
aψ3

⎛⎜⎜⎜⎝
−C

𝛽n

n
0
0

⎞⎟⎟⎟⎠
xyz

, 𝝍4 =
1

aψ4

⎛⎜⎜⎜⎝
0
0
1

−nC
𝛽n

⎞⎟⎟⎟⎠
xyz

,

(9.23)

where aψj are normalizing factors determined by the normalization conditions used (see Table 9.2). The
rows of the corresponding matrix 𝚿−1 can be expressed as follows:

𝝍1 =
aψ1

2nC
𝛽n

(n C
𝛽n 0 0), 𝝍2 =

aψ2

2nC
𝛽n

(0 0 nC
𝛽n 1),

𝝍3 = −
aψ3

2nC
𝛽n

(n −C
𝛽n 0 0), 𝝍4 = −

aψ4

2nC
𝛽n

(0 0 −nC
𝛽n 1).

(9.24)
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For a nonabsorbing medium out of TIR mode, all quantities in (9.18)–(9.24) are real, and the EWB
is orthogonal both in the sense of (9.4) and in the sense of (8.160). In the presence of absorption and in
TIR mode, the EWB satisfies (9.4) but in general does not satisfy (8.160).

Metric Matrices

Substitution from (9.23) into (8.245) leads to a rather simple general expression for the metric matrix
Ñ0, the matrix whose elements are involved in the calculation of the power characteristics of wave fields
(see Section 8.5):

Ñ0 ≡ [N0ij] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 Re
(
n∗C

𝛽n

)
a∗

ψ1aψ1

0 −i
2 Im

(
n∗C

𝛽n

)
a∗

ψ1aψ3

0

0
2 Re(nC

𝛽n)

a∗
ψ2aψ2

0 −i
2 Im(nC

𝛽n)

a∗
ψ2aψ4

i
2 Im

(
n∗C

𝛽n

)
a∗

ψ3aψ1

0 −
2 Re

(
n∗C

𝛽n

)
a∗

ψ3aψ3

0

0 i
2 Im(nC

𝛽n)

a∗
ψ4aψ2

0 −
2 Re(nC

𝛽n)

a∗
ψ4aψ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.25)

It is interesting to examine the structure of this matrix in the cases when the orthogonality relations (8.160)
are violated, that is, when the medium is absorbing or/and TIR mode occurs. Considering that nC

𝛽n =
𝜎1 [see (9.21)], we see that in the usual situation when Im(n)≪Re(n), the ratio of any of the elements
N013, N031, N024, and N042—these elements describe the interference contributions to the energy flux—to
any of the diagonal elements of Ñ0 is approximately equal in absolute magnitude to Im(𝜎1)/Re(𝜎1). If
the medium is nonabsorbing and TIR mode is realized, all diagonal elements of the matrix Ñ0 are equal
to zero and only combinations of forward and backward propagating waves can give nonzero normal
fluxes [see (8.242)].

As seen from (9.25), in the absence of absorption and TIR mode, the electrical normalization gives

Ñ0 = 2nC
𝛽n

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ , (9.26)

and, consequently, for the metric 2 × 2 matrices (Section 8.5),

n↓
0 = −n↑

0 = 2nC
𝛽n

(
1 0
0 1

)
. (9.27)

From (9.25) it is seen that in the absence of absorption and TIR mode, the flux and symmetrical
normalizations put the matrices Ñ0, n↓

0, and n↑
0 in their simplest forms:

Ñ0 =
⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ , (9.28)

n↓
0 = −n↑

0 =
(

1 0
0 1

)
. (9.29)
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Reciprocity Matrices

The reciprocity matrices nr12(b̃) and nr21(b̃) enter into the reciprocity relations for EW Jones matrices
(Section 8.6.2). Here we consider what forms these matrices have with the above (our) choice of the
EWBs. The general expression for the elements of nr12(b̃) and nr21(b̃) is

nrjk(b̃) = 𝝍 j(b̃)TIr𝝍 k(−b̃) = z ⋅
[
ej(b̃) × hk(−b̃) − ek(−b̃) × hj(b̃)

]
(9.30)

[see (8.306)]. With our choice of the EWBs, the vectors ej(−b̃) and hj(−b̃) (j = 1,2,3,4) are obtained by
the rotation of the vectors ej(b̃) and hj(b̃) through an angle of 180◦ about the z-axis, and the following
relations hold:

e1(−b̃) = e3(b̃), h1(−b̃) = −h3(b̃),

e2(−b̃) = −e4(b̃), h2(−b̃) = h4(b̃),

e3(−b̃) = e1(b̃), h3(−b̃) = −h1(b̃),

e4(−b̃) = −e2(b̃), h4(−b̃) = h2(b̃).

(9.31)

Since both bases are orthogonal in the sense of (8.161) and relations (8.214) are valid, these bases are
optimal reciprocal (see Section 8.4.1) and hence only diagonal elements of the matrices nr12(b̃) and
nr21(b̃) are different from zero. As is seen from (9.30) and (9.31), the nonzero elements of these matrices
[see (8.306a)] may be expressed as follows:

nr13(b̃) = −2z ⋅
[
e1(b̃) × h1(b̃)

]
= −𝝍1(b̃)TI0𝝍1(b̃),

nr24(b̃) = 2z ⋅
[
e2(b̃) × h2(b̃)

]
= 𝝍2(b̃)TI0𝝍2(b̃),

nr31(b̃) = −2z ⋅
[
e3(b̃) × h3(b̃)

]
= −𝝍3(b̃)TI0𝝍3(b̃),

nr42(b̃) = 2z ⋅
[
e4(b̃) × h4(b̃)

]
= 𝝍4(b̃)TI0𝝍4(b̃).

(9.32)

From these expressions we see that in the case of S-normalization the matrices nr12(b̃) and nr21(b̃) are as
in (8.327). In the general case, according to (9.23) and (9.32),

nr12(b̃) = 2nC
𝛽n

(−a−2
ψ1 0

0 a−2
ψ2

)
, nr21(b̃) = 2nC

𝛽n

(
a−2

ψ3 0
0 −a−2

ψ4

)
, (9.33)

where C
𝛽n corresponds to b = b̃. As can be seen from (9.33) and Table 9.2, for nonabsorbing isotropic

media out of TIR mode the electrical normalization gives

nr21(b̃) = −nr12(b̃) = 2nC
𝛽n

(
1 0
0 −1

)
= 2nC

𝛽nI1 (9.34)

[cf. (8.327)]. From (9.34), (8.312), and (8.315) it is seen that when the entrance and exit media of the
transfer channel C (8.313) are identical, being isotropic, nonabsorbing, and out of TIR mode, with our
choice of the EWBs in these media the reciprocity relation (8.315) is reduced to (8.328).

Program Implementation

The library LMOPTICS includes two EWB-generating routines for isotropic media: ISOTRR and
ISOTRC. The routine ISOTRR is real-arithmetic. It can be used for nonabsorbing media out of TIR
mode. ISOTRC is applicable in any case. The interfaces of these routines are

CALL ISOTRR(N, X, YY, YI, NWAVE, NRM)

CALL ISOTRC(N, A, X, YY, YI, NWAVE, NRM)
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In ISOTRR, N is the refractive index of the medium. In ISOTRC, N and A are respectively the real
and imaginary parts of the complex refractive index of the medium. Both ISOTRR and ISOTRC are
standard-output routines. The output parameters of these routines are the array of 𝜎j values (X(j)), matrix
𝚿 (YY), and matrix 𝚿−1 (YI). Input parameters NRM and NWAVE have been defined in Section 9.1.

9.3 Uniaxial Media
Most optically anisotropic elements of LCD panels are considered in modeling as uniaxial or locally
uniaxial layers. Therefore, computing the parameters of basis waves for a uniaxial medium is one of
the most frequently executed operations when the optical characteristics of an LCD are calculated by
using methods based on eigenwave representation. Parameters of EWBs are also used in theoretical
analyses of light propagation through LC layers (see Chapter 11). It is clear that an accurate and yet
the simplest possible representation of the EWB parameters for uniaxial media is wanted. Here we
describe probably the simplest exact representation. This representation is employed in EWB-generating
routines of LMOPTICS. Some important formulas of this book were derived using this representation
(see Sections 8.4.2 and 11.2).

For a uniaxial medium, in the absence of polarization degeneracy, the pair of forward propagating
basis waves as well as the pair of backward propagating basis waves consist of an extraordinary wave
and an ordinary wave. We assign number 1 to the extraordinary forward propagating wave, number 2 to
the ordinary forward propagating wave, number 3 to the extraordinary backward propagating wave, and
number 4 to the ordinary backward propagating wave. Let

c =
⎛⎜⎜⎝

cx

cy

cz

⎞⎟⎟⎠xyz

be a unit vector directed along the optic axis of the medium, and let 𝜀|| and 𝜀⟂ be the principal values of
the complex permittivity tensor ε of the medium. In the optical region,

𝜀∥ = n2
∥, 𝜀

⊥
= n2

⊥
, (9.35)

where n∥ and n⟂ are the principal refractive indices of the medium. Let, as usual,

b =
⎛⎜⎜⎝
𝜁

0
0

⎞⎟⎟⎠xyz

, mj = b + z𝜎j =
⎛⎜⎜⎝
𝜁

0
𝜎j

⎞⎟⎟⎠xyz

.

Then the basic formulas of the mentioned simple representation can be written as follows:

(a) the normal components of the refraction vectors:

𝜎1 =
−b1 + b4

b2

, 𝜎3 =
−b1 − b4

b2

, (9.36)

𝜎2 =
√
𝜀
⊥
− 𝜁 2, 𝜎4 = −𝜎2, (9.37)
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where

b4 =
√

b2
1 − b2(b3 − 𝜀⊥𝜀∥),

b1 = Δ𝜀(bc)(zc), b2 = 𝜀
⊥
+ Δ𝜀(zc)2, b3 = 𝜀

⊥
𝜁

2 + Δ𝜀(bc)2,

Δ𝜀 = 𝜀∥ − 𝜀⊥;

in components,

b1 = Δ𝜀𝜁cxcz, b2 = 𝜀
⊥
+ Δ𝜀c2

z , b3 = 𝜁
2
(
𝜀
⊥
+ Δ𝜀c2

x

)
; (9.38)

(b) the electric vibration vectors:

ej = c −
(mjc)

𝜀
⊥

mj j = 1,3, (9.39)

ej = mj × c j = 2,4, (9.40)

or, in components, for the extraordinary waves ( j = 1,3)

ej =
⎛⎜⎜⎝

e jx

e jy

e jz

⎞⎟⎟⎠xyz

=
⎛⎜⎜⎝

cx − m jc𝜁

cy

cz − m jc𝜎j

⎞⎟⎟⎠xyz

,

m jc = (𝜁cx + 𝜎jcz)∕𝜀⊥,

(9.41)

for the ordinary waves (j = 2,4)

ej =
⎛⎜⎜⎝

e jx

e jy

e jz

⎞⎟⎟⎠xyz

=
⎛⎜⎜⎝

−𝜎jcy

𝜎jcx − 𝜁cz

𝜁cy

⎞⎟⎟⎠xyz

; (9.42)

(c) the magnetic vibration vectors:

hj = mj × ej j = 1, 2, 3, 4, (9.43)

or, in components,

hj =
⎛⎜⎜⎝

h jx

h jy

h jz

⎞⎟⎟⎠xyz

=
⎛⎜⎜⎝

−𝜎je jy

𝜎je jx − 𝜁e jz

𝜁e jy

⎞⎟⎟⎠xyz

.

The chief advantage of this representation is the simplicity of the expression for the electric vibra-
tion vectors ej of the extraordinary waves (9.39). This expression—we found it in a monograph [11]
(a similar solution for the 𝝍 vectors of the basis extraordinary waves was obtained in Reference
12 in the framework of the Berreman formalism)—looks very simple in comparison with the com-
monly used expressions for such vectors [13–17]. We will derive this expression to remove all doubts
about its correctness. In passing, we will show the background of the other expressions used in this
representation.
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The permittivity tensor ε of a uniaxial medium and its inverse ε−1 can be expressed as

ε = 𝜀
⊥

U + Δ𝜀c⊗ c, (9.44)

ε−1 = 1
𝜀
⊥

U +
(

1
𝜀∥

− 1
𝜀
⊥

)
c⊗ c (9.45)

with ⊗ denoting the dyadic product [see (8.26) and (5.66)]. If the tensor ε has the form (9.44), equation
(8.36) splits into two equations:

mεm = 𝜀∥𝜀⊥ (9.46)

and

m2 = 𝜀
⊥
. (9.47)

The former equation gives solutions for extraordinary waves, and the latter for ordinary waves. Using
(9.44), one can rewrite (9.46) as follows:

𝜀
⊥

m2 + Δ𝜀(mc)2 = 𝜀∥𝜀⊥. (9.48)

Substituting m = b + z𝜎 into (9.48) and (9.47) gives the following equations for 𝜎:

(𝜀
⊥
+ Δ𝜀(zc)2)𝜎2 + (2Δ𝜀(bc)(zc))𝜎 + 𝜀

⊥
b2 + Δ𝜀 (bc)2 − 𝜀∥𝜀⊥ = 0, (9.49)

𝜎
2 = 𝜀

⊥
− b2

. (9.50)

The roots of (9.49) are 𝜎1 and 𝜎3 expressed by (9.36). The roots of (9.50) are 𝜎2 and 𝜎4 expressed by
(9.37). If the tensor ε−1 has the form (9.45), the following relations hold with any m:

ε−1 (m × c) = 1
𝜀
⊥

(m × c) , (9.51)

ε−1 (m × (m × c)) = 1
𝜀
⊥

(m (mc)) − 1
𝜀
⊥
𝜀∥

(𝜀
⊥

m2 + Δ𝜀 (mc)2)c. (9.52)

These relations can easily be obtained by using the formulas

c⊗ c (m × c) = c (c (m × c)) = 0,

c⊗ c(m × (m × c)) = c⊗ c(m(mc) − cm2) = c(mc)2 − cm2,

where we have used the identity

(A⊗ B) C = A(BC), (9.53)

which is valid for any vectors A, B, and C. Substituting

e = aε−1 (m × c) (9.54)
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(where a is an arbitrary scalar coefficient) into the wave equation for the electric vector

m (me) − m2e + εe = 0, (9.55)

on account of (9.51), leads to the following condition:

(
1 − m2

𝜀
⊥

)
(m × c) = 0. (9.56)

If m satisfies (9.47), condition (9.56) is satisfied. This means that expression (9.54) is suitable for
representation of the vectors ej of the ordinary basis waves [see (9.40) and (9.51)]. Then, one can notice
that for m satisfying condition (9.48), according to (9.52),

ε−1 (m × (m × c)) = m
(mc)
𝜀
⊥

− c. (9.57)

Substitution of

e = aε−1 (m × (m × c)) (9.58)

into (9.55) shows that, subject to (9.57), the vector e expressed by (9.58) satisfies (9.55). This means that
the expression

e = a

(
m

(mc)
𝜀
⊥

− c
)

(9.59)

can be used for calculating the vectors ej of the extraordinary basis waves. This fact is employed in the
representation under consideration [see (9.39)].

Polarization Degeneracy

In the case of a uniaxial medium, polarization degeneracy occurs for waves whose refraction vectors
m are parallel to the optic axis c [m = n⟂c and m = −n⟂c satisfy both (9.47) and (9.48)]. With
m = ±n⟂c, any e satisfying the condition me = 0 satisfies (9.55), just as in the case of an isotropic
medium. From (8.202) it follows that the choice of the electric vibration vectors (ej and ej+1) of the basis
waves having identical refraction vectors (mj = mj+1) in accordance with the condition

eje j+1 = 0 (9.60)

ensures the fulfillment of orthogonality relations (9.4). Since here we deal with the same situation as in
the case of an isotropic medium, the electric vibration vectors of the basis waves with mj = ±n⟂c can be
chosen in a similar manner. We can take

e1 =
⎛⎜⎜⎝
𝜎1

0
−𝜁

⎞⎟⎟⎠xyz

, e2 =
⎛⎜⎜⎝

0
1
0

⎞⎟⎟⎠xyz

(9.61)
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if polarization degeneracy takes place for the forward propagating waves (m1 = m2 = ±n⟂c), and

e3 =
⎛⎜⎜⎝
𝜎3

0
−𝜁

⎞⎟⎟⎠xyz

, e4 =
⎛⎜⎜⎝

0
1
0

⎞⎟⎟⎠xyz

(9.62)

when polarization degeneracy occurs for the backward propagating waves (m3 = m4 = ±n⟂c). Such a
choice of the electric vibration vectors in the case of polarization degeneracy is used in the routines of
LMOPTICS.

Small-Birefringence Approximation

The subsection Numerical Tests at the end of this section contains some numerical examples which
provide, in particular, estimates of the error of determining the EWB parameters in the small-birefringence
approximation, which uses the condition |n∥ − n⟂| ≪ n∥, n⟂. These estimates are for the most popular
variant of the approximate calculations, the variant used by Gu and Yeh [18, 19] in their version of the
extended Jones matrix method. In our notation, the basic formulas for calculating the electric vibration
vectors of the basis waves in this approximation can be written as follows:

(i) for the ordinary waves,

ej =
c × mj|c × mj| j = 2,4, (9.63)

(ii) for the extraordinary waves,

ej ≈ e
jSBA

≡
m j+1 × e j+1|m j+1 × e j+1| j = 1,3, (9.64)

that is, the electric vibration vectors of the ordinary waves are calculated here exactly [cf. (9.40) and
(9.63)], and the electric vibration vector of each extraordinary wave is taken to be perpendicular to the
refraction vector and electric vibration vector of the corresponding ordinary wave.

Program Implementation

The library LMOPTICS contains three routines for generating EWBs for uniaxial media: UNAXLR,
UNAXLC, and UNAXLFC. UNAXLR is a real-arithmetic standard-output routine. UNAXLC is a
universal standard-output routine. UNAXLFC is a universal full-output routine. In all these routines, the
representation (9.36)–(9.43) is used. The routines have the following interfaces:

CALL UNAXLR(NE, NO, TE, FI, X, YY, YI, NWAVE, NRM)

CALL UNAXLC(NE, AE, NO, AO, TE, FI, X, YY, YI, NWAVE, NRM)

CALL UNAXLFC(NE, AE, NO, AO, TE, FI, X, EE, HH, NWAVE)

In the case of UNAXLR, the principal refractive indices are assumed to be real: NE = n∥ and NO = n⟂.
For UNAXLC and UNAXLFC, NE = Re(n∥), AE = Im(n∥), NO = Re(n⟂), and AO = Im(n⟂). The
orientation of the optic axis of the medium is specified by the arguments TE and FI: TE = 𝜃 and FI = 𝜑,
where 𝜃 is the angle between c and the XY-plane, and 𝜑 is the angle between the XZ-plane and the plane
containing c and the Z-axis (the c–z plane) (Figure 9.3). The components of c in the coordinate system
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X

Y

c

Z

Figure 9.3 Specification of the orientation of the optic axis (c) of a uniaxial medium

(x, y, z) attached to the plane of incidence can be expressed in terms of 𝜃 and 𝜑 as follows:

c =
⎛⎜⎜⎝

cx

cy

cz

⎞⎟⎟⎠xyz

=
⎛⎜⎜⎝
cos 𝜃 cos(𝜑 − 𝛼inc)
cos 𝜃 sin(𝜑 − 𝛼inc)

sin 𝜃

⎞⎟⎟⎠xyz

. (9.65)

As in the routines for isotropic media described in the previous section, X in UNAXLR and UNAXLC
is the output array of the 𝜎j values, YY = 𝚿, and YI = 𝚿−1. The parameters NWAVE and NRM were
defined in Section 9.1. The routine UNAXLFC returns the arrays of the coordinates of the vectors e j

(EE(:, j)) and hj (HH(:, j)) in the coordinate system (x, y, z). Recall that e j is the electric vibration vector
of the jth basis wave normalized by the condition e j

∗e j = 1, and hj = mj × e j.
Table 9.3 presents fragments of the code of a program test_uniax, which exemplify usage of UNAXLR,

UNAXLC, and UNAXLFC. As can be seen from this code, before calling any of these routines, one
should specify the global variables MT (𝜁 ) and FIR (𝛼inc in radians), which characterize the incident
field (see Section 9.1). In the program test_uniax, the medium from which the light falls is taken to be
of refractive index (ninc) 1, therefore 𝜁 = sin𝛽 inc in the code. If ninc ≠ 1, MT should be calculated using
the general formula 𝜁 = nincsin𝛽 inc.

Numerical Tests

Here we present the results of several numerical tests. In these tests, we consider nonabsorbing and
absorbing uniaxial layers with a relatively large difference of the principal refractive indices, typical
for practical LC materials, under different illumination conditions, including those under which TIR
mode is realized. The tables show parameters of EWBs generated by routines of LMOPTICS and the
results of the orthogonality test (see Section 9.1). In the tables, the calculated values of 𝜎j, e j, and nwj ≡

(mm)1/2 are presented. The parameter nwj can be considered as the refractive index for the jth basis wave
if this wave is homogeneous [see (8.47)–(8.49)]. The orthogonality parameters 𝛿ort computed for the
matrices 𝚿 and 𝚿−1 generated by UNAXLR and UNAXLC are denoted by [𝛿ort]UNAXLR and [𝛿ort]UNAXLC,
respectively.

In the first four tests, we consider nonabsorbing media out of TIR mode. In the tables, the results of the
orthogonality tests for matrices 𝚿 calculated by the exact formulas ([𝛿ort]UNAXLR) and those calculated
by using the approximation (9.64) ([𝛿ort]SBA) are compared.
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Table 9.3 Usage of routines UNAXLR, UNAXLC, and UNAXLFC

Program test_uniax Comments

program test_uniax

use OPTSM_1

use MTWFIR

real(8) BETA_inc,ALFA_inc

real(8) NPAR,NPER,APAR,APER,TE,FI

real(8) YYR(4,4),YIR(4,4)

complex(8) X(4),YYC(4,4),YIC(4,4)

complex(8) EE(3,4),HH(3,4)

integer(4) NWAVE,NRM

...

! Specifying the incident light parameters and the

! global variables

BETA_inc=45.0_8*PI3 !polar angle of incidence

ALFA_inc=30.0_8*PI3 !azimuthal angle of incidence

! PI3=PI/180
MT=sin(BETA_inc) ! PI3, MT and FIR are global

FIR=ALFA_inc ! variables declared in MTWFIR

NWAVE=4 ! calculation for 4 basis waves

NRM=3 ! normalization type

! Parameters of the layer

! Real parts of the principal refractive indices

NPAR=1.7_8; NPER=1.5_8
! Orientation of the principal axis

TE=45.0_8*PI3; FI=90.0_8*PI3
...

! Nonabsorbing layer

call UNAXLR(NPAR,NPER,TE,FI,X,YYR,YIR,NWAVE,NRM)

...

! Absorbing layer

! Imaginary parts of the principal refractive indices

APAR=0.01_8; APER=0.0001_8
...

call UNAXLC(NPAR,APAR,NPER,APER,TE,FI,X,YYC,YIC, &

NWAVE,NRM)

...

call UNAXLFC(NPAR,APAR,NPER,APER,TE,FI,X,EE,HH, &

NWAVE)

...

end program test_uniax

𝛽 inc (rad)
𝛼inc (rad)

MT = 𝜁
FIR = 𝛽 inc

NPAR = Re(n∥)

NPER = Re(n⟂)

TE = 𝜃 (rad)

FI = 𝜑 (rad)

𝜎j = X(j)

𝚿 = YYR, 𝚿−1 = YIR

APAR = Im(n∥)

APER = Im(n⟂)

𝚿 = YYC, 𝚿−1 = YIC

ej = EE(:,j)

hj = HH(:,j)
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Test 1. Parameters: n∥ = 1.7, n⟂ = 1.5, 𝜃 = 45◦, 𝜑 = 0◦, 𝛽 inc = 45◦, 𝛼inc = 90◦, ninc = 1. The plane of
incidence is perpendicular to the plane of symmetry of the layer (the c–z plane).

j 1 2 3 4

𝜎j 1.446517 1.322876 −1.446517 −1.322876
nwj 1.610097 1.500000 1.610097 1.500000
e jx −0.413003 0.797724 0.413003 −0.797724
ejy −0.908504 −0.426401 −0.908504 −0.426401
ejz 0.063631 −0.426401 0.063631 −0.426401
[𝛿ort]UNAXLR 5.6 × 10−17

[𝛿ort]SBA 3.1 × 10−2

Test 2. Parameters: n∥ = 1.7, n⟂ = 1.5, 𝜃 = 45◦, 𝜑 = 0◦, 𝛽 inc = 45◦, 𝛼inc = 45◦, ninc = 1. The same layer
as in the previous test is considered, but the plane of incidence is rotated by 45◦.

j 1 2 3 4

𝜎j 1.374810 1.322876 −1.499323 −1.322876
nwj 1.545995 1.500000 1.657700 1.500000
e jx 0.161191 0.862170 0.793920 −0.478420
ejy −0.966655 0.210431 −0.549751 −0.840071
ejz −0.198987 −0.460849 0.259740 −0.255726
[𝛿ort]UNAXLR 1.2 × 10−16

[𝛿ort]SBA 3.3 × 10−2

Test 3. Parameters: n∥ = 1.7, n⟂ = 1.5, 𝜃 = 70◦, 𝜑 = 0◦, 𝛽 inc = 30.865882473◦, 𝛼inc = 0◦, ninc = 1. In
this case, the orientation of the optic axis c and the propagation direction of the incident light are chosen
so that polarization degeneracy takes place for the forward propagating basis waves.

j 1 2 3 4

𝜎j 1.409539 1.409539 −1.484510 −1.409539
nwj 1.500000 1.500000 1.570659 1.500000
e jx 0.939693 0.000000 0.977086 0.000000
ejy 0.000000 1.000000 0.000000 −1.000000
ejz −0.342020 0.000000 0.212846 0.000000
[𝛿ort]UNAXLR 5.6 × 10−17

[𝛿ort]SBA 2.3 × 10–2

From the results of the orthogonality test it is seen that the routine UNAXLR gives very accurate values
of 𝚿 and 𝚿−1 both in the absence (tests 1 and 2) and in the presence (test 3) of polarization degeneracy.
The tiny deviations of [𝛿ort]UNAXLR from zero are caused by round-off errors. At the same time, the
orthogonality test reveals a significant error in the values of 𝚿 obtained using the small-birefringence
approximation.

Test 4. This example allows us to assess the degree of discrepancy between the true values of the electric
vibration vector of an extraordinary wave, e j, and corresponding values of e jSBA (9.64) for media with
Δn (here Δn ≡ n∥ – n⟂) typical of LC materials used in LCDs. In this test, as in the previous three tests,
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Figure 9.4 The angle of deviation of the electric vibration vector of the extraordinary wave calculated
in the small-birefringence approximation from its true value (𝛿e) and the angle between the refraction
vector of the extraordinary wave and that of the ordinary wave (Δm)

the light falls on a nonabsorbing uniaxial layer from an isotropic medium with ninc = 1. The uniaxial
layer has a tilted optic axis with 𝜃 = 45◦ and 𝜑 = 0◦; n⟂ = 1.5. The plane of incidence is oriented so
that 𝛼inc = 90◦. Figure 9.4 shows dependences of the angle between the true e1 and e1SBA—this angle is
denoted by 𝛿e—on the polar angle of incidence (𝛽 inc) for n∥ = 1.6 (Δn = 0.1) and n∥ = 1.7 (Δn = 0.2).
Analogous curves for the angle between the refraction vectors of the extraordinary (m1) and ordinary
(m2) waves (Δm) are shown in this figure for comparison. As is seen from Figure 9.4, the deviation of
approximate values from the true ones may be large even for media with moderate (for LC materials)
birefringence, so that we cannot be sure that we will obtain good accuracy using the approximation
(9.64) for LC layers in common situations.

In the next two tests, absorbing media out of TIR mode are considered.

Test 5. Parameters: n∥ = 1.7 + i0.03, n⟂ = 1.5 + i0.003, 𝜃 = 45◦, 𝜑 = 0◦, 𝛽 inc = 45◦, 𝛼inc = 45◦, ninc =
1. The situation is the same as in Test 2 except that the medium is absorbing.

j 1 2 3 4

𝜎j 1.374912 + i0.009550 1.322877 +
i0.003402

−1.499607 −
i0.024953

−1.322877 −
i0.003402

e jx 0.161122 − i0.000881 0.862166 +
i0.002217

0.793815 +
i0.005119

−0.478419 −
i0.001230

ejy −0.966547 + i0.000000 0.210430 +
i0.002217

−0.549616 +
i0.000000

−0.840069 −
i0.001230

ejz −0.199167 − i0.012591 −0.460847 +
i0.000000

0.259566 −
i0.019473

−0.255726 +
i0.000000

[𝛿ort]UNAXLC 8.3 × 10−17
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Test 6. Parameters: n∥ = 1.7 + i0.03, n⟂ = 1.5 + i0.003, 𝜃 = 0◦, 𝜑 = 0◦, 𝛽 inc = 45◦, 𝛼inc = 45◦,
ninc = 1. In this case, the direction of maximum absorbance is along the optic axis and parallel to the
layer boundaries, so that the layer behaves as a nonideal O-type polarizer.

j 1 2 3 4

𝜎j 1.522813 + i0.030191 1.322877 +
i0.003402

−1.522813 −
i0.030191

−1.322877 −
i0.003402

e jx 0.574314 + i0.000656 0.661436 +
i0.001701

0.574314 +
i0.000656

−0.661436 −
i0.001701

ejy −0.738402 + i0.000000 0.661436 +
i0.001701

−0.738402 +
i0.000000

−0.661436 −
i0.001701

ejz −0.353404 − i0.005592 −0.353552 +
i0.000000

0.353404 +
i0.005592

−0.353552 +
i0.000000

[𝛿ort]UNAXLC 8.3 × 10−17

Tests 7 and 8 demonstrate the capability of UNAXLC and UNAXLFC to properly work in the case of
TIR mode. In Test 7, the layer is absorbing. In Test 8, a nonabsorbing medium is considered. In these two
tests, we specify directly the parameter 𝜁 rather than 𝛽 inc. The value 1.72 assigned to 𝜁 corresponds to
𝛽 inc ≈ 73◦ if the light falls on the layer from an isotropic medium whose refractive index is equal to 1.8.

Test 7. Parameters: n∥ = 1.7 + i0.03, n⟂ = 1.5 + i0.003, 𝜃 = 45◦, 𝜑 = 0◦, 𝛼inc = 45◦, 𝜁 = 1.72.

j 1 2 3 4

𝜎j −0.074756 + i0.457503 0.005346 +
i0.841687

−0.228558 −
i0.494970

−0.005346 −
i0.841687

e jx −0.118827 − i0.246556 0.001669 +
i0.262692

−0.031716 +
i0.260774

−0.113607 −
i0.262029

ejy −0.503526 + i0.000000 −0.757503 +
i0.262692

−0.483478 +
i0.000000

−0.758920 −
i0.262029

ejz 0.804724 − i0.154824 −0.536816 +
i0.000000

0.827245 +
i0.113607

−0.535461 +
i0.000000

[𝛿ort]UNAXLC 1.1 × 10−16

Test 8. Parameters: n∥ = 1.7, n⟂ = 1.5, 𝜃 = 45◦, 𝜑 = 0◦, 𝛼inc = 45◦, 𝜁 = 1.72.

j 1 2 3 4

𝜎j −0.151436 + i0.470246 0.000000 +
i0.841665

−0.151436 −
i0.470246

0.000000 −
i0.841665

e jx −0.074713 − i0.251324 0.000000 +
i0.262355

−0.074713 +
i0.251324

0.000000 −
i0.262355

ejy −0.494365 + i0.000000 −0.758217 +
i0.262355

−0.494365 +
i0.000000

−0.758217 −
i0.262355

ejz 0.817953 − i0.133457 −0.536140 +
i0.000000

0.817953 +
i0.133457

−0.536140 +
i0.000000

[𝛿ort]UNAXLC 1.2 × 10−16
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The orthogonality test in the last four examples demonstrates that the routines UNAXLC and UNAXLFC
give very accurate eigenwave bases both for absorbing media and in the case of TIR mode.

9.4 Biaxial Media
Calculating the parameters of eigenwaves in a biaxial medium generally requires knowledge of the
matrices of the permittivity tensor ε and the inverse tensor ε−1. Therefore, we will first say a few words
about specification of these matrices. The permittivity tensor of a nonabsorbing biaxial medium can
always be represented as follows:

ε = 𝜀1u1 ⊗ u1 + 𝜀2u2 ⊗ u2 + 𝜀3u3 ⊗ u3, (9.66)

where u1, u2, and u3 are the unit basis vectors of a Cartesian coordinate system in which the matrix of ε

is diagonal:

⎛⎜⎜⎝
𝜀1 0 0
0 𝜀2 0
0 0 𝜀3

⎞⎟⎟⎠u1u2u3

. (9.67)

The vectors u1, u2, and u3 show the directions of the principal axes of the tensor ε; 𝜀1, 𝜀2, and 𝜀3 are
the principal dielectric constants, related to the principal refractive indices of the medium, n1, n2, and
n3, by

𝜀j = n2
j j = 1,2,3. (9.68)

In this case (a nonabsorbing medium), the tensor ε−1 has the same system of principal axes as the tensor
ε. It can therefore be expressed as follows:

ε−1 = 1
𝜀1

u1 ⊗ u1 +
1
𝜀2

u2 ⊗ u2 +
1
𝜀3

u3 ⊗ u3. (9.69)

Using the following general relation

u1 ⊗ u1 + u2 ⊗ u2 + u3 ⊗ u3 = U,

where U is the unit tensor, we can eliminate one of the vectors uj from the above expressions for ε

and ε−1 to obtain another representation of these tensors, more convenient for their specification. For
instance, these tensors can be expressed as

ε = 𝜀2U + (𝜀1 − 𝜀2)u1 ⊗ u1 + (𝜀3 − 𝜀2)u3 ⊗ u3, (9.70)

ε−1 = 1
𝜀2

U +
(

1
𝜀1

− 1
𝜀2

)
u1 ⊗ u1 +

(
1
𝜀3

− 1
𝜀2

)
u3 ⊗ u3. (9.71)

Thus, to calculate the matrices of the tensors ε and ε−1 referred to any particular coordinate system,
it suffices to substitute the coordinates of the vectors u1 and u3 in this coordinate system into (9.70)
and (9.71). The representation (9.66) and consequently expressions (9.68)–(9.71) are valid not only for
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Figure 9.5 Orientation of the principal axes of the permittivity tensor (ua, ub, uc) and the optic axes
(c1, c2) of a biaxial medium

nonabsorbing media, but also for absorbing media of the orthorhombic system. In the latter case, n1, n2,
and n3 in (9.68) are the principal complex refractive indices.

We should mention yet another representation of the tensor ε−1. This representation is very important
because it explicitly reflects the main peculiarities of the optical properties of biaxial media. Let na, nb,
and nc be the principal refractive indices of an arbitrary nonabsorbing biaxial medium ordered so that
na < nb < nc and let ua, ub, and uc be unit vectors directed along the corresponding principal axes.
Then the tensor ε−1 can be expressed as

ε−1 = 1
𝜀b

U + 1
2

(
1
𝜀a

− 1
𝜀c

)
(c1 ⊗ c2 + c2 ⊗ c1), (9.72)

where

𝜀a = n2
a , 𝜀b = n2

b, 𝜀c = n2
c ,

c1 = kaua + kcuc, c2 = kaua − kcuc,

ka =

√
𝜀c(𝜀b − 𝜀a)

𝜀b(𝜀c − 𝜀a)
, kc =

√
𝜀a(𝜀c − 𝜀b)

𝜀b(𝜀c − 𝜀a)

(9.73)

[11]. The unit vectors c1 and c2 defined by (9.73) show the directions of two optic axes of the medium
(the optic axes should not be confused with the principal axes of the permittivity tensor, see Figure 9.5).
As is seen from (9.73), both optic axes are perpendicular to the axis ub corresponding to the middle
principal refractive index. Homogeneous eigenwaves of this medium are linearly polarized. For waves
whose wave normals are parallel to any of the optic axes, any orientation of the polarization plane is
allowed, that is, the optic axes show the propagation directions for which polarization degeneracy takes
place. Waves (of equal frequency) with different polarization states, propagating along an optic axis,
have the same phase velocity. The refractive index nw [see (8.47)] for such waves is equal to nb. For any
other propagation direction, only two polarization modes are allowed, and equinormal waves of different
polarization modes have different phase velocities: for waves of one of the allowed modes, na ≤ nw ≤ nb,
and for waves of the other allowed mode, nb ≤ nw ≤ nc.

The normal components of the refraction vectors of the basis eigenwaves for a biaxial medium can be
found from the following equation [it is equation (8.73) written in a convenient form]:

𝜎
4 + C3𝜎

3 + C2𝜎
2 + C1𝜎 + C0 = 0, (9.74)
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where

C3 =
2𝜀xz

𝜀zz

𝜁 , C2 =
1
𝜀zz

(
𝜁

2(𝜀xx + 𝜀zz) + 𝜀2
xz + 𝜀

2
yz − 𝜀zz(𝜀xx + 𝜀yy)

)
,

C1 =
2
𝜀zz

(
𝜁

3
𝜀xz + 𝜁

(
𝜀xy𝜀yz − 𝜀yy𝜀xz

))
,

C0 =
1
𝜀zz

(
𝜁

4
𝜀xx + 𝜁 2

(
𝜀

2
xy + 𝜀

2
xz − 𝜀xx(𝜀yy + 𝜀zz)

)
+ det ε

)
,

(9.75)

where 𝜀kj are components of ε in the system (x, y, z) with the xz-plane coincident with the plane of
incidence (see Figure 9.1); 𝜁 , as usual, is the tangential component of the refraction vectors (𝜁 = bx
with x being the unit vector along the x-axis); detε is the determinant of ε. When representation (9.66)
is applicable, det ε can be calculated as det ε = 𝜀1𝜀2𝜀3; a more general formula is

det ε = 𝜀xx

(
𝜀yy𝜀zz − 𝜀2

xz

)
+ 2𝜀xy𝜀xz𝜀yz − 𝜀2

xy𝜀zz − 𝜀2
xz𝜀yy.

In modeling LCDs, we are faced with the need to consider biaxial media when dealing with biaxial
compensators (retarders). For a usual biaxial compensation film, one of the vectors uj is perpendicular to
the film surfaces. It greatly simplifies the problem. If one of the vectors uj is parallel to the z-axis, then

𝜀xz = 0, 𝜀yz = 0. (9.76)

As can be seen from (9.75), subject to (9.76), equation (9.74) is biquadratic (C3 = 0, C1 = 0), so that its
roots can easily be found:

𝜎1 =
√

−C2 + DC

2
, 𝜎2 =

√
−C2 − DC

2
, DC =

√
C2

2 − 4C0,

𝜎3 = −𝜎1, 𝜎4 = −𝜎2.

(9.77)

Formulas (9.77) can also be used in the case of normal incidence (𝜁 = 0) for any orientation of the
axes uj.

Considering the case of oblique incidence and a biaxial medium with arbitrary orientation of the
principal axes (we may deal with such a situation, e.g., when modeling the optical properties of smectic
C∗ layers with allowance for the optical biaxiality of the liquid crystal), we need to solve (9.74) as a
general quartic equation. In principle, roots of this equation may be found by using the classical explicit
formulas for roots of quartic and cubic equations (Ferrari’s and Cardano’s solutions). This approach is
used, for example, in References 20–22. However, the computational algorithms based on using these
exact formulas are numerically unstable (see, e.g., Reference 20) and often give inaccurate results, even
when double-precision arithmetic is used (we observed this in numerical experiments). For this reason,
and also because of the complexity of the exact expressions for the roots, it is considered to be preferable
to solve (9.74) by using iterative algorithms. Some efficient iterative algorithms for solving (8.73) may be
found in old books on optics of anisotropic media (e.g., [11]). Descriptions of other iterative techniques
for finding 𝜎j, which are currently used in modeling LCDs, are given in References 23 and 24. Of
particular interest, in our opinion, is the algorithm proposed in Reference 24. In this algorithm, finding
the roots of (9.74) is carried out with the help of Laguerre’s method [25, 26]. In our programs, we use a
slightly modified version of this algorithm: First, we find the root 𝜎1 by using Laguerre’s method with
the following initial approximation:

𝜎 =
√
𝜀m − 𝜁 2, (9.78)



JWST441-c09 JWST441-Yakovlev Printer: Markono December 30, 2014 7:49 Trim: 244mm × 170mm

Choice of Eigenwave Bases for Isotropic, Uniaxial, and Biaxial Media 355

where 𝜀m is the principal dielectric constant whose real part is middle in magnitude among 𝜀1, 𝜀2, and
𝜀3. Then, by the formulas

B2 = C3 + 𝜎1, B1 = C2 + B2𝜎1, B0 = C1 + B1𝜎1,

we calculate the coefficients of the cubic equation

𝜎
3 + B2𝜎

2 + B1𝜎 + B0 = 0, (9.79)

which is the result of division of (9.74) by (𝜎 − 𝜎1). From (9.79), using Laguerre’s method and initial
approximation (9.78) again, we find the root 𝜎2. Then, by the formulas

D1 = B2 + 𝜎2, D0 = B1 + D1𝜎2,

the coefficients of the quadratic equation 𝜎2 + D1𝜎 + D0 = 0 are calculated. Solving this equation in the
usual way, we find 𝜎3 and 𝜎4. Numerous numerical experiments have shown that this algorithm is very
robust and finds the roots with high speed and accuracy. Note that to attain satisfactory accuracy of the
final results, 𝜎j should be determined with an absolute error less than 10–8. Therefore, all the computations
should be performed using double-precision arithmetic. In some special cases, renumbering of the roots
thus obtained is required.

Once 𝜎j are found, the vectors ej and hj can be calculated. There are several ways of calculating these
vectors [11, 17, 21]. We prefer to use the following technique. It is based on the approach described
in Reference 21. This approach uses the fact that the displacement vibration vector d of an eigenwave
with refraction vector m satisfies the relation md = 0 [see (8.50)]. This allows one to represent the
corresponding “raw” vector d as a linear combination of two mutually orthogonal vectors each of which
is orthogonal to m:

d = ydy + gdg, (9.80)

where, as before, y is the unit vector along the y-axis, perpendicular to the plane of incidence; g = m×y.
According to (8.40)–(8.42), d obeys the equation

m × (m × (ε−1d)) + d = 0.

We rewrite this equation in the form

m(m(ε−1d)) − (ε−1d)m2 + d = 0, (9.81)

where m2 = mm. Multiplying (9.81) scalarly by y, we have

− y(ε−1d)m2 + yd = 0. (9.82)

Substitution from (9.80) into (9.82) leads to the equation

Ayydy − Aygdg = 0, (9.83)

where

Ayy = 1 − m2y(ε−1y), Ayg = m2y(ε−1g).
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Similarly, multiplying (9.81) scalarly by g, we obtain

−g(ε−1d)m2 + gd = 0

and, further,

− Aygdy + Aggdg = 0, (9.84)

where

Agg = m2(1 − g(ε−1g)).

Here we have used the relations gg = m2 and

g(ε−1y) = y(ε−1g).

The latter relation holds due to the symmetry of the tensor ε−1. If at least one of the coefficients Ayy, Ayg,
Agg differs from zero, equations (9.83) and (9.84) uniquely determine the relation between dy and dg. If
all three coefficients are nonzero, they are such that Ayy∕Ayg = Ayg∕Agg. The case Ayy = Ayg = Agg = 0
corresponds to polarization degeneracy.

From (9.83) and (9.84) it is easy to obtain the following working formulas for calculating the coordi-
nates of dj in the system (x, y, z):

dj =
⎛⎜⎜⎜⎝
−𝜎jd

(j)
g

d(j)
y

𝜁d(j)
g

⎞⎟⎟⎟⎠xyz

, (9.85)

where

⎧⎪⎨⎪⎩
d(j)

y = A(j)
yg, d(j)

g = A(j)
yy

|||A(j)
yy
||| > |||A(j)

gg
|||

d(j)
y = A(j)

gg, d(j)
g = A(j)

yg
|||A(j)

yy
||| < |||A(j)

gg
||| ,

A(j)
yy = 1 − m2

j �̃�yy, A(j)
yg = m2

j (�̃�yz𝜁 − �̃�xy𝜎j),

A(j)
gg = m2

j

(
1 − �̃�xx𝜎

2
j + 2�̃�xz𝜁𝜎j − �̃�zz𝜁

2
)

, m2
j = 𝜁

2 + 𝜎2
j ;

(9.86)

�̃�kl are components of the tensor ε−1 in the system (x, y, z). These formulas are used when polarization
degeneracy is absent. If polarization degeneracy takes place, it is convenient to choose vectors dj as
follows:

dj =

{
y + ub uby ≥ 0

y − ub uby < 0,
d j+1 = mj × dj, (9.87)

where j = 1 if the calculations are being carried out for the forward propagating waves (when 𝜎1 =
𝜎2), and j = 3 if for the backward propagating waves (when 𝜎3 = 𝜎4). This choice of dj ensures the
orthogonality of the EWB in the sense of (9.4) at both normal and oblique incidence.

The vectors ej and hj are calculated in terms of dj by the formulas

ej = ε−1dj, hj = mj × ej j = 1,2,3,4. (9.88)
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To complete the picture, let us mention one old method of calculating the vectors ej and hj. This
method is described in detail in Reference 11, where it is applied to nonabsorbing media. In the absence
of polarization degeneracy, refraction vectors of two basis waves, one forward propagating wave and
one backward propagating wave, satisfy the following equation:

1
𝜀b

m2
j +

1
2

(
1
𝜀a

− 1
𝜀c

){
(mj × c1)(mj × c2) +

√
(mj × c1)2(mj × c2)2

}
= 1. (9.89)

The refraction vectors of the other two basis waves satisfy another equation:

1
𝜀b

m2
j +

1
2

(
1
𝜀a

− 1
𝜀c

){
(mj × c1)(mj × c2) −

√
(mj × c1)2(mj × c2)2

}
= 1. (9.90)

Equations (9.89) and (9.90) are consistent with (8.73). The “raw” vectors hj for the waves satisfying
(9.89) can be calculated as

hj =
√

(mj × c2)2(mj × c1) +
√

(mj × c1)2(mj × c2), (9.91)

and for the waves satisfying (9.90) as

hj =
√

(mj × c2)2(mj × c1) −
√

(mj × c1)2(mj × c2). (9.92)

The vectors ej in this case can be calculated by the formula:

ej = −ε−1(mj × hj) j = 1,2,3,4.

Note that expressions (9.91) and (9.92) cannot be used when mjub = 0.

Program Implementation

In the library LMOPTICS, there are six subroutines intended for calculating the parameters of basis
waves in biaxial media. Here are their interfaces:

CALL BIAXLR (N1, N2, N3, PMIN, PMAX, X, YY, YI, NWAVE, NRM)
CALL BIAXLC (N1, A1, N2, A2, N3, A3, PMIN, PMAX, X, YY, YI, NWAVE, NRM)
CALL BIAXLFR (N1, N2, N3, PMIN, PMAX, X, EE, HH, NWAVE)
CALL BIAXLFC (N1, A1, N2, A2, N3, A3, PMIN, PMAX, X, EE, HH, NWAVE)
CALL BIAXSORT1R (N01, N02, N03, AA, BB, GG, N1, N2, N3, PMIN, PMAX)
CALL BIAXSORT1C (N01, A01, N02, A02, N03, A03, AA, BB, GG, N1, A1, N2, A2, N3, A3, PMIN,
PMAX)

The main routines for practical calculations are the standard-output routines BIAXLR and BIAXLC.
The output parameters of these routines are, as usual, the array of 𝜎j values (X(j)), matrix 𝚿 (YY),
and matrix 𝚿−1 (YI). The input parameters describing the medium in these routines are the principal
refractive indices na, nb, and nc, ordered so that Re(na) ≤ Re(nb) ≤ Re(nc) [see the paragraph with
equation (9.72)], and arrays of the coordinates of the vectors ua (PMIN) and uc (PMAX) in the system
(x, y, z). BIAXLR is a real-arithmetic routine, BIAXLC is a complex-arithmetic one (see Section 9.1).
The routine BIAXLR is applicable only to nonabsorbing media out of TIR mode. The routine BIAXLC
is free of these restrictions. BIAXLFR and BIAXLFC are full-output analogs of BIAXLR and BIAXLC,
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Figure 9.6 Specification of the orientation of the principal axes (u1, u2, u3) of the permittivity tensor
of a biaxial medium by using the Euler angles 𝛼, 𝛽, and 𝛾 . The Z–Y–Z convention is used

respectively. These routines return the arrays of the coordinates of the vectors ej (EE(:, j)) and hj (HH(:, j))
in the system (x, y, z). In BIAXLR and BIAXLFR, the input refractive indices are real: N1 = na, N2 = nb,
N3 = nc. In BIAXLC and BIAXLFC, the complex principal refractive indices are used: N1 = Re(na),
A1 = Im(na), N2 = Re(nb), A2 = Im(nb), N3 = Re(nc), A3 = Im(nc). Calculating 𝚿−1 from 𝚿 in BIAXLR
and BIAXLC is carried out by using formulas (9.8) and (9.13). The input parameters NWAVE and
NRM perform their usual functions (see Section 9.1). The subroutines BIAXSORT1R/BIAXSORT1C
and BIAXSORT2R/BIAXSORT2C facilitate preparing input data for routines BIAXLR/BIAXLC and
BIAXLFR/BIAXLFC. Let 𝛼, 𝛽, and 𝛾 be the Euler angles specifying the orientation of the principal axes
u1, u2, and u3 (the corresponding principal refractive indices, as before, are n1, n2, and n3) with respect
to the reference system (X, Y, Z) as shown in Figure 9.6. The subroutine BIAXSORT1R/BIAXSORT1C
calculates the coordinates of the vectors u1, u2, and u3 in the system (x, y, z) by the formulas

u1 =
⎛⎜⎜⎝
cos 𝛼′ cos 𝛽 cos 𝛾 − sin 𝛼′ sin 𝛾
sin 𝛼′ cos 𝛽 cos 𝛾 + cos 𝛼′ sin 𝛾

− sin 𝛽 cos 𝛾

⎞⎟⎟⎠xyz

,

u2 =
⎛⎜⎜⎝
−cos 𝛼′ cos 𝛽 sin 𝛾 − sin 𝛼′ cos 𝛾
− sin 𝛼′ cos 𝛽 sin 𝛾 + cos 𝛼′ cos 𝛾

sin 𝛽 sin 𝛾

⎞⎟⎟⎠xyz

, u3 =
⎛⎜⎜⎝
cos 𝛼′ sin 𝛽
sin 𝛼′ sin 𝛽

cos 𝛽

⎞⎟⎟⎠xyz

,

𝛼
′ = 𝛼 − 𝛼inc,

where, as before, 𝛼inc is the angle between XZ-plane and the plane of incidence (the xz-plane). Then, na,
nb, and nc are selected from the input set of the principal refractive indices (n1, n2, n3) (nonordered in
magnitude). The results are the ordered set of the principal refractive indices (na, nb, nc) and the arrays of
the coordinates of the vectors ua (PMIN) and uc (PMAX) in the system (x, y, z)—the parameters required
for the routines BIAXLR/BIAXLC and BIAXLFR/BIAXLFC. For BIAXSORT1R and BIAXSORT1C:
AA= 𝛼, BB= 𝛽, and GG= 𝛾 (input). For BIAXSORT1R: N01= n1, N02= n2, N03= n3 (input), N1= na,
N2=nb, N3=nc (output). For BIAXSORT1C: N01=Re(n1), A01= Im(n1), N02=Re(n2), A02= Im(n2),
N03 = Re(n3), A03 = Im(n3) (input), N1 = Re(na), A1 = Im(na), N2 = Re(nb), A2 = Im(nb), N3 =
Re(nc), A3 = Im(nc) (output).
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Examples and Numerical Tests

Tables 9.4 and 9.5 present two sample programs, test_biax1 and test_biax2 (the output parts of these
programs are omitted), for the routines described in this section. Either program calculates the EWB
parameters for a biaxial layer at oblique incidence; the light is assumed to fall on the layer from an
isotropic medium of refractive index 1. In test_biax1, the biaxial medium is nonabsorbing. In this
program, after specification of the input data, BIAXSORT1R is called to prepare the input data for
BIAXLR and BIAXLFR. Then, BIAXLR is called to calculate 𝜎j, 𝚿, and 𝚿−1. Further, the matrix T
= 𝚿−1𝚿 is computed to evaluate the calculation accuracy (the orthogonality test). Then, BIAXLFR
calculates 𝜎j (once again), ej, and hj. The program test_biax2 carries out the same calculations for an
absorbing biaxial layer using BIAXSORT1C, BIAXLC, and BIAXLFC.

Now we present results of several numerical tests performed with the use of these programs and their
slightly modified versions. In the tables we give the values of the same set of parameters as in the tests of
the preceding section. As in the previous examples, we estimate accuracy of calculated EWBs by using
the orthogonality test.

Tests 1–6 are for the routines BIAXLR and BIAXLFR. These examples illustrate some statements
made above concerning nonabsorbing biaxial media.

Test 1. Parameters: n1 = 1.7, n2 = 1.5, n3 = 1.6, 𝛼 = −10◦, 𝛽 = 75◦, 𝛾 = 0◦, 𝛽 inc = 45◦, 𝛼inc = –10◦. In
this case, the plane of incidence is perpendicular to the principal axis u2. In such a situation, the electric
vibration vectors of two basis waves, a forward propagating one and a backward propagating one, must
be parallel to u2. The parameter nwj for these waves must be equal to n2. The calculations gave the
following results.

j 1 2 3 4

𝜎j 1.479783 1.322876 −1.322876 −1.439101
nwj 1.640048 1.500000 1.500000 1.603438
e jx 0.926206 0.000000 0.000000 −0.906904
ejy 0.000000 1.000000 1.000000 0.000000
ejz −0.377018 0.000000 0.000000 −0.421338
[𝛿ort]BIAXLR 1.1 × 10−15

We see that two basis waves, namely, the second and third ones, meet the mentioned requirements: their
vectors e j are perpendicular to the plane of incidence (i.e., parallel to y) and consequently parallel to u2

and nw2 = nw3 = n2.

