

CONTENTS

About	this	book

Video	course	companion

Discussion	forum	and	email	list

Dedication

Copyright

Part	One	-	About	this	course

Chapter	1	-	What	is	Kicad?

Chapter	2	-	The	structure	of	this	course

Part	Two	-	Kicad	basics

Chapter	3	-	What	is	this	part

Chapter	4	-	Installation	on	Windows

Chapter	5	-	Installation	on	Mac	OS	X

Chapter	6	-	Kicad	main	components

Chapter	7	-	Finding	documentation

Chapter	8	-	What	is	a	Printed	Circuit	Board?

Chapter	9	-	The	Kicad	design	process

Chapter	10	-	Fabrication

Part	Three	-	Project	1:	create	an	nRF24	breakout	board

Chapter	11	-	What	is	this	part

Chapter	12	-	Creating	a	new	project

Chapter	13	-	Starting	the	schematic	for	the	nRF24

Chapter	14	-	How	to	create	a	schematic	component

Chapter	15	-	Wiring

Chapter	16	-	Annotating	the	schematic

Chapter	17	-	Electrical	Rules	Check

Chapter	18	-	Associate	components	to	footprints

Chapter	19	-	Create	a	custom	footprint

Chapter	20	-	Saving	the	new	footprint

Chapter	21	-	Associate	the	new	footprint	and	component

Chapter	22	-	Create	a	netlist

Chapter	23	-	Footprints	placement

Chapter	24	-	Edge	cuts

Chapter	25	-	Wiring

Chapter	26	-	Add	text	labels

Part	Four	-	Project	1:	Enhancing	the	design

Chapter	27	-	What	is	this	part

Chapter	28	-	Add	a	capacitor	to	the	schematic	using	Eeschema

Chapter	29	-	Add	a	capacitor	to	the	layout	in	Pcbnew

Chapter	30	-	Controlling	the	track	width

Chapter	31	-	Calculate	the	appropriate	track	width

Chapter	32	-	Adding	copper	fills

Part	Five	-	Project	1:	Fabrication

Chapter	33	-	What	is	this	part

Chapter	34	-	Creating	the	Gerber	files	and	uploading	to	fabricator

Chapter	35	-	Adding	a	decorative	graphic

Part	Six	-	Project	2:	a	7-segment	display	board

Chapter	36	-	What	is	this	part

Chapter	37	-	Create	the	schematic	with	Eeschema

Chapter	38	-	Create	nets	and	labels

Chapter	39	-	Hidden	pins	and	the	power	flag

Chapter	40	-	The	data	bus

Chapter	41	-	The	unconnected	component

Chapter	42	-	Component	-	footprint	associations

Chapter	43	-	Create	a	2	layer	PCB	in	Pcbnew

Chapter	44	-	Control	track	widths	with	nets

Chapter	45	-	Add	GND	and	Vcc	copper	fills

Chapter	46	-	Add	text	labels

Chapter	47	-	Add	a	decorative	graphic

Chapter	48	-	Exporting	Gerber	files

Part	Seven	-	Project	3:	a	full-SMD	16-LED	board

Chapter	49	-	What	is	this	part

Chapter	50	-	The	circuit

Chapter	51	-	Create	the	schematic	in	Eeschema

Chapter	52	-	Schematic	wiring,	Part	1

Chapter	53	-	Schematic	wiring,	Part	2

Chapter	54	-	Associate	components	with	footprints

Chapter	55	-	Create	the	PCB	in	Pcbnew

Chapter	56	-	Wiring	in	Pcbnew

Chapter	57	-	Adding	copper	fills

Chapter	58	-	Adding	text	labels	and	decorative	graphics

Chapter	59	-	Export	the	Gerber	files

Part	Eight	-	Conclusion

Chapter	60	-	What’s	next?

About	this	book
I	wrote	this	book	to	help	makers	learn	how	to	make	their	own	printed	circuit	boards.	No
prior	experience	is	assumed	or	needed.	I	only	expect	that	you	have	an	interest	in
electronics	and	you	are	at	a	stage	in	your	learning	journey	where	you	wish	to	go	beyond
the	breadboard.	

The	software	that	I	use	to	demonstrate	the	various	PCB	design	concepts	and	techniques
is	Kicad.	Why	Kicad?	In	short,	because	it	is	awesome!	It	is	a	PCB	design	software	that	is
used	by	thousands	of	professional	and	hobbyist	makers	around	the	world.	It	does
everything	that	a	hobbyist	would	ever	want	to	do	with	PCBs.	It	is	open	source,	supported
by	an	active	dedicated	community	of	programmers,	and	is	sponsored	by	some	of	the
world’s	most	respected	science	and	engineering	institutions.	It	is	also	free!	

Its	technical	features,	its	price,	and	the	benefits	of	open	source	are	the	reasons	that	I
believe	that	Kicad	is	the	perfect	PCB	design	software	choice	for	any	hobbyist	maker.

Why	write	this	book?	I	am	glad	you	asked!

Kicad	is	also	easy	to	learn,	despite	a	reputation	for	the	opposite.	However,	even	though
Kicad’s	own	documentation	is	rich,	it	can	be	hard	to	follow	and	learn	from,	especially	for
beginners.	By	writing	this	book,	I	wanted	to	give	people	a	resource	that	makes	learning
Kicad	as	easy	as	it	is	to	actually	use	it.	Based	on	three	projects,	you	will	progress	through
concepts	and	techniques	of	increasing	complexity,	but	without	the	stress.	

The	progress	is	gradual	and	gentle,	and	designed	to	minimise	the	frustration	often
associated	with	learning	complicated	software.	If	you	also	enrol	to	the	Kicad	Like	a	Pro
video	course	(more	information	about	this	is	available	further	down),	you	will	also	have
access	to	a	discussion	forum.	You	can	use	this	forum	to	communicate	with	me	and	with
other	students	of	the	course,	and	ask	questions.	Learning	in	a	community	is	so	much
better!

Wishing	you	learning	success!

Peter

Video	course	companion
This	book	is	also	available	as	a	video	course.	The	video	course	contains	everything	you
see	in	this	book,	in	72	lectures	and	over	8	hours	of	high-definition	video.	

Watch	me	design	the	PCB	of	the	3	projects	from	the	start	to	completion,	including	the
PCB	ordering	process.	Don’t	miss	any	details,	replay,	fast	forward	and	reverse.	

Learn	Kicad	Like	a	Pro	with	my	detailed	video	course.

By	enrolling	to	the	video	course,	you	also	gain	access	to	the	discussion	forum	so	that
you	can	interact	with	me	and	other	students.	Discuss	Kicad	topics,	ask	questions,	offer
ideas.	Access	to	the	video	course	and	its	discussion	forum	is	permanent.

As	a	reader	of	this	book,	you	can	enrol	to	the	video	course	on	txplore.com	for	the
special	price	of	just	$20	by	using	coupon	code	ebook.	This	represents	a	20%	discount	over
the	regular	price.	Or,	simply	click	on	this	link	to	preview	and	purchase.

http://txplore.com
http://txplore.tv/courses/kicad-pro?product_id=77624&coupon_code=EBOOK20

Discussion	forum	and	email	list
If	you	have	enrolled	to	the	video	course,	you	also	receive	access	to	the	course	discussion
forum.	The	discussion	forum	is	a	great	resource	to	have	when	you	are	getting	started.	You
can	use	the	discussion	forum	to	ask	question,	or	exchange	ideas	with	other	students.	

Here’s	a	couple	of	examples	of	conversations	from	the	Kicad	Pro	discussion	forum:

																																																																																																					

Student	asked	a	question		in	Lecture	29

Problem	with	redrawing	board	around	capacitor

I	have	re-drawn	the	board	several	times	and	I	get	the	following	error	with	different
endpoint	values	depending	on	the	accuracy	of	my	drawing	in	the	3D	view:

IO_ERROR:	Unable	to	find	the	next	boundary	segment	with	an	endpoint	of	(160.02
mm,	127	mm).

Edit	Edge.Cuts	perimeter	graphics,	making	them	contiguous	polygons	each.

from	/build/kicad-TRMME0/kicad-4.0.1/kicad/pcbnew/specctra.cpp	:	ThrowIOError()
:	line	144

Unable	to	calculate	the	board	outlines.

Therefore	use	the	board	boundary	box.

Can	I	ignore	the	error	and	proceed?

Thanks	in	advance

Answer	by	Peter	Dalmaris	

	

Hi	Jeff,	yes,	you	can	ignore	this,	and	confirm	that	your	design	is	valid	with
gerblook.org.

I	know	that	you	have	tried	to	redraw	the	boundary	a	few	times,	so	I’ll	just	say	that	I
also	have	this	issue	often	when	I	try	to	make	a	change	to	an	existing	boundary.	In	most
cases,	I	have	to	completely	remove	the	old	boundary,	zoom	in	to	make	the	lines	thick,	then
redraw.	It	is	annoying,	but	apart	from	the	warning	message	in	the	3-d	view,	it	doesn’t

cause	problems	in	making	the	board.

Student	asked	a	question

What	to	do	when	i	don’t	have	all	devices	library	like	a	microcontrollers,	capacitors	and
so	on.

Hi	peter,

what	could	i	do	when	i	don’t	have	some	libraries	like	a	specific	capacitor,
microcontroller	8051	and	so	on.	How	can	i	download	or	to	load	new	libraries	devices	to
used.

regards.

RT

7	replies	·		Like		·	Following		(3	followers)	·	

	

Answer	by	Peter	Dalmaris

	

Hi	RT,	there	are	two	basic	options:

1.	Make	your	own	library	parts,	schematic	or	footprints

2.	Google	for	parts	that	other	people	have	made	and	import	them	to	your	library.	This
is	easy	to	do,	but	I	will	be	adding	a	lecture	on	how	to	do	this	ASAP.	I	will	try	to	do	that
this	week.

Student	reply

Thank	you	peter.

Peter	Dalmaris

	

Hi,	just	an	update,	I’m	uploading	the	lectures	on	third	party	libraries	now	to	help	you
with	option	#2.

Student	reply

Thank	you	so	much	!!!	peter…..

is	a	great	section.

regards.

RT

Student	reply

Hi,	I	saw	your	post.	Try	this:	http://www.snapeda.com/parts/

Peter	Dalmaris

	

Hi,	wow!	Got	to	spend	some	time	browsing	snapeda!

Student	reply

Excellent!!!!	thank	you.

Dedication
I	wish	to	express	a	big	THANK	YOU	to	my	wife	Michelle	and	our	children	Leo	and	Ari!	

I	know	that	living	with	a	geek	writing	a	book	is	not	easy.	Correction:	living	with	a	geek
in	general	is	not	easy!	

Thank	you,	Michelle,	for	your	understanding	and	for	helping	me	complete	yet	one
more	project!

Living	with	the	three	of	you	is	such	a	pleasure,	and	a	day-in-day-out	geek	fest!

Copyright
Copyright	©	2016	by	Peter	Dalmaris

All	rights	reserved.	This	book	or	any	portion	thereof	may	not	be	reproduced	or	used	in
any	manner	whatsoever	without	the	express	written	permission	of	the	publisher	except	for
the	use	of	brief	quotations	in	a	book	review.

First	published	in	2016.

Futureshock	Enterprises,	PO	Box	22,	Berowra,	2081,	NSW,	Australia

txplore.com

PART	ONE
About	this	course

Chapter	1:	What	is	Kicad?

KiCad	is	a	tool	that	makes	it	possible	to	design	high-quality	printed	circuit	boards.	It	is	not
the	only	one,	in	fact	there	are	many	many	other	tools	out	there.	Some	are	free,	some	are
very	expensive,	and	each	tool	has	its	advantages	over	others.	

Software	tools	that	help	people	make	printed	circuit	boards	are	often	referred	to	as
“Electronic	Automation	Design”	tools,	or		“EDA”	for	short.

If	you	want	to	make	a	printed	circuit	board,	you	don’t	even	have	to	use	an	EDA	tool.
You	can	get	by	using	just	use	a	special	conductive	ink	pen	and	draw	a	circuit	on	a	sheet	of
paper.	

Or,	you	can	use	an	Etch	Resist	Pen,	something	like	a	Sharpie	pen	or	anything
permanent	and	water	resistant	will	work,		and	hand-draw	a	circuit	on	a	copper	board.

These	manual	methods	are	good	for	simple	circuits,	but	for	most	practical	applications
they	are	far	from	ideal.	So	good	design	software	and	professional	fabrication	labs	are	the
essential	friend	of	the	serious	maker.

There	are	many	EDA	tools.	Popular	tools	include	free	and	open	source	ones	like
Fritzing,	gEDA,	KiCad,	and	FreePCB,	and	proprietary	ones	like	Altium	Designer,	Design
Spark	PCB,	and		Eagle.

All	of	these	tools	can	be	used	to	create	at	least	2-layer	PCBs.	The	proprietary	ones
typically	include	free	versions	that	offer	a	limited	set	of	features	compared	to	their	fully
licensed	versions.	In	some	cases,	EDA	tools	offer	circuit	simulation	on	top	of	design.

Let’s	focus	on	Kicad	now.

	

KiCad	is	an	open-source	EDA	tool	that	has	been	in	development	since	1992.	By	some
accounts,	it	is	the	most	popular	EDA	tool	in	the	world.	Many	well	known	and	a	lot	more
unknown	projects	have	been	build	with	KiCad,	which	is	a	testament	to	the	tool’s
professional-level	capabilities.	

KiCad	is	supported	by	a	few	important	international	organisations	which	contribute
towards	its	future	in	development	resources.	CERN,	the	European	Organization	for
Nuclear	Research,	is	a	core	contributor	to	the	project.	The	Raspberry	Pi	Foundation	and
Arduino	LLC	have	also	made	contributions.

Why	learn	it?	

The	ability	to	create	a	custom	PCB	is	a	core	skill	of	an	electronics	enthusiast.	Without
the	ability	to	create	a	custom	PCB,	your	breadboard-based	projects	are	doomed	to
oblivion.	Learning	how	to	use	KiCad	will	make	you	a	better	maker	because	you	will	be
able	to	create	custom	PCBs	for	your	best	designs,	and	as	a	result	you	will	ensure	that	they
realise	their	full	potential.	

Learning	KiCad	over	alternatives	in	particular	makes	good	sense.	KiCad	is	a	well
tested	tool	that	has	performed	with	excellence	in	many	demanding	projects.	It’s
development	is	ongoing,	with	the	support	of	many	individuals	and	large	organisations.
KiCad	is	here	to	stay,	so	your	the	effort	you	expend	in	learning	it	will	not	be	wasted.	

And	did	I	mention	that	KiCad	is	free?	It	is	perhaps	the	only	fully-featured	and

unrestricted	EDA	tool	that	is	free.	This	must	be	worth	something!

Ok,	let’s	spend	a	few	minutes	in	the	next	lecture	to	explain	how	this	course	is
structured,	and	then	we’ll	get	started	with	KiCad!

Chapter	2:	The	structure	of	this	course

This	course	is	designed	to	teach	you	how	to	use	KiCad	assuming	no	prior	knowledge	in
PCB	design.	My	objective	is	to	help	you	reach	a	high	level	of	competency.	Even	though
you	will	not	be	able	to	design	16-layer	super-dense	and	sophisticated	PCBs	without
several	years	of	experience	and	study	of	advanced	topics	in	electronics	and	physics	in
addition	to	this	course,	you	will	be	able	to	create	any	PCB	that	an	Arduino	or	general
electronics	enthusiast	can	dream	of.

To	achieve	this,	I	have	organized	this	course	around	three	projects.	With	each	project,	I
introduce	several	new	KiCad	features	and	extend	your	skill	set.

Project	one	is	the	simplest	one,	from	a	circuit	point	of	view.	Assuming	that	you	have
no	prior	experience	with	PCB	design,	this	is	also	the	hardest	project	because	I	use	it	to
demonstrate	the	bulk	of	Kicad’s	features.	The	circuit	it	self	is	simple	so	that	it	does	not	get
in	your	way	of	learning	KiCad.	It	is	a	breakout	for	the	nRF24	wireless	module,	familiar	to
many	Arduino	enthusiasts,	but	often	painful	to	work	with	because	it	is	available	as	a
breadboard-unfriendly	breakout.	We	will	fix	this	problem	by	designing	a	breadboard-
friendly	single-layer	board.

In	the	second	project,	we	will	look	at	a	slightly	more	complicated	circuit.	The	circuit	is
a	seven-segment	display	driven	by	a	shift	register	integrated	circuit.	This	circuit	will	give
us	the	opportunity	to	explore	additional	KiCad	capabilities.	We	will	create	a	two-layer
PCB	on	which	through-hole	components	will	be	mounted,	and	interconnect	the	layers	with
vias.

In	the	third	project,	we	will	reuse	all	of	the	skills	and	features	from	the	first	two	project
to	create	a	more	complicated	PCB.	The	circuit	you	will	build	will	contain	16	LEDs	driven
by	two	shift	register	ICs.	All	of	the	components	on	this	PCB	will	be	surface-mounted,

something	that	gives	designers	an	advantage	that	helps	in	reducing	the	total	space	required
for	the	board,	improving	the	layout	of	the	component.

If	you	are	thinking	of	launching	a	Kickstarter	campaign,	then	surface	mounted
components	will	also	reduce	the	mass-manufacturing	costs	of	your	amazing	gadget!	

Towards	the	end	of	the	book	of	the	course,	I	have	added	chapters	to	show	you	how	to
import	third-party	libraries	to	your	Kicad	installation,	and	how	to	use	hierarchical	sheets
to	deal	with	large	and	complicated	schematics.

PART	TWO
Kicad	basics

Chapter	3:	What	is	this	part

In	this	introductory	section	of	the	book,	first	I	will	help	you	setup	KiCad	on	your
computer	and	show	you	where	to	find	help	for	when	you	need	it.

Then,	I	will	discuss	the	basic	components	and	terminology	of	PCBs.

I	will	spend	a	few	minutes	talking	about	Κicad’s	PCB	design	process,	which	is	worth
watching	even	if	you	have	experience	in	designing	PCBs	on	other	CAD	systems	because
KiCad	has	a	reputation	of	being	different.

Finally,	I	will	talk	about	fabrication	and	give	you	some	examples	of	how	and	where
you	can	have	your	PCBs	manufactured.

Chapter	4:	Installation	on	Windows

In	this	chapter,	we’ll	install	KiCad	on	Windows.	

To	do	this,	you	will	need	to	use	your	web	browser	and	navigate	to	http://kicad-
pcb.org/download/.	

	

The	main	Kicad	download	page,	at	http://kicad-pcb.org/download

KiCad	comes	precompiled	for	a	variety	of	operating	systems,	so	all	the	major
operating	systems	are	supported.	But	if	you	prefer,	you	can	even	download	the	source
code	and	compile	it	yourself.	In	this	chapter,	I’ll	be	showing	you	how	to	install	KiCad	on
Windows.	

http://kicad-pcb.org/download

Navigate	to	the	Windows	branch	by	clicking	on	the	Windows	logo	in	the	download
page,	at	http://kicad-pcb.org/download/windows.	

Download	the	Windows	installation	file	from,	at	http://kicad-
pcb.org/download/windows

You	have	the	option	to	download	the	most	recent	build	which	is	preferable	for	any	new
designs	that	you	make.	Let’s	download	the	most	recent	build.	The	latest	one	is	at	the
bottom	of	this	list.	I	am	using	a	64bit	version	of	Windows	10,	so	I’m	going	to	go	for	the
very	last	option	to	download.	Choose	yours	based	on	your	version	of	Windows.

http://kicad-pcb.org/download/windows
http://kicad-pcb.org/download/windows

Download	the	latest	Windows	installation	file	from,	at	http://downloads.kicad-
pcb.org/windows

	This	download	is	192	megabytes	in	size.	I’m	going	to	let	this	download	complete,
come	back	in	a	few	minutes,	and	continue…

A	few	minutes	later	the	download	is	complete.	Find	your	installation	file	in	your
downloads	folder.	In	this	screenshot,	you	can	see	mine	on	the	Desktop.

The	Kicad	Windows	installation	file	on	my	desktop

Let’s	start	the	installation	process.	Double	click	on	the	file,	and	accept	the	prompt.
Click	“Yes”	to	proceed.	

http://downloads.kicad-pcb.org/windows

Accept	the	security	prompt

Also	accept	the	setup	Welcome	dialog	box.	Click	on	Next	to	continue.

Accept	the	Setup	Welcome	dialog	box.

In	the	component	chooser,	I	recommend	including	all	of	the	available	components.
Click	on	Next	to	continue.

I	recommend	that	you	include	all	available	components	to	your	Kicad	setup.

Next,	the	Setup	Wizard	will	ask	you	for	the	installation	location.	You	can	simply
accept	the	suggested	location	and	click	on	Next.

Specify	the	installation	location.	The	default	location	is	fine	in	most	cases.

The	installation	process	will	begin,	and	the	status	information	will	be	shown	in	the
Installing	window.	Let	it	finish,	and	then	click	on	Next	to	continue.

The	installation	process	is	shows	in	the	Installing	window

Even	though	I	am	not	covering	Wings3D	in	this	book,	I	think	you	should	still	install
this	feature.	With	Wings3D	you	can		create	3D	object	models	for	your	designs.	It	is	a	nice
way	to	visualize	your	design	will	look	like	eventually	before	you	have	manufactured	it
and	installed	all	the	components	on	it.	Check	the	box	and	click	Finish.

Wings3D	allows	you	to	visualise	your	designs	in	3D.

All	right,	so	KiCad	installation	is	complete.	

The	Kicad	shortcut	on	my	desktop

In	the	next	chapter	I’ll	explain	how	to	install	Kicad	on	Mac	OS	X.	If	this	is	not
something	that	interests	you,	feel	free	to	skip	it	and	go	straight	to	the	chapter	titled	“Kicad
main	components”,	where	I’ll	give	you	an	overview	of	the	most	important	components
that	come	with	KiCad.

Chapter	5:	Installation	on	Mac	OS	X

In	this	chapter,	we’ll	install	KiCad	on	the	Mac.	There	is	KiCad	support	for	many	other
operating	systems	as	well,	including	downloading	the	source	code	and	compiling	from	the
source	code	if	you	know	how	to	do	that.	Here,	we’ll	keep	it	simple	and	install	the	already
compiled	version.

Let’s	go	into	the	Mac	OS	X	branch,	and	there	are	two	types	of	downloads	that	you	can
do;	the	recent	builds	and	you	can	build	from	source.	

Download	the	Kicad	installation	files	for	Mac	OS	X	from	http://kicad-
pcb.org/download/osx

As	far	as	the	recent	build	is	concerned,	there’s	a	slight	difference	to	how	this	works	for

http://kicad-pcb

Windows.	There	are	two	big	files	you	can	download.	The	first	one	is	KiCad.dmg	and	the
second	one	is	KiCad-extras.dmg.	The	first	file	contains	KiCad	itself,	documentation,	the
schematic	symbols,	and	some	templates,	but	it	doesn’t	contain	any	footprints.	So	you’ll	be
getting	the	footprints	from	the	Kicad	GitHub	repository.	To	do	that,	you	obviously	need	a
live	Internet	connection.	If	you	find	yourself	working	offline,	like	traveling	on	a	train	or	a
bus,	like	I	find	myself	sometimes	doing,	then	you	will	also	need	to	download	KiCad-
extras.dmg	and	this	contains	the	footprints	that	you	can	use	offline.	

Download	the	files	for	Max	OS	X	from	http://downloads.kicad-pcb.org/osx/

Let’s	download	both	files.	Go	to	http://downloads.kicad-pcb.org/osx/	and	scroll	to	the
bottom.	This	is	where	you	will	find	the	latest	version	of	the	installers.	At	the	time	I	wrote
this	book,	the	latest	version	was	KiCad	r6154,	so	I	downloaded	the	file	titled	“kicad-
r6154.20150904-051736.dmg”.	You	should	download	the	latest	version	available	at	the
time	you	read	this.	

Next,	download	the	extras	installer.	At	the	time	of	writing	this,	the	latest	extras
installer	was	the	file	titled	“kicad-extras.20150904-051839.dmg”.	

When	the	download	is	finished,	you	will	have	two	files.

http://downloads
http://downloads.kicad-pcb.org/osx/

The	installation	files	for	Kicad	on	Mac	OS	X

You	should	have	the	main	KiCad	installation	file,	and	the	extras	file.	I	will	not	install
the	extras	now,	prefer	to	access	the	GitHub	repository	for	all	the	library	files	and	just	be
able	that	way	to	get	the	latest.	If	at	some	point,	I’ll	be	doing	a	lot	of	design	work	offline,
then	I	will	go	ahead	and	install	this	file	as	well.