Test 2. Parameters: n1 = 1.7, n2 = 1.5, n3 = 1.6, 𝛼 = −10◦, 𝛽 = 75◦, 𝛾 = 90◦, 𝛽 inc = 45◦, 𝛼inc = −10◦.
This situation is similar to the previous one, but the permittivity tensor is rotated about the u3 axis by 90◦

relative to its orientation in the previous test. In this case, the plane of incidence is perpendicular to the
principal axis u1, and hence two basis waves must have e j ∥ y and nwj = n1. The calculation results are
as follows.

j 1 2 3 4

𝜎j 1.382301 1.545962 −1.430567 −1.545962
nwj 1.552661 1.700000 1.595783 1.700000
e jx −0.859099 0.000000 0.884489 0.000000
ejy 0.000000 −1.000000 0.000000 −1.000000
ejz 0.511809 0.000000 0.466560 0.000000
[𝛿ort]BIAXLR 7.8 × 10−16

We see that e2 ∥ y, e4∥ y, and nw2 = nw4 = n1.
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Table 9.4 Usage of routines BIAXLR, BIAXLFR, and BIAXSORT1R

Program test_biax1 Comments

program test_biax1

use OPTSM_1

use MTWFIR

real(8) BETA_inc,ALFA_inc

real(8) N01,N02,N03,AA,BB,GG

real(8) N1,N2,N3,PMIN(3),PMAX(3)

complex(8) X(4)

real(8) YY(4,4),YI(4,4),T(4,4),EE(3,4),HH(3,4)

integer(4) NWAVE,NRM

NWAVE=4 ! calculation for 4 basis waves

NRM=3 ! normalization type

! Incident light parameters

BETA_inc=45.0_8*PI3 !polar angle of incidence

ALFA_inc=30.0_8*PI3 !azimuthal angle of incidence

! PI3=PI/180
MT=sin(BETA_inc) ! PI3, MT and FIR are global

FIR=ALFA_inc ! variables declared in MTWFIR

! Parameters of the layer

! The principal refractive indices

N01=1.7_8; N02=1.5_8; N03=1.6_8

! Orientation of the principal axes (Euler angles)

AA=-10.0_8*PI3; BB=75.0_8*PI3; GG=20.0_8*PI3

! Preparing the input data for BIAXLR/BIAXLFR

call BIAXSORT1R(N01,N02,N03,AA, &

BB,GG,N1,N2,N3,PMIN,PMAX)

! Calling BIAXLR

call BIAXLR(N1,N2,N3,PMIN,PMAX,X,YY,YI,NWAVE,NRM)

! Accuracy check

T=matmul(YI,YY)

! Calling BIAXLFR

call BIAXLFR(N1,N2,N3,PMIN,PMAX,X,EE,HH,NWAVE)

...

end program test_biax1

𝛽 inc (rad)
𝛼inc (rad)

MT = 𝜁
FIR = 𝛽 inc

n1, n2, n3

𝛼, 𝛽, 𝛾 (rad)

𝜎j = X(j)

𝚿 = YY, 𝚿−1 = YI

T = 𝚿−1𝚿

ej = EE(:,j)

hj = HH(:,j)
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Table 9.5 Usage of routines BIAXLC, BIAXLFC, and BIAXSORT1C

Program test_biax2 Comments

program test_biax2

use OPTSM_1

use MTWFIR

real(8) BETA_inc,ALFA_inc

real(8) N01,N02,N03,A01,A02,A03,AA,BB,GG

real(8) N1,N2,N3,A1,A2,A3,PMIN(3),PMAX(3)

complex(8) X(4),YY(4,4),YI(4,4),T(4,4)

complex(8) EE(3,4),HH(3,4)

integer(4) NWAVE,NRM

NWAVE=4 ! calculation for 4 basis waves

NRM=3 ! normalization type

! Incident light parameters

BETA_inc=45.0_8*PI3 !polar angle of incidence

ALFA_inc=30.0_8*PI3 !azimuthal angle of incidence

! PI3=PI/180
MT=sin(BETA_inc) ! PI3, MT and FIR are global

FIR=ALFA_inc ! variables declared in MTWFIR

! Parameters of the layer

! Real parts of the principal refractive indices

N01=1.7_8; N02=1.5_8; N03=1.6_8

! Imaginary parts of the principal refractive indices

A01=0.01_8; A02=0.02_8; A03=0.03_8

! Orientation of the principal axes (Euler angles)

AA=-10.0_8*PI3; BB=75.0_8*PI3; GG=20.0_8*PI3

! Preparing the input data for BIAXLC/BIAXLFC

call BIAXSORT1C(N01,A01,N02,A02,N03,A03,AA,BB,GG, &

N1,A1,N2,A2,N3,A3,PMIN,PMAX)

! Calling BIAXLC

call BIAXLC(N1,A1,N2,A2,N3,A3,PMIN,PMAX,X,YY,YI, &

NWAVE, NRM)

! Accuracy check

T = matmul(YI,YY)

! Calling BIAXLFC

call BIAXLFC(N1,A1,N2,A2,N3,A3,PMIN,PMAX,X,EE,HH, &

NWAVE)

...

end program test_biax2

𝛽 inc (rad)
𝛼inc (rad)

MT = 𝜁
FIR = 𝛽 inc

Re(n1), Re(n2),
Re(n3)

Im(n1), Im(n2),
Im(n3)

𝛼, 𝛽, 𝛾 (rad)

𝜎j = X(j)

𝚿 = YY, 𝚿−1 = YI

T = 𝚿−1 𝚿

ej = EE(:,j)

hj = HH(:,j)
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Test 3. Parameters: n1 = 1.7, n2 = 1.5, n3 = 1.6, 𝛼 = −10◦, 𝛽 = 75◦, 𝛾 = 0◦, 𝛽 inc = 45◦, 𝛼inc = 30◦. In
this case, the layer has the same parameters as in Test 1, but the plane of incidence is nonparallel to the
u3-z plane, which is the plane of symmetry of the layer.

j 1 2 3 4

𝜎j 1.471356 1.335977 −1.339830 −1.436338
nwj 1.632449 1.511567 1.514973 1.600958
e jx 0.790483 0.474030 0.530222 0.736471
ejy −0.525600 0.858488 0.821978 −0.579772
ejz −0.314454 −0.195690 0.207887 0.348530
[𝛿ort]BIAXLR 4.3 × 10−14

Test 4. Parameters: n1 = 1.7, n2 = 1.5, n3 = 1.6, 𝛼 = −10◦, 𝛽 = 75◦, 𝛾 = 20◦, 𝛽 inc = 45◦, 𝛼inc = 30◦.
In contrast to the previous tests, in this case, the permittivity tensor is oriented so that the layer has no
symmetry plane.

j 1 2 3 4

𝜎j 1.486063 1.362524 −1.323153 −1.436189
nwj 1.645716 1.535081 1.500245 1.600824
e jx 0.913173 0.188982 0.553433 0.700218
ejy −0.196791 0.981830 0.774905 −0.631683
ejz −0.356916 −0.017200 0.305342 0.332672
[𝛿ort]BIAXLR 2.2 × 10−14

As can be seen from the results of Tests 3 and 4, the nwj value for one forward (backward) propagating
basis wave lies between na (in this case na = n2) and nb (n3), while that for the other forward (backward)
propagating basis wave lies between nb and nc (n1), although these waves are not equinormal.

Test 5. Parameters: n1 = 1.7, n2 = 1.5, n3 = 1.6, 𝛼 = −10◦, 𝛽 = 0◦, 𝛾 = 0◦, 𝛽 inc = 45◦, 𝛼inc = 30◦. In this
case, equation (9.74) is biquadratic (because u3 ∥ z).

j 1 2 3 4

𝜎j 1.533145 1.332914 −1.533145 −1.332914
nwj 1.688352 1.508861 1.688352 1.508861
e jx 0.681029 0.580653 0.681029 0.580653
ejy −0.638554 0.769586 −0.638554 0.769586
ejz −0.358399 −0.265666 0.358399 0.265666
[𝛿ort]BIAXLR 3.1 × 10−15

Test 6. Parameters: n1 = 1.7, n2 = 1.5, n3 = 1.55, 𝛼 = 0◦, 𝛽 = 90◦, 𝛾 = 0◦, 𝛽 inc = 56.082206◦, 𝛼inc = 90◦.
Here the orientation of the principal axes and the propagation direction of the incident light are chosen
so that polarization degeneracy takes place for both forward and backward propagating basis waves. For
the given orientation of the principal axes, the value of 𝛽 inc for which the polarization degeneracy occurs
can be calculated by the formula

sin 𝛽inc = 𝜁 =

√
𝜀c(𝜀b − 𝜀a)

𝜀c − 𝜀a

.
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This formula can easily be derived from (9.73).

j 1 2 3 4

𝜎j 1.309147 1.309147 −1.309147 1.309147
nwj 1.550000 1.550000 1.550000 1.550000
e jx 0.000000 −0.896745 0.000000 0.896745
ejy 1.000000 0.000000 1.000000 0.000000
ejz 0.000000 0.442547 0.000000 0.442547
[𝛿ort]BIAXLR 1.4 × 10−17

One can see that in this case, as in the above examples, the orthogonality test shows a very good
accuracy of the results. Considering this example, one can demonstrate that the electric vibration vector
of a wave propagating along an optic axis of a biaxial medium, in contrast to the case of a uniaxial
medium, may be nonperpendicular to the refraction vector of this wave (this fact is closely related to
the conical refraction phenomenon [3, 8]). In this example, |m2e2| = |m4e4| ≈ 0.165 (while |m1e1| =
|m3e3| = 0).

The next five tests demonstrate capabilities of the routines BIAXLC and BIAXLFC. Tests 7, 8, and 9
are similar to Tests 1, 4, and 5, respectively. But, in Tests 7–9, the media are absorbing.

Test 7. Parameters: n1 = 1.7 + i0.01, n2 = 1.5 + i0.02, n3 = 1.6 + i0.03, 𝛼 = −10◦, 𝛽 = 75◦,
𝛾 = 0◦, 𝛽 inc = 45◦, 𝛼inc = −10◦

j 1 2 3 4

𝜎j 1.479783 +
i0.024199

1.322919 +
i0.022677

−1.322919 −
i0.022677

−1.439109 −
i0.032384

e jx 0.926036 −
i0.015570

0.000000 +
i0.000000

0.000000 +
i0.000000

−0.905246 −
i0.054420

ejy 0.000000 +
i0.000000

0.999980 −
i0.006321

0.997945 +
i0.064074

0.000000 +
i0.000000

ejz −0.377114 −
i0.000341

0.000000 +
i0.000000

0.000000 +
i0.000000

−0.420847 −
i0.021337

[𝛿ort]BIAXLC 8.9 × 10−16

Test 8. Parameters: n1 = 1.7 + i0.01, n2 = 1.5 + i0.02, n3 = 1.6 + i0.03, 𝛼 = −10◦, 𝛽 = 75◦, 𝛾 = 20◦,
𝛽 inc = 45◦, 𝛼inc = 30◦

j 1 2 3 4

𝜎j 1.485810 +
i0.021638

1.362834 +
i0.024591

−1.323197 −
i0.022731

−1.436234 −
i0.033134

e jx 0.910234 −
i0.062778

0.189632 +
i0.032690

0.551827 +
i0.042362

0.697578 +
i0.060792

ejy −0.197986 −
i0.034072

0.979577 −
i0.053664

0.772688 +
i0.058277

−0.629571 −
i0.051164

ejz −0.356267 +
i0.015709

−0.017262 −
i0.014874

0.304783 +
i0.018899

0.331842 +
i0.024358

[𝛿ort]BIAXLC 3.6 × 10−14
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Test 9. Parameters: n1 = 1.7 + i0.01, n2 = 1.5 + i0.02, n3 = 1.6 + i0.03, 𝛼 = −10◦, 𝛽 = 0◦, 𝛾 = 0◦,
𝛽 inc = 45◦, 𝛼inc = 30◦

j 1 2 3 4

𝜎j 1.533237 +
i0.013927

1.332992 +
i0.023173

−1.533237 −
i0.013927

−1.332992 −
i0.023173

e jx 0.680042 −
i0.037399

0.580250 −
i0.024842

0.680042 −
i0.037399

0.580250 −
i0.024842

ejy −0.636761 +
i0.048522

0.769146 −
i0.023671

−0.636761 +
i0.048522

0.769146 −
i0.023671

ejz −0.356695 +
i0.033069

−0.264920 +
i0.019105

0.356695 −
i0.033069

0.264920 −
i0.019105

[𝛿ort]BIAXLC 1.8 × 10−16

Tests 10 and 11 are for TIR mode. These tests are analogous to Tests 7 and 8 of the previous section.

Test 10. Parameters: n1 = 1.7 + i0.01, n2 = 1.5 + i0.02, n3 = 1.6 + i0.03, 𝛽 = 75◦, 𝛾 = 20◦, 𝜁 = 1.72,
𝛼inc = 30◦

j 1 2 3 4

𝜎j 0.066110 +
i0.782840

0.140982 +
i0.339907

0.033223 −
i0.372330

−0.023307 −
i0.773859

e jx −0.008543 −
i0.102671

0.033813 +
i0.216910

−0.092710 −
i0.197237

0.007271 +
i0.111808

ejy 0.937125 +
i0.180130

0.214285 −
i0.057628

0.234671 +
i0.055841

0.865560 −
i0.391104

ejz 0.258040 −
i0.110231

−0.949999 +
i0.008330

−0.917392 +
i0.229576

0.269966 +
i0.111393

[𝛿ort]BIAXLC 4.8 × 10−10

Test 11. Parameters: n1 = 1.7, n2 = 1.5, n3 = 1.6, 𝛽 = 75◦, 𝛾 = 20◦, 𝜁 = 1.72, 𝛼inc = 30◦

j 1 2 3 4

𝜎j 0.021740 +
i0.777081

0.086801 +
i0.350181

0.086801 −
i0.350181

0.021740 −
i0.777081

e jx −0.000594 −
i0.107201

−0.029884 +
i0.210857

−0.029884 −
i0.210857

−0.000594 +
i0.107201

ejy 0.908503 +
i0.285266

0.224866 −
i0.055035

0.224866 +
i0.055035

0.908503 −
i0.285266

ejz 0.264031 −
i0.109730

−0.942849 −
i0.109945

−0.942849 +
i0.109945

0.264031 +
i0.109730

[𝛿ort]BIAXLC 7.2 × 10−10

As is seen from the results of the orthogonality test, the accuracy of the calculated values of the EWB
parameters in these examples is also very good.
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10
Efficient Methods for Calculating
Optical Characteristics of Layered
Systems for Quasimonochromatic
Incident Light. Main Routines of
LMOPTICS Library

If we wish to simulate with the highest possible accuracy a spectral experiment in which the characteristics
of the overall transmission or overall reflection of a layered system including one or more “thick” layers1

are measured (such as the experiment with LC cells that was described in Section 6.2 or the experiment
with ITO-coated and uncoated glass substrates whose results are shown in Figure 7.5), we are faced with
the necessity of taking account of multiple reflections from interfaces of “thick” layers and “thin” layered
systems adjacent to them. Such multiple reflections give rise to dense interference oscillations in the
spectra of the monochromatic overall transmittance and reflectance (and corresponding Mueller matrices)
of the approximating medium for the layered system (which can be calculated by using the methods
described in Chapter 8) but cannot give any noticeable interference pattern in experimental spectra of the
overall transmittance and reflectance of the system because the measured quantities in fact characterize the
interaction with the system not monochromatic but quasimonochromatic incident light with a coherence
length less than thicknesses of “thick” layers (see Section 7.1). One of the ways to make the model spectra
realistic is the spectral averaging of the monochromatic transmittance/reflectance (see Section 7.1).
However, as we have noted, for such complex layered systems as LCDs the spectral averaging method is
rather expensive computationally. In this section, we discuss an approach leading to much faster methods
of calculating realistic transmission and reflection spectra of layered systems consisting of “thin” and
“thick” layers. This approach exploits features of quasimonochromatic light propagation in layered
systems and allows treating coherent and incoherent interactions between different fractions of light
propagating in the layered system with equal ease. The underlying theory is presented in Section 10.1.
There are many practical situations connected with optimization of LCDs and characterization of elements

1 see Section 7.1.
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of LCDs where this theory can be useful. In Section 10.2, we consider two efficient computational
methods derived from this theory and a few examples of their application to LC devices.

In Section 10.3, we proceed with description of the main routines of LMOPTICS library which helps
to implement optical methods described in Chapter 8 and this chapter in modeling programs.

10.1 EW Stokes Vectors and EW Mueller Matrices

EW Stokes Vectors

To begin with we consider, as in Section 8.1.3, the layered structure shown in Figure 8.3, that is, a
1D-inhomogeneous medium MSM sandwiched between two semi-infinite homogeneous media Minc and
Mtr, the medium Minc being nonabsorbing and isotropic. Here, for the sake of simplicity, we assume that
the refractive index of Minc is equal to 1. Let a quasimonochromatic plane wave Xinc with electric field

Einc(r, t) = Einc

(mincr
c

− t
)

, (10.1)

where the refraction vector minc is real, and the length of coherence lcoh fall on MSM from Minc. Since the
refractive index of Minc is assumed to be equal to unity, minc = linc, where linc is the wave normal of Xinc.
Let �̃� be the mean wavelength of Xinc and let Ω

𝜆
= [�̃� − Δ𝜆/2, �̃� + Δ𝜆∕2] (Δ𝜆 ≪ �̃�, lcoh ≈ �̃�

2∕Δ𝜆) be
the effective spectral range of Xinc. Let {mj(z; �̃�), ej(z; �̃�), hj(z; �̃�)} (j = 1,2,3,4) be an eigenwave basis
for harmonic wave fields of the form (8.57) with

b = linc − z(z ⋅ linc)

and𝜔 = 2𝜋c∕�̃�, that is, for fields that can be generated in MSM, Minc, and Mtr by incident plane monochro-
matic waves with wave normal linc and wavelength �̃�. Neglecting the variation of the optical constants
of the media within the range Ω

𝜆
, we may use this eigenwave basis for all harmonic components of Xinc.

By doing so, we can represent any forward propagating field X↓ generated by Xinc, in any plane z = 𝜉

within the domain where X↓ propagates, as follows:

(
E(r

𝜉
, t)

H(r
𝜉
, t)

)
=

2∑
j=1

(
ej(𝜉; �̃�)

hj(𝜉; �̃�)

)
aj

↓(r
𝜉
, t), (10.2)

r
𝜉
= (x, y, 𝜉). The analogous representation of a backward propagating field X↑ generated by Xinc and

passing through the plane z = 𝜉 is

(
E(r

𝜉
, t)

H(r
𝜉
, t)

)
=

2∑
j=1

(
ej+2(𝜉; �̃�)

hj+2(𝜉; �̃�)

)
aj

↑(r
𝜉
, t). (10.3)

If the plane z = 𝜉 lies within a homogeneous layer, each term of these decompositions characterizes a
corresponding plane quasimonochromatic wave. These representations allow us to introduce, by analogy
with usual Stokes vectors for quasimonochromatic fields, the following characteristics of the fields X↓

and X↑:

S↓(𝜉) = S↓(r
𝜉
) ≡ L

⟨
a↓(r

𝜉
, t)⊗ a↓(r

𝜉
, t)∗

⟩
,

S↑(𝜉) = S↑(r
𝜉
) ≡ L

⟨
a↑(r

𝜉
, t)⊗ a↑(r

𝜉
, t)∗

⟩
,

(10.4)



JWST441-c10 JWST441-Yakovlev Printer: Markono December 29, 2014 8:1 Trim: 244mm × 170mm

Modeling Methods for Quasimonochromatic Light 369

where

a↓(r
𝜉
, t) ≡

(
a1

↓(r
𝜉
, t)

a2
↓(r

𝜉
, t)

)
, a↑(r

𝜉
, t) ≡

(
a1

↑(r
𝜉
, t)

a2
↑(r

𝜉
, t)

)
, (10.5)

L =

⎛⎜⎜⎜⎜⎝
1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0

⎞⎟⎟⎟⎟⎠
; (10.6)

the brackets ⟨ ⟩ denote time averaging, and ⊗ denotes the Kronecker matrix multiplication (see Section
5.1.5). In an explicit form,

S↓(𝜉) =

⎛⎜⎜⎜⎜⎝

⟨
a1

↓(r
𝜉
, t)a1

↓(r
𝜉
, t)∗

⟩
+
⟨

a2
↓(r

𝜉
, t)a2

↓(r
𝜉
, t)∗

⟩⟨
a1

↓(r
𝜉
, t)a1

↓(r
𝜉
, t)∗

⟩
−
⟨

a2
↓(r

𝜉
, t)a2

↓(r
𝜉
, t)∗

⟩
2 Re

⟨
a1

↓(r
𝜉
, t)a2

↓(r
𝜉
, t)∗

⟩
2 Im

⟨
a1

↓(r
𝜉
, t)a2

↓(r
𝜉
, t)∗

⟩
⎞⎟⎟⎟⎟⎠

,

S↑(𝜉) =

⎛⎜⎜⎜⎜⎝

⟨
a1

↑(r
𝜉
, t)a1

↑(r
𝜉
, t)∗

⟩
+
⟨

a2
↑(r

𝜉
, t)a2

↑(r
𝜉
, t)∗

⟩⟨
a1

↑(r
𝜉
, t)a1

↑(r
𝜉
, t)∗

⟩
−
⟨

a2
↑(r

𝜉
, t)a2

↑(r
𝜉
, t)∗

⟩
2 Re

⟨
a1

↑(r
𝜉
, t)a2

↑(r
𝜉
, t)∗

⟩
2 Im

⟨
a1

↑(r
𝜉
, t)a2

↑(r
𝜉
, t)∗

⟩
⎞⎟⎟⎟⎟⎠

[cf. (5.83)]. We will call the column-vectors S↓ and S↑ the EW Stokes vectors (eigenwave Stokes vectors)
of the fields X↓ and X↑. In (10.4) we used and expressed the fact that the vector S↓, as well as S↑, has
a constant value in all points of the plane z = 𝜉, which is due to spatial invariance of time-averaged
local characteristics of the incident wave Xinc. Like usual Stokes vector, EW Stokes vector is real and
is an additive characteristic for mutually incoherent wave fields. The use of EW Stokes vector as traced
characteristic (see Sections 7.1 and 7.2) is a key feature of the methods described in Section 10.2.

Spectral Representation of EW Stokes Vectors

Let Sinc and S
𝜆 inc(𝜆) be respectively the EW Stokes vector of the wave Xinc and the spectral density of

this Stokes vector. By definition,

Sinc = ∫
S
𝜆 inc(𝜆)d𝜆. (10.7)

Let X be a forward or backward propagating wave field produced by Xinc in MSM, Minc, or Mtr. Using
the symbolic notation introduced in Section 7.1, we may express the relationship between Xinc and X as
X = OXinc, where O is the corresponding operation. Denote the EW Stokes vector of the wave field X
by S{X} and the spectral density of this vector by S

𝜆
{X; 𝜆}. Let t̃O(𝜆) be the EW Jones matrix of the

operation O for incident monochromatic plane waves with wave normal linc and wavelength 𝜆 ∈ Ω
𝜆
, that

is, for an incident wave X
𝜆 inc of this kind

a
𝜆 out = t̃O(𝜆)a

𝜆 inc, (10.8)
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where a
𝜆 inc and a

𝜆 out are the EW Jones vectors of the fields X
𝜆 inc and X

𝜆 out = OX
𝜆 inc, respectively. The

matrix t̃O(𝜆) is assumed to be calculated using the chosen EW basis (for 𝜆 = �̃�) at least in the domains
where X

𝜆 inc and X
𝜆 out travel. The EW Stokes vectors of the fields X

𝜆 inc and X
𝜆 out may be expressed as

S{X
𝜆 inc} = L

(
a
𝜆 inc ⊗ a∗

𝜆 inc

)
, (10.9)

S{X
𝜆 out} = L

(
a
𝜆 out ⊗ a∗

𝜆 out

)
. (10.10)

Substituting (10.8) into (10.10) gives

S{X
𝜆 out} = L

[
(t̃O(𝜆)a

𝜆 inc)⊗
(
t̃O(𝜆)∗a∗

𝜆 inc

)]
= L

(
t̃O(𝜆)⊗ t̃O(𝜆)∗

) (
a
𝜆 inc ⊗ a∗

𝜆 inc

)
= L

(
t̃O(𝜆)⊗ t̃O(𝜆)∗

)
L−1L

(
a
𝜆 inc ⊗ a∗

𝜆 inc

)
= L

(
t̃O(𝜆)⊗ t̃O(𝜆)∗

)
L−1S{X

𝜆 inc},
(10.11)

where matrix identity (5.70) and expression (10.9) have been used. As is seen from (10.11), the EW
Mueller matrix M̃O(𝜆) relating the EW Stokes vectors of the waves X

𝜆 inc and X
𝜆 out as

S{X
𝜆 out} = M̃O(𝜆)S{X

𝜆 inc} (10.12)

can be expressed as follows:

M̃O(𝜆) = L
(
t̃O(𝜆)⊗ t̃O(𝜆)∗

)
L−1

. (10.13)

Notation. Let t be a 2×2 matrix. By T̃{t} we will denote the 4×4 matrix calculated as

T̃{t} = L(t⊗ t∗)L−1
. (10.14)

It is customary to call a Mueller matrix that can be represented as T̃{t}, where t is a Jones matrix, a
Mueller–Jones matrix. Note the following property of the transformation t → T̃{t}:

T̃{tN}… T̃{t2}T̃{t1} = T̃{tN … t2t1}, (10.15)

where t1, t2, . . . , tN are arbitrary 2× 2 matrices.
Using notation (10.14), we may rewrite expression (10.13) as follows:

M̃O(𝜆) = T̃{t̃O(𝜆)}. (10.16)

Relation (10.12) applies to corresponding monochromatic components of the fields Xinc and X. There-
fore, the spectral density of the vector S{X} can be expressed in terms of the spectral density of Sinc as

S
𝜆

{X; 𝜆} = M̃O(𝜆)S
𝜆 inc(𝜆). (10.17)

Using (10.17) and the equation

S{X} =
∫

S
𝜆
{X; 𝜆}d𝜆, (10.18)

we may express the vector S{X} as

S{X} =
∫

M̃O(𝜆)S
𝜆 inc(𝜆)d𝜆. (10.19)
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If the spectral density S
𝜆 inc(𝜆) can be represented in the form

S
𝜆 inc(𝜆) = g(𝜆)Sinc, (10.20)

where g(𝜆) is the spectral form-factor of the wave Xinc [g(𝜆) is a scalar function such that ∫ g(𝜆)d𝜆 = 1],
which is a common situation, equation (10.19) can be rewritten as follows:

S{X} = MOSinc, (10.21)

where

MO =
∫

M̃O(𝜆)g(𝜆)d𝜆 =
∫

T̃{t̃O(𝜆)}g(𝜆)d𝜆 (10.22)

is the EW Mueller matrix of the operation O for incident quasimonochromatic waves with the given
spectral form-factor.

Similarly, if the wave field X propagates within MSM and a wave field X′ is the result of an operation
O′ on X, the spectral densities of the EW Stokes vectors S{X} and S{X′} are related by

S
𝜆
{X′; 𝜆} = M̃O′ (𝜆)S

𝜆
{X; 𝜆} , (10.23)

where

M̃O′ (𝜆) = T̃{t̃O′ (𝜆)} (10.24)

with t̃O′ (𝜆) being the corresponding EW Jones matrix of the operation O′. Note also the following
representations of the spectral density S

𝜆
{X′; 𝜆}:

S
𝜆
{X′; 𝜆} = M̃O′ (𝜆)M̃O(𝜆)S

𝜆 inc(𝜆), (10.25)

S
𝜆
{X′; 𝜆} = T̃{t̃O′ (𝜆)t̃O(𝜆)}S

𝜆 inc(𝜆). (10.26)

From (10.23) and the equation

S{X′} =
∫

S
𝜆
{X′; 𝜆}d𝜆, (10.27)

we have the following expression for S{X′}:

S{X′} =
∫

M̃O′ (𝜆)S
𝜆
{X; 𝜆}d𝜆. (10.28)

Monochromatic Approximation for EW Mueller Matrices

If the variations of the matrix M̃O′ (𝜆) within the region Ω
𝜆

are negligible or absent, we may replace
M̃O′ (𝜆) in (10.28), in the former case to some approximation, by M̃O′ (�̃�) to obtain

S{X′} = M̃O′ (�̃�)
∫

S
𝜆
{X; 𝜆}d𝜆 =M̃O′ (�̃�)S{X} (10.29)
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[see (10.18)]. This means that the EW Mueller matrix MO′ linking the vectors S{X} and S{X′},

S{X′} = MO′S{X}, (10.30)

can be estimated as

MO′ = M̃O′ (�̃�). (10.31)

In Section 7.1, such estimation of operators for quasimonochromatic light has been called the monochro-
matic approximation.

Let us consider some situations where the monochromatic approximation gives acceptable results.
The quasimonochromatic EW Mueller matrices corresponding to operations T↓, R↓, T↑, and R↑ will be
denoted by  ↓, ↓,  ↑, and ↑. Recall that the variations of the optical constants of the media within
the region Ω

𝜆
are assumed to be negligible.

1. An interface. Let the plane z = z coincide with an interface. Since the chosen EW basis is common
for all 𝜆 ∈ Ω

𝜆
, according to (8.217a) and (8.121), for all 𝜆 ∈ Ω

𝜆

t↓(z − 0, z + 0; 𝜆) = t↓(z − 0, z + 0; �̃�),

and similarly for r↓(z − 0, z + 0; 𝜆), t↑(z − 0, z + 0; 𝜆), and r↑(z − 0, z + 0; 𝜆). Therefore, according to
(10.28) and (10.29),

 ↓(z − 0, z + 0) = T̃
{

t↓(z − 0, z + 0; �̃�)
}

, (10.32)

and similarly for the pairs (↓, r↓), ( ↑, t↑), and (↑, r↑).
2. Bulk of a homogeneous layer. Let a domain (z′, z′′) be the bulk of a homogeneous layer. The trans-

mission EW Jones matrices of this domain can be expressed as

t↓(z′, z′′) =
⎛⎜⎜⎝

ei
2𝜋�̄�1d
𝜆 0

0 ei
2𝜋�̄�2d
𝜆

⎞⎟⎟⎠ , t↑(z′, z′′) =
⎛⎜⎜⎝

e−i
2𝜋�̄�3d
𝜆 0

0 e−i
2𝜋�̄�4d
𝜆

⎞⎟⎟⎠ , (10.33)

where �̄�j ≡ 𝜎j(z
′) = 𝜎j(z

′′) and d is the thickness of the layer. If the layer is isotropic (�̄�1 = �̄�2 =
−�̄�3 = −�̄�4), t↑(z′, z′′) = t↓(z′, z′′) and hence  ↑(z′, z′′) =  ↓(z′, z′′). According to (10.28), (10.24),
and (10.33),
(a) if the layer is isotropic and nonabsorbing (Im(�̄�j) = 0),2

 ↑(z′, z′′) =  ↓(z′, z′′) = T̃
{

t↓(z′, z′′; �̃�)
}
= U; (10.34)

(b) if the layer is isotropic and absorbing, to a good approximation,

 ↑(z′, z′′) =  ↓(z′, z′′) ≈ T̃
{

t↓(z′, z′′; �̃�)
}
= U exp

[
−4𝜋Im(�̄�1)d∕�̃�

]
; (10.35)

(c) if the layer is anisotropic and

lcoh ≫ |Re(𝜎2 − 𝜎1)|d, |Re(𝜎4 − 𝜎3)|d, (10.36)

2 The conditions of the problem under consideration do not allow the realization of TIR mode in any layer.
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to a good approximation,

 ↓(z′, z′′) ≈ T̃
{

t↓(z′, z′′; �̃�)
}

,  ↑(z′, z′′) ≈ T̃
{

t↑(z′, z′′; �̃�)
}
. (10.37)

3. Bulk of a smoothly inhomogeneous layer. Let a domain (z′, z′′) be the bulk of a smoothly inhomoge-
neous layer with negligible bulk reflection. An analysis of expressions of Chapter 11 for transmission
EW Jones matrices of such layers shows that in this case approximation (10.37) is accurate when

lcoh ≫ ∫

z′′

z′
|Re(𝜎2(z) − 𝜎1(z))|dz, lcoh ≫ ∫

z′′

z′
|Re(𝜎4(z) − 𝜎3(z))|dz. (10.38)

To our knowledge, anisotropic layers for which conditions (10.36) and (10.38) are violated are not
used in LCD panels. So, in what follows, we exclude such layers from consideration.

4. A “thin” layered system. We have noted in Section 7.1 that the monochromatic approximation can be
used for estimating the quasimonochromatic Mueller matrices of “thin” layered systems. This applies
to the EW Mueller matrices as well. A more accurate criterion of applicability of the monochromatic
approximation to a layered system than dsys ≪ lcoh, where dsys is the thickness of the system, is

lcoh ≫ ∫

z̄

z

𝜎max(z)dz, (10.39)

where 𝜎max(z) ≡ max
j

{|Re𝜎j(z)|}, and z and z̄ (z̄ = z + dsys) are the z-coordinates of the external

interfaces of the system. It can be seen from (10.39) that for situations typical of LCDs the simpler
criterion dsys ≪ lcoh is quite good. The monochromatic approximation in this case gives the following
computational formulas for the quasimonochromatic EW Mueller matrices:

 ↓(z − 0, z̄ + 0) = T̃
{

t↓(z − 0, z̄ + 0; �̃�)
}

, ↓(z − 0, z̄ + 0) = T̃
{

r↓(z − 0, z̄ + 0; �̃�)
}

,

 ↑(z − 0, z̄ + 0) = T̃
{

t↑(z − 0, z̄ + 0; �̃�)
}

, ↑(z − 0, z̄ + 0) = T̃
{

r↑(z − 0, z̄ + 0; �̃�)
}
.

(10.40)

A Simple Example of Using the Additivity of EW Stokes Vectors for Mutually
Incoherent Wave Fields

If a forward or backward propagating wave field X produced by the wave Xinc in MSM, Minc, or Mtr is the
superposition of mutually incoherent fields X1 = O1Xinc and X2 = O2Xinc,

S{X} ≡ S{X1 + X2} = S{X1} + S{X2} = MO1
Sinc + MO2

Sinc = (MO1
+ MO2

)Sinc, (10.41)

where MO1
and MO2

are the quasimonochromatic EW Mueller matrices of the operations of O1 and O2,
respectively. This means that the matrix MO1+O2

linking the vectors Sinc and S{X} as

S{X} = MO1+O2
Sinc (10.42)

can be calculated as follows:

MO1+O2
= MO1

+ MO2
. (10.43)

This property is useful when the matrices MO1
and MO2

can be calculated using the monochromatic
approximation. For example, estimating the partial transmittance being measured in the situation shown
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in Figure 7.6b, we can calculate the approximating EW Mueller matrix of the combined channel Mt1 +
Mt2 (see the discussion of this situation in Section 7.1) by the formulas

MMt1+Mt2
= MMt1

+ MMt2
,

MMt1
= T̃{t↓(z1 − 0, z1 + 0; �̃�)t↓(z0 + 0, z1 − 0; �̃�)t↓(z0 − 0, z0 + 0; �̃�)},

MMt2
= T̃{t↓(z1 − 0, z1 + 0; �̃�)t↓(z0 + 0, z1 − 0; �̃�)r↑(z0 − 0, z0 + 0; �̃�) (10.44)

⋅t↑(z0 + 0, z1 − 0; �̃�)r↓(z1 − 0, z1 + 0; �̃�)

⋅t↓(z0 + 0, z1 − 0; �̃�)t↓(z0 − 0, z0 + 0; �̃�)}

in all cases where the quasimonochromatic EW Mueller matrices for the bulk of the layer,  ↓(z0 + 0, z1 −
0) and  ↑(z0 + 0, z1 − 0), can be estimated as

 ↓(z0 + 0, z1 − 0) = T̃
{

t↓(z0 + 0, z1 − 0; �̃�)
}

,

 ↑(z0 + 0, z1 − 0) = T̃
{

t↑(z0 + 0, z1 − 0; �̃�)
}
.

(10.45)

Relationship Between EW Stokes Vectors and Other Types of Stokes Vectors for
Quasimonochromatic Plane Waves in Nonabsorbing Isotropic Media

In order to use the plane wave approximation (7.36) we need to find the Mueller matrix relating irradiance-
based Stokes vectors (see Section 5.3). It is sometimes necessary to find the intensity-based Stokes vector
of an emergent wave. It is often convenient to specify the incident wave by its intensity-based Stokes
vector. To use EW Mueller matrices and EW Stokes vectors in such cases we need to know the relationship
between EW Stokes vectors and the mentioned types of Stokes vectors for waves in isotropic media.
Let X be a wave propagating in an isotropic nonabsorbing domain M of the Minc–MSM–Mtr system, for
example, it may be the incident wave Xinc, or a reflected wave propagating in the medium Minc, or a
transmitted wave propagating in Mtr if Mtr is isotropic and nonabsorbing. Let the eigenwave basis in M
be chosen in the standard manner (as in Section 9.2) and let the polarization reference axis (see Section
5.3) for Stokes vectors S(E){X}and S(I){X} be chosen parallel to e1 if X is forward propagating or to e3

otherwise. Then the following relations hold:

(a) in the case of the flux normalization (8.164) or symmetrical normalization (8.167) of the EW basis
in M

S(E){X} = c
16𝜋

S{X}, (10.46)

S(I){X} = c
16𝜋 |lz|S{X}, (10.47)

(b) in the case of the electrical normalization (8.164)

S(E){X} = cn |lz|
8𝜋

S{X}, (10.48)

S(I){X} = cn
8𝜋

S{X}, (10.49)

where l is the wave normal of X and n is the refractive index of M.
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If Xref = RXinc is a reflected wave propagating in Minc, and MR(E) and MR are Mueller matrices such
that

S(E){Xref} = MR(E)S(E){Xinc}, (10.50)

S{Xref} = MRS{Xinc}, (10.51)

according to (10.46) and (10.48), with any of the three types of normalization in Minc

MR(E) = MR. (10.52)

Assume that the medium Mtr is isotropic and nonabsorbing, Xtr = TXinc is a transmitted wave propa-
gating in Mtr, and MT(E) and MT are the Mueller matrices such that

S(E){Xtr} = MT(E)S(E){Xinc}, (10.53)

S{Xtr} = MTS{Xinc}. (10.54)

From (10.46) and (10.48) it is seen that the relation

MT(E) = MT (10.55)

will be valid whatever the refractive index of Mtr is if the flux normalization or symmetrical normalization
is used in Minc and Mtr. Moreover, equation (10.55) will be valid in the case of the electrical normalization
if the refractive indices of Minc and Mtr are equal.

10.2 Calculation of the EW Mueller Matrices of the Overall
Transmission and Reflection of a System Consisting of
“Thin” and “Thick” Layers

Suppose that the system MSM that we dealt with in the previous section consists only of elements of the
following types:

� “thick” homogeneous layer satisfying (10.36);
� “thick” smoothly inhomogeneous layer with negligible bulk reflection satisfying (10.38); and
� “thin” layered system (situated between “thick” layers or between a “thick” layer and Minc or Mtr).

Then we can arbitrarily divide this system into fragments of the following kinds:

� interface between “thick” layers;
� interface between a “thick” layer and Minc or Mtr;
� bulk of a “thick” layer;
� interface between “thick” layers plus the bulk of one of these layers;
� interface between “thick” layers plus the bulks of these layers;
� “thin” layered system (including its interfaces with adjacent “thick” layers, Minc, or Mtr);
� “thin” layered system plus the bulk of an adjacent “thick” layer; and
� “thin” layered system plus the bulks of adjacent “thick” layers.

The fragments of these kinds—we will call them D-fragments—have two important features. First, the
transmission and reflection EW Mueller matrices for any of such fragments may be estimated with
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good accuracy by using the monochromatic approximation. Second, for any of such fragments, EW
Stokes vector can be considered, at least to some approximation, a TR-additive characteristic (see
Section 7.2.1). The assumption of TR-additivity of EW Stokes vector for a fragment (z′, z′′) is equivalent
to the assumption that the wave fields Xtr

↓(z′′) and Xref
↓(z′′) as well as the fields Xtr

↑(z′) and Xref
↑(z′)

(see Figure 7.10) are mutually incoherent. Such initial assumptions are often used in calculations of
transmission and reflection characteristics of “thick” layers [in particular, they lead to the well-known
formulas (7.38), (7.39), (7.42), and (7.43)], systems of “thick” layers (see, e.g., [1]), and systems including
both “thick” and “thin” layers (see, e.g., [2–4]).

We consider two fast methods for calculating characteristics of transmission and reflection for systems
of “thick” and “thin” layers that exploit division into D-fragments. One of them, namely, the 8× 8 transfer
matrix method [4,5], uses the transfer matrix technique (Section 7.2.1). The second method employs the
adding technique (Section 7.2.2).

8 × 8 Transfer Matrix Method

By definition, the transmission and reflection EW Mueller matrices of a D-fragment (z′, z′′) can be
evaluated by using the formulas

 ↓(z′, z′′) = T̃{t↓(z′, z′′; �̃�)}, ↓(z′, z′′) = T̃{r↓(z′, z′′; �̃�)},

 ↑(z′, z′′) = T̃{t↑(z′, z′′; �̃�)}, ↑(z′, z′′) = T̃{r↑(z′, z′′; �̃�)}.
(10.56)

Following the transfer matrix technique (Section 7.2.1), we may use this fact to calculate the EW Mueller
matrices describing the overall transmission and reflection of the layered system under consideration
with the help of transfer matrices for the state vector

↔
S ≡

(
S↓

S↑

)
(10.57)

[see (10.4)]. According to (7.72), the transfer matrix D(z′′, z′) linking the vectors
↔
S(z′) and

↔
S(z′′),

↔
S(z′′) = D(z′′, z′)

↔
S(z′), (10.58)

can be represented as

D(z′′, z′) ≡

(


↓ −
↑
(


↑)−1


↓


↑
(


↑)−1

−
(


↑)−1


↓
(


↑)−1

)
,


↓
≡  ↓(z′, z′′), 

↓
≡ ↓(z′, z′′), 

↑
≡  ↑(z′, z′′), 

↑
≡ ↑(z′, z′′).

(10.59)

Using (10.59), (10.56), (8.121), (8.122), (10.15), and (5.70), one can express the matrix D(z′′, z′) in terms
of the EW 4 × 4 transfer matrix (see Section 8.2.2) of the fragment (z′, z′′) for 𝜆 = �̃�, T(z′′, z′; �̃�). We
write the corresponding expression for D(z′′, z′) as follows:

D(z′′, z′) = ⌢

D{T(z′′, z′; �̃�)}, (10.60)



JWST441-c10 JWST441-Yakovlev Printer: Markono December 29, 2014 8:1 Trim: 244mm × 170mm

Modeling Methods for Quasimonochromatic Light 377

where
⌢

D{T̄} denotes the real 8 × 8 matrix calculated from a 4 × 4 matrix T̄ as

⌢

D{T̄} =

(
L[t11 ⊗ (t11 − t1)∗ − t1 ⊗ t∗11]L−1 L(t12 ⊗ t∗12)L−1

−L(t21 ⊗ t∗21)L−1 L(t22 ⊗ t∗22)L−1

)
,

t1 = t12t−1
22 t21,

(10.61)

with tkl (k,l = 1,2) being 2 × 2 blocks of the matrix T̄,

T̄ ≡

(
t11 t12

t21 t22

)
.

The calculation of D(z′′, z′) with use of (10.60) is generally faster than that by using (10.59).
Further, according to the transfer matrix technique, we can calculate the 8 × 8 transfer matrix DS that

characterizes the whole layered system by multiplying the 8 × 8 transfer matrices of its D-fragments.
Suppose that the layered system is divided into N D-fragments with boundaries at z = z0, z1, z2, . . . , zN

(z0< z1< z2< . . . < zN). Then

DS ≡ D(z
N

,z
0
) = DN …D2D1, (10.62)

where Dj ≡ D(zj, zj–1) is the 8 × 8 transfer matrix of the jth D-fragment (j = 1, 2, . . . , N). The EW
Mueller matrices characterizing the overall transmission and overall reflection of the system can be
calculated as

 ↓(z
0
, z

N
) = t↓{DS}, ↓(z

0
, z

N
) = r↓{DS},

 ↑(z
0
, z

N
) = t↑{DS}, ↑(z

0
, z

N
) = r↑{DS}

(10.63)

[see (7.84)]. It is clear that this approach can be employed for calculating the transmission and reflection
matrices not only for a layered system as a whole but also for its OTR units including two or more
D-fragments (this may be needed, e.g., when a partial transmission or a partial reflection of the system
must be estimated). For example, the operators  ↓ and ↓ for the domain (z1, z3) of the above system
can be calculated as

 ↓(z
1
, z

3
) = t↓{D3D2}, ↓(z

1
, z

3
) = r↓{D3D2}.

Let us consider some examples showing capabilities and features of the 8 × 8 transfer matrix method.

Example 1 Two-layer system consisting of a “thin” layer and a “thick” layer. Assume that the
boundary planes of the “thin” layer are z = z0 and z = z1, and those of the “thick” layer are z = z1 and
z = z2 (see the inset in Figure 10.1a). There are three possible divisions of this system into D-fragments:

(i) (z0–0, z1+0), (z1+0, z2+0);
(ii) (z0–0, z2–0), (z2–0, z2+0); and

(iii) (z0–0, z1+0), (z1+0, z2–0), (z2–0, z2+0).

The corresponding expressions for the matrix DS ≡ D(z2+0, z0–0) in terms of EW 4 × 4 transfer matrices
of D-fragments are

DS = ⌢

D{T(z2 + 0, z1 + 0; �̃�)}
⌢

D{T(z1 + 0, z0 − 0; �̃�)}, (10.64)

DS = ⌢

D{T(z2 + 0, z2 − 0; �̃�)}
⌢

D{T(z2 − 0, z0 − 0; �̃�)}, (10.65)

DS = ⌢

D{T(z2 + 0, z2 − 0; �̃�)}
⌢

D{T(z2 − 0, z1 + 0; �̃�)}
⌢

D{T(z1 + 0, z0 − 0; �̃�)}. (10.66)
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Figure 10.1 Transmission spectra of the two-layer system for monochromatic and quasimonochromatic
incident light

All three divisions give equivalent results. The third, more cumbersome, variant, in which the bulk of the
“thick” layer is considered as a separate D-fragment, is in general less efficient than the other two, but it
is useful when the “thick” layer is isotropic and nonabsorbing, because in this case, as can be seen from
(10.59) and (10.34), the matrix D(z2 − 0, z1 + 0) characterizing the bulk of this layer is equal to the unit
matrix, which allows reduction of (10.66) to

DS = ⌢

D{T(z2 + 0, z2 − 0; �̃�)}
⌢

D{T(z1 + 0, z0 − 0; �̃�)}, (10.67)

where the bulk of the “thick” layer is excluded from the calculations.
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Figure 10.1 shows calculated spectra of transmissivities of such a system. In the calculations both layers
were taken to be isotropic and nonabsorbing. The “thin” layer: n= 2, d= 0.1 μm (n is the refractive index,
d is the thickness). The “thick” layer: n = 1.52, d = 200 μm. The surrounding media: n = 1. The angle of
incidence was taken to be 20◦. The incident light was assumed to be s-polarized. According to the criterion
d > lcoh and the estimate lcoh ≈ �̃�

2∕Δ𝜆, we can regard the second layer as “thick” for all wavelengths of
the visible region if Δ𝜆 > 3 nm. Figure 10.1 demonstrates the monochromatic transmissivity spectrum
(dashed line in Figure 10.1a), points (shown by circles) of the quasimonochromatic transmissivity
spectrum calculated as the convolution of the monochromatic transmissivity spectrum with a trapezoidal
spectral window of width 4 nm (i.e., by the spectral averaging method), and the quasimonochromatic
transmissivity spectrum calculated by the 8× 8 transfer matrix method (solid lines). The results presented
in Figure 10.1a well illustrate what was said about spectra of thin and thick layers and layered systems
including thin and thick layers in Section 7.1. The monochromatic transmissivity spectrum of the system
has fast oscillations (the width of the spectral zone shown in Figure 10.1a is only 10 nm) due to a large
thickness of the thick layer. Convolving the monochromatic spectrum with a relatively narrow spectral
window removes these fast oscillations but retains the pattern of FP interference in the thin layer. As is
seen from Figure 10.1, the 8 × 8 transfer matrix method gives almost the same results as the spectral
averaging.

We should note that dealing with a layered system including two or more “thick” layers one may
observe somewhat worse agreement between results obtained by the spectral averaging and those obtained
by the 8 × 8 transfer matrix method. This is connected with transformation of the correlation properties
of quasimonochromatic light as it propagates through a layered system. Light leaving a “thick” layer,
because of multiple reflections, contains many derivatives of the same wavetrain of the incident wave,
which emerge from the layer one after another with a temporal delay exceeding the coherence time of
the incident wave. Derivatives of these related wavetrains, due to multiple reflections in a following
“thick” layer, may overlap and hence interfere (a situation of this kind is discussed in Section 7.6 of
[6]). The spectral averaging method allows for such “secondary” interference, while the 8 × 8 transfer
matrix method does not. Using theoretical estimates given in [6] and considering real geometries of LCD
panels, it is easy to see that the “secondary” interference plays no role in LCDs, at least in most practical
situations. In this sense, the 8 × 8 transfer matrix method seems more suitable for modeling LCDs than
the spectral averaging method.

Example 2 A model TN LCD. We included in this model, along with the LC layer, glass substrates,
and polarizers, the electrode–alignment layer systems (EASs) (Figure 10.2). The polarizers are regarded
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Figure 10.2 Structure of the model TN LCD and two variants of dividing it into D-fragments
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as homogeneous uniaxial dichroic layers. Film polarizers in standard spectral measurements do not
give any Fabry–Perot interference (FPI) pattern and can be considered as “thick” layers, as well as
glass substrates. LC layers in LCDs are usually sufficiently thin to give FPI patterns in experimental
spectra. For a real LC device having structure shown in Figure 10.2, with an LC layer thickness less than
10 μm, in experimental spectra obtained with Δ𝜆 < 2 nm one may observe an almost perfect FPI pattern
produced by the thin-layer system including the LC layer, that is, the LC layer can be considered as a
“thin” layer. With greater Δ𝜆 this FPI pattern is blurred to a greater or lesser extent. A possible division of
the model LCD into D-fragments for the case when the LC layer is considered as an element of the “thin”
layered system including, along with the LC layer, EASs is shown in Figure 10.2 (variant A). If necessary
(see, e.g., [7] or Section 12.5), blurred spectra corresponding to measurements with relatively large Δ𝜆
can be calculated from those obtained with treating the LC layer as “thin” by formula (7.31). It is often
desirable to remove the FPI ripples related to the LC layer from the modeled spectra at all: smoothed
spectra are more convenient for comparison, for use in optimization procedures, for graphic and tabular
representations, for calculating the color characteristics, and so on. To obtain such a smoothed spectrum
directly, without spectral averaging, it suffices to treat the LC layer as a “thick” layer. A possible division
of the LCD into D-fragments in this case is shown in Figure 10.2 as variant B.

Figure 10.3 demonstrates calculated transmittance spectra of the LCD for unpolarized incident light
at normal incidence, corresponding to variants A and B. The calculations were performed with the
following parameters of the LCD elements. For the glass substrates, d = 100 μm, n = 1.52. For the
electrodes, d = 0.03 μm, n = 2. For the alignment layers: d = 0.1 μm, n = 1.6. Parameters of the LC
layer: K11 = 1.3 × 10−6 dyn, K22 = 7.1 × 10−7 dyn, K33 = 1.95 × 10−6 dyn, 𝜀|| = 15.1, 𝜀⟂ = 3.8 at
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Figure 10.3 Calculated transmission spectra of the model TN LCD for quasimonochromatic incident
light
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the frequency of the applied voltage, the natural helical pitch p0 = 17.1 μm, d = 6 μm. The principal
refractive indices of the liquid crystal:

Wavelength (nm) n⟂ n||

437 1.518 1.681
546 1.503 1.650
644 1.497 1.637

The surface anchoring is assumed to be infinitely strong. The twist angle Φ = 90◦, the pretilt angles are
equal to 4◦. The polarizers have d = 200 μm, Re(n⟂) = 1.5, Re(n||) = 1.501, and absorption properties
identical to those of one of the commercial neutral polarizers of O-type for LCDs. The polarizers are
crossed. The transmission axis of each of the polarizers is parallel to the projection of the easy axis
at the nearest LC layer boundary onto the boundary plane. In other words, according to the standard
classification, this model device is a normally white TN LCD in E-mode. The spectra were calculated
for two values of the voltage applied to the LC layer: U1 = 1.7 V (bright state) and U2 = 3.5 V (dark
state). The spectra corresponding to variant A are shown by thin solid lines, and those corresponding to
variant B by thick solid lines.

For comparison, in Figure 10.3, we also plotted the corresponding transmittance spectra for the
“useful” transfer channel of this LCD that is defined by the chain of transmission operations successively
performed by the air–frontal polarizer interface, the bulk of the frontal polarizer, the frontal polarizer–
glass interface, the bulk of the frontal glass substrate, the frontal EAS, the bulk of the LC layer, the
rear EAS, the bulk of the rear glass substrate, the glass–rear polarizer interface, the bulk of the rear
polarizer, and the rear polarizer–air interface. The quasimonochromatic transmittance of this channel can
be evaluated by using the monochromatic approximation (10.31). According to (10.31), the transmittance
of this channel (tUC) for unpolarized incident light with mean wavelength �̃� can be calculated from the
EW Jones matrix of this channel (tUC) as

tUC = 1
2
‖tUC(�̃�)‖2

E (10.68)

provided that the normalization of the EW basis in air is the same at both sides of the LCD. The
corresponding curves are shown in Figure 10.3 by dashed lines. One of the two dashed curves, namely,
that for the voltage U2, almost coincides with the corresponding curve of the overall transmittance
calculated by variant B. For the voltage U1, the curves of these kinds are also close to each other. This
testifies that for this LCD, the light circulation between D-fragments gives a small contribution to the
overall transmittance. In high-contrast devices with phase compensation, the light circulation between
and within D-fragments may strongly affect the contrast ratio. The 8 × 8 transfer matrix method is an
appropriate instrument for simulating such situations.