The	installation	archive	contains	two	folders	that	must	be	copied	to	two	locations

To	install	Kicad,	we	follow	a	process	familiar	to	Mac	users.	Double	click	on	the	“dmg”
archive.	In	the	archive,	there	are	two	things	that	you	need	to	copy.	First,	the	KiCad	folder
goes	into	the	applications	folder,	and	then	the	other	KiCad	folder	into	Applications
Support.	Drag	and	drop	as	the	arrows	show,	one	at	a	time.	Copying	into	the	Application

Support	directory	will	require	authentication.	That’s	all	you	have	to	do,	Kicad	is	now
installed	on	your	Mac!	

Let’s	start	KiCad.	You	can	use	Spotlight	Search	to	find	Kicad,	or	just	look	for	the
Kicad	icon	in	the	Applications	folder.	Double	click	on	the	icon	to	launch	the	application.	It
looks	exactly	same	as	its	Windows	and	Linux	counterpart.	

Kicad	on	the	Mac	looks	identical	to	Kicad	on	Windows	or	Linux

For	the	remainder	of	this	book,	I	will	be	using	the	Windows	version	of	KiCad,	since
I’m	more	used	to	it.	But	you’ll	be	able	to	follow	along	regardless	of	whether	using	a	Mac,
Windows,	or	Linux	version	of	KiCad.	All	the	features	are	the	same	across	platforms.	Just
remember	that	you	will	get	the	best	experience	with	a	two-button	mouse	instead	of	the
Apple	Magic	Mouse,	and	to	use	the	Command	key	when	I	make	a	reference	to	the	Control
key	on	Windows.

Chapter	6:	Kicad	main	components

Now	that	you	have	KiCad	installed,	lets	go	inside	and	have	a	look	at	its	main
components.	

Double	click	on	the	KiCad	icon	to	start	the	program.	

Kicad	and	its	components

This	is	the	main	window	in	KiCad.	It	gives	you	access	to	the	various	applications	that
come	with	it.	On	the	left	side,	the	left	pane,	you	will	find	the	project	pane.	The	project	pan
contains	the	files	and	directories	that	make	up	your	project.	If	you	have	just	installed
KiCad,	then	this	area	will	be	empty.

Now,	let’s	concentrate	on	the	eight	large	buttons	on	the	right	side	of	the	project	pane.
These	are	the	buttons	that	give	you	access	to	the	applications	that	come	with	KiCad.	

The	first	one	is	the	schematic	editor,	EEschema.	This	allows	you	to	create	schematics

like	this	one:

A	view	of	the	schematic	editor,	Eeschema

	A	schematic	is	a	graphical	representation	of	a	circuit,	it’s	a	symbolic	representation	of
a	circuit.	In	KiCad	we	always	start	the	process	of	designing	a	PCB	with	the	schematic.
Through	the	schematic	we	let	KiCad	know	what	the	components	are	that	make	up	our
project	and	what	are	the	various	connections	and	component	value,	description,	and	so
on.	

The	next	most	important	application	that	is	part	of	KiCad	is	PcbNew.	PcbNew	is	the
PCB	layout	editor.	PcbNew	allows	us	take	the	information	that	we	created	inside
EEschema	and	convert	it	into	an	actual	Pcb	that	contains	footprints	of	components	and
tracks	that	connect	the	various	panes	of	those	components	together	and	many	other	bits
and	pieces	that	make	up	the	Pcb	and	it	looks	like	this.	The	EEschema	and	the	PcbNew
components	are	the	two	most	important	components	in	KiCad.

A	view	of	Pcbnew,	the	Kicab	layout	editor

There’s	a	few	others	that	are	supporting,	for	example	this	one	here,	it’s	the	schematic
Library	Editor.	You	can	use	the	Library	Editor	to	manage	component	libraries.	You	can
create	your	own	components,	or	import	libraries	created	by	other	people.	Components	are
the	parts	representing	real	life	components	that	you	insert	in	a	schematic	design.

The	PCB	Footprint	Editor	is	another	helpful	application	that	allows	you	to	create
footprints	that	you	can’t	find	in	the	footprint	library.	Or,	perhaps	you	have	a	component
with	a	footprint	that	exists	in	the	Footprint	Editor	and	you’d	like	to	make	a	small	change
to	it,	so	again	you’ll	be	using	the	PCB	Footprint	Editor	application	to	do	that.

There	is	this	application	called	GerbView.	GerbView	is	an	application	that	gives	you	a
view	of	a	set	of	files	that	are	exported	from	Pcbnew.	These	are	the	files	that	you	will	give
to	the	PCB	manufacturer	to	make	the	actual	PCB.	Before	you	do	that,	you’d	like	to	inspect
these	exported	files	visually.	To	do	that	you’ll	GerbView.	I’ll	show	you	how	that	works
later	plus	we’ll	also	going	to	be	using	a	third	party	Gerber	file	viewer	that	I	find	very
useful	because	it	also	checks	for	errors	in	your	Gerber	files.

A	view	of	GerbView,	the	build-in	Gerber	file	viewer

Next,	there	is	a	little	application	called	Bitmap	2	Component.	This	allows	you	to
convert	an	image	into	a	footprint	so	that	you	can	put	it	on	your	PCB.	Let’s	say	for
example,	that	you	have	a	nice	image	like	a	logo	for	your	company	perhaps,	or	even	a
graphic	that	you	like	to	put	on	your	PCBs.	To	do	this,	you	need	to	convert	the	graphic	into
a	footprint	using	Bitmap	2	Component.	

Bitmap2Component	allows	you	to	convert	a	graphic	into	a	decorative	footprint

Next,	we’ve	got	a	bunch	of	calculators	in	a	small	application	called	PCB	Calculator.
We	will	use	the	PCB	Calculator	to	calculate	the	width	of	a	track	for	power	tracks	and	it
can	also	be	used	to	do	a	bunch	of	other	calculations.	It’s	a	very	handy	tool.

The	PCB	calculator	contains	various	calculators,	including	one	for	calculating
optimal	track	widths

Finally,	we’ve	got	the	Pi	Editor,	which	is	the	worksheet	layout	editor.	This	allows	you
to	make	changes	to	the	way	that	the	schematic	worksheet	looks	like.	I’m	not	going	to	be
using	this	tool	at	all	because	I	like	the	schematic	worksheet	the	way	it	is	anyway	but	it	is
here	if	you	need	to	use	it.	

With	the	PI	Editor,	you	can	change	the	information	section	of	the	Schematic	sheet

These	are	the	main	components.	There’s	a	few	other	things	that	are	good	to	know.	For
example,	from	the	Preferences	menu	you	can	access	the	Kicad	Paths	editor,	from	where
you	can	configure	paths.		

In	the	Kicad	Path	Configuration	window	you	can	specify	the	path	to	the	online
repository	for	footprints	and	schematics,	among	other	things.

You	can	see	that	we’ve	got	access	to	GitHub.com/KiCad.	This	is	the	online	location
where	footprints	and	schematic	components	are	stored	and	where	your	Kicad	installation
will	retrieve	them	from.	You	can,	of	course,	choose	to	have	these	libraries	installed	on
your	local	machine,	however	you	will	then	need	to	update	them	manually	as	they	will
eventually	be	out	of	date.	

In	the	next	chapter	we	will	talk	a	little	bit	about	documentation	and	where	you	can	go
for	help	if	you	need	it.

http://github.com/KiCad

Chapter	7:	Finding	documentation

By	some	measures	Kicad	is	the	most	popular	PCB	computer-aided	design	(CAD)		open
source	software	in	the	world.	As	a	result	it	is	no	accident	that	it’s	got	some	of	the	best
documentation	out	there.	

If	you	look	for	the	documentation	in	the	help	menu	in	the	main	Kicad	window,	will
receive	a	message	that	the	help	file	was	not	found.

The	documentation	is	not	installed	by	default

The	documentation	wasn’t	installed.	And	same	thing	happens	when	getting	help.	These
resources	don’t	come	by	default	with	Kicad	and	I	actually	rather	go	to	the	web	to	find	help
instead	of	relying	to	the	built-in	help	system	that	comes	with	the	application.

To	get	help	go	to	main	Kicad	website	or	http://kicad-pcb.org/help/documentation.	

The	on-line	documentation	is	at	http://kicad-pcb.org/help/documentation

In	this	locations,	there	are	several	resources	that	you	can	access.	There	is	a	getting
started	guide,	which	comes	as	a	PDF	document	that	you	can	download.	There	is	also
documentation	that	can	help	you	with	the	individual	applications	that	come	with	Kicad,
and	is	available	in	several	languages.	There’s	documentation	for	EEschema	and	PCB	new
etc.	

Some	of	the	documentation	in	these	resources	may	be	a	little	bit	old	since	the	Kicad
developers	release	new	versions	and	updates	frequently.	Therefore,	keep	in	mind	that
some	of	the	documentation	maybe	lagging	behind	the	software,	especially	for	newly
released	features.	Having	said	that,	the	main	features	in	Kicad	don’t	change	much	between
releases,	so	the	documentation	for	these	features	is	mostly	valid.

We	also	have	external	tools	–	so	going	into	that	–	and	you	can	see	various	editors	and
libraries	and	footprint,	builders	and	3D	model	generators	and	so	on.	

External	tools	documentation	at	http://kicad-pcb.org/help/external-tools/

These	are	things	that	you	will	become	interested	in	due	course,	as	you	become	used	to
the	work	flow	in	Kicad	and	familiarise	yourself	with	the	features	of	Kicad.	Once	you	start
looking	for	more	advanced	capabilities	remember	to	visit	this	page.	

You	can	also	look	for	tutorials.	Kicad	users	have	documented	their	experiences	in	the
form	of	tutorials	that	you	can	learn	from.

Tutorials,	available	at	http://kicad-pcb.org/help/tutorials

So,	apart	from	this	book,	these	are	great	resources	for	you	to	keep	in	mind.	

If	you	are	looking	for	almost	real-time	help,	it’s	good	to	know	that	there	is	an	Internet

http://kicad-pcb

Relay	Chat	(IRC)	channel,	frequented	by	very	experienced	Kicad	users.	

An	IRC	channel	is	available	at	http://kicad-pcb.org/community/irc/

This	IRC	channel	is	very	useful	in	case	you	have	a	question	and	need	a	quick	answer.
There’s	always	somebody	to	talk	to	in	this	channel,	who	can	help	you	out.

There	is	a	fairly	large	Kicad	users	group	on	Yahoo,	counting	almost	5,000	members.
To	join	it	you	must	make	an	application,	and	you	will	be	allowed	access.	

The	Kicad	Yahoo	group	is	available	at	http://groups.yahoo.com/neo/groups/kicad-
users/

This	group	contains	a	lot	of	very	interesting	conversations	that	can	help	you	with	a	lot

http://groups

of	problems.	

Another	very	nice	resource	is	the	documentation	for	the	various	file	formats	that	Kicad
uses.	As	you	had	a	glimpse	of	earlier	back	in	the	main	window	of	Kicad,	you	see	that
there	are	a	lot	of	files	that	are	exported	and	created	by	Kicad	and	you	will	need	to	figure
out	what	each	one	of	those	files	is	eventually.	

Documentation	for	Kicad’s	file	formats	is	available	at	http://kicad-
pcb.org/help/file-formats/

Here	you	will	learn,	for	example	that	a	“.pro”	file	is	the	project	file	that	contains
overall	project	information.	There	are	schematic	“.sch”	files,	“.lib”	library	files,	“.mod”
for	footprints	and	so	on.	

In	the	next	chapter	we	will	have	a	look	at	the	printed	circuit	board,	and	discuss	what	a
PCB	is,	it’s	features	and	components.

http://kicad-pcb

Chapter	8:	What	is	a	Printed	Circuit	Board?

Let’s	have	a	look	at	the	components	of	a	PCB	and	what	a	PCB	looks	like	and	the
terminology	that	we	use.	So	let’s	all	have	a	look	at	a	PCB	I	made	earlier.	Here	it	is:	

The	top	side	of	a	PCB

I	made	this	one	at	oshpark.com.	The	top	side	of	the	PCB	is	the	side	where	where	we
place	the	components.	You	can	place	components	on	the	bottom	side	too,	however	this	is
unusual.

In	general,	we’ve	got	two	kinds	of	components:	through	hole	or	surface	mounted
components.	Through	hole	components,	are	attached	on	the	PCB	via	inserting	the	leads	or
the	pins	through	small	holes.	In	the	example	pictured,	we’ve	got	lots	of	holes	into	which
the	through-hole	component	pins	are	inserted.	The	holes	extends	from	the	topside	to	the
bottom	side	of	the	PCB	with,	and	are	plated	with	a	conductive	material,	like	tin,	or	in	this

http://oshpark.com

case,	gold.	We	use	solder	to	attach	and	secure	a	component	through	its	lead	onto	the	pad
that	is	surrounding	the	hole.	

A	through-hole	component	attached	to	a	PCB

If	you	wish	to	attach	a	surface	mounted	component,	then	instead	of	holes,	we	just
attach	the	component	onto	the	surface	of	the	PCB	on	pads.	We	use	just	enough	solder	to
make	the	connection	solid	between	the	flat	connector	of	the	component	and	the	flat	pad	on
the	PCB.

A	surface-mounted	component	attached	to	a	PCB

Next,	we’ve	got	the	silkscreen.	So	we	use	silkscreen	to	add	writings	and	graphics	or
draw	boxes	and	things	like	that	onto	the	PCB	just	to	mark	the	different	areas	where	either
different	things	go	or	to	provide	some	information	for	the	user.	

The	white	letters	and	lines	is	the	silkscreen	print	on	this	PCB

You	can	see	here	that	I’ve	used	boxes	to	delineate	the	location	of	various	components.
I’ve	used	letters	and	numbers	to	indicate	the	names	of	the	various	pins	and	I’ve	got
version	numbers	up	there.	It’s	a	good	habit	to	have	a	name	for	the	PCB	and	things	of	that
sort.	Silkscreen	goes	on	the	top	or	the	bottom	of	the	PCB.	

Sometimes,	you	may	want	to	attach	your	PCB	onto	a	surface	just	to	secure	it.	To	do
that,	you	simply	add	more	holes.	The	same	ones	that	you	used	for	through	hole	component
is	just	that,	in	this	case,	you	don’t	attach	them	electrically	to	any	of	the	other	pins.	You	can
use	a	screw	and	a	nut	and	bolt	to	the	other	side	so	that	the	PCB	is	secured	inside,	for
example,	a	box.

Next	are	the	tracks.	In	this	example,	they	look	purple	because	of	the	mask	used	by
Oshpark.	

The	purple	lines	connecting	the	holes	are	tracks.

I’ll	discuss	the	mask	soon.	The	tracks	are	made	of	copper	and	they	just	connect	pins
together,	or	different	parts	of	the	board.	You	can	control	how	thick	or	thin	a	trace	is.	In
terms	of	terminology,	some	people	called	traces	tracks	or	connections	or	traces,	so	it’s	a
few	different	names	around	meaning	the	same	thing.	I	will	try	to	standardize	and	just	use
the	word	track	from	now	on.

Notice	the	small	holes	that	have	no	pad	around	them?	These	are	called	“vias”.	A	via
looks	like	a	hole,	but	are	not	meant	to	be	used	to	mount	a	component	on	it.	It’s	meant	to
switch	a	track	from	using	one	surface	onto	the	other	surface.	If	you’re	using	PCBs	that
have	more	than	two	layers,	like	three,	four,	five,	etc,	then	you	can	use	vias	to	connect	a
track	from	any	one	of	the	layers	to	any	of	the	other	layers.	Via	are	very,	very	useful	for
routing	your	tracks	around	the	PCB.	

The	purple	substance	that	you	see	on	the	PCB	is	called	the	solder	mask.	It’s	meant	to
do	a	couple	of	things.	Firstly,	it	prevents	the	copper	on	the	PCB	from	being	oxidized	over
time.	Oxidisation	of	the	copper	tracks	affects	their	conductivity	in	a	negative	way.	So,	the
solder	mask	prevents	oxidization.	

Another	thing	that	the	solder	mask	does	is	to	make	it	easier	to	solder.	On	the	pads,	for
example,	you	can	see	you	can	see	that	the	pads	contain	the	solder	mask	can	be	very	close
to	each	other.	Sometimes,	the	distance	between	pads	can	be	less	than	a	millimetre.
Without	the	solder	mask,	it	is	easy	to	create	bridges	between	those	pads.	The	solder	mask
prevents	bridges	because	solder	cannot	bond	with	it.

A	solder	bridge	like	this	one	is	a	defect	that	solder	mask	helps	in	preventing

Very	often,	the	tip	of	the	solder,	the	soldering	iron	is	almost	as	big	or	sometimes	as
bigger	than	the	width	of	the	pads,	so	creating	bridges	in	those	circumstances	is	very	easy
and	solder	mask	helps	in	preventing	that	from	happening.	

And	here	is	the	back	side	of	the	same	PCB:

The	bottom	copper	layer	of	the	example	PCB.

You	can	see	that	the	holes	from	the	through	hole	components	extend	to	the	back	of	the
PCB,	and	there’s	also	a	pad	there	and	that’s	where	the	solder	goes,	that’s	where	the	solder
attaches.

You	can’t	see	any	evidence	here	of	the	pads	for	the	surface	mounted	components	that
exist	on	the	other	side.	Those	pads	don’t	extend	to	the	bottom	side	of	the	PCB.

If	you	turn	the	PCB	to	the	side,	you	can	see	how	thick	it	is:

This	PCB	has	a	thickness	of	1.6mm,	and	is	made	of	fiberglass	.

Typically,	PCBs,	at	least	the	ones	that	you	get	from	fabrication	houses,	are	made	of
fiber	glass.	In	the	case	of	OSH	Park	and	that’s	actually	the	case	for	most	lower	cost
fabrication	houses,	the	width	of	the	PCB	is	around	1.6	millimeters.	I	can	do	a	zoom-in	and
you	can	see	the	fiberglass	in	there.		

In	this	microscope	picture,	you	can	see	the	holes	for	the	through	hole	components:

A	microscope	view	of	the	top-layer

You	can	see	a	couple	of	vias	and	tracks,	and	of	course	you	can	also	see	solder	mask
and	you	can	see	how	in	between	the	pads,	there	is	solder	mask.	

In	this	close	up,	you	can	also	see	the	detail	of	the	silkscreens.	The	wide	ink	is	what	you
use	in	the	silkscreen	to	do	all	your	markings	and	your	writings	and	it’s	around—
depending	on	the	manufacturer	–	it’s	around	150	points	per	inch.	It’s	not	as	good	as	a	good

laser	printer,	which	goes	to	about	300	points	per	inch	but	it’s	good	enough.	And	for	more
expensive	manufacturers,	you	can	actually	go	to	very	high	definition	and	have	very
elaborate	and	highly	detailed	markings	and	drawings	done	on	your	PCB.	

This	picture	here	is	interesting	because	it	shows	you	a	way	to	connect	grounds	and
VCC	pads	to	large	areas	of	copper	which	is	called	the	copper	fill:

Thermal	relief	connects	a	pad	to	a	copper	region

The	arrow		here	shows	you	how	this	particular	pad	is	connected	to	a	large	area	of
copper	around	it	via	special	connections	called	thermal	relief.	Through	thermal	reliefs,
you	can	both	have	an	electrical	connectivity	between	the	pad	and	its	surrounding	copper
that	can	carry	current	to	other	parts	of	the	board.	

Here’s	another	nice	view	of	the	front	of	the	PCB:	

Notice	how	the	plating	of	the	holes	covers	the	inside	of	the	hole,	and	connects	that
front	end	with	the	back	end.

This	one,	gives	you	a	way	to	also	appreciate	the	thickness	of	the	tracks.	Notice,	for
example,	the	short	track	that	connects	the	two	reset	holes	(RST).	The	light	that	is	reflected
of	the	side	of	the	track	gives	you	an	idea	of	the	thickness	of	that	copper	which	is	covered
by	the	purple	solder	mask.	

In	this	picture,	you	can	also	see	a	very	thin	layer	of	gold	that	covers	the	hole	and	the
pad	and	how	that	also	fills	the	inside	of	the	hole.	This	is	how	you	electrically	have	both
sides	of	the	hole	connected.

Instead	of	gold	plating,	you	can	also	use	tin	plating	and	that’s	a	cheaper	way	of
creating	pads	and	several	manufacturers	also	support,	actually,	most	manufacturers	seem
to	support	tin	plating.	

Finally,	this	is	the	last	close	up	image:	

Notice	the	light	reflecting	of	the	side	of	a	short	track.	This	gives	you	an	idea	of	the
track	width.

This	image	is	at	200	times	magnification.	so	you	can	see	here	that	you’ve	got	a	track
connecting	two	pads,	light	reflecting	off	one	side.	Gives	you	an	idea	of	how	thin	the	track
is.

So	with	this,	I	hope	you	have	a	better	idea	of	what	a	PCB	is	like	close	up	and	its
various	components	and	the	terminology	used.

In	the	next	chapter,	we’ll	have	a	look	at	the	PCB	design	process	using	Kicad.	

Chapter	9:	The	Kicad	design	process

In	this	chapter	you	will	learn	about	Kicad’s	PCB	design	workflow.

The	process	of	designing	a	PCB	using	Kicad	begins	with	Eeschema.

The	process	begins	with	Eescema.	In	Eeschema	we	create	the	electrical	schematic	that
describes	the	circuit	that	eventually	will	be	printed	onto	the	PCB	board.	We	draw	the
schematic	by	picking	components	from	the	library	and	if	a	component	that	we	need
doesn’t	exist	in	the	library,	we	can	create	it	using	the	schematic	library	editor.	

At	some	point	in	our	design	of	this	schematic	we	can	run	the	electrical	rules	check	and
that	is	a	utility	that	ensures	that	we	don’t	have	any	obvious	mistakes	or	any	electrical
mistakes	in	our	design.	The	electrical	rules	check	will	give	us	a	defect	report	and	we’ll	use

that	report	correct	any	problems	in	Eeschema.	

Once	we	have	everything	set	out	correctly	and	there	are	no	more	defects	in	our
schematic,	we	are	almost	ready	to	move	ahead	and	go	into	the	Pcbnew	application	in	order
to	start	doing	the	layout	for	our	PCB.	

There	are	two	things	we	need	to	do	before	we	go	to	Pcbew.	The	first	one	is	to	associate
the	components	in	Eeschema	with	footprints.	To	do	that	we	use	another	component	of
Kicad	called	Cvpcb.	

With	Cvpcb,	we	associate	schematic	components	with	footprints.

This	allows	us	to	match	schematic	components	with	footprint	modules.	One	thing	to
remember	in	terms	of	terminology	is	that	in	Kicad	a	schematic	has	components	and	a	PCB
has	footprints.	If	there	is	a	footprint	that	doesn’t	exist	in	the	footprint	library,	then	again
we	can	create	it.	There	is	a	small	utility	called	the	“PCB	footprint	editor”	that	allow	us	to
create	our	own	custom	footprints	just	like	you	can	create	your	custom	schematic
components	using	the	schematic	library	editor	with	Eeschema.

Once	you	have	the	matching	between	components	and	modules	completed	then	we
export	a	file	called	Netlist	through	Eeschema.	The	netlist	file	will	contain	in	it	all	the
information	about	components	and	their	connections	to	other	components,	as	well	as	their
associations	with	footprints	and	other	meta-information	(like	component	names	and
values).	Then	we’ll	import	the	netlist	into	Pcbnew	and	all	the	components	that	we	created
in	Eeschema	will	appear	in	a	new	blank	canvas	that	makes	up	our	PCB.	

Once	the	schematic	is	complete,	we	work	on	the	layout	of	the	board	using	Pcbnew

We	use	Pcbnew	to	place	the	footprints	on	the	blank	canvas,	and	then	do	the	wiring.	We
can	move	the	components	around	so	that	they	are	nice	and	tidy	and	we’ll	start	doing	all
the	connections	between	the	various	pins	using.	This	process	is	very	time	consuming,
especially	for	large	projects.	The	placing	and	routing	is	mostly	a	manual	process.
Although	Kicad	does	have	an	auto	router,	most	people	prefer	not	to	use	it,	in	favour	of	the
manual	process	which	give	the	designer	absolute	control.

Once	you	have	your	PCB	laid	out	and	connection’s	completed	you	can	go	ahead	and
do	a	design	rules	check	that’s	going	to	make	sure	that,	for	example,	a	track’s	not	too	close
to	a	pad	and	things	like	that.	Look	for	any	pads	that	are	not	connected	and	things	of	that
sort.	We	can	always	fix	footprints	using	the	footprint	editor.