Example 3 A model single-polarizer RLCD. The structure of this model device is shown in Figure 10.4.
The last element of the device is a metal reflector. In Figure 10.4, we show two variants of division of
the LCD into D-fragments: the LC layer is treated as “thin” in variant A and as “thick” in variant B,
as in the previous example. Figure 10.5 shows the calculated reflectance spectra of this LCD for unpolar-
ized normally incident light. In the calculations, the parameters of the polarizer, glass substrate, frontal
electrode, and alignment layers were taken to be the same as in the previous example. The parameters
of the LC layer are the following. For the LC material, K11 = 1.32 × 10−6 dyn, K22 = 6.5 × 10−7 dyn,
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Figure 10.4 Structure of the model single-polarizer RLCD and two variants of dividing it into D-
fragments

K33 = 1.38 × 10−6 dyn, 𝜀|| = 8.3, 𝜀⟂ = 3.1 at the frequency of the applied voltage, p0 = ∞ (a pure
nematic), and the principal refractive indices:

Wavelength (nm) n⟂ n||

436 1.4939 1.5987
546 1.4819 1.5809
633 1.4774 1.5734
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Figure 10.5 Calculated reflection spectra of the model RLCD for quasimonochromatic incident light
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The thickness of the LC layer is 5.36 μm. The anchoring is infinitely strong, the twist angle Φ= 52◦, and
the pretilt angles are equal to 4◦. For the metal reflector, we used spectral data for the complex refractive
index of aluminum. The transmission axis of the polarizer is parallel to the projection of the easy axis
at the frontal LC layer boundary onto the boundary plane. The spectra of the device were calculated for
the bright-state voltage U1 = 0 V and the dark-state voltage U2 = 2.65 V. As in Figure 10.3, the spectra
for variant A are shown by thin solid lines, and those for variant B by thick solid lines.

As in the previous example, for comparison, we give in Figure 10.5 the transmittance spectra for
the “useful” transfer channel of the device (dashed lines). In this case, the “useful” channel is defined
by the chain: transmission of the air–polarizer interface, transmission of the polarizer bulk, transmission
of the polarizer–glass interface, transmission of the glass substrate bulk, transmission of the frontal
EAS, transmission of the LC layer bulk, reflection from the rear alignment layer–reflector system, and
back, transmission of the LC layer bulk, transmission of the frontal EAS, and so forth.

As is seen from Figure 10.5, the contrast ratio of the RLCD defined in terms of its overall reflectances
is low, much lower than that for the “useful” channel. This is mainly because of reflection from the
external boundary of the device and that from the frontal EAS. In the next example, illustrated by
Figure 10.6, we significantly weakened these reflections by incorporating in the device antireflective
(AR) layers. The structure and parameters of the AR-system for the external boundary of the RLCD in
these calculations are shown in Figure 10.6a. The position and parameters of the AR-layers in the EAS
are shown in Figure 10.6b. Figure 10.6c shows reflection spectra of the device corresponding to different
variants of calculation. As in Figure 10.5, the spectra of the overall reflectance of the RLCD are shown
by solid lines: thin and thick solid lines correspond to the variants with treating the LC layer as “thin” and
“thick,” respectively. The dashed lines show the transmittance spectra for the “useful” transfer channel
of the RLCD. We see that in this case the parasitic reflections play much smaller role than in the case

Polarizer

Air

AR layer: n = 1.45, d = 0.09 μm

AR layer: n = 2.2, d = 0.12 μm 

AR layer: n = 1.7, d = 0.08 μm Alignment layer

Glass substrate

Electrode

LC layer

AR layer: n = 1.79, d = 0.086 μm

AR layer: n = 1.79, d = 0.086 μm
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Figure 10.6 Calculated reflection spectra of the model RLCD with AR layers
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of the RLCD without AR-layers, and the overall reflectance is close to the transmittance of the “useful”
channel of the device.

EW-Mueller-Matrix Adding Method

The 8 × 8 transfer matrix method has the same disadvantage as any other method using the transfer
matrix technique: it is numerically unstable in the presence of layers with strong attenuation (see
Section 7.2.1). For instance, we could not perform the above calculations for LCDs because of overflows
if the minimum transmittance of the polarizers were less than 10−6. The EW-Mueller-matrix adding
method works well in such situations. This method operates with the matrices  ↓, ↓,  ↑, and ↑

of D-fragments. These matrices are calculated by formulas (10.56) from the corresponding EW Jones
matrices of D-fragments. The EW Jones matrices for a D-fragment are calculated by any appropriate
method when there is no danger of obtaining the overflow or a large error and by the adding method
described in Section 8.4.3 otherwise. The adding of D-fragments can be carried out by using the flexible
adding technique described in Section 7.2.2. Recall that the flexible adding technique allows calculating
the characteristics of both overall and partial transmission and reflection. This is another advantage of
the EW-Mueller-matrix adding method. This method allows one to calculate any of the curves shown
in Figures 10.1, 10.3, 10.5, and 10.6. As an individual example demonstrating the versatility of this
method, we give in Figure 10.5 the curves for the reflectance calculated with allowance for reflections
from each of D-fragments (for variant B) but ignoring re-reflections between them (dash-dot lines). A
chosen variant of the adding may be assigned through the interface of a modeling program. This enables
users to easily evaluate the effect of different reflections on the performance of modeled devices and find
the optimal options of calculations.

10.3 Main Routines of LMOPTICS
In this section, we describe routines that perform basic steps of the EW 4 × 4 transfer matrix method,
EW Jones matrix method, adding method described in Section 8.4.3, and methods considered in this
chapter and some auxiliary routines.

The routines described in this section, as well as the EWB-generating routines, are components of the
module OPTSM_1 of LMOPTICS. Some of these routines use a global variable W defined as

W = k0 = 2𝜋∕𝜆, (10.69)

where, as usual, 𝜆 is the free-space wavelength (in μm). This variable is declared in the module MTWFIR
of LMOPTICS. Its value must be set in a control program.

Sample programs for these routines can be found in the companion website.

10.3.1 Routines for Computing 4 × 4 Transfer Matrices and EW
Jones Matrices

Subroutines PHSC, PHSR, and PHSCR

A standard operation in the EW methods is the pre-multiplying of a matrix T1 by a diagonal matrix
C = [cjk], characterizing the effect of the bulk of a layer, with

cjj = eik0𝜎jh,
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where h is the thickness of the layer and 𝜎j is the normal component of the refraction vector of the
jth basis eigenwave [see, e.g., (8.336a)]. In LMOPTICS, this operation is carried out with the help of
routines PHSC, PHSR, and PHSCR. These routines can perform this operation for both 4 × 4 matrices
and 2 × 2 matrices. In all three routines, the multiplication CT1 is performed by formula (8.341).

Interfaces:
CALL PHSC(X, H, T1C, T2, NW)
CALL PHSR(X, H, T1R, T2, NW)
CALL PHSCR(X, H, T1C, T2, NW)

Data types:
NW—integer(4)
X—(4) array, complex(8)
H—real(8)
T1C, T2—(NW,NW) arrays, complex(8)
T1R—(NW,NW) array, real(8)

Input parameters:
The parameter NW must be set to 2 if the calculations are performed for 2 × 2 matrices, or to 4 in the
case of 4 × 4 matrices. H is the thickness (in μm) of the layer (H=h). X is the array of 𝜎j values (see
Table 9.1). When NW=2, only X(1) and X(2) are used in the calculations. Arrays X can be calculated
using EWB-generating routines presented in Chapter 9 with NWAVE = 2 (if NW = 2) or NWAVE = 4
(in any case). The routines PHSC and PHSCR are used when T1 is complex; in this case T1C = T1. The
routine PHSR can be used when T1 and 𝜎j (j=1, . . . ,NW) are real; in this case T1R = T1. The routine
PHSCR is applicable only in the case of real 𝜎j.

This routines use the global variable W [see (10.69)].

Output parameters:
On exit, T2 = T2 = CT1.

Comments. The routine PHSR can be used in computing the Berreman matrices for homogeneous
nonabsorbing layers out of TIR mode by formula (8.132). PHSCR can be used for involving homogeneous
nonabsorbing layers out of TIR mode when computing the EW 4 × 4 transfer matrix of a layered system
(see the algorithm described in Section 8.7) or the EW Jones matrix of a transfer channel. The most
universal routine PHSC can be used in such calculations for involving absorbing layers and layers in
TIR mode.

Function BT2

The function subprogram BT2 calculates the transmission EW Jones matrix t = t↓ for an interface
{medium 1 → medium 2} according to formulas (8.219) and (8.215).

Interface:
t = BT2(YI1, YY2)

Data types:
YI1—(4,4) array, real(8) or complex(8)
YY2—(4,4) array, real(8) or complex(8)

Input parameters:
The first two rows of the array YI1 must contain the first two rows of the matrix 𝚿−1 for medium 1;
the first two columns of YY2 must contain those of the matrix 𝚿 for medium 2. Only these rows of
YI1 and columns of YY2 are used in the calculations. Arrays YI1 and YY2 can be calculated using
EWB-generating routines described in Chapter 9 with NWAVE = 2 or NWAVE = 4.
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On exit:
The function BT2 returns the (2,2) array representing the matrix t↓. This array is of the real(8) type if
both YI1 and YY2 are real, and of the complex(8) type otherwise.

Comments. The routine BT2 is useful, in particular, in computing transmission EW Jones matrices for
LC layers (see Section 11.3.1) and EW Jones matrices for “useful” channels of transmissive devices.

Subroutines TRYJ1, TRYJ2, and REFTR1DJones

The routines TRYJ1, TRYJ2, and REFTR1DJones are intended for calculating the transmission and
reflection EW Jones matrices, t↓, r↓, t↑, and r↑, of a layered system or a fragment (an OTR unit) of a
layered system from the EW 4 × 4 transfer matrix of this system or fragment, T. The calculations are
performed according to formulas (8.121) and (7.84).

Interfaces:
CALL TRYJ1(T, TJF, RJF)
CALL TRYJ2(T, TJB, RJB)
CALL REFTR1DJones(T, TJF, RJF, TJB, RJB)

Data types:
T—(4,4) array, complex(8)
TJF, RJF, TJB, RJB—(2,2) arrays, complex(8)

Input and output parameters:
The array T represents the transfer matrix T. On exit, TJF = t↓ = t↓{T}, RJF =r↓ = r↓{T}, TJB = t↑ =
t↑{T}, RJB = r↑ = r↑{T}.

Subroutine ISOTRBR

This routine calculates the Berreman matrix of a homogeneous nonabsorbing isotropic layer according
to expression (8.140)

Interface:
CALL ISOTRBR(N, H, P)

Data types:
N, H—real(8)
P—(4,4) array, complex(8)

Input parameters:
N and H are respectively the refractive index and thickness (in μm) of the layer. This routine uses the
global variable W [see (10.69)].

Output parameters:
P is the Berreman matrix of the layer.

Subroutine BRMNC

This routine is intended for calculating the Berreman matrix of a homogeneous layer according to
formula (8.132).

Interface:
CALL BRMNC(X, YY, YI, P, H)
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Data types:
X—(4) array, complex(8)
YY,YI, P—(4,4) arrays, complex(8)
H—real(8)

Input parameters:
X, YY, YI, and H are respectively the array of 𝜎j values, matrix 𝚿, matrix 𝚿−1 (see Table 9.1), and
thickness (in μm) of the layer. The input parameters of this routine (X, YY, YI) are consistent in data
type with the output parameters of the routines ISOTRC (isotropic medium; Section 9.2), UNAXLC
(uniaxial medium; Section 9.3), and BIAXLC (biaxial medium; Section 9.4).

This routine uses the global variable W [see (10.69)].

Output parameters:
P is the Berreman matrix of the layer.

Subroutine BRMNR

This routine is for calculating the Berreman matrix of a homogeneous nonabsorbing layer out of TIR
mode according to formula (8.132).

Interface:
CALL BRMNR(X, YY, YI, P, H)

Data types:
X—(4) array, complex(8)
YY,YI—(4,4) arrays, real (8)
P—(4,4) array, complex(8)
H—real(8)

Input parameters:
As for BRMNC, X, YY, YI, and H are respectively the array of 𝜎j values, matrix 𝚿, matrix 𝚿−1 (see
Table 9.1), and thickness (in μm) of the layer. The input parameters of BRMNR are consistent in data
type with the output parameters of the routines ISOTRR (Section 9.2), UNAXLR (Section 9.3), and
BIAXLR (Section 9.4).

This routine uses the global variable W [see (10.69)].

Output parameters:
P is the Berreman matrix of the layer.

Routines for Calculating the EW Jones Matrices of Layered Systems
by the Adding Technique

The following two routines are intended for calculating the transmission and reflection EW Jones matrices
of layered systems according to the flexible adding technique (see Sections 7.2.2 and 8.4.3)

Subroutine AddElementJones

This routine is for adding a new element E to a system S. This routine uses, as input parameters, the EW
Jones matrices of the system S, t↓S, r↓S, t↑S, and r↑S, and the EW Jones matrices of the element E, t↓E, r↓E, t↑E,
and r↑E, and returns the EW Jones matrices of the system S + E, t↓S+E, r↓S+E, t↑S+E, and r↑S+E.

Interface:
CALL AddElementJones(TJF, RJF, TJB, RJB, TJFE, RJFE, TJBE, RJBE, RAO)
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Table 10.1 Values of the parameter RAO for different modes of adding

RAO Mode of adding

0 Ignoring all re-reflections between S and E [see (7.111)]
1 With allowance for only one-fold re-reflections between S and E [see (7.113)]
2 With allowance for all re-reflections between S and E [see (7.110)]

Data types:
TJF, RJF, TJB, RJB, TJFE, RJFE, TJBE, RJBE—(2,2) arrays, complex(8)
RAO—integer(4)

Input and output parameters:
On entry: TJF = t↓S, RJF = r↓S, TJB = t↑S, RJB = r↑S, TJFE = t↓E, RJFE = r↓E, TJBE = t↑E, RJBE = r↑E. The
flag RAO (0, 1, or 2) specifies the mode of adding (see Table 10.1).
On exit: TJF = t↓S+E, RJF = r↓S+E, TJB = t↑S+E, RJB = r↑S+E.

Comments. This routine can be used to perform step (8.239) of the algorithm described in Section
8.4.3; in this case, RAO = 2. The input matrices t↓E, r↓E, t↑E, and r↑E can be calculated with the help of the
routine REFTR1DJones.

Subroutine BULK1DJones

This routine is for adding the bulk E of a homogeneous layer to a system S. This routine uses, as input
parameters, the EW Jones matrices of the system S, t↓S, t↑S, and r↑S, the array of 𝜎j values for E, and

the thickness h of E and returns the EW Jones matrices of the system S + E, t↓S+E, t↑S+E, and r↑S+E (the
matrix r↓S+E is not calculated because here r↓S+E = r↓S). This routine is mainly intended for performing
step (8.240) of the algorithm described in Section 8.4.3.

Interface:
CALL BULK1DJones(TJF, TJB, RJB, X, H)

Data types:
TJF, TJB, RJB—(2,2) arrays, complex(8)
X—(4) array, complex(8)
H—real(8)

Input and output parameters:
On entry: TJF = t↓S, TJB = t↑S, RJB = r↑S; X is the array of 𝜎j values (see Table 9.1); H = h (in μm). On

exit: TJF = t↓S+E, TJB = t↑S+E, RJB = r↑S+E. This routine uses the global variable W [see (10.69)].

10.3.2 Routines for Computing EW Mueller Matrices

Subroutine TRJMC

The routine TRJMC calculates from a Jones matrix t the corresponding Mueller–Jones matrix M = T̃{t}
[see (10.14)].

Interface:
CALL TRJMC(TJ, TM)
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Data types:
TJ—(2,2) array, complex(8)
TM—(4,4) array, real(8)

Input and output parameters:
On entry, TJ = t. On exit, TM = M.

Subroutines TRYM1, TRYM2, and REFTR1DMueller

This set of routines is similar to the set (TRYJ1, TRYJ2, REFTR1DJones), but in this case the EW Mueller
matrices rather than EW Jones matrices are computed. These routines are intended for calculating the
transmission and reflection EW Mueller matrices,  ↓, ↓,  ↑, and ↑, of a layered system or a fragment
(an OTR unit) of a layered system from the EW 4 × 4 transfer matrix of this system or fragment, T, in
the monochromatic approximation.

Interfaces:
CALL TRYM1(T, TF, RF)
CALL TRYM2(T, TB, RB)
CALL REFTR1DMueller(T, TF, RF, TB, RB)

Data types:
T—(4,4) array, complex(8)
TF, RF, TB, RB—(4,4) array, real(8)

Input and output parameters:
On entry, T = T. On exit, TF =  ↓, RF = ↓, TB =  ↑, RB = ↑.

Routines of the 8 × 8 Transfer Matrix Method

Subroutine TR48C

This routine calculates from the EW 4 × 4 transfer matrix of a D-fragment, T, the 8 × 8 transfer matrix

D =
⌢

D{T} of this fragment [see (10.61)].

Interface:
CALL TR48C(T, D)

Data types:
T—(4,4) array, complex(8)
D—(8,8) array, real(8)

Input and output parameters:
On entry, T=T. On exit, D=D.

Subroutines REFTR1 and REFTR2

These routines calculate from the 8 × 8 transfer matrix of a layered system, D, the transmission and
reflection EW Mueller matrices,  ↓, ↓,  ↑, and ↑, of this system [see (10.63)].

Interfaces:
CALL REFTR1(D, TF, RF)
CALL REFTR2(D, TB, RB)
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Data types:
D—(8,8) array, real(8)
TF, RF, TB, RB—(4,4) arrays, real(8)

Input and output parameters:
On entry, D=D. On exit, TF= ↓, RF=↓, TB= ↑, RB=↑.

Subroutine REF1

This routine calculates the reflection EW Mueller matrix 
↓
A+R for the system consisting of a layered

system A and a reflecting system R from the 8 × 8 transfer matrix DA of the system A and the reflection
EW Mueller matrix 

↓
R of the system R. The calculations are carried out according to formula (7.86).

Interface:
CALL REF1(DA, RFR, RFAR)

Data types:
DA—(8,8) array, real(8)
RFR, RFAR—(4,4) arrays, real(8)

Input and output parameters:
On entry, D = DA, RFR = 

↓
R. On exit, RFAR=↓

A+R.

Routines for Calculating the EW Mueller Matrices of Layered Systems
by the Adding Technique (EW-Mueller-Matrix Adding Method)

Subroutine AddElementMueller

This routine is for adding a new element E to a system S. This routine uses the EW Mueller matrices of
the system S,  ↓

S , ↓
S,  ↑

S , and 
↑
S, and the EW Mueller matrices of the element E,  ↓

E , ↓
E,  ↑

E , and 
↑
E,

to calculate the EW Mueller matrices of the system S+E,  ↓
S+E, ↓

S+E,  ↑
S+E, and 

↑
S+E.

Interface:
CALL AddElementMueller(TF, RF, TB, RB, TFE, RFE, TBE, RBE, RAO)

Data types:
TF, RF, TB, RB, TFE, RFE, TBE, RBE—(4,4) arrays, real(8)
RAO—integer(4)

Input and output parameters:
On entry: TF= ↓

S , RF=↓
S, TB= ↑

S , RB=↑
S, TFE= ↓

E , RFE=↓
E, TBE= ↑

E , RBE=↑
E. The input

parameter RAO (0, 1, or 2) specifies the mode of adding (see Table 10.1).
On exit: TF= ↓

S+E, RF=↓
S+E, TB= ↑

S+E, RB=↑
S+E.

Subroutine AddNRElementMueller

This routine is for adding a new element E with negligible reflection to a system S. This routine uses, as
input parameters, the EW Mueller matrices of the system S,  ↓

S ,  ↑
S , and 

↑
S, and the transmission EW

Mueller matrices of the element E,  ↓
E and 

↑
E , and calculates the EW Mueller matrices of the system

S+E,  ↓
S+E,  ↑

S+E, and 
↑
S+E. The matrices ↓

S and 
↓
S+E are not involved in the calculations because in

the case under consideration 
↓
S+E =

↓
S.
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Interface:
CALL AddNRElementMueller(TF, TB, RB, TFE, TBE)

Data types:
TF, TB, RB, TFE, TBE—(4,4) arrays, real(8)

Input and output parameters:
On entry: TF = 

↓
S , TB = 

↑
S , RB = 

↑
S, TFE = 

↓
E , TBE = 

↑
E .

On exit: TF = 
↓

S+E, TB = 
↑

S+E, RB = 
↑
S+E.

Subroutine AddMirrorMueller

This routine calculates the reflection EW Mueller matrix 
↓
A+R for the system consisting of a layered

system A and a reflecting system R, using the EW Mueller matrices of the system A,  ↓
A , ↓

A,  ↑
A , and


↑
A, and the reflection EW Mueller matrix 

↓
R of the system R.

Interface:
CALL AddMirrorMueller(TFA, RFA, TBA, RBA, RFR, RFAR, RAO)

Data types:
TFA, RFA, TBA, RBA, RFR, RFAR—(4,4) arrays, real(8)
RAO—integer(4)

Input and output parameters:
On entry: TFA = 

↓
A , RFA = 

↓
A, TBA = 

↑
A , RBA = 

↑
A, RFR = 

↓
R. For this routine, the flag RAO

specifying the mode of adding can be set to 0, 1, 2, or 3. The modes corresponding RAO = 0, 1, 2 are
indicated in Table 10.1. If RAO = 3, the matrix 

↓
A+R is calculated by the formula


↓
A+R = 

↑
A 

↓
R

↓
A , (10.70)

that is, ignoring all reflections except for the reflection from R.
On exit: RFAR=↓

A+R.

Comments. The mode RAO= 3 can be used, for instance, when it is desired to estimate the EW Mueller
matrix of the “useful” channel of a reflective LCD (see the example for an RLCD in Section 10.2).

10.3.3 Other Useful Routines

Subroutine TRANS

For a given 2 × 2 matrix t = [tij], this routine calculates the quantity

t = 1
2
‖t‖2

E = 1
2

(
t11t∗11 + t12t∗12 + t21t∗21 + t22t∗22

)
. (10.71)

It can be used to calculate the transmissivity or reflectivity of a system or the transmissivity of a transfer
channel for unpolarized incident light in the monochromatic approximation from the corresponding
Jones matrix [see (8.278)].
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Interface:
CALL TRANS(TJ, T)

Data types:
TJ—(2,2) array, complex(8)
T—real(8)

Input and output parameters:
On entry, TJ=t. On exit, T=t.

Subroutine MMID

This routine uses the EW Mueller matrix M{O} of an operation O to calculate the EW Mueller matrix
M{OR} for the reversed operation OR (see Section 8.6.2) provided that the eigenwave bases are chosen
so that the EW Jones matrices t{O} and t{OR} satisfy the relation(

t11

{
OR

}
t12

{
OR

}
t21

{
OR

}
t22

{
OR

}) =

(
t11 {O} −t21 {O}

−t12 {O} t22 {O}

)
(10.72)

(see the discussion of the reciprocity matrices in Section 8.6.2).

Interface:
CALL MMID(M, MR)

Data types:
M, MR—(4,4) arrays, real(8)

Input and output parameters:
On entry, M = M{O}. On exit, MR = M{OR}.
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Calculation of Transmission
Characteristics of Inhomogeneous
Liquid Crystal Layers with
Negligible Bulk Reflection

This chapter is devoted to instruments developed within the frameworks of the classical Jones matrix
method and the EW Jones matrix method for modeling and analysis of the transmission properties of
smoothly inhomogeneous anisotropic media and, in particular, inhomogeneous liquid crystal layers. In
the classical Jones’s method, the basic instrument for such purposes is the differential calculus [1]. In
Section 11.1.1, we present basic equations, general computational techniques, and analytical solutions
that are used when modeling and analysis of the optical properties of inhomogeneous LC layers are
performed within the framework of this method. As has been noted, the Jones calculus (JC) often gives
quite satisfactory results; however, it is applicable only in the case of normal incidence. Furthermore,
the differential JC is in good agreement with electromagnetic theory only for media with very weak
birefringence. Application of this approach in other situations implies an artificial interpretation of Jones
vectors (see Section 1.4.5). More general approaches are offered by the extended Jones matrix method
(EJMM) variants [2–6]. Two most popular variants of EJMM [2,3] are discussed in Section 11.1.2. The
methods [2, 3] are more closely related to electromagnetic theory than JC and cover the case of oblique
incidence. Nevertheless, the basic approaches used in these methods for treatment of inhomogeneous
LC layers also have serious limitations. In particular, they do not guarantee attaining good accuracy
for media with a relatively large difference of the principal refractive indices, typical of practical LC
materials. As will be shown, even in the case of normal incidence, the absolute error in calculated values
of transmittances of a nematic layer may be of the order of |n∥ – n⟂|/n∥, where n∥ and n⟂ are the principal
refractive indices of the LC. For many LC materials used in LCDs, the ratio |n∥ – n⟂|/n∥ is of the order
of 0.1 and larger.

Significantly more accurate estimates of the transmission characteristics of LC layers, at nearly the
same computational cost as with [2,3], may be obtained using the methods [7–9] which are based on the
use of the negligible-bulk-reflection approximation (NBR approximation, NBRA) [10–13]. It should be
noted that NBRA is used explicitly or implicitly in all variants of the Jones matrix method considered in
this chapter, including the methods [2,3], but in [2,3] this approximation is used in combination with other
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approximations which imply low birefringence of the medium (the small-birefringence approximation,
SBA). The methods [7–9] use NBRA only.

Our special interest in NBRA is determined by the fact that application of this approximation is
fully justified in considering most types of LCDs. One of the principal advantages of the theory of
NBRA [7–10] is that it successfully combines high accuracy with mathematical simplicity. As we will
see, this theory is very similar mathematically to the differential Jones calculus and gives a simple
solution in any situation where a simple solution can be obtained using the classical JC. In Section 11.2,
we present the basic differential equations for state vectors and transmission operators in the NBR
approximation. Section 11.3 is devoted to numerical methods of calculating the transmission operators
of inhomogeneous layers in this approximation. In Section 11.4, we consider analytical solutions for the
transmission operators of inhomogeneous layers provided by the NBRA theory.

11.1 Application of Jones Matrix Methods to Inhomogeneous
LC Layers

11.1.1 Calculation of Transmission Jones Matrices of LC Layers Using
the Classical Jones Calculus

We begin by considering several representations used for calculating transmission Jones matrices of
inhomogeneous LC layers within the framework of the classical Jones matrix method.

Let the LC layer be an element of a layered system like that shown in Figure 11.1. Let z be a coordinate
along a normal to the interfaces, and let the boundaries of the LC layer with the adjacent layers (the
glass plates in the system shown in Figure 11.1) coincide with the planes z = z1 and z = z2 (z2 > z1)
(see Figure 11.1). The LC is assumed to be optically uniaxial and to have spatially independent principal
refractive indices. The LC director field n(r) is assumed to be uniform over any plane perpendicular to
the z-axis (i.e., 2D-homogeneous). The dependence of n—the local optic axis vector c (see Section 9.3)
is assumed to coincide with n—on z will be represented as

n(z) =
⎛⎜⎜⎜⎝
cos 𝜃(z) cos𝜑(z)

cos 𝜃(z) sin𝜑(z)

sin 𝜃(z)

⎞⎟⎟⎟⎠XYZ

, (11.1)

where 𝜃 and 𝜑 are respectively the tilt angle and azimuthal angle of the director in the reference frame
(X, Y, Z), attached to the layered system [see Figures 9.1 and 9.3 (c = n)]. The following symbols will
be used: 𝜃1 = 𝜃(z′), 𝜃2 = 𝜃(z′′), 𝜑1 = 𝜑(z′), and 𝜑2=𝜑(z′′), where z′ = z1 + 0 and z′′ = z2 − 0 are the z-
coordinates of the outer planes of the bulk of the LC layer. The twist angle is denoted by Φ (Φ=𝜑2 −𝜑1),
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Figure 11.1 Model LC cell. Reference frame and coordinates
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and the thickness of the LC layer by d (d = z2 − z1). Along with the coordinate z, we will use a normalized
spatial coordinate

𝜂 = (z − z′)∕(z′′ − z′) (11.2)

(see Figure 11.1).
Let a plane monochromatic wave fall on the system normally, in the positive z-direction. Consider the

problem of finding the Jones matrix tJL of the LC layer defined by the relation

Jx−y(z
′′) = tJLJx−y(z

′), (11.3)

where Jx−y is a Cartesian Jones vector referred to the basis (x, y) with the axes x and y directed along the
axes X and Y, respectively. The vector Jx−y(z

′) describes the light entering the LC layer. Jx−y(z
′′) is the

Jones vector of the transmitted light at the exit plane of the LC layer.
One of the general representations of the matrix tJL offered by the Jones calculus is

tJL = lim
N→∞

t(N)
JL , (11.4a)

t(N)
JL = tJS(zSN , h)tJS(zSN−1, h)… tJS(zS2, h)tJS(zS1, h), (11.4b)

where tJS(zSj, h) is the transmission Jones matrix of the jth sublayer of a staircase model of the LC layer
(zSj is the z-coordinate of the midplane of this sublayer and h is its thickness). The matrix tJS(zSj, h) is
expressed as

tJS(zSj, h) =
⌢

RC(−𝜑(zSj))tJD(zSj, h)
⌢

RC(𝜑(zSj)), (11.5)

where

tJD(zSj, h) =

(
exp(ik0𝜎1(zSj)h) 0

0 exp(ik0𝜎2(zSj)h)

)
, (11.6a)

⌢

RC(𝛼) =

(
cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

)
, (11.6b)

𝜎1(z) =
n||n⊥√

n2
⊥
cos2 𝜃(z) + n2|| sin2

𝜃(z)
, (11.6c)

𝜎2(z) = n
⊥

, (11.6d)

h = d∕N, zSj = z1 + (j − 0.5)h. (11.6e)

The representation (11.4)–(11.6) is applicable to both nonabsorbing and absorbing media. In the latter
case, the principal refractive indices n∥ and n⟂ are complex.

Another convenient representation of the matrix t(N)
JL , mathematically equivalent to (11.4b), is

t(N)
JL =

⌢

RC(−𝜑(zSN))tJD(zSN , h)
⌢

RC(Δ𝜑N)tJD(zSN−1, h)

…
⌢

RC(Δ𝜑3)tJD(zS2, h)
⌢

RC(Δ𝜑2)tJD(zS1, h)
⌢

RC(𝜑(zS1)),
(11.7)
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where

Δ𝜑j = 𝜑(zSj) − 𝜑(zSj−1).

Unimodular Representation

In considering nonabsorbing LC layers, the following representation is often used:

tJL = CAP lim
N→∞

t(N)
JUL, (11.8a)

t(N)
JUL = tJU(zSN , h)tJU(zSN−1, h)… tJU(zS2, h)tJU(zS1, h), (11.8b)

where

tJU(zSj, h) =
⌢

RC(−𝜑(zSj))tJDU(zSj, h)
⌢

RC(𝜑(zSj)), (11.9a)

tJDU(zSj, h) =
⎛⎜⎜⎜⎝
exp

(
i
𝜋

𝜆
Δ𝜎(zSj)h

)
0

0 exp
(
−i
𝜋

𝜆
Δ𝜎(zSj)h

) ⎞⎟⎟⎟⎠ , Δ𝜎 = 𝜎1 − 𝜎2, (11.9b)

CAP = exp
⎛⎜⎜⎝i𝜋d
𝜆

1

∫
0

[𝜎1(𝜂) + 𝜎2(𝜂)]d𝜂
⎞⎟⎟⎠ . (11.9c)

If the medium is nonabsorbing, the factor CAP is usually omitted (see Sections 1.4.5 and 5.4.3). The
matrix

tJUL = lim
N→∞

t(N)
JUL = 1

CAP

tJL, (11.10)

which is considered as the Jones matrix of the LC layer in this case, is unitary and unimodular and has
the form (

a b

−b∗ a∗

)
, (11.11)

where a and b are complex numbers such that a∗a + b∗b = 1, since all matrices whose product is tJUL

are unitary and unimodular and have the form (11.11) (see Section 5.1.3).

Differential Equations for the Jones Vectors and Matrices in a Fixed Reference System

In the differential Jones calculus, the spatial evolution of a Jones vector J in a layer with continuously
varying parameters is described by a differential equation of the form

dJ
dz

= NJJ (11.12)
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[1]. The matrix NJ(𝜉), where 𝜉 is an arbitrary value of the variable z inside the layer, may be expressed
as follows:

NJ(𝜉) = lim
h→0

tJ

(
𝜉 − h

2
, 𝜉 + h

2

)
− U

h
, (11.13)

where tJ (𝜉 − h∕2, 𝜉 + h∕2) is the Jones matrix of the region (𝜉 − h∕2, 𝜉 + h∕2), such that

J
(
𝜉 + h

2

)
= tJ

(
𝜉 − h

2
, 𝜉 + h

2

)
J
(
𝜉 − h

2

)
.

The general solution of (11.12) may be written as

J(z) = tJ(z
′, z)J(z′). (11.14)

Substituting (11.14) into (11.12) leads to the following operator equation for the function tJ(z
′, z):

dtJ(z
′, z)

dz
= NJtJ(z

′, z) [tJ(z
′, z′) = U]. (11.15)

Thus, one may associate a representation of the Jones matrix of a layer with continuously varying
parameters in terms of Jones matrices of its infinitesimal sublayers with a certain differential equation,
integration of which also gives the Jones matrix of the layer. For instance, the differential equation
corresponding to representation (11.4) is

dtx−y(z
′, z)

dz
= Nx−ytx−y(z

′, z) [tx−y(z
′, z′) = U], (11.16)

where

Nx−y = ik0�̄�U + ik0
Δ𝜎
2

(
cos 2𝜑 sin 2𝜑

sin 2𝜑 −cos 2𝜑

)
, �̄� =

𝜎1 + 𝜎2

2
; (11.17)

the function tx−y(z
′, z) is defined by the relation Jx−y(z) = tx−y(z

′, z)Jx−y(z
′). The matrix tJL is equal to

tx−y(z
′, z′′). The corresponding equation for Jx−y(z) is

dJx−y

dz
= Nx−yJx−y. (11.18)

Expression (11.17) may be obtained in the following way. According to (11.4) and (11.5), as h → 0,

tx−y

(
𝜉 − h

2
, 𝜉 + h

2

)
≃

⌢

RC (−𝜑(𝜉)) tJD(𝜉, h)
⌢

RC (𝜑(𝜉))

and hence

tx−y(𝜉 − h∕2, 𝜉 + h∕2) − U ≃
⌢

RC (−𝜑(𝜉)) [tJD(𝜉, h) − U]
⌢

RC (𝜑(𝜉))

=
⌢

RC(−𝜑(𝜉))

(
exp(ik0𝜎1(𝜉)h) − 1 0

0 exp(ik0𝜎2(𝜉)h) − 1

)
⌢

RC(𝜑(𝜉)).
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Substituting this expression into (11.13) yields

Nx−y = ik0

⌢

RC (−𝜑)

(
𝜎1 0

0 𝜎2

)
⌢

RC (𝜑) . (11.19)

Performing matrix multiplications in (11.19), we arrive at (11.17). Due to the specific form of the matrix
Nx−y [see (11.17)], the function tx−y(z

′, z) can be factorized as follows:

tx−y(z
′, z) = cAP(z′, z) tUx−y(z

′, z), (11.20)

where

cAP(z′, z) = exp
⎛⎜⎜⎝ik0

z

∫
z′

�̄�(𝜉)d𝜉
⎞⎟⎟⎠ (11.21)

is a function satisfying the equation

dcAP(z′, z)

dz
= ik0�̄�cAP(z′, z),

and tUx−y(z
′, z) is the solution of the equation

dtUx−y(z
′, z)

dz
= ik0

Δ𝜎
2

(
cos 2𝜑 sin 2𝜑

sin 2𝜑 −cos 2𝜑

)
tUx−y(z

′, z) (11.22)

[tUx−y(z
′, z′) = U]. It is obvious that

CAP = cAP(z′, z′′), tJUL = tUx−y(z
′, z′′) (11.23)

[see (11.9) and (11.10)].

Differential Equations for the Jones Vectors and Matrices in the Local Proper
Reference System

In calculations of transmission Jones matrices for LC layers, one often uses appropriately chosen local
reference frames for Jones vectors (see, e.g., Section 2.1). Let us introduce a z-dependent proper reference
system (x′(z), y′(z)) such that for any fixed z the angle between the axes x and x′(z) is equal to 𝜑(z). We
denote the column representing a Jones vector expressed in the system (x′, y′) by Jx′−y′ . The columns
Jx′−y′ and Jx−y representing the same Jones vector are related by

Jx′−y′ (z) =
⌢

RC (𝜑(z)) Jx−y(z) (11.24a)

and, conversely,

Jx−y(z) =
⌢

RC (−𝜑(z)) Jx′−y′ (z). (11.24b)
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By substituting (11.24b) into (11.18), we obtain

d
⌢

RC (−𝜑) Jx′−y′

dz
=

d
⌢

RC (−𝜑)

dz
Jx′−y′ +

⌢

RC (−𝜑)
dJx′−y′

dz
= Nx−y

⌢

RC (−𝜑) Jx′−y′ , (11.25)

and then

dJx′−y′

dz
=
⎡⎢⎢⎣
⌢

RC (𝜑) Nx−y

⌢

RC (−𝜑) −
⌢

RC (𝜑)
d
⌢

RC (−𝜑)

dz

⎤⎥⎥⎦ Jx′−y′

=

[
ik0

(
𝜎1 0

0 𝜎2

)
+ d𝜑

dz

(
0 1

−1 0

)]
Jx′−y′ .

(11.26)

Thus, we have arrived at the following differential equation for the function Jx′−y′ (z):

dJx′−y′

dz
= Nx′−y′Jx′−y′ , (11.27)

where

Nx′−y′ =

(
ik0𝜎1 𝜑z

−𝜑z ik0𝜎2

)
, (11.28)

𝜑z ≡
d𝜑
dz
. (11.29)

The corresponding equation for the function tx′−y′ (z
′, z), such that

Jx′−y′ (z) = tx′−y′ (z
′, z)Jx′−y′ (z

′) (11.30)

[see (11.14)], is

dtx′−y′ (z
′, z)

dz
= Nx′−y′ tx′−y′ (z

′, z) [tx′−y′ (z
′, z′) = U]. (11.31)

As in the above case, the matrix Nx′−y′ may be split into two components [see (11.17)],

Nx′−y′ = ik0�̄�U + NUx′−y′ , (11.32)

NUx′−y′ =
⎛⎜⎜⎝

i
𝜋

𝜆
Δ𝜎 𝜑z

−𝜑z −i
𝜋

𝜆
Δ𝜎

⎞⎟⎟⎠ , (11.33)

and hence the function tx′−y′ (z
′, z) may also be factorized as follows:

tx′−y′ (z
′, z) = cAP(z′, z)tUx′−y′ (z

′, z), (11.34)

where tUx′−y′ (z
′, z) satisfies the equation

dtUx′−y′ (z
′, z)

dz
= NUx′−y′ tUx′−y′ (z

′, z) [tUx′−y′ (z
′, z′) = U]; (11.35)
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the function cAP(z′, z) is defined by (11.21). In the case of a nonabsorbing medium, the matrices tUx−y(z
′, z)

[see (11.22)] and tUx′−y′ (z′, z) at any z are unitary and unimodular and have the form (11.11).
In the general case, the matrix tx′−y′ (z

′, z′′) may be represented as follows:

tx′−y′ (z
′, z′′) = lim

N→∞
t(N)
JRL1, (11.36a)

t(N)
JRL1 = tJD(zSN , h)

⌢

RC(Δ𝜑N)tJD(zSN−1, h)

… tJD(zS3, h)
⌢

RC(Δ𝜑3)tJD(zS2, h)
⌢

RC(Δ𝜑2)tJD(zS1, h) (11.36b)

[cf. (11.7)]. In this expression, the same staircase model as in representation (11.4) is used. This expression
is exact, but a more convenient expression for tx′−y′ (z

′, z′′) in this case is

tx′−y′ (z
′, z′′) = lim

N→∞
t(N)
JRL2, (11.37a)

t(N)
JRL2 = tJD(zCN , h∕2)

⌢

RC(Δ�̄�N)tJD(zCN−1, h)

… tJD(zC2, h)
⌢

RC(Δ�̄�2)tJD(zC1, h)
⌢

RC(Δ�̄�1)tJD(zC0, h∕2), (11.37b)

where

Δ�̄�j = 𝜑(zCj) − 𝜑(zCj−1),

zCj = z′ + j(z′′ − z′)∕N.

Here the outermost nodes of the grid are just at the layer boundaries (zC0 = z′ and zCN = z′′), and the first
and last sublayers are half as thick as the other sublayers [see also (8.331)]. In most cases of practical
interest, at large N t(N)

JRL2 approximates tx′−y′ (z
′, z′′) better than t(N)

JRL1.
According to (11.24), the matrix tx−y(z

′, z′′) may be calculated from tx′−y′ (z
′, z′′) as follows:

tx−y(z
′, z′′) =

⌢

RC(−𝜑(z′′))tx′−y′ (z
′, z′′)

⌢

RC(𝜑(z′)). (11.38)

Now we recall some well-known exact (within the accuracy of the Jones approach) and approximate
analytical expressions for the matrices tx′−y′ (z

′, z′′) of inhomogeneous layers.

Nontwisted Layer

If 𝜑(z) = 𝜑1 = const, with any 𝜃(z)

tx′−y′ (z
′, z′′) =

⎛⎜⎜⎜⎝
exp

⎛⎜⎜⎝ik0d

1

∫
0

𝜎1(𝜂)d𝜂
⎞⎟⎟⎠ 0

0 exp(ik0𝜎2d)

⎞⎟⎟⎟⎠ . (11.39)

This expression can easily be obtained from (11.27), (11.36), or (11.37).

Ideal Twisted Layer (General Case)

In the case of an ideal twisted layer, for which, by definition,

𝜃(z) = 𝜃c = const, (11.40a)

𝜑(z) = 𝜑1 + Φ(z − z′)∕d, (11.40b)
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the matrix Nx′−y′ in (11.31) is independent of z and, in a standard way (see Section 2.1 and Appendix
B.5), one can obtain an analytical expression for tx′−y′ (z

′, z′′), such as the following one:

tx′−y′ (z
′, z′′) = CAP

⎛⎜⎜⎜⎝
cosQ + i

G
Q

sinQ
Φ
Q

sinQ

−Φ
Q

sinQ cosQ − i
G
Q

sinQ

⎞⎟⎟⎟⎠ , (11.41)

where

Q =
√

G2 + Φ2, (11.42)

G =
𝜋(nec − n

⊥
)d

𝜆
, nec =

n∥n
⊥√

n2
⊥
cos2 𝜃c + n2

∥ sin
2
𝜃c

[see also (11.9c), (11.6c), and (11.6d)]. As far as we know, for the first time such an expression for the
transmission matrix of a uniformly twisted crystal was obtained by Jones [1] (see Appendix B.5). It
should be noted that expression (11.41) is valid not only for nonabsorbing media but also for absorbing
ones. In the latter case, Q is complex. Recall that in any case,

cosQ = eiQ + e−iQ

2
, sinQ = eiQ − e−iQ

2i
. (11.43)

To the best of our knowledge, there are no other cases where an exact (within the accuracy of the Jones
approach) analytical expression for the transmission Jones matrix of a smoothly inhomogeneous layer
can be obtained. Now we consider two approximate expressions for Jones matrices of inhomogeneous
layers, used in LCD optics.

A Quasi-Planar Twisted Nonabsorbing LC Layer

An ideal twisted layer is a very good model of a nematic or cholesteric layer with zero pretilt angles
(𝜃1 = 𝜃2 = 0◦). In practical TN and STN displays, a tilted orientation of the LC director at the boundaries
(𝜃1 ≠ 0◦, 𝜃2 ≠ 0◦) is commonly used. When the angles 𝜃1 and 𝜃2 are nonzero, the equilibrium configuration
of the LC director field in the field-off state generally differs from an ideal one. Usually, when 𝜃1 and
𝜃2 are relatively small and equal, the LC director at the center of the layer has a smaller tilt than at the
boundaries (see an example in Figure 11.2), and the difference in director tilt at the center of the layer
and at its boundaries increases as 𝜃1 and 𝜃2 increase, while the dependence of 𝜑 on z remains almost
linear (Figure 11.2). LC structures with small 𝜃1 and 𝜃2 that just slightly differ from ideal ones will be
called quasi-planar. The transmission characteristics of quasi-planar twisted layers are close to those of
ideal twisted layers. Lien [14], by some numerical examples, has shown that the Jones matrix of a quasi-
planar twisted LC layer is well approximated by the Jones matrix of an ideal twisted LC layer having
the same twist angle and the same principal refractive indices as the quasi-planar layer and the tilt angle
𝜃c equal to the average tilt angle in the quasi-planar layer. The same or a little better correspondence is
achieved when approximate values of tx′−y′ (z

′, z′′) are calculated by formulas (11.41) and (11.42) with

G =
𝜋(n̄e − n

⊥
)d

𝜆
, (11.44)
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Figure 11.2 Orientation of the LC director in twisted nematic layers with nonzero surface tilt angles
(𝜃1, 𝜃2). These configurations were calculated for a chiral LC material with elastic constants K11 = 1.3
× 10−6 dyn, K22 = 7.1 × 10−7 dyn, and K33 = 1.95 × 10−6 dyn (HR-8596) at d/p0 = 0.7, where p0 is the
natural helix pitch, for 𝜃1 = 𝜃2 = 4◦ (1), 15◦ (2), and 30◦ (3) (infinitely strong anchoring is assumed).
The calculations were performed with the MOUSE-LCD program
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where

n̄e =

1

∫
0

n∥n
⊥√

n2
⊥
cos2 𝜃(𝜂) + n2

∥ sin
2
𝜃(𝜂)

d𝜂. (11.45)

Practically the same accuracy of approximation for quasi-planar layers with 𝜃1,𝜃2 < 15◦ is provided by
the following representation:

G ≈
𝜋ΔnL

𝜃

𝜆
, (11.46)

where

Δn = n|| − n
⊥

, L
𝜃
= d⟨cos2

𝜃⟩, ⟨cos2
𝜃⟩ = 1

∫
0

cos2
𝜃(𝜂)d𝜂. (11.47)

Here use is made of the fact that for small 𝜃 and usual values of the principal refractive indices of LC

ne − n
⊥
≈ Δn

(
cos2

𝜃 − Δn
2n

⊥

(
3 + Δn

n
⊥

)
sin2

𝜃

)
≈ Δn cos2

𝜃. (11.48)

Representation (11.46) is very convenient in solving inverse problems for twisted layers [15] (see
Section 12.5).

Adiabatic Approximation (Mauguin Mode)

When the condition ||||𝜋Δ𝜎𝜆 ||||≫ |𝜑z| (11.49)

[see (11.33)] is satisfied at any z in the range z′ to z′′, the following approximation may be good:

tx′−y′ (z
′, z′′) ≈

⎛⎜⎜⎜⎝
exp

⎛⎜⎜⎝ik0d

1

∫
0

𝜎1(𝜂)d𝜂
⎞⎟⎟⎠ 0

0 exp(ik0𝜎2d)

⎞⎟⎟⎟⎠ . (11.50)

This solution describes the so-called Mauguin mode. In this case, the forward (backward) propagating
wave field in the layer may be considered as a superposition of two separate linearly polarized waves
having spatially dependent vibration directions that are locally coincident with vibration directions of
the corresponding basis eigenmodes of the infinitesimal sublayers. This approximation is closely related
to the geometrical optics approximation (GOA). GOA and allied, more accurate, approximations are
considered in Section 11.4.

Numerical Calculation of Jones Matrices of Inhomogeneous Layers

The most-used approach to calculating Jones matrices of inhomogeneous LC layers in situations where
the mentioned simple solutions are inapplicable is based on the use of any of representations (11.4),
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(11.7), (11.8), (11.10), (11.36), or (11.37) with approximation of the matrix to be estimated by the matrix
of the approximating system of homogeneous sublayers,

tJL ≈ t(N)
JL , or tJUL ≈ t(N)

JUL, or tx′−y′ (z
′, z) ≈ t(N)

JRL1 (11.51)

and so on, with sufficiently large N. We will refer to this approach as the discretization method (DM). In
a way analogous to that used in Section 8.3.4 when the accuracy of the staircase approximation in the
Berreman method was discussed, it is easy to find that the error of approximations of the kind (11.51)
may also be estimated as O(1/N2). The validity of this estimate is quite evident in view of the formal
analogy between DM and the staircase approximation as used within the framework of the Berreman
method. Some tricks used to reduce computational effort when DM is applied to nonabsorbing layers
will be presented in Section 11.3. There are methods for calculation of Jones matrices of smoothly
inhomogeneous layers that do not use approximation of the inhomogeneous layer by a system of
homogeneous sublayers [14, 16]. For example, in the method [14] the approximating layered system is
composed of sublayers with ideal twisted structure. Approximating systems including both ideal twisted
and nontwisted sublayers were also used. But, in practical situations, it is difficult to estimate the range
of applicability and predict the accuracy of such approximations because of their artificial character.

In the 1980–1990s, in modeling TN and STN LCDs [14] and solving some diffraction problems for LC
objects, in particular, in modeling the scattering properties of nematic droplets in PDLC films [17, 18]
(in this case, JC is used within the framework of the anomalous diffraction approximation [19, 20]),
as an alternative to the relatively time-consuming DM, a technique based on the representation of the
matrix tJUL [see (11.10)] by a power series in a parameter proportional to d/𝜆 was successfully used.
This technique is much more efficient than DM when it is desired to calculate the dependence tJUL on
𝜆 or on d, assuming that the functions 𝜃(𝜂) and 𝜑(𝜂) are independent of d. The power series method
(PSM) is a special technique for solving differential equations of the form (11.22) with a real-valued
Δ𝜎(z) (nonabsorbing media). The underlying mathematics of this method is presented in Appendix
B.4. Computational aspects of PSM are discussed in Section 11.3.3. Note that PSM does not require
introducing any intermediate model of the inhomogeneous medium under consideration at all.

11.1.2 Extended Jones Matrix Methods
Many attempts were made to create a matrix formalism similar to the Jones calculus but applicable
in the case of oblique incidence and more consistent with electromagnetic theory. As a result, several
variants of the extended Jones matrix method (EJMM) were developed [2–6]. As may be seen from the
literature, the most commonly used variants of EJMM in LCD modeling are that developed by Gu and
Yeh [2] and that proposed by Lien [3]. Both these methods use the rigorous eigenwave representation (see
Chapter 8) and the staircase approximation when treating inhomogeneous LC layers. The transmission
operators for interfaces between anisotropic layers (in particular, the interfaces between sublayers of the
layered system approximating the LC layer) are calculated approximately. Gu and Yeh [2, 21] used SBA
(see the subsection about SBA in Section 9.3) and introduced an intermediate zero-thickness fictitious
isotropic layer to obtain their approximate expression for transmission operators of such interfaces. We
have estimated the accuracy of this expression at the end of Section 8.4.2. Lien’s expression for interface
transmission operators that is used in the method [3, 22] for all interfaces in the model LCD except for
the external interfaces with air was derived from the boundary condition for the electric field on the
assumption that reflected waves are absent. In many cases these two methods give rather good results
(see Section 12.2). In many other cases the accuracy of these methods turns out far from satisfactory.
The following examples allow one to see some features of these methods and estimate the level of their
accuracy from the standpoint of electromagnetic theory.