Assuming	that	you	are	finished	with	the	current	iteration,	you	will	want	to	have	it
fabricated.	To	do	that	you	must	export	the	PCB	data	as	a	collection	of	files,	called	“Gerber
files”.	I	will	describe	Gerber	files	in	more	detail	in	the	next	chapter.	Gerber	files	contain
several	related	files,	with	one	Gerber	file	per	layer	on	your	PCB	and	contains	instructions
that	the	fabrication	house	will	need	in	order	to	make	your	PCB.	

One	thing	to	notice	about	the	Kicad	design	process	is	that	it	has	a	lot	of	closed	loops;
there	is	a	lot	of	iteration	happening.	As	we’ll	see	in	the	first	example	project,	It	is	often	the
case	where	you	go	into	your	PCB	design	and	then	you	realize	that	there	is	a	component
you	should	have	included	in	your	schematic	design	in	Eeschema	but	then	you	forgot	about
it	or	you	just	didn’t	think	it	would	be	necessary	until	later	in	the	process.	In	this	case	you
can	go	back	to	Eeschema,	adjust	the	schematic	with	whatever	was	missing	or	make	your
additions	or	changes	and	then	go	and	create	a	netlist	and	go	back	to	Pcbnew	to	continue
your	layout	work	there.	There	is	a	lot	of	iteration	that	is	happening	here.	This	is	ok!	It’s

not	that	hard	to	be	iterative	in	Kicad;	the	workflow	allows	you	for	that.

Let’s	move	on	to	the	next	chapter	where	we’ll	talk	about	fabrication.

Chapter	10:	Fabrication

Let’s	imagine	that	you	have	finished	with	laying	out	your	board	in	Kicad	and	you’re	ready
to	make	it.	What	are	your	options?	Well,	you	can	do	it	yourself	at	home.	There’s	a	nice
guide	here	from	Fritzing,	at	http://fritzing.org/learning/tutorials/pcb-production-
tutorials/diy-pcb-etching/.	

http://fritzing.org/learning/tutorials/pcb-production-tutorials/diy-pcb-etching/

Etching,	a	process	by	which	you	can	make	your	PCBs	at	home.

The	process	described	in	the	Fritzing	article	is	called	etching.	It	involves	the	use	of
various	chemicals,	in	chemical	baths.	Some	of	these	chemicals	are	toxic.	You	have	to	have
special	safety	equipment,	hopefully	keep	your	children	away	if	you	have	any,	deal	with
smelly	and	potentially	dangerous	fumes.	Once	you	have	a	board	etched,	you	still	need	to
use	a	drill	to	create	holes	and	vias,	and	then	figure	out	a	way	to	connect	your	top	and
bottom	layers.

If	this	sounds	like	not	your	kind	of	thing	(I’m	with	you!),	then	you	can	go	for	a
professional	PCB	manufacturer	service.	OSH	Park	and	other	manufacturers	like
ExpressPCB	and	Seed	are	very	good	at	what	they	offer.	

You	can	get	a	professionally	made	PCB	for	not	a	lot	of	money	and	without	danger	to
yourself	as	well.	I’ve	used	OSH	Park	and	some	of	these	others	a	lot	of	times.	I’m	always
happy	with	the	result	and	it	does	take	a	little	bit	of	planning	because	once	you	order	your
PCBs	it	could	take	a	three	or	four	weeks,	at	least	back	here	in	Australia	to	get	your	PCB
shipped	back	to	you.	If	you’re	in	a	hurry	there	are	options	to	expedite	the	process,	it	gets	a

bit	more	expensive	though.	In	this	book,	I’ll	be	using	OSH	Park	just	because	I’ve	used
them	before,	they’re	very	convenient	and	I	like	the	outcome.	Their	design	rules	which	are
fairly	standard	in	the	industry,	so	everything	I	show	you	in	the	book	will	work	with	the
vast	majority	of	public	PCB	manufacturers.	

OSH	Park’s	design	rules	are	standard	in	the	industry.	

The	typical	standard	two-layer	order	will	cost	$10	for	a	two	square	inch	board	and	you
get	three	copies	of	that.	This	works	out	to	around	$5	per	square	inch.	The	pricing	is
consistent	in	the	industry.	You	pay	based	on	how	big	your	PCB	is.	So	there’s	a	good
incentive	to	try	and	make	you	PCBs	as	small	as	possible.	Be	aware	of	this	when	you	do
your	layout,	try	to	keep	the	components	as	closely	packed	as	you	can.	There	is	a	give	and
take	between	the	proximity	of	the	components	to	each	other	and	the	amount	of	space	there
is	left	for	the	routing.	The	less	space	there	is	available,	the	harder	it	will	be	to	do	the
wiring.

Expresspcb.com,	another	public	PCB	manufacturer

There’s	also	ExpressPCB,	I’ve	never	used	ExpressPCB	myself	so	I	can’t	comment
about	them.	But	it	seems	like	also	a	layer	to	download	for	free	their	own	ExpressPCB
software	and	use	that	to	build	your	PCBs.	

Seed’s	advantage	is	their	impressive	range	of	PCB	customisation	they	offer	to
retail	customers

Another	example	is	Seed.	I’ve	used	Seed	in	the	past,	really	nice,	just	as	good	as	OSH
Park	in	my	opinion	and	they	do	give	you	a	much	wider	option	of	how	you’d	like	your
PCB	to	be	made.	For	example,	if	we	go	to	Fusion	PCB	that’s	one	of	the	types	of	products
that	you	can	get	from	them.	You	start	at	$9,90	but	then	you	can	choose	things	such	as	how
many	layers	it’d	like	to	have,	the	dimensions	of	your	PCB.	This	is	a	nice	one,	the
thickness,	if	you	pressed	for	space	in	your	application,	if	you	building	a	wearable	gadget
perhaps,	then	you	can	reduce	the	thickness	of	the	PCB.	You	can	choose	the	quantity,	the
PCB	colour.	Nice	touch,	you	can	make	your	PCB	red,	for	example.	These	are	just	some	of
the	customisations	offered	by	Seed.	

http://expresspcb.com

An	example	of	the	Gerber	files	that	the	manufacturer	will	need	in	order	to	make
your	PCB

Now,	let’s	turn	our	attention	to	the	files	that	you	need	to	upload	for	these	services	and
the	files	are	Gerber	files.	Each	layer	on	your	PCB	will	have	its	own	Gerber	file	which	is
simply	a	text	file.	

Let’s	have	a	look	inside:

Gerber	files	contain	text.	

You	can	see	that	this	is	just	a	text	based	file	contains	instructions.	Although	you	could
edit	such	files	with	your	text	editor,	they	are	meant	for	the	manufacturer’s	equipment.	An
advantage	of	this	text	format	is	that	you	can	use	a	version	control	system	like	Git	and	keep
your	projects	stored	in	repositories	like	Github.com.

The	Gerber	files	system	and	standard	has	been	designed	by	this	company	here
Ucamco.	They	make	equipment	and	write	software	for	PCB	manufacturers	–	things	like	a
PreCAM	software,	PCB	CAM,	there’s	a	laser	photo	plotters	and	direct	imaging	systems.
This	is	the	company	that	makes	the	hardware	that	companies	like	OSH	Park	and
Seeedstudio	will	use	to	make	your	PCBs.	If	you’re	curious	about	how	to	read	these	Gerber
files	then	you	can	lookup	the	specification	of	the	Gerber	format	specification	in	Ucamco’s
web	site.	Beware,	it’s	a	huge	file.	

That’s	enough	about	fabrication	and	Gerbers	for	now.	In	the	next	chapter	we	will	get
started	with	the	first	project	for	this	course	and	we	will	build	one	sided-NRF24	breakout.

http://github.com

PART	THREE
Project	1:	create	an	nRF24	breakout	board

Chapter	11:	What	is	this	part

In	this	first	project	for	this	course,	we’ll	build	a	simple	breakout	PCB	for	the	nRF24
board.

If	you	have	worked	with	the	common	nRF24	board,	you	know	that	its	two	rows	of	pins
are	not	compatible	with	a	breadboard.	

The	pins	of	the	common	nRF24	breakout	are	not	compatible	with	a	breadboard.

As	a	result,	you	have	to	use	ribbon	cable	and	stick	jumper	wires	in	its	connector,	and
then	stick	these	wires	in	the	breadboard.	I	have	wasted	so	much	time	dealing	with	a	mess
of	wires,	debugging	with	my	multimeter	that	I	decided	it	is	time	to	deal	with	this	problem
once	and	for	all.

We	will	create	a	PCB	that	will	make	it	easy	to	use	the	nRF24	breakout	with	a
breadboard.

The	breakout	we	will	create	in	this	project	will	allow	us	to	escape	the	two	rows	by	four
pins	that	the	nRF24	comes	with	into	a	single	row	of	8	pins.	We	will	design	the	connector
on	the	PCB	so	that	it	is	compatible	with	a	breadboard.	This	first	PCB	will	be	single-sided.
In	the	next	two	projects,	we	will	work	on	2-sided	PCBs.

In	this	project,	you	will	learn	about:

	

*	How	to	create	a	new	Kicad	project	and	set	up	it’s	parameters

*	How	to	create	a	simple	schematic	using	Eeschema

*	How	to	find	schematic	components	in	the	library

*	How	to	create	a	custom	schematic	component

*	How	to	annotate	parts	in	a	schematic

*	How	to	make	sure	that	your	design	is	ok	by	doing	an	electrical	rules	check

*	How	to	associate	schematic	components	with	footprints

*	How	to	create	custom	footprints

*	Footprint	features,	like	pins,	pads,	silkscreen	borders,	and	labels.

*	How	to	design	a	PCB	using	the	Pcbnew	tool.

*	Creating	and	importing	a	netlist

*	Several	of	the	Pcbnew	features,	like	edge	cuts,	3D	views,	making	wirings,	copper
fils,	tracks,	thermal	reliefs,	adding	labels	and	versioning.

*	How	to	modifying	the	schematic	and	update	the	PCB	design	based	on	the	updated
schematic.

*	How	to	create	the	Gerber	files

*	How	to	upload	your	Gerbers	to	a	fabricator	and	order	your	PCB.

There’s	so	much	to	do,	so	let’s	get	into	it!			

Chapter	12:	Creating	a	new	project

It	is	time	to	get	started	with	the	first	project.	Start	KiCad,	then	click	on	the	File	menu	item
and	select	New	Project.	

Start	Kicad	and	create	a	new	project

It	is	a	good	practice	to	store	project	files	inside	a	project	directory.	Create	a	new
directory	named	nRF24-breakout.

Create	a	new	directory	to	hold	the	project	files

Then,	go	inside	this	new	directory	and	create	the	project	file,	call	it	nRF24-breakout.
Click	on	the	Save	button	to	finish	the	process.	

Your	new	project	should	now	look	like	this:

Your	new	project.

You	may	remember	from	the	workflow	that	the	first	thing	that	we	do	when	we	create	a
new	project	in	KiCad	is	to	create	the	schematic	with	Eeschema.	To	start	Eeschema,	the
Electronic	Schematic	Editor,	we	click	on	the	first	button	from	the	left:

Start	Eeschema

Once	the	Eeschema	window	appears,	maximise	it	to	gain	as	much	screen	real	estate	as
possible.	Components	will	be	going	into	this	canvas,	which	is	the	white	area	inside	the	red
border,	in	the	middle	of	the	screen	.	Much	of	the	work	that	you’ll	be	doing	will	be	done
via	shortcuts	and	through	the	mouse.	

The	blank	canvas	in	Eeschema

You	can	zoom	in	and	out	using	the	scroll	wheel	of	the	mouse.	This	is	a	basic	function
that	you	will	be	using	constantly.	If	you’ve	got	a	mouse	without	a	scroll	wheel,	I	strongly
suggest	you	get	one	with	a	scroll	wheel.	I	use	a	Logitech	Bluetooth	mouse,	and	it	is	very
convenient.	

Another	very	useful	feature	is	panning.	Panning	allows	you	to	move	around	the	canvas
by	clicking	it’s	left	button	while	holding	the	command	key	on	my	keyboard	(I	am	using	a
Macintosh	keyboard	with	a	Windows	virtual	machine,	so	the	exact	key	combination	may
be	different	for	you).	Depending	on	the	keyboard	that	you	have,	you	may	need	to	use	a
control	or	the	shift	key	and	that,	again,	it	depends	on	whether	you	are	on	Windows,	Mac
or	Linux.	

If	you	type	Shift	and	the	question	mark	then	you’ll	get	the	hotkeys	list	which	contains
all	the	most	important	and	commonly	used	shortcuts.	

The	hotkeys	list.

For	example,	by	pressing	the	A	key	and	you	can	add	a	new	component.	By	pressing
the	P	key	you	can	add	a	particular	kind	of	component:	a	power	component.	You	can	use
the	V	key	to	edit	a	component	value	so	it	can	set	for	example	a	resistor	to	its	particular
value	and	so	on.	

There	are	a	lot	of	hotkeys.	We	will	not	going	to	be	using	all	of	these	in	this	project,	but
you	can	speed	up	your	work	by	a	lot	if	you	can	memorise	only	4-5	of	them.	If	you	forget	a
particular	shortcut,	remember	to	type	Shift	and	the	question	mark	to	bring	up	the	hotkeys
list.

If	you	look	carefully	at	the	canvas	you	will	notice	small	dots	spread	out	throughout.
These	dots	mark	the	grid.	The	grid	allows	you	to	align	the	schematic	components	in	tidy
rows	and	columns.	You’ll	be	using	the	grid	to	make	sure	that	everything	aligns	well.	

On	the	left	side,	you’ve	got	a	few	buttons	so	you	can	switch	your	distance	units	to
inches	or	millimeters.	

Useful	buttons	in	the	left	tool	bar

I’ll	be	using	millimeters	in	this	book.	You	can	change	the	cursor	shape	to	cross	hairs	by
clicking	on	the	crosshairs	button.	I	think	that’s	a	little	bit	distracting	so	I	prefer	to	have
that	off	and	just	have	a	small	cross	in	the	middle.	The	“Show	hidden	pins”	button	allows
you	to	show	hidden	pins,	usually	found	in	integrated	circuit	components.	We’re	not	going
to	use	this	feature	in	this	project	but	our	next	project	will	have	integrated	circuits	with
hidden	pins,	so	we’ll	be	using	this	to	turn	them	on	and	off.	The	last	button	allows	you	to
draw	wires	and	busses	in	any	direction.	

The	components,	the	wires,	the	busses,	the	labels	and	so	on	are	available	via	the	right
tool	toolbar.	

The	right	tool	bar.

I’ll	be	showing	you	what	these	are	as	we	go	through.	

Finally,	we	have	the	main	navigation	and	tools	bar	above	the	canvas.	

The	top	navigation	and	tools	bar

Through	this	bar	you	are	able	to	do	things	such	as	zoom	in	and	out,	rotate	a
component,	and	redraw	the	canvas.	If	you	have	somehow	moved	too	far	away	from	the
part	of	the	schematic	that	you’d	like	to	be	working	on,	you	can	click	on	the	“Fit
schematic”	button	(look	for	the	button	with	a	magnifying	glass	over	two	square	brackets,
towards	the	middle	of	the	bar)	to	take	you	straight	back	to	the	centre	of	the	view	and	the
canvas,	so	then	from	here	you	can	go	back	to	your	component.	

The	next	thing	that	I	try	to	remember	to	always	do	is	to	set	the	page	settings.	So	what
this	does	is	to	populate	the	text	in	the	label	down	the	bottom	right	corner	of	the	schematic.
So	you	can	see	that	right	now	it’s	empty	and	I’d	like	to	put	in	the	attributes	of	my
schematic	in	here.	And	usually	I	forget	to	do	this	if	I	leave	it	for	later	so	it’s	the	first	thing
that	I	do	whenever	I	start	a	new	project.	

To	do	that,	click	on	File	and	then	Page	Settings:

Getting	to	the	Page	Settings	window.

Then,	fill	in	the	attributes	as	you	see	fit.	To	fill	the	issue	date	click	on	the	button	with
the	three	arrows;	this	will	copy	the	date	from	the	calendar	into	the	issue	date	field.	

The	Page	Settings	window

For	revision,	since	this	is	going	to	be	our	first	revision,	I’m	just	going	to	say	1.0,	I	give
it	a	name,	so	this	is	an	NRF24	Breakout	Board,	the	name	of	your	company.	Fill	in	the	rest
as	per	the	example	in	the	image	above.

The	updated	page	settings

	And	you	can	see	that	all	the	details	that	I’ve	just	entered	are	now	part	of	my
schematic,	the	bottom	right	corner	in	the	label.	

Chapter	13:	Starting	the	schematic	for	the	nRF24

In	this	chapter	we	will	begin	the	process	of	creating	our	first	schematic	in	Kicad.

Start	by	centering	the	schematic	in	the	window	so	you	can	see	the	whole	canvas.		The
board	that	we	are	building	will	only	contain	two	components.	The	first	one	is	a	straight	8-
pin	connector	and	the	second	one	is	an	RF24	component	that	we	will	plug	into	the	board.
The	RF24	component	does	not	exist	yet	in	the	component	library,	so	we	will	have	to
create	it.	

But	the	straight	connector	does	exist,	so	we	will	start	with	this.	Zoom	in	the	canvas	a
little	and	then	hit	the	A	key	on	the	keyboard.	This	brings	up	the	component	chooser.	

The	component	chooser

You	can	manually	drill	down	these	libraries	and	look	at	the	components	and	figure	out
which	one	is	the	one	that	you’re	looking	for.	As	you’re	clicking	on	a	component,	you’re
going	to	get	a	view	of	its	schematic	and	some	description	of	the	component.	Sometimes
you	will	get	a	detailed	description,	some	other	times	you	will	get	almost	nothing.

	

The	component	chooser	often	(but	not	always)	contains	details	and	a	schematic
preview.

Probably,	a	faster	way	to	do	find	a	component	is	by	using	the	filter.	You	can	type	a
keyword,	like	“connector”,	in	the	filter	text	box,	and	components	that	contain	this
keyword	will	show	up.	In	this	example,	the	keyword	“connector”	returns	nothing,	but
“conn”	returns	several	components.

Use	a	keyword	to	quickly	find	a	component.	In	this	case,	the	01x08	connector	is
what	we	need.

There	are	several	components	that	are	returned.	We	are	looking	for	a	connector	that	is
straight,	so	it’s	got	a	single	row	of	eight	pins.	The	01x08	connector	is	what	I’m	looking
for.	Click	on	the	connector	row	in	the	list	and	then	click	“OK”.		Drop	it	somewhere	on	my
canvas.	Your	canvas	now	looks	like	this:

You	have	just	dropped	your	first	component	on	the	canvas!

This	connector,	just	like	most	components	that	have	pins,	has	pins	that	are	numbered
one	to	eight.	The	component	also	has	a	unique	designator,	that	starts	with	a	P	followed	by
a	question	mark	“P?”.	This	indicates	that	the	final	unique	designator	for	the	component
has	not	been	decided	yet.	Fixing	the	designators	is	something	we	will	do	later	on,
automatically.	There	is	also	the	name	of	the	component,	“CONN_01x08”.	

You	can	edit	the	properties	of	a	component	by	putting	your	mouse	over	it	and	hitting
the	E	key.	“E”	stands	for	edit.	You	can	change	its	name,	and	several	other	values.

Place	the	mouse	pointer	over	a	component	and	hit	the	“E”	key	to	show	the
component	properties	window.

The	parameters	for	components	are	set.	It’s	fine	by	me.	I	rarely	have	to	make	any

changes	to	these	components	if	they	come	out	of	the	library.	So	I	just	hit	on	OK.

You	can	move	your	part	around	by	placing	your	mouse	over	the	component	and	hitting
the	M	key.	The	component	is	now	tied	to	the	mouse	pointer	and	you	can	move	it	around
the	canvas.	Click	the	mouse	right	button	to	release	the	component	and	drop	it	back	on	the
canvas.	While	the	component	is	tied	to	the	mouse	pointer,	you	can	also	rotate	it.	Use	the
“R”	key	for	this.	Continue	typing	“R”	until	you’re	happy	with	the	orientation	of	your
component.	

Lets	look	for	the	RF24	part	round	here.	Hit	the	A	key	to	go	back	to	the	component
chooser	and	let’s	see	if	something	like	that	exists.	Type	“RF24”	in	the	filter.	Unfortunately,
nothing	of	that	description	exists	in	the	library.	It	seems	like	we	have	to	make	a	custom
built	RF24	component	for	the	schematic.	We’ll	do	this	in	the	next	chapter.

Chapter	14:	How	to	create	a	schematic	component

In	the	previous	chapter	we	searched	for	an	nRF24	part	in	the	schematic	library	but	didn’t
find	anything	relevant.	In	this	chapter,	I	will	show	you	how	to	create	this	part	from
scratch.

To	do	that	we’ll	use	the	library	editor,	this	button	here	brings	up	the	library	editor.	

To	start	the	library	editor,	click	on	the	button	that	looks	like	a	book	with	a	pencil
over	it.

Click	on	it	and	here	is	the	library	editor	window.	

The	empty	library	editor	window.

In	the	library	editor	window,	we	will	make	symbol	to	represent	the	RF24	component.

Remember	that	this	schematic	only	so	it	does	not	need	to	look	like	the	real	thing.	The
objective	is	just	to	have	a	symbol	that	represents	the	component	and	especially	its
electrical	connections.	As	far	as	Eeschema	is	concerned,	the	symbol	is	the	component.

Components	like	the	nRF24	are	typically	represented	as	a	box.	So	we’ll	create	a	new
part	through	the	part	library	editor	and	will	start	by	clicking	on	the	new	component	button
to	create	a	new	component.

The	new	component	button.

	We’ll	give	this	new	component	a	name.	We’ll	call	it	NRF24.	We	leave	the	designator
like	that	as	a	“U”	and	this	package	is	only	going	to	have	a	single	unit.	

The	new	component	properties	window.

Imagine	that	other	cases	of—for	example,	integrated	circuits	that	contain	logical
components	like	gates,	for	example,	and/or	gates	and	you	could	have	multiple	of	those
gates	inside	a	single	integrated	circuit.	

This	component	contains	4	units	per	package.

If	you	have	an	integrated	circuit	with	two	“AND”	gates	in	them,	then	you	may	want	to
indicate	that	to	the	user,	so	you	would	say	“2”	in	the	“units	per	package”	box.	

Click	“OK”	to	close	the	properties	box.	In	the	Part	library	editor	window	you	can	see
the	name	of	the	new	component,	as	we	entered	it	in	the	component	properties	window.

The	name	of	the	new	component	appears	in	the	centre	of	the	part	editor	window.

We	can	make	use	of	the	same	shortcuts	as	in	the	main	schematic	editor	window.
Because	we	have	two	text	labels,	one	on	top	of	the	other,	we	should	seperate	them	by
moving	them.	We	can	move	a	component	by	selecting	it	with	the	M	key.	Put	your	mouse
cursor	over	the	text	and	type	“M”.	

Kicad	does	not	know	which	label	I	would	like	to	move,	so	it	asks	for	clarification.

Because	there	are	two	labels	under	the	mouse	cursor,	Kicad	is	asking	me	to	select
which	field	or	which	label	is	it	that	I	want	to	move.	Choose	the	first	one	and	move	that	up
the	top	and	I’ll	take	the	second	label	and	just	move	it	down	here.	Center	the	component
where	the	two	lines	are	intersecting,	just	to	make	it	a	bit	more	symmetrical.	

The	two	labels	are	separated.

Next,	we	will	create	a	frame	for	the	RF24	custom	component.	

Choose	the	rectangle	button	to	draw	a	rectangle.

Choose	the	rectangle	button	and	then	draw	the	rectangle	by	adding	a	line	starting	from
the	top	left	corner	of	where	I’d	like	the	rectangle	to	be.	Right-click	there	and	then	drag	a
line	to	the	bottom	right	corner	where	I’d	like	the	rectangle	to	end.

This	rectangle	represents	the	nRF24	component,	but	without	the	pins	added.

Next,	we	must	add	the	pins.	As	you	know,	the	actual	RF24	part	has	its	pins	arranged	in
two	rows	of	four	pins	each.	To	make	this	schematic	more	readable,	we	will	add	connectors
on	one	of	the	four	sides	of	the	box	we	just	created,	in	a	single	row.	There	is	no	need	for	a
one-to-one	match	with	the	real	actual	component	–	the	real	life	component.	Later,	we’ll
connect	these	pins	to	the	part	footprint	which	we’ll	also	have	to	create	from	scratch	and
that	will	be	modelled	after	the	real,	physical	RF-24.	

You	can	click	on	the	“Add	pins”	button	to	add	a	new	pin.

To	add	pins,	you	can	either	click	on	the	“Add	pins”	button	or	hit	the	P	key.	The	pin
properties	window	will	come	where	you	can	type	in	the	pin	name.	

The	pin	properties	window.

You	should	look	at	the	original	part	pin	descriptions	so	that	you	can	properly	name	the
pins	in	your	custom	component.	And	on	the	original	nRF24	part,	“MISO”	is	pin	number
four.	The	orientation	is	going	to	be	to	the	right.	The	pin	type	should	be	input	and	the
graphic	style	should	be	a	line.	When	you	are	finished	with	these	edits,	click	on	OK	to	exit
the	editor.	

The	new	custom	part,	not	complete	yet

In	the	editor	window,	you	can	see	the	new	MISO	pin	#4	added	to	the	schematic	of	the
custom	part.	Notice	the	little	dot	on	the	edge	of	the	line?	this	is	where	wires	will	connect
eventually	to/from	other	components.	This	of	the	dot	as	the	terminal	for	the	pin.	The	line
should	be	placed	so	that	the	dot	is	away	from	the	border	of	the	box.	Also,	the	number	of
the	pin,	in	this	example	“4”,	corresponds	to	the	number	of	the	MISO	pin	on	the	real	part.
Consistent	numbering	makes	it	easier	to	figure	out	which	pin	is	which	eventually	when
you	got	to	connect	everything	together.	

If	you	want	to	make	a	change	to	this	pin,	you	can	just	edit	like	any	other	component.
Place	your	mouse	over	it	and	then	hit	the	E	key.	This	will	bring	up	the	pin	properties	so
you	can	make	any	changes	here.	

I	have	actually	just	spotted	an	error:	in	the	real	part,	MISO	is	actually	pin	number
three.	I	am	also	going	to	move	this	pin	a	bit	lower	so	that	there	is	enough	room	above	it
for	the	other	pins.	

Here	is	the	current	state	of	the	custom	component:

The	new	custom	part,	current	state.

Let’s	create	the	rest	of	the	pins.	Repeat	the	process	described	above	7	times,	so	that	in
the	end,	you	have	a	schematic	like	this:

The	new	custom	part,	completed

Remember	that	you	can	use	the	M	key	to	move	things	around	and	arrange	everything
so	that	the	component	looks	symmetrical	

Now	we	need	to	save	this	part,	but	before	we	can	save	it,	we	must	choose	or	create	a
working	library.	In	Kicad,	you	cannot	have	a	schematic	component	on	its	own.	A
component	must	be	a	member	of	a	library,	even	if	the	library	contains	only	a	single
schematic	component.	

Let’s	create	a	new	library.	To	save	the	component	to	to	a	new	library,	click	on	this	icon
here,	looks	like	a	book.	

Click	on	this	button	to	save	the	component	to	a	new	library.

Next,	select	the	location	on	your	computer	for	the	library.	I	recommend	that	you	place
this	library	in	the	same	working	directory	as	my	project,	so	NRF-24	breakout,	and	the
naming	of	the	library—let’s	call	it	“nRF24_schematic_library”.	

Store	the	new	library	within	the	project	folder.

Click	on	the	Save	button	to	finish	the	process.	

The	new	library	and	it’s	content	will	not	be	available	until	it	is	loaded	by	Eeschema.
Creating	a	new	library	will	not	automatically	load	it	in	Eeschema.	You	have	to	explicitly
go	into	Eeschema	and	add	this	new	library	to	the	list	of	libraries	that	it	has	access	to.	This
is	something	that	people	get	confused	about	and	the	way	that	the	libraries	work	in	Kicad	is
not	very	intuitive,	to	say	the	least.	

And	at	this	point	you’ve	got	a	new	library	and	in	it	you	have	a	new	component.	You’ve
got	the	NRF24	schematic	component.	We	can	get	out	of	the	library	editor	and	now	we’ll
have	to	add	that	library	that	we’ve	just	created	to	the	project	so	that	we	can	access	the
parts	in	it.	

In	Eeschema,	go	to	preferences	and	click	on	component	libraries.

To	add	a	new	library	to	Eeschema,	go	to	Preferences	and	the	Component
Libraries

Here,	we	will	add	the	library	that	we	just	created.	Click	on	the	Add	button,	and	browse
to	the	location	where	you	saved	the	new	library.

Click	on	Add	to	add	the	new	library.

Browse	to	the	location	of	the	new	library,	and	click	Open.

Scroll	towards	the	bottom	of	the	libraries	list	in	the	libraries	editor,	and	you	should	see

the	newly	added	library.

The	new	library	appears	in	the	bottom	of	the	libraries	list.

Let’s	drop	the	new	component	to	the	canvas.	Press	the	A	key,	and	search	for	the	library
that	we	just	created	and	here	it	is.	You	can	drill	in	it	and	you	can	find	the	part	that	we	just
built.	Or	you	can	just	look	for	it	using	the	filter.	Select	the	component	and	click	OK	to	add
it	to	our	schematic.

The	new	component	is	in	the	component	chooser,	from	where	you	can	add	it	to	the
schematic.

In	the	next	chapter,	we	will	do	annotation	of	the	parts	in	the	schematic.

Chapter	15:	Wiring

In	this	chapter	we	will	connect	the	pins	from	the	nRF24	component	to	the	connector.
There	are	two	ways	to	do	this.	The	first	one	is	by	using	individual	wires	and	just	wiring
each	pin	with	its	counterpart.	The	second	method	is	to	use	labels.	We	can	label	each	pin
pair	with	a	unique	name,	and	Kicad	will	automatically	connect	those	pins	with	the	same
name.	

In	this	chapter,	we	will	use	the	first	method.	In	the	next	project,	we	will	use	the	second
method.

To	create	a	wire	you	can	use	press	the	“W”	key	(“W”	for	“Wire”),	or	you	can	click	on
the	wire	button.

Click	on	the	Wire	button	to	go	into	the	wiring	mode

	I	prefer	to	use	the	‘W’	key	instead	of	clicking	on	the	wiring	button.	So,	I	hit	the	‘W’
key,	you	can	see	that	a	wire	now	is	being	drawn.	

After	typing	“W”,	click	on	a	pin	circle	to	start	a	wire,	move	the	cursor	to	the	pair
pin’s	circle	terminal	and	click	again	to	finish	the	wire.

Click	again	to	end	the	wire.	Here	is	the	process	again:	

First	you	put	your	cursor	over	the	pin,	the	circle	of	the	pin	that	you’d	like	to	start	a
connection	from,	then	you	hit	the	‘W’	key,	then	a	wire	has	already	been	drawn	and	is	just
following	the	cursor	of	your	mouse.	You	just	drag	that	along	without	having	any	buttons
down,	or	any	mouse	buttons	down,	until	you	reach	the	pin	where	you’d	like	the	wire	to
end.	And	you	click	again	to	finish	the	wiring.	

Do	the	same	thing	with	the	second	pair	of	pins.	Repeat	the	process	again	for	each	pair
of	pins.	At	the	end	of	the	process,	your	schematic	should	look	like	this:

After	making	all	the	wirings,	your	schematic	should	look	like	this.

Another	thing	to	notice	as	this	point	is	that	once	you	hit	the	‘W’	key	once,	you’ve
already	selected	the	wiring	tool.	From	that	point	onwards,	you	don’t	really	need	to
continue	hitting	the	‘W’	key.	It’s	enough	to	just	click	and	start	the	wiring,	then	click	to
finish	the	wiring.	So,	one	click	to	start,	one	click	to	finish.	If	you	make	a	mistake,	it’s	not	a
big	deal.		You	can	just	delete	or	undo	the	error	and	try	again.	To	delete	anything	on	the
canvas,	right	click	on	the	object	to	reveal	the	context	menu,	and	then	choose	the	Delete
option.

Right	click	on	an	object	to	reveal	the	context	menu.	You	can	then	choose	to	delete
that	object.

If	you	make	an	error	but	don’t	realise	it,	you	can	get	Kicad	to	find	it.	Let’s	pretend	that
you	have	made	an	error	in	your	wiring,	and	have	left	a	pair	of	pins	un-wired.	Kicad	has	a
function	called	the	“electrical	rules	check”,	or	ERC.	

To	do	an	ERC,	click	on	the	bumblebee	icon	in	the	top	bar.

Click	on	the	ERC	button.	The	ERC	dialog	box	will	come	up.	Click	on	‘run’	and	do	the
test.	

The	ERC	has	revealed	that	I	forgot	to	do	the	annotations.

The	ERC,	in	this	example,	is	telling	us	that	we	forgot	to	do	the	annotations.	It’s	ok,	we
will	do	this	in	the	next	chapter.

Let’s	save	the	project	and	the	schematic	at	this	point.	Hit	the	‘save	schematic’	project.	

In	the	next	chapter,	we	will	annotate	the	schematic.

Chapter	16:	Annotating	the	schematic

In	this	chapter	I	will	show	you	how	to	use	Kicad’s	automatic	annotation	tool.

We’ve	got	two	components	that	are	both	are	not	annotated	yet.	

The	two	components	are	not	annotated.	Notice	the	“?”	in	their	designators.

Notice	the	question	marks	in	the	component	designators,	“U?”	and	“P?”.	To	do	the
annotation,	we	will	use	the	annotator.	

The	annotator	will	automatically	annotate	components	that	are	not	already
annotated.

Click	on	the	annotator	button.	There	are	various	parameters	that	control	the	way	by
which	the	components	are	to	be	annotated,	however	the	default	settings	work	fine.

The	default	annotator	settings	work	well.

Click	on	the	Annotate	button	to	do	the	annotation.	Here	is	the	result:

The	annotator	automatically	replaced	the	question	marks	with	numbers	so	that
each	component	has	a	unique	designator.

Okay,	and	now	you	can	see	that	the	question	marks	have	been	substituted	with	actual

numbers.	The	NRF	24	component	is	U1	and	the	connector	is	designated	P1.		

In	the	next	chapter,	we	will	do	an	electrical	rules	check.	This	will	complete	the	process
of	creating	the	schematic	for	our	new	board.	Once	we	confirm	that	there	are	no	faults	in
the	schematic,	we	will	proceed	with	the	board	layout	and	routing.

Chapter	17:	Electrical	Rules	Check

The	only	thing	remaining	to	be	done	before	we	can	complete	the	process	of	designing	the
schematic	for	our	new	board,	is	to	do	an	electrical	rules	check.	

To	do	the	ERC	click	on	the	bumblebee	button,	in	the	top	menu	bar.

Click	on	the	ERC	icon	to	start	the	test.

Then,	click	on	the	Run	button	to	execute	the	check.	There	is	no	output,	which	means
there	are	no	faults.

No	news	is	good	news!

What	if	we	actually	had	an	error?	Let’s	try	this	out.	Let’s	delete	one	of	the	wires,	so
that	the	schematic	is	like	this:

Pin	7	on	the	nRF24	is	NOT	connected	to	pin	8	of	the	connector.

Do	the	ERC	again.	Here	is	the	result:

The	ERC	has	found	two	unconnected	pins,	and	it	indicates	them	with	the	green

arrows.

The	checker	is	telling	us	that	we	forgot	to	do	do	the	connections	for	two	pins,	which
were	left	unconnected.	It	uses	arrows	to	help	us	find	the	problem	and	fix	it.	Let’s	fix	it.
Use	the	W	key	to	go	into	wiring	mode,	and	connect	the	VCC	pins.	If	you	try	the	rules
check	again	you	will	be	able	to	confirm	that	the	problem	is	now	fixed.	No	output	is	a	good
thing.	

Close	the	checker	and	save	the	project.						

Let’s	recap	what	we	have	so	far.	We’ve	started	a	new	project	in	Kicad.	We	have
created	a	schematic.	Our	schematic	contains	a	connector	which	is	a	one	rope	by	eight	pins
and	we	have	created	a	custom	part	because	it	didn’t	exist	in	the	schematic	library.	This
part	represents	the	NRF24	component.	We	have	completed	the	wirings	between	the	two
parts	and	ran	the	electrical	rules	check.	The	check	confirmed	that	the	schematic	has	no
faults.

We	can	now	move	ahead	and	start	work	on	the	PCB	itself.	We’ve	saved	our	project	and
in	the	next	lecture,	we’ll	start	work	on	the	PCB.	

Chapter	18:	Associate	components	to	footprints

Unlike	other	PCB	design	tools,	in	Kicad,	schematic	components	are	not	automatically
linked	to	a	footprint.	This	of	a	footprint	as	the	outline	of	a	component	that	is	mounted	on	a
circuit	board.	It	contains	the	outline	of	the	pins,	the	device,	and	often	text	markings	with
the	name	of	the	device	or	its	values.	In	Kicad,	we	must	associate	schematic	components	to
footprints	using	a	tool	called	Cvpcb.

The	straight	8-pin	connector	has	a	footprint	to	which	we	can	associate	the
schematic	component

The	straight	pin	connector	that	we’ve	got	on	the	schematic	already	has	an	associated
footprint	in	the	library	and	we’ll	simply	select	it	for	that	part.	

There	is	no	footprint	to	associate	with	the	nRF24	component,	so	we	will	need	to
create	one.

However,	the	nRF24	part	is	a	custom	component	and	it	doesn’t	have	an	existing
footprint	in	the	library.	We	will	have	to	create	a	new	one	for	that.	

Click	this	button	to	start	Cvpcb

To	start	Cvpcb,	click	on	the	Cvpcb	button.	It	takes	a	few	seconds	sometimes	for	all	the
panes	to	be	populated	with	data	and	records	because,	in	the	background,	Cvpcb	is
accessing	the	Kicad	repository	on	GitHub.com	for	schematic	components	and	footprints.	

The	Cvpcb	tool	allows	you	to	find	footprints	via	browsing	or	through	filters.

On	the	left	pane	are	the	footprint	libraries.	On	the	right	side,	are	the	contents	of	each
library	that	is	selected	at	a	given	time.	And	in	the	middle	pane	are	the	components	from
the	current	schematic.	You	can	see	here	that	in	the	middle	pane	we	have	two	components:
the	connector	component	(P1),	and	the	custom	part,	nRF24.	

For	the	connector	component,	look	through	the	contents	of	the	“connect”	library.	Once
you	click	on	the	Connect	library	in	the	left	pane,	you	will	see	in	the	right	pane	all	of	the
components	from	all	of	the	libraries.	This	is	not	very	useful.	I	wish	to	narrow	that	down	to
just	the	parts	that	are	a	member	of	the	connect	library.

To	do	this	we	will	use	the	three	filter	buttons,	found	in	the	right	side	of	the	top	menu
bar.	Click	on	the	filter	marked	“L”.	In	the	right	pane	we	now	have	only	the	footprints	that
are	members	of	the	Connect	library.	We	can	also	narrow	down	the	hit	list	further.	Select
the	straight	connector	component	in	the	middle	pane,	and	then	click	on	the	“#”	filter.	This

will	return	only	those	components	that	match	my	selected	component	by	pin	count.

All	of	the	members	of	the	connect	library	that	are	displayed	are	those	with	eight	pins
because	we	have	enabled	the	pint	count	(“#”)	filter.	Finally,	we	can	also	use	filter	with	the
text	document	in	its	button	icon	(third	from	the	right),	and	narrow	down	the	hit	list	by
keyword.	Once	you		click	on	that,	notice	that	the	right	pane	is	now	empty.	This	means	that
there	is	no	component	in	the	connect	library	that	has	the	name	con_01x08.	Therefore,	we
were	incorrect	in	looking	in	the	Connect	library	for	this	particular	footprint.	

The	straight	connector	footprint	is	in	the	Pin_Headers	library.	Notice	the	enabled
filters,	at	the	right	side	of	the	toolbar.

Let’s	look	at	something	else.	Where	could	the	needed	footprint	be?	We	can	check
inside	Sockets.	Or	in	Pin	Headers?	Yes!	Once	I	select	Pin_Headers	library,	and	with	the
schematic	component	selected	in	the	middle	pane,	CvPcb	will	give	us	only	those	items	in
the	Pin_Headers	library	that	match	the	number	of	pins	and	the	name	of	the	component	that
we	are	looking	for

The	one	that	I	would	like	to	go	with	is	the	header	straight	1x08.	So,	double-	click	on
this	record	in	the	right	pane	to	select	it.	

Once	you	double-click	on	the	required	footprint	on	the	right	pane,	and	with	a
component	selected	in	the	middle	pane,	the	footprint	and	the	component	will	become
associated

You	can	also	preview	a	footprint,	and	double	check	that	this	is	what	you	need.	To
preview	a	footprint,	click	on	the	preview	button.

Click	on	the	Preview	button	to	see	a	preview	of	the	selected	footprint.

A	preview	of	the	8	pin	straight	connector

As	for	the	nRF24,	there	is	no	component	available	in	any	of	the	libraries.	We	will	have
to	create	one.	Save		the	current	associations	and	let’s	work	on	a	custom	footprint	for	the
nRF24	component	in	the	next	chapter.

Chapter	19:	Create	a	custom	footprint

In	this	chapter	we	will	create	a	custom	footprint	for	the	nRF24	schematic	component.	If
you	haven’t	done	so	already,	close	Cvpcb.	Next,	start	the	footprint	editor.

From	Eeschema,	start	the	Footprint	editor	by	clicking	on	the	button	with	the	IC
and	the	pencil	icon.

So	click	on	the	footprint	editor	button,	and	the	blank	canvas	of	the	editor	will	come
up.	

The	blank	canvas	of	the	new	footprint	editor.

You	can	also	launch	the	footprint	editor	from	the	main	Kicad	window.	To	do	this,	go	to
the	main	Kicad	window	and	click	on	the	fourth	button	from	the	right.	Notice	that	it
contains	the	same	icon	as	the	one	in	Eeschema,	with	the	IC	and	a	pencil	over	it.

You	can	also	start	the	Footprint	editor	from	the	main	Kicad	window.

Either	way,	you	can	reach	the	exact	same	footprint	editor	tool

We	need	to	know	as	accurately	as	possible	the	dimensions	of	the	pins	of	the	NRF24.
The	circumference	of	each	pin,	the	distance	to	the	neighboring	pins,	clearances	from	the
edges	of	the	board,	etcetera.	

You	can	do	this	by	looking	at	online	documentation	for	the	particular	part	or	if	you
have	the	part,	by	using	your	own	ruler.	I	have	measured	a	2.54	millimeter	pitch,	which	is
the	distance	between	the	pins.	I	measured	the	distance	on	my	NRF24	with	my	ruler,	and	it
looks	exactly	correct.	The	NRF24	has	two	rows	of	pins.	Again,	using	my	ruler,	the
distance	between	the	rows	looks	to	be	exactly	2.54	millimeters.	

If	you	can’t	find	the	exact	measurements	of	the	pins	and	the	part	that	you	are
modelling	in	the	editor,	use	your	ruler	to	find	out.

The	circumference	of	each	pin	is	also	measured	at	0.64	millimeters.	I	have	created	a
hand-drawn	version	of	the	schematic	with	the	measurements	as	I	worked	them	out.	We
will	create	something	like	this	now	in	the	footprint	editor.	

The	new	footprint	button

In	the	footprint	editor,	we	would	like	to	create	a	new	footprint	so	click	on	the	new
footprint	button	and	give	a	new	footprint	name,	like	NRF24.	

Name	the	new	footprint

Click	ok,	and	see	how	the	canvas	now	contains	the	name	of	the	footprint	and	a
reference	designator.

Creating	the	new	footprint.	We	need	to	add	boundaries	and	pins.

Move	the	two	text	labels	so	that	there	is	enough	space	between	them	for	the	boundary.
Use	the	M	key	for	this,	just	like	you	moved	components	in	Eeschema.

Let’s	continue	with	the	holes	for	the	pins.	We	need	eight	holes.	We	need	to	select	holes
that	are	wide	enough	so	that	the	pins	of	the	actual	component	will	fit	through	them	and
that	the	exact	distance	from	the	adjoining	pins	as	we	measured	earlier.	So,	let’s	start	with	a
pitch.	We	know	that	the	pitch	(distance)	between	the	pins	is	2.54	millimeters,	so	to	make	it
easy	to	space	the	pins	at	this	exact	distance,	we’ll	set	the	grid	to	be	this	size.

You	can	change	the	size	of	the	grid	by	selecting	a	value	from	the	grip	drop-down
menu.

The	setting	for	the	grid	can	be	changed	via	the	grid	drop-down	menu,	in	the	left	side	of
the	tool	bar.	Click	on	the	drop-down	menu	to	open	it,	and	select	the	grid	to	be	exactly	2.54
millimeters.	Now,	we	can	start	adding	pins	right	on	top	of	the	grid	dots	and	they	will	be
spaced	at	exactly	2.54	millimeters	apart.

The	pad	button	allows	you	to	add	pads	on	the	canvas.

Click	on	the	pad	button	from	the	top	of	the	right	vertical	tool	bar.	This	allows	you	to
drop	pads	on	the	canvas.	We	need	two	rows	of	four	pins	each.	So,	select	the	pad	tool	and
then	click	on	the	canvas	to	drop	eight	pads	in	two	rows	of	four	each.	In	the	end	of	the
process,	you	should	have	something	like	this:

Our	footprint	now	has	eight	pads.

Each	one	of	these	pads	has	properties	that	you	can	access	by	putting	a	mouse	over	the
pad	and	hitting	the	E	key	(for	edit).	

To	access	the	properties	for	a	pad,	put	the	mouse	cursor	over	it	and	type	“E”

You	can	also	see	the	pad	number,	marked	in	the	center	of	the	pad.	Kicad	will
automatically	set	a	unique	number	for	each	pad,	as	you	create	it.	This	number	is	important
because	we’ll	be	using	it	later	to	connect	the	pins	on	the	footprint	with	the	pins	as	they
appear	in	the	schematic.

In	the	drill	group	of	properties	in	the	pad	properties	window,	you	can	see	the	shape	and
size,	x	comma	y	boxes,	and	circular	shape	is	good	for	most	pads,	for	pins	at	the	0.64
millimeter	region.	For	finer	pads,	you	can	go	for	oval	drills.	The	oval	shape	in	a	smaller
pad	allows	for	enough	solder	to	make	a	good	connection	between	the	pad	and	the	pin,
while	allowing	for	smaller	pitch	(i.e.	smaller	space	between	the	pads).

In	our	example,	a	circular	drill	hole	is	fine	so	we’re	going	to	set	the	“Size	X”	setting	to
0.762,	slightly	larger	then	the	pin’s	0.64	millimetre	circumference.		This	ensures	that	the
pin	will	fit	in	the	hole.

The	Size	X	setting	controls	the	outer	size	of	the	pad.

In	the	left	column	on	the	pad	properties	window,	look	at	the	size	x	textbox.	This
controls	the	total	size	of	the	pad.	So	for	example,	if	you	enter	a	value	larger	than	the
current	value,	you’ll	see	that	the	pad	size	increases.	If	you	have	a	pad	that	has	larger	pins
like	maybe	a	barrel	power	connector,	then	you	want	to	have	more	area	for	the	solder	to
attach	onto,	in	order	to	support	that	larger	part,	and	this	is	where	you	can	make	this
change.

Lets	close	the	properties	window.	I	prefer	to	have	consistent	numbers	on	the	pads
between	the	KiCad	footprint	and	my	hand-drawn	schematic.	To	do	this,	you	can	either
move	the	pads	around	in	order	to	put	them	in	the	correct	order	or	edit	the	properties	to
update	the	numbers.

In	this	case,	it	is	easier	to	shuffle	the	pins	around.	Use	the	M	key	to	move	the	pads
around,	so	that	at	the	end	of	the	process	they	are	arranged	like	this:

The	pins,	rearranged.

If	there	are	any	artefacts	in	your	canvas,	like	stray	lines,	you	can	refresh	the	page	to
make	them	go	away.		To	refresh	the	page,	hit	the	F3	key	on	your	keyboard.

The	pins	are	now	arranged	as	we	want	them	to	be.	The	next	thing	to	do	is	to	draw	the
silkscreen	border	so	that	we	have	the	layout	for	the	component	and	the	footprint	as	it	will
appear	on	the	PCB.	To	do	that,	first	reduce	the	grid	size	to	1.27	so	that	we	have	finer
control	about	where	the	markings	for	the	silkscreen	will	go.	

Use	the	polygon	tool	to	draw	the	silkscreen	shape	that	will	indicate	the	border	of
the	custom	footprint.

Next,	select	the	polygon	tool	from	the	right	vertical	tool	bar.	With	the	polygon
selected,	draw	a	box	around	the	pins	and	try	to	match	the	layout	of	the	real	life
component.	The	box	can	be	approximately	the	size	of	the	real	part,	but	there	is	no	need	to
be	accurate	about	this.	Double	click	to	close	the	polygon.

If	you	want	to	have	some	more	interesting	shapes	then	you	can	choose	a	circle.	You
can	have	circular	footprints,	will	be	useful	for	something	like	a	button	battery	for	example
or	it	can	have	arcs	like	that	and	it	can	then	have	multiple	arcs	and	so	on.	The	arc,	circle
and	polygon	tools	allows	you	to	create	nice,	interesting	shapes	for	your	footprints.	