Let us consider a nonabsorbing LC layer with nontwisted (𝜑(z) = const) homeoplanar structure
(Figure 11.3a). Let 𝜃1 = 𝜃(z′) = 90◦ and 𝜃2 = 𝜃(z′′) = 0◦, that is, the tilt angle 𝜃 decreases monotonically
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Figure 11.3 (a) Homeoplanar layer; (b) homeoplanar configurations HP1 and HP2 used in numerical
examples of this chapter

with z from 90◦ to 0◦. Also we assume that the layer is oriented so that 𝜑 = 0◦. As before, the light
is assumed to be incident on the layer in the normal direction. In the chosen geometry, light linearly
polarized along the y-axis will pass through the layer bulk without any losses, propagating with a constant
refractive index, equal to n⟂. We consider an alternative situation when the light entering the layer is
polarized along the x-axis. In this case, the light, traveling through the layer, suffers losses due to bulk
reflection, since the refractive index for it changes with z from n⟂ to n∥. For usual LC materials at typical
values of d, these losses are very small and the bulk transmissivity of the layer is very close to unity. As an
illustration, in Figure 11.4, accurately calculated dependences of the bulk transmissivity for layers with

𝜃(𝜂) = 𝜋

2
(1 − 𝜂) (configuration HP1) (11.52)
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Figure 11.4 Transmissivities of the bulks of homeoplanar layers with configurations HP1 and HP2 for
a normally propagating extraordinary wave



JWST441-c11 JWST441-Yakovlev Printer: Markono December 29, 2014 8:7 Trim: 244mm × 170mm

406 Modeling and Optimization of LCD Optical Performance

and

𝜃(𝜂) = 𝜋

2
(1 − 𝜂4) (configuration HP2) (11.53)

(Figure 11.3b) on d are shown. The calculations were performed by the transfer matrix method described
in Section 8.2.2 with n⟂ = 1.5, n∥ = 1.7, and 𝜆 = 550 nm (other details of the calculations are given in
the next section). As is seen from Figure 11.4, the deviations of the bulk transmissivity from unity in
the region d > 1.5 μm for both layers are really very small (<10−4). The mode of light propagation
in inhomogeneous media when the effect of bulk reflection is negligible will be called NBR mode. Assume
that the homeoplanar layer under consideration is sufficiently thick that the bulk reflection losses are
very small. In this case, the normal flux [see (8.242)] of the x-polarized wave through the plane z = z′′ is
almost equal to that through the plane z = z′, that is,

Sz(z
′′) ≈ Sz(z

′). (11.54)

From (11.54) and (8.242), we obtain the following relation for the fields of the wave at z = z′ and z = z′′:

Re(z(Ẽ(z′′) × H̃(z′′)∗)) ≈ Re(z(Ẽ(z′) × H̃(z′)∗)). (11.55)

Using EWB parameters (see Section 9.3), we may express Ẽ(z) and H̃(z) as follows:

Ẽ(z) = e1(z)A1(z), H̃(z) = h1(z)A1(z), (11.56)

where

h1(z) = 𝜎1(z)[z × e1(z)] (11.57)

with 𝜎1(z) given by (11.6c). Since n(z′)∥z and n(z′′)∥x (Figure 11.3), the parameters of the eigenwave
basis at the layer boundaries may be represented as

e1(z′) = a1(z′)x, e1(z′′) = a1(z′′)x, h1(z′) = a1(z′)n
⊥

y, h1(z′′) = a1(z′′)n||y, (11.58)

where a1 is a factor depending on normalization conditions imposed on the eigenwave basis. In
particular, for normalization (8.167) [or (8.164)],

a1(z′) = 1∕
√

2n
⊥

, a1(z′′) = 1∕
√

2n||; (11.59)

for Yeh’s normalization (8.238),

a1(z′) = a1(z′′) = 1. (11.60)

For Yeh’s normalization, from (11.56)–(11.58) and (11.60) we have

Ẽ(z′) = xA1(z′), Ẽ(z′′) = xA1(z′′),

H̃(z′) = yn
⊥

A1(z′), H̃(z′′) = yn||A1(z′′).
(11.61)

Substituting (11.61) into (11.55) leads to the following relation:

n
⊥
|A1(z′)|2 ≈ n∥|A1(z′′)|2. (11.62)
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According to (11.61), this relation may be rewritten as

n
⊥
|Ex(z

′)|2 ≈ n∥|Ex(z
′′)|2, (11.63)

where Ex is the x-component of the electric field vector Ẽ. Hence for NBR mode, to a very good
approximation,

|A1(z′′)|2||A1(z′)||2 ≈
n
⊥

n∥
, (11.64)

|Ex(z
′′)|2|Ex(z′)|2 ≈

n
⊥

n∥
. (11.65)

We see that in this situation, on passing through the layer, the amplitudes A1 (if Yeh’s normalization
is used) and Ex of the wave significantly change in magnitude (by a factor

√
n
⊥
∕n∥), while the normal

flux remains almost constant. Figure 11.5 shows how |Ex| changes as the wave in NBR mode propagates
through the layer with configuration HP1. It is easy to verify that neither Gu and Yeh’s method [2] nor
Lien’s method [3, 22] takes these changes in |Ex| and |A1| into account. Gu and Yeh’s method in this
situation yields the following relation for the state vectors:

(
A1(z′′)

A2(z′′)

)
=

⎛⎜⎜⎜⎜⎝
exp

⎛⎜⎜⎝ik0d

1

∫
0

𝜎1(𝜂)d𝜂
⎞⎟⎟⎠ 0

0 exp
(
ik0𝜎2d

)
⎞⎟⎟⎟⎟⎠
(

A1(z′)

A2(z′)

)
(11.66)
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Figure 11.5 Spatial evolution of the amplitudes of field components of an extraordinary wave prop-
agating through the homeoplanar layer with configuration HP1 in NBR mode. Comparison of results
obtained by different methods
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for Yeh’s normalization. Lien’s method [3, 22] gives the relation

(
Ex(z

′′)

Ey(z
′′)

)
=

⎛⎜⎜⎜⎜⎝
exp

⎛⎜⎜⎝ik0d

1

∫
0

𝜎1(𝜂)d𝜂
⎞⎟⎟⎠ 0

0 exp
(
ik0𝜎2d

)
⎞⎟⎟⎟⎟⎠
(

Ex(z
′)

Ey(z
′)

)
. (11.67)

In our case A2(z) = 0 and Ey(z) = 0 and, according to these relations,

|A1(z′′)|2|A1(z′)|2 = 1 (11.68)

and

|Ex(z
′′)|2|Ex(z′)|2 = 1. (11.69)

Comparing these relations with (11.64) and (11.65), we see that the level of accuracy of the methods
under consideration in the context of electromagnetic theory is not very good and becomes worse with
increasing the deviation of n⟂/n∥ from unity. Significant difference between estimates for the fields given
by these methods and the rigorous theory explains the fact that use of exact electromagnetic formulas
within the frameworks of these methods sometimes leads to large errors and even nonphysical results.
Thus, in the above example, the exact formula for the bulk transmissivity of the LC layer,

t(z′, z′′) ≡ Sz(z
′′)∕Sz(z

′), (11.70)

in view of (8.242), (11.58), and (11.60), gives

t(z′, z′′) =
n∥|Ex(z

′′)|2
n
⊥
|Ex(z′)|2 =

n∥|A1(z′′)|2
n
⊥
|A1(z′)|2 . (11.71)

By substituting (11.68) or (11.69) into (11.71), we obtain

t(z′, z′′) =
n∥

n
⊥

, (11.72)

while the true values of t(z′, z′′) for NBR mode are very close to unity. With n∥ > n
⊥

, equation (11.72)
gives physically meaningless values of t(z′, z′′) (t(z′, z′′)> 1), which are spaced from the nearest physically
acceptable value (t(z′, z′′) = 1) by (n∥ − n

⊥
)∕n

⊥
. In schemes used by Gu, Yeh, and Lien for modeling

LCDs, the effect of the mentioned errors in the field amplitudes is somewhat weakened due to a specific
inclusion of the interfaces of the LC layer with the adjacent layers. Trying to incorporate these interfaces,
or the thin-layer systems surrounding the LC layer in real devices, into the computational model in strict
accordance with electromagnetic theory, we are again at risk of obtaining a large error (a reformulation of
Gu and Yeh’s method made by Yu and Kwok [6] artificially protects from large errors in such situations).
To illustrate, suppose that the LC layer is situated between glass plates as in Figure 11.1, and estimate the
transmissivity of the domain (z1 − 0, z2 + 0) for an incident wave linearly polarized along the x-axis. The
domain (z1 − 0, z2 + 0) includes the frontal glass plate–LC layer interface (z1 − 0, z1 + 0), the bulk of
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the LC layer (z1 + 0, z2 − 0), and the LC layer–rear glass plate interface (z2 − 0, z2 + 0). Neglecting multiple
reflections, we may connect the amplitudes of the forward propagating light at the interfaces as follows:

Ex(z1 + 0) =
2ng

ng + n
⊥

Ex(z1 − 0), Ex(z2 + 0) =
2n||

n|| + ng

Ex(z2 − 0), (11.73)

where ng is the refractive index of the glass plates. These are accurate relations given by electromagnetic
theory; they take account of single reflections from the interfaces. Let us try to use these relations in
combination with the following one, given by Lien’s method [3, 22] [see (11.67)]:

Ex(z2 − 0) = Ex(z1 + 0) exp
⎛⎜⎜⎝ik0d

1

∫
0

𝜎1(𝜂)d𝜂
⎞⎟⎟⎠ . (11.74)

Upon substituting (11.74) into (11.73), we have

|Ex(z2 + 0)|2 = ( 2n||
n|| + ng

)2 ( 2ng

ng + n
⊥

)2 |Ex(z1 − 0)|2. (11.75)

The transmissivity

t(z1 − 0,z2 + 0) ≡ Sz(z2 + 0)∕Sz(z1 − 0) (11.76)

may be expressed as follows:

t(z1 − 0, z2 + 0) =
ng|Ex(z2 + 0)|2
ng|Ex(z1 − 0)|2 =

|Ex(z2 + 0)|2|Ex(z1 − 0)|2 . (11.77)

From (11.77) and (11.75), we obtain

t(z1 − 0, z2 + 0) =
( 2n||

n|| + ng

)2 ( 2ng

ng + n
⊥

)2

. (11.78)

It is easy to see that this expression is erroneous. For example, taking ng = n⟂, we see that with n∥ > ng

expression (11.78) gives t(z1 − 0, z2 + 0) > 1. Thus, we again face the situation when an attempt to use
the variants [2, 3] of EJMM as truly electromagnetic methods leads to bad results.

Recognizing the disadvantages of the method [3], Lien with coauthors developed later a more accurate
method (see expression (72) in [5]) which is fully consistent with electromagnetic theory, for media with
arbitrary birefringence. But this method is significantly slower than [3]. Then, more efficient and simple
methods of the same level of accuracy were proposed in [7–9]. We proceed to describe these methods.

11.2 NBRA. Basic Differential Equations

Differential Equations for State Vectors

According to the rigorous electromagnetic theory of light propagation in stratified media, which has been
set forth in detail in Chapter 8, spatial evolution of a harmonic wave field of the form (8.57) in a layer
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(z′, z′′) with smoothly varying parameters may be described by equation (8.86) which, in view of (8.93),
may be rewritten as follows:

da↓

dz
= N11a↓ + N12a↑, (11.79a)

da↑

dz
= N21a↓ + N22a↑, (11.79b)

where a↑ and a↓ are, as usual, the EW Jones vectors characterizing the forward and backward propagating
fields, respectively; Nij (i, j = 1, 2) are 2 × 2 blocks of the matrix

⌢

𝚫A =

(
N11 N12

N21 N22

)
(11.80)

expressed, in terms of the parameters of the eigenwave basis, by (8.87). Since the layer is inhomogeneous,
the forward and backward propagating fields within it are coupled, that is, bulk reflection takes place.
The coupling between forward and backward propagating waves is described by nonzero elements of
off-diagonal 2 × 2 blocks of the matrix

⌢

𝚫A, N12, and N21. Considering practical LCDs, we mostly deal
with LC layers whose bulk reflection under illumination conditions of interest is very small. In such
cases, we may expect to obtain accurate estimates of the transmission characteristics of the LC layer even
if we neglect the difference of elements of the blocks N12 and N21 from zero. Calculating the transmission
characteristics of layers with smoothly varying parameters on the assumption that all elements of the
blocks N12 and N21 are zero is the essence of the negligible-bulk-reflection approximation (NBRA) in
the context of the rigorous theory. Under this assumption, the simultaneous equations (11.79) split into
two independent equations: one equation,

da↓

dz
= N↓a↓ (11.81)

with N↓ ≡ N11, is for the forward propagating fields, and the other,

da↑

dz
= N↑a↑ (11.82)

with N↑ ≡ N22, for the backward propagating fields. Using (11.81), one can estimate the operator t↓(z′, z′′).
From (11.82) one can find an approximate value of the matrix t↑(z′, z′′). Since the ways of the use of
(11.81) and (11.82) for estimating the corresponding transmission operators are identical, we confine
our further discussion to the methods of estimation of the matrix t↓(z′, z′′), which stem from (11.81).

Differential Equation for the Transmission Operator for Forward Propagating Fields

Substitution of the expression a↓(z) =
⌢

t ↓(z′, z)a↓(z′) into (11.81) gives the following operator equation:

d
⌢

t ↓(z′, z)
dz

= N↓(z)
⌢

t ↓(z′, z) [
⌢

t ↓(z′, z′) = U]. (11.83)
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The solution of this equation,
⌢

t ↓(z′, z′′), is the value of the operator t↓(z′, z′′) yielded by NBRA. According
to (8.87), the general expression for the matrix N↓ may be written as follows:

N↓ =

(
ik0𝜎1 − �̄�1𝝍 z1 −�̄�1𝝍 z2

−�̄�2𝝍 z1 ik0𝜎2 − �̄�2𝝍 z2

)
, (11.84)

where

𝝍 zj ≡
d𝝍 j

dz
j = 1, 2.

This general expression for the matrix N↓ is too complicated to see any advantage of NBRA. In this
section, we derive much simpler expressions for this matrix that make NBRA a really useful tool in
both numerical calculations and analysis. But, before proceeding to these derivations, we provide some
numerical examples demonstrating the validity of NBRA and accuracy of the relation

t↓(z′, z′′) ≈
⌢

t ↓(z′, z′′) (11.85)

in situations typical of LCDs.

Numerical Estimates of the Accuracy of NBRA

No simple exact general criteria that allow evaluating the accuracy of the approximation (11.85) a priori
are known. The simplest way to evaluate the accuracy of this approximation in solving a particular
problem is to compare results obtained using NBRA with the corresponding exact solutions under
conditions typical of this problem or under somewhat more severe conditions to estimate the upper limit
of the errors in typical situations. Here (see Figures 11.6–11.9) we demonstrate several examples of such
estimates for locally uniaxial layers with spatially invariant principal refractive indices. In these examples
we consider five model configurations of the optic axis field. The first two are the homeoplanar configu-
rations HP1 (11.52) and HP2 (11.53), which have been considered in the previous section (Figure 11.3).
The third is an ideal twisted configuration with Φ = 270◦ and tilt angle 𝜃 = 20◦ (Figure 11.7):

𝜃(𝜂) = 𝜋∕9, 𝜑(𝜂) = 3𝜋𝜂∕2 (11.86)

[see (11.2)]. The fourth configuration (Figure 11.8) is

𝜃(𝜂) = 𝜋∕9 + (3𝜋∕9) sin(𝜋𝜂), 𝜑(𝜂) = 3𝜋𝜂∕2 − (2𝜋∕9) sin(2𝜋𝜂). (11.87)

This is a distorted twisted configuration with Φ = 270◦, 𝜃1 = 𝜃2 = 20◦, and 𝜃(𝜂 = 0.5) = 80◦. The fifth
configuration (Figure 11.9) is an ideal twisted one with Φ = 90◦ and 𝜃 = 4◦:

𝜃(𝜂) = 𝜋∕45, 𝜑(𝜂) = 𝜋𝜂∕2. (11.88)

For these layers, the transmission matrices t↓(z′, z′′) and
⌢

t ↓(z′, z′′) as well as the reflection matrix
r↓(z′, z′′) were calculated. The matrices t↓(z′, z′′) and r↓(z′, z′′) were computed by transfer matrix method
(the eigenwave variant, see Section 8.2.2) with the use of the staircase approximation. The staircase
model of the kind (8.331) with 801 sublayers was used. The maximum errors in the calculated t↓(z′, z′′)
and r↓(z′, z′′) were of the order of 3 × 10−5. The matrix

⌢

t ↓(z′, z′′) was calculated with the help of
an approximating multilayer method (AMM) that will be described in Section 11.3.1, using the same
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Figure 11.6 The maximum bulk reflectivity rmax and the error of the NBR approximation for the layers
with homeoplanar configurations HP1 (a) and HP2 (b) (see Figure 11.3)

staircase model, which gave approximately the same accuracy as in the calculations of t↓(z′, z′′) and
r↓(z′, z′′). From the obtained r↓(z′, z′′), the maximum (over the set of all possible values of the EW
Jones vector of the incident light) reflectivity rmax = max[r↓(z′, z′′)] was calculated (see Section 8.5).
The quantity

𝛿t ≡ ‖t↓(z′, z′′) −
⌢

t ↓(z′, z′′)‖E, (11.89)

where ‖ ⋅ ‖E, as usual, denotes the Euclidean norm (see Sections 5.1.4 and 11.5), was considered as
a measure of accuracy of approximation (11.85). In the calculations, we assumed that the media were
nonabsorbing and had n∥ = 1.7 and n⟂ = 1.5. All the calculations were performed with 𝜆 = 550 nm for
different propagation directions of the incident light which was assumed to fall on the layered system
containing the layer under consideration from air. Figures 11.6–11.9 present the calculated rmax and 𝛿t as
functions of the layer thickness d for the case of normal incidence (𝛽 inc = 0◦) and for the cases 𝛽 inc = 45◦

and 𝛽 inc = 85◦. For both cases of oblique incidence, curves corresponding to three different orientations
of the plane of incidence (𝛼inc = 0◦, 45◦, and 90◦) are shown. As is seen from the plots for rmax, in all
the cases, for layers with d > 1 μm the reflectivities are very small. The results for the homeoplanar
configurations (Figure 11.6) in the region d < 2 μm allow one to estimate the reflectivity of fragments
of LC layers where the derivative d𝜃/dz is large (for example, the near-surface regions at high voltages).
The results for the layers with twisted configurations are in fair agreement with the following simple
criterion of a weak bulk reflection:

𝜆|Φ|
2𝜋d

≪ 1, (11.90)
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Figure 11.7 The maximum bulk reflectivity rmax and the error of NBRA for the layer with a supertwisted
configuration (11.86)

which is well known in optics of cholesteric LCs. For all the twisted configurations, including the
distorted one (11.87), the maxima of reflectivity correspond to thicknesses for which

𝜆|Φ|
2𝜋d

∼ 1, (11.91)

and for thicknesses satisfying (11.90) the reflectivity is very small. As might be expected, the largest values
of 𝛿t were obtained for the ideal supertwisted structure (11.86). But for d > 0.4 μm/Δn (this condition
is satisfied for the practical STN modes) 𝛿t is relatively small. For instance, at normal incidence and at
𝛽 inc = 45◦, for layers with d > 2 μm 𝛿t does not exceed 0.002 [for comparison, SBA for these conditions
gives errors (determined analogously to 𝛿t) of the order of 0.06]. Note that in practical STN devices,
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Figure 11.8 The maximum bulk reflectivity rmax and the error of NBRA for the layer with a distorted
supertwisted configuration (11.87)

Figure 11.9 The maximum bulk reflectivity rmax and the error of NBRA for the layer with a 90◦-twisted
configuration (11.88)
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as a rule, conditions are more favorable for NBRA (in particular, smaller Φ) than in this example. The
values of 𝛿t for the layers with configurations HP1, HP2, (11.87), and (11.88) are much smaller than
for configuration (11.86), and high accuracy of NBRA, at least for d > 2 μm, is quite evident. These
examples show that NBRA really has a very wide field of application in LCD optics. Now we will
obtain the simpler expressions for the matrix N↓, applicable in considering LC layers. We note that the
simplifications will be made without invoking any additional physical approximations, and the resulting
expressions for N↓ are exact.

General Case of a Reciprocal Optically Locally Centrosymmetric Medium

A standard model of an LC layer is a medium characterized by constitutive relations (8.6) with a
symmetric permittivity tensor, that is, the LC is regarded as a reciprocal optically locally centrosymmetric
medium. As we saw in Section 8.4.1, in the absence of polarization degeneracy, the basis waves for such
media always satisfy the condition

𝝍
T
k I0𝝍 j ≡ z ⋅ (ek × hj + ej × hk) = 0

k, j = 1, 2, 3, 4, k ≠ j
(11.92)

[see (8.161) and (8.97)]. In the presence of polarization degeneracy, the eigenwave basis can always be
chosen so that condition (11.92) is satisfied. Assuming that the EW basis satisfies (11.92) and has been
normalized by condition (8.167) (S-normalization), we may represent the first two rows of the matrix
𝚿−1 (�̄� k) as

�̄� k = 𝝍T
k I0 = ( hky ekx −hkx eky ) k = 1, 2 (11.93)

(see Section 8.4.1). By making use of (11.93), we may rewrite expression (11.84) as follows:

N↓ =

(
ik0𝜎1 − 𝝍T

1 I0𝝍 z1 −𝝍T
1 I0𝝍 z2

−𝝍T
2 I0𝝍 z1 ik0𝜎2 − 𝝍T

2 I0𝝍 z2

)
. (11.94)

Differentiating (11.92),

d
(
𝝍

T
k I0𝝍 j

)
dz

=
(

d𝝍 k

dz

)T

I0𝝍 j + 𝝍T
k I0

(d𝝍 j

dz

)
= 𝝍T

j I0

(
d𝝍 k

dz

)
+ 𝝍T

k I0

(d𝝍 j

dz

)
= 0

(here the property I0
T = I0 has been used), we find that

𝝍
T
1 I0𝝍 z2 = −𝝍T

2 I0𝝍 z1. (11.95a)

Similarly, differentiating (8.167), we obtain

𝝍
T
1 I0𝝍 z1 = 𝝍T

2 I0𝝍 z2 = 0. (11.95b)

In view of (11.95), expression (11.94) may be rewritten as

N↓ (z) =

(
ik0𝜎1(z) 𝜗z(z)

−𝜗z(z) ik0𝜎2(z)

)
, (11.96)
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where

𝜗z = −𝝍T
1 I0𝝍 z2 = 𝝍T

2 I0𝝍 z1. (11.97)

Thus, we may specify the function N↓(z) by specifying three scalar functions 𝜎1(z), 𝜎2(z), and 𝜗z(z).
If the medium is nonabsorbing, the vectors e1(z) and e2(z) can be chosen real (in what follows, when
considering nonabsorbing media, we assume that the EWB is chosen in that way). The function 𝜗z(z)
will then take only real values, as will 𝜎1(z) and 𝜎2(z). We must emphasize that expression (11.96)
corresponds to S-normalization of the eigenwave basis.

One cannot but notice that expression (11.96) is very similar to expression (11.28) for the matrix
Nx′−y′ entering into equations (11.27) and (11.31) of the Jones method. The parameter 𝜑z determining
the off-diagonal elements of the matrix Nx′−y′ is a purely configurational parameter (𝜑z = d𝜑/dz). As
we will see below, considering the case of an optically uniaxial medium, the parameter 𝜗z is also rather
simply connected with the geometry of the medium, and, furthermore, in the case of normal incidence,
is close to 𝜑z.

Optically Uniaxial Medium

Let the medium be locally uniaxial and have spatially invariant principal refractive indices (n∥ and n⟂).
The permittivity tensor ε of this medium as a function of z can be represented as

ε(z) = 𝜀
⊥

U + Δ𝜀c(z)⊗ c(z),

where

Δ𝜀 = 𝜀∥ − 𝜀⊥, 𝜀∥ = n2
∥, 𝜀

⊥
= n2

⊥
,

and c is, as usual, the unit vector parallel to the local optic axis. For the sake of generality, we assume that,
for the forward propagating waves, there is polarization degeneracy in the planes z = zDk (k = 1, 2, . . . ,
ND) (i.e., 𝜎1(zDk) = 𝜎2(zDk)). Using the template for EW bases in uniaxial media given in Section 9.3, we
choose the eigenwave basis (S-normalized) as follows:

𝜎1 =
−b1 +

√
b2

1 − b2(b3 − 𝜀⊥𝜀∥)

b2

, 𝜎2 =
√
𝜀
⊥
− b2,

b1 = Δ𝜀(bc)(zc), b2 = 𝜀
⊥
+ Δ𝜀(zc)2, b3 = 𝜀

⊥
b2 + Δ𝜀(bc)2;

ej =
ej

2z ⋅ (ej × hj)
, hj =

hj

2z ⋅ (ej × hj)
,

hj = mj × ej, mj = b + z𝜎j, j = 1, 2;

e1(z) = a(z)
b(z)

⌢

k(z), e2(z) = a(z)
b(z)

⌢

j (z) for z ≠ zDk

e1(zDk) =
a(zDk − 0)

b(zDk − 0)

⌢

k(zDk − 0), e2(zDk) =
a(zDk − 0)

b(zDk − 0)

⌢

j (zDk − 0),

(11.98)
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where

⌢

k ≡ −b𝜀−1(m1 × (m1 × c)) = b

(
c −

m1(m1c)

𝜀
⊥

)
,

⌢

j ≡ b(m2 × c), b ≡
1√

(m2 × c)2
,

(11.99)

a(z) is a step function taking the values 1 and −1, remaining constant in the regions that do not contain
points z = zDk, and satisfying the condition

a(zDk + 0) = a(zDk − 0)sign
(
⌢

j (zDk − 0) ⋅
⌢

j (zDk + 0)
)

k = 1, 2,… , ND.

Recall that m1, 𝜎1, e1, and h1 are parameters of the extraordinary basis wave, and m2, 𝜎2, e2, and h2

of the ordinary basis wave. The factors a and b have been introduced to ensure the continuity of the
functions ej(z) and hj(z) (j = 1, 2) at z = zDk. These factors may be omitted if polarization degeneracy is
absent.

Let us introduce the vector i = m2/M2, where M2 ≡

√
m2

2 = n
⊥

(m2 and 𝜎2 are independent of z within

the medium) and the vector functions

j(z) =
⎧⎪⎨⎪⎩

a(z)
⌢

j (z) z ≠ zDk

a(z − 0)
⌢

j (z − 0) z = zDk

k = 1, 2,…ND (11.100)

and k(z) = i × j(z). Note that

⌢

j (z) = i × c(z)
p(z)

[see (11.99)], where p =
√

(i × c)2. The vectors i, j, and k are unit and orthogonal in the sense that

i2 = j2 = k2 = 1, i ⋅ j = j ⋅ k = i ⋅ k = 0. (11.101)

In the absence of absorption, the vectors i, j, and k are real; otherwise, they may be complex. Due to
(11.101), the functions j(z) and k(z) can be represented as

j(z) = j(z′) cos 𝜐(z) + k(z′) sin 𝜐(z),

k(z) = −j(z′) sin 𝜐(z) + k(z′) cos 𝜐(z),
(11.102)

where 𝜐(z) is a continuous function satisfying the conditions

cos 𝜐(z) = j(z) ⋅ j(z′),

sin 𝜐(z) = j(z) ⋅ k(z′), and 𝜐(z′) = 0.
(11.103)

If the vectors i, j(𝜉), and k(𝜉), where 𝜉 is any given value of z, are real, they as well as the parameter
𝜐(𝜉) have a simple geometrical interpretation (see Figure 11.10). The vector i coincides with the wave
normal of the ordinary basis wave; j(𝜉) is a normal to the plane subtending the vectors c(𝜉) and i, k(𝜉) is
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c

c(ξ ) i
z

j(z′)

(z′)

j(ξ )

k(z′)
k(ξ )

υ(ξ )

υ (ξ )

Figure 11.10 To the problem on light propagation in a locally uniaxial medium. Basic vectors

a vector perpendicular to i and j(𝜉), and 𝜐(𝜉) is the angle between the vectors j(z′) and j(𝜉) [and between
k(z′) and k(𝜉)]. According to (11.97) and (11.93), the function 𝜗z(z) may be represented as

𝜗z = −z ⋅
(

e1 ×
dh2

dz
+

de2

dz
× h1

)
. (11.104)

Using (11.98), (11.99), and (11.101), we find that

e2(z) = gj(z), h2(z) = M2k(z),

where

g = 1√
2M2(i ⋅ z)

.

In view of (11.102), this gives

de2

dz
= 𝜐z(z)gk(z),

dh2

dz
= −𝜐z(z)gM2j(z), (11.105)

where 𝜐z ≡ d𝜐/dz. Substitution of the expression

m1 = M2 (i + 𝛾z) ,

where

𝛾 ≡
𝜎1 − 𝜎2

M2

,
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into (11.98) and (11.99) followed by substitution of the resulting formulas for e1 and h1 and (11.105)
into (11.104) gives

𝜗z(z) = 𝜐z(z)

⎛⎜⎜⎜⎝
1 + h′

2
𝛾(z)√

1 + h′𝛾(z) − h′′(z)𝛾(z)2

⎞⎟⎟⎟⎠ , (11.106)

where

h′ = (i ⋅ z)−1, h′′ = h′(z ⋅ c)(z × c) ⋅ (z × i)p−2
.

Note that the function 𝛾(z) can be expressed in terms of i and c(z) as

𝛾 = w
v

(√
1 + 𝛿 − 1

)
, (11.107)

where

𝛿 = v𝛿
𝜀

( p

w

)2
, w = i ⋅ z + 𝛿

𝜀
(i ⋅ c) (z ⋅ c) , v = 1 + 𝛿

𝜀
(z ⋅ c)2 , 𝛿

𝜀
= Δ𝜀
𝜀
⊥

.

From (11.107) it follows that 𝛾 = O(p2) as p → 0. Using this estimate, one can easily find that for p = 0
𝜗z = 𝜐z [p(zDk) = 0].

Thus, in the case of a uniaxial medium with spatially invariant principal refractive indices, all elements
of the matrix N↓(z) are rather simply expressed in terms of parameters of the medium. It is easy to see
that in the typical situation when

𝛿
𝜀
≪ 1, |i ⋅ z| ∼ 1, (11.108)

the difference between 𝜗z(z) and 𝜐z(z) is small. Let us introduce the parameter

𝛾
′ = 𝛾

p2 (i ⋅ z)
.

It is seen from (11.106) that, as 𝛾 ′ → 0,

𝜗z = 𝜐z(1 + h𝛾 ′2 + O(𝛾 ′3)),

h =
p4

8
+

p2

2
(i ⋅ z)(z ⋅ c)(z × c) ⋅ (z × i)

(11.109)

(in the absence of absorption, the factor h satisfies the condition |h| ≤ 1/4). When conditions (11.108)
are met, we have |𝛾 ′|≪ 1 because, according to (11.107),

|𝛾 ′| ≤ |||| 𝛿
𝜀

2w (i ⋅ z)

|||| .
In the case of normal incidence, if the field of the local optic axis is given by (11.1), according to (11.102),
we have 𝜐(z) = 𝜑(z) and, consequently, 𝜐z = 𝜑z ≡ d𝜑/dz, so that the relation 𝜗z(z) ≈ 𝜐z(z) is equivalent
to the following one:

𝜗z(z) ≈ 𝜑z(z). (11.110)
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We see that in the case of normal incidence, the matrix of coefficients of equation (11.81), describing
the spatial evolution of the vector a↓ with S-normalization, is almost identical to that of equation (11.27)
for the Jones vector Jx′−y′ . But one should remember that the mentioned state vectors are of absolutely
different nature (see Section 1.4.5).

Equation (11.81) successfully passes the test with the homeoplanar layer from the previous section.
For this layer, 𝜗z is equal to zero and integration of (11.81) with N↓ of the form (11.96) leads to relations
(11.66) but for input and output state vectors corresponding to S-normalization. The medium in the test
is assumed to be nonabsorbing, and consequently 𝜎1(z) and 𝜎2(z) are real. Therefore, the matrix

⌢

t ↓(z′, z′′) =
⎛⎜⎜⎜⎝
exp

⎛⎜⎜⎝ik0d

1

∫
0

𝜎1(𝜂)d𝜂
⎞⎟⎟⎠ 0

0 exp
(
ik0𝜎2d

)
⎞⎟⎟⎟⎠

is unitary. S-normalization in this situation is equivalent to the flux (F-) normalization (8.164), and hence
we can use (8.282). According to (8.266) and (8.282), the transmittance of a system characterized by a
unitary transmission EW Jones matrix under F-normalization is equal to unity at any value of the state
vector of the input light. Thus, in this test, equation (11.81) gives the expected result: t(z′, z′′) = 1. This
result may also be verified directly, by using (11.56), (11.58), (11.59), (11.68), and (8.242).

11.3 NBRA. Numerical Methods
In this section, we present three numerical methods for calculating EW Jones matrices of smoothly
inhomogeneous layers in the NBR approximation.

For the sake of convenience, in subsequent formulas we often use the normalized coordinate 𝜂 in place
of z [see (11.2)]. In terms of 𝜂, we may write the general equation for finding the transmission matrix
of an arbitrary part (𝜂′, 𝜂′′) (0 ≤ 𝜂

′
< 𝜂

′′ ≤ 1) of an inhomogeneous layer in the NBR approximation as
follows:

d
⌢

t ↓(𝜂′, 𝜂)
d𝜂

=
(

N↓
𝜎
(𝜂) − N↓

𝜓
(𝜂)
)

⌢

t ↓(𝜂′, 𝜂) [
⌢

t ↓(𝜂′, 𝜂′) = U], (11.111)

where

N↓
𝜎
(𝜂) ≡

(
ik0𝜎1(𝜂)d 0

0 ik0𝜎2(𝜂)d

)
, N↓

𝜓
(𝜂) ≡

(
�̄�1(𝜂)𝝍

𝜂1(𝜂) �̄�1(𝜂)𝝍
𝜂2(𝜂)

�̄�2(𝜂)𝝍
𝜂1(𝜂) �̄�2(𝜂)𝝍

𝜂2(𝜂)

)
, (11.112)

𝝍
𝜂k ≡ d𝝍 k∕d𝜂 (11.113)

[see (11.83) and (11.84)]. The matrix of the layer,
⌢

t ↓L ≡
⌢

t ↓(0, 1), may be calculated by integrating
(11.111) with 𝜂′ = 0. The first of the three methods, which is described in Section 11.3.1, is a general
method of integrating (11.111). This method is applicable whatever be 𝜎k(𝜂) and 𝝍 k(𝜂).

The simplified equation for the case of an optically locally centrosymmetric medium in terms of 𝜂
may be written as follows:

d
⌢

t ↓(0, 𝜂)
d𝜂

=

(
ik0𝜎1(𝜂)d 𝜗

𝜂
(𝜂)

−𝜗
𝜂
(𝜂) ik0𝜎2(𝜂)d

)
⌢

t ↓(0, 𝜂),
⌢

t ↓(0, 0) = U,

𝜗
𝜂
= −𝝍T

1 I0𝝍 𝜂2 = 𝝍T
2 I0𝝍 𝜂1

(11.114)
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[see (11.96)]. If the medium is nonabsorbing, with real-valued 𝜎k(𝜂) and 𝜗
𝜂
(𝜂), the matrix

⌢

t ↓L may be
represented as

⌢

t ↓L = ep

⌢

R (𝜗(1)) t̃, t̃ ≡

(
c1 c2

−c∗2 c∗1

)
≡

⌣

t (1), (11.115)

ep ≡ exp
⎧⎪⎨⎪⎩

i𝜋d
𝜆

1

∫
0

(
𝜎1(𝜂) + 𝜎2(𝜂)

)
d𝜂

⎫⎪⎬⎪⎭ ,
⌢

R(𝜑) ≡

(
cos𝜑 sin𝜑
− sin𝜑 cos𝜑

)
, (11.116)

𝜗(𝜂) =

𝜂

∫
0

𝜗
𝜂
(�̄�)d�̄�, (11.117)

where
⌣

t (𝜂) is the solution of the equation

d
⌣

t (𝜂)
d𝜂

= i𝜋d
𝜆

Δ𝜎(𝜂)

(
cos 2𝜗(𝜂) sin 2𝜗(𝜂)

sin 2𝜗(𝜂) −cos 2𝜗(𝜂)

)
⌣

t (𝜂) [
⌣

t (0) = U];

Δ𝜎(𝜂) = 𝜎1(𝜂) − 𝜎2(𝜂).

(11.118)

How this representation may be derived from (11.114) is evident from the discussion of differential
equations of the Jones method in Section 11.1.1 [see (11.16), (11.27), and (11.22)]. Equation (11.118) is
mathematically equivalent to (11.22). The two computational methods that will be presented in Sections
11.3.2 and 11.3.3 use the same mathematical approaches that are used to solve (11.22). In both methods,
great efficiency is attained due to the fact that the matrix

⌣

t (𝜂) for any 𝜂 ∈ [0, 1] is unitary and has the
form (5.31).

11.3.1 Approximating Multilayer Method

In this section, we will consider the most universal method of the three numerical methods being
presented. Unlike the other two methods, this method is applicable to absorbing media and, generally
speaking, to any media characterized by constitutive relations of the form (8.5) [8]. We have briefly
described it in Section 8.2.1 but without mentioning NBRA. The method is based on the approximation
of the transmission matrix of the smoothly inhomogeneous layer by the transmission matrix of the
elementary transmission channel of a staircase model (approximating multilayer) of this layer, the channel
defined by the chain of transmission operations performed by the bulks of sublayers of the staircase model
and interfaces between them (see Figure 8.15). We call it the approximating multilayer method (AMM).

Here is a convenient AMM-based algorithm for the case of a medium characterized by constitutive
relations (8.6). Let the values of the permittivity tensor of the medium, we denote it by ε̃, be given at the
nodes 𝜂j = j∕N, j = 0, 1, . . . , N. We assign the dielectric tensor to the staircase model of this medium as
follows:

ε(𝜂) = ε̃(𝜂j) for �̄�j < 𝜂 < �̄�j+1, j = 0, 1,… , N;

�̄�l =
⎧⎪⎨⎪⎩

0 l = 0

(𝜂l + 𝜂l+1)∕2 l = 1, 2,… , N

1 l = N + 1;

(11.119)
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N + 1 is the number of sublayers in the staircase model. The transmission matrix approximating the
matrix

⌢

t ↓L in this case is calculated as

t↓aN =

{
N
∏
j=1

(
t↓(B)

j t↓(I)
j

)}
t↓(B)
0 , (11.120)

where t↓(B)
j is the transmission matrix of the bulk of the jth sublayer (this is the layer with the boundaries

𝜂 = �̄�j and 𝜂 = �̄�j+1), expressed by

t↓(B)
j =

⌢

P(𝜂j,Δ𝜂j),

⌢

P(�̄�,Δ�̄�) ≡

(
exp(ik0𝜎1(�̄�)Δ�̄�d) 0

0 exp(ik0𝜎2(�̄�)Δ�̄�d)

)
,

Δ𝜂j =

{
1∕N j = 1, 2,… , N − 1

1∕(2N) j = 0, N;

(11.121)

t↓(I)
j is the transmission matrix of the interface between the j − 1th and jth layers of the approximating

multilayer. The interface matrix t↓(I)
j in the most general case may be expressed as

t↓(I)
j = w−1

j = 1
t̃j11 t̃j22 − t̃j12 t̃j21

(
t̃j22 −t̃j12

−t̃j21 t̃j11

)
,

wj =

(
t̃j11 t̃j12

t̃j21 t̃j22

)
≡

(
�̄�1(𝜂j−1)𝝍1(𝜂j) �̄�1(𝜂j−1)𝝍2(𝜂j)

�̄�2(𝜂j−1)𝝍1(𝜂j) �̄�2(𝜂j−1)𝝍2(𝜂j)

)
,

(11.122)

t̃jlk being elements of the matrix T̃j ≡ 𝚿(𝜂j−1)−1𝚿(𝜂j) (see Section 8.4.2). One can show that
⌢

t ↓L = lim
N→∞

t↓aN

and that the following asymptotic estimate is valid:

‖‖‖⌢t ↓L − t↓aN
‖‖‖E

= O(1∕N) (11.123)

as N → ∞.The fact of convergence of the transmission matrix of the approximating multilayer as N→∞
to the transmission matrix of the original smoothly inhomogeneous layer in the NBR approximation is
not so very obvious. The transmission matrix of the approximating multilayer, t↓aN , is calculated taking
account of single reflections from interfaces, and the illusion may arise that bulk reflection is taken into
account. To destroy this illusion, we will derive relation (11.123) here.

Derivation of Relation (11.123)

Let us rewrite expression (11.120) for the matrix t↓aN in the form

t↓aN = N
∏
j=1

taj, (11.124)
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where taj is the transmission matrix of the region (𝜂j−1, 𝜂j) of the approximating multilayer, which can
be expressed as

taj =
⌢

P(𝜂j,Δ𝜂∕2)t↓(I)
j

⌢

P(𝜂j−1,Δ𝜂∕2), (11.125)

where Δ𝜂 = 𝜂j − 𝜂j−1 = 1∕N. Let us obtain an asymptotic estimate for the matrix taj with Δ𝜂 → 0
(N → ∞). Representing the matrix 𝚿(𝜂j) in the form

𝚿(𝜂j) = 𝚿(𝜂j−1) +𝚿
𝜂
(𝜂j−1)Δ𝜂 + O(Δ𝜂2) (Δ𝜂 → 0),

we find that

T̃j = U +𝚿(𝜂j−1)−1𝚿
𝜂
(𝜂j−1)Δ𝜂 + O(Δ𝜂2) (Δ𝜂 → 0)

[see (11.122)]. From this equation it follows that, as Δ𝜂 → 0,

wj = U + N↓
𝜓

(𝜂j−1)Δ𝜂 + O(Δ𝜂2). (11.126)

Using (11.126) and the algebraic expression

(U + H)−1 = U +
∞∑

k=1

(−H)k,

which is valid for any matrix H with ‖H‖ < 1 if the matrix U + H is invertible (see Section 5.1.6), we
obtain the following estimate for the interface matrix t↓(I)

j :

t↓(I)
j = U − N↓

𝜓
(𝜂j−1)Δ𝜂 + O(Δ𝜂2) (Δ𝜂 → 0). (11.127)

Proceeding from (11.121), we can obtain similar estimates for the matrices
⌢

P(𝜂j−1,Δ𝜂∕2) and
⌢

P(𝜂j,Δ𝜂∕2)
for Δ𝜂 → 0:

⌢

P(𝜂j−1,Δ𝜂∕2) = U + N↓
𝜎
(𝜂j−1)Δ𝜂∕2 + O(Δ𝜂2), (11.128)

⌢

P(𝜂j,Δ𝜂∕2) = U + N↓
𝜎
(𝜂j−1)Δ𝜂∕2 + O(Δ𝜂2). (11.129)

To obtain (11.129), one can use the relation

N↓
𝜎
(𝜂j) = N↓

𝜎
(𝜂j−1) + N↓

𝜎𝜂
(𝜂j−1)Δ𝜂 + O(Δ𝜂2) (Δ𝜂 → 0),

where N↓
𝜎𝜂

≡ dN↓
𝜎
∕d𝜂. Substitution of (11.127)–(11.129) into (11.125) leads to the following expression

for the matrix taj:

taj = U +
(

N↓
𝜎
(𝜂j−1) − N↓

𝜓
(𝜂j−1)

)
Δ𝜂 + O(Δ𝜂2) (Δ𝜂 → 0). (11.130)

According to (11.111), the matrix
⌢

t ↓(𝜂j−1, 𝜂j), characterizing the region (𝜂j−1, 𝜂j) of the original medium
in the NBR approximation, can also be represented as

⌢

t ↓(𝜂j−1, 𝜂j) = U +
(

N↓
𝜎
(𝜂j−1) − N↓

𝜓
(𝜂j−1)

)
Δ𝜂 + O(Δ𝜂2) (Δ𝜂 → 0). (11.131)
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It follows from (11.130) and (11.131) that

taj =
⌢

t ↓(𝜂j−1, 𝜂j) + O(1∕N2) (N → ∞) (11.132)

(recall that Δ𝜂 = 1∕N). Substitution of (11.132) into (11.124) leads to the relation

t↓aN =
⌢

t ↓(0, 1) + O(1∕N) (N → ∞),

from which we see that estimate (11.123) is correct.

Application of AMM to Liquid Crystal Layers

When applying AMM to LC layers, we may calculate transmission matrices for interfaces between
sublayers of the approximating multilayer by the simple formulas of Section 8.2.2. In this case, there is
no need to compute parameters of the backward propagating basis waves and deal with 4 × 4 matrices.
Use of these formulas and the simplified expressions for EWB parameters of Section 9.3 makes AMM
close in computational cost to the variants [2, 3] of EJMM.

Although, according to (11.123), AMM can be considered as a method of integrating (11.111), it does
not require knowledge of the matrix N↓

𝜓
. The derivatives of functions 𝝍 k(𝜂) are not used in AMM at all.

Except in some special cases, this allows one to choose the eigenwave basis ignoring the requirement
that the functions 𝝍 k(𝜂) be continuous. In the methods presented in the following two sections, this
requirement must be met.

Numerical Tests

The results of numerical experiments that are presented in Figure 11.11 allow one to estimate the
accuracy of AMM and the other methods presented in Section 11.3 and to see how the accuracy of the
computed matrix

⌢

t ↓L depends on computational parameters of these methods (see also Section 11.5).
The computational error Σ, whose values are shown in Figure 11.11, was determined as the Euclidean
norm of the difference between the exact and computed values of the matrix

⌢

t ↓L. The “exact” values
of this matrix were calculated with an error less than 1.5 × 10−4. The calculations were carried out
for nonabsorbing locally uniaxial layers with supertwisted configurations (11.86) (configuration A) and
(11.87) (configuration B). The data presented in Figures 11.11–11.13 correspond to the case of oblique
incidence from air at an angle of 45◦ (𝛽 inc), the angle between the plane of incidence and the XZ
plane (𝛼inc) being equal to 45◦ (Figure 9.1). Since the layers are nonabsorbing, their exact matrices

⌢

t ↓L
are unitary. Figure 11.12 shows, for comparison, the dependences of the characteristic parameters of
the matrix

⌢

t ↓L

te ≡
||||[⌢t ↓L]11

||||2
and

teo ≡ Re
([

⌢

t ↓L

]∗
11

[
⌢

t ↓L

]
21

)
for layers with configurations A and B on d.

In practical calculations for LC layers, the following rough estimate of the error of AMM for usual
values of N(≥100) may be useful: Σ(N, d) ≈ AΣ∕N + dBΣ∕N2. As a rule, with N ≥ 100, the term AΣ∕N
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Figure 11.11 Dependences of the accuracy of calculated values of the matrix
⌢

t ↓L for layers with
configurations A (a) and B (b) on the layer thickness d for AMM, DM, and PSM [8]. The number in
parentheses after the name of the method is the value of N (for AMM and DM) or M (for PSM); SP and
DP denote the use of single- and double-precision arithmetic, respectively. Principal refractive indices:
n∥ = 1.7, n⟂ = 1.5. Wavelength 𝜆 = 550 nm
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Figure 11.12 Dependences of the characteristic parameters te and teo on d for layers with configurations
A and B (DM, N = 800). The principal refractive indices of the medium: n∥ = 1.7, n⟂ = 1.5; wavelength
𝜆 = 550 nm
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Figure 11.13 Effect of the approximate correction for the dispersion of refractive indices in PSM. The
solid curves show the exactly calculated spectra of the parameter te for layers with configurations A and
B; d = 5 μm; the wavelength dependence of the principal refractive indices is identical to that of nematic
5CB at 27◦C. The dashed curves and asterisks show the same spectra but calculated approximately, using
PSM with 𝜆c = 500 nm. The spectra shown by dashed lines were calculated ignoring the dispersion, and
those shown by asterisks with the approximate correction for the dispersion
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is very small. For large values of d, if N is not very large, doubling N decreases the error by approximately
a factor 4 (see Figure 11.11).

11.3.2 Discretization Method

Let us assume that the medium is nonabsorbing and the EWB parameters are specified for the same nodes
𝜂j = j∕N (j = 0, 1, . . . , N) as in the above realization of AMM. Application of DM (see Section 11.1.1)
to integrate (11.118) yields the following computational formula for the matrix t̃ [see (11.115)]:

t̃ ≅ t̃N t̃N−1 … t̃1 t̃0, (11.133)

where

t̃j =
⌢

RC(−𝜗j)

(
ei𝛿j 0

0 e−i𝛿j

)
⌢

RC

(
𝜗j

)
=

(
a(j)

1 + ia(j)
2 ia(j)

4

ia(j)
4 a(j)

1 − ia(j)
2

)
(11.134)

with

a(j)
1 = cos 𝛿j, a(j)

2 = sin 𝛿j cos 2𝜗j, a(j)
4 = sin 𝛿j sin 2𝜗j,

𝛿j =
𝜋Δ𝜎(𝜂j)Δ𝜂jd

𝜆
, 𝜗j ≡ 𝜗(𝜂j)

[see (11.8) and (11.9)]. The form of the matrices t̃j allows calculation of the matrix t̃ [see (11.115)] by
the following recurrence formulas:

c(0)
1 = a(0)

1 , c(0)
2 = a(0)

2 , c(0)
3 = 0, c(0)

4 = a(0)
4 ,

c(j)
1 = a(j)

1 c(j−1)
1 − a(j)

2 c(j−1)
2 − a(j)

4 c(j−1)
4 , c(j)

2 = a(j)
1 c(j−1)

2 + a(j)
2 c(j−1)

1 − a(j)
4 c(j−1)

3 ,

c(j)
3 = a(j)

1 c(j−1)
3 − a(j)

2 c(j−1)
4 + a(j)

4 c(j−1)
2 , c(j)

4 = a(j)
1 c(j−1)

4 + a(j)
2 c(j−1)

3 + a(j)
4 c(j−1)

1 ,

j = 1, 2,… , N;

Rec1 = c(N)
1 , Imc1 = c(N)

2 , Rec2 = c(N)
3 , Imc2 = c(N)

4 .

(11.135)

The values of 𝜗(𝜂) at the nodes 𝜂 = 𝜂j [see (11.115), (11.117), and (11.134)] can be calculated as

𝜗(𝜂j) = 𝜗(𝜂j−1) + Δ𝜗j j = 1, 2,… , N;

𝜗(𝜂0) = 0,

Δ𝜗j ≅ arcsin
[1

2

(
𝝍2(𝜂j−1)TI0𝝍1(𝜂j) − 𝝍1(𝜂j−1)TI0𝝍2(𝜂j)

)]
. (11.136)

For locally uniaxial media with spatially invariant principal refractive indices it is more convenient to
calculate the increments Δ𝜗j by the formulas

Δ𝜗j ≅
fC(𝜂j) + fC(𝜂j−1)

2
arctan

( j(𝜂j)k(𝜂j−1)

j(𝜂j)j(𝜂j−1)

)
,

fC(𝜂) =
1 + (h′∕2)𝛾(𝜂)√

1 + h′𝛾(𝜂) − h′′(𝜂)𝛾(𝜂)2
,

(11.137)

in terms of quantities defined in subsection Optically Uniaxial Medium of Section 11.2.
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We have noted that the error of DM decreases as O(1∕N2) as N → ∞. This estimate is supported by
the results of the numerical experiments (see Figure 11.11). For LC layers of LCDs, sufficiently good
accuracy of evaluation of the matrix

⌢

t ↓L is usually achieved with N = 100–300 for both DM and AMM,
the accuracy of DM and AMM at the same N being almost the same (Figure 11.11). With the same
N, DM is more efficient than AMM, being approximately 1.5 times faster (when the medium is locally
uniaxial and the recurrence formulas (11.135) are used). In DM and the method presented in the next
section, the number of operations with complex numbers is relatively small, which is convenient if a
programming language without complex arithmetic is used.

11.3.3 Power Series Method

The PSM [8] enables one to rapidly calculate dependences of the matrix
⌢

t ↓L of a nonabsorbing layer on
the layer thickness and the wavelength with approximate correction for the dispersion of the refractive
indices, tens of times faster than DM. The basic theory of PSM is presented in Appendix B.4. Using the
approach described in Appendix B.4 to integrate (11.118), one can obtain the following expressions for
the elements of the matrix t̃:

c1 = 1 +
∞∑

j=1

q′
jh

j, c2 =
∞∑

j=1

q′′
j hj, h = id

𝜆w
, (11.138a)

q′
j ≡ Re(fj(1)), q′′

j ≡ Im(fj(1)), (11.138b)

f1(𝜂) =

𝜂

∫
0

F(�̄�)d�̄�, fj(𝜂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜂

∫
0

F(�̄�)∗fj−1(�̄�)d�̄� j = 2, 4, 6,…

𝜂

∫
0

F(�̄�)fj−1(�̄�)d�̄� j = 3, 5, 7,…

, (11.138c)

F(𝜂) = w𝜋Δ𝜎(𝜂)exp (2i𝜗(𝜂)) , (11.138d)

where w is a real number (see below). Representation (11.138) may be directly used to evaluate c1 and
c2. Let dmax be the maximum value of d for which we want to calculate the matrix t̃. The minimum
number of terms in the series (11.138a) that must be taken into account for evaluating the matrix t̃ with
a prescribed tolerance 𝜀t for d < d max is equal to the least value of J satisfying the inequality

|(𝜋𝛿)J∕J!| < 𝜀t, (11.139)

where

𝛿 = Δ⌢

𝜎d max∕𝜆, Δ⌢

𝜎 =
∫

1

0
Δ𝜎(𝜂)d𝜂. (11.140)

Integral parameters fj(1) which enter into formulas for coefficients of the series may be calculated
recursively. When calculating f1(1), one obtains the values of F(𝜂m) and f1(𝜂m), where 𝜂m = m/M (m =
0,1, . . . ,M) are the integration nodes. The calculated F(𝜂m) and f1(𝜂m) are then used in calculating f2(1).
The values of f2(𝜂m), obtained during the calculation of f2(1), are used to calculate f3(𝜂m), and so on.
The integrals in (11.138c) may be calculated with the help of quadrature formulas based on quadratic
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approximation (like Simpson’s formula). The recurrent formulas for computing fj(𝜂m) (j = 1, 2, . . . , J)
in this case are

fj(𝜂0) = f̄0,

fj(𝜂m+1) = fj(𝜂m) +
[
5f̄m + 8f̄m+1 − f̄m+2

]
∕12,

fj(𝜂m+2) = fj(𝜂m) +
[
f̄m + 4f̄m+1 + f̄m+2

]
∕3,

m = 0, 2, 4,… , M − 2,

where

f̄m =
⎧⎪⎨⎪⎩

Fm j = 1

F∗
m fj−1(𝜂m) j = 2, 4, 6,…

Fm fj−1(𝜂m) j = 3, 5, 7,…
Fm = F(𝜂m)∕M, m = 0, 1, 2,… , M;

M is assumed to be an even number. As a rule, sufficient accuracy for LC layers of LCDs is achieved
with M = 40. The factor w in (11.138) is a computational parameter introduced to decrease the effect
of round-off errors. Numerical experiments showed that in usual calculations, w = 20 is a very good
choice.

In calculating spectra for a wavelength region [𝜆 min, 𝜆 max] the dispersion of the refractive indices can
be approximately taken into account by using as the expansion parameter the quantity

h = iΔ⌢

𝜎(𝜆)d

Δ⌢

𝜎(𝜆 c)w𝜆
,

where 𝜆 c is the wavelength for which coefficients of the series are computed; 𝜆 c ∈ [𝜆 min, 𝜆 max]. The
value of 𝜆 c should be chosen so that the value of Δ⌢

𝜎(𝜆 c) will be close to the mean value of Δ⌢

𝜎(𝜆) in the
region [𝜆 min, 𝜆 max]. For common nematic and cholesteric materials, without significant loss in accuracy,
the values of Δ⌢

𝜎(𝜆) may be calculated by the formula

Δ⌢

𝜎(𝜆) ≃ Δ⌢

𝜎P(𝜆) = A + B∕𝜆2 + C∕𝜆4

with coefficients A, B, and C determined from the conditions

Δ⌢

𝜎P(𝜆 c) = Δ⌢

𝜎(𝜆 c), Δ⌢

𝜎P(𝜆max) = Δ⌢

𝜎(𝜆max), Δ⌢

𝜎P(𝜆min) = Δ⌢

𝜎(𝜆min),

where the right-hand-side quantities are calculated by the exact formula (11.140). In estimating the
number of necessary terms of the series in the case of the approximate correction for dispersion of
refractive indices [see (11.139)], one should use the following expression for 𝛿:

𝛿 = Δ⌢

𝜎(𝜆 min)d max∕𝜆 min.

An example demonstrating the effect of the approximate correction for dispersion of refractive indices
in calculating spectra for the visible region in a typical situation is presented in Figure 11.13. As a rule,
the accuracy of calculating the transmittance spectra of an LCD panel with the use of this correction is
sufficient for accurate estimation of its colorimetric characteristics.
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11.4 NBRA. Analytical Solutions
As in the case of the classical Jones approach (see Section 11.1.1), we may distinguish two basic cases
when exact analytical expressions for the matrix

⌢

t ↓L of an inhomogeneous layer can be obtained:

(i) the case where the matrix

N↓
𝜂
≡ N↓

𝜎
− N↓

𝜓
(11.141)

[see (11.111)] is independent of 𝜂; and
(ii) the case where the matrix N↓

𝜂
is diagonal.

The first case is considered in Section 11.4.1, the second in Section 11.4.2. Along with the exact solutions,
we will consider some allied approximate solutions expressed by analytical formulas. In particular, in
Section 11.4.3 the adiabatic and quasiadiabatic approximations are discussed.