Use	the	text	label	tool	to	label	the	pins.

Next,	we	need	to	label	the	pads.	To	do	this,	we’ll	use	the	text	label	tool.	So	I’ll	add
labels	to	each	pad	so	that	I	can	read	the	role	just	by	looking	at	PCB.	You	may	need	to
adjust	the	silkscreen	border	line	if	you	need	more	space	for	the	labels.	Just	delete	the	line
than	need	adjusting	and	redraw	it	with	the	polygon	tool.

With	the	text	tool	selected,	click	on	the	right	side	of	the	pin	numbered	“0”.	This	will	be
the	Ground	pin.	When	you	click,	the	footprint	text	properties	window	will	come	up.

Type	“GND”	in	the	Text	text	field,	and	click	“OK”.

Type	“GND”	in	the	Text	text	field.	You	can	also	adjust	the	size	of	the	text	by	entering
values	in	the	Width,	Height	and	Thickness	text	fields.	Let’s	make	the	text	smaller	than	the
default,	so	make	the	width	a	0.5	millimeters	and	the	height	0.5	millimeters	as	well.	The
thickness	will	be	updated	automatically	by	KiCad.	Click	OK.	You	should	get	a	warning
box	telling	you	that	the	text	thickness	is	too	large	and	it	will	be	clamped	and	that’s	a	good
thing,	so	click	“OK”	again.

Kicad	will	adjust	the	thickness	of	the	text	based	on	the	dimensions	you	chose.

This	is	what	your	footprint	should	look	like	now:

The	current	state	of	the	footprint.	The	first	text	label	is	there.

You	can	see	the	GND	text	label	next	to	pin	0.	You	may	need	to	move	it	further	to	the
right.	Do	do	this,	change	the	grid	size	to	a	smaller	value,	and	use	the	M	key	to	move	the
label.	You	can	also	rotate	if	you	wish,	by	using	the	R	key.	Add	the	rest	of	the	labels		in	the
same	way.	A	quicker	way	to	add	the	rest	of	the	labels	once	you	have	the	first	one
configured	the	way	you	want	it,	is	to	duplicate	the	first	one	seven	times.	Type	“D”	with
your	mouse	cursor	over	the	GND	label,	and	this	will	create	a	copy.	Repeat	the	process	to
create	as	many	copies	as	you	like,	with	the	same	height,	width,	thickness	and	orientation
as	the	original.	Then,	place	them	on	the	canvas	and	edit	their	name.	At	the	end	of	the
process,	the	footprint	should	look	like	this:

The	current	state	of	the	custom	footprint.	All	the	labels	are	in	place.

You’ll	may	have	noticed	that	there’s	a	few	more	things	here	that	you	can	also	control.
For	example,	you	can	configure	a	text	block	to	be	invisible	if	you	don’t	think	that	it’s
necessary	to	show	it,	especially	if	you’ve	got	a	part	with	a	lot	of	markings	and	you	don’t
want	to	have	all	the	clutter	showing.	We’ll	use	its	feature	later	again.	You	can	also	choose
between	different	styles,	like	normal	and	italic,	and	choose	the	orientation.	

We	are	finished	with	designing	this	custom	footprint.	KiCad	will	use	the	pin	numbers
in	the	schematic	and	footprint	to	figure	out	how	the	two	are	supposed	to	be	connected.	To
make	sure	that	the	pins	match,	you	should	compare	the	pin	numbers	across	the	two
versions	of	the	same	thing,	so	the	schematic	version	and	the	footprint	version	against	the
real	part.

This	image	show	how	the	pin	numbers	in	the	schematic	match	the	pin	numbers	in
the	footprint.

In	this	image,	I	use	an	arrow	to	show	how	pin	0,	labeled	GND	in	the	schematic,
corresponds	to	pin	0,	labeled	also	GND	in	the	footprint.	Similarly,	you	should	double
check	that	all	pairs	have	the	same	numbers	and	labels.	I	didn’t	use	arrows	for	all	the	pairs
in	order	not	to	clutter	the	image	here.	

You	should	also	triple	check	that	the	markings	on	the	footprint	match	exactly	with	the
pin	out	on	the	real	part.	So,	having	a	double	and	triple	check	of	all	of	these	details,	I	think
that	the	part	that	we’ve	designed	here	is	correct.

Click	to	reveal	the	footprint	properties.

Another	thing	to	do	before	we	save	the	part	and	use	it	is	to	update	the	footprint
properties.	So,	to	do	that,	we’ll	click	on	the	footprint	properties	button,	and	this	is	going	to
give	us	a	way	to	add	some	properties	for	the	footprint.

The	footprint	properties	window.

We	should	fill	in	the	Doc	field	with	something	like	“A	footprint	for	the	generic	NRF24
module”.	This	text	will	appear	in	the	library	as	you	are	searching	around	for	parts.

Leave	everything	else	with	their	default	values,	and	click	OK.	We	are	not	quite
finished	yet.	We	still	need	to	save	the	new	footprint,	also	referred	to	as	a	“module”,	in	a
new	library.	We	will	do	this	in	the	next	chapter.

Chapter	20:	Saving	the	new	footprint

In	the	previous	chapter,	we	created	our	first	custom	footprint.	We	haven’t	saved	it	yet,
which	is	what	we	will	do	now.

You	could	go	ahead	and	save	the	new	part	in	an	existing	library	but	since	this	is	our
first	custom	part,	it	is	better	if	we	create	a	new	library	for	it,	and	then	save	the	footprint
and	save	it	in	it.	In	general,	this	is	a	good	practice.	When	you	create	a	new	part,	it’s
usually	tied	to	particular	project.	So	you	want	to	have	a	library	for	footprints	specific	to
that	project.	

The	New	Library	And	Save	Current	Footprint	button.	

To	create	a	new	library,	click	on	the	New	Library	And	Save	Current	Footprint	button.	

The	Select	Footprint	Library	Folder	window.	Browse	to	your	project	folder	and
save	the	new	library	there.

Click	on	the	Browse	button	to	browse	to	the	location	of	our	project.	

Give	the	new	library	a	suitable	name.

Give	this	library	a	name,	something	like	“NRF24	footprints”.	

The	Footprints	Library	Folder	is	updated	with	the	library	path	and	name.

Click	OK.	Kicad	will	save	this	new	footprints	library.	Go	to	your	project	folder	to
verify.	In	the	project	folder,	notice	a	new	folder	named	“NRF24_footprints.pretty”.	Go
inside	this	directory,	and	notice	a	file	with	the	Kicad_mod	extension	to	it.	This	file
contains	the	new	footprint.

Now	we’ve	created	a	new	library,	but	to	save	the	footprint	in	it,	we	must	make	it
active.	Even	though	we	just	created	it,	Kicad	doesn’t	do	this	automatically	so	we’ve	got	to
do	it	manually.	Here	is	how	to	do	this:

To	make	a	library	active,	start	by	starting	the	Footprint	Libraries	Wizard.

We	start	by	importing	the	library	to	Kicad.	In	the	preferences	menu,	start	the	Footprint
Library	Wizard.	

Browse	to	the	location	of	the	new	library,	in	the	project	folder.

Look	for	the	new	library	inside	the	project	folder.

The	wizard	confirms	that	what	we	selected	is	a	valid	footprint	library.

You	can	choose	to	make	this	library	global	or	active	for	the	current	project	only.

	We	will	only	use	this	library	in	the	current	project	only	so	select	the	appropriate	option
in	the	last	step	of	the	wizard,	and	click	on	Finish.

The	last	step	before	we	can	finally	save	the	footprint	is	to	make	the	library	active.	I
know	this	doesn’t	make	much	sense.	Why	do	you	need	to	make	the	library	active,	and
then	save	the	new	footprint	in	it?	I	don’t	know	but	that’s	how	it	is	with	Kicad.
Unfortunately,	some	things	don’t	make	intuitive	sense.	

The	Select	Active	Library	button

To	make	the	library	active,	click	on	the	select	active	library	button.

Scroll	down	the	list	of	libraries	that	Kicad	knows	about,	until	you	find	our	new
library.	Select	it	and	click	OK.

Scroll	down	to	the	bottom	to	find	the	one	we	added.	The	name	is		NRF24_footprints.
Click	OK.	This	is	now	the	active	library.

The	name	of	the	active	library	is	shown	at	the	top	of	the	Footprint	Editor	window.

You	can	see	that	the	name	of	the	active	library	appears	at	the	top	of	the	Footprint
Editor	window.	

The	Save	Footprint	button

Finally	now,	click	on	the	Save	Footprint	In	Active	Library	button,	and	give	a	name	for
the	footprint,	or	just	accept	the	default.	Click	OK,	and	finally,	we	now	have	a	new
footprint	stored	safely	inside	a	new	library	that	is	accessible	only	by	this	project.

In	the	next	chapter,	we	will	associate	the	new	footprint	with	its	schematic	component.

Chapter	21:	Associate	the	new	footprint	and	component

In	this	chapter	we	will	associate	the	new	footprint	with	its	schematic	component.

Go	back	to	Eeschema	and	start	Cvpcb.	

From	the	Eeschema	application,	start	Cvpcb.

From	the	Cvpbc	window,	you	can	see	that	the	straight	connector	already	has	a	footprint
associated	with	it.	The	nRF24	component	doesn’t	have	on.	

The	straight	connector	component	has	an	association,	but	the	nRF24	does	not.

To	make	an	association	for	the	nRF24	component,	scroll	down	the	list	in	the	left	pane.
At	the	bottom	of	the	list,	you	will	see	the	library	we	created	in	the	previous	chapter.	

The	new	library	is	at	the	bottom	of	the	list	in	the	left	pane.

Click	on	it	to	select	it.	With	the	custom	component	selected	in	the	middle	pane,	click
on	the	“#”	filter.	Notice	that	in	the	right	pane,	the	custom	footprint	for	the	nRF24
component	appears.	Double	click	on	the	footprint	to	select	it.	

The	preview	button	allows	you	to	get	a	preview	of	a	selected	footprint

	We	know	of	course	what	the	custom	nRF24	footprint	looks	like,	but	let’s	have	another
look	to	confirm.	Click	on	the	preview	button	from	the	top	bar.

The	preview	of	the	nRF24	footprint.

Let’s	save	the	associations	and	close	Cvpcb	and	again	save	the	schematics	file.	

Before	we	move	on,	I	would	like	to	show	you	one	more	useful	feature.	Start	the
footprint	editor,	then	from	the	View	menu	item	select	the	3D	Viewer.

Launch	the	3D	viewer	from	the	View	menu.

The	3D	Viewer	will	give	us	a	3D	representation	of	the	footprint.	We	can	see	how	the
component	will	look	like	once	it	goes	onto	a	PCB.	

The	3D	viewer	give	a	“real	life”	representation	of	the	footprint.

You	can	choose	if	you’d	like	to	have	this	identifier	inside	the	white	silk	screen	books
or	not,	it	doesn’t	really	make	any	difference	and	you	can	have	a	look	on	the	other	side,	the
bottom	side	as	well.	Use	your	mouse	buttons	and	scroll	wheel	to	rotate,	zoom	and	pan	the
viewer.	

We	are	almost	finished	with	Eeschema.	In	the	next	chapter,	we	will	create	the	Netlist
file.	The	Netlist	file	is	a	file	that	contains	information	about	the	circuit,	it’s	components,
associated	footprints,	labels	and	pin	numbers	and	many	other	things.	Our	PCBnew,	which
is	the	PCB	editor,	would	read	this	file	and	load	the	appropriate	footprints	from	the	library
and	that	will	do	the	layout	and	wiring.	

Chapter	22:	Create	a	netlist

We	have	progressed	with	our	project	to	the	point	that	the	bulk	of	the	work	in	Eeschema	is
complete,	and	the	only	thing	left	to	do	is	to	export	the	netlist	file.	In	this	chapter	I	will
show	you	how	to	export	the	netlist	file	from	Eeschema,	and	then	import	it	into	Pcbnew.

Start	Kicad	and	then	launch	Eeschema	if	it’s	not	already	started.	This	is	the	current
version	of	the	project.

The	current	state	of	the	project.	We	will	export	the	netlist	for	this	schematic.

To	export	the	Netlist	file	we	will	click	on	the	Generate	Netlist	button.

This	is	the	Generate	Netlist	button.

The	options	in	the	export	window		are	straight	forward.	

The	netlist	export	options.

We	don’t	have	to	worry	about	OrcadPCB,	CadStar	or	Spice.	We	are	not	working	with
these	applications.	We	are	staying	completely	within	Kicad.	Simply	select	the	Default
format	option	in	the	Pcbnew	tab,	and	click	on	Generate	to	generate	the	Netlist	file.	Next,
choose	the	location	of	the	exported	file	to	be	somewhere	inside	the	project	directory.	

Save	the	netlist	file	in	the	project	directory.

If	you	go	into	you	project	directory,	you	will	see	the	new	netlist	file.	It	is	a	simple	text
file	and	you	can	inspect	it	with	a	text	editor.	Open	it	with	Notepad++	(or	any	text	editor),
and	notice	that	this	file	contains	all	the	information	that	Pcbnew,	the	PCB	layout	program,
will	need	in	order	to	know	which	components	are	supposed	to	be	included	and	what	are
the	connections	between	those	components,	information	about	nets	and	so	on,	is	all	in
here.

The	content	of	the	netlist	file	is	standard	text.

Close	Eeschema	and	move	on	to	the	next	step.	To	start	the	PCB	layout	editor,	Click	on
Pcbnew.	

Start	Pcbnew.

When	Pcbnew	starts,	you	will	see	a	blank	canvas.	It	is	very	similar	to	the	canvas	that
we	use	in	EEschema.

The	blank	Pcbnew	canvas.

At	the	bottom	right	corner	of	the	canvas	you	can	see	the	the	information	for	the
project.	Let’s	setup	the	contents	of	the	label	in	the	bottom	right	corner	of	the	canvas.

The	project	information	is	in	the	bottom	right	corner	of	the	canvas.	

To	set	up	the	contents	of	the	project	information	box,	click	on	File	and	then	we	go	to
page	settings.

Edit	the	contents	of	the	information	box	by	selecting	“Page	settings”	in	the	File
menu.

Fill	the	fields	with	the	information	you	would	like	to	show	in	the	information	box.	as
many	or	as	little	as	you	like.	

Enter	the	information	you	would	like	to	include	in	the	information	box.

Click	OK	when	you	are	finished	typing	in	the	information.	Notice	that	the	information
now	appears	in	the	legend	of	the	canvas.	

The	updated	information	in	the	Pcbnew	legend.

Next,	let’s	read	the	Netlist	file	and	import	all	the	footprints	that	make	up	the	project.	

The	netlist	button

To	read	the	Netlist	file	you	click	on	the	button	marked	“NET”.	

The	netlist	import	dialog.

The	default	settings	in	the	netlist	import	dialog	are	good	as	they	are.	Browse	for	the
location	of	the	netlist	file	(although	most	likely	the	path	to	the	file	will	already	be	in	file
field).	

Kicad,	through	the	Netlist,	file	can	track	new	components	and	old	components.	We
will	see	later,	for	example,	that	a	change	that	I	will	introduce	to	my	original	schematic	will
be	reflected	in	Pcbnew	via	updating	the	netlist	file.

Kicad	is	able	to	detect	new	components	in		a	netlist	file	and	only	import	the	new
components	from	Eeschema	into	Pcbnew.	This	allows	you	to	make	changes	to	your
schematic	and	then	import	those	changes	into	your	PCB	layout	without	losing	any	work.
I’m	going	to	demonstrate	this	in	practice	in	one	of	the	upcoming	chapters.	

We	not	going	to	change	any	of	the	parameters	for	the	import	here,	so	go	ahead	and
click	on	the	Read	Current	Netlist	button.	

A	report	of	the	netlist	import	is	provided	in	the	Messages	text	box,	once	the
import	is	complete.

At	the	bottom	part	of	the	Netlist		window	you	can	see	the	import	report.	There	are	no
error	messages.	Close	the	window.	As	the	Netlist	file	was	read	by	the	application,	it	placed
all	of	the	components	right	in	the	middle	of	my	canvas.

The	footprints,	after	the	import	from	the	netlist	file.

Imagine	the	situation	where	you	had	10	or	20	or	100	components,	all	of	those	would
appear	right	one	on	top	of	the	other.	It	would	be	a	big	hassle	to	manually	move	them	out.
Kicad	provides	a	nice	feature	to	allow	you	to	automatically	separate	those	components
before	you	manually	set	them	and	place	them	where	you	like	them	on	the	PCB.	

The	Mode	footprint	button.

To	enable	that	feature	you	click	on	Mode	Footprint	button.	Once	you	enable	Mode
Footprint,	you	can	right	click	anywhere	on	the	bundle	and	you	can	see	that	there	is	an
option	called	“global	spread	and	place”.	Then,	select	“spread	out	all	footprints”.

Through	the	right	click	menu,	you	can	access	the	“Spread	out	all	footprints”
function.

You	will	get	a	warning	that	locked	footprints	will	not	be	moved.	This	is	ok,	as	we	don’t
have	any	such	footprints.	Click	“Yes,”	.

The	footprints	are	now	spread	on	the	canvas.

	Now	it’s	cleaner.	If	you	had	10	or	20	or	a	lot	more	components	then	those	components
would	be	nicely	spread	out	the	canvas,	so	you	can	then	start	doing	your	wiring	or
placement.

In	the	next	chapter	we	will	work	on	the	footprint	placement.

Chapter	23:	Footprints	placement

Our	project	is	now	at	the	stage	where	the	two	footprints	that	compose	our	PCB	are	spread
out	in	the	Pcbnew	canvas.	In	this	chapter	we	will	do	the	footprint	placement	so	that	we
can	start	giving	shape	to	the	final	PCB.

The	current	state	of	the	PCB	design.

I	would	like	to	place	the	connector	on	the	right	side	of	the	breakout	and	the	nRF24
component	on	the	left	side.	To	so	this,	position	the	cursor	over	the	nRF24	footprint	and	hit
the	‘M’	key.	This	will	allow	you	to	move	this	footprint.	Move	it	so	that	it	is	on	the	left	side
of	the	straight	connector.

The	nRF24	footprint	is	on	the	left	side	of	the	connector.	Notice	the	rattiest	lines.
They	indicate	the	pads	that	should	be	wired	together.

The	thin	white	lines	that	connect	the	pads	together	are	called	“ratsnests”	.	They	are
routing	guides.	As	we	wire	each	pair	of	pads	together,	the	corresponding	ratsnest	will
disappear.

One	thing	to	consider	when	you	are	placing	your	components	onto	your	PCB	is	space.
How	much	space	is	your	final	PCB	going	to	take	up?	Remember	that	PCB	manufacturers,	
will	charge	you	not	based	on	have	many	holes	and	tracks	your	PCB	has	but	based	on	its
dimensions.	Therefore,	the	smaller	your	PCB	is,	the	cheaper	it	will	be	to	make.	

However,	the	smaller	the	PCB	is,	the	harder	can	be	to	route	it.	With	less	space	in
between	footprints,	the	routing	of	tracks	will	be	more	difficult.	This	is	not	a	problem	for
the	simple	PCB	of	this	example,	however	if	you	had	more	footprints,	then	placing	them	to
close	to	each	other	would	make	routing	and	then	soldering	harder.	You	must	think	about
this	and	find	a	dimension	that	works	both	from	a	cost	point	of	view	and	from	these	other
technical	considerations	like	the	soldering	and	the	routing	point	of	view.			

In	the	next	chapter	we	will	look	into	the	PCB	edges,	known	as	edge	cuts,	that	define
the	border	of	the	PCB.	After	that,	we	will	be	able	to	go	ahead	to	complete	the	wiring.

Chapter	24:	Edge	cuts

Before	we	start	working	on	the	wiring,	we	must	define	the	boundary	of	the	PCB.	This
boundary	is	created	by	drawing	a	box	in	a	special	layer	of	the	PCB,	the	edge	cuts	layer.

The	Edge	Cuts	layer	is	one	of	several	PCB	layers	available	in	Kicad.	It	is	the	one
where	the	boundary	of	the	PCB	is	defined.

To	do	that,	start	by	selecting	the	Edge.Cuts	layer	from	the	Layer	chooser	on	the	right
side	of	the	Pcbnew	window.	There	are	many	other	layers	available,	some	of	which	we	will

use	later.	

We	will	use	the	Polygon	tool	to	draw	the	boundary	of	the	PCB.

Once	you	have	selected	the	Edge.Cuts	layer,	click	on	the	add	graphic	line	or	polygon
button.	You	can	choose	other	types	of	graphics	or	graphic	elements	but	for	the	task	at	hand
we	will	the	polygon	to	create	the	boundary	box	around	our	PCB.	To	make	the	drawing
easier	and	more	precise,	just	like	in	EEschema,	you	can	choose	to	change	the	size	of	the
grid.	

The	grid	setting	in	Pcbnew.	Decrease	it	to	make	drawing	more	accurate.

At	the	moment,	the	grid	is	set	to	0.635	millimeters.	For	this	drawing,	I	suggest	a
setting	of	0.127.

To	start	drawing,	with	the	polygon	tool	selected,	click	just	outside	at	the	top	right
corner	of	the	straight	connector.	This	will	start	drawing	a	line.	Move	the	cursor
horizontally	towards	the	left,	until	it	is	over	the	top	left	corner	of	the	nRF24	footprint,	and
click	again	to	mark	the	left	top	edge	of	the	box.	

The	line	should	look	like	this	now:

The	first	line	of	the	boundary	box.

	Continue	in	a	similar	way	to	close	the	box.	Move	the	mouse	down	towards	the	bottom
left	corner	of	the	nRF24	footprint,	and	click	to	define	the	third	edge	of	the	box.	Then
move	towards	the	left,	horizontally,	until	you	reach	just	outside	the	right	bottom	corner	of
the	straight	connector,	and	click	to	define	the	third	edge.	Finally,	move	the	mouse	cursor
over	the	first	edge	and	double-click	to	close	the	polygon.

The	boundary	should	look	like	this	now:

The	completed	boundary	box.

This	box	defines	how	big	your	PCB	is	going	to	be.	One	thing	to	notice	is	that	you	can
measure	lengths	in	KiCad	very	easily.	

Distances	between	points	on	the	PCB	or	the	top-right	corner	of	the	canvas	are

shown	in	the	status	bar.

You	can	see,	in	the	status	bar	of	the	Pcbnew	window,	the	distance	measurements.
These	are	dimensions	for	X	and	Y	axis.	If	you	want	to	know	for	example,	how	long	this
side	of	my	PCB	is,	move	the	cursor	to	one	end,	press	the	space	bar	to	zero	the
measurement	and	then	move	across	to	the	other	side.	The	distance	will	be	shown	in	the
status	bar.

How	does	our	PCB	look	like	now?	Let’s	have	a	look.	We	will	use	the	3D	Viewer	for
this.

To	access	the	3D	Viewer,	go	to	the	View	menu	and	click	on	3D	Viewer.

This	is	what	the	PCB	is	going	to	look	like	this,	without	the	routing	done	yet:

A	3D	view	of	the	PCB.	The	wiring	is	not	done	at	the	moment.

Close	the	3D	Viewer,	and	let’s	work	on	the	text	labels.	If	there	is	a	text	label	that	you
prefer	not	to	show	in	the	final	printed	PCB,	you	can	mark	is	as	“invisible”.	For	example,
the	“CONN_01x08”	label	can	be	made	invisible.	To	mark	it	as	such,	put	your	mouse	over
it	and	hit	the	E	key	to	edit	it.

To	make	a	label	invisible,	go	to	its	properties	and	click	on	the	“Invisible”	radio
button.

Click	on	the	“Invisible”	radio	button,	hit	OK,	and	this	label	will	now	not	show	in	the
final	printed	PCB.

With	the	P1	label,	I	think	it	is	useful	to	keep	it.	Try	to	move	it	inside	the	boundary,	so
that	the	end	result	is	this:

I	have	moved	the	P1	label	inside	the	boundary

Change	the	grid	into	something	smaller,	and	edit	the	properties	of	the	label	to	make	its

dimensions	smaller	if	needed,	so	that	it	can	fit	in	the	space	available.	Do	the	same	for
same	thing	for	U1.

In	the	next	chapter,	we	will	do	the	wiring.

Chapter	25:	Wiring

In	this	chapter	we	will	do	the	wiring	between	the	pins	of	the	two	footprints.	This	work	is
sometimes	called	“routing”,	because	it	involves	finding	a	good	path	for	the	connecting
wires	as	they	traverse	the	surface	of	the	PCB.	As	you	work	on	the	routing,	you	have	to	be
careful	to	avoid	crossing	two	tracks	(another	word	for	“wire”),	or	stumbling	into	holes.