11.4.1 Twisted Structures

Ideal Twisted Layer

Fulfillment of the condition N↓
𝜂
= const can be secured by proper choice of the eigenwave basis in

considering the case of normal incidence on an ideal twisted layer. The spatial dependence of the
permittivity tensor in a layer with an ideal twisted structure can be represented as

ε(𝜂) = R3Z(Φ𝜂)ε(0)R3Z(−Φ𝜂),

where R3Z(𝜑) is a rotation matrix given by

R3Z(𝜑) =
⎛⎜⎜⎜⎝
cos𝜑 − sin𝜑 0

sin𝜑 cos𝜑 0

0 0 1

⎞⎟⎟⎟⎠ ,

and Φ is the twist angle of the structure. In the case of normal incidence, the eigenwave basis in this
layer can be chosen such that

𝜎1(𝜂) = �̄�1 ≡ 𝜎1(0), 𝜎2(𝜂) = �̄�2 ≡ 𝜎2(0), (11.142)

ek(𝜂) = R3Z(Φ𝜂)ek(0), hk(𝜂) = R3Z(Φ𝜂)hk(0). (11.143)

Having chosen such a basis, we may represent the spatial dependence of the vectors 𝝍 k as follows:

𝝍 k(𝜂) = RB(Φ𝜂)𝝍 k(0), (11.144)

where

RB(𝜑) =

⎛⎜⎜⎜⎜⎝
cos𝜑 0 − sin𝜑 0

0 cos𝜑 0 − sin𝜑
sin𝜑 0 cos𝜑 0

0 sin𝜑 0 cos𝜑

⎞⎟⎟⎟⎟⎠
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[RB(𝜑) = RBR(–𝜑), see (8.152)]. According to (11.144), the derivative of 𝝍 k with respect to 𝜂 may be
expressed as

𝝍
𝜂k(𝜂) = ΦRB

(
Φ𝜂 + 𝜋

2

)
𝝍 k(0). (11.145)

Using (11.145), we can obtain the following expressions for the elements of N↓
𝜓

(𝜂):[
N↓
𝜓

(𝜂)
]

jk
= �̄� j(𝜂)𝝍

𝜂k(𝜂)

= Φ�̄� j(0)RB(−Φ𝜂)RB

(
Φ𝜂 + 𝜋

2

)
𝝍 k(0) = Φ

(
�̄� j(0)RB

(
𝜋

2

)
𝝍 k(0)

)
. (11.146)

From (11.112), (11.142), and (11.146) we see that with the chosen eigenwave basis, the elements of the
matrix N↓

𝜂
do not depend on 𝜂 and can be expressed in terms of parameters of this basis in the plane

𝜂 = 0.
If the medium is optically locally centrosymmetric, under S-normalization, the matrix N↓

𝜓
has the form

N↓
𝜓
=

(
0 −𝜗

𝜂

𝜗
𝜂

0

)
, (11.147)

where

𝜗
𝜂
= −𝝍T

1 I0𝝍 𝜂2 = 𝝍T
2 I0𝝍 𝜂1 (11.148)

[see (11.114) and (11.112)]. The parameter 𝜗
𝜂

in the case in question is independent of 𝜂. Using (11.148)
and (11.145), we may express this parameter as follows:

𝜗
𝜂
= Φ̄ ≡ −Φ

(
𝝍1(0)TI4𝝍2(0)

)
, (11.149)

where

I4 =

⎛⎜⎜⎜⎜⎝
0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎠
. (11.150)

From (11.114), on the assumption that 𝜎1, 𝜎2, and 𝜗
𝜂

are independent of 𝜂, by analogy with (11.41),
we may obtain the following expression for the matrix

⌢

t ↓L:

⌢

t ↓L = CAP

⎛⎜⎜⎜⎜⎝
cosQ + i

G
Q

sinQ
Φ̄
Q

sinQ

−Φ̄
Q

sinQ cosQ − i
G
Q

sinQ

⎞⎟⎟⎟⎟⎠
,

G =
𝜋(�̄�1 − �̄�2)d

𝜆
, Q =

√
G2 + Φ̄2

(11.151)

[see also (11.9c)]. Here, in order for this expression for
⌢

t ↓L to be more similar to expression (11.41) for
the Jones matrix of a twisted layer, we use Φ̄ in place of 𝜗

𝜂
[see (11.149)]. Expression (11.151) is very
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general, being valid for both locally uniaxial and locally biaxial media, both nonabsorbing and absorbing
[see (11.43)].

In the case of a locally uniaxial medium [see (11.40)], the basic parameters of formula (11.151) can
be explicitly expressed in terms of parameters of the medium:

�̄�1 =
n
⊥

n∥√
n2
⊥
+
(

n2
∥ − n2

⊥

)
sin2

𝜃c

, �̄�2 = n
⊥

, (11.152)

Φ̄ = Φ

(
1 + 𝛾∕2√

1 + 𝛾

)
, (11.153)

where

𝛾 =
�̄�1 − n

⊥

n
⊥

. (11.154)

Equation (11.153) may easily be obtained from (11.106) by using the relations 𝜗
𝜂
= 𝜗zd and 𝜐z = Φ∕d.

Comparing expressions (11.41)–(11.42) with (11.151)–(11.152), we see that these expressions are alike
except that expression (11.151) is for the matrix

⌢

t ↓L ≡
⌢

t ↓(z′, z′′) rather than tx′−y′ (z
′, z′′) and contains Φ̄

rather than Φ. As can be seen from (11.153), in the case of low birefringence,
⌢

t ↓L ≈ tx′−y′ (z
′, z′′) since

Φ̄ differs little from Φ because of the smallness of 𝛾 . One may also notice that with decreasing 𝛾 the
difference between Φ̄ and Φ decreases proportionally to 𝛾2. But again [see the paragraph under equation
(11.110)] we must say that the closeness of the matrices

⌢

t ↓(z′, z′′) and tx′−y′ (z
′, z′′) gives no grounds to

conclude that, physically, a high degree of correspondence exists between the solutions considered, as
the matrices

⌢

t ↓(z′, z′′) and tx′−y′ (z
′, z′′) are associated with state vectors of different nature.

A Quasi-Planar Twisted Nonabsorbing LC Layer

As in the case of the classical Jones method (see Section 11.1), for quasi-planar twisted layers, as a rule,
a rather accurate estimate for the matrix

⌢

t ↓(z′, z′′) is obtained when approximate values of this matrix are
calculated by formulas (11.151) with G calculated by (11.44) or (11.46). In this case 𝛾 is approximately
calculated as 𝛾 ≈ (n|| − n

⊥
)∕n

⊥
.

11.4.2 Nontwisted Structures
In the cases where the matrix N↓

𝜂
(𝜂) is diagonal for all 𝜂∈[0,1], the resulting expression for the matrix

⌢

t ↓L is the simplest, namely

⌢

t ↓L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp
⎧⎪⎨⎪⎩ik0d

1

∫
0

𝜎1(𝜂)d𝜂

⎫⎪⎬⎪⎭ 0

0 exp
⎧⎪⎨⎪⎩ik0d

1

∫
0

𝜎2(𝜂)d𝜂

⎫⎪⎬⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11.155)
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when the diagonal elements of the matrix N↓
𝜓

(𝜂) are zero. As we know, for an arbitrary optically locally
centrosymmetric medium, the diagonal elements of the matrix N↓

𝜓
(𝜂) can be made equal to zero by using

S-normalization, which leads to (11.114). For simplicity, in this section and Section 11.4.3, we assume
that (11.114) holds. From (11.114), we may write the validity condition for (11.155) as follows:

𝜗
𝜂
(𝜂) = 0 for all 𝜂 ∈ [0, 1]. (11.156)

Here is a typical situation where solution (11.155) may be applied. Let us consider a nematic layer
with a nontwisted structure (𝜑(𝜂) = 𝜑1, 𝜃(𝜂) is arbitrary). As may be seen from (11.106), (11.103), and
(11.98), condition (11.156) is satisfied if the vibration vectors (e2, h2) of the ordinary basis wave do
not depend on 𝜂 throughout the layer. Thus it is clear that for the layer under consideration condition
(11.156) will be satisfied at normal incidence as well as at oblique incidence if the plane of incidence is
oriented so that 𝛼inc = 𝜑1 or 𝛼inc = 𝜑1+𝜋 (see Figures 11.14 and 9.1). The matrix

⌢

t ↓L for these cases may
be written as

⌢

t ↓L =

⎛⎜⎜⎜⎜⎝
exp

⎧⎪⎨⎪⎩ik0d

1

∫
0

𝜎1(𝜂)d𝜂

⎫⎪⎬⎪⎭ 0

0 exp(ik0d�̄�2)

⎞⎟⎟⎟⎟⎠
, (11.157)

β inc

x

minc

b

z

Figure 11.14 A nontwisted layer. The orientation of the incident plane (x–z) for which the transmission
matrix

⌢

t ↓L has a simple form
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with

𝜎1 =
n∥

√
1 + 𝛿

𝜀
sin2

𝜃 − (𝜁∕n
⊥

)2 − 𝛿
𝜀
p
𝜑
𝜁 sin 𝜃 cos 𝜃

1 + 𝛿
𝜀
sin2

𝜃

,

�̄�2 =
√

n2
⊥
− 𝜁 2, 𝜁 = |b| , 𝛿

𝜀
≡

n2
∥

n2
⊥

− 1,

p
𝜑
=

{
1 𝛼inc = 𝜑1

−1 𝛼inc = 𝜑1 + 𝜋.

It should be noted that this solution agrees completely with expressions for the wave fields obtained for
this case in [23] by using GOA.

11.4.3 NBRA and GOA. Adiabatic and Quasiadiabatic Approximations
In this section, we consider two approximations, namely, the geometrical optics approximation (GOA)
and quasiadiabatic approximation (QAA), which give relatively simple expressions for the matrix

⌢

t ↓L,
being applicable to a much wider variety of layer configurations than the exact analytical solutions
discussed above without strict restrictions on the light incidence direction. Although in many cases these
approximations yield only rough estimates and are not suitable for accurate numerical modeling, they are
very useful, giving a better insight into the features of light propagation in inhomogeneous anisotropic
media.

Geometrical Optics Approximation

Seeking solutions of the Berreman equation (8.62) in the form of an asymptotic power series expansion
in 1/(ik0)

Ψ(z) =
∞∑

n=0

Ψ(n)
B (z), Ψ(n)

B (z) = exp
{

ik0

⌢

S(z)
}

(ik0)−nΨ(n)(z), (11.158)

where
⌢

S(z) is a scalar function, one can find that particular solutions, solutions that describe the forward
propagating fields, for the leading term of this expansion may be represented (with 𝜂 in place of z) as

Ψ(0)
Bj (𝜂) = 𝝍 j(𝜂)A(0)

j (𝜂) = exp
⎧⎪⎨⎪⎩

𝜂

∫
0

[ik0𝜎j(𝜂)d − �̄� j(𝜂)𝝍
𝜂j(𝜂)]d𝜂

⎫⎪⎬⎪⎭𝝍 j(𝜂)A(0)
j (0) (j = 1, 2), (11.159)

where A(0)
1 and A(0)

2 are scalar complex amplitudes. The zeroth-order terms in field expansions like (11.158)
represent the geometrical optics approximation for the fields [24]. Therefore, functions (11.159) may be
regarded as GOA solutions of (8.62). The amplitudes A(0)

1 and A(0)
2 satisfy the equation

d
d𝜂

(
A(0)

1

A(0)
2

)
=

(
ik0𝜎1d − �̄�1𝝍 𝜂1 0

0 ik0𝜎2 − �̄�2𝝍 𝜂2

)(
A(0)

1

A(0)
2

)
. (11.160)
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Comparing this equation with (11.81) and (11.84), we see that GOA gives the same results as NBRA
in situations when the matrix N↓

𝜂
is diagonal. We have pointed to this correspondence considering the

example with a nontwisted layer in the previous section. If the matrix N↓
𝜂

is not diagonal, GOA implies
neglecting the off-diagonal elements of this matrix. Since we have assumed that the medium is locally
centrosymmetric and that the EW basis is S-normalized, in subsequent formulas of this section, we omit
the terms �̄� j𝝍 𝜂j [see (11.95b)]. The GOA expression for the transmission matrix t↓(z′, z′′) in any case is

t↓(z′, z′′) ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp
⎧⎪⎨⎪⎩ik0d

1

∫
0

𝜎1(𝜂)d𝜂

⎫⎪⎬⎪⎭ 0

0 exp
⎧⎪⎨⎪⎩ik0d

1

∫
0

𝜎2(𝜂)d𝜂

⎫⎪⎬⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11.161)

GOA in this application is equivalent to the adiabatic approximation (see Section 11.1.1): the fields
{E(0)

j (𝜂), H(0)
j (𝜂)} characterized by the functions Ψ(0)

Bj (𝜂) have the form

(
E(0)

j (𝜂)

H(0)
j (𝜂)

)
=

(
ej(𝜂)

hj(𝜂)

)
A(0)

j (𝜂), (11.162)

meeting the description of the fields of the Mauguin mode. The condition for the validity of the adiabatic
approximation is

|𝜗z(z)|≪ k0|𝜎2(z) − 𝜎1(z)| for all z ∈ [z′, z′′] (11.163)

[see (11.96)] (𝜗z = 𝜗
𝜂
∕d). For a layer with a given dependence of the dielectric tensor ε on the normalized

coordinate 𝜂, in the absence of polarization degeneracy, the GOA solution may be considered as strictly
valid in the limit d→∞. For LC layers, GOA, as a rule, gives sufficiently accurate results only in situations
when 𝜗z = 0, as in the example illustrated by Figure 11.14. For twisted LC layers, including LC layers
of TN LCDs, which are commonly associated with the adiabatic mode, GOA in most cases gives only
a rough estimate. Such an estimate is good for a qualitative description of the optical properties of the
layer but insufficient for solving optimization and inverse problems. More accurate but still relatively
simple analytical expressions for the matrix

⌢

t ↓L for cases where 𝜗z is nonzero but satisfies (11.163) were
obtained with the aid of the so-called quasiadiabatic approximation [10].

Quasiadiabatic Approximation

This approximation is derived from the following representation of the solution of (11.111):

⌢

t ↓(0, 𝜂) = W(𝜂)V(𝜂), (11.164)

where W(𝜂) is the solution of the equation

dW
d𝜂

= N↓
𝜎
W [W(0) = U], (11.165)
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in other words, W(𝜂) is the GOA estimate for
⌢

t ↓(0, 𝜂), and V(𝜂) is the solution of the equation

dV
d𝜂

= NVV [V(0) = U], (11.166)

where NV = −W−1N↓
𝜓

W. In QAA, V(1) is approximated by the sum of leading terms of the expansion

V(1) = U +
∞∑

j=1

Vj(1), (11.167)

where

V1(𝜂) =

𝜂

∫
0

NV(�̄�)d�̄�, Vj(𝜂) =

𝜂

∫
0

NV(�̄�)Vj−1(�̄�)d�̄� (j = 2, 3…).

The zero-, first-, and second-order expressions [where respectively one, two, and three terms of the series
(11.167) are taken into account] of QAA for the matrix

⌢

t ↓L are

(zeroth order)

⌢

t ↓L ≈

(
b1 0

0 b2

)
, (11.168)

(first order)

⌢

t ↓L ≈

(
b1 b1a−

−b2a+ b2

)
, (11.169)

(second order)

⌢

t ↓L ≈

(
b1(1 − c−) b1a−

−b2a+ b2(1 − c+)

)
, (11.170)

where

bj ≡ exp
⎧⎪⎨⎪⎩ik0d

1

∫
0

𝜎j(𝜂)d𝜂

⎫⎪⎬⎪⎭ j = 1, 2;

a± ≡

1

∫
0

f±(𝜂)d𝜂, c± ≡

1

∫
0

f±(𝜂)

𝜂

∫
0

f∓(�̄�)d�̄�d𝜂,

f±(𝜂) = 𝜗
𝜂
(𝜂) exp

⎧⎪⎨⎪⎩±ik0d

𝜂

∫
0

Δ𝜎(�̄�)d�̄�

⎫⎪⎬⎪⎭ , Δ𝜎 = 𝜎1 − 𝜎2.
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The zeroth-order expression (11.168) corresponds to GOA [cf. (11.161)]. The first-order expression
(11.169) gives estimates for the off-diagonal elements of the matrix

⌢

t ↓L, which characterize the deviation
from the adiabatic regime. However, one may notice that the approximating matrix in this case is
nonunitary (here we assume that the medium is nonabsorbing) and yields values greater than unity for
the layer transmissivity. The second-order expression (11.170) provides more accurate estimates for the
diagonal elements of

⌢

t ↓L. The approximating matrix in this case is generally closer to a unitary one than
that given by the first-order expression.

11.5 Effect of Errors in Values of the Transmission Matrix of the LC
Layer on the Accuracy of Modeling the Transmittance of the
LCD Panel

In this section, we give a few useful formulas for estimating the level of possible errors in calculated
values of the transmittance of an LCD panel caused by an approximate calculation of the transmission
matrix of the LC layer.

We consider the standard situation when the transmittance of an LCD panel for unpolarized incident
light is calculated as

t = 1
2
‖t‖2

E ,

where t is the transmission (EW) Jones matrix of the LCD panel, and the matrix t can be represented as

t = t3t2t1,

where t2 is the transmission matrix of the LC layer, and t1 and t3 are the transmission matrices of
the layered systems preceding and following the LC layer, respectively. We also assume that the flux
normalization of EW bases in the entrance and exit planes for the operators t1, t2, and t3 is used.

We denote the matrix approximating the matrix t2 by t2C. By tC we denote the approximate value of t
calculated with the matrix t2C, that is,

tC ≡
1
2
‖t3t2Ct1‖2

E.

We represent t2C in the form

t2C = (U + ⌢

𝜶)t2, (11.171)

where U is the unit matrix. Then

tC = 1
2
‖t3(U + ⌢

𝜶)t2t1‖2
E = 1

2
‖t3t2t1 + t3

⌢

𝜶t2t1‖2
E. (11.172)

By using property (5.58) of matrix norms, one can find from (11.172) that

|√t − 𝛿A| ≤√
tC ≤

√
t + 𝛿A, (11.173)

where

𝛿A = 1√
2
‖t3

⌢

𝜶t2t1‖E.
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According to (11.173),

|√t −
√

tC| ≤ 𝛿A,

and, consequently, the absolute error in the transmittance, 𝛿 ≡ |t − tC|, may be estimated as

𝛿 ≤

(
2
√

t + 𝛿A

)
𝛿A. (11.174)

By using properties (5.54) and (5.59) of matrix norms, it is easy to find that

𝛿A ≤
1√
2
‖t3‖S‖t2t1‖S‖⌢𝜶‖E.

Physically, ‖tj‖2
S (j = 1,2,3), with the flux normalization of the EW-bases, is the maximum transmissivity

of the system characterized by the matrix tj with respect to variations of the state vector of the wave field
incident on this system [see (8.277) and (5.48)]. From this it is obvious that ‖t3‖S‖t2t1‖S ≤ 1. Therefore,
the following inequality is valid:

𝛿A ≤
1√
2
‖⌢𝜶‖S. (11.175)

According to (11.171), we may write

⌢

𝜶t2 = t2C − t2.

If t2 is a unitary matrix, at any t2C, according to (5.60),

‖⌢𝜶‖E = ‖t2C − t2‖E. (11.176)

In this case, using (11.174), (11.175), and (11.176), we may estimate the error 𝛿 as

𝛿 ≤

(√
2t + 1

2
𝛿t

)
𝛿t, (11.177)

where

𝛿t = ‖t2C − t2‖E. (11.178)

In the alternative case where t2C is unitary while t2 is general, formula (11.177) is applicable as well
(strictly, on replacing t by tC).

Estimates of accuracy parameters, defined in the same manner as 𝛿t, for different approximations used
in calculations of transmission matrices of LC layers can be found in preceding sections of this chapter.
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12
Some Approximate
Representations in EW Jones
Matrix Method and Their
Application in Solving
Optimization and Inverse
Problems for LCDs

As has been noted, many optical optimization problems for LCDs are stated or may be stated as a problem
of optimization of transfer characteristics of a “useful” channel of light propagation in the device under
consideration (see Section 6.4). The EW Jones matrix method presented in the previous chapters enables
accurate evaluation of the transfer characteristics of “useful” channels for realistic optical models of
LCDs with all important optical effects taken into account. The realistic optical model of an LCD panel,
a model sufficiently full to ensure an adequate estimation of the transmittance of the “useful” channel
of the panel, as a rule, includes, along with the basic polarization elements of the LCD panel (LC
layer, polarizers, compensators), a number of isotropic layers. These are such layers as glass substrates,
electrodes, alignment layers, color filters, and so on. On the other hand, many problems, including the
search for optimal parameters of the polarization elements, can be solved, at least to a first approximation,
neglecting the real effect of the isotropic layers and surface effects, employing simplified optical models
of the LC device at hand, in terms of polarization Jones matrices and reduced transmittance (see Sections
6.4 and 6.5). Commonly, solutions of this kind are sought using the classical Jones calculus (JC). The EW
Jones matrix method supplemented with a set of approximate representations, which will be discussed
in this section, can also be used for finding such solutions, and guarantees higher accuracy than JC.
The approximate representations considered here are also useful in solving inverse problems for LC
layers (see Section 12.5). It is important that some of these representations are applicable in the case of
oblique incidence and can be used in optimization calculations aimed at improvement of the viewing
angle performance of LCDs (Section 12.6).
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Most approximate representations considered in this chapter involve approximating true EW Jones
matrices by STU matrices (see Sections 5.1.3). In general, an FI–EW Jones matrix [FI indicates that the
flux (F-) normalization is used for the input and output EW bases of this matrix] is an STU matrix if the
operation described by this Jones matrix is an operation without diattenuation. Examples of operations
without diattenuation are: transmissions and reflections by an interface between isotropic media at
normal incidence, transmissions and reflections by a system of isotropic layers sandwiched between
isotropic media at normal incidence, transmissions by the bulk of a homogeneous (nonabsorbing or
absorbing) isotropic layer, transmissions by the bulk of a nonabsorbing homogeneous anisotropic layer
out of TIR mode. Transmissions by the bulk of a nonabsorbing inhomogeneous LC layer in the NBR
approximation (see Chapter 11) are also considered as operations without diattenuation. Operations with
a weak diattenuation are characterized by FI–EW Jones matrices close to STU matrices. The weaker the
diattenuation, the closer the corresponding FI–EW Jones matrix to an STU matrix.

One of the mathematical instruments used in this section is STUM approximation. STUM approxi-
mation is the approximation of a general 2 × 2 matrix t by an STU matrix tSTU closest to the matrix t.
The theory of this approximation, which is presented in Section 12.1, shows how to calculate the matrix
tSTU and how to estimate the degree of closeness of the matrices t and tSTU.

12.1 Theory of STUM Approximation

STUM Approximation

Let t = [tjk] be an arbitrary 2 × 2 matrix with dett ≠ 0. It is reasonable to regard as the best approximating
STU matrix for the matrix t an STU matrix tSTU such that at BSTU = tSTU the global minimum of the
function

ft(BSTU) = ‖t − BSTU‖E BSTU ∈ MSTU, (12.1)

where MSTU is the set of all possible STU matrices, is attained, that is,

ft(tSTU) ≤ ft(BSTU) (12.2)

for any STU matrix BSTU. The approximation t ≈ tSTU will be called STUM (STU Matrix) approximation.
One can show that

ft(tSTU) ≡ ‖t − tSTU‖E =
√

1
2
‖t‖2

E − |det t| (12.3)

and that the matrix tSTU may be expressed as follows:

tSTU = wAUM, (12.4)

where

w =
√

det t|det t| ⋅
√‖t‖2

E + 2 |det t|
2

(12.5)

and

AUM =

(
a b

−b∗ a∗

)
(12.6)



JWST441-c12 JWST441-Yakovlev Printer: Markono December 29, 2014 8:38 Trim: 244mm × 170mm

Some Approximate Representations in EW Jones Matrix Method 443

with

a =
l1√

l1l∗1 + l2l∗2
, b =

l2√
l1l∗1 + l2l∗2

, (12.7)

l1 = t11w∗ + t∗22w, l2 = t12w∗ − t∗21w. (12.8)

Note that the matrix AUM is unitary and unimodular and has determinant 1 and that

|w|=
√‖t‖2

E + 2 |det t|
2

. (12.9)

A derivation of equations (12.3)–(12.8) is given at the end of this section.
If the matrix t is diagonal, the best approximating STU matrix for it may be calculated by the following

formula:

tSTU =
|t11| + |t22|

2

(
t11∕||t11

|| 0

0 t22∕|t22|
)
. (12.10)

In this case, the error of STUM approximation may be estimated using the expression

‖t − tSTU‖E =
||t11| − |t22||√

2
. (12.11)

Let t1 be an arbitrary nonsingular 2 × 2 matrix. Let AU and BU be any unitary 2 × 2 matrices. Let
t1STU be the best approximating STU matrix for t1. It is easy to show that the best approximating STU
matrix for the matrix

t2 = AUt1BU (12.12)

can be represented as

t2STU = AU t1STU BU. (12.13)

This expression can easily be derived from (12.3). According to (12.3), the matrix t2STU must satisfy the
relation

‖t2 − t2STU‖E =
√

1
2
‖t2‖2

E − |det t2|. (12.14)

Substitution of (12.12) and (12.13) into (12.14) gives

‖AUt1BU − AUt1STUBU‖E =
√

1
2
‖AUt1BU‖2

E − |det(AUt1BU)|. (12.15)

For the left-hand side of (12.15), we have

‖AUt1BU − AUt1STUBU‖E = ‖AU(t1 − t1STU)BU‖E = ‖t1 − t1STU‖E, (12.16)
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where property (5.60) of Euclidian norms has been used. In view of the same property of Euclidian
norms, ‖‖AUt1BU

‖‖2
E = ‖‖t1

‖‖2
E. Then, using property (5.17) of determinants and the fact that the modulus

of the determinant of any unitary matrix is equal to unity, we find that

|det(AUt1BU)| = |det(AU) det(t1) det(BU)| = |det(t1)|. (12.17)

Therefore, for the right-hand side of (12.15), we have

√
1
2
‖AUt1BU‖2

E − |det(AUt1BU)| = √
1
2
‖t1‖2

E − |det t1|. (12.18)

According to (12.3), the matrix t1STU meets the relations

‖t1 − t1STU‖E =
√

1
2
‖t1‖2

E − |det t1|. (12.19)

Equations (12.16), (12.18), and (12.19) show that relation (12.15) is valid, which means that the matrix
t2STU expressed by (12.13) does indeed satisfy (12.14) and hence is the best approximating STU matrix
for t2.

The singular values of an arbitrary 2 × 2 matrix t can be expressed as

𝜎1,2(t) =

√√√√‖t‖2
E ±

√‖t‖4
E − 4 |det t|2

2
(12.20)

[see (5.12)]. According to (12.20),

𝜎1(t)2 + 𝜎2(t)2 = ‖t‖2
E , (12.21)

𝜎1(t)𝜎2(t) = |det t| . (12.22)

Using these relations, we may express the error of STUM approximation in terms of the singular values
of the matrix to be approximated:

‖t − tSTU‖E =
|𝜎1(t) − 𝜎2(t)|√

2
. (12.23)

Physical Estimation of the STUM Approximation Accuracy

Let t be a transmission matrix that relates the FI Jones vectors of the incident (Jinc) and transmitted (Jtr)
wave fields, Jtr = tJinc. In this case, the transmissivity as a function of Jinc may be represented as

t(Jinc) =
J†

trJtr

J†
incJinc

=
J†

inct
†tJinc

J†
incJinc

. (12.24)

The maximum and minimum values of t(Jinc) at the given t, tmax and tmin, are equal to eigenvalues of the
matrix t†t, 𝜆max[t†t] and 𝜆min[t†t], respectively (see Section 8.5). The singular values of the matrix t, by
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definition, are equal to the square roots of 𝜆max[t†t] and 𝜆min[t†t]. We may therefore rewrite (12.23) as
follows:

‖t − tSTU‖E =
√

tmax −
√

tmin√
2

. (12.25)

When the extreme transmittances tmax and tmin for an element or a system are known a priori, equation
(12.25) allows one to estimate the accuracy of STUM approximation for this element or system without
any additional calculations.

STUM Approximation of Real Matrices

If the matrix t = [tjk] to be approximated is real, the best approximating STU matrix for it may be
calculated by the formula

tSTU = 1
2

(
t11 + stt22 t12 − stt21

−stt12 + t21 stt11 + t22

)
, (12.26)

where

st =

{
1 if det t > 0

−1 if det t < 0.

The base matrix AB and loss factor wB of the matrix tSTU (tSTU = wBAB, see Section 5.1.3) can be taken
to be

AB = 1√
(t11 + stt22)2 + (t12 − stt21)2

(
t11 + stt22 t12 − stt21

−stt12 + t21 stt11 + t22

)
, (12.27)

wB = 1
2

√
(t11 + stt22)2 + (t12 − stt21)2. (12.28)

The accuracy of STUM approximation in this case may be estimated using the following expression:

‖t − tSTU‖E =

√
(t11 − stt22)2 + (t12 + stt21)2

2
. (12.29)

In the general case, the relative error of STUM approximation may be defined as

𝛿STU =

√
2‖t − tSTU‖E‖t‖E

. (12.30)

In the case of a real t, this quantity can be calculated by the formula

𝛿STU =

√
(t11 − stt22)2 + (t12 + stt21)2

t2
11 + t2

12 + t2
21 + t2

22

. (12.31)
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Derivation of Equations (12.3)–(12.8)

According to (5.46),

‖t − tSTU‖2
E = ‖t‖2

E + ‖tSTU‖2
E − Tr(t†tSTU + t†STUt). (12.32)

Since the matrix tSTU is an STU matrix, we may always represent it in the form (12.4) with AUM of the
form (12.6) with a and b satisfying the condition

a∗a + b∗b = 1. (12.33)

On substituting (12.4) into (12.32) and making use of the fact that ‖AUM‖2
E = 2, we have

‖t − tSTU‖2
E = ‖t‖2

E + 2|w|2 − kw, (12.34)

where

kw= Tr
(

t†wAUM + w∗A†
UMt

)
(12.35)

or, explicitly,

kw = t∗11wa − t∗21wb∗ + t∗12wb + t∗22wa∗ + w∗t11a∗ − w∗t21b + w∗t12b∗ + w∗t22a. (12.36)

The first two terms on the right-hand side of (12.34) are independent of a, b, and arg w (w = |w|ei argw).
We can therefore find these parameters from the requirement that kw be maximum. Equation (12.36) may
be rewritten as

kw = 2[Re(l∗1a) + Re(l∗2b)], (12.37)

where l1 and l2 are expressed by (12.8). Using the representation a = ei𝜑 cos 𝜌, b = ei𝜓 sin 𝜌 [see (12.33)],
where 𝜌, 𝜑, and 𝜓 are real, it is easy to find that kw is maximum at a and b expressed by (12.7). With
these a and b

kw = 2[Re(l∗1a) + Re(l∗2b)] = 2
√

l1l∗1 + l2l∗2 = 2|w|√‖t‖2
E + 2Re[(det t)∗e2i argw].

From this equation we see that kw assumes its largest value, namely,

kw = 2 |w|√‖t‖2
E + 2 |det t|, (12.38)

when

ei argw =
√

det t|det t| . (12.39)

On substituting (12.38) into (12.34), we obtain the expression

‖t − tSTU‖2
E = ‖t‖2

E + 2|w|2 − 2|w|√‖t‖2
E + 2|det t|. (12.40)

Minimizing the right-hand side of (12.40) with respect to |w|, we arrive at (12.9) and (12.3).
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12.2 Exact and Approximate Expressions for Transmission Operators
of Interfaces at Normal Incidence

In calculations of transmission characteristics of birefringent layered systems at normal incidence, the
interfaces between layers are often represented by transmission operators having the form of a 2 ×
2 rotation matrix, a 2 × 2 rotation matrix multiplied by a scalar, or simply a scalar (as amplitude
transmission coefficients). The applicability of such representations is connected, in one way or another,
with the possibility to represent exactly or approximately, with good accuracy, exact transmission EW
Jones matrices of interfaces by STU matrices. In most cases of interest, EW Jones matrices of interfaces
between isotropic and anisotropic media as well as interfaces between anisotropic media are not STU
matrices. In this section, we will discuss the accuracy of approximations of the EW Jones matrices of
interfaces by STU matrices and other important points concerning the application of such approximations
in LCD optics. In particular, we will show that the accuracy of STUM approximation of a transmission
EW Jones matrix of the interface between an isotropic or anisotropic medium and an anisotropic medium
depends not only on the material parameters of the media but also on the normalization of the eigenwave
basis, that is, in other words, on the kind of Jones vectors related by this matrix. As will be shown,
the highest accuracy is attained, in general, with S- (or F-) normalization. In many situations typical of
LCD optics, the accuracy of the STUM approximation of the interface transmission matrices with S- or
F-normalization is sufficient for solving practical problems. With E- and ET-normalizations (the latter
is defined below), which are frequently used in LCD optics, the error of STUM approximation for the
interface matrices in the same situations may be unacceptably large.

We will deal with various kinds of normalization of EW bases and, correspondingly, various kinds of
EW Jones vectors. We will refer to EW Jones vectors corresponding to the symmetrical (S-) normalization
(8.167) as SN Jones vectors. With the flux (F-) normalization (8.164), EW Jones vectors are FI Jones
vectors. If an EW basis is such that both conditions (8.167) and (8.164) are satisfied (this is possible
when a nonabsorbing medium out of TIR mode is considered), to mark this fact we will use the term
S–F-normalization. Corresponding EW Jones vectors will be simultaneously SN Jones vectors and FI
Jones vectors (see Section 5.4.2). We will call vectors of this class SN–FI Jones vectors.

The best approximating STU matrix for a matrix t will be denoted as (t)STU.

Simplified Exact Formulas for the Transmission EW Jones Matrix of an Interface

In Section 8.4.2, we have shown that the transmission matrix t↓AB of the interface between arbitrary media
A and B with symmetric permittivity tensors can be expressed as follows:

t↓AB =
⌢

t
−1

BA = 1

t(BA)
11 t(BA)

22 − t(BA)
12 t(BA)

21

(
t(BA)
22 −t(BA)

12

−t(BA)
21 t(BA)

11

)
, (12.41)

where

⌢

t BA =

(
t(BA)
11 t(BA)

12

t(BA)
21 t(BA)

22

)
, (12.42)

t(BA)
jk =

z(ejA × hkB) + z(ekB × hjA)

2z(ejA × hjA)
j, k = 1, 2. (12.43)

This expression is always valid in the absence of polarization degeneracy. It also holds in the presence
of polarization degeneracy if the vibration vectors of the basis eigenwaves are chosen so that condition
(8.161) is satisfied. Recall that in the absence of polarization degeneracy, condition (8.161) is satisfied
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whatever the EW basis. In what follows, condition (8.161) is assumed to be satisfied for both media. In
the case of normal incidence (b= 0), the refraction vectors of the basis eigenwaves can be represented as

mj = 𝜎jz, j = 1, 2. (12.44)

By making use of (12.44) and (8.197), it is easy to find that at normal incidence the orthogonality
relation (8.161) implies that

et1et2 = 0, (12.45)

where etj ≡ ej − z(ejz) is the tangential constituent of the vector ej (j = 1,2), and that

z(ej × hj) = 𝜎j(etjetj) (12.46)

and

z(ejA × hkB) + z(ekB × hjA) = (𝜎kB + 𝜎jA)(etjAetkB) (12.47)

(j, k = 1, 2). Using (12.43), (12.46), and (12.47), we can express the elements of the matrix
⌢

t BA [see
(12.42)] as follows:

t(BA)
jk =

(𝜎kB + 𝜎jA)(etkBetjA)

2𝜎jA(etjAetjA)
. (12.48)

Dealing with any isotropic medium, or any uniaxial medium, or any nonabsorbing biaxial medium at
normal incidence, we can choose the vibration vectors of the basis eigenwaves so that the vectors et1

and et2 are real and the triple (et1, et2, z) is right-handed. Suppose that the EW bases for the media A and
B satisfy these requirements. Then we can represent the vectors et1A, et2A, et1B, and et2B as

et1A = c1AxA, et2A = c2AyA, et1B = c1BxB, et2B = c2ByB, (12.49)

where xA, yA, xB, and yB are real unit vectors directed along et1A, et2A, et1B, and et2B, respectively;
c1A, c2A, c1B, and c2B are positive constants determined by the normalization conditions used. The
triples (xA, yA, z) and (xB, yB, z) are right-handed; yA is perpendicular to xA; yB is perpendicular to
xB (Figure 12.1). We consider two variants of normalization. In the first variant, the symmetrical (S-)
normalization (8.167) is used for both media. In this case,

cjA = 1√
2𝜎jA

, cjB = 1√
2𝜎jB

, j = 1, 2. (12.50)

xA

xB

yA

y
B

z

ρ

ρ

Figure 12.1 Orientation of the vectors xA, yA, xB, and yB
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In the second variant, for both media the following normalization is used:

etjetj = 1, j = 1, 2. (12.51)

We refer to this kind of normalization as ET-normalization. With this normalization,

cjA = 1, cjB = 1, j = 1, 2, (12.52)

and both state vectors related by the matrix t↓AB are FTCEF Jones vectors (see Section 5.4.1). With this
choice of the bases, the SN Jones vector J(S) and the FTCEF Jones vector J(ET) of a wave field are
related by

J(ET) = G(S→ET)J(S), (12.53)

where

G(S→ET) =

(
𝜎
−1∕2
1 0

0 𝜎
−1∕2
2

)
. (12.54)

Where necessary, quantities corresponding to S-normalization will be labeled by the subscript (S), and
those corresponding to ET-normalization by the subscript (ET).

From (12.48), (12.49), (12.50), and (12.52) we obtain the following expressions for the matrix
⌢

t BA:

(i) for S-normalization

⌢

t BA(S) =

⎛⎜⎜⎜⎜⎝
𝜎1B + 𝜎1A

2
√
𝜎1A𝜎1B

(xBxA)
𝜎2B + 𝜎1A

2
√
𝜎1A𝜎2B

(yBxA)

𝜎1B + 𝜎2A

2
√
𝜎2A𝜎1B

(xByA)
𝜎2B + 𝜎2A

2
√
𝜎2A𝜎2B

(yByA)

⎞⎟⎟⎟⎟⎠
, (12.55)

(ii) for ET-normalization

⌢

t BA(ET) =

⎛⎜⎜⎜⎜⎝
𝜎1B + 𝜎1A

2𝜎1A

(
xBxA

) 𝜎2B + 𝜎1A

2𝜎1A

(yBxA)

𝜎1B + 𝜎2A

2𝜎2A

(
xByA

) 𝜎2B + 𝜎2A

2𝜎2A

(yByA)

⎞⎟⎟⎟⎟⎠
. (12.56)

It is convenient to write these expressions in the form

⌢

t BA =

(
g11 cos 𝜌 −g12 sin 𝜌
g21 sin 𝜌 g22 cos 𝜌

)
, (12.57)

where 𝜌 is the angle between the vectors xA and xB (see Figure 12.1) and (i) for S-normalization

gjk =
𝜎jA + 𝜎kB

2
√
𝜎jA𝜎kB

= 1√
1 −

(Δ𝜎jkAB

2�̄�jkAB

)2
(12.58)
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and (ii) for ET-normalization

gjk =
𝜎kB + 𝜎jA

2𝜎jA

= 1 −
Δ𝜎jkAB

2𝜎jA

(12.59)

with

Δ𝜎jkAB = 𝜎jA − 𝜎kB, �̄�jkAB =
𝜎jA + 𝜎kB

2
, j, k = 1, 2. (12.60)

Using (12.57) and (12.41), we may express the matrix t↓AB (from now on, for convenience sake, we
denote this matrix simply as tAB) as follows:

tAB = 1
g
𝜌

(
g22 cos 𝜌 g12 sin 𝜌
−g21 sin 𝜌 g11 cos 𝜌

)
, (12.61)

where

g
𝜌
= g11g22 cos2

𝜌 + g12g21 sin
2
𝜌. (12.62)

In the presence of polarization degeneracy in the medium A (i.e., when 𝜎1A = 𝜎2A)

g11 = g21, g12 = g22, (12.63)

which permits the following representation of the matrix tAB:

tAB = t′AB

⌢

RC(𝜌), (12.64)

where

t′AB =

(
g−1

11 0

0 g−1
22

)
(12.65)

and

⌢

RC(𝜌) ≡

(
cos 𝜌 sin 𝜌
− sin 𝜌 cos 𝜌

)
. (12.66)

If polarization degeneracy takes place in the medium B [𝜎1B = 𝜎2B],

g11 = g12, g21 = g22. (12.67)

In this case, the matrix tAB can be represented as

tAB =
⌢

RC(𝜌)t′AB. (12.68)

The status of the matrix t′AB is evident. This is the transmission matrix of the interface in the situation
where the EW basis in the medium with polarization degeneracy is chosen so that xA = xB and yA = yB.
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STUM Approximation of Transmission Matrices for Interfaces Between
Nonabsorbing Media

Now we consider what the best approximating STU matrices for tAB are and estimate the error of STUM
approximation for the two specified variants of EWB normalization in the case when both A and B are
nonabsorbing. S-normalization in this case is tantamount to F-normalization and hence can be called
S–F-normalization.

If the media A and B are nonabsorbing, the matrix tAB expressed by (12.61) is real and has a positive
determinant. According to (12.61) and (12.26), the best approximating STU matrix for it is

(tAB)STU = 1
2g

𝜌

(
(g11 + g22) cos 𝜌 (g12 + g21) sin 𝜌
−(g12 + g21) sin 𝜌 (g11 + g22) cos 𝜌

)
. (12.69)

This matrix can be represented as

(tAB)STU = wABtABU, (12.70)

where

tABU = 1√
(g11 + g22)2 cos2 𝜌 + (g12 + g21)2 sin2

𝜌

(
(g11 + g22) cos 𝜌 (g12 + g21) sin 𝜌
−(g12 + g21) sin 𝜌 (g11 + g22) cos 𝜌

)
(12.71)

is the base matrix (det tABU = 1) and

wAB =

√
(g11 + g22)2 cos2 𝜌 + (g12 + g21)2 sin2

𝜌

2g
𝜌

(12.72)

is the loss factor of (tAB)STU [see (12.26)–(12.28)]. The relative error of STUM approximation 𝛿STU [see
(12.30) and (12.31)] in this case can be estimated as

𝛿STU =

√√√√ (g11 − g22)2 cos2 𝜌 + (g12 − g21)2 sin2
𝜌

(g2
11 + g2

22) cos2 𝜌 + (g2
12 + g2

21) sin2
𝜌

. (12.73)

Inspection of this equation shows that

𝛿STU ≤ 𝛿g ≡ max{𝛿g11, 𝛿g12}, (12.74)

where

𝛿g11 =
|g11 − g22|√

g2
11 + g2

22

, 𝛿g12 =
|g12 − g21|√

g2
12 + g2

21

, (12.75)

and max{𝛿g11, 𝛿g12} is the larger number in the pair {𝛿g11, 𝛿g12}.
S–F-normalization. Usually

2�̄�jkAB ≫ |Δ𝜎jkAB| (12.76)
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Figure 12.2 Dependence of gjk−1 on 𝜎kB at 𝜎jA = 1.5 in the cases of S-normalization (1) and ET-
normalization (2) of the EW bases

[see (12.60)], which, according to (12.58), allows one to approximately express the coefficients gjk in the
case of S-normalization as follows:

gjk =
1√

1 − 𝛿𝜎2
jk

≈ 1 + 1
2
𝛿𝜎

2
jk, (12.77)

where

𝛿𝜎jk =
Δ𝜎jkAB

2�̄�jkAB

. (12.78)

Because of a quadratic dependence of gjk on 𝛿𝜎jk at small values of 𝛿𝜎jk, for a wide range of values of
𝜎1A, 𝜎2A, 𝜎1B, and 𝜎2B the coefficients gjk are very close to 1. As an illustration, Figure 12.2 shows the
exact dependence of gjk − 1 on 𝜎kB at 𝜎jA = 1.5. In this example, |gjk−1| < 2 × 10−3 in the range 1.33 <
𝜎kB < 1.7, and |gjk − 1| < 10−3 in the range 1.37 < 𝜎kB < 1.64. As is seen from (12.71), the closer gjk to
1, the more accurate the relation

tABU ≈
⌢

RC(𝜌) (12.79)

[see (12.66)].
According to (12.77), at small values of 𝛿𝜎jk,

𝛿g11 ≈
||𝛿𝜎2

11 − 𝛿𝜎
2
22
||

2
√

2
, 𝛿g12 ≈

||𝛿𝜎2
12 − 𝛿𝜎

2
21
||

2
√

2
(12.80)

[see (12.74) and (12.75)], whence it is evident that the relative error of STUM approximation for a
wide range of values of 𝜎1A, 𝜎2A, 𝜎1B, and 𝜎2B in the case of S-normalization is very small. With
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Figure 12.3 Maximum and minimum transmissivities of the interface between the isotropic medium
A and uniaxial medium B at normal incidence versus refractive index nA of the medium A. The optic
axis of the medium B is parallel to the interface. The principal refractive indices of B are: (a) n∥B = 1.6,
n⟂B = 1.5, (b) n∥B = 1.7, n⟂B = 1.5; ΔnB ≡ n∥B − n⟂B

S–F-normalization, the use of STUM approximation is substantially equivalent to neglecting the
polarization-dependent losses. The above estimates of the accuracy of STUM approximation, in essence,
reflect the fact that in usual situations, the transmissivities of interfaces of anisotropic media at normal
incidence depend very weakly on the polarization state of incident light. As an illustration, Figure 12.3
shows the extreme (over all possible values of the EW Jones vector of the incident light; see Section
8.5) values of the transmissivity of the interface between an isotropic medium and a uniaxial medium as
functions of the refractive index nA of the isotropic medium. As can be seen from this figure, in a wide
range of values of nA, the maximum and minimum values of the transmissivity are close to each other
even when the difference of the principal refractive indices of the uniaxial medium, ΔnB ≡ n∥B − n⟂B, is
relatively large (ΔnB = 0.2).

Note that with 𝜎1A, 𝜎2A, 𝜎1B, and 𝜎2B satisfying the condition

𝜎1A𝜎2A = 𝜎1B𝜎2B, (12.81)

the coefficients gjk satisfy the relations

g11 = g22, g12 = g21, (12.82)

and the matrix tAB is exactly an STU matrix, that is, the amount of the reflection losses does not depend
on the polarization state of the incident light at all. We might deal with such a situation, for instance,
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considering the interface between identical birefringent layers with different azimuthal orientation,
because in this case 𝜎1B = 𝜎1A and 𝜎2B = 𝜎2A. Therefore, say, using the AMM method (Section 11.3.1) to
calculate the transmission EW Jones matrix of the bulk of an ideal twisted layer at normal incidence, we
will obtain the resulting matrix being exactly an STU matrix, since transmission matrices of all interfaces
inside the approximating multilayer [the matrices t↓(I)

j in (11.120)] are STU matrices.
ET-normalization. In contrast to the case of S–F-normalization, in the case of ET-normalization the

dependence of the coefficients gjk on the differencesΔ𝜎jkAB = 𝜎jA − 𝜎kB is linear [see (12.59), cf. (12.77)],
and throughout the interesting (for our purposes) region of values of 𝜎jA and 𝜎kB the coefficients gjk

change, with changing 𝜎jA and 𝜎kB, much faster than in the case of S–F-normalization (see Figure 12.2).
Because of this, the ranges of values 𝜎1A, 𝜎2A, 𝜎1B, and 𝜎2B for which the coefficients gjk satisfy the
relations g11 ≈ g22 and g12 ≈ g21 ensuring high accuracy of STUM approximation are much narrower
than in the case of S–F-normalization. The parameters 𝛿g11 and 𝛿g12, determining the accuracy of STUM
approximation, in this case can be approximately expressed as follows:

𝛿g11 ≈ 1

2
√

2

||||Δ𝜎11AB

𝜎1A

−
Δ𝜎22AB

𝜎2A

|||| , 𝛿g12 ≈
1

2
√

2

||||Δ𝜎12AB

𝜎1A

−
Δ𝜎21AB

𝜎2A

|||| (12.83)

[cf. (12.80)]. As is seen from (12.83), with the common relation 𝜎jA, 𝜎jB ≫ |Δ𝜎jkAB|, the error of STUM
approximation for transmission matrices of interfaces in the case of ET-normalization is generally much
greater than in the case of S–F-normalization. With E-normalization of the EW bases the error of STUM
approximation is nearly or exactly (when ej = etj) the same as with ET-normalization.

In the cases of E- and ET-normalizations, the deviations of tAB22 (tAB ≡ [tABjk]) from tAB11 and of
tAB21 from −tAB12 and hence the error of STUM approximation [see (12.31)] are mainly determined by
the specific character of the state vectors, rather than the polarization dependence of losses, and may be
significant even in the absence of polarization-dependent losses (see an example below, in Figure 12.4).
The matrices tAB(ET) and tAB(S) are related by

tAB(ET) = G(S→ET)BtAB(S)G
−1
(S→ET)A, (12.84)

where G(S→ET)A and G(S→ET)B are the matrices G(S→ET) [see (12.54) and Section 8.8] for the media A and B,
respectively. In situations where tAB(S) is an STU matrix or close to an STU matrix, a significant deviation
of tAB(ET) from the nearest STU matrix is connected with a significant difference in magnitude between
the elements (1,1) and (2,2) of the matrices G(S→ET). Recall that the matrix tAB(ET) links the FTCEF Jones
vectors of the incident and transmitted light (see Section 5.4.1). In the absence of polarization degeneracy,
the modules of the complex FTCEF (and FEF) amplitudes of differently polarized eigenwaves of equal
irradiance are different (see Section 5.4.2). It is this disproportion that results in the difference of
the diagonal elements of the matrices G(S→ET) and is the main cause of a poor accuracy of STUM
approximation of transmission matrices of interfaces under E- and ET-normalization.

Base matrix and geometry. In the presence of polarization degeneracy at least in one of the media
(i.e., if 𝜎1A = 𝜎2A or 𝜎1B = 𝜎2B),

g11 + g22 = g12 + g21 (12.85)

for both variants of normalization. As is seen from (12.71), subject to (12.85),

tABU =
⌢

RC(𝜌) (12.86)

[see (12.66)]. Here the base matrix tABU depends only on the angle between the vectors xA and xB, being
independent of the optical constants of the media, that is, it has a purely geometrical nature. This is the
case for interfaces between isotropic media as well as for interfaces between isotropic and anisotropic



JWST441-c12 JWST441-Yakovlev Printer: Markono December 29, 2014 8:38 Trim: 244mm × 170mm

Some Approximate Representations in EW Jones Matrix Method 455

media. For interfaces between anisotropic media, relation (12.86) is in general violated, though, as a
rule, not strongly [see (12.79)]. We can see the effect of the approximation

tAB ≈ wAB

⌢

RC(𝜌) (12.87)

for interfaces between anisotropic layers, for example, comparing expressions (11.41) and (11.151) for
transmission matrices of ideal twisted layers at normal incidence. Expression (11.151) is obtained from
(11.120) in the limit N → ∞ if the exact expressions for the interface matrices t↓(I)

j are used. If we use
approximation (12.87) for the interface matrices, the resulting matrix will be exactly the same as the
matrix on the right of (11.41).

Polarization Jones Matrices of Interfaces

High accuracy of STUM approximation of the transmission EW Jones matrix of an interface under S–
F-normalization allows one to use a polarization transmission Jones matrix for approximate description
of the optical action of this interface. With this normalization, the EW Jones matrix links the FI Jones
vectors of the incident and transmitted fields. In Section 5.4.3 we defined the polarization Jones vector of
a wave field as a unit vector collinear to the FI Jones vector of this field. A polarization transmission Jones
matrix is a matrix linking polarization Jones vectors of the incident and transmitted fields. In accordance
with these definitions, in the above example we can choose the polarization Jones matrix of the interface
A−B, t(p)

AB, equal to the base matrix tABU of the matrix (tAB(S))STU. With this choice, t(p)
AB will be equal to

the rotation matrix
⌢

RC(𝜌) if one of the media, A or B, is isotropic or if both media are anisotropic but
in one of them polarization degeneracy takes place. In the absence of polarization degeneracy in both

media, the relation t(p)
AB ≈

⌢

RC(𝜌) will be as accurate as relation (12.87).