Let’s	start	the	routing	process	with	the	nRF24	footprint.	Our	objective	is	to	connect	the
nRF24	pins	to	the	straight	connector	pins.	

We	connect	the	nRF24	pads	with	the	corresponding	pads	of	the	straight
connector.	The	ratsnests	will	helps	us	distinguish	the	pad	pairs.

To	do	the	wiring,	you	first	choose	the	layer	on	which	you	would	like	your	wires	to	be
on.	For	this	first	project,	we	will	place	all	of	the	wires	on	the	front	copper	layer,	named
“F.Cu”.	In	the	other	two	projects	we	will	both	the	front	and	the	back	copper	layer.	

Select	F.Cu	to	place	the	tracks	in	the	front	copper	layer.

Select	the	front	copper	layer.	Then	hit	the	‘X’	key	to	enable	the	wiring	mode	and
simply	click	to	start	a	wire,	then	click	to	change	its	orientation	and	its	trace	and	then
double-click	once	you	reach	the	end.	

The	first	track.

Remember,	you	can	change	the	grid	for	the	tracks	as	well.	So,	if	you	want	to	have
more	control	over	how	your	track	is	moving	throughout	your	PCB,	you	can	change	the
grid	to	something	smaller.	

You	can	always	adjust	the	grid	to	make	it	easier	to	draw	a	trace.

For	example,	if	I	go	for	something	small	as	this,	then	I’ll	be	able	to	have	a	bit	finer
control.	

The	second	trace,	created	at	a	finer	grid	for	more	precise	control.

Notice	that	if	you	try	to	cross	a	trace	over	an	existing	trace,	Kicad	will	not	allow	you	to
close	the	it.	Kicad	is	able	to	detect	violation	of	electrical	rules	and	enforce	these	rules.

Continue	with	the	wiring	process,	so	that	eventually	your	PCB	will	look	something
like	this:

The	completed	wiring.

You	can	drag	a	single	segment	of	a	wire	in	order	to	adjust	its	position	by	typing	‘G’.
This	is	good	for	fine	adjustments.	If	you	make	an	error,	you	can	also	delete	a	segment
(part	of	a	wire)	or	a	complete	wire	and	try	to	route	it	again.	

Before	we	do	anything	else,	let’s	make	sure	that	we	haven’t	forgotten	anything	or	that
we	haven’t	broken	any	design	rules.	Let’s	do	a	DRC	check.	

Electrical	Rules	Checking	will	save	you	from	a	lot	of	headaches.	Do	them	often.

So,	I	click	on	the	‘perform	DRC	check’	button	and	start	DRC.	

This	ERC	returns	an	empty	report,	which	means	that	there	are	no	faults.

There	is	no	message	down	here,	which	means	that	everything	is	fine.	If	we	had
forgotten	to	do	a	connection,	the	ERC	would	tell	us	that	we	have	unconnected	pads.

In	the	next	chapter,	I	will	show	you	how	to	add	text	labels	in	the	top	silkscreen	layer	of
your	PCB.	These	labels	provide	useful	descriptions	for	the	pins,	and	information	about
your	PCB.

Chapter	26:	Add	text	labels

In	the	last	chapter,	we	completed	the	routing	of	the	tracks.	We	are	very	close	to
completing	this	iteration	of	the	board.	What	is	left	to	do	is	to	add	text	labels.	With	text
labels,	we	can	mark	the	purpose	of	pins,	the	names	of	the	components	on	the	board,	as
well	as	give	our	board	a	name	and	a	version	number.	Text	labels	are	placed	on	the
silkscreen	layer.	In	a	later	chapter,	I	will	show	you	how	to	also	add	decorative	graphics	to
this	layer.

The	Text	tool	allows	you	to	add	text	labels	on	your	board.

Next,	ensure	that	you	have	selected	the	front	silkscreen	layer	(“F.SilkS”)	from	the	list
of	Layers	on	the	right	side	of	the	Pcbnew	window.	There	should	be	a	small	blue	triangle
marking	the	selected	layer

Ensure	that	a	small	blue	triangle	indicates	the	F.SilkS	is	the	selected	layer.

Let’s	start	adding	the	text.	Start	with	VCC.	Click	somewhere	on	the	left	side	of	the
bottom	pad	of	the	straight	connector.	The	properties	window	will	come	up.	Adjust	the	text
properties	so	that	the	width	and	height	are	set	to	0.8	millimeters.	The	thickness	will	be
adjusted	by	Kicad.	

The	text	label	properties	window.

Click	OK.	You	will	see	a	warning	message	saying	that	the	thickness	is	too	large	for	the
text	size	so	Kicad	will	adjust	it.

You	can	allow	Kicad	to	adjust	the	text	thickness	based	on	the	dimensions	you
chose	in	the	properties	window.

Click	OK	to	accept	Kicad’s	offer	to	adjust	the	thickness.	You	will	now	be	able	to	fine-
tune	the	position	of	the	text	next	to	the	label.	Click	to	fix	the	position.	If	you	change	your
mind	and	you	want	to	move	the	text	label	again,	hit	the	“M”	key.	

We	should	create	the	labels	on	this	board	so	that	they	are	also	uniform	in	the	way	they
look.	Now	that	we	have	created	the	first	label,	we	can	duplicate	it	several	time,	and	then
simply	change	the	text,	but	not	their	other	properties.	To	do	that,	I’m	going	to	put	your
mouse	over	the	text	and	hit	control	D	and	this	will	create	duplicates.	Do	that	for	all	of	the
connectors.	You	can	also	do	this	by	using	the	C	key,	as	this	creates	a	copy.

The	board	now	contains	duplicates	of	the	original	Vcc	label.	We’ll	adjust	the	text
for	the	duplicates.

Now	that	the	duplicate	labels	are	in	place,	lets	start	editing	their	text.	Start	with	the	top

one,	put	your	mouse	cursor	over	it	and	type	“E”	to	edit.	

Change	the	original	Vcc	to	GND.

Change	the	original	Vcc	to	GND,	and	hit	OK.	

Do	the	same	for	the	rest	of	the	duplicate	labels,	so	that	eventually	you	have	something
like	this:

The	straight	connector	labels,	with	their	text	edited.

Bring	up	the	3D	view	of	the	board	to	get	an	idea	of	how	it	looks	like	at	the	moment.
Let’s	have	a	look	at	the	3D	view	off	the	breakout.	Click	on	the	View	top	menu	item,	and
select	3D	Viewer.	

3D	view,	top	side.

3D	view,	back	side.

Notice	that	in	the	front	side	view,	you	can	see	the	copper	tracks	connecting	the	pads.
The	back	side	has	no	copper	tracks,	since	we	are	making	a	single-sided	board.	

One	more	piece	of	text	I’d	like	to	put	on	the	board	is	the	version	number.	Since
designing	a	board	is	an	iterative	process,	it	is	a	good	practice	to	always	version	them
before	you	send	them	for	manufacturing.	This	way,	you	will	be	able	to	tell	them	apart,
especially	if	the	difference	between	subsequent	versions	are	small.	Create	a	new	label	and
place	it	on	the	board,	so	that	you	have	something	like	this:

This	is	your	board,	V1.0!

This	is	your	nRF24	breakout	board,	version	1!

After	finishing	with	the	process	of	creating	version	1	of	the	board,	I	just	realized	that
we	should	include	a	capacitor	to	improve	the	reliability	of	the	NRF-24.	I	also	want	to	have
a	look	into	the	issue	of	power	tracks	and	learn	about	copper	fills.	Let’s	explore	these	topics
in	the	next	section.

PART	FOUR
Project	1:	Enhancing	the	design

Chapter	27:	What	is	this	part

In	this	section,	we	will	enhance	the	design	of	the	nRF24	breakout	by	going	through	a
second	iteration.

We	will	add	a	bypass	capacitor	to	the	design,	increase	the	width	of	the	power	tracks,
and	add	a	ground	copper	plane.

To	add	the	capacitor,	we	will	need	to	update	the	schematic	diagram	in	Eeschema,	and
then	update	the	layout	in	Pcbnew	to	include	the	new	component.	For	the	other	two
improvements,	we	will	work	only	with	Pcbnew.

Chapter	28:	Add	a	capacitor	to	the	schematic	using	Eeschema

The	first	version	of	the	breakout	is	a	good	start,	but	considering	how	the	nRF24	module	is
normally	used,	I	realized	that	it	can	be	improved.	An	obvious	improvement	is	the
inclusion	of		a	capacitor	on	the	breakout	PCB,	so	that	we	don’t	have	to	plug	one	on	the
breadboard.	The	capacitor	is	used	to	help	smooth	out	any	ripple	effects	from	the	power
supply	that	feeds	the	module.	It	also	stores	energy	which	is	used	for	for	when	the	power
supply	can’t	provide	enough.	That’s	used	for	when	you	connect	the	module	to	a	small
Arduino	or	battery	powered	applications.	

Two	more	things	I	would	like	to	do	in	order	to	improve	our	design,	is	to	add	a	copper
fill	for	ground.	The	copper	fill	is	simply	an	area	on	the	board	that	is	covered	by	copper,
and	connected	to	the	ground	pads.	Ground	copper	fills	(also	known	as	“ground	planes”)
have	certain	benefits,	including	reducing	the	amount	of	chemicals	used	in	etching	the
copper	from	the	board	during	manufacturing.	Having	a	ground	plane	can	make	routing
easy	since	a	return	path	for	the	current	can	always	be	found	nearby.

I	would	also	like	to	adjust	the	width	of	the	Vcc	track,	so	that	it’s	a	little	bit	larger	than
the	rest,	again	so,	that	it	provides	a	bigger	path	with	a	lower	impedance	for	current	to	flow
through.	

Both	improvements	are	not	strictly	needed	for	this	small	project.	They	actually	are	not
going	to	make	any	difference	to	the	way	that	the	circuit	will	behave,	but	they	are	a	good
common	practice	for	any	PCB	design,	regardless,	and	it	takes	very	little	effort	to	do,
anyway.	

Let’s	go	ahead	and	add	the	capacitor	first.

First,	we	will	update	our	schematic	with	the	new	component	in	Eeschema,	then	create
a	new	netlist.	After	that,	we	will	start	Pcbnew	and	import	the	new	netlist.	This	will,	in
effect,	insert	the	new	component	to	the	layout	editor,	place	it	on	the	canvas,	and	do	the
wiring.

Start	Eeschema	and	hit	the	‘A’	key	to	add	a	new	component.	

Let’s	search	for	a	capacitor.	I	would	like	to	use	an	electrolytic	capacitor.	The
component	chooser	gives	us	a	few	options.	Some	of	them	are	non-polarised	capacitors,

some	others	are	polarised.	Our	electrolytic	capacitor	is	polarised,	so	I	will	choose	an
option	with	the	appropriate	symbol.

We	will	add	a	polarised	capacitor;	be	careful	to	select	the	appropriate	component.

	Double-click	on	this	option	to	insert	this	component	to	the	canvas.	

The	new	component	is	on	the	canvas	now.	Notice	the	“+”	sign	indicating	the
polarity	of	the	capacitor,	and	the	designator	that	contains	a	question	mark.

You	can	see	that	the	designator	is	got	a	question	mark	still,	so	it	hasn’t	been	given	a
number	yet.	

The	capacitor	is	connected	to	the	rest	of	the	circuit.

Let’s	do	the	connections.	Use	the	‘W’	key	to	create	a	wire.	Connect	the	negative	pin	of
the	capacitor	to	pin	0	of	the	nRF24	component.	Connect	the	positive	pin	of	the	capacitor
to	pin	7	of	the	nRF24	component.	To	confirm	that	two	wires	are	properly	connected,	look
for	a	solid	green	dot	at	the	junction	of	the	two	wires.	If	there	is	no	dot,	then	the	two	wires
are	simply	crossing,	but	not	connected.

Don’t	forget	to	save	your	new	schematic.

Let’s	continue	with	the	the	annotation.	

The	annotation	tool	button.

Click	on	the	‘Annotate	Tool’.	

The	Annotate	Schematic	window.	The	defaults	are	usually	good	to	use.

The	default	options	in	the	Annotate	Schematic	window	are	good	as	they	are,	so	click
‘Annotate’.	

We	only	want	to	annotate	unannotated	components	anyway.

You	will	see	an	information	box	explaining	that	only	unannotated	components	will	be
annotated.	This	is	exactly	what	we	want,	so	click	on	OK	to	complete	the	process.	

The	capacitor	now	has	a	unique	designator.

So,	there’s	the	designator	for	the	capacitor,	it’s	now	C1.	I	would	also	like	to	assign	the
capacitor	with	a	value,	so	that	will	show	up	on	the	schematic.	

You	can	edit	the	value	of	a	component	by	accessing	it’s	Edit	Value	Field	window.

Hit	the	‘V’	key,	as	your	cursor	is	over	the	capacitor.	The	Edit	Value	window	will	come
up.	Type	the	value	“10	μF”	in	the	Text	box,	and	click	OK.

The	capacitor	value	is	showing	in	the	schematic.

You	could	also	have	done	the	same	thing	by	hitting	the	‘E’	key.	

Typing	“E”	will	bring	up	the	properties	window	for	the	component.	You	can	edit
the	component	value,	as	well	as	various	other	properties.

This	would	take	you	to	the	component’s	properties	window.	

Next,	let’s	do	the	associations	of	this	schematic	component	with	a	footprint.	Start	the
Cvpcb	tool	to	do	this.

In	Cvpcb,	you	can	see	that	the	capacitor	does	not	have	an	association	yet.

	You	can	see	here	that	the	new	component	does	not	have	an	association.	Let’s	look	for
a	footprint	for	the	capacitor.	We	need	to	find	something	that	will	have	the	appropriate	size
on	the	board.	

Find	a	footprint	that	has	the	right	dimensions	for	the	component.

Our	capacitor	is	a	through-hole	component.	You	can	use	a	ruler	to	measure	the	distance
between	the	pins	and	the	diameter	at	its	base.		You	can	see	this	in	the	photograph,	that	this
capacitor	is	a	radial	capacitor	with	a	diameter	of	10	mm.	You	can	look	for	a	footprint	in
the	Capacitors_Throughole	library.	The	contents	of	this	library	have	footprints	with	the
sizes	included	in	the	filename.	This	is	very	convenient!	Look	for	one	with	“D10”	in	its
name	(for	“Diameter”),	and	there	is	a	good	chance	that	this	is	the	footprint	you	need.	

Click	on	the	preview	button	to	see	the	selected	footprint.

Inspect	the	footprint	to	ensure	it	is	the	right	one	for	the	component.

You	can	also	look	at	the	footprint	preview	in	order	to	ensure	that	it	is	the	right	one	for
your	component.	You	can	have	a	look	at	the	way	that	it	looks	like.	

Double-click	on	the	footprint	titled
“Capacitors_Throughhole:C_Radial_D10_L16_P5”	to	select	it,	and	the	association	is
complete.	

Save	the	footprint	associations	and	go	back	to	Eeschema.	Let’s	generate	the	new
netlist.	

Click	to	generate	a	new	netlist.

The	Netlist	dialogue,	click	on	Generate.	It	is	ok	to	overwrite	the	previous	netlist.	

Click	“Generate”.	It	is	ok	to	overwrite	the	old	netlist	file	since	now	it	is	out	of
date.

We	now	have	a	new	netlist,	so	we	can	exit	Eeschema	and	get	into	Pcbnew	to	do	the
layout	and	the	wiring.	We	will	do	this	in	the	next	chapter.

	

Chapter	29:	Add	a	capacitor	to	the	layout	in	Pcbnew

In	this	chapter,	we	will	update	the	layout	and	wiring	so	that	we	can	include	the	new
capacitor	in	our	design.	Before	we	forget,	let’s	change	the	version	designator	of	the	PCB
to	the	new	version	designator	which.	Let’s	make	it	version	1.1.	Remember,	you	can	edit
the	text	label	by	placing	the	mouse	cursor	over	it	and	hating	the	“E”	key,	which	will	bring
up	the	properties	window	for	the	label.

The	board	revision	number	is	updated	to	1.1

Next,	let’s	import	the	new	netlist.	Click	on	the	netlist	button,	and	browse	to	the
location	of	the	netlist	file.

The	netlist	button.

The	default	settings	are	usually	fine	as	they	are.	The	Setlist	file	location	should
also	be	correct.

Click	on	Read	Current	Setlist	to	import	the	file.	You	will	get	a	warning	message:

Yes,	I	am	sure!

This	message	seems	a	little	strong	worded,	but	it	is	nothing	to	worry	about.	Reading
the	netlist	file	is	exactly	what	we	want	to	do,	so	click	on	Yes.

You	can	see	in	the	messages	text	box	confirmation	that	the	new	component	has	been
added:

The	Messages	text	box	of	the	Netlist	window	contains	confirmation	that	one	new
component	was	added	to	the	canvas.

The	capacitor	footprint	is	automatically	placed	below	the	existing	board.

We	can	now	position	the	new	footprint.	As	a	rule	of	thumb,	we	want	to	tracks	from	the
capacitor	pads	to	the	VCC	and	ground	pass	to	be	as	short	as	possible.	Based	on	that,	we
should	position	the	capacitor	just	below	the	bottom	of	the	nRF24	component.	

This	position	of	the	capacitor	will	allow	us	to	draw	short	tracks	to	GND	and	Vcc.
Notice	the	ratsnests	indicating	the	pads	that	have	to	be	connected.

We	should	not	try	to	place	it	any	closer	because	we	risk	casing	of	the	capacitor	to	be
too	close	to	the	edge	of	the	NRF	module.	This	might	make	it	to	hard	to	actually	mount	the
components	on	the	board.

You	can	see	that	the	capacitor,	especially	its	pads,	are	outside	the	edges	of	the	existing
board	border.	We	will	have	to	change	the	bottom	border	so	that	there	is	more	room	for	the
capacitor.	Let’s	update	the	edge	cut	next	before	we	do	the	wiring.	Select	the	edge	cuts
layer	and	delete	the	bottom	part	of	the	edge	cut.	To	delete,	click	on	the	rubbish	bin	button.

The	bottom	edge	of	the	border	has	been	deleted.

You	can	be	a	bit	creating	with	the	border	edges.		Click	on	the	polygon	tool	so	that	you
can	draw	a	new	border,	and	create	something	like	this:

The	new	border,	going	around	the	capacitor.

I	think	it	looks	nice	at	least.	You	can	improve	on	that	of	course,	if	you	have	a	bit	of
patience	you	can	make	this	look	nice	and	rounded.	In	that	case,	I	think	this	is	good
enough,	so	let’s	check	it	out.	

You	can	use	the	3D	viewer	to	inspect	the	board	at	its	current	state:

A	3D	view	of	the	board.

What	does	it	look	like	now?	It	looks	like	this.	A	bit	weird,	but	you	can	do	interesting
shapes	in	this	way.

You	can	also	move	the	labels	to	locations	that	look	more	appropriate	to	you.	Feel	free
to	experiment	with	this.	

Let’s	now	work	on	the	wiring.	Switch	back	to	the	front	copper	layer	and	hit	the	X	key.
Connect	the	VCC	to	the	positive	pin	of	the	capacitor.	

Connect	the	positive	pad	of	the	capacitor	to	the	Vcc	pad	of	the	nRF24.

With	the	ground	pin	we	need	to	be	a	bit	more	creative.	You	can	see	we	can	really	route
a	wire	directly	from	the	negative	pin	of	the	capacitor	to	the	GND	pin	of	the	nRF24
because	there	are	two	other	wires	in	the	way.	But,	we	can	do	the	routing	by	going	around
the	side	of	the	board	and	connect	to	the	existing	Ground	wire,	like	this:

Attempt	to	connect	the	negative	pin	of	the	capacitor	with	an	existing	ground	wire.

Notice	that	the	ratnest	line	for	the	negative	pin	of	the	capacitor	has	not	disappeared.
This	is	even	though	we	have	done	a	connection	between	that	pin	and	the	existing	GND
wire.	Why	is	that?	Let’s	do	an	ERC.	

The	ERC	is	telling	us	that	the	capacitor	negative	pad	and	GND	are	not	actually
connected,	even	though	they	look	connected.

	Even	though	the	new	wire	seems	to	be	properly	connected	to	the	negative	pad	of	the
capacitor	and	to	the	GND	wire,	it	may	actually	not	be	properly	connected.	So,	in	situations
like	this,	it	helps	to	double	check	connections,	and	often	to	redo	them	in	order	to	fix	such
annoying	problems.

In	my	first	attempt	to	connect	the	two	wires,	the	connection	was	not	successful.	I
had	to	try	again	to	make	it	right.

The	process	of	wiring	can	be	fiddly.	Remember	that	you	can	always	use	the	ERC
check	to	make	sure	you	haven’t	forgotten	anything	even	if	it	looks	like	it’s	connected,
sometimes	it’s	not	really	connected.

So,	let’s	have	another	look	at	the	PCB	and	what	it	looks	like	now	in	3D.	

The	current	3D	view	of	our	board.	You	can	see	the	capacitor	and	the	new	tracks.

You	can	see	the	wires	for	the	capacitor	connected	to	the	rest	of	the	board.

In	the	next	lecture	will	look	into	improving	some	of	the	electrical	characteristics	of	this
PCB,	and	in	particular,	we’ll	look	at	the	issue	of	the	track	width	and	copper	plates.

Chapter	30:	Controlling	the	track	width

In	this	chapter	we	will	improve	the	electrical	characteristics	of	the	PCB	by	increasing	the
width	of	the	Ground	and	Vcc	tracks.	As	far	the	features	of	this	PCB	are	concerned,	I	think
what	we	have	now	is	enough.	We	could	stop	here	and	send	it	to	the	manufacturer	but	in
general	there	are	two	more	things	that	you	can	do	in	any	design.	First,	you	can	take	into
account	the	current	requirements	of	particular	pads,	especially	those	that	convey	power
like	in	this	case,	VCC	and	ground.	Also	you	can	take	into	account	the	heat	dissipation
requirements.

For	this	board	the	main	component	is	the	NRF2401L+	module.	In	its	documentation
we	can	learn	that	at	peak	receive	in	transmitter	operation,	it	will	draw	up	to	14	milliamps
of	current.	We	should	confirm	that	the	tracks	that	convey	power	can	accommodate	this
amount	of	current	going	through	them.	From	my	own	experience,	I	know	that	this	module
can	get	a	little	hot	when	it	is	operating	at	peak.	It	doesn’t	get	as	hot	as	a	CPU	or	RAM
does	but	I	would	still	like	to	take	that	into	account	and	build	my	breakout	board	in	a	way
that	it	manages	the	observed	heat	profile.

What	I	will	show	you	next	is	not	scientifically	robust,	but	for	our	practical	purposes	it
will	be	good	enough.	Let’s	start	with	the	track	width.	You	can	control	the	width	of	each
track	manually	or	automatically.	The	automatic	method	works	with	nets,	which	is
something	I	haven’t	discussed	yet,	but	I	will	in	the	next	project.	The	manual	method
involves	creating	custom	track’s	widths	and	then	applying	one	of	those	to	a	new	or
existing	track.	

To	create	custom	track	widths,	select	Design	Rules.

Let’s	go	ahead	and	add	a	few	custom	track	widths	that	should	cover	99%	of	your

requirements.	To	do	that,	let’s	go	to	design	rules	and	check	on	the	first	option	design
rules.	

Once	in	the	Design	Rules	Editor,	click	on	the	Global	Design	Rules	tab.

Switch	to	the	global	design	rules	tab.	Notice,	in	the	middle	area	of	the	window,	two
empty	grids.	On	the	left	side	you	can	see	the	Custom	Via	Sizes	grid,	and	on	the	right	side
is	the	Custom	Track	Width.	We	will	populate	these	grids	with	our	own	values.	Let’s	work
on	the	widths	first.	I	looked	up	the	manufacturing	specifications	for	OSH	Park	and	I	found
the	typical	widths	that	they	support.	I	will	use	these	numbers	here.	These	numbers	tend	to
be	used	across	the	industry,	so	chances	are	they	will	be	right	for	many	other	fabricators.	

Please	look	at	the	screenshot	below	and	copy	the	custom	widths	to	your	Custom	Track
Widths	grid:

The	custom	track	width	sizes	that	work	with	OSHPark	(and	many	other
fabricators).

Custom	tracks	3,	4	and	5	are	very	large	and	unlikely	I	will	ever	use	them,	but	we	can
include	them	for	the	sake	of	completeness.	

The	custom	via	sizes	that	work	with	OSHPark	(and	many	other	fabricators).