A Homogeneous Layer Between Isotropic Media. Exact and Approximate Formulas

Let us consider a homogeneous layer B surrounded by isotropic media A and C. Let a plane wave fall
normally on the layer B from the medium A. We consider the standard situation where the basis vectors
xC and yC in the medium C are codirectional with the vectors xA and yA, respectively, that is, xC = xA

and yC = yA. Neglecting multiple reflections, we represent the transmission matrix of the layer tlayer as
the product of the transmission matrix of the interface A−B (tAB), the transmission matrix of the bulk of
B (tB), and that of the interface B−C (tBC):

tlayer = tBCtBtAB. (12.88)

The transmission matrix of the bulk of the layer B is given by

tB =
(
exp(ik0𝜎1BdB) 0

0 exp(ik0𝜎2BdB)

)
, (12.89)

where dB is the thickness of this layer. Let 𝛼 be the angle between xA (xC = xA) and xB and let t′AB and
t′BC be the matrices tAB and tBC at xC = xA = xB and yC = yA = yB [see (12.64) and (12.68)], that is, at 𝛼
= 0. Using (12.64) and (12.68), we may express the matrix tlayer in terms of the diagonal matrices t′AB,
t′BC, and tB as follows:

tlayer =
⌢

RC(−𝛼)t′BCtBt′AB

⌢

RC(𝛼). (12.90)
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Denoting

t′layer ≡ t′BCtBt′AB, (12.91)

we may rewrite expression (12.90) as

tlayer =
⌢

RC(−𝛼)t′layer

⌢

RC(𝛼). (12.92)

The diagonal matrix t′layer is the transmission matrix of the layer B in the EW basis tied to the principal
axes (see Section 1.3.3) of this layer: tlayer = t′layer when xC = xA = xB and yC = yA = yB. Since the
matrices t′AB, tB, and t′BC are diagonal, the matrix t′layer can be represented as

t′layer = tinttB, (12.93)

where the matrix

tint ≡ t′BCt′AB (12.94)

describes the effect of both interfaces simultaneously. Solving the same problem with the help of the
classical Jones matrix method, we might use the following representation of the transmission matrix of
the layer:

tlayer ≈ k
⌢

RC(−𝛼)tB

⌢

RC(𝛼), (12.95)

where k is a scalar factor introduced to take into account reflection losses. It is obvious that the transition
from the exact representation (12.92)–(12.94) to the approximate one (12.95) is equivalent to making
use of the approximation

tint ≈ kU (12.96)

which involves ignoring the polarization dependence of the reflection losses.
The normal components of the refraction vectors of the basis eigenwaves in the media A (𝜎1A, 𝜎2A)

and C (𝜎1C, 𝜎2C) in this example are

𝜎1A = 𝜎2A = nA, 𝜎1C = 𝜎2C = nC, (12.97)

where nA and nC are the refractive indices of the media A and C, respectively. Assume that the medium
B is uniaxial. Denote the principal refractive indices of this medium by n∥B and n⟂B and a unit vector
directed along its optic axis by cB. Let the optic axis of B be not perpendicular to interfaces and let basis
eigenwave 1 in this layer be extraordinary. In this case,

𝜎1B = neB =
n||Bn

⊥B√
n2
⊥B +

(
n2||B − n2

⊥B

)
(cBz)2

, 𝜎2B = n
⊥B. (12.98)

At Re(n∥B) > Re(n⟂B), the vectors xB and yB are oriented along the slow axis and fast axis of the layer,
respectively, and vice versa at Re(n∥B) < Re(n⟂B). Table 12.1 presents expressions for the transmission
matrices of the interfaces A−B and B−C in terms of material parameters of the media for the cases of
S-normalization and ET-normalization of the EW basis (for all three media). One may notice that in the
case of S-normalization, the matrix tAB at nA =

√
neBn

⊥B and the matrix tBC at nC =
√

neBn
⊥B are STU
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Table 12.1 Exact and approximate expressions for the transmission matrices of the interfaces A−B
and B−C (nonabsorbing media)

t′↓AB, t↓AB t′↓BC, t↓BC

S-normalization t′AB(S) =

⎛⎜⎜⎜⎜⎝
2

√
nAneB

nA + neB

0

0 2

√
nAn

⊥B

nA + n
⊥B

⎞⎟⎟⎟⎟⎠
tAB(S) = t′AB(S)

⌢

RC(𝛼)

t′BC(S) =

⎛⎜⎜⎜⎜⎝
2

√
nCneB

nC + neB

0

0 2

√
nCn

⊥B

nC + n
⊥B

⎞⎟⎟⎟⎟⎠
tBC(S) =

⌢

RC(−𝛼)t′BC(S)

STUM
approximation at
S-normalization∗

(t′AB(S))STU = wAB(S)U

(tAB(S))STU = wAB(S)

⌢

RC(𝛼)

wAB(S) =
√

nAneB

nA + neB

+
√

nAn
⊥B

nA + n
⊥B

(
t′BC(S)

)
STU

= wBC(S)U(
tBC(S)

)
STU

= wBC(S)

⌢

RC(−𝛼)

wBC(S) =
√

nCneB

nC + neB

+
√

nCn
⊥B

nC + n
⊥B

ET-normalization t′AB(ET) =
⎛⎜⎜⎜⎝

2nA

nA + neB

0

0
2nA

nA + n
⊥B

⎞⎟⎟⎟⎠
tAB(ET) = t′AB(ET)

⌢

RC(𝛼)

t′BC(ET) =
⎛⎜⎜⎜⎝

2neB

nC + neB

0

0
2n

⊥B

nC + n
⊥B

⎞⎟⎟⎟⎠
tBC(ET) =

⌢

RC(−𝛼)t′BC(ET)

STUM
approximation at
ET-normalization

(t′AB(ET))STU = wAB(ET)U

(tAB(ET))STU = wAB(ET)

⌢

RC(𝛼)

wAB(ET) =
nA

nA + neB

+
nA

nA + n
⊥B

(
t′BC(ET)

)
STU

= wBC(ET)U(
tBC(ET)

)
STU

= wBC(ET)

⌢

RC(−𝛼)

wBC(ET) =
neB

nC + neB

+
n
⊥B

nC + n
⊥B

∗U is the unit matrix.

matrices [see (12.81)]. In the case of ET-normalization, the matrices tAB and tBC at any neB ≠ n
⊥B are not

STU matrices. One may also notice that t′BC(S) = t′AB(S) when nC = nA. Note that the expressions for exact
transmission matrices in Table 12.1 are valid in the presence of absorption as well. In the subsequent
discussion of this example we assume that the media A, B, and C are nonabsorbing.

As an example, Figure 12.4 shows the dependences of the nonzero elements of the matrices t′AB(S),
t′BC(S), t′AB(ET), and t′BC(ET) on nA in the situation when nC = nA, at n∥B = 1.7, n⟂B = 1.5, and cB⟂z (neB =
n∥B). As can be seen from this figure, the elements (1,1) and (2,2) for both interface matrices in the case of
ET-normalization are much more different from each other than in the case of S-normalization, and this
difference is significant even in the absence of polarization-dependent losses (when t′AB(S)11 = t′AB(S)22)
(see above). It is clear that in this situation, the matrices t′AB(ET) and t′BC(ET) are approximated by STU
matrices much worse than the matrices t′AB(S) and t′BC(S). Explicit expressions for the best approximating
STU matrices for the transmission matrices of the interfaces A−B and B−C in terms of the material
parameters are given in Table 12.1. The relative errors of STUM approximation for the matrices t′AB(S)

and t′AB(ET) at ΔnB equal to 0.1 (n⟂B = 1.5, n∥B = 1.6) and 0.2 (n⟂B = 1.5, n∥B = 1.7) are compared in
Figure 12.5 (nC = nA; cB is perpendicular to z). We see that in both cases, at any nA, the error of STUM
approximation for the matrix t′AB(S) is many times smaller than for t′AB(ET).

In the case of nonabsorbing media, the most correct transition from representation (12.92) to repre-
sentation (12.95) is carried out not by replacement of the matrices tAB and tBC by the matrices (tAB)STU
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and (tBC)STU but by replacing tint by (tint)STU. According to (12.13), we have from (12.92)

(tlayer)STU =
⌢

RC(−𝛼)(t′layer)STU

⌢

RC(𝛼) (12.99)

and, from (12.93),

(t′layer)STU = (tint)STUtB. (12.100)

Since in general

(tint)STU = (tBCtAB)STU ≠ (tBC)STU(tAB)STU, (12.101)

the approximation

tlayer ≈ (tlayer)STU =
⌢

RC(−𝛼)(t′layer)STU

⌢

RC(𝛼) =
⌢

RC(−𝛼)(tint)STUtB

⌢

RC(𝛼)

= wABC

⌢

RC(−𝛼)tB

⌢

RC(𝛼)
(12.102)

with

wABC =
Tr tint

2
(12.103)

is more accurate than the approximation

tlayer ≈ (tBC)STUtB(tAB)STU = wBCwAB

⌢

RC(−𝛼)tB

⌢

RC(𝛼). (12.104)

At usual values of the optical constants, to a good approximation,

wABC(S) ≈ wBC(S)wAB(S), (12.105)

w2
ABC(S) ≈ tlayer−unpol, (12.106)

where tlayer-unpol = avr[tlayer(S)] is the average transmissivity of the layer [see (8.278)]. To illustrate, in
Table 12.2 we compare the values of wABC(S), wBC(S)wAB(S), and (tlayer-unpol)

1/2 at n∥B = 1.7, n⟂B = 1.5,
cB⟂z, and nC = nA. In addition, in this table, the values of wABC(ET) and wBC(ET)wAB(ET) are shown. We
see that for these quantities, also to a good approximation,

wABC(ET) ≈ wBC(ET)wAB(ET). (12.107)

Table 12.2 Numerical estimates of quantities appearing in relations
(12.105)–(12.107)

nA = 1 nA = 1.52

wABC(S) 0.946392 0.998416
wBC(S)wAB(S) 0.946343 0.998415
(tlayer-unpol)

1/2 0.946490 0.998417
wABC(ET) 0.946392 0.998416
wBC(ET)wAB(ET) 0.947270 0.999393
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The discrepancies between wABC(ET) and wBC(ET)wAB(ET) are just a little larger than the discrepancies
between wABC(S) and wBC(S)wAB(S). Note that wABC(ET) equals wABC(S) (see Table 12.2) in general only at
nC = nA. It is clear that with such small differences in the values of wABC and wBCwAB as in Table 12.2,
the accuracies of approximations (12.102) and (12.104) both in the case of S-normalization and in the
case of ET-normalization are almost the same. Table 12.3 illustrates this statement. In this table, we
show the values of the relative error of STUM approximation for the matrices tAB(S), tBC(S), tAB(ET),
and tBC(ET) and the relative errors of approximation (12.102) (approximation 1), approximation (12.104)
(approximation 2), and the following one

tlayer ≈ tBCtB

(
tAB

)
STU

(12.108)

(approximation 3) for four sets of values of the material parameters. In all four cases, n⟂B = 1.5, cB⟂z,
and nC = nA. The values of nA and ΔnB for each case are shown in the table. In Table 12.3 and in
what follows, 𝛿STU(t) denotes the relative error of STUM approximation of a matrix t [see (12.30)]. The
relative errors of the approximations were calculated by the formula

𝛿appr =

√
2‖texact − tappr‖E‖texact‖E

, (12.109)

where texact and tappr are respectively the exact value of the matrix being approximated and its approximate
value. The relative errors of approximations (12.102), (12.104), and (12.108) are denoted by 𝛿appr1, 𝛿appr2,
and 𝛿appr3, respectively.

From Table 12.3 we see that in all the cases

𝛿appr1(S) = 𝛿appr1(ET). (12.110)

This relation is valid when the media A and C are isotropic, even if they are different. At
nC ≠ nA, the matrices tint(S) and tint(ET) [see (12.94)] are different and related by

tint(ET) =
√

nA

nC

tint(S). (12.111)

Table 12.3 The relative errors of STUM approximation for the interface transmission matrices and
approximations (12.102), (12.104), and (12.108)

nA = 1 nA = 1 nA = 1.52 nA = 1.52
ΔnB = 0.1 ΔnB = 0.2 ΔnB = 0.1 ΔnB = 0.2

𝛿STU(tAB(S)) 0.0049 0.0102 0.0002 0.0011
𝛿STU(tBC(S)) 0.0049 0.0102 0.0002 0.0011
𝛿STU(tAB(ET)) 0.0277 0.0544 0.0230 0.0453
𝛿STU(tBC(ET)) 0.0179 0.0341 0.0226 0.0431
𝛿appr1(S) 0.0098 0.0203 0.0004 0.0022
𝛿appr1(ET) 0.0098 0.0203 0.0004 0.0022
𝛿appr2(S) 0.0098 0.0203 0.0004 0.0022
𝛿appr2(ET) 0.0098 0.0204 0.0006 0.0026
𝛿appr3(S) 0.0049 0.0102 0.0002 0.0011
𝛿appr3(ET) 0.0277 0.0545 0.0230 0.0454
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The matrices tlayer(S) and tlayer(ET) are related similarly:

tlayer(ET) =
√

nA

nC

tlayer(S) (12.112)

[see (12.90)–(12.93)]. It is obvious that subject to (12.112), the relative errors of STUM approximation
of the matrices tlayer(S) and tlayer(ET) [see (12.102)] are equivalent, which explains (12.110). If the media A
and C were anisotropic, in the absence of polarization degeneracy at least in one of these media, relation
(12.110) would be violated.

In approximations 2 and 3, in contrast to approximation 1, STUM approximation is applied to
interfaces. In approximation 2, STUM approximation is applied to both interfaces (separately). In
approximation 3, only the matrix of the interface A−B is replaced by the corresponding STU matrix, while
the matrix of the interface B−C is retained exact. As is seen from Table 12.3, the error of approximation
2 is close to the error of approximation 1 for both variants of normalization. We have explained why this
takes place [see (12.105) and (12.107)]. Note that the error of approximation 2 under ET-normalization,
𝛿appr2(ET), is significantly less than the errors of the interface matrices 𝛿STU(tAB(ET)) and 𝛿STU(tBC(ET)).
At nA = 1.52, 𝛿appr2(ET) is almost 40 times less than 𝛿STU(tAB(ET)) and 𝛿STU(tBC(ET))! In this case, the
error introduced in calculations of the matrix tlayer(ET) by the inaccuracy of the matrix approximating
tAB(ET) is almost completely compensated by the error in the matrix approximating tBC(ET). In the case of
approximation 3, only one of the interface matrices is approximate, and it would seem that the accuracy
of the matrix tlayer(ET) must be higher than in the case of approximation 2. But actually we have exactly
the opposite of this. The error in tlayer(ET) for approximation 3 is much larger than that for approximation
2, because in approximation 3 the error cancellation is absent and hence 𝛿appr3(ET)≈𝛿STU(tAB(ET)).

The points noted have a direct bearing on many popular variants of Jones matrix method used for
modeling LCDs. The discussed error cancellation explains the fact that the methods [1–3] and some other
methods using FTCEF or FEF Jones vectors and relatively rough approximations for interface matrices,
allied to the approximation tAB(ET)≈(tAB(ET))STU, in many cases provide sufficiently accurate results. But
a combined use of approximate and exact operators for different elements in calculations, as in the case
of approximation 3, often leads to large errors. We dealt with a situation of this kind in Section 11.1.2.

According to (12.102), the polarization matrix of the layer, t(p)
layer, may be taken to be

t(p)
layer =

⌢

RC(−𝛼)tB

⌢

RC(𝛼). (12.113)

Since we regard the polarization vectors as prescribed-phase (see Section 5.4.3), we can replace the
matrix tB by the unimodular matrix

tBUM =

(
exp(i𝜋Δ𝜎BdB∕𝜆) 0

0 exp(−i𝜋Δ𝜎BdB∕𝜆)

)
, (12.114)

where Δ𝜎B = 𝜎1B − 𝜎2B, to deal with the unimodular polarization matrix

t(p)
layer =

⌢

RC(−𝛼)tBUM

⌢

RC(𝛼), (12.115)

which has the standard form (5.31). It is needless to say that these representations of the polarization
Jones matrix are equivalent to those used in the classical JC. Note that approximation (12.104) leads to
the same variants of the polarization matrix of the layer.
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Absorbing Media

In the presence of absorption at least in one of the neighboring media (A and B), the exact transmission
EW Jones matrix of the interface A−B, tAB, is in general complex. If absorption is weak (the term
“weakly absorbing” is commonly used for media whose extinction coefficients are less than 0.03), the
imaginary parts of the elements of the matrix tAB(S) are very small and, to a good approximation,

tAB(S) ≈ tA′B′(S), (12.116)

where tA′B′ is the transmission EW Jones matrix of the interface between media A′ and B′ whose refractive
indices are equal to the real parts of the corresponding complex refractive indices of the media A and
B. Table 12.4 demonstrates three numerical examples showing how accurate approximation (12.116)
is. We see that in all these examples, the imaginary parts of the elements of tAB and the differences of
the corresponding elements of Re(tAB) and tA′B′ are many times less in magnitude than the largest of
the extinction coefficients. According to (12.57)–(12.58), such is always the case for weakly absorbing
media under S-normalization. The relation tAB(ET) ≈ tA′B′(ET) is usually much less accurate than relation
(12.116). It is clear that in situations when the relations (12.116) and tA′B′(S) ≈ (tA′B′(S))STU are sufficiently

Table 12.4 Numerical examples to the approximation (12.116)∗

Media A and B tAB(S) tA′B′(S)

Medium A: isotropic,
nonabsorbing,
nA = 1.52.

Medium B: uniaxial, absorbing,
n∥B = 1.7+i0.02,
n⟂B = 1.5+i0.002,
cB⟂z.
xA ∥ xB

Real part:(
0.998452 0

0 0.999978

)
Imaginary part:(

−0.000329 0

0 0.000004

)
(

0.998436 0

0 0.999978

)

Medium A: isotropic,
nonabsorbing,
nA = 1.

Medium B: as above.

Real part:(
0.965814 0

0 0.979796

)
Imaginary part:(

−0.001473 0

0 −0.000131

)
(

0.965808 0

0 0.979796

)

Medium A: isotropic,
nonabsorbing,
nA = 1.

Medium B: uniaxial, absorbing,
n∥B = 1.51+i0.02,
n⟂B = 1.5+i0.002,
cB⟂z.
xA ∥ xB

Real part:(
0.979151 0

0 0.979796

)
Imaginary part:(

−0.001318 0

0 −0.000131

)
(

0.979140 0
0 0.979796

)

∗The first basis wave in the medium B is extraordinary.
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accurate, the matrix tAB(S) can be approximated, with good accuracy, by a real STU matrix, such as the
matrix (tA′B′(S))STU.

12.3 Polarization Jones Matrix of an Inhomogeneous Nonabsorbing
Anisotropic Layer with Negligible Bulk Reflection at Normal
Incidence. Simple Representations of Polarization Matrices of LC
Layers at Normal Incidence

Let us consider an inhomogeneous nonabsorbing anisotropic layer B surrounded by isotropic nonab-
sorbing media A and C. Assume that the transmission properties of the bulk of B can be adequately
treated using the NBR approximation and that the action of the interfaces A−B and B−C can be, with
sufficient accuracy, represented by polarization transmission matrices. Neglecting multiple reflections,
we can represent the transmission EW Jones matrix of the layer as

tlayer = tBCtB(NBR)tAB, (12.117)

where tB(NBR) is the transmission matrix of the bulk of B in the NBR approximation, and the matrices tAB

and tBC have the same meaning as in (12.88). Let S–F-normalization be used for all the media. In this
case, the matrix tB(NBR) is unitary and may in principle be considered as a polarization matrix of the bulk

of the layer. The most accurate variant of the polarization matrix of the layer, t(p)
layer, is

t(p)
layer = [tlayer]STU, (12.118)

where [t]STU denotes the base matrix of the best approximating STU matrix for a given matrix t. Another
useful variant of the polarization matrix is

t(p)
layer = t(p)

BCt(p)
B t(p)

AB, (12.119)

where t(p)
AB, t(p)

B , and t(p)
BC are the polarization Jones matrices characterizing the interface A−B, the bulk

of the layer B, and the interface B−C, respectively. The matrix t(p)
B can be chosen unimodular and of

determinant 1:

t(p)
B = tB(NBR)UM ≡

1√
dettB(NBR)

tB(NBR). (12.120)

With the assumptions made, variants (12.118) and (12.119) are almost equivalent in accuracy. In principle,
these representations can be used at both normal and oblique incidence. Representation (12.119) is
convenient when normal incidence is considered and an analytical expression for the matrix t(p)

B is known
(see Section 11.4). In this case, from (12.119), one can obtain an analytical expression for the matrix
t(p)
layer, using the fact that the interface matrices t(p)

AB and t(p)
BC at normal incidence are explicitly and simply

expressed in terms of geometrical parameters of the system. We give here some useful expressions and
examples for this case.

Let the EW basis in A and C be chosen so that xC = xA and yC = yA, as in the above example for a
homogeneous layer. The parameters of the EW basis within the layer B are functions of z. Suppose that
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the EW basis is chosen so that the vectors et1, et2, and z form a right-handed triple in the surrounding
media as well as in B at least just at the interfaces, that is, at z = z1 + 0 and z = z2 − 0, where z1 and z2

(z1 < z2) are the z-coordinates of the interfaces A−B and B−C, respectively. Then the interface matrices
t(p)

AB and t(p)
BC can be expressed as follows (see the previous section):

t(p)
AB =

⌢

RC(𝛼1), t(p)
BC =

⌢

RC(−𝛼2), (12.121)

where 𝛼1 is the angle between xA and et1(z1 + 0), and 𝛼2 is the angle between xA and et1(z2 − 0) (both
𝛼1 and 𝛼2 are measured from xA). Using (12.120) and (12.121), we obtain the following expression for
the polarization matrix t(p)

layer:

t(p)
layer =

⌢

RC(−𝛼2)tB(NBR)UM

⌢

RC(𝛼1). (12.122)

In this case, the matrix t(p)
layer is unimodular and has the standard form (5.31).

Locally Uniaxial Layer

Let the layer B be locally uniaxial, and suppose that the orientation of its local optic axis is given by
(11.1) where 𝜃(z) and 𝜑(z) are continuous functions. Let the vector xA be chosen codirectional with the
X-axis and let the EW basis in B be chosen so that

et1(z) = c1B(z)xB(z), et2(z) = c2B(z)yB(z) (12.123)

with

xB(z) =
⎛⎜⎜⎜⎝
cos𝜑(z)

sin𝜑(z)

0

⎞⎟⎟⎟⎠XYZ

, yB(z) =
⎛⎜⎜⎜⎝
− sin𝜑(z)

cos𝜑(z)

0

⎞⎟⎟⎟⎠XYZ

, (12.124)

and c1B and c2B being positive scalar quantities. In this case, we may rewrite expression (12.122) as
follows:

t(p)
layer =

⌢

RC(−𝜑2)tB(NBR)UM

⌢

RC(𝜑1), (12.125)

or equivalently

t(p)
layer =

⌢

RC(−𝜑1)[
⌢

RC(−Φ)tB(NBR)UM]
⌢

RC(𝜑1), (12.126)

where 𝜑1 ≡ 𝜑(z1 + 0), 𝜑2 ≡ 𝜑(z2 − 0), and Φ = 𝜑2 − 𝜑1. Note that the EW basis adopted for the layer
B here is a variant of the basis used for the arbitrary locally uniaxial medium in Section 11.2. The
final formulas of Section 11.2 for uniaxial media are adapted to the case under consideration by taking
k = −xB and j = yB in those formulas.
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Ideal Twisted Layer. NBRA and SBA Representations of the Polarization Matrix

For an ideal twisted layer, the functions 𝜃(z) and 𝜑(z) are given by (11.40). According to (11.151), the
matrix tB(NBR)UM of this layer can be expressed as

tB(NBR)UM =

⎛⎜⎜⎜⎜⎝
cosQ + i

G
Q

sinQ
Φ̃
Q

sinQ

−Φ̃
Q

sinQ cosQ − i
G
Q

sinQ

⎞⎟⎟⎟⎟⎠
, (12.127)

Q =
√

G2 + Φ̃2,

where

G =
𝜋

(
ne − n

⊥

)
d

𝜆
, ne =

n∥n
⊥√

n2
⊥
cos2 𝜃c + n2

∥ sin
2
𝜃c

,

Φ̃ = Φ̄ = ΦΓ, Γ =
1 + 𝛾∕2√

1 + 𝛾
, 𝛾 =

ne − n
⊥

n
⊥

;

(12.128)

n|| and n⟂ are the principal refractive indices of the layer. Since all the matrices on the right-hand side of
(12.126) are unimodular and have determinant 1, the matrix t(p)

layer can be written as

t(p)
layer =

(
a′ + ia′′ b′ + ib′′

−b′ + ib′′ a′ − ia′′

)
, (12.129)

where a′, a′′, b′, and b′′ are real. On substituting (12.127) into (12.126), we find that

a′ = a′
Φ cosΦ + b′

Φ sinΦ, a′′ = a′′
Φ cos

(
Φ + 2𝜑1

)
, (12.130a)

b′ = −a′
Φ sinΦ + b′

Φ cosΦ, b′′ = a′′
Φ sin

(
Φ + 2𝜑1

)
, (12.130b)

where

a′
Φ = cosQ, a′′

Φ = G
Q

sinQ, b′
Φ = Φ̃

Q
sinQ. (12.131)

Representation (12.129)–(12.131) with G and Φ̃ expressed by (12.128) will be referred to as the NBRA
representation of the polarization Jones matrix of an ideal twisted layer. The same representation with
the same G but with Φ̃ = Φ will be called the SBA (small-birefringence approximation) representation of
this matrix [see discussion under formula (11.154)]. The SBA representation gives the same polarization
matrix as the classical JC.
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Nonideal Quasi-Planar Twisted Layer. PITL Approximation

An approximate value of the matrix tB(NBR)UM for a quasi-planar twisted layer (see Sections 11.1.1 and
11.4.1) can be calculated by formulas (12.127) with G given by (11.46) and

Φ̃ = Φ
1 + 𝛾0

/
2√

1 + 𝛾0

, (12.132)

where

𝛾0 =
n|| − n

⊥

n
⊥

. (12.133)

The corresponding approximate value of the matrix t(p)
layer can be calculated by formulas (12.129)–

(12.131) with these G and Φ̃. This approximation will be called the PITL (planar ideal twisted layer)
approximation (the approximating matrix in this case is an exact polarization matrix of a planar ideal
twisted layer of thickness L

𝜃
[see (11.46)]). Some estimates of the accuracy of the PITL approximation

will be given in Section 12.4, where we use this approximation and other representations presented here
in an experimental method for determining configurational and optical parameters of LC layers with a
twisted structure.

12.4 Immersion Model of the Polarization-Converting System
of an LCD

In our modeling program MOUSE-LCD (see Chapter 4), calculations in terms of polarization matrices
are used in some optimization procedures, in particular in those where techniques described in Sections
6.4 and 6.5 are employed. In these calculations, polarization matrices are utilized as characteristics of the
polarization-converting system (PCS) and its polarization elements. In most practical cases, diattenuation
in PCSs of LCDs is relatively weak at both normal and oblique incidence. The latter allows calculations
in terms of polarization matrices for PCSs in the case of oblique incidence. Use of the EW Jones matrix
method and STUM approximation makes the calculation of polarization matrices most accurate and
consistent. In MOUSE-LCD, polarization matrices for the elements of the PCS and the PCS as a whole
are calculated using a model that will be referred to as the immersion model.

Immersion Model

In the immersion model, the model PCS is a layered system consisting of anisotropic layers modeling
the polarization elements of the PCS being modeled (LC layer, compensation films, reflector in the case
of a reflective PCS), which are surrounded and separated from each other by an isotropic nonabsorbing
immersion medium whose refractive index nIM is between 1.5 and 1.55 (in MOUSE-LCD, we set nIM =
1.52). The isotropic strata are regarded as input and output media for polarization matrices of polarization
elements, so that the polarization matrix of any polarization element links the polarization Jones vectors
of waves propagating in isotropic layers of the same refractive index. The polarization matrix t(p) of a
transmissive polarization element, the LC layer or a compensation film, a homogeneous or a smoothly
inhomogeneous layer, is calculated as

t(p) = [tL→ItLbulktI→L]STU (12.134)
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[cf. (12.118)], where tI→L and tL→I are the transmission EW Jones matrices of the frontal and rear interfaces
of the layer, respectively, and tLbulk is the transmission EW Jones matrix for the bulk of the layer. If the layer
is inhomogeneous, the matrix tLbulk can be calculated in the NBR approximation. The polarization matrix
of the PCS is calculated as the product of polarization matrices of its polarization elements. In the case of a
reflective PCS with a specular metal reflector, the polarization matrix of the reflector can be calculated by
the formula

r(p)
R = [r↓R]STU, (12.135)

where r↓R is the EW Jones matrix of the interface between the immersion medium and the metal.
In MOUSE-LCD, polarization matrices of the PCS, calculated in this way, are used in particular to

find the unitary polarization transport coefficients for this system (see Sections 6.1 and 6.4). Polarization
matrices of the LC layer are used in calculations of the modulation efficiency (see Sections 6.5 and 12.6).

Now we will give some numerical examples allowing one to estimate the effect of factors that are
neglected in the immersion model, and in particular diattenuation, in typical situations. In some of these
examples we use a standard characteristic of diattenuation that can be defined as follows.

Consider a transfer channel (possibly defined by a single transmission or reflection operation performed
by an element) with nonabsorbing input and output media. In accordance with the common conventions
[4], the diattenuation of this channel can be characterized by the following parameter:

D =
tmax − tmin

tmax + tmin
, (12.136)

where tmax and tmin are respectively the maximum and minimum transmissivity (or transmittance) of the
channel over the set of all possible polarization states of the incident light. Note the following useful
relation. Let t be the EW Jones matrix of this channel with F-normalization of the input and output EW
bases. Using (12.25), (12.30), and (8.278), one can find that at

tmax − tmin ≪ 2(tmax + tmin), (12.137)

to a good approximation,

𝛿STU ≈ 1√
2

D, (12.138)

where 𝛿STU is the relative error of STUM approximation for the matrix t [see (12.30)].

Transmission Diattenuation at “Soft” Interfaces

Most interfaces in standard PCSs of LCDs are those between layers with relatively close refractive
indices. Such interfaces will be referred to as “soft” interfaces. The reflectivity of “soft” interfaces
is small for a wide cone of incident directions as is the transmission diattenuation. As an example,
Figure 12.6 shows the relative errors of STUM approximation 𝛿STU [see (12.138)] for the transmission
matrix of a “soft” interface between an isotropic layer and a uniaxial layer at different angles of incidence
for different sets of values of the refractive indices of the layers. The layers are assumed to be elements
of a layered structure on which a plane monochromatic wave falls from an isotropic medium of refractive
index 1 (this system is considered in all examples that follow in this section). The propagation direction
of this wave is specified by the angles 𝛽 inc (the polar angle of incidence) and 𝛼inc (the azimuthal angle
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Figure 12.6 Relative error of STUM approximation for the transmission EW Jones matrix of the
interface between an isotropic layer (refractive index n) and a uniaxial layer (principal refractive indices
n⟂ and n∥, the optic axis is parallel to the interface): (1) n = 1.5, n⟂ = 1.52, n∥ = 1.72; (2) n = 1.5,
n⟂ = 1.52, n∥ = 1.62; (3) n = 1.5, n⟂ = 1.52, n∥ = 1.57; (4) n = 1.55, n⟂ = 1.5, n∥ = 1.6. For comparison,
the dashed curve represents the data for the interface between isotropic media of refractive indices 1
and 1.52

specifying the orientation of the plane of incidence) shown in Figure 9.1. The quantity max
[
𝛿STU(𝛼inc)

]
,

whose values are shown in Figure 12.6, represents the maximum value of the function 𝛿STU(𝛼inc) at a
given 𝛽 inc. As is seen from this figure, for “soft” interfaces the values of 𝛿STU, being small at normal
incidence, remain small at oblique incidence for a wide range of incident angles, even at relatively strong
birefringence. With such small 𝛿STU for the interface matrices, the transmission matrix tL→ItLbulktI→L in
(12.134) will be accurately approximated by the closest STU matrix, which justifies the use of (12.134).
Note also the following property of the transmission matrices of “soft” interfaces. Let t| be a transmission
FI–EW Jones matrix of a “soft” interface between an isotropic layer and an anisotropic layer of the
layered structure and let A| be the base matrix of the matrix (t|)STU, calculated from t| by formulas (12.6)–
(12.8). In common situations, the matrix A| at a given 𝛼inc is a very slow function of the refractive index
of the isotropic medium. We illustrate this property by the following numerical example. In this example,
the anisotropic layer has its optic axis parallel to interfaces and principal refractive indices n⟂ = 1.52 and
n∥ = 1.72, and we compare values of the matrix A| (for t| = tI→L) at different values of the refractive index
of the isotropic medium, nI. Figure 12.7 shows the degree of discrepancy between the matrices A|n′ (A|
at nI = n′) and A|n′′ (A| at nI = n′′) at n′ = 1.5 and n′′ = 1.55, 1.6, and 1.7; max ‖A|n′ (𝛼inc) − A|n′′ (𝛼inc)‖E

is the maximum value of ‖A|n′ − A|n′′‖E as a function of 𝛼inc at a given 𝛽 inc. As is seen from this figure,
the matrices A|n′ and A|n′′ are very close to each other for all values of 𝛽 inc from 0◦ to 70◦ even at
n′′ = 1.7. Such insensitivity of the matrix A| to moderate variations of nI warrants the use of a unified
immersion medium in the immersion model and makes the choice of the refractive index of this medium
noncritical.
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Figure 12.7 Comparison of the polarization transmission matrices for the interface between isotropic
and anisotropic media calculated for different values of the refractive index of the isotropic medium;
n′ = 1.5, n′′ = 1.55 (solid line), 1.6 (dashed line), and 1.7 (dash-dot line)

Polarization Effect of the Electrode–Alignment Layer Systems (EASs)

In the immersion model we neglect the polarization effect of thin isotropic layers that are elements
of the real PCS—such layers are not included in this model. Under usual illumination conditions,
individual thin layers with “soft” interfaces, elements of real PCSs, as a rule change very little, if at
all, the polarization state of the passing light and the neglect of them is fully justified. In the case of
the electrode–alignment layer system (EAS), we face a different situation. Because of a relatively high
refractive index of ITO (∼2), reflection from interfaces of the ITO layer may be significant and the
transmission diattenuation at EASs at oblique incidence may be noticeable. Since the net optical effect
of EASs is determined by multiple-beam interference, the strength of the transmission diattenuation
at an EAS strongly depends on the thicknesses of the layers constituting this system as well as on
the refractive indices of these layers. Note that the contribution of the reflection and transmission
diattenuation at the alignment layer–LC interface to the transmission diattenuation of the EAS may also
be amplified or weakened due to multiple-beam interference. Furthermore, we should note that for a
system of conductive and alignment layers, the diattenuation at the alignment layer–LC interface may
cause a specific phase-retarding action of the system. Generally speaking, a phase-retarding action is
inherent in “thin” layered systems. Even when such a system consists of only isotropic layers and is
surrounded by isotropic media, it may exhibit a nonzero retardance, but only at oblique incidence, and
behave, in this respect, like a uniaxial layer with optic axis perpendicular to the layer boundaries. An
example is given in Figure 12.8. An EAS in an LCD is in contact with the LC layer and, if the surface
LC director is not perpendicular to boundaries, may show a nonzero retardance at normal incidence
as well, because of the reflection diattenuation at the alignment layer–LC interface. This retardance at
normal incidence is usually relatively small (as a rule, less than 1◦) and, as a function of the thicknesses
of the EAS elements and wavelength, oscillates near zero (see Figure 12.9). In Figures 12.10 and
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Figure 12.8 Unpolarized transmittance, diattenuation [D, see (12.136)], and retardance of simple
(double-layer) EASs with different thicknesses of the electrode (dE), sandwiched between isotropic
media of refractive index 1.52: (1) dE = 0.03 μm, (2) dE = 0.06 μm, (3) dE = 0.12 μm, (4) dE = 0.14 μm.
The refractive index of the electrode nE = 2. The refractive index of the alignment layer nA = 1.6, the
thickness of the alignment layer dA = 0.1 μm. Wavelength 𝜆 = 550 nm
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Figure 12.9 Dependence of the transmission diattenuation and retardance of a simple (double-layer)
EAS on the electrode thickness dE at normal incidence. The refractive index of the glass substrate nG =
1.52. Electrode: nE = 2. Alignment layer: nA = 1.6; dA = 0.1 μm. LC: n⟂ = 1.52, n∥ = 1.72 (solid lines)
and n∥ = 1.62 (dash lines); the LC director is parallel to interfaces (𝜃1 = 0◦). Wavelength 𝜆 = 550 nm

12.11, we compare data on retardance and diattenuation for the nonantireflected (Figure 12.10) and
antireflected (Figure 12.11) EASs appearing in examples 2 and 3 of Section 10.3. As can be seen from
Figure 12.11, for antireflected EASs both diattenuation and retardance may be very small for a wide
cone of the directions of incidence. The polarization matrix of the antireflected EAS, AEAS, calculated
by formulas (12.6)–(12.8) from the true transmission FI–EW Jones matrix of the EAS, is very close
to the polarization matrix A| of the glass–LC interface that we would obtain taking the thicknesses of
all the layers of the EAS equal to zero (see Figure 12.12). Thus, we have good grounds for saying that
immersion models accurately represent the properties of real PCSs with antireflected EASs.
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Figure 12.10 Unpolarized transmittance, diattenuation, and retardance for a simple (double-layer)
EAS. Glass: nG = 1.52. LC: n⟂ = 1.52, n∥ = 1.72 (solid lines) and n∥ = 1.62 (dashed lines); the LC
director is parallel to interfaces (𝜃1 = 0◦). At 𝛼inc = 0, the LC director is parallel to the plane of incidence.
Wavelength 𝜆 = 550 nm
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Figure 12.11 Unpolarized transmittance, diattenuation, and retardance for an antireflected EAS. The
parameters of the glass substrate and LC are the same as in the previous example (Figure 12.10).
Wavelength 𝜆 = 550 nm
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Figure 12.12 Comparison of the polarization transmission matrices for an antireflected EAS (AEAS)
and the interface between the media surrounding the EAS (A|) (glass and LC). Glass: nG = 1.52. LC:
n⟂ = 1.52, n∥ = 1.72; the surface tilt angle of the LC director 𝜃1 = 5◦. Wavelength 𝜆 = 550 nm

The data presented in Figure 12.13 allow one to estimate the accuracy of the approximation

AEAS ≈ A| (12.139)

for simple (nonantireflected) EASs in the case of normal incidence. This approximation is used in solving
inverse problems (see the next section).

Reflection Diattenuation at a Metal Reflector

Figure 12.14 shows a typical dependence of the reflection diattenuation on the angle 𝛽inc for a good
metal reflector. We see that in this case, the diattenuation is small (D < 0.01) only for relatively small
values of 𝛽inc (<30◦). For greater 𝛽inc, the polarization matrix given by (12.135) ceases to be an adequate
characteristic. Hence the immersion models of PCSs with such reflectors can give reliable results only
for a relatively narrow cone of incident directions around the normal one.

12.5 Determining Configurational and Optical Parameters of LC
Layers With a Twisted Structure: Spectral Fitting Method

Accurate measurements of configurational and optical parameters of LC layers with a twisted structure
are required for solving many problems related to the practical application of LCs and fundamental
studies of their properties [5–21]. By now, a lot of methods have been developed for such measurements.
These methods are used in manufacturing and developing LCDs, in examining LC surface alignment, in
measurements of surface-anchoring parameters, and so on. Some of the methods are intended only for
measurement of the LC layer thickness [5, 6, 18]; they require accurate a priori information on the LC
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Figure 12.13 Comparison of the polarization transmission matrices for a simple EAS (AEAS) and the
interface between the media surrounding the EAS (A|) at normal incidence. Alignment layer: dA = 0.1,
nA = 1.5 (dash line) and nA = 1.6 (solid line); electrode: nE = 2, thickness dE. The other parameters are
the same as in the previous example (Figure 12.12)
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Figure 12.14 Diattenuation at a metal reflector. The data specified are for the interface between a
nonabsorbing medium with refractive index 1.6 and a medium with complex refractive index 1.44+i5.23
(aluminum)
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layer structure and optical constants of the LC material. More general methods [10, 14] enable deter-
mination of the thickness and twist angle of the LC layer, requiring a knowledge of optical constants
of the LC. By the methods that use features of the adiabatic regime of light propagation in inhomo-
geneous LC structures (see, e.g., [16, 17]), the twist angle and orientation angle of the LC structure
can be measured in the absence of accurate data on the LC layer thickness and the refractive indices
of the LC, but these methods generally give good accuracy only for very thick LC layers. There are
symmetry techniques that do not require any quantitative a priori information about the LC layer [8, 9];
however, these techniques are in fact only for finding the twofold symmetry axis of the LC layer. The
most general methods, at least among the commonly used ones, are the spectral methods [15, 19, 21].
These methods enable determining the twist angle, orientation angle, and retardation of the LC layer
as well as, for sufficiently thick LC layers, the wavelength dependence of the LC birefringence Δn. A
common disadvantage of the spectral methods [15, 19] and some other methods enabling simultaneous
determination of the twist angle, orientation angle, and thickness of the LC layer is that these methods do
not take proper account of the optical effect of thin-film elements of the LC cell such as ITO layers and
alignment films (see, e.g., [22]). The multiple-beam interference in the electrode–alignment layer–LC
layer–alignment layer–electrode system substantially affects transmission of LC cells and is one of the
sources of anisotropic (polarization-dependent) losses (see Section 6.2.1) which are ignored in [15, 19].
It is an important fact that in the inverse problem under consideration, the effect of anisotropic losses
cannot in general be corrected by normalization of experimental transmittance spectra. Another usually
neglected factor is instrumental depolarization (see below), which may strongly affect the accuracy
of results, for example, when measurements are performed with a microscope [9]. In this section, we
describe a method, mentioned above in the list of spectral methods, that is tolerant to the presence of
moderate anisotropic losses and depolarization. This method was proposed by two of the authors of this
book in [21].

The experimental part of this method consists in obtaining the spectra of the polarization transport
coefficients (see Section 6.1) of the LC cell at normal incidence. A reliable technique of obtaining these
coefficients has been described in Section 6.2. Here we focus our attention on ways of retrieving the LC
layer parameters from experimental spectra of the polarization transport coefficients.

12.5.1 How to Bring Together the Experiment and Unitary Approximation
So, in a real experiment, we obtain spectra of the LC cell that reflect the whole variety of the optical
effects accompanying the propagation of light through the cell. The accurate methods described in
Chapters 8 and 10 enable modeling the optical properties of LC cells with due regard for most of these
effects. Fitting of theoretical spectra for a realistic multielement model of the LC cell, calculated using
an accurate method, to the experimental spectra by varying the unknown parameters of the LC layer
is a possible way to estimate these parameters. However, this way requires involving many additional
parameters for description of elements of the LC cell other than the LC layer in solving the inverse
problem, which makes this way too complicated, except for some simple situations. In the method being
presented, an alternative way is used.

In this method, a simple theoretical model is used in which the transmission of the LC cell is described
by a polarization Jones matrix which is assumed to be equal to the polarization Jones matrix of the
LC layer expressed by formula (12.126). When applied to a cell with the standard geometry shown in
Figure 6.3, this representation implies, along with neglecting the bulk reflection in the LC layer and
multiple reflections, approximation (12.139). A similar representation is often employed when inverse
problems for twisted LC layers are solved using the classical Jones calculus (see, e.g., Chapter 3). In the
method under consideration, polarization matrices of LC layers are calculated using formulas of NBRA
(see Section 11.4.1). Recall that the formulas of the classical JC for twisted layers can be derived from
those of the NBR approximation on the assumption that the birefringence of the medium is very small
(small-birefringence approximation, SBA).
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In this consideration, the axes X and Y of the reference system (X,Y,Z) used in optical calcula-
tions are assumed to be parallel to the axes xI and yI, respectively, of the laboratory reference system
(xI, yI, zI) (Figure 6.1) rather than rigidly bound to the LC cell. Therefore, say, the angle 𝜑1, which
specifies the azimuthal orientation of the LC director at the frontal boundary of the LC layer, can be
defined as in Figure 6.1.

In the method being presented, from the polarization Jones matrix of the LC layer t(p)
layer, of the form

(12.129), the unitary polarization transport coefficients BUj (j= 1,2,3,4) are calculated by formulas (6.31).
The desired parameters of the LC layer are determined by fitting the spectra of BUj to the experimental
spectra of the quantities

Aj = Bj

/
B̄ (j = 1, 2, 3, 4), (12.140)

where Bj are the polarization transport coefficients of the cell and

B̄ =
√

B2
1 + B2

3 +
√

B2
2 + B2

4. (12.141)

This approach is based on the fact that the spectra of the coefficients Aj calculated for realistic models
of LC cells, like that shown in Figure 6.3, taking the multiple reflections and other relevant factors into
account are usually very well approximated, on average, by the spectra of the coefficients BUj calculated
for these cells as described above. Numerical experiments showed that this approximation remains good
even in the presence of significant anisotropic losses in the cells. That the parameters Aj are relatively
insensitive to anisotropic losses may be illustrated by the following numerical examples. Figures 12.15
and 12.16 present results of numerical modeling for four hypothetic LC cells. The first cell, called cell
A, has a structure as shown in Figure 6.3 and a quasi-planar twisted LC layer with twist angle Φ = 240◦,
pretilt angles 𝜃1 = 𝜃2 = 4◦, and 𝜑1 = 0◦; the corresponding profiles of 𝜃 and 𝜑 are labeled by 1 in
Figure 11.2. The LC material is absolutely transparent in the spectral region under consideration. The
optical constants and thicknesses of layers of this LC cell are given in Section 12.5.3. Each of the other
three cells, called cells B, C, and D, differs from cell A in one detail only. Cell B has no electrodes. Cell
C has a dichroic LC material. In cell D, one of the alignment films (rear) is dichroic. For the LC in cell
C, the perpendicular absorption coefficient is equal to zero, so that the transmittance of the bulk of the
LC layer for the ordinary component, the LC structure be nontwisted, would be equal to 1. The parallel
absorption coefficient of the LC is such that at the actual LC layer thickness, the bulk transmittance of
the LC layer for the extraordinary component, the LC structure be nontwisted and planar, would be equal
to 0.7 (throughout the spectral region under consideration).

Similarly, the principal absorption coefficients of the dichroic alignment film in cell D are such that the
bulk transmittances of this film for the ordinary and the extraordinary components are equal to 1 and 0.7,
respectively. For each of these cells, using the 8 × 8 transfer matrix method described in Section 10.2, we
calculated exact spectra of 16 polarized transmittances used in the technique of determining Bj described
in Section 6.2. These polarized transmittances were calculated from Mueller matrices characterizing the
overall transmission of the LC cell (see Section 12.5.3 for details). From these rigorously calculated
spectra of polarized transmittances, spectra of Bj and Aj were calculated. Figure 12.15 compares the
spectra of the polarized transmittances tPA (0◦,45◦) and tPA (90◦,−45◦) for these four cells. Recall that
in the absence of diattenuation, the spectra of tPA (0◦,45◦) and tPA (90◦,−45◦) coincide [see (6.15)].
Figure 12.16 compares the spectra of Aj for the LC cells. As is seen from Figure 12.15, in the case of
cell A, the anisotropic losses manifest themselves almost as much as in the experiment illustrated by
Figure 6.2 within the transparency region of the material of the alignment layers (SD-1). For cell B the
effect of anisotropic losses is far smaller than for cell A, because reflection from the boundaries of the
alignment films in cell B is very weak. The effect of diattenuation in cells C and D on the polarized
transmittances is very significant. However, as seen from Figure 12.16, in spite of large difference
in data on polarized transmittances for these four cells, the spectra of Aj calculated from these data
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Figure 12.15 Spectra of polarized transmittances tPA(0◦,45◦) and tPA(90◦,−45◦) for hypothetic cells A,
B, C, and D [21]
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Table 12.5 Dependence of the accuracy of the SBA and NBRA representations on the LC layer
thickness. Φ = 240◦. The cells are without electrodes. nA is the refractive index of the alignment films

SD

SBA NBRA

Thickness, μm nA = 1.5 nA = 1.6 nA = 1.5 nA = 1.6

2 0.0040 0.0044 0.0008 0.0010
4 0.0026 0.0028 0.0009 0.0010
6 0.0020 0.0024 0.0011 0.0014
8 0.0019 0.0023 0.0012 0.0015

(in Figure 12.16, the values of Aj are shown by circles) turned out to be almost the same and very close
to the spectra of the coefficients BUj (solid lines in Figure 12.16) computed by formulas (6.31), (12.130),
(12.131), (11.46), and (11.47) (NBRA + PITL approximation). The root-mean-square deviation of Aj

from BUj is 0.0073 for cell A, 0.0018 for cell B, 0.0072 for cell C, and 0.0103 for cell D.
In Tables 12.5 and 12.6, we compare the degree of closeness of the spectra of BUj calculated using

the NBRA representation and those calculated using the SBA representation (or, what is here the same,
the classical JC) (see Section 12.3) to the rigorously calculated spectra of Aj for cells with ideal twisted
LC layers in a situation when anisotropic losses are very small. Here we consider cells with the glass
substrate–alignment film–LC layer–alignment film–glass substrate structure (as in cell B of the previous
example). The refractive index of the glass substrates, thickness of the alignment films, and principal
refractive indices of the LC are the same as in the previous example. The tables show the values of
the root-mean-square deviation of the spectra of BUj from the spectra of Aj (SD). Table 12.5 shows the
dependences of SD on the LC layer thickness for a cell with an ideal planar (𝜃c = 0◦) twisted layer
with Φ = 240◦ at two values of the refractive index of the alignment films (nA): nA = 1.5 and 1.6.
Table 12.6 presents the dependence of SD on the twist angle for such a cell. It is seen from these tables
that in all cases, the accuracy of the NBRA representation is very high and varies only slightly with
changing Φ, d, and nA. At small twist angles and large thicknesses of the LC layer, the accuracy of the
SBA representation is on the same level as in the case of NBRA. However, in contrast to the NBRA
representation, the error of the SBA representation significantly increases with increasing the twist angle
and with decreasing the thickness of the LC layer, as might be expected from the comparison of the basic
formulas of these representations (Section 12.3).

Table 12.6 Dependence of the accuracy of the SBA and NBRA
representations on the twist angle. d = 4 μm, nA = 1.6. The cells are
without electrodes

SD

Φ, ◦ SBA NBRA

0 0.0014 0.0014
90 0.0013 0.0011
180 0.0021 0.0009
270 0.0036 0.0011
360 0.0058 0.0012
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Thus, we see that the true spectra of Aj are very well approximated by the spectra of BUj even in
the presence of significant anisotropic losses. This leads one to expect that fitting of the spectra of
BUj to the experimental spectra of Aj by varying the unknown parameters of the LC layer can provide
sufficiently accurate estimates of these parameters at a typical, relatively low, level of anisotropic losses.
The results presented in the next section confirm this expectation. Before proceeding to a detailed
description of a fitting technique, let us mention another advantage of this approach to solving the
inverse problem.

In Section 6.2.1, we noted that LC cells may partially depolarize quasimonochromatic light due to
multiple reflections. In real experiments, the effect of many factors, such as the local spectral averaging
(see Section 7.1), a wide angular spectrum of the probe beam (e.g., when the measurements are carried out
with a microscope at high magnification), and stray light, on the spectral measurement results is similar to
that produced by a partially depolarizing sample. It is this that is called here instrumental depolarization.
The parameters Aj contain information only on the polarized part of the light transmitted by the cell and
are unaffected by the presence of the apparent depolarized component due to normalization involved in
(12.140). Owing to this, the effect of any kind of depolarization on the final results in typical situations
is insignificant.

12.5.2 Parameterization and Solving the Inverse Problem
The fitting of spectra of coefficients BUj to experimental spectra of parameters Aj can be carried out by
minimizing the following objective function:

F(X) =

√√√√ 1
4M

M∑
k=1

4∑
j=1

(
AEXP

j (𝜆k) − BUj(𝜆k; X)
)2

, (12.142)

where AEXP
j are experimental values of Aj, {𝜆k} (k = 1,2, . . . ,M) is the set of experimental values of 𝜆,

and X is the vector of the LC layer parameters to be determined. This minimization problem is easily
solved with the aid of numerical optimization methods. In our data-treatment program, search of local
minima of F(X) is performed using the Nelder–Mead simplex method [23]. The global search is carried
out using the multistart algorithm with the search for “good” starting points by the Monte Carlo method.
This technique has proved to be highly reliable and efficient in this problem, even when very large search
intervals to up to five unknowns are assigned (see below). In all tests described below, we used a set {𝜆k}
with M = 62, covering the range 400–700 nm with intervals of about 5 nm.

In the simplest case, when sufficiently accurate data on the spectral dependence of the principal
refractive indices of the LC material are at hand, one can set X = {𝜑1, L

𝜃, Φ}. However, often the
required data on spectral dependence of the refractive indices are not available. In this case, solving the
inverse problem involves variation of the LC optical constants.

Solving the Inverse Problem With Estimation of the Spectral Dependence of 𝚫n

Considering n⟂ and Δn, rather than n⟂ and n∥, as independent variables in (11.46) and (12.133), one can
see that the coefficients BUj are almost unaffected by variations in n⟂ within the range of typical values of
this index. This allows the fitting to be performed at a given, not necessarily very accurately, dependence
of n⟂ on 𝜆, because even a large inaccuracy in n⟂ cannot affect the final results significantly. For most
practical LC materials, the dependence of Δn on 𝜆 is accurately represented by the three-coefficient
Cauchy equation

Δn (𝜆) = a1Δ +
a2Δ

𝜆2
+

a3Δ

𝜆4
(12.143)
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(see, e.g., [24]). Using this representation, we specify the wavelength dependence of Δn by the following
three parameters:

D
𝜆1 =

Δn450

Δn550

, D
𝜆2 =

Δn550

Δn450

(
1 −

Δn650

Δn550

)
, (12.144)

and Δn550, where Δn450, Δn550, and Δn650 are the values of Δn at wavelengths of 450, 550, and 650 nm,
respectively. The values of D

𝜆1 and D
𝜆2 for practical LC materials lie within narrow ranges1, which is

very convenient in solving the inverse problem. In our data-treatment program, the evaluation of the
unknown parameters in this case is performed in the following way. The objective function F(X) is
minimized at a fixed value of Δn550, we denote it by (Δn550)R, for a set of unknowns including D

𝜆1

and D
𝜆2; thus, in the most general case, the vector of unknowns is X = {𝜑1, L

𝜃
, Φ, D

𝜆1, D
𝜆2}. In the

minimization process, after each change in D
𝜆1 and D

𝜆2, new values of Δn450 and Δn650 are calculated by
the formulas Δn450 = D

𝜆1Δn550 and Δn650 = (1 − D
𝜆2D

𝜆1)Δn550; then, from (Δn550)R and the new values
of Δn450 and Δn650 the coefficients of (12.143), a1Δ, a2Δ, and a3Δ, are computed which are then used to
calculate BUj. We will refer to the values of L

𝜃
, Δn450, and Δn650 obtained by fitting at Δn550 = (Δn550)R

as the reference values and denote them by (L
𝜃
)R, (Δn450)R, and (Δn650)R. As can be seen from (12.130)–

(12.132), (11.46), and (6.31), the parameters BUj change only slightly under simultaneous variations of
Δn and L

𝜃
that keep the product ΔnL

𝜃
fixed. Due to this fact, even under relatively large deviations of

(Δn550)R from the true value of Δn550 for the LC material, the value of the product (Δn550)R⋅(L𝜃)R is very
close to the true value of the product Δn550L

𝜃
for the examined LC layer. Therefore, with a knowledge

of Δn for the LC material at some wavelength 𝜆0 within the spectral range under consideration, the
parameters Δn450, Δn550, Δn650, and L

𝜃
can be estimated from the reference values as

Δn450 ≈ 𝜅(Δn450)R, Δn550 ≈ 𝜅(Δn550)R, Δn650 ≈ 𝜅(Δn650)R,

L
𝜃
≈ (L

𝜃
)R∕𝜅,

𝜅 = (Δn(𝜆0))R∕Δn(𝜆0),

(12.145)

where (Δn(𝜆0))R is the value of Δn(𝜆0) of the reference spectrum of Δn with Δn(450 nm) = (Δn450)R,
Δn(550 nm) = (Δn550)R, and Δn(650 nm) = (Δn650)R. In the absence of sufficiently accurate data on Δn
or L

𝜃
, the wavelength dependence of the retardation (ΔnL

𝜃
), which can easily be calculated from the

retrieved values of Δn550L
𝜃
, D

𝜆1, and D
𝜆2, may be considered as a final result.

Let us give some numerical modeling results confirming the reliability of this approach.

Numerical Tests

In this subsection, we present the results of numerical experiments that we carried out to estimate the
accuracy of determining the LC layer parameters by this method in typical situations. In all examples,
the rigorously calculated spectra of the polarized transmittances were used as input data (see Sections
12.5.1 and 12.5.3) and all five parameters, 𝜑1, L

𝜃
, Φ, D

𝜆1, and D
𝜆2, were retrieved. The search intervals

for these parameters were: −10◦
< 𝜑1 ≤ 80◦, 0.01 μm ≤ L

𝜃
≤ 20 μm, −270◦ ≤ Φ ≤ 270◦, 1 < D

𝜆1

< 1.3, and 0 < D
𝜆2 < 0.5. Such a large search domain was set in order to estimate the efficiency and

reliability of the minimization algorithm used; in practical situations, the search intervals may be, of
course, significantly narrowed.

1 For example, the LC materials considered here have the following D
𝜆1 and D

𝜆2. HR-8596: D
𝜆1 = 1.093, D

𝜆2 =
0.043. ZLI-4792: D

𝜆1 = 1.052, D
𝜆2 = 0.032. ZLI-5700–000: D

𝜆1 = 1.085, D
𝜆2 = 0.038. MLC-6080: D

𝜆1 = 1.131,
D
𝜆2 = 0.048. E7: D

𝜆1 = 1.147, D
𝜆2 = 0.053.
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Table 12.7 Retrieved parameters for the model cells A, B, C, and D

Cell Fmin Φ, ◦
𝜑1, ◦ L

𝜃
, μm Δn450 Δn650

A 0.0069 240.15 −0.07 8.00 0.1601 0.1398
B 0.0012 240.10 −0.05 7.99 0.1603 0.1397
C 0.0068 240.09 −0.04 7.99 0.1601 0.1398
D 0.0094 240.31 −0.11 8 0.1601 0.1397

Table 12.7 shows the values of the “unknown” parameters of LC layers and the minimum values
of the objective function F(X) (Fmin) that were found by fitting for the model cells A, B, C, and D of
Section 12.5.1. In this case, the fitting was performed with true values of n⟂ and Δn550. As is seen from
the table, the retrieved values of 𝜑1, L

𝜃
, Φ, Δn450, and Δn650 are very close to the true ones (for the LC

in this test, Δn450 = 0.1602 and Δn650 = 0.1397), even under such extreme conditions as in the cases of
cells C and D (recall that these cells have dichroic layers). In the next examples, we consider LC cells
without dichroic layers.

Table 12.8 shows the absolute values of deviations of retrieved values from true ones (𝛿[Φ], 𝛿[𝜑1],
etc.) for LC cells with different thicknesses of LC layers. The calculations were performed for two LC
materials with significantly different birefringence. One of them has Δn550 ∼ 0.1; in this case we used
data for the mixture ZLI-4792 (Merck). For the other material, Δn550 ∼ 0.2 (E7, BDH). The column
“Ref. LC” (Reference LC) of Table 12.8 indicates the LC material whose parameters (n⟂(𝜆) and Δn550)
were taken as the reference ones. One of the reference materials was HR-8596 (Hoffmann-La Roche)
with Δn550 ∼ 0.15. The wavelength dependences of refractive indices of ZLI-4792, E7, and HR-8596
are shown below in Figures 12.20 and 12.21. In calculations by formulas (12.145), we used data on
Δn for 𝜆0 = 589.3 nm. The calculations for Table 12.8 were performed for the free-of-electrodes cell
configuration (as in cell B), that is, under conditions most favorable to obtaining accurate estimates.
The presented results support the assertion made above: even when deviations of the reference values
of n⟂ and Δn550 from the true ones are large, the accuracy of estimates remains relatively good. In all

Table 12.8 Absolute error in the retrieved parameters for LC cells without electrodes. 𝛿[Δn] =
max{𝛿[Δn450], 𝛿[Δn650]}

LC Φ, ◦ d, μm Ref. LC 𝛿[Φ], ◦
𝛿[𝜑1], ◦

𝛿[L
𝜃
], μm 𝛿[Δn]

E7 240 6 HR-8596 0.05 0.02 ≤ 0.01 ≤ 0.0001
4 0.09 0.05
3 0.07 0.03

ZLI-4792 240 9 HR-8596 0.07 0.04
7 0.03 0.01
6 HR-8596 0.20 0.11

ZLI-4792 0.15 0.08
4 HR-8596 0.52 0.26

ZLI-4792 0.32 0.16
3 HR-8596 1.25 0.57

ZLI-4792 0.71 0.35
120 3 HR-8596 0.10 0.06
60 < 0.01 < 0.01
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Table 12.9 Absolute error in the retrieved parameters for LC cells with different surface tilt angles of
the LC director. Φ = 240◦, 𝜑1 = 0◦, and d = 8 μm. In the column “Electrodes”, symbol “o” denotes the
absence of electrodes, and symbol “+” the presence of electrodes in the LC cell

Cell parameters Fitting results

𝜃1,2, ◦ L
𝜃
, μm Electrodes Fmin 𝛿[Φ], ◦

𝛿[𝜑1], ◦
𝛿[L

𝜃
], μm 𝛿[Δn]

0 8.00 o 0.0011 0.07 0.04 0.01 0.001
+ 0.0069 0.13 0.07

4 7.99 o 0.0012 0.10 0.05
+ 0.0069 0.15 0.07

15 7.89 o 0.0046 0.57 0.28
+ 0.0080 0.60 0.30

30 7.54 o 0.0081 0.38 0.19 0.06 0.002
+ 0.0103 0.35 0.17

situations presented in Table 12.8, the errors in the retrieved L
𝜃
, Δn450, Δn550, and Δn650 turned out to

be very small. Numerical tests revealed a tendency for the error in the retrieved Φ and 𝜑1 to increase
with decreasing the ratio Δn550L

𝜃
/Φ, regardless of the choice of the reference parameters. The data for

the cells with ZLI-4792 presented in Table 12.8 reflect this tendency. The numerical experiments show
that the method can give accuracies of the order of 0.25◦ and 0.15◦ for Φ and 𝜑1, respectively, for LC
layers with Δn550L

𝜃
/Φ > 0.0025 μm/deg.

Table 12.9 shows to what extent departures of the LC layer structure from an ideal twisted one affects
the accuracy of determining LC layer parameters and allows one to compare results for cells with
electrodes and without them. These calculations were made for four configurations of the LC director
field: an ideal twisted structure with 𝜃1 = 𝜃2 = 0◦ and three equilibrium configurations with 𝜃1 = 𝜃2 =
4◦, 15◦, and 30◦ shown in Figure 11.2. It is seen from Table 12.9 that at large deviations of the LC layer
structure from an ideal twisted one, the error in Φ may be a half a degree and larger. The presence of
electrodes makes the accuracy worse but not to a large extent.

Experimental Tests

In this subsection, we give some results of experimental testing of the method described.
Table 12.10 and Figures 12.17–12.20 show results for six series of measurements. The experiments

were performed on four LC cells. The first cell, cell E1, was described in Section 6.2. For this cell, two
series of measurements were made. The spectra of the polarized transmittances and Bj obtained in the
first series are presented in Figures 6.2 and 6.4a. The second series of measurements was made after
rotation of the cell by 45◦ with respect to its position in the first series (Figure 6.4b). The experimental
spectra of Aj and the best fit curves BUj(𝜆) for these series are presented in Figure 12.17 (in Figures 12.17–
12.19, experimental points are shown by symbols, and best fit curves by solid lines). As can be seen
from Table 12.10, the retrieved values of L

𝜃
, Φ, Δn450, Δn550, and Δn650 for these two series are almost

identical. In calculations by formulas (12.145), we used the value of Δn at 𝜆0 = 589.3 nm provided by
the manufacturer of the LC material (Merck). The retrieved values of 𝜑1 for these two series differ from
each other by 44.8◦, which is consistent with the nominal angle of the cell rotation in this experiment to
within the accuracy of positioning. It should be noted that the method, using the unitary approximation,
because of (6.15), gives solutions for 𝜑1 in the form 𝜑1 = 𝜑1F + m⋅90◦, where 𝜑1F is the value provided
by the method and m is an unknown integer. In real situations, m is usually known a priori.
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Table 12.10 Retrieved parameters for the experimental LC cells

N. exp. Cell LC Fmin Φ, ◦
𝜑1, ◦ L

𝜃
, μm Δn450 Δn550 Δn650

1 E1 ZLI-5700–000 0.0064 87.49 −0.06 5.28 0.1362 0.1253 0.1198
2 E1 0.0052 87.37 44.74 5.27 0.1362 0.1253 0.1199
3 E2 (zone 1) 0.0103 −6.60 −3.14 9.17 0.1356 0.1251 0.1201
4 E2 (zone 2) 0.0095 −63.82 −2.41 8.96 0.1358 0.1251 0.1201
5 E3 MLC-6080 0.0097 0.41 1.55 3.55 0.2350 0.2078 0.1969
6 E4 0.0072 −90.44 −49.27 3.71 0.2353 0.2081 0.1963

The liquid crystal in the second cell (cell E2), as in the first one, is ZLI-5700–000. The LC layer has
a thickness of about 9 μm. The alignment layers in this cell are a unidirectionally rubbed polyimide
(PI) film (𝜃1 ≈ 2–4o) and a photoaligned film (𝜃2 ≈ 0o). On the latter film, areas with various azimuthal
orientation of the easy axis were created by photoalignment. Zones with different twist angles were
thereby produced in the LC layer. For this cell, two series of measurements were made: one for a zone
with Φ ≈ −7◦ (zone 1) and the other for a zone with Φ ≈ −64◦ (zone 2). The experimental and best fit
curves for these zones are shown in Figure 12.18. The angle 𝜑1 in this experiment characterizes the LC
director orientation at the PI film. The small difference (∼0.8◦) in the retrieved values of 𝜑1 for zones 1
and 2 may be caused by finite azimuthal anchoring of the LC at the PI film surface or by nonuniformity
of the easy axis orientation on this surface. The ∼0.2 μm discrepancy between the retrieved values of
L
𝜃

for these zones is explained by nonuniformity of the LC layer thickness. The retrieved values of
Δn450, Δn550, and Δn650 for zones 1 and 2 are almost identical and very close to those obtained for cell
E1. Figure 12.20 presents all four dispersion curves obtained in the four series described. As can be
seen, these curves are very close to each other. Also shown in the same plot are Merck data on Δn for
ZLI-5700–000. It is seen that the Merck data are in very good agreement with our results.

The fifth and sixth series of measurements were performed for cells filled with nematic MLC-6080
(Merck). This LC material has significantly stronger birefringence than ZLI-5700–000: at 𝜆 = 589.3
nm and a temperature of 20◦C, Δn = 0.1228 for ZLI-5700–000 and Δn = 0.2024 for MLC-6080. In
the first cell (cell E3), the director configuration is almost uniform (Φ ≈ 0◦); in the second cell (cell
E4) Φ ≈ −90◦. The LC layer thicknesses in these cells are about 3.6 μm. The alignment films in both
cells are rubbed polyimide layers (𝜃1,𝜃2≈2–4o). The experimental spectra of Bj for cell E3 are given in
Figure 6.9a. The experimental and best fit spectra for cells E3 and E4 are shown in Figure 12.19. The
retrieved wavelength dependences of Δn for the nontwisted layer and the twisted one are very close to
each other (see Table 12.10 and Figure 12.20).

As is seen from Figures 12.17–12.19, in all the cases the experimental spectra of Aj are almost perfectly
fitted by the spectra of BUj; the deviation Fmin is of the order of 10−2 or smaller (see Table 12.10).

Ways to Ease Measurements and Data Treatment

We note two things that allow one to make the measurement procedure and data-treatment procedure
easier.

First, the values of the polarized transmittances that are required for calculating Aj for a wavelength
can be determined up to a multiplier common for these values of transmittances, because such multipliers
cancel in (12.140). This allows using, in place of the polarized transmittances, the corresponding inten-
sities (nonnormalized to the intensity of the incident light) as input data. Thus, the normalization to the
source spectrum is not necessary in this method. This is convenient, especially when the measurements
are carried out with a microscope.
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Figure 12.17 Experimental and best fit spectra for cell E1 in the initial position (a) and after rotation
by 45◦ (b) [21]. The symbols show the experimental points for Aj. The best fit spectra of BUj are shown
by lines. The curves are labeled by values of the index j



JWST441-c12 JWST441-Yakovlev Printer: Markono December 29, 2014 8:38 Trim: 244mm × 170mm

486 Modeling and Optimization of LCD Optical Performance

400 450 500 550 600 650 700
–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

zone 1

4

3

2

1

Wavelength (nm)

400 450 500 550 600 650 700
–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

zone 2

4

3

2
1

Wavelength (nm)

Aj,BUj

Aj,BUj

Figure 12.18 Experimental and best fit spectra for cell E2 (ZLI-5700–000) in zones 1 (Φ ≈ −7◦) and
2 (Φ ≈ −64◦) [21]. Curves as in Figure 12.17
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Figure 12.19 Experimental and best fit spectra for cells E3 (MLC-6080, Φ ≈ 0◦) and E4 (MLC-6080,
Φ ≈ −90◦) [21]. Curves as in Figure 12.17
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Figure 12.20 Wavelength dependences of Δn for LC materials ZLI-5700–000 and MLC-6080 [21].
The solid curves show the spectra obtained in all six experimental series whose results are presented
in Figures 12.17–12.19. The circles show the Δn values from Merck. The crosses show the Δn(𝜆0)
values used in calculations by formulas (12.145). For comparison, spectra of Δn for HR-8596, E7, and
ZLI-4792 are shown (dashed lines)

Second, it is possible to ease solving the inverse problem by using the symmetry of the LC layer. In
the case of symmetrical boundary conditions (𝜃1 = 𝜃2), the equilibrium LC director field has a twofold
symmetry axis C2 parallel to the layer boundaries (Figure 6.7). This axis is perpendicular to the bisector
of the angle between the projections of the surface LC directors n1 and n2 (see Figure 6.1) onto the
XY-plane; the angle (𝜒) between the axes xI and C2 is related to 𝜑1 and Φ by

𝜒 = 𝜑1 +
Φ
2
± 𝜋

2
. (12.146)

Such symmetrical layers have some peculiar optical properties the use of which makes it easy to find
orientation of the symmetry axis [8, 9]. It follows from (6.39), (6.34), and (12.140) that in the presence
of the symmetry axis, the parameters A2, A4, and 𝜒 satisfy the following equations:

cos 4𝜒 =
A2√

A2
2 + A2

4

, sin 4𝜒 =
A4√

A2
2 + A2

4

. (12.147)

Using (12.146) and (12.147), one can eliminate 𝜑1 from the set of free variables in minimizing the
objective function (12.142). When there is no need to determine 𝜑1, this angle can be excluded from
consideration by using the following objective function:

F(X) =

√√√√ 1
2M

M∑
k=1

[(
AEXP

1 (𝜆k) − BU1(𝜆k; X)
)2 +

(
AEXP

3 (𝜆k) − BU3(𝜆k; X)
)2
]
.
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In contrast to (12.142), this function involves only parameters A1, A3, BU1, and BU3. All these parameters
are invariant under rotations of the cell about the zI-axis and hence do not depend on 𝜑1 [see (6.34) and
(6.36), Figures 6.4 and 12.17].

12.5.3 Appendix to Section 12.5

Specification of the Model LC Cells

In this section, we specify the components of the model LC cells used in the numerical examples of
Sections 12.5.1 and 12.5.2 (subsection Numerical tests) that were not specified in those sections.

LC layer. In the numerical examples, we used data on refractive indices for three LC materials:
HR-8596 (Hoffmann-La Roche), E7 (BDH), and ZLI-4792 (Merck). The wavelength dependences of
the principal refractive indices for these LC materials, which we used in the calculations, are shown
in Figure 12.21. The corresponding curves of Δn(𝜆) are presented in Figure 12.20. In all examples of
Section 12.5.1, we used the data for HR-8596. The thickness of the LC layer in cells A, B, C, and D is
8 μm.

Glass substrates. The refractive index of the glass substrates was taken to be 1.52 throughout the
spectral region under consideration.

Alignment films. Except for the second alignment film in cell D, the alignment films were taken to be
isotropic and nonabsorbing. Unless otherwise specified, the refractive index of alignment layers is 1.6
(it is a typical value of the refractive index of PI) for all wavelengths. The parallel and perpendicular real
principal refractive indices of the dichroic alignment film in cell D are 1.501 and 1.5, respectively, at all
wavelengths. In all the model cells, the thickness of alignment films is 0.1 μm.

Electrodes. Electrode films were treated as homogeneous absorbing isotropic layers. The spectra of
the real refractive index nITO and extinction coefficient kITO of electrodes that we used in the calculations
are shown in Figure 12.22. The thickness of the electrode films was taken to be 0.03 μm.
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Figure 12.21 The wavelength dependences of the principal refractive indices of LC materials used in
the numerical experiments
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Figure 12.22 The wavelength dependences of the refractive index and the extinction coefficient of the
electrode material (ITO) used in the numerical experiments

Rigorous Modeling of the Polarized Transmittance Spectra of LC Cells

In this case, our purpose was to model as accurately as possible the spectral dependences of polarized
transmittances of the LC cells for incident quasimonochromatic light with a bandwidth of about 4 nm (it
is a typical magnitude of the spectral resolution in examining LC cells), taking into account all significant
factors, including multiple reflections and multiple-beam interference. For the calculations, we used the
8 × 8 transfer matrix method (see Section 10.2). The glass substrates were treated as “thick” layers, and
the LC layer together with the thin-film systems surrounding it as a “thin” layered system. The 8 × 8
transfer matrix of the cell, Dcell, was calculated as follows:

Dcell =
⌢

D{T(zG2 + 0, zG2 − 0; �̃�)}
⌢

D{T(zE2 + 0, zE1 − 0; �̃�)}
⌢

D{T(zG1 + 0, zG1 − 0; �̃�)},

where T(z′′, z′; �̃�) is the EW 4× 4 transfer matrix characterizing the fragment (z′, z′′) of the approximating
stratified medium at 𝜆 = �̃�; zG1, zE1, zG2, and zE2 are the z-coordinates of the boundaries of the first (zG1,
zE1) and second (zG2, zE2) glass substrates (see Figure 6.3). The 4 × 4 transfer matrix representing the LC
layer was calculated using the variant of the staircase model described in Section 8.7 with N = 801 (here
N is the number of slices of the approximating multilayer). The error in the polarized transmittances
caused by the staircase approximation in all cases does not exceed 5 × 10−5. The final spectrum was
calculated as the convolution of the spectrum obtained by the 8 × 8 transfer matrix method with a
4-nm-wide spectral window (see Sections 7.1 and 10.2).

12.6 Optimization of Compensation Systems for Enhancement
of Viewing Angle Performance of LCDs

In Section 6.5, we considered examples of application of compensation films for improvement of the
LCD performance for the normal viewing direction and introduced a special parameter—the modulation
efficiency factor—whose examination enables one to evaluate the ultimate characteristics of the LCD
that can be achieved by fitting the compensation system in advance, before optimization calculations. The
main purpose of compensation systems in modern LCDs is to enhance the viewing angle performance.
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Some basic principles of film compensation for different kinds of LCDs and various types of compen-
sation films are considered in previous books of this series (see, e.g., [25–27]). A thorough analysis of
limitations to the viewing angle characteristics of film-compensated LCDs determined by features of
electro-optical properties of LC layers was performed by Stallinga et al. [28]. The material presented
in [28] is a good addition to the material given in Section 6.5 and this section. Consideration of the
mentioned limitations leads to the concept of modulation efficiency. As was shown in Section 6.5, the
parameter of modulation efficiency introduced in [28] (it was denoted by QΔ in Section 6.5) is closely
related to the modulation efficiency factor Q introduced in Section 6.5:

QΔ =
√

Q. (12.148)

The physical meaning of both these parameters is explained in Section 6.5.

Angular Dependence of Modulation Efficiency Factor

Within the accuracy of the immersion model—in which the optical action of all PCS elements is
described by unitary (polarization) matrices, just as in the analysis that led us to the notion of the
modulation efficiency factor in Section 6.5—the notion and definition of the modulation efficiency factor
can be extended to the case of oblique incidence. At arbitrary incidence, for a transmissive LC device,
the factor Q can be calculated by formulas (6.122) and (6.130) or (6.131) with tLC−B and tLC−D being the
polarization matrices of the LC layer in the bright and dark states, respectively, calculated by formula
(12.134). Since the matrices tLC−B and tLC−D in this case have determinant 1, calculation of Q can be
performed by the simpler formula (6.130). The parameter QΔ can be calculated by (12.148). We note
that this method of calculating QΔ is more accurate than that proposed in [28], because the latter uses
the small-birefringence approximation.

Recall that the modulation efficiency factor Q is equal to the maximum reduced transmittance of the
LCD panel in the bright state subject to the condition that the polarizers and compensators maintain
a zero transmittance in the dark state. Examining the angular and spectral dependences of Q, one can
ascertain whether the desired viewing angle performance can be attained or not with the given LC layer
at the given working voltages.

Let us consider several examples. In these examples, the transmission of an LCD panel for a given
direction of incidence is characterized by the following parameters:

(i) Average transmittances of the panel in the red (tR), green (tG), and blue (tB) regions that are
defined as

tj =
∫ t(𝜆)fj(𝜆)d𝜆

∫ fj(𝜆)d𝜆
, j = R, G, B, (12.149)

where t is the unpolarized transmittance of the LCD panel, and fR(𝜆), fG(𝜆), and fB(𝜆) are the
weighting functions shown in Figure 12.23. The values of tR, tG, and tB for a bright state will be
denoted by tR−b, tG−b, and tB−b, respectively, and those for a dark state by tR−d, tG−d, and tB−d.

(ii) Contrast ratios in the red, green, and blue regions:

CR =
tR−b

tR−d

, CG =
tG−b

tG−d

, CB =
tB−b

tB−d

.
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Figure 12.23 Weighting functions fR(𝜆), fG(𝜆), and fB(𝜆) used in calculations of averages in the red,
green, and blue regions

(iii) Average modulation efficiency factors in the red (QR), green (QG), and blue (QB) regions:

Qj =
∫ Q(𝜆)fj(𝜆)d𝜆

∫ fj(𝜆)d𝜆
, j = R, G, B,

where Q is the modulation efficiency factor of the LC layer.

The listed quantities will be considered as functions of the angles 𝛽 inc (the polar angle of incidence)
and 𝛼inc (the azimuthal angle) shown in Figure 9.1. In the polar diagrams in Figures 12.25–12.34, the
radial coordinate represents 𝛽 inc, and the azimuthal one 𝛼inc.

The first example is for a 90◦ TN LCD. In this example, we consider an LC cell with the following
parameters of the LC layer: K11 = 1.3 × 10−6 dyn, K22 = 7.1 × 10−7 dyn, K33 = 1.95 × 10−6 dyn, 𝜀|| =
15.1, 𝜀⟂ = 3.8, d/p0 = 0.35, where d is the thickness of the LC layer and p0 is the natural helix pitch of
the LC. The principal refractive indices of the LC are the following:

Wavelength (nm) n⟂ n||

400 1.5277 1.7005
550 1.5027 1.6493
700 1.4949 1.6324

The easy axis tilt angle is equal to 4◦ for both boundaries. The X-axis of the reference system XYZ
(Figure 9.1), attached to the LCD panel, is oriented so that the easy axis on the frontal boundary is
parallel to the XZ-plane and makes an angle of 4◦ with the positive direction of the X-axis, that is, for
this easy axis, 𝜑 = 0◦ and 𝜃 = 4◦ (see Figure 9.3; the orientation of specific axes of other elements is
also specified as in Figure 9.3). For the easy axis on the second LC layer boundary, 𝜑 = 90◦ and 𝜃 = 4◦.
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Figure 12.24 Midplane LC director tilt angle versus applied voltage U (a) and profiles of the LC
director at U = 0.89, 2.5, and 4 V (b) for the model TN LC layer at d = 3.07 μm

For both boundaries, the polar anchoring strength is 1 erg/cm2 and the azimuthal anchoring is infinitely
strong.

Figure 12.24 shows the dependence of the midplane LC director tilt angle on the voltage U applied
to the LC layer and the LC director field configurations at U = 0.89, 2.5, and 4 V for d = 3.07 μm.
Figure 12.25 presents the angular dependences of the factors QR, QG, and QB for the layer with d =
3.07 μm for two cases. In the first case, state 1 of the LC layer corresponds to U = 0.89 V, and state 2 to
U = 2.5 V, that is, U1 = 0.89 V, U2 = 2.5 V (see Section 6.5). In the second case, the working voltages
are U1 = 0.89 V and U2 = 4 V. Comparing diagrams in Figure 12.25, we see that with U2 = 4 V we
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Figure 12.25 Viewing angle dependences of the average modulation efficiency factors QR, QG, and
QB of the model TN LC layer with d = 3.07 μm at U1 = 0.89 V and U2 = 2.5 and 4 V

can obtain much better black–white switching in a wide viewing cone than with U2 = 2.5 V. We see
also that with U2 = 2.5 V it is impossible to obtain simultaneously high contrast and a high bright-state
transmittance in the sector 180◦

< 𝛼inc < 270◦. Note that at U2 = 4 V, the values of QB are close to 1
for all incident directions in the range under consideration, that is, in the blue region it is possible, in
principle, to obtain practically perfect dark–bright switching for all viewing directions with 𝛽 inc < 80◦.

In Figure 12.26, we compare the angular dependences of QR, QG, and QB at d = 3.07, 3.3, and 3.55 μm
for U1 = 0.89 V and U2 = 4 V. As can be seen from this figure, the increase of the LC layer thickness
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Figure 12.26 Viewing angle dependences of the factors QR, QG, and QB of the model TN LC layer at
d = 3.07, 3.3 and 3.55 μm; U1 = 0.89 V, U2 = 4 V

in this case somewhat improves the angular dependences of QR and QG, but worsens that of QB. The
variant with d = 3.3 μm seems to be the best compromise.

Figure 12.27 shows the angular dependences of QR, QG, and QB for the STN layer that we dealt with
in the examples of Section 6.5 (Figures 6.16–6.19) at working voltages U1 = 2.35 V and U2 = 2.47 V.
These dependences are compared with those for the above TN layer at d = 3.3 μm, U1 = 0.89 V, and U2 =
4 V. We see that in the case of the STN layer, the viewing cone for which good black–white switching
can be achieved is relatively narrow (with a half-angle of about 25◦) and has an inclined central axis.

Now we present examples of computer optimization of compensation systems for enhancement of the
viewing angle performance for TN and STN LCDs. Solutions presented below were found with the help
of the optimization engines of MOUSE-LCD.

TN LCD

Figure 12.28 shows the angular dependences of the bright-state transmittance tG−b and contrast ratio CG

for uncompensated normal-white LCDs with the described TN layer at d = 3.3 μm, bright-state voltage



JWST441-c12 JWST441-Yakovlev Printer: Markono December 29, 2014 8:38 Trim: 244mm × 170mm

496 Modeling and Optimization of LCD Optical Performance

Figure 12.27 Viewing angle dependences of the average modulation efficiency factors QR, QG, and
QB of the model TN and STN layers

UB = 0.89 V, and dark-state voltage UD = 4 V. The data are presented for two modes, e-mode and
o-mode, different from each other in polarizer orientation. In the case of e-mode, the transmission axis of
the frontal polarizer is parallel to the X-axis and that of the rear polarizer is parallel to the Y-axis. In the
case of o-mode, the polarizers are rotated by 90◦ with respect to their position in e-mode. Here and in the
following examples, we use quasi-ideal polarizers of o-type with complete extinction of the extraordinary
components, Re(n∥) = 1.5001, and Re(n⟂) = 1.500. For both polarizers, the spectral dependence of the
imaginary part of the complex refractive index n⟂ is such that the transmittance of the polarizer, when
it is surrounded by air, for normally incident linearly polarized light with polarization direction parallel
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Figure 12.28 Viewing angle dependences of the bright-state transmittance tG−b and contrast ratio CG

for uncompensated normal-white TN LCDs with the model TN layer, operating in e-mode and o-mode.
Normal direction: for e-mode tG−b = 0.391 and CG = 169.4, for o-mode tG−b = 0.402 and CG = 169.9

to the transmission axis of the polarizer (i.e., perpendicular to the optic axis of the polarizer) is equal to
0.9 throughout the visible region. The fitting of Im(n⟂) was performed using expression (7.43). In the
model LCDs, polarizers are in contact with adjacent layers of the LCD panel (glass substrates, as in this
example, or compensation films). The model LC cells in this example and the following examples of
this section have a structure as shown in Figure 6.3. The thickness of the alignment layers is 0.1 μm,
the refractive index of these layers is 1.6. The parameters of the conductive layers are the same as in the
computational tests of the previous section (see Section 12.5.3). Transmittance t [see (12.149)] was taken
to be the transmittance of the “useful” channel of the LCD panel, the alignment layer–conductive layer
systems being treated as OTR units (see Section 7.1). This transmittance was calculated using exact EW
Jones matrices.

Figures 12.29 and 12.30 show the angular dependences of the transmittances tR−b, tG−b, and tB−b and
contrast ratios CR, CG, and CB for two compensated LCDs with the same LC cell at the same working
voltages (UB = 0.89 V, UD = 4 V). In either case, the compensation system consists of four homogeneous
uniaxial films. Two of them are situated before the LC layer, and the other two after the LC layer. In
both cases, all compensation films have the same principal refractive indices. In the first case, the films
are positive (n∥ > n⟂). They have the same principal refractive indices as the compensation films in the
examples of Section 6.5 but tilted optic axes. Parameters of the films and the polarizer orientation for
this case are shown in Table 12.11; the thicknesses, optic axis tilt angles, and azimuthal orientation of
compensation films and orientation of polarizers were found by MOUSE-LCD. In Table 12.11 and next
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Figure 12.29 Viewing angle dependences of the bright-state transmittances tR−b, tG−b, and tB−b and
contrast ratios CR, CG, and CB for the TN LCD with an optimized compensation system consisting of
positive uniaxial films (Table 12.11). For the normal direction, tR−b = 0.379, tG−b = 0.402, tB−b = 0.346,
CR = 631, CG = 586, and CB = 357

tables, we use the same notation as in Table 6.1. The tilt angle of the optic axis (𝜃 in Figure 9.3) of a
compensation film is denoted by 𝜃L. The results for the first case are shown in Figure 12.29. This is one
of the best variants that we found for this compensation scheme with positive compensation films. Much
better results were obtained with negative compensation films (n∥ < n⟂) (Figure 12.30). The spectral
dependence of the principal refractive indices of the films that we used in this case is:

Wavelength (nm) n⟂ n||

400 1.5578 1.5483
550 1.5461 1.5368
700 1.5407 1.5317
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Figure 12.30 Viewing angle dependences of the bright-state transmittances tR−b, tG−b, and tB−b and
contrast ratios CR, CG, and CB for the TN LCD with an optimized compensation system composed of
negative uniaxial films (Table 12.12). For the normal direction, tR−b = 0.384, tG−b = 0.402, tB−b = 0.338,
and CR, CG, CB > 1000

Table 12.11 Optimized variant of the model TN LCD with positive compensation films

Scheme Parameters

P1–C1–C2–LC–C3–C4–P2 P1 𝜑L = 90.87◦

C1 𝜃L = 16.55◦
𝜑L = −88.59◦ dL = 25.95 μm

C2 𝜃L = 18.77◦
𝜑L = 179.79◦ dL = 5.59 μm

C3 𝜃L = 18.77◦
𝜑L = −89.79◦ dL = 5.59 μm

C4 𝜃L = 16.55◦
𝜑L = 178.59◦ dL = 25.95 μm

P2 𝜑L = −0.87◦
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Table 12.12 Optimized variant of the model TN LCD with negative compensation films

Scheme Parameters

P1–C1–C2–LC–C3–C4–P2 P1 𝜑L = −89.87◦

C1 𝜃L = 82.92◦
𝜑L = 91.97◦ dL = 19.32 μm

C2 𝜃L = 33.88◦
𝜑L = 3.38◦ dL = 8.62 μm

C3 𝜃L = 33.88◦
𝜑L = 86.62◦ dL = 8.62 μm

C4 𝜃L = 82.92◦
𝜑L = −1.97◦ dL = 19.32 μm

P2 𝜑L = −0.13◦

Figure 12.31 Viewing angle dependences of the bright-state transmittances tR−b, tG−b, and tB−b and
contrast ratios CR, CG, and CB for the uncompensated variant (variant 1) of the model STN LCD
(Table 6.1). For the normal direction, tR−b = 0.17, tG−b = 0.346, tB−b = 0.195, CR = 18.5, CG = 36.9, and
CB = 2.53
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Figure 12.32 Viewing angle dependences of the bright-state transmittances tR−b, tG−b, and tB−b and
contrast ratios CR, CG, and CB for variant 4 of the model STN LCD (Table 6.1, positive compensation
films). For the normal direction, tR−b = 0.251, tG−b = 0.363, tB−b = 0.321, and CR, CG, CB > 1000

The other parameters of the compensation films and the orientation of the polarizers for this case are
shown in Table 12.12. As is seen from Figure 12.30, this compensation system provides high contrast
with rather good bright-state transmission for all viewing directions with 𝛽 inc < 80◦.

STN LCD

In this example, we consider the same LC layer as in the examples of Section 6.5 (Figures 6.16–6.19) at
the same working voltages: U1 = 2.35 V and U2 = 2.47 V. The angular dependence of the modulation
efficiency factors of this layer for these working voltages is shown in Figure 12.27. Figures 12.31 and
12.32 demonstrate the angular dependences of the transmittances tR−b, tG−b, and tB−b and contrast ratios
CR, CG, and CB for the uncompensated variant of the device (variant 1 in Table 6.1) and for variant 4 with
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Figure 12.33 Viewing angle dependences of the bright-state transmittances tR−b, tG−b, and tB−b and
contrast ratios CR, CG, and CB for variant 5 of the model STN LCD (Table 12.13, positive compensation
films). For the normal direction, tR−b = 0.253, tG−b = 0.357, tB−b = 0.277, CR = 260, CG = 213, and
CB = 275

compensation (Table 6.1). Recall that the compensation system of variant 4 was designed considering
the device transmission at normal incidence only. Figures 12.33 and 12.34 show results for two variants,
variant 5 and variant 6, of the device with enhanced viewing angle characteristics. In both these variants,
as in variant 4, the normal-black mode is realized, so that UD = 2.35 V and UB = 2.47 V. The compensation
scheme in these variants is the same as in variant 4 and the compensated TN devices considered above.
In variant 5 (Table 12.13, Figure 12.33), we use positive compensation films with nontilted optic axis
(𝜃L = 0◦). In variant 6 (Table 12.14, Figure 12.34), negative compensation films with tilted optic axis,
𝜃L = 5.43◦, are used. The principal refractive indices of the positive and negative compensation films
are the same as in the previous cases. As can be seen from Figures 12.33 and 12.34, better results in this
case, as in the above example for a TN LCD, are achieved with negative compensation films.
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Figure 12.34 Viewing angle dependences of the bright-state transmittances tR−b, tG−b, and tB−b and
contrast ratios CR, CG, and CB for variant 6 of the model STN LCD (Table 12.14, negative compensation
films). Normal direction: tR−b = 0.246, tG−b = 0.365, tB−b = 0.310, CR, CG > 1000, and CB = 473

Table 12.13 Variant 5 of the model STN LCD. The compensation films are positive and have
nontilted optic axes (𝜃L = 0◦)

Variant Scheme Parameters

5 P1–C1–C2–LC–C3–C4–P2 P1 𝜑L = 51.17◦

C1 𝜑L = −8.47◦ dL = 41.85 μm
C2 𝜑L = 45.89◦ dL = 26.72 μm
C3 𝜑L = 14.38◦ dL = 26.72 μm
C4 𝜑L = 68.76◦ dL = 41.85 μm
P2 𝜑L = 99.14◦
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Table 12.14 Variant 6 of the model STN LCD. The compensation films are negative and have tilted
optic axes. For all compensation films, 𝜃L = 5.43◦

Variant Scheme Parameters

6 P1–C1–C2–LC–C3–C4–P2 P1 𝜑L = 11.70◦

C1 𝜑L = 80.75◦ dL = 45.13 μm
C2 𝜑L = 27.9◦ dL = 18.17 μm
C3 𝜑L = −146.07◦ dL = 18.17 μm
C4 𝜑L = 165.26◦ dL = 45.13 μm
P2 𝜑L = −38.37◦
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13
A Few Words About Modeling
of Fine-Structure LCDs and the
Direct Ray Approximation

The modeling of LC displays operating in the in-plane switching (IPS) mode, fringe-field switching
(FFS) mode, patterned vertical alignment (PVA) mode, multi-domain vertical alignment (MVA) mode,
and other modes that use patterned intra-pixel electrode structures or/and intra-pixel multi-domain
surface alignment necessarily involves calculation of transmission characteristics for a pixel within
which the LC director field is inhomogeneous in two or three dimensions and has significant lateral
variations at distances of the order of optical wavelengths. The latter circumstance makes diffraction on
the transverse inhomogeneities of the LC layer an important factor and greatly complicates the rigorous
optical simulation. There are several electromagnetic methods that, in certain situations, can provide
reliable simulation of light propagation in media with such kind of inhomogeneity. The best known of
them are the grating method (GM) [1,2], the finite-difference time-domain method [3–7], the wide-angle
beam propagation method [8–10], the reduced-order grating method [10–12], and the finite difference in
frequency domain (FDFD) method [12] (the given references are to publications where the mentioned
methods are applied to LC structures). Discussion of these methods is outside the scope of this book.
Their potentialities in LCD modeling are reviewed in Reference 12.

In many cases, the listed methods are capable of giving sufficiently accurate solutions of corresponding
electromagnetic problems. However, even the most efficient of these methods, the reduced-order grating
method, in standard situations is computationally very expensive. Because of this, in solving most
optimization problems for fine-structure LCDs fast approximate methods are used which are based on the
optical methods developed for 1D-inhomogeneous media. These “one-dimensional” methods are adapted
for the modeling of 2D- and 3D-inhomogeneous structures with invoking a set of heuristic assumptions
referred to in this book as the direct ray approximation (DRA) (see Section 7.1). Because of the heuristic
nature of DRA, the question of applicability and accuracy of this approximation is very acute and should
be considered individually for each specific case. Rigorous modeling is an appropriate means for finding
the right answer to this question. In this chapter, we will illustrate this statement by some examples.

In addition to our basic modeling program MOUSE-LCD (see Chapter 4) we developed a program
MOUSE-LCD2D [13] which enables modeling the electro-optical performance of fine-structure LCDs
with due regard for the diffraction effects. Moreover, this program allows simulation of various optical
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experiments with fine-structure LC cells. In particular, simulation of measurements carried out with a
polarizing microscope can be performed.

In MOUSE-LCD2D, we employ the flexible adding technique (see Section 7.2.2) within the grating
method framework [1,2] (see also References 14 and 15) for rigorous optical calculations. The laterally
inhomogeneous domain of the LC panel under consideration, the domain including the LC layer and
adjacent thin films (ITO, alignment layers), is considered as a medium whose local optical parameters
are independent of one of the transverse coordinates (Y) and are periodic functions of the other transverse
coordinate (X). A large-dimension transmission matrix characterizing this 2D-inhomogeneous domain
is calculated which relates the scalar complex amplitudes of plane-wave components of the incident and
transmitted fields. From this matrix, output optical characteristics are calculated using methods of Fourier
optics and the theory of coherency [16–18]. Some tools of MOUSE-LCD2D offer the comparison of
results obtained by the grating method with those obtained by using DRA. For the DRA calculations,
the EW Jones matrix method, described in Chapters 8 and 11, is used. The vector la (see the description
of DRA in Section 7.1) is calculated by formula (7.61).

The LC director field configuration is calculated in MOUSE-LCD2D by using the successive relaxation
method with usual division of each iteration step into two stages. The first stage is the calculation of the
electric potential distribution at a given LC director configuration. The second stage is the calculation of
partial relaxation of the LC director field in the electric field calculated in the first stage. The “elastic”
part of the problem is solved with the help of a finite-difference method. The electric field distributions
are calculated using a finite-element method. Finite surface anchoring can be taken into account; both
symmetric and asymmetric boundary conditions can be considered.

13.1 Virtual Microscope
One of the tools included in MOUSE-LCD2D is Virtual Microscope (VM). The microscopic image of an
inhomogeneous LC layer with a fine transverse structure strongly depends on observation conditions, in
particular, on the aperture of the condenser of the illuminating system and the aperture of the microscope
objective (Figure 13.1). Virtual Microscope simulates microscopic images of LC layers that could be
observed with a polarizing microscope under given observation conditions. The observation conditions
can be changed by the user.

Wishing to evaluate quantitatively some parameters of an inhomogeneous LC layer by using micropho-
tometry or microspectrometry, as a rule, we must first estimate the applicability of DRA in the situation
at hand because it is DRA that gives relatively simple formulas for optical characteristics of inhomo-
geneous LC layers in terms of their parameters, formulas suitable for solving inverse problems. Virtual

Condenser

Objective

LC cell

LC layerObject plane

Figure 13.1 Virtual Microscope. The factors being considered: aperture of the condenser of the illu-
minating system of the microscope, aperture of the objective, object plane position
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Figure 13.2 Dialog box Virtual Microscope. The plot shows the calculated dependences of the reduced
intensity of the image and the normal DRA transmittance of the sample on the lateral coordinate X. One
can rotate the polarizer and analyzer as well as move the object plane, thereby scanning the sample
in depth

Microscope helps to ascertain whether DRA is applicable or not and find the experimental conditions
under which DRA can be used.

Figure 13.2 shows a dialog box Virtual Microscope of the program. The plot on this box shows
dependences of a reduced intensity of the image of the sample and its normal DRA transmittance on the
lateral coordinate (X). The reduced intensity is defined here as the ratio of the intensity of the sample
image to the intensity of the empty field image (when the sample, polarizer, and analyzer are removed)
at a given point of the image plane; this quantity can easily be measured in a real experiment. The
normal DRA transmittance, calculated by the DRA method, is an idealized, unaffected by diffraction,
local transmittance of the polarizer–sample–analyzer system for normally incident unpolarized light.

Let us give some examples demonstrating capabilities of the virtual microscope. In these examples,
we deal with two model LC cells, we call them IPSS cell and IPSVA cell, each having a 6.1-μm-thick LC
layer. The electrode pattern period in both cells is equal to 8 μm; the electrode width is equal to 3 μm.
IPSS cell in the field-off state has a homogeneous LC director field with 88◦ azimuthal angle (with respect
to the X-axis) and 2◦ tilt angle of the LC director. IPSVA cell in the field-off state has a homeotropic
alignment of the LC. The following parameters were used in the calculations. IPSS cell: for the liquid
crystal (a pure nematic), elastic constants K11 = 1.32 × 10−6 dyn, K22 = 6.5 × 10−7 dyn, and K33 = 1.38 ×
10−6 dyn, low-frequency principal permittivities 𝜀|| = 8.3 and 𝜀⟂ = 3.1; voltage between neighboring
electrodes in the field-on state UON = 6 V. IPSVA cell: K11 = 1.32 × 10−6 dyn, K22 = 7.1 × 10−7 dyn,
K33 = 1.95 × 10−6 dyn, 𝜀|| = 5.1, 𝜀⟂ = 3.8; UON = 8 V. The calculated director profiles for the field-on
states of the cells are shown in Figure 13.3. Optical calculations were performed for quasimonochromatic
light with mean wavelength 550 nm. Refractive indices: liquid crystals—n|| = 1.581, n⟂ = 1.482; ITO
layers—nITO = 2.05; alignment layers—nAL = 1.6; glass substrates—nG = 1.52. The electrode thickness
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Figure 13.3 Calculated director profiles (the field-on states) and electrode configurations in IPSS and
IPSVA cells

was taken to be 0.03 μm. The thickness of alignment layers is equal to 0.1 μm over electrodes and to
0.13 μm between electrodes.

In Figure 13.4 we show results for the simplest situation when the LC director is aligned uniformly
throughout the layer and the electrode pattern is the only factor that makes the LC cell transversally
inhomogeneous. The calculations were carried out for IPSS cell in the field-off state; the polarizer and
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Figure 13.4 Virtual Microscope. Scanning in depth of IPSS cell in the field-off state at different
numerical apertures of the condenser, N.A.con. The numerical aperture of the objective, N.A.obj., is
equal to 0.5. With N.A.con. = 0.4, if the object plane is positioned so that Δz = −4.6 μm, we can see a
relatively sharp image of the electrodes. With these settings, the curve of the reduced intensity is very
close to the DRA transmittance curve (dotted line). Decreasing N.A.con. blurs the image
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N.A.con. = 0.4, N.A.obj. = 0.5



JWST441-c13 JWST441-Yakovlev Printer: Markono December 29, 2014 8:41 Trim: 244mm × 170mm

A Few Words About Modeling of Fine-Structure LCDs and the Direct Ray Approximation 513

analyzer transmission axes are parallel to the X-axis. Figure 13.4 demonstrates that the virtual microscope
indeed operates like a real one. Moving the object plane we can bring the electrodes, which are situated
on the bottom substrate (Figure 13.3), into focus. The parameter Δz in Figure 13.4 is the difference of
the current value of the working distance (DC)—here the working distance is the distance between the
LC cell and the microscope objective—and the value of the working distance at which the microscope
is focused at the lower boundary of the upper glass substrate of the LC cell (D0); that is, Δz = DC − D0.
As can be seen from Figure 13.4, a sharp image can be obtained only if the numerical apertures of the
condenser and objective are sufficiently large, just as for a real microscope.

Figure 13.5 presents the results for IPSS and IPSVA cells in the field-on states (Figure 13.3), when the
LC layers have strong lateral variation of the LC director field. In both cases, the polarizer and analyzer
are crossed. In the case of IPSS cell, the analyzer is parallel to the X-axis. For IPSVA cell, the analyzer
transmission axis is at 45◦ to the X-axis. The figure illustrates a search for the position of the object
plane for which the curve of the reduced intensity (recall that it is a measurable quantity) most closely
approaches the DRA transmittance curve.

13.2 Directional Illumination and Diffuse Illumination
A transversally inhomogeneous LC layer scatters light. When such an LC layer is illuminated by
a collimated light beam, it redirects a part of the transmitted light in directions different from the
propagation direction of the incident light (Figure 13.6a). On the other hand, being diffusely illuminated

(a)

(b)

A

P

LC layer

A

P

LC layer

Backlight

Figure 13.6 Manifestations of light scattering on an LC layer under directional (a) and diffuse
(b) illumination. Simulated experiments. P and A are polarizers
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Figure 13.7 Dialog box Diffraction of MOUSE-LCD2D. The presented results are for IPSVA cell in
the field-on state at normal incidence. One may change the orientation of the polarizer and analyzer and
immediately observe the corresponding transformation of the diffraction pattern

by a backlight, the LC panel containing this LC layer can redirect toward the viewer some portion
of the light incident on the panel in directions different from the viewing direction (Figure 13.6b).
MOUSE-LCD2D helps to analyze both these situations. Figure 13.7 shows a dialog box Diffraction
which presents the results of calculations for the case of a directional (collimated-beam) illumination.
This box shows the efficiencies of different diffraction orders of the transmitted light.

The case of diffuse illumination is treated with the help of a tool called IME (Illumination Mode
Effect). By using IME, one can calculate and compare the following characteristics of a transmissive
LCD:

(i) Reduced brightness of the LCD under diffuse illumination for a given viewing direction. The term
“reduced brightness” means here the ratio of the average radiance of the light emerging from the
LCD in a given direction—it is an integral characteristic for the whole 2D-inhomogeneous LCD
segment under consideration—to the radiance of the backlight for this direction.

(ii) Regular transmittance of the LCD for a collimated light beam incident on it in a given direction.
This transmittance is calculated as the efficiency of the zero diffraction order of the light transmitted
by the LCD.

(iii) Area-averaged transmittance of the LCD segment for a collimated beam incident on the LCD in a
given direction that is calculated by the DRA method, neglecting diffraction.

The results of application of IME to IPSS and IPSVA LCDs are shown in Figure 13.8. In the case of
the IPSVA LCD, the polarizers are oriented as in the above example illustrated by Figure 13.5. In the
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Figure 13.8 Viewing characteristics of the IPSS and IPSVA LCDs for directional and diffuse illumi-
nation, simulated using IME. The viewing plane is perpendicular to the Y-axis
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case of the IPSS LCD, the polarizers are crossed, the angle between the X-axis and the transmission axis
of the entrance polarizer being equal to 88◦.

As can be seen from Figure 13.8, light scattering on the LC layer considerably affects the characteristics
of the LCDs in the field-on state, to greater extent in the case of the IPSVA LCD. On the other hand, we
see that the area-averaged transmittance calculated by the DRA method and the reduced brightness for
the case of the diffuse illumination, calculated with the help of the grating method, are close to each other
in value in a certain, rather wide, range of view directions around the normal direction for both model
LCDs. Calculations showed that this is the case for many practical fine-structure LCDs. This allows one,
with some restrictions, to approximately evaluate the reduced brightness of such LCDs using estimates
of their average transmittance obtained by DRA methods.
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Appendix A
LCD Modeling Software
MOUSE-LCD Used for the
HKUST Students Final Year
Projects (FYP) from 2003 to 2011

A.1 Introductory Remarks
This Appendix provides several examples of solving research and optimization problems for LCDs and
serves as an illustration of the potential of MOUSE-LCD modeling software. The calculations were
performed by students of the Hong Kong University of Science and Technology (HKUST) for their
final-year projects from 2003 to 2011.

A.2 Fast LCD

A.2.1 TN Cell

First, the LCD parameters are fixed as in Table A.1 and the results are provided in Figs. 1-7 and Tables
A.3–A.9. [1].

Input polarizer = 0◦, output polarizer = 90◦, Von = 0 V, Voff = 5 V, d = 4.8 μm and hence dΔn =
0.475 μm. dΔn = 0.475 μm is chosen because this is the first maximum in green light for TN cell. This
can be derived by the following equation:

dΔn
𝜆

=
√

3
2

, where 𝜆 = 550 nm

The following three equations are used to explain the results:

𝜏on =
𝛾
∗
1

Δ𝜀 E2

4𝜋
− K̃ 𝜋2

d2

𝜏off =
𝛾
∗
1 d2

K̃𝜋2
𝜏total = 𝜏on + 𝜏off , (A.1)

Modeling and Optimization of LCD Optical Performance, First Edition.
Dmitry A. Yakovlev, Vladimir G. Chigrinov and Hoi-Sing Kwok.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Website Companion: www.wiley.com/go/yakovlev/modelinglcd
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Table A.1 Parameters of TN LC cell [1]
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Figure A.1 Left: switch-on times for different d/p ratios; right: switch-off times for different d/p ratios
[1]

where 𝜏on is the response time in on-state, 𝜏off is the response time in off-state, 𝜏total is the total response
time, 𝛾∗1 is the effective rotational viscosity, d is the thickness, Δ𝜀 is the dielectric anisotropy, E is the
energy, K̃ is function of K11, K22 and K33, K11 is splay distortion elastic constant, K22 is twist distortion
elastic constant and K33 is bend distortion elastic constant.

K̃ is function of K11, K22, and K33 because it involves splay, twist, and bend effect.
The following parameters are considered for simulation:

1. d/p ratio (d, LC cell thickness; p, equilibrium helix pitch)
2. K22/K11

3. K33/K11

4. Δ𝜀
5. 𝛾1

6. anchoring strength W

A.2.2 Effect of d/p Ratio
All values of LC parameters are fixed and changed d/p ratio only to see the effect on response time
(Table A.2 [1]). For 90◦ TN, the d/p ratio is between 0 and 0.5. Von is changed and Voff is fixed at 5 V.

Table A.2 Effect of d/p ratio on LC switching time [1]

d/p ratio Von 𝜏on (ms) 𝜏off (ms) 𝜏 total (ms)

0.26 1.76 0.69 4.62 5.31
0.29 1.91 0.77 5.08 5.85
0.31 2.0 0.92 5.08 6.0
0.33 2.09 1.0 6.15 7.15
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Table A.3 Effect of K22/K11 ratio on LC switching time [1]

K22/K11 𝜏on (ms) 𝜏off (ms) 𝜏 total (ms)

0.5 0.6 2.0 2.6
0.55 0.6 2.0 2.6
0.65 0.6 2.0 2.6
0.75 0.6 1.9 2.5

The graphs show that both 𝜏on and 𝜏off increase when d/p ratio increases. The result of 𝜏on does not
match with (A.1) because voltage is changed.

Conclusion: When d/p ratio increases, both 𝜏on and 𝜏off increase. 𝜏total increases [see (A.1)].

A.2.3 Effect of K22 /K11

All values of LC parameters are fixed and K22/K11 ratio is changed only to see the effect on response time
(Table A.3) [1].

The graphs show that K22/K11 have not much effect on 𝜏on. This is because when voltage applied

is much larger so that |Δ𝜀|E2

4𝜋
≫

K̃𝜋2

d2 [refer to (A.1)], effect of K22/K11 is not dominant. When K22/K11

increases, 𝜏off decreases. The result is matched with (A.1).
Conclusion: As K22/K11 ratio increases, 𝜏off decreases. So, 𝜏total decreases.

A.2.4 Effect of K33 /K11

All values of LC parameters are fixed and K33/K11 ratio is changed only to see the effect on response
time (Table A.4) [1].

The graphs show that when K33/K11 ratio increases, 𝜏on increases and 𝜏off decreases. This is because
when K33 is larger, more energy would be consumed in order to bend LC molecules inside TN cell.
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Figure A.2 Left: switch-on times for different K22/K11 ratios; right: switch-off times for different
K22/K11 ratios [1]
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Table A.4 Effect of K33/K11 ratio on LC switching time [1]

K33/K11 𝜏on (ms) 𝜏off (ms) 𝜏 total (ms)

0.7 0.46 3.00 3.46
1.3 0.46 2.08 2.54
1.9 0.54 1.69 2.23
2.6 0.54 1.38 1.92

Therefore, 𝜏on increases. However, there is no much energy needed to make LC molecule return to initial
position. Therefore, 𝜏off decreases.

Conclusion: As K33/K11 ratio increases, 𝜏on increases and 𝜏off decreases.𝜏total decreases.

A.2.5 Effect of Δ𝜀
All values of LC parameters are fixed and Δ𝜀 is changed only to see the effect on response time (Table
A.3) [1].

The Table A.5 [1] shows that 𝜏on decreases when Δ𝜀 increases. 𝜏off does not depend on Δ𝜀, so there
is no much effect on it. These results match with (A.1).

Conclusion: Δ𝜀 increases, 𝜏on decreases. So 𝜏total decreases.

A.2.6 Effect of 𝛾1

As 𝛾∗1 = 𝛾1 = 𝛼3 − 𝛼2 in this case, 𝛾1 is tested. All values of LC parameters are fixed and 𝛾1 is changed
only to see the effect on response time (Table A.6) [1].