Even	though	we	are	not	going	to	be	using	any	vias	in	this	project,	we	will	in	the	next

project.	We	might	as	well	put	them	in	here	to	have	them	ready	to	use	later.	Copy	the
values	from	the	screenshot	above	to	your	Custom	Via	Sizes	grid.

The	minimum	allowed	values	must	be	at	least	equal	to	the	smallest	values	in	the
two	grids.

At	the	top	right	side	of	the	window	you	will	see	the	minimum	allowed	values	group.
None	of	the	values	in	the	two	grids	of	this	window	can	be	smaller	than	the	corresponding
values	in	this	group.	I	have	entered	the	correct	values	to	satisfy	the	minimum	value	rules
in	the	Minimum	Allowed	Values	group,	so	feel	free	to	copy	these	values	across	to	your
Design	Rules	Editor.

When	you	are	finished,	click	on	OK	to	commit	the	changes.	

The	custom	track	widths	now	appear	in	the	width	drop	down	menu.

You	can	now	see	that	the	values	that	we	have	just	entered	are	available	from	the	Track
Width	drop	down	menu.	Let’s	change	the	width	of	one	of	the	existing	tracks.	Let’s	change
the	width	of	the	Vcc	track	to	something	bigger.	First,	choose	the	new	dimension,	for
example,	0.508	millimeters.	

First,	choose	the	desired	track	width.

Second,	right	click	on	the	track	you	want	to	change,	and	select	“Change	Track
Width”

Notice	that	the	track	is	now	thicker.

Then,	go	to	the	track	that	you	want	to	adjust	the	width	for,	right	click	on	it	and	select
change	track	width.	You	can	see	that	it	has	become	thicker.	You	can	do	the	same	thing	for
all	the	Vcc	lines.	

For	the	ground	tracks,	I	would	like	to	also	make	it	thicker.	Taking	the	available	space
into	account,	I	will	choose	to	make	the	Ground	tracks	0.381mm	wide.	Again,	choose	this
value	from	the	Track	Width	drop	down	menu,	then	right	click	on	the	Ground	tracks	and

select	Change	Track	Width.	

This	GND	track	is	adjusted	to	0.381mm	width.

That	should	be	okay.	I	will	do	a	check	in	a	second.	Same	thing	for	this.	It	will	change
the	whole	track	not	just	the	segment.	If	you	want	to	just	change	the	segment	then	you	can
just	choose,	change	segment	width.	

In	this	chapter	we	decided	on	the	track	width	for	the	Vcc	and	GND	tracks	by	simply
guessing	what	values	might	be	ok.	There	is	not	much	science	in	this.	In	the	next	chapter,	I
will	show	you	how	to	use	Kicad’s	built-in	track	width	calculator	to	calculate,	instead	of
guessing,	the	appropriate	track	width.

Chapter	31:	Calculate	the	appropriate	track	width

In	the	last	chapter,	you	learned	how	to	customise	the	width	of	a	track.	We	didn’t	concern
ourselves	with	figuring	out	the	appropriate	width	for	a	track	though,	but	only	have	to
control	the	width.	

In	this	chapter,	I	will	show	you	how	to	use	Kicad’s	built-in	track	width	calculator	to
calculate	(instead	of	guessing)	the	minimum	track	width.	Notice	that	I	used	the	word
“minimum”.	I	did	this	because	in	general,	bigger	track	widths	are	better,	and	the	Kicad’s
calculator	will	give	you	the	minimum	width	for	which	your	board	can	operate	properly
based	on	the	information	you	entered.	This	is	why	very	ofter,	at	least	for	hobbyist	PCBs,
you	can	safely	skip	the	calculator	and	just	choose	large	width	values	with	a	lot	of	“margin
of	safety”	in	them.

This	will	become	more	clear	after	you	complete	this	chapter.

Start	the	Track	Width	Calculator	from	the	main	Kicad	window.

To	start	the	calculator,	go	back	to	the	main	KiCad	window	and	click	on	the	PCB
calculator	button.	

The	Track	Width	Calculator	is	in	the	second	tab	of	the	PCB	calculator	app.

Click	on	the	second	tab,	‘Track	Width’.	We	know	that	from	the	documentation	of	our
main	component,	the	RF24,	that	at	peak	it	will	draw	40	milliamps	of	power.	Type	this
figure	in	the	Current	field	of	the	Parameters	group,	in	Amps.	So,	you	should	type	“0.014”
(A).	

For	the	temperature	rise,	we	should	set	it	20	degrees	Centigrade	because	I	don’t	see
that	this	component	will	be	operating	in	temperature	variations	more	than	20	degrees
above	room	temperature	and	below	room	temperature.	Therefore,	a	20	degrees	spread
seems	like	reasonable	value	here.	

The	conductor	length	is	not	going	to	be	more	than	20	millimeters.	You	can	measure
that	with	the	measurement	tools	that	I	showed	you	earlier	but	I	don’t	think	that	the
conductor	length	is	going	to	be	more	than	20	millimeters.	We	don’t	need	to	be	too
accurate	about	this	in	our	circuit	because	it	is	a	low	frequency,	low	power	circuit.	If	you
were	working	on	a	high-frequency	circuit,	parameter	like	this	start	to	become	very
important.	Let’s	leave	that	as	20	millimeters	as	the	conductor	length.	

After	entering	the	desired	values	in	the	Parameters	group,	the	calculated	Trace
width	appears	in	the	External	layer	traces	group,	on	the	right	side,	in	the	Trace
Width	box.

You	can	see	that	as	I	am	filling	these	values	in	the	parameters	top	left	corner	of	the
calculator,	the	calculator	is	automatically	calculating	the	trace	width	and	thickness	for
these	characteristics.	You	can	see	in	the	External	Layer	Traces,	the	minimum	Trace	Width

is	calculated	to	be	0.00054mm.	This	is	the	minimum	trace	width	that	would	allow	for	this
much	current	to	flow	through	at	this	temperature	rise	for	a	conductor	that	is	that	long.

In	the	previous	chapter,	we	set	the	ground	traces	to	0.381mm.	This	value	is	much,
much	larger	than	the	calculated	minimum.	We	are	well	and	truly	covered	in	terms	of	trace
width.	This	is	just	confirmation	that	the	thickness	that	I	have	chosen	is	sufficient.

The	Track	Width	calculator	contains	the	Internal	Layer	Traces	group.	In	it	you
will	find	the	appropriate	trace	width	for	a	trace	that	placed	inside	the	PCB,	as
opposed	to	its	surface.

Notice	that	the	track	width	calculator	contains	a	group	titled	“Internal	layer	traces”.
This	group	contains	calculations	for	tracks	that	are	placed	inside	the	PCB,	as	opposed	to
its	surface.	In	our	example,	the	traces	are	all	on	the	top	layer.	In	the	next	two	projects,	they
traces	will	be	in	either	the	top	or	the	bottom	trace.	If	you	happened	to	be	building	a	PCB
with	more	than	2	layers,	the	you	will	need	to	use	the	numbers	in	this	group	to	work	out
trace	widths	for	the	internal	layers.

Based	on	the	calculator	findings	it	turns	out	that	our	current	width	for	the	Vcc	track	are
orders	of	magnitude	more	than	the	minimum.	But	it’s	better	to	be	safe	than	sorry.	This
means	it	is	better	to	have	a	wider	track	then	a	narrower	track.	These	tracks	are	well	within
the	minimum	so	I’ll	leave	them	as	they	are.	Before	we	end	this	chapter,	do	an	ERC	to
make	sure	that	we	haven’t	violated	any	rules.

In	the	next	chapter,	we	will	add	copper	fills	to	the	board.

Chapter	32:	Adding	copper	fills

An	area	on	the	PCB	that	is	covered	with	a	thin	copper	layer	is	called	copper	fill.	Copper
fills	are	used	to	create	a	ground	plane.	A	ground	plane	is	an	area	on	the	PCB	that	is
grounded	by	being	connected	to	one	or	more	ground	pads.	Pads	that	are	should	be
connected	to	ground	can	be	connected	to	the	ground	plane	via	small	traces.	These	traces
are	often	called	“thermal	reliefs”.	

An	example	of	a	thermal	relief.	Notice	the	small	traces	connecting	the	bright
coloured	pad	in	the	middle	of	this	image,	to	the	purple-masked	copper	fill.

The	thermal	relief	allows	for	sufficient	electrical	connection	between	the	pad	and	the
copper	fill,	while	at	the	same	time	restricting	the	amount	of	thermal	energy	that	is
dissipated	from	the	pad	to	the	copper	fill.	This	is	important	for	achieving	good	soldering.
If	the	pad	was	connected	directly	to	the	copper	fill,	then	too	much	thermal	energy	would

dissipate	making	it	hard	to	keep	a	high	enough	temperature	in	the	solder.	This	would	result
to	a	failed	soldered	joint	between	the	pad	and	the	component	pin.	

You	can	also	create	a	copper	fill	that	is	not	grounded.	Instead,	you	can	attached	to	a
VCC	pad.	In	2-sided	PCB,	the	typical	configuration	is	to	create	a	ground	copper	plane	in
the	bottom	layer,	and	a	Vcc	copper	plane	in	the	top	layer.	In	the	circuit	for	the	current
project	we	will	create	a	ground	plane	and	cover	as	much	of	the	top	copper	area	as	we	can.
In	the	next	two	projects	we’ll	be	creating	a	Vcc	plane	on	the	top	layer	and	a	ground	plane
in	the	bottom	area.

Start	by	clicking	on	the	Add	Field	Zones	button.

Let’s	get	started.	To	create	a	copper	fill	start	by	clicking	on	the	Add	Field	Zones
button.	This	will	change	your	cursor	into	a	cross.	You	can	then	start	creating	the	new	zone.
Make	sure	that	the	top	copper	layer	is	selected	(F.Cu),	and	click	on	the	top	right	corner	of
the	PCB.	

Working	on	F.Cu,	click	on	the	top	right	corner	of	the	PCB	to	start	creating	the
new	zone.

The	first	zone	click	will	bring	up	the	Copper	Zone	Properties	window.

The	first	click	will	bring	up	the	Copper	Zone	Properties	window.	The	two	important
settings	to	make	here	are	the	layer	for	the	fill,	and	the	net	you	would	like	the	zone	to	be
connected	to.	In	this	project,	we	are	working	on	the	top	layer	only,	so	for	the	layer,	choose
“F.Cu”.	Next,	in	the	Net	box,	there	are	several	nets	listed.	Which	one	is	the	ground	net?	

Each	trace	has	the	name	of	the	net	to	which	it	belongs	written	on	it.	

In	the	next	project,	I	will	show	you	how	to	give	nets	a	custom,	easy	to	recognise	name.
In	this	project,	the	nets	were	automatically	named	by	Kicad.	To	figure	out	which	of	the

listed	nets	is	the	ground	net,	have	a	look	at	the	traces.	Zoom	in	if	necessary.	In	the
screenshot	above,	you	can	see	that	the	trace	connected	to	the	Vcc	pad	has	the	text	“Net	-
(C1	-	Pad1)”	on	it.	This	is	the	name	of	the	net	to	which	this	trace	belongs	to.	Also	look	at
the	trace	that	is	connected	to	the	GND	pads.	The	name	of	that	net	is	“Net	-	(C1-Pad2)”.
This	way,	you	can	determine	the	name	of	the	net	to	which	a	wire	belongs	to.

The	Net-(C1-Pad2)	is	the	ground	net.

Now	that	you	know	that,	you	can	go	back	to	the	Copper	Zone	Properties	window	and
click	on	the	“Net-(C1-Pad2)”	net	to	select	it.	Then,	click	OK	to	close	the	Properties
window.	You	can	now	continue	drawing	the	new	zone.	The	first	edge	of	the	zone	is
already	selected,	so	move	the	cursor	to	the	top	left	corner	of	the	PCB	to	select	the	second
edge,	and	click	to	commit.	Continue	around	the	edges	of	the	PCB,	like	this:

Draw	the	zone	edge	along	the	edge	of	the	PCB.	Click	to	create	an	edge.

To	complete	the	zone,	double-click.	Notice	that	the	zone	is	marked	by	short	red
hairlines.

Draw	the	edge	of	the	zone	as	close	as	you	can	to	the	edge	of	the	PCB.	Go	around	the
edge	of	the	PCB,	clicking	to	create	an	edge.	To	close	the	zone,	double	click	on	the	point
where	you	started	from,	at	the	top	right	of	the	PCB.	If	all	this	is	done	correctly,	the	zone

will	be	created.	You	will	see	the	red	outline,	and	the	small	red	hairlines	pointing	inwards.
They	are	read	because	we	are	working	on	the	top	copper	layer,	which	is	designated	by	the
red	colour.	If	we	were	working	on	the	bottom	layer,	the	traces	and	the	outline	of	the	zones
would	be	coloured	green.

The	next	thing	to	do	is	to	fill	this	area	with	copper.	

Right-click	inside	the	zone,	and	select	Fill	or	Refill	All	Zone.

Right	click	anywhere	inside	the	zone	and	then	choose	“fill	or	refill	all	zones”.	

The	zone	is	now	filled.

The	red	area	indicates	that	copper	is	filled	where	is	possible.	You	can	also	notice	the
thermal	reliefs	in	the	ground	pad.

Save	the	project.	

This	button	allows	you	to	toggle	copper	fills	on	and	off.	

If	you	would	like	to	have	a	look	at	your	board	without	a	copper	fills	showing	you	can
just	make	them	invisible,	so	you	can	click	on	the	“Make	zone	fills	invisible”	button.	You
can	make	the	zone	fill	visible	again	by,	clicking	on	the	“Make	zone	fills	visible”	button.	

Let’s	do	another	ERC	to	make	sure	everything	is	ok.	

In	the	next	section,	I	will	show	you	how	to	export	the	Gerber	files	upload	the	PCB	to
the	manufacturer.

PART	FIVE
Project	1:	Fabrication

Chapter	33:	What	is	this	part

At	this	point	we	have	completed	the	design	of	the	nEF24	breakout	and	we	are	ready	to
send	it	of	to	a	fabrication	lab.

In	this	section,	I	will	show	you	the	process	of	doing	this	with	OSHPark.	The	process	is
almost	identical	for	most	other	online	fabs.

As	an	aside,	in	this	section	I	will	also	show	you	how	to	add	a	decorative	graphic	to
your	PCB.

Chapter	34:	Creating	the	Gerber	files	and	uploading	to	fabricator

This	board	is	almost	ready	to	manufacture.

This	board	is	ready	to	make.	Before	I	upload	it	to	the	manufacturer,	why	not	put	your
name	on	it,	or	the	name	of	the	board?	Switch	to	the	front	silk	screen	and	use	the	text	tool
to	type	in	the	name	of	the	board,	perhaps	let’s	call	it	Peter’s	nRF24	Breakout.	Or	you	can
put	your	name	on	it.	

Choose	the	Front	Silkscreen	(“F.SilkS”)	layer	to	add	some	text.

Edit	the	text	and	set	the	height	and	and	I’d	like	to	make	its	height	and	width	to	your
desired	values	—	maybe	1mm	should	be	enough.	You	can	also	use	the	line	tool	to	draw	a
box	around	the	text.	The	end	result	is	this:

The	name	of	the	board	with	a	box	around	it.

You	can	also	put	things	on	the	bottom	silk	screen	layer.	

Select	the	B.SilkS	layer	to	add	text	to	the	back	layer.

You	can	print	something	like	“Tech	Explorations”,	and	the	date	your	designed	your
PCB.

The	text	in	the	back	silkscreen	layer	is	represented	in	mirrored	purple	text.

You	can	have	a	look	to	see	what	it	would	look	like	once	it’s	finished	and	manufactured
using	the	3D	preview:

3D	view	of	the	front	layer.

3D	view	of	the	back	layer.

You	can	also	put	graphics	on	your	board.	I	will	show	you	how	to	do	that	in	next
chapter.	You	might	want	to	read	that	chapter	first	before	actually	uploading	this	PCB	to
the	manufacturer,	if	you’d	like	to	include	graphics	with	your	finished,	made	board.

Click	on	the	Plotter	icon	to	generate	the	Gerber	files.

And	we	are	now	ready	to	export	the	Gerber	files.	To	do	that,	click	on	the	plotter	button
and	make	sure	that	you’ve	got	the	required	layers	selected.	The	required	layers	are:

F.Cu:	Front	copper

B.CU:	Back	copper

B.SilkS:	Back	silkscreen

F.SilkS:	Front	silkscreen

B.Mask:	Bottom	solder	mask

F.Mask:	Front	solder	mask

Edge.Cuts:	Board	outline

This	screenshot	contains	the	appropriate	settings	for	manufacturing	the	project
board.

In	the	Gerber	Options	group,	choose	the	Protel	filename	option.

For	the	output	directory,	choose	a	new	directory	inside	your	current	project	directory.	

Create	a	new	directory	for	the	Gerber	files.	Place	it	inside	the	current	project
directory.

Next,	click	on	the	plot	button	and	to	generate	the	Gerber	files	for	the	layers.

Notice	that	the	output	directory	is	a	sub-directory	inside	the	current	project
directory.	After	clicking	on	the	Plot	button,	information	of	the	files	that	were	created
will	appear	in	the	Messages	text	box.

Next,	we	must	also	generate	the	drill	file.	The	drill	file	tells	the	manufacturer	where	to
drill	for	the	pad	holes	on	the	PCD.	Click	on	the	“Generate	Drill	File”	button.

The	Drill	Files	Generation	window.

This	will	bring	up	another	dialog	box.	All	the	settings	should	be	correct	by	default,
including	the	output	directory.	Click	on	the	Drill	File	button,	and	this	will	generate	the
drill	file	with	a	“.drl”	extension.	You	can	close	the	Drill	Files	Generation	dialog,	and	then
close	the	Gerber	Plot	window.

Have	a	look	inside	your	Gerbers	directory.

The	Gerber	files.

Let’s	inspect	what	we	have.	Inside	the	Gerbers	directory		you	can	see	all	the	files	that
we	just	generated.	We	can	now	upload	those	files	to	the	manufacturer.	Before	that	though,
we	should	make	sure	there	are	no	errors.	There	is	a	very	handy	free	service	that	we	can
use	for	this	purpose,	GerbLook.org.	To	upload	our	Gerber	files	to	GerbLook,	we	first	must
create	a	Zip	archive.

Create	a	ZIP	archive	from	the	Gerber	directory.

Use	your	browser	to	go	to	gerblook.org.	Then	upload	your	Gerber	ZIP	file	to	the
service.

Go	to	gerblook.org	and	upload	your	Gerber	ZIP	archive.

Gerblook	will	inspect	your	Gerber	files	and	let	you	know	if	there	are	any	errors,	like	a
missing	layer	or	other	problems.	If	everything	is	ok,	you	will	see	a	rendering	of	each	layer,
like	this:

http://gerblook.org
http://gerblook.org
http://gerblook.org

If	everything	goes	well,	Gerblook	will	show	you	a	render	of	each	layer.

Now,	I	am	confident	to	go	to	OSHPark	and	start	my	ordering	process.	Go	to
oshpark.com.

The	OSH	Park	home	page.	Click	on	Get	Started	Now.

http://oshpark.com

Select	the	ZIP	archive	that	you	created	earlier	and	start	the	upload.	While	the	file
is	uploading	and	processing,	you	can	fill	in	the	project	information.

If	everything	goes	well,	once	the	processing	finished,	OSH	Park	will	show	you	the
layers	that	make	up	your	board.

On	the	left	you	can	see	the	OSH	Park	preview	representation	of	the	board.	On	the
right,	the	actual	board.

Okay,	so	it’s	finished	uploading	and	processing.	We	can	see	the	front	and	back	of	my
new	PCB.	

If	you	are	happy	with	what	you	see,	you	can	proceed	with	the	order.

At	the	timing	of	writing,	OSH	Park’s	pricing	is	among	the	most	competitive	in	the
industry.

At	the	time	of	writing	this	book,	the	cost	for	this	board	was	US$6.80,	a	competitive
price.

In	the	next	chapter,	I’ll	show	you	how	to	add	a	custom	graphic	in	order	to	decorate
your	PCB	using	the	silk	screen.

Chapter	35:	Adding	a	decorative	graphic

RECONSIDER	IF	YOU	WANT	TO	INCLUDE	THIS	HERE,	OR	JUST	LEAVE	IT
FOR	PROJECT	2,	WHERE	IT	IS	DEMONSTRATED	AT	A	REASONABLE
LOCATION

In	this	chapter,	I’ll	show	you	how	to	decorate	your	PCB	with	graphics	on	either	the	top
or	the	bottom	silkscreen	layer.	Decorating	a	PCB	is	usually	the	last	thing	you	want	to	do
before	you	export	the	Gerber	files	and	send	them	to	manufacturing.	The	decorative
graphic	could	be	a	logo	or	some	other	symbol	that	you	would	like	to	show	on	your	PCB.
You	can	place	the	graphic	on	the	top	or	the	bottom	silkscreen	layer.	For	this	project,	I	will
take	my	logo	graphic,	convert	it	into	a	footprint	(that	has	no	pads)	and	then	place	it	onto
the	PCB.

The	way	that	KiCad	works	with	graphics	is	by	using	a	utility	that	converts	a	graphical
file	into	a	footprint.	The	utility	produces	a	footprint	without	any	pins	or	any	holes	or	vias
or	any	other	elements	other	than	the	contents	of	the	silkscreen,	which	you	can	place	on	the
PCB.

The	process	starts	with	the	image.	The	tool	that	Kicad	provides	to	manipulate	images
is	minimal	in	terms	of	functionality.	

Here’s	my	logo,	an	image	in	PNG	format:

We	will	start	with	this	PNG	image.

It	is	around	2000	pixels	in	width,	which	is	too	large	to	fit	on	this	PCB	without	resizing.

Step	number	one	is	to	resize	the	image	as	big	as	your	PCB	is	going	to	be.	I’m	going	to
go	back	into	PCB	new	and	do	a	quick	measurement.	I’m	going	to	put	my	cursor	up	in	the
top	corner,	top	left	corner,	hit	the	space	bar	to	zero	the	dimensions	and	then	move	across
to	the	right	corner.	You	can	see	that	in	the	X	horizontal	axis	I’ve	got	29.08	millimeters,	so
29.08	millimeters.	If	I	go	down	I	have	22	millimeters.	You	should	write	these	values
down.	That	is	22.7	millimeters	in	the	Y	axis	and	29.21	in	the	X	axis.	I	can	close	that	now.	

The	tool	I’ll	be	using	to	do	the	conversion	of	the	png	image	into	a	footprint	is	Bitmap2
component.	Let’s	open	up	bitmap2	component	and	go	to	the	black	and	white	picture	tab
and	load	the	bitmap.	You	should	go	into	desktop,	project	folder,	this	is	a	latest	image.
Looks	a	bit	big,	it	was	72dpi,	so	I	can	change	that	to	let’s	say	300.	I’m	changing	the	dpi,
you	can	see	that	the	size	updates.	This	is	a	good	way	to	control	how	big	your	image
eventually	will	look	on	the	PCB.	I	know	that	the	dimensions	of	my	PCB	in	width	is	29.21
millimeters,	so	looks	like	this.	It	is	still	a	bit	too	wide,	so	I	will	increase	that	maybe	to	400,
500,	I	will	increase	them	to—	I’m	going	to	go	down	to	below	29	millimeters,	so	make	that
a	1000.	No,	a	bit	too	much,	maybe	800.	Yes,	850,	okay.

You	need	to	keep	track	of	your	other	side	as	well,	850.	I	think	these	settings	at	850	dots
per	inch	will	produce	an	image,	a	footprint	that	is	22.4	millimeters	in	width	and	14.9
millimeters	in	height.	That	should	comfortably	fit	inside	my	PCB.	Next	I	want	to	leave
this	as	normal.	Normal	will	produce	a	graphic	with	a	wide	silkscreen	ink	on	the	PCB
instead	of	having	a	wide	silkscreen	ink	everywhere	outside	the	graphic	itself.	What	I	want
is	white	on	green	or	purple	for	Oshpack	instead	of	purple	on	white.	I	hope	that	makes
sense	but	you	can	see	what	happens	if	you	choose	negative.

Now,	much	that	you	have	received	the	PCB	from	Oshpack,	the	black	ink	here	will
actually	be	purple	since	the	PCB	color	from	Oshpack	is	purple	and	then	everything	else
around	it	is	going	to	be	white.	I	would	rather	go	with	the	white	marking	for	my	logo.	I	will
just	leave	it	like	that	and	everything	else	around	it	is	going	to	be	a	default	purple	for	the
PCB,	so	the	mask.	You	can	play	around	with	the	threshold	value	but	I	find	that	about	80%
is	fine,	so	this	basically	tells	you	which	part	is	white	and	which	part	is	black.	I’ve	got
black	and	white,	anything	above	that	reverses	the	colors.	I	will	leave	it	at	about	80%.