The graphs show that both 𝜏on and 𝜏off increase when 𝛾1 increases. This is because 𝛾1 is proportional
to 𝜏on and 𝜏off .

Conclusion: When 𝛾1 increases, both 𝜏on and 𝜏off increase. So, 𝜏total increases.
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Figure A.3 Left: switch-on times for different K33/K11 ratios; right: switch-off times for different
K33/K11 ratios [1]
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Table A.5 Effect of Δ𝜀 on LC switching time [1]

Δ𝜀 𝜏on (ms) 𝜏off (ms) 𝜏 total (ms)

5.3 0.62 2.0 2.62
7.3 0.38 2.0 2.38
9.3 0.35 2.0 2.35
11.3 0.35 2.0 2.35
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Figure A.4 Left: switch-on times for different Δ𝜀 values; right: switch-off times for different Δ𝜀 values
[1]

Table A.6 Effect of 𝛾1 on LC switching time [1]

𝛾1 𝜏on (ms) 𝜏off (ms) 𝜏 total (ms)

0.10 0.35 1.23 1.58
0.13 0.38 1.62 2.00
0.16 0.54 2.00 2.54
0.20 0.62 2.62 3.24
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Figure A.5 Left: switch-on times for different 𝛾1 values; right: switch-off times for different 𝛾1 values
[1]
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Table A.7 Effect of W on LC switching time [1]

W (Erg/cm2) 𝜏on (ms) 𝜏off (ms) 𝜏 total (ms)

0.03 0.31 2.54 2.85
0.05 0.35 2.23 2.58
0.08 0.38 2.15 2.53
0.1 0.38 2.00 2.38
0.3 0.38 2.00 2.38

A.2.7 Effect of Anchoring Strength W
All values of LC parameters are fixed and anchoring energy is changed only to see the effect on response
time (Table A.7) [1].

When Wd

K̃
≪ 1 where W is the anchoring strength,

𝜏on =
𝛾1

Δ𝜀 E2

4𝜋
− 2W

d

and 𝜏off =
𝛾1d

2W
. (A.2)

From the equations, when W increases, 𝜏on increases and 𝜏off decreases.
Conclusion: When anchoring strength increases, 𝜏on increases and 𝜏off decreases. 𝜏total decreases as a

result.

A.2.8 Optimized TN Cell With Fast Response Time
From the above result, TN cell is optimized (Table A.8) [1].

Conclusion: When K22, K33 and Δ𝜀 are increased, the total response time is 1.76 ms. For TN cell, the
effect of d/p ratio, 𝛾1, and K33 are the highest.
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Figure A.6 Left: switch-on times for different W values; right: switch-off times for different W values
[1]
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Table A.8 Parameters of optimized TN cell with fast switching time [1]

A.2.9 Other LC Modes

Finally based on the results of the calculations of various LC electro-optical modes, the following final
results were obtained. The key parameters, which affected LC response time, were found to be 𝛾1, W,
and K33/K11. The best results are summarized in Table A.9.

A.3 Color LCD [2]

A.3.1 The Super-Twisted Nematic Cell
The typical parameters of super-twisted nematic (STN) LC cell are given in Table A.10 [2, 3].

Chromatic to chromatic switching of the six electro-optic LC modes:

(a) TN (Twisted Nematic);
(b) STN (Super-Twisted Nematic);
(c) 𝜋 cell (Bend Cell);
(d) ECB (Electrically Controlled Birefringence);
(e) VAN (Vertically Aligned Nematic); and
(f) HAN (Hybrid Aligned Nematic)
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Figure A.7 Switching time of optimized TN cell: 𝜏on = 0.38 ms, 𝜏off = 1.38 ms, 𝜏 tot = 1.76 ms [1]



JWST441-App01 JWST441-Yakovlev Printer: Markono December 29, 2014 7:25 Trim: 244mm × 170mm

Appendix A 525

Table A.9 The optimization of LC response time, using MOUSE-LCD software [1]

LC mode 𝜏on (ms) 𝜏off (ms) 𝜏 total (ms) Contrast ratio Transmittance, %

TN cell 0.38 1.38 1.76 267.65 40.14
STN cella 9.23 9.23 18.46 81.87 32.06
HAN cell 0.3 3 3.3 27.774 39.36
Half-𝜋 cell 0.3 2.2 2.5 20.493 40.2
ECB cell 0.1 1 1.1 194.27 40.36
VAN cell 0.6 0.9 1.5 444.18 40.65

aThe above table shows that the response time of STN cell is much longer than the others. This is because
the multiplexing ratio is important in STN cell.

Two uniaxial compensators were added between the output polarizer and the LC layer. The other
configuration is that one of the uniaxial compensators added on the top and bottom of the LC layer. In
the third configuration, one of the uniaxial compensators added on the top and bottom of the LC layer.
A biaxial compensator was also added between the output polarizer and the LC layer with the similar
result as the two uniaxial compensators. Some typical constructions are shown in Figure A.8.

The combinations of the color include

� Blue-yellow switching in transmissive mode
� Blue-yellow switching in reflective mode
� Green-magenta switching in transmissive mode
� Green-magenta switching in reflective mode
� Red-cyan switching in transmissive mode
� Red-cyan switching in reflective mode

Some birefringent color based on STN-LCD are shown in Figures A.9–A.12 [2].
In conclusion, optimization of the six cells on blue-yellow switching, green-magenta switching and red-

cyan switching, and FLC cells has been successfully accomplished. The color filters, which considerably
decrease LCD resolution, its light efficiency, with a high additional cost are not required in this type of
LCD.

A.3.2 STN Birefringent Colors in Transmissive and Reflective Modes
The birefringent color configurations and the corresponding color triangle in transmissive and reflective
LC electro-optical modes are shown in Figures A.12 and A.13 [3].

A.4 Transflective LCD

A.4.1 Vertical Aligned Nematic Cell
The typical parameters of vertical aligned nematic (VAN) LC cell are given in Table A.11 [4].

The modeled transflective VAN structure is shown in Figure A.14 [4].
The optimized transflective LCD uses the same LC layer for both transmissive and reflective modes.

That means that the optimized structure uses the same LC properties in both modes (except for the
LC thickness, which can be vary by using alignment glass of different thickness), but different layer
configurations such as retardation layers. The structure can be manufactured with pixelated polarizer
technology (Figure A.14) [4].
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Table A.10 The typical parameters of STN LC cell [2]
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Figure A.8 Typical configurations of transmissive LCD for birefringent color optimizations. MOUSE-
LCD software was used to choose the proper angles of the polarizers, and the parameters of the phase
retardation plates [2]
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Figure A.9 Blue-yellow switching in STN transmissive mode (positive contrast). (a) Transmittance,
(b) chromaticity diagram, (c) simulated result [2]
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Figure A.10 Blue-yellow switching in STN transmissive mode (negative contrast). (a) Transmittance,
(b) chromaticity diagram, (c) simulated result [2]
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Figure A.11 Green-magenta switching in STN transmissive mode (negative contrast). (a) Transmit-
tance, (b) chromaticity diagram, (c) simulated result [2]

The optimized VAN transmissive structure consists of the standard set of LC layer between two
glass plates and alignment layers, two polarizers and an additional two uniaxial compensators to further
minimize the dark state. The structure can be seen on Figure A.15a [4]. The optimized VAN reflective
structure consists of the standard set of LC layer between two glass plates and alignment layers, one
polarizer, and a reflector. Additional two uniaxial compensators are added to further minimize the dark
state. The structure can be seen on Figure A.15b [4].

The performance of the optimized transflective LCD is shown in Table A.12 [4].
Some selected results based on the presentation files of the recent HKUST students FYP devoted to

optimization and modeling of optimal LCD characteristics are also included below.
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Figure A.12 The birefringent color triangle in transmissive STN mode [3]
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Table A.11 The typical parameters of VAN LC cell [4]
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Figure A.13 The birefringent color triangle in reflective STN mode [3]
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Figure A.14 The modeled transflective VAN structure [4].

Figure A.15 The optimal transmissive (a) and reflective (b) configuration of the trasnsflective VAN
LCD [4].
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Table A.12 The performance of the optimized transflective LCD [4]
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Figure A.16 Switchable viewing angle LCD, based on double HAN–VAN cell configuration [5]
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Figure A.17 BTN (𝜋-BTN) transmissive configuration. Left: 𝜋-BTN switching; right: design of optical
part [6]
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Figure A.18 Optimization results of BTN (𝜋-BTN) transmissive configuration. Left: 𝜋-BTN transmit-
tance in dark and bright bistable states; right: viewing angles [6]
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Figure A.19 BBS transmissive configuration. Left: BBS bistable configurations; right: design of optical
part [6]
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Figure A.20 Optimization results of BBS transmissive configuration. Left: BBS transmittance in dark
and bright bistable states; right: viewing angles [6]
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Figure A.21 FLC reflective configuration. Left: FLC bistable configurations; right: design of optical
part [6]
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Figure A.22 Optimization results of FLC reflective configuration. Left: FLC reflectance in dark and
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Figure A.23 Solc filter configuration principle. Left: Solc filter configuration; right: principle of green
light switching [7]
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A.5 Switchable Viewing Angle LCD
The aim of the work was (i) to discover factors affecting viewing angle performance of LCD; (ii) simulate
narrow and wide viewing angle performance with different configurations; and (iii) optimize and model
an LCD that can be switchable between narrow and wide viewing mode (Figure A.16) [5].

A.6 Optimal e-paper Configurations
The aim of the work was (i) to find out factors and conditions affecting the performance of three popular
types of e-paper, including Bistable twisted nematic (BTN), Bistable bend splay (BBS), Ferroelectric
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Figure A.24 Solc filter optimization. Left: number of phase retarders; right: backlight spectral distri-
bution [7]
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liquid crystal (FLC); (ii) to find out a better bistable LCD configuration for e-paper; (iii) to optimize
the display performance of the three types of e-paper in terms of contrast ratios and viewing angles
[6]. The optimization procedure in each configuration includes (i) choosing an optimal LC material; (ii)
setting the polarizer and analyzer angle; (iii) finding an optimal LC layer thickness and pretilt angle. The
optimization results are shown in Figures A.17–A.22 [6].

A.7 Color Filter Optimization
The aim of the work was (i) to investigate new LC configuration with good color production ability; (ii)
improve color production ability using multiple LC layer structure [7]. In particular, the results of the
optimization of Solc Filter are given in Figures A.23 and A.24 [7].
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Some Derivations and Examples

B.1 Conservation Law for Energy Flux
In this section, we show that equation (8.17) for the energy flux is consistent with conditions (8.10) for
the material tensors.

Using the vector identity

∇(a × b) = b ⋅ (∇ × a) − a ⋅ (∇ × b), (B.1)

we can write

∇ ⋅ (E × H∗) = H∗ ⋅ (∇ × E) − E ⋅ (∇ × H∗). (B.2)

Multiplying the complex conjugate of equation (8.1) scalarly by E, and (8.2) by H∗, we obtain

E ⋅ (∇ × H∗) = ik0E ⋅ D∗, (B.3)

H∗ ⋅ (∇ × E) = ik0H∗ ⋅ B. (B.4)

Substitution of (B.3) and (B.4) into (B.2) gives

∇ ⋅ (E × H∗) = ik0(H∗ ⋅ B − E ⋅ D∗). (B.5)

For the real part of ∇ ⋅ (E × H∗) we have

Re[∇ ⋅ (E × H∗)] = ∇ ⋅ Re(E × H∗), (B.6)

2Re[∇ ⋅ (E × H∗)] = ∇ ⋅ (E × H∗) + ∇ ⋅ (E∗ × H). (B.7)

From (B.5)–(B.7) we obtain

2∇ ⋅ Re(E × H∗) = ik0(H∗ ⋅ B − E ⋅ D∗ − H ⋅ B∗ + E∗ ⋅ D). (B.8)

Modeling and Optimization of LCD Optical Performance, First Edition.
Dmitry A. Yakovlev, Vladimir G. Chigrinov and Hoi-Sing Kwok.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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After substitution of the expressions for D and B from the constitutive relations (8.5) into (B.8), it is easy
to ascertain, invoking the tensor-vector identity

a ⋅ αb = b ⋅ αTa, (B.9)

that the bracketed quantity on the right-hand side of (B.8) is equal to zero identically (at any E and H)
if the material tensors meet (8.10). In view of (8.16), this means that in media whose material tensors
satisfy conditions (8.10) the conservation law (8.17) holds.

B.2 Lorentz’s Lemma
Let us write the Maxwell equations for the fields {E1, H1} and {E2, H2} entering into (8.19):

∇ × H1 = −ik0D1,

∇ × E1 = ik0B1,

∇ × H2 = −ik0D2,

∇ × E2 = ik0B2.

Multiplying scalarly these equations by E2, H2, –E1, and –H1, respectively, and adding all four together,
we obtain

E2 ⋅ (∇ × H1) + H2 ⋅ (∇ × E1) − E1 ⋅ (∇ × H2) − H1 ⋅ (∇ × E2)

= ik0(−E2 ⋅ D1 + H2 ⋅ B1 + E1 ⋅ D2 − H1 ⋅ B2).
(B.10)

According to (B.1), the left-hand side of (B.10) is identically equal to ∇⋅(E1 × H2 – E2 × H1). Using
the constitutive relations (8.5) and the identity (B.9), the quantity in brackets on the right-hand side of
(B.10) can be transformed as follows:

−E2 ⋅ D1 + H2 ⋅ B1 + E1 ⋅ D2 − H1 ⋅ B2

= E1 ⋅ (ε − εT)E2 − H1 ⋅ (ρT + ρ′)E2 + H2 ⋅ (ρT + ρ′)E1 + H2 ⋅ (μ − μT)H1.

Therefore, from (B.10), we have

∇ ⋅ (E1 × H2 − E2 × H1)

= ik0[E1 ⋅ (ε − εT)E2 − H1 ⋅ (ρT + ρ′)E2 + H2 ⋅ (ρT + ρ′)E1 + H2 ⋅ (μ − μT)H1].
(B.11)

As can be seen from (B.11), equation (8.20) is satisfied identically only if the material tensors meet the
conditions (8.8).

B.3 Nonexponential Waves
In certain situations, the modal basis for a homogeneous layer cannot be formed only of waves with
a pure exponential spatial dependence (eikr) and must involve nonexponential waves. Here is a simple
example of such a situation.
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Let a plane wave be incident on an isotropic nonabsorbing medium A of refractive index n from an
optically denser isotropic nonabsorbing medium at the critical angle of total reflection. In this case, 𝜁 = n
(see Section 8.1.3) and equation (8.73) has four identical roots

𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 0

[see (9.18)]. In this case, it is impossible to choose the vibration vectors for four solutions of the form
(8.21) so that these solutions are linearly independent. The fundamental system of solutions for (8.58)
in this situation can be composed of the following linearly independent solutions:(

E1(r)
H1(r)

)
= A1

(
z

−𝜁y

)
exp

(
ik0br

)
, (B.12)(

E2(r)
H2(r)

)
= A2

(
y
𝜁z

)
exp

(
ik0br

)
, (B.13)

(
E3(r)
H3(r)

)
= A3

[(
−𝜁−1x

⌢

0

)
+ ik0

(
z − z0

)( z
−𝜁y

)]
exp

(
ik0br

)
, (B.14)

(
E4(r)
H4(r)

)
= A4

[(
⌢

0
−x

)
+ ik0

(
z − z0

)( y
𝜁z

)]
exp

(
ik0br

)
, (B.15)

where z0 is the z-coordinate of the interface between the media; x, y, and z are the unit vectors along the

axes of the coordinate system (x, y, z);
⌢

0 denotes the zero vector. The first and second waves are usual
surface waves. The fields of the third and fourth waves have a linear dependence on z. Making use of this
fundamental system of solutions, we obtain the following expression for the Berreman transfer matrix
of the layer (z0, z0 + d) of the medium A:

P(z0, z0 + d) =
⎛⎜⎜⎜⎝

1 0 0 0
ik0n2d 1 0 0

0 0 1 ik0d
0 0 0 1

⎞⎟⎟⎟⎠
xyz

. (B.16)

We can verify by a straightforward calculation that Berreman’s formalism by itself gives the same result.
The matrix 𝚫 of the medium A in the situation under consideration (𝜁 = n) has the following form:

𝚫 =
⎛⎜⎜⎜⎝

0 0 0 0
n2 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠
xyz

.

It is easily seen that the matrix 𝚫2 is zero. Therefore, from (8.131), we have

P(z0, z) = U + ik0z𝚫,

which leads to (B.16).
One may notice that it is impossible to select among the solutions (B.12)–(B.15) two forward propa-

gating and two backward propagating waves. Therefore, the methods requiring such a selection fail in
this case. When using such methods, the simplest way to cope with this situation is to escape from it.
For this, it suffices to slightly change 𝜁 or optical constants of the medium (say, by 10−5).
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B.4 To the Power Series Method (Section 11.3.3)
Let us consider the operator equation

dt(0, 𝜂)
d𝜂

= i𝜅Ñ(𝜂)t(0, 𝜂) [t(0, 0) = U], (B.17)

where Ñ(𝜂) is a real 2 × 2 matrix of the form

Ñ(𝜂) =
(

F′(𝜂) F′′(𝜂)
F′′(𝜂) −F′(𝜂)

)
(B.18)

at any 𝜂 from the range (0,1), 𝜅 is a scalar real parameter, and U is the unit matrix. Assume that we need
to calculate the dependence of the matrix t̃ = t(0, 1) on 𝜅. Because of the special form of the operator
Ñ(𝜂), the matrix t̃ at any 𝜅 is unitary and has the form

t̃ =
(

c1 c2

−c∗2 c∗1

)
, (B.19)

therefore to determine the matrix t̃ it suffices to calculate the complex parameters c1 and c2. According
to (B.17), the matrix t̃ can be expressed as follows:

t̃ = U +
∞∑

j=1

(i𝜅)jÑj(1), (B.20)

Ñ1(𝜂) =

𝜂

∫
0

Ñ(�̄�)d�̄�, (B.21a)

Ñj(𝜂) =

𝜂

∫
0

Ñ(�̄�)Ñj−1(�̄�)d�̄� j = 2, 3, 4,… (B.21b)

Due to the symmetry properties of the matrix Ñ(𝜂) (B.18), the matrices Ñj(𝜂) at any 𝜂 have the form

Ñj(𝜂) =

(
f′j (𝜂) f′′j (𝜂)

(−1)j−1f′′j (𝜂) (−1)jf′j (𝜂)

)
(B.22)

[which can be verified by substituting (B.18) into (B.21)], where f′j (𝜂) and f′′j (𝜂) are real. This allows one

to specify the function Ñj(𝜂) with the aid of the following scalar complex-valued function

fj(𝜂) = f′j (𝜂) + if′′j (𝜂).

According to (B.18) and (B.21a), the function f1(𝜂) can be expressed as

f1(𝜂) =

𝜂

∫
0

F(�̄�)d�̄�, (B.23)
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where

F(𝜂) = F′(𝜂) + iF′′(𝜂). (B.24)

The functions fj(𝜂) with j > 1 can also be expressed in terms of F(𝜂). Using (B.18), (B.22), and (B.21b),
one can find that

fj(𝜂) =

⎧⎪⎪⎨⎪⎪⎩

𝜂

∫
0

F(�̄�)∗fj−1(�̄�)d�̄� j = 2, 4, 6,…

𝜂

∫
0

F(�̄�)fj−1(�̄�)d�̄� j = 3, 5, 7,…
(B.25)

It follows from (B.19), (B.20), and (B.22) that the parameters c1 and c2 specifying the matrix t̃ can be
calculated by the formulas

c1 = 1 +
∞∑

j=1

(i𝜅)jRe
(
fj(1)

)
, c2 =

∞∑
j=1

(i𝜅)jIm
(
fj(1)

)
. (B.26)

This representation underlies the power series method (PSM) described in Section 11.3.3.

B.5 One of the Ways to Obtain the Explicit Expressions for
Transmission Jones Matrices of an Ideal Twisted LC Layer

Both the classical differential Jones calculus and the NBR approximation enable one to obtain simple
analytical expressions for transmission Jones matrices (respectively the classical-Jones-calculus Jones
matrices and EW Jones matrices) of ideal twisted LC layers (see Sections 2.1, 11.1.1, and 11.4.1). In
either case, such an expression can be derived by solving an operator equation of the form

dt(z′, z)
dz

= Nt(z′, z) [t(z′, z′) = U], (B.27)

where N is a 2 × 2 matrix independent of z. The solution of (B.27) can be written in the form of the
matrix exponential

t(z′, z) = exp
[
N
(
z − z′

)]
≡ U +

∞∑
j=1

(z − z′)j

j!
N j
.

The operator t(z′, z′′) for a given interval (z′, z′′) is then expressed as

t(z′, z′′) = exp (Nd) = U +
∞∑

j=1

dj

j!
N j, (B.28)

where d = z′′ – z′. Suppose that the matrix N has two different eigenvalues 𝜏1 and 𝜏2. Then this matrix
can be expressed as

N = Ψ
𝜏
N
𝜏
Ψ−1
𝜏

, (B.29)
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where

N
𝜏
=
(
𝜏1 0
0 𝜏2

)
, (B.30)

and Ψ
𝜏

is a 2 × 2 matrix composed of eigenvectors of the matrix N:

Ψ
𝜏
=
(

j1 j2

)
, (B.31)

where jk is an eigenvector corresponding to the eigenvalue 𝜏k (k = 1, 2). The representation (B.29)
follows from the definition of eigenvalues and eigenvectors. Substitution of (B.29) into (B.28) gives the
following expression for the matrix t(z′, z′′)

t(z′, z′′) = Ψ
𝜏

(
exp

(
𝜏1d

)
0

0 exp
(
𝜏2d

))Ψ−1
𝜏
. (B.32)

The representation (B.32) was used by R.C. Jones in his classical work [1], where he presented his
differential calculus. In (8.132), a representation of this kind is used for the Berreman transfer matrix of
a homogeneous layer.

As an example, we use expression (B.32) to find the Jones matrix tUx′−y′ (z′, z′′) from (11.35). In the
case of an ideal twisted layer, the matrix NUx′−y′ entering into this equation can be expressed as

NUx′−y′ =
(

ik q
−q −ik

)
, (B.33)

where

k = G∕d, q = 𝜑z = Φ∕d (B.34)

with d and Φ being respectively the thickness and twist angle of the layer. The parameter G is defined
under (11.42). The eigenvalues of NUx′−y′ are

𝜏1 = ip, 𝜏2 = −ip, (B.35)

where

p =
√

k2 + q2. (B.36)

The corresponding eigenvectors can be chosen as follows:

j1 =
(

k − i𝜏1

iq

)
=
(

a
iq

)
, j2 =

(
iq

k + i𝜏2

)
=
(

iq
a

)
, (B.37)

where

a = k +
√

k2 + q2. (B.38)

In this case,

Ψ
𝜏
=
(

a iq
iq a

)
, Ψ−1

𝜏
= 1

Δ

(
a −iq
−iq a

)
, (B.39)
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where

Δ = a2 + q2 = 2
√

k2 + q2
(

k +
√

k2 + q2
)
= 2ap.

From (B.32), on carrying out the matrix multiplications, we obtain

tUx′−y′ (z
′, z′′) = 1

Δ

(
a2eiQ + q2e−iQ −iaq

(
eiQ − e−iQ

)
iaq

(
eiQ − e−iQ

)
a2e−iQ + q2eiQ

)
,

where Q = pd =
√

G2 + Φ2, and then, on substituting e±iQ = cosQ ± i sinQ,

tUx′−y′ (z
′, z′′) =

⎛⎜⎜⎜⎝
cosQ + i

a2 − q2

Δ
sinQ

2aq

Δ
sinQ

−
2aq

Δ
sinQ cosQ − i

a2 − q2

Δ
sinQ

⎞⎟⎟⎟⎠ .
Having noted that

a2 − q2 = 2
(

k2 + k
√

k2 + q2
)
= 2k

(
k +

√
k2 + q2

)
= 2ak,

we can rewrite the latter expression as

tUx′−y′ (z
′, z′′) =

⎛⎜⎜⎜⎝
cosQ + i

k
p
sinQ

q

p
sinQ

−
q

p
sinQ cosQ − i

k
p
sinQ

⎞⎟⎟⎟⎠ . (B.40)

Upon substituting (B.34) into (B.40), we arrive at the well-known expression

tUx′−y′ (z
′, z′′) =

⎛⎜⎜⎜⎝
cosQ + i

G
Q

sinQ
Φ
Q

sinQ

−Φ
Q

sinQ cosQ − i
G
Q

sinQ

⎞⎟⎟⎟⎠ . (B.41)

Substitution of (11.21) and (B.41) into (11.34) gives expression (11.41) for the “full” Jones matrix of
the layer.
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Am. 38, 671 (1948).
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mean wavelength, 219

radiant flux, 220
Berreman equation, 262–264
Berreman method, 262–264, 266, 283–290

coordinate systems, 289–291
transfer matrices, 284–289

properties, 312–314, 319
transfer matrix of a homogeneous layer, 284–287
transfer matrix of a smoothly inhomogeneous layer,

287–289
Berreman vector, 263
Birefringence, 29
Birefringent color generation, 145
Bistable and multistable switching in FLC, 136–138
Bistable LCDs, 81

BBS (bistable bend-splay), 82
BBT (bistable bend-twist), 82
BST (bistable splay-twist), 82
BTN (bistable TN), 82–84
BTT (bistable twist-twist), 82
nematic, 82

Black–white switching, 113–114
Boundary conditions for electromagnetic fields,

256–257
Brewster angle, 18
BTN (bistable TN) LCD, 82–84

Modeling and Optimization of LCD Optical Performance, First Edition.
Dmitry A. Yakovlev, Vladimir G. Chigrinov and Hoi-Sing Kwok.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Canonical Jones matrices, 327
Canonical Jones vectors, 334
Cauchy formulas for refractive indices

three-coefficient, 211, 481
two-coefficient, 134

Characteristic angle, 77
measurement, 86

Characteristic phase, 77
measurement, 87

Clark–Lagerwall effect, 135–136
Coherence length, 223, 382
Coherent interaction of wave fields, see Mutually

coherent wave fields
Compensation film, 55, 247

optical models, 247
Compensation system, 207

optimization, 207–216, 491–504
Complex conjugate of a matrix, 154
Complex permittivity, 3
Complex refractive index, 3

for a homogeneous wave, 259
Conduction current, 252
Conductivity tensor, 254
Conical refraction, 363
Constitutive relations, 253
CP modes, 81

D-fragment, 376
Deformed helix ferroelectric (DHF) effect, 140–143
Depolarization, 195, 197
Device, optical

lossless, 45
reflective, 52
unitary, 45

DHF effect, see Deformed helix ferroelectric effect
Diagonal matrix, 154
Diattenuation, 35, 179–180, 185, 467–474
Dichromatic bistable FLCD, 145–149
Differential propagation matrix, 263
Diffraction effects, 235, 507–516
Diffuse illumination, 513–516
Direct product of matrices, 166
Direct-ray approximation (DRA), 235–237, 507–516
Directional illumination, 513–516
Discretization method (DM), 404, 427–428
Displacement vibration vector, 258
DM, see Discretization method
Double cell, 114
Double refraction, 29
Double STN (DSTN) cell, 114–115
Double TN cell, 115–116
DRA, see Direct-ray approximation
Dual mode single cell gap transflective LCD,

119–122
Dyadic product, 256

E-normalization, see Electrical normalization
EAS, see Electrode–alignment layer system
Easy axis, 93
Easy direction, 93
ECB, see Electrically controlled birefringence
ECB (electrically controlled birefringent) mode, 66,

91–101
Eigenvalue, 159
Eigenvector, 159
Eigenwave (EW), 23
Eigenwave basis (EWB), 264, 268–275, 331–364

for biaxial layer, 352–364
for isotropic layer, 338–342
for uniaxial layer, 342–352
normalization, 265, 291, 292, 302, 334–336, 447,

449
optimal, 295
orthogonality, 291–295, 334

Eigenwave (EW) representation, 264–266
EJMM, see Extended Jones matrix method
Elastic moduli (constants), 92, 134
Electric displacement vector, 252
Electric field strength vector, 252
Electric permittivity, 2
Electric vibration vector, 23, 258
Electrical (E-) normalization, 334
Electrically controlled birefringence (ECB), 91–101

bend mode (B-effect), 91, 99–100
HAN (hybrid aligned nematic) mode, 100
pi-cell (𝜋-cell), 99
splay mode (S-effect), 91, 97–99

Electrically controlled birefringent mode, see ECB
mode

Electrode–alignment layer system (EAS), 379,
469–474

antireflected, 382–384
Electromagnetic field, 252
Energy flux, in nonabsorbing media, 254–255
Energy flux density vector, 254
Equivalent rotator, 76
Equivalent wave plate, 76
ET-normalization, 449
Euclidean norm of matrix, 164
Euclidean norm of vector, 163
Euclidean vectors, 155

dyadic product, 166, 256
scalar (dot) product, 155
vector product, 156

EW, see Eigenwave
EW 4 × 4 transfer matrices, 281

for inhomogeneous LC layers, 319–320
for systems including LC layer, 320–322
properties, 312–314

EW 4 × 4 transfer matrix method, 281–283
EW basis (EWB), see Eigenwave basis
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EW Jones matrices, approximations
transmission of inhomogeneous LC layer, see NBR

approximation
transmission of interface at normal incidence,

451–463
transmission of interface between uniaxial media,

302
EW Jones matrices, exact representations and

computational formulas
overall reflection of layered system, 282–283,

303–304
overall transmission of layered system, 282–283,

303–304
reflection of interface, 282–283
transmission of elementary transfer channel, 277
transmission of interface, 282–283, 297–302,

447–450
transmission of the bulk of homogeneous layer, 280

EW Jones matrices, properties
for nonabsorbing regions, 313
reciprocity relations, 315–319

EW Jones matrix, 276
in different EW bases, 326–328

EW Jones matrix method, 275–280. See also EW Jones
matrices

estimation of accuracy, 436–438
EW Jones vector (a-vector), 275–276

in different EW bases, 322–326
EW Mueller matrices, 368–374

for elements of layered systems, 372–373
for systems consisting of “thin” and “thick” layers,

375–379, 383
for transfer channels, 370, 371, 373–374
monochromatic approximation, 372–373

EW Stokes vector, 368–371, 374–375
spectral density, 369
spectral representation, 369–371

EW-Mueller-matrix adding method, 383–384
EWB, see Eigenwave basis
EWB-generating routines (LMOPTICS), 331–364
Extended Jones matrix method (EJMM), 393, 404–409,

461
Lien and coauthors’, 409
Lien’s, 404–409
Yeh and Gu’s, 276, 346, 404–409
Yu and Kwok’s, 409

F-normalization, see Flux normalization
Fabry–Perot (FP, multiple-beam) interference (FPI),

222, 279, 379
Faraday rotation, 253
Fast axis, 31
FEF (fitted-to-electric-field) Jones vector, 171–172
FEFD (fitted-to-energy-flow-direction) irradiance,

168

Ferroelectric LC (FLC, smectic C∗), 131–149
optical model, 246
physical properties, 131–143

Ferroelectric LCD (FLCD), 135–149
Ferroelectric LCD modes, 135–149

bistable and multistable switching, 136–138
Clark–Lagerwall effect, 135–136
deformed helix ferroelectric (DHF) effect, 140–143
dichromatic bistable FLCD, 145–149
surface stabilized FLC structures (SSFLC), 135
transflective ferroelectric LCD, 143–145

Ferroelectric LC parameters, 131–135
dielectric anisotropy, 134
elastic moduli (constants), 134
helix pitch, 134
optical anisotropy, 134
permittivity tensor at optical frequencies, 246
principal refractive indices, 134, 246
rotational viscosities, 133
spontaneous polarization, 132
tilt angle, 131, 132

FI (fitted-to-irradiance) Jones vector, 175
FI–EW Jones matrices, 442
Film polarizers, 247

e-type, 247
o-type, 247
optical models, 247

Film-compensated STN (FSTN) LCD, 114, 211–215,
502–504

Finite difference in frequency domain (FDFD) method,
507

Finite-difference time-domain (FDTD) method, 507
Fitted-to-irradiance Jones vector, see FI Jones vector
FLC, see Ferroelectric LC
FLCD, see Ferroelectric LCD
Flux (F-) normalization, 292
Flux-based Stokes vector, 170–171
Form-factor, spectral, see Spectral form-factor
Forward propagating basis waves, 268–269
Forward propagating wave field, 230, 231
FP interference, see Fabry–Perot interference
FP system, 279
FPI, see Fabry–Perot interference
Fréedericksz transition, 91
Fresnel formulas, 14–17
Fringe-field switching (FFS) mode, 507
FSTN LCD, see Film-compensated STN LCD
FTCEF (fitted-to-transverse-component-of-electric-

field) Jones vector, 171–172
Fuji wide view (WV) films, 247
Full-output EWB-generating routines (LMOPTICS),

333

Generalized Fresnel equation, 257
Geometrical optics approximation (GOA), 434–435
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Glass, 227
float, 247
soda lime, 227, 247
surface layer, 247
tin side, 247

Glass plate, optical models, 247
GM, see Grating method
GOA, see Geometrical optics approximation
Gooch–Tarry formulas, 64
Grating method (GM), 507–508

Half-wave plate (film), 37
HAN (hybrid aligned nematic) mode, 100
Helix pitch, 92, 134
Hermitian conjugate of a matrix, 154
HFE (hybrid field effect) mode, 72, 114
Homogeneous plane wave, 2, 258
Hybrid aligned nematic mode, see HAN mode
Hybrid field effect mode, see HFE mode

Ideal stratified medium, 217
Ideal twisted structure, 59
IME (Illumination Mode Effect) utility

(MOUSE-LCD2D), 514–516
Immersion model, 466–474
Incoherent interaction of wave fields, see Mutually

incoherent wave fields
Indium tin oxide, see ITO
In-plane switching, see IPS
Instrument function of a spectrometer, 226
Intensity (Jones calculus), 5, 43
Intensity (radiometric), 168
Intensity-based Stokes vector, 7, 169–170
Interactive simulation, 67
Interface

boundary conditions for electromagnetic fields,
256–257

EW Jones matrices, see EW Jones matrices
“soft”, 467

Interface between isotropic media, 14–23
amplitude transmission and reflection coefficients,

17
Brewster (polarizing) angle, 18
critical angle of total internal reflection, 18
Fresnel formulas, 14–17
total internal reflection, 19
transmission and reflection Jones matrices,

20–23
transmissivity and reflectivity, 17–18

Interference mode, 66, 67
Inverse of a matrix, 158
IPS (in-plane switching), 119, 507–516
Irradiance, 168, 254

along a direction, 168
fitted-to-energy-flow-direction (FEFD),

168

Irradiance-based Stokes vector, 169–170
ITO (indium tin oxide), 183, 227, 248
ITO layer, optical models, 248

Jones calculus, classical, 41–46, 394–404
average transmittance, 44
differential, 62, 394–400

application to inhomogeneous LC layers,
394–404

intensity, 5, 43
Jones matrix, 41

of a system, 42
Jones vector, 41

in arbitrary polarization basis, 12–13
Cartesian, 5, 56
coordinate transformation rules, 9–14

reciprocity relations, 50
reversibility theorem, 52
theorem of polarization reversibility, 53
transmittance, 43
“true” intensity, 6
unimodular representation, 56, 396
“unpolarized” transmittance, 44

Jones matrix
canonical, 327
EW, 276. See also EW Jones matrices
FI–EW, see FI–EW Jones matrices
polarization, 35

Jones vectors
canonical, 334
conventional, 175–176
EW, see EW Jones vector
fitted-to-electric-field (FEF), 171–172
fitted-to-intensity, 5
fitted-to-irradiance (FI), 175
fitted-to-transverse-component-of-electric-field

(FTCEF), 171–172
global, 5
polarization, 6, 175–176
prescribed-phase, 176
SN, see SN Jones vector
SN–FI, see SN–FI Jones vector
spatially invariant, 176
true-phase, 176

Kronecker product of matrices, 166
properties, 166–167

LC layer, 1D-inhomogeneous models, optics
in terms of 4 × 4 transfer matrix methods, 287–289,

319–322
in terms of EW Jones matrix method and NBRA,

393–394, 410–436, 463–466
in terms of extended Jones matrix methods,

404–409
in terms of Jones calculus, 59–67, 393–404
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LC layer, 2D- and 3D-inhomogeneous models, optics,
235–237, 507–516

LC layer with an ideal twisted structure,
59–67

experimental determination of parameters, 474,
476–489

optics in terms of EW Jones matrix method and
NBRA, 430–432

transmission EW Jones matrix, 431,
465

optics in terms of Jones calculus, 59–67
eigenmodes, 61–64
Jones matrix, 60

LCD
bistable, see Bistable LCDs
ECB, 66. See also Electrically controlled

birefringence
OMI, 66, 113
passively addressed, 105
reflective, 71–72, 84–86, 116–119
SBE, 66, 113
STN, 59, 66, 80, 113–115, 502–504
TN, 66, 105–109, 496–502
transflective, 119–124, 143–145

Length of coherence, see Coherence length
Leslie viscosity coefficients, 94, 96
Light

fully polarized, 7–9
partially polarized, 8–9
quasimonochromatic, see Quasimonochromatic

light
unpolarized, 44

Linear retarders, 36–38
LMOPTICS library, 331–364, 384–392
Locally biaxial medium, 246
Locally centrosymmetric medium, 253
Locally uniaxial medium, 246
Lorentz lemma for reciprocal media, 255, 538
Lorentz reciprocity theorem, 255
Loss factor of an STU matrix, 162
Lossless system, 45
Lossy system, 45
LP1 modes, 78
LP2 modes, 79
LP3 modes, 80
LTN-TN transflective LCD, 122

Magnetic field strength vector, 252
Magnetic induction vector, 252
Magnetic permeability, 2
Magnetic vibration vector, 258
Malus’s law, 41
Matrices

addition, 154
direct product, 166
Kronecker product, 166

product, 154
subtraction, 154

Matrix
determinant, 156
diagonal, 154
eigenvalues, 159
eigenvectors, 159
Euclidean norm, 164
identity, 154
null, 154
singular values, 159
spectral norm, 164
STU, 162–163
symmetric, 154
trace, 156
unimodular, 161–162
unit, 154
unitary, 160–161
zero, 154

Matrix product, 154
properties, 160

Mauguin conditions, 102
Mauguin minima, 66, 79, 104
Mauguin mode, 62, 403
Mauguin parameter, 106
Maxwell’s equations, 252
Medium

isotropic, 1
locally biaxial, 246
locally centrosymmetric, see Locally

centrosymmetric medium
locally uniaxial, see Locally uniaxial medium
nonabsorbing, 1, 253
nonmagnetic, 2, 253
nonreciprocal, 253
reciprocal, 253

MEF, see Modulation efficiency factor
Metric matrices, 174, 305, 306, 340
Microfacet model of a bumpy reflector, 234
Mixed TN mode, see MTN mode
Mixed TN-birefringent mode, see MTB mode
Modal representation, 264
Modulation efficiency factor (MEF), 209

application in solving optimization problems for LC
devices, 207–216

single-polarizer reflective devices, 215–216
transmissive devices, 207–215, 491–504

Modulation efficiency of LC layer, 207
Monochromatic approximation, 225

for EW Mueller matrices, 372–373
Monochromatic characteristics of an optical system, 225
MOUSE-LCD program, 105, 108, 131, 144
MOUSE-LCD2D program, 507–516
MPW approximation, 222
MTB (mixed TN-birefringent) mode, 72, 81
MTN (mixed TN) mode, 72
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Mueller matrix, 222
EW, 368–374
monochromatic, 225
quasimonochromatic, 225
reflection, 222
transmission, 222

Mueller–Jones matrix, 235, 384
Multi-domain vertical alignment (MVA) mode, 507
Multilayer dielectric mirror, 222
Multilayer transflective polarizer, 222
Multiple-beam interference, see Fabry–Perot

interference
Mutually coherent wave fields, 223
Mutually incoherent wave fields, 223

Natural helix pitch, 92
Natural optical activity, 253
NB, see Normally black
NBR approximation (NBRA), 393–394, 409–437

accuracy, 411–415
analytical solutions, 430–437
basic differential equations, 409–420
numerical methods, 420–429

NBRA, see NBR approximation
NBRA representation, ideal twisted layer, 465
Nematic and chiral nematic (cholesteric)

optical model, 246
physical properties, 91–104

Nematic and chiral nematic (cholesteric) parameters
dielectric anisotropy, 91
dielectric constants, 91
elastic moduli (constants), 92
Leslie viscosity coefficients, 94, 96
natural helix pitch, 92
permittivity tensor, 246
principal refractive indices, 246
rotational viscosity, 94, 96

Nonexponential waves, 538–539
Nonmagnetic medium, 2, 253
Nonreciprocal medium, 253
Nonreciprocal optical phenomena, 253
Nontwisted LC layer, 400, 432–433
Normal flux, 305
Normally black (NB), 106, 108–109
Normally white (NW), 106, 108–109
Norms of vectors and matrices, 163–165

properties, 165
Null matrix, 154
Number of addressing (addressed) lines, 105
NW, see Normally white

OCB (optically compensated birefringence) mode, 119
OMI (optical mode interference) LCD, 66, 113
Optic axes of biaxial medium, 353
Optic axis of uniaxial medium, 25

local, 59

Optical activity, 253
Faraday rotation, 253
natural, 253
tensors, 253

Optical equivalence theorem, general, 75–77
application to TN cell, 77
characteristic angle, 77
characteristic phase, 77
equivalent model, 77
equivalent rotator, 76
equivalent wave plate, 76
measurement of characteristic parameters, 86–87

Optical mode interference LCD, see OMI LCD
Optically compensated birefringence mode, see OCB

mode
Optimal EW basis, 295
Optimal reciprocal bases, 297
Orthogonal polarizations, 11
Orthogonality relations for basis waves, 291–295
Orthogonality test, 337
OTR unit, 230

Parameter space approach, 69–72, 113
Patterned vertical alignment (PVA) mode, 507
PBS, see Polarizing beam splitter
PCS, see Polarization-converting system
PDLC (polymer dispersed liquid crystal), 237, 404
Permeability tensor, 253
Permittivity tensor, 23

of biaxial medium, 344, 352–353
principal axes, 352, 358

complex, 254
real, 254
of uniaxial medium, 344

Phase difference
for LC layer, 97

Photoaligned layer, 183
Pi-cell (𝜋-cell), 99
PITL approximation, 466
Plane of incidence, 14
Plane wave, 1

displacement vibration vector, see Displacement
vibration vector

electric vibration vector, see Electric vibration
vector

homogeneous, 2, 258
complex refractive index for a wave, 259

inhomogeneous, 18, 259
magnetic vibration vector, see Magnetic vibration

vector
monochromatic, 1

frequency, 1
circular, 1

phase velocity, 1
quasimonochromatic, 368
refraction vector, 15, 257
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scalar complex amplitude, 3, 15, 258
wave normal, 1
wave number in free space, 2
wave vector, 1, 256
wavelength, 2

in free space, 2
true, 2

Plane-wave approximations, 218–237
field-based, 235–237
power-based, 218–235

Poincaré sphere, 8–9
Polarization, 3–9

elliptical, 3–4
handedness, 4
left circular, 4
left-handed, 4, 168
linear, 4
p-, 14
right circular, 4
right-handed, 4, 168
s-, 14

Polarization conserving modes, 77–82
CP modes, 81
LP1 modes, 78
LP2 modes, 79
LP3 modes, 80

Polarization degeneracy, 274–275
Polarization ellipse, 3–9

azimuth, 3
ellipticity, 3
ellipticity angle, 4

Polarization Jones matrices, approximations (EW Jones
matrix method)

polarization-converting system (PCS) of LCD,
466–474

transmission of interface, 455, 467–469
transmission of LC layer, 463–466
transmission of smoothly inhomogeneous

anisotropic layer, 463–466
Polarization Jones matrix, 35, 182
Polarization Jones vector, 6, 175–176
Polarization reference axis (PRA), 169
Polarization rotator, 75
Polarization transfer factor, 178

unitary, 182
Polarization transport coefficients, 179

application in solving inverse problems for LC
layers, 476–489

application in solving optimization problems for LC
devices, 195–207

single-polarizer reflective devices, 206–207
transmissive devices, 200–206

manifestations of LC layer symmetry, 190–192
rotational invariants for reflective systems, 195
rotational invariants for transmissive systems, 188,

189

transformation under rotations for reflective
systems, 195

transformation under rotations for transmissive
systems, 187–190

unitary, 182
Polarization-converting system (PCS), 55, 199–200,

466–474
immersion model, 466–474

Polarization-dependent losses (diattenuation), 35,
179–180, 185

Polarizations
orthogonal, 11

Polarized transmittance, 183
Polarizer

absorptive, 36
e-type, 247
film, optical models, 247
ideal, 40
linear, 36
o-type, 247
orientation angle, 39
partial, 40
principal bulk transmittances, 39
principal transmittances, 39
transflective multilayer, 222
transmission axis, 39
transmission Jones matrices, 38–41

Polarizing beam splitter (PBS), 71, 85
Polyvinyl alcohol (PVA), 247
Power series method (PSM), 404, 428–429, 540–541
Poynting vector, 254

time-averaged, 254
PRA (polarization reference axis), 169
Prescribed-phase Jones vector, 176
Pretilt angle, 59
Principal axes of permittivity tensor, 352, 358
Principal bulk transmittances, 39
Principal permittivities (principal dielectric constants)

of biaxial medium, 352
of uniaxial medium, 25, 342

Principal plane (for waves in a uniaxial medium), 25
Principal refractive indices

of biaxial medium, 352
of uniaxial medium, 25, 342

Principal transmittances, 39
PSM, see Power series method
PVA, as polymer material, see Polyvinyl alcohol,

247
PVA mode, see Patterned vertical alignment mode

QAA, see Quasiadiabatic approximation
QMPW approximation, 229
Quarter-wave plate (film), 37
Quasiadiabatic approximation (QAA), 435–436
Quasimonochromatic characteristics of an optical

system, 225
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Quasimonochromatic light, 8–9, 218
coherence length, 223
effective spectral range, 219
mean wavelength, 219
spectral representation, 224
wave-train representation, 223

Quasi-planar twisted LC Layer, 401–403, 432, 466
experimental determination of parameters, 474,

476–489

Radiant energy, 167
spectral, 167

Radiant flux, 168, 220
spectral, 168

Radiant power, 168
spectral, 168

Radiometric quantities, 167–168
“Raw” vibration vectors, 336
Rayleigh–Ritz theorem, 308
Real-arithmetic EWB-generating routines

(LMOPTICS), 337
Reciprocal medium, 253

Lorentz lemma, 255, 538
Reciprocal optical phenomena, 253
Reciprocity matrices, 317, 341
Reciprocity relations, 50, 313–319
Reduced transmittance, 55–56, 205
Reduced-order grating method, 507
Reflectance, 221

monochromatic, 225
overall, 222. See also Reflection, overall
quasimonochromatic, 225

Reflection
operation, 230, 276–277
operator, 232, 276–277
overall, 222, 230
partial, 222, 230

Reflective LCDs, 71–72, 84–86, 116–119, 207,
215–216

with bumpy reflectors, 233–235
direct-view, 71, 233
with PBS, 71

Reflective STN mode, see RSTN mode
Reflective systems without polarization-dependent

losses, 55
Reflective TN mode, see RTN mode
Reflectivity, 17, 221, 307–309

extrema, 307–309
monochromatic, 225
overall, 307. See also Reflection, overall
quasimonochromatic, 225

Reflector
bumpy, 233
metal, 277, 474
multilayer dielectric, 222
scattering, 233

Refraction vector, 15

Response time, 97, 99
Retardation film, 36, 114. See also Compensation film
Retarder, linear, 36–38

Jones matrices, 36–38
Retardation plate, 36, 114
Reversibility theorem, Jones’s, 52
Rotational viscosity, 94, 96, 133
Rotator, see Polarization rotator
RSTN (reflective STN) mode, 72
RTN (reflective TN) mode, 72, 114, 116–118
RVC (reflection–voltage curve, reflectance–voltage

curve), 119

S-effect, 91
S–F-normalization, 447
S-matrix algorithm, 131, 242
S-normalization, see Symmetrical normalization
SBA, see Small-birefringence approximation
SBA representation, ideal twisted layer, 465
SBE (supertwisted birefringence effect) LCD, 66, 113
Scalar complex amplitude, 3, 15
Scattering matrix method, Ko and Sambles’s, 131, 303,

304
Scattering matrix technique, 242
SCTN (self-compensated TN) mode, 72, 114
SD-1, 183
Self-compensated TN mode, see SCTN mode
Simple birefringent layer, 30–36

basic planes, 31
biaxial, 30
fast axis, 31
polarization Jones matrix, 35
polarization-dependent losses at interfaces, 35
principal axes, 31
principal transmittances, 34
slow axis, 31
transmission Jones matrices, 32–36
transmissivity, 34
transmittance, 34

Singular values of a matrix, 159
Slow axis, 31
Small-birefringence approximation (SBA), 346, 394
Smectic C∗, see Ferroelectric LC
Smoothly inhomogeneous layer, 268, 287
SN Jones vector, 447
SN–FI Jones vector, 447
Snell’s law, 16
Soda lime glass, 227
“Soft” interface, 467
Spectral fitting method, 474, 476–489
Spectral form-factor, 225
Spectral norm of a matrix, 164
Spectral radiant energy, 167
Spectral radiant flux, 168
Spectral radiant power, 168
Spectral resolution of a spectrometer, 183
Spontaneous polarization, 132
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SSFLC, see Surface stabilized FLC structures
Staircase approximation, 287–289

accuracy, 289
Staircase model (approximating multilayer), 287,

319–320
Standard-output EWB-generating routines

(LMOPTICS), 333
Steepness, TVC, 105
STN (supertwisted nematic) LCD, 59, 80, 113–115
Stokes parameters, 7–8

of monochromatic wave in isotropic medium, 7–8
of quasimonochromatic wave in isotropic medium, 8

Stokes vector, 7–8, 169–171
EW, see EW Stokes vector
of beam, 170–171

flux-based, 170–171
of plane wave, 169–170

intensity-based, 7, 169–170
irradiance-based, 169–170

relationship between Stokes vectors of different
kinds, 169, 374–375

Stress splay twist (SST) mode, 111
Stress TN Mode, 108–109
STU matrix, 162–163

base matrix, 162
loss factor, 162

STUM approximation, 442–446
Supertwisted Birefringence Effect LCD, see SBE LCD
Supertwisted nematic LCD, see STN LCD
Surface anchoring, 92–94

“azimuthal” anchoring energy, 92
easy axis, 93
easy direction, 93
finite, 92–94
“polar” anchoring energy, 92
strong, 92

Surface stabilized FLC (SSFLC) structures, 135
Symmetric matrix, 154
Symmetrical (S-) normalization, 292

TAC (cellulose triacetate), 247
Theorem of polarization reversibility, 53
“Thick” layer, 224
Thin film, 222
“Thin” layer, 224
“Thin” layered system, 224
Thin-film system, 222
Threshold voltage, 91, 94, 101
Tin side of a float glass plate, 247
TIR, see Total internal reflection
TIR mode, as a light propagation mode, 274
TIR mode, as an LCD operation mode, 124, 126–131
TIR-based LC device, 124, 126–131
TN-ECB mode, 72, 81, 114, 120
TN-ECB transflective LCD, 120–121
Total internal reflection (TIR), 19–20
Total internal reflection mode, see TIR mode

TR unit, 230
TR units in models of LCDs, 277–280

TR-additivity, 238, 376
Trace of a matrix, 156
Traced characteristic, 232
Transfer channel, 230

combined, 231, 232
elementary, 230, 232
transfer channels in models of LCDs, 277–280
“useful”, see “Useful” channel

Transfer channel approach, 230–233
Transfer matrix, 239
Transfer matrix methods, 242
Transfer matrix technique, 238–242

8 × 8 transfer matrix method, 376–379
calculation of EW Jones matrices for layered

systems, 281–283
calculation of EW Mueller matrices for layered

systems, 376–379
Transflective ferroelectric LCD, 143–145
Transflective LCD, 119–124, 143–145, 233
Transformation

lossless, 44
without diattenuation, 45

Transmission
of a transfer channel, 232
operation, 230, 276–277
operator, 232, 276–277
overall, 222, 230
partial, 222, 228, 230

Transmissive LCDs, 101–116
Transmissivity, 17, 34, 221, 307–309

extrema, 307–309
monochromatic, 225
overall, 229, 307. See also Transmission, overall
quasimonochromatic, 225

Transmittance, 34, 221
monochromatic, 225
overall, 222. See also Transmission, overall
quasimonochromatic, 225
reduced, see Reduced transmittance

Transpose of a matrix, 154
True-phase Jones vector, 176
TVC (transmission–voltage curve,

transmittance–voltage curve), 72, 104
Twist angle, 59
Twist effect, 101–109
Twisted nematic (TN)

layer, 59
LCD, 59

Uniaxial medium
optic axis, 25
principal permittivities, 25
principal refractive indices, 25

Unimodular matrix, 161–162
Unimodular representation of Jones matrices, 56, 396
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Unimodular unitary 2 × 2 matrix, representations, 162
Unit matrix, 154
Unitary approximation, 182
Unitary matrix, 160–161
Unitary polarization transfer factors, 182
Unitary polarization transport coefficients, 182
Unitary system, 45, 182
Unpolarized transmittance, 44, 187
“Useful” channel, 199–200

VAN (vertically aligned nematic) mode, 92
Vertically aligned nematic mode, see VAN mode
Viewing angles, 106–107
Virtual microscope (MOUSE-LCD2D), 508–513
Viscosity, 93–97
Viscosity coefficients, see Leslie viscosity coefficients

and Rotational viscosity

Wave
decomposition into two orthogonally polarized

waves, 12–14
extraordinary, 25, 342–343
homogeneous, 2, 258

complex refractive index for a wave, 259

inhomogeneous, 18, 259
natural, 23
ordinary, 25, 342–343
p-polarized, 14
plane, see Plane wave
plane-polarized, 29
proper, 23
s-polarized, 14

Wave equation, 256
Wave normal, 1
Waveguiding mode, 62, 79
Wavelength, 2, 168

in free space, 2, 168
Waves

in biaxial media, 352–364
in isotropic media, 1–3, 338–342
in uniaxial media, 25–30, 342–352
orthogonally polarized, 11
reversely polarized, 53

Wide-angle beam propagation method, 507

Yeh’s normalization, 302

Zero matrix, 154
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