The	format	is	PCB	new	since	this	is	my	target	tool.	All	right,	so	I	will	export	this	and	I
will	save	the	new	graphic	as	a	footprint	in	a	new	library	inside	my	project	folder.	I	go	back
to	my	project	folder	and	then	in	here	I’d	like	to	create	a	new	folder.	I	will	call	it	something
like	graphics.pretty.	Remember	that	the	pretty	extension	is	important	because	it	denotes	a
library	for	footprints.	Make	sure	you’ve	got	.pretty	in	here.	Drill	inside	your	new	library
folder	and	give	your	new	footprint	a	name.	Let’s	call	it	T-explore	logo	and	save.	

We’re	done	with	the	tool.	We	got	a	new	library	for	this	footprint.	We	can	now	go	into
the	PCBnew	app.	The	first	thing	to	do	is	to	import	the	new	library,	just	like	we’ve	done	in
the	past	with	the	custom	component	footprint.	We	go	into	preferences,	then	I	use	the
footprint	libraries	manager	and	I	will	use	the,	append	with	wizard	option	to	drill	and	find
my	new	footprint	library.	That’s	in	here	somewhere.	There	you	go,	graphics.pretty	is	what

I’m	looking	for.	

Next,	it’s	looked	inside.	It’s	found	that	it	contains	footprints	that	are	good.	I’m	going	to
add	this	to	the	current	project	only.	I	didn’t	add	it	to	the	global	projects,	globally
accessible	because	the	way	that	I	have	customized	the	dimensions	for	this	graphic	really
makes	sense	only	for	this	current	PCB.	I’m	going	to	click	okay	to	finish.	

Now,	I	need	to	add	this	new	footprint.	I	can	click	on	this	button	here	and	I	will	just	put
the	new	footprint	here.	Now	I	will	see	if	hopefully	it’s	in	my	library	folder	because
sometimes	actually	you	have	to	restart	PCBnew	in	order	for	it	to	load	the	library	contents
you’ve	just	added.	Let’s	see	if	it’s	somewhere	here.	You	should	probably	search	for	logo.
There	is	T-explore	logo,	good.	Okay	and	here	it	is.

Here	is	a	logo	that	I’ve	just	added.	I’m	just	going	to	put	the	logo	here	and	what	I	want
to	do	is	to	edit	its	location.	I	want	to	put	this	in	the	bottom	side.	Get	the	properties	for	the
logo	and	choose	site	from	top	to	bottom	and	use	an	M	key	to	move	it	in	place.	Around
here	would	be	okay.	I	can	also	remove	the	text	that	I	added	earlier	since	I	no	longer	need
it.	Just	remove	that,	gone.	All	right.	Refresh.	

I’ll	actually	move	my	logo	a	little	bit	higher,	so	around	here	and	that	looks	okay.	Let’s
check	it	out	in	the	3D	view.	There	it	is.	There’s	the	nice	new	graphic.	Actually	I	should
probably	flip	it,	so	edit	these	properties	again	and	I	want	to	rotate	it	by	180	degrees.	I	hope
that	would	do	the	trick.	Check	out	3D	viewer,	just	want	to	ease	the	orientation	to	be
appropriate.	This	is	the	top,	that	the	bottom.	The	orientation	now	is	good,	top	and	bottom.
Nice.	Don’t	forget	to	save	your	project.	Let’s	refresh	the	drawings	and	there	you	have	it.
You	can	now	decorate	your	PCBs	with	nice	graphics.	You	can	now	take	this	PCB	if	you
like	and	upload	it	to	Oshpack	and	manufacture	it	and	your	graphic	will	be	honored.

[00:11:10]	[END	OF	AUDIO]

PART	SIX
Project	2:	a	7-segment	display	board

Chapter	36:	What	is	this	part

In	the	second	project,	we	will	design	a	PCB	for	a	seven	segment	display	circuit.	The
circuit	is	a	slightly	modified	one	from	the	Arduino	Step	by	Step	course,	from	the	lecture
on	the	seven	segment	display.	

If	you	haven’t	watched	that	lecture,	don’t	worry,	it	won’t	affect	your	ability	to	follow
this	project	here.

We	will	start	with	a	wiring	diagram	and	convert	it	into	a	Kicad	schematic.	We	will	use
components	that	already	are	available	in	the	schematic	library.	

We	will	then	convert	the	schematic	into	a	2-layer	PCB.

During	this	process,	you	will	learn	how	to	use	several	new	Kicad	features:

*	Configuring	components	with	their	values,

*	Working	with	integrated	circuits	and	their	hidden	pins

*	All	about	nets	and	net	labels,

*	The	Power	Flag,

*	Using	busses	to	simplify	connections	between	components,

*	The	Unconnected	flag,

*	Controlling	the	track	width	with	Nets,

*	Vias,

*	and,	Adding	a	decorative	graphic

These,	alongside	what	you	learned	in	the	first	project,	represent	eighty	to	ninety
percent	of	the	skills	and	features	you	will	need	for	most	of	your	PCB	work.	

Chapter	37:	Create	the	schematic	with	Eeschema

In	this	chapter,	we	will	start	the	process	of	converting	an	Arduino	circuit	to	a	PCB.

We	will	convert	this	Arduino	circuit	into	a	PCB

The	wiring	diagram	that	you	can	see	above	shows	a	breadboard	with	a	seven-seament
display,	a	shift	register	integrated	circuit,	a	current	limiting	resistor,	a	breadboard	power
supply,	and	the	Arduino.	

We	will	design	the	PCB	to	contain	the	components	on	the	breadboard,	except	for	the
power	supply.	Instead	of	a	single	current	limiting	resistor,	our	PCB	will	contain	8,	one	for
each	segment.	The	connection	between	the	PCB	and	the	Arduino	will	be	made	with	a
simple	straight	pin	connector,	like	the	one	we	used	in	project	1.

Start	Kicad	and	create	a	new	project.

Create	a	new	project	in	Kicad,	call	it	something	like
“SevenSegmentDisplayBoard”.

Let’s	begin	with	Eeschema.	It	is	a	good	habit	to	enter	the	schematic	information.	This
is	the	text	that	appears	in	the	legend	of	the	schematic,	in	the	bottom	right	corner	of	the
canvas.	To	do	that,	go	to	File	and	choose	Page	Settings.	In	the	end,	the	schematic	legend
should	look	like	this:

The	schematic	sheet	legen,	populated

Let’s	continue	with	adding	the	components	now.	From	the	wiring	schematic	you	can
see	that	we	need	to	add	one	seven	segment	display,	a	595	shift	register	and	eight	current
limiting	resistors	plus	the	connector.	

Let’s	start	with	the	connector,	since	it	is	the	simplest	component.	I’m	looking	for	a
straight	connector,	one	row	and	five	pins.	As	per	the	wiring	schematic,	we	need	one	pin
for	data,	one	for	clock	and	one	for	latch.	We	also	need	one	pin	for	ground	and	one	pin	for
Vcc	power.	Therefore	we	will	need	a	one	row	by	five	pins	connector.

For	the	connector,	we	will	use	the	1x5	straight	type.

Hit	the	“A”	to	bring	up	the	connector	chooser	window.	You	can	browse	to	the	CONN
library	and	pick	the	connector	you	need,	or	type	“CONN_01x05”	in	the	filter.	Once	you
find	it,	double-click	to	select	it,	and	place	is	on	the	canvas.	

You	may	rotate	it	and	move	it	on	the	canvas,	like	this:

The	first	component	of	the	board,	the	1x5	straight	connector.

Then,	we	need	a	seven	segment	display,	so	hit	A	and	browse	for	it	in	the	“display”
library.

You	will	find	the	seven	segment	display	component	in	the	“display”	library.
Notice	that	there	are	a	couple	of	choices	available.

Double-click	to	select	the	7SEGM	component,	and	place	it	on	the	canvas,	like	this:

Added	the	seven	segment	display	component.

Next	one	up	is	the	595	shift	register.	Hit	the	A	key,	and	type	“595”	in	the	filter.

You	can	use	the	filter	to	quickly	find	a	component.	In	this	case,	type	“595”	to	look
for	available	595	shift	register	components.

	The	filter	will	return	two	available	options.	Look	at	the	schematic	preview	of	each
option	and	confirm	that	it	is	pin-compatible	with	the	actual	part	on	the	breadboard.	Look
at	the	pins	one	by	one,	the	pin	number	and	the	pin	role	from	the	preview	schematic,	and
compare	it	with	the	information	available	in	the	actual	part	data	sheet.	In	this	case,	the	part
that	we	want	to	use	is	the	74HC595	version.	Double-click	to	select	it	and	place	it	on	the
canvas.	

Added	the	595	shift	register	to	the	schematic.

Finally,	lets	add	the	current	limiting	resistors.	Type	A	to	reveal	the	component	chooser
and	look	for	a	resistor.	You	can	simply	pick	the	generic	resistor	option,	and	place	it	on	the
canvas.

Choose	a	resistor.

The	first	resistor	is	on	the	board.	You	may	need	to	move	the	connector	over	the
shift	register	to	make	some	room.

Edit	the	value	of	the	resistor	by	hitting	the	“V”	key.

Enter	“220Ohm”	in	the	Text	box.

The	value	is	visible	with	the	component.	

You	can	move	the	text	to	the	side	of	the	component	so	that	it	is	more	readable.

I	need	an	additional	seven	resistors.	Instead	of	adding	them	one	at	a	time	like	we	did
for	the	first	one,	we	can	save	time	by	copying	the	first	already	setup	resistor	component.

To	do	this,	place	your	mouse	cursor	over	the	resistor,	and	type	“C”.	This	will	create	one
copy.

Use	the	“C”	key	to	create	copies	of	a	component.

Repeat	the	process	until	you	have	a	total	of	8	resistors	on	the	canvas.	Move	them	as
needed	to	space	them	out	and	align	them	nicely.

In	the	end,	you	should	have	something	like	this:

All	the	components	are	now	on	the	canvas.

These	are	all	the	components	that	our	schematic	will	have	eventually.	In	the	next
chapter	we	will	work	on	the	wiring.

Chapter	38:	Create	nets	and	labels

In	this	chapter	we	will	connect	the	components	placed	on	the	canvas.	In	the	first	project,
you	learned	how	to	use	individual	wires	to	connect	the	pins	of	the	components,	manually,
using	the	W	key.	As	your	schematic	becomes	larger	and	more	complicated,	this	method	of
wiring	will	increasingly	produce	schematics	that	are	difficult	to	read.	Too	many	wires	will
be	going	to	too	many	places,	criss-crossing	each	other,	and	increasing	the	chances	of
errors.

In	this	chapter	I	will	show	you	how	to	use	labels	with	which	you	can	mark	pins	and
logical	connect	them,	without	having	to	draw	an	actual	wire.	Let’s	work	on	an	example	to
demonstrate.

Let’s	do	the	wiring	for	the	Data	pins.	

To	add	a	wire	label,	click	on	the	A	key.

To	add	a	label,	click	on	the	A	button,	as	I	show	in	the	image	above.	Then,	click	on	the
wire	that	you	want	to	label,	in	this	case	it	is	the	pin	5	of	the	straight	connector.	This	will
produce	the	Label	Properties	window.	Type	in	the	name	of	the	label,	“DATA”	and	click
OK.

Once	you	are	in	label	mode,	click	on	a	wire	and	give	a	name	to	your	new	label.

The	new	label	is	attached	to	the	wire.	You	may	need	to	rotate	the	label	to	align	it.

On	the	shift	register,	the	pin	where	the	data	from	the	Arduino	will	arrive	is	number	11.
Add	a	new	label,	also	with	the	name	“DATA”	to	pin	11	of	the	shift	register.	And	again,
rotate	it	if	needed.	

Attach	a	new	label,	also	named	“DATA”,	to	pin	11.	Now,	pin	5	of	the	connector
and	pin	11	of	the	shift	register	are	logically	connected,	without	a	need	for	an	explicit
wire.

Now	KiCad	knows	that	pin	11	on	the	IC	and	pin	5	on	the	connector	belong	to	the	same
net,	so	they	will	physically	be	connected	in	Pcbnew.	You	can	also	confirm	that	there	is	an
actual	electrical	connection	by	doing	an	ERC	check.	The	ERC	check	will	show	that	indeed
pin	11	on	the	IC	and	pin	5	on	the	connector	are	connected.	

Let’s	add	another	two	labels.	Label	pin	4	on	the	connector	“CLOCK”.	Take	care	to	use
the	“R”	key	to	rotate	the	label,	and	to	attach	it	to	the	end	of	the	pin	4	line	indicated	by	the
small	circle.	

Pin	4	of	the	connector	is	labeled	“CLOCK”.	Take	care	to	attach	the	label	on	the
small	circle	that	marks	the	end	of	the	pin	4	wire.

On	the	IC,	we	want	pin	12	to	be	connected	to	pin	4	of	the	connector,	so	we	will	also
label	it	“CLOCK”,	just	like	we	did	with	the	connector.

The	IC	pin	12	is	also	labeled	“CLOCK”.	This	way,	IC	pin	12	and	connector	pin	4
are	electrically	connected	(they	share	the	same	label).

We	now	have	two	pins	with	the	same	label,	and	as	a	result,	these	two	pins	are	electrical
connected	even	though	there	is	no	visible	wire	in	the	schematic.	

One	more	label	added,	“LATCH”,	to	pin	3	of	the	connector	and	pin	14	of	the	IC

Repeat	the	process	for	label	“LATCH”	as	per	the	image	above.	We	still	have	drawn	no
wires	in	the	schematic,	but	we	already	have	three	completed	and	valid	connections.

Let’s	work	on	the	power	connections	now.	On	the	connector,	I	would	like	to	attach	Vcc
to	pin	number	1	and	GND	to	pin	number	2.	There	are	dedicated	components	for	GND	and
for	VCC.	Type	“A”	to	bring	up	the	component	chooser.	

Use	the	filter	to	find	the	GND	component.	Double	click	to	add	it	to	the	canvas

Use	the	filter	to	find	the	Vcc	component.	Double	click	to	add	it	to	the	canvas.

Rotate	the	GND	and	Vcc	components	and	wire	them	to	pins	2	and	1	of	the
connector	respectively.

Use	the	filter	to	quickly	find	the	GND	and	Vcc	components	in	the	component	chooser.
Double	click	on	each	component	to	select	it	and	drop	it	on	the	canvas.	Move	them	to	a
position	adjacent	to	the	straight	connector,	and	use	wires	to	connect	GND	to	pin	2	of	the
connector,	and	Vcc	to	pin	1.

Repeat	the	process	and	connect	Vcc	to	IC	pin	10	and	GND	to	IC	pin	13.	I	could
have	used	the	existing	GND	and	Vcc	components,	but	this	way	creates	a	cleaner
schematic.

Repeat	the	process	for	the	IC.	Add	a	GND	and	a	Vcc	component,	and	wire	them	to	pin
13	and	pin10	respectively.	

Finally,	add	Vcc	and	GND	connections	to	the	seven	segment	display	component.

To	finish	the	wiring	of	the	Vcc	net,	go	to	the	seven	segment	display.	Add	another	Vcc
component,	and	wire	them	to	pin	K,	like	in	the	image	above.

The	connections	for	the	Vcc	and	GND	nets	are	now	complete.	We	have	also	used
labels	to	connect	three	of	the	connector	pins	to	three	of	the	IC	pins	without	using	visible
wires.	This	helps	us	to	create	a	clean	and	easy	to	read	schematic.

In	the	next	chapter,	I	will	discuss	the	concept	of	hidden	pins	and	the	power	flag.

Chapter	39:	Hidden	pins	and	the	power	flag

In	this	chapter	I	will	explain	the	concept	of	hidden	pins.	To	do	this,	let’s	concentrate	on	the
595	integrated	circuit.	This	IC	is	interesting	because	it	contains	hidden	pins.	

Take	a	close	look	at	the	595	component.	The	power	pins	are	not	visible.	They	do
exist	in	the	schematic,	but	they	are	invisible.

You	can	see	here	that	unlike	the	real	595	part,	there	are	two	pins	that	are	missing,	those
are	the	power	pins.	The	real	595	part	has	one	pin	for	Vcc	and	one	pin	for	GND.	In	the
Kicad	schematic	component	for	the	595	IC,	you	can	make	those	pins	visible	by	going	to
the	schematic	editor	options	and	clicking	on	show	hidden	pins.	

To	make	hidden	pins	visible,	go	to	Preferences,	Schematic	Editor	Options…

…Check	the	“Show	hidden	pins”	option,	and	click	OK.

When	you	do	that,	you’ll	see	pin	8,	and	pin	16,	which	are	VCC	and	ground
respectively.

The	hidden	pins	are	revealed.

	

Hidden	pins	are…	hidden	because	KiCad	expects	that	somewhere	in	your	schematic
are	nets	that	are	marked	as	power	nets.	In	the	background,	Kicad	will	automatically
connect	pin	8	and	pin	16	to	those	nets.	In	our	schematic,	we	already	have	Vcc	and	GND
nets,	but	they’re	not	marked	as	power	nets	yet.	

Before	we	mark	the	power	nets,	restore	hidden	pins	to	their	default	state	so	that	that
they	are	invisible.

In	order	to	mark	a	net	or	a	connection	or	wire	as	a	power	net,	you	will	need	to	use	the
power	flag.	The	power	flag	is	just	another	component,	except	that	it	is	not	really	an
electrical	component.	It’s	a	KiCad	component,	or	a	component	that	KiCad	uses	with	its
rules	check	to	confirm	that	hidden	pins	that	require	power	are	indeed	connected	to	a	power
net.	

Hit	the	“A”	key	to	bring	up	the	component	chooser,	and	use	the	filter	to	search	for	the
power	flag.	Type	“PWD”.

Use	the	filter	to	find	the	PWR_FLAG	component	in	the	components	chooser.

Double	click	to	drop	the	component	to	the	canvas.	Place	it	next	to	the	GND	net	(wire)
and	use	a	wire	to	connect	the	flag	to	the	GND	net.	Ensure	that	a	solid	green	circle	marks
the	joint	(no	circle	means	no	connection).	Repeat	the	process	for	the	Vcc	net,	so	that	this	is
also	marked	with	a	PWR_FLAG.	You	should	end	up	with	something	like	this:

The	GND	and	Vcc	nets	are	marked	with	the	PWR_FLAG.

If	you	do	an	ERC	now,	you	will	get	error	reporting	that	various	pins	are	not	connected
to	anything,	but	you	will	not	get	any	errors	concerning	the	GND	or	Vcc	hidden	pins	of	the
IC.	Those	are	now	connected	to	the	GND	and	Vcc	nets	in	the	background	because	Kicad
is	informed	of	their	existence.	

With	this	taken	care	of,	let’s	move	to	the	next	objective:	connecting	the	data	pins	of	the
IC	to	the	resistors	and	the	LEDs.	We	could	use	normal	wires	to	do	this,	but	you	can
imagine	that	the	schematic	would	be	very	busy.	Instead,	we	will	setup	a	data	bus.	In	the
next	chapter,	I	will	show	you	how	to	make	multiple	connections	using	a	data	bus.

Chapter	40:	The	data	bus

When	you	work	with	digital	circuits,	as	we	are	in	this	project,	it	is	often	the	case	that	two
parts	of	the	circuit	transmit	and	receive	a	digital	word,	like	a	byte.	The	wires	that	transmit
each	bit	of	the	word	is	a	bus,	and	it	can	be	thought	of	a	a	single	bundle	of	wires.	The
keyword	here	is	“single”.	Instead	of	drawing	the	bus	as	seven	seperate	wires,	we	can	draw
it	as	a	single	wire.	To	show	to	the	reader,	and	to	Kicad,	that	this	is	a	bus,	not	a	simple	wire,
we	can	draw	it	thicker	than	a	normal	wire.	

In	this	chapter,	I	will	show	you	how	to	use	a	bus	to	connect	the	seven	segment	display
to	the	shift	register’s	data	pins.

Let’s	start	by	wiring	the	seven	segment	display	to	the	resistors,	the	“normal”	way:	by
creating	individual	wires.

Nothing	fancy	here.	The	inputs	of	the	seven	segment	display	are	connected	to	the
resistors	via	wires.

Now,	we	will	use	a	single	bus	to	connect	the	shift	register	IC	data	pins	to	the	other	side
of	the	current	limiting	resistors.	To	do	this,	start	by	clicking	on	the	bus	component	button
on	the	vertical	tool	bar.

The	bus	component.

The	bus	component	button	looks	like	a	straight	blue	line,	as	opposed	to	the	normal
wire	that	is	a	thin	green	line.	Click	on	the	bus	button	to	enable	it,	and	then	draw	the	bus
starting	from	above	the	right-most	resistor	to	the	bottom	right	corner	of	the	IC,	like	in	this
image:

The	blue	thick	like	is	a	bus.	Nothing	goes	in	or	comes	out	of	it	at	the	moment.	We
will	add	entries	and	exits	next.

Next,	let’s	add	the	entries	and	exits	to	the	bus.	We’ll	use	the	Bus	Entries	component	for
this	task.

Use	the	Bus	Entry	component	to	add	entries	and	exists	to	the	bus.

Click	on	the	Bus	Entry	component	to	select	it,	then	carefully	start	adding	entry	wires
on	the	bus.	This	will	take	a	few	moments	to	get	right	when	you	attempt	it	for	the	first	time.
You	need	to	work	out	the	right	spacing	between	the	point	where	you	click	to	add	an	entry
and	the	bus.	The	bus	entry	wires	are	angled,	and	this	makes	it	tricky	to	judge	the	correct
distance	at	first.At	the	end	of	the	process,	you	should	have	something	like	this:

The	bus	entries,	added	to	the	bus	adjacent	to	the	IC,	and	the	exits	over	the
resistors.	

Once	you	have	bus	entries	and	exist	added	to	the	bus,	you	need	to	use	normal	wires	to

finish	the	connections	between	the	bus	entries	and	exists	and	the	pins.	Click	on	the	wire
button,	and	finish	the	connections.	In	the	end,	you	should	have	something	like	this:

The	bus	entries/exists	connected	to	the	pins.

You	may	be	wondering	now,	how	does	KiCad	know	that,	for	example,	the	QA	or	pin-
15	of	the	IC	is	supposed	to	be	connected	to	pin	5	on	the	seven	segment	display?	The
answer	is	that	Kicad	doesn’t	know	unless	you	label	both	pins	with	the	same	name.	To	do
this,	we	will	add	labels	to	all	pins	that	are	meant	to	be	connected	via	the	bus,	like	we	did
in	the	previous	chapter.	

Go	ahead	and	start	adding	labels.	Start	with	the	IC	and	pin	15,	and	label	that	as	“sg0”,
then	pin	1	is	“sg1”	and	so	on.	On	the	side	of	the	resistors,	label	the	right-most	resistor	as
“sg0”	(same	name	as	pin	15	of	the	IC),	then	next	resistor	to	the	left	will	be	“sg1”,	and	so
on.	In	the	end,	your	schematic	will	look	something	like	this:

We	have	added	labels	to	all	pins	that	are	connected	to	the	bus.

At	this	point,	our	schematic	contains	all	data	pins	of	the	IC	connected	to	the	seven
segment	display,	via	a	bus.	The	power	wiring	is	also	done,	and	so	it	the	wiring	between
the	connector	and	the	IC.	Notice	that	pin	9	on	the	IC	is	still	not	connected?	In	fact,	we
don’t	want	to	connect	it	to	anything.	But,	if	we	leave	it	like	this,	Kicad’s	ERC	will
complain	about	it.	I	will	show	you	how	to	deal	with	this	issue	in	the	next	chapter.

Chapter	41:	The	unconnected	component

In	the	previous	chapter,	we	completed	all	the	wiring,	but	left	IC	pin	9	unconnected.	In
actual	fact,	we	don’t	want	to	connect	this	pin	to	anything,	as	it	is	only	useful	if	we	want	to
cascade	multiple	shift	registers,	one	after	the	other.	

But,	if	we	do	an	ERC	now,	we	will	get	this	report:

ERC	complains	that	pin	9	is	not	connected.	But	we	want	to	leave	it	unconnected!

There	is	only	one	error.	Pin	9	is	left	unconnected.	Since	we	actually	want	to	leave	this
pin	unconnected,		we	must	tell	KiCad	about	our	intention	so	that	it	doesn’t	bring	it	up	as
an	error	when	we	do	an	ERC.	

There	is	a	special	component	for	this,	it’s	the	“not	connected	flag”.	

The	“unconnected”	component

Click	on	the	Unconnected	component	button	to	select	it	from	the	vertical	tool	bar,	and
then	click	on	the	small	circle	that	marks	the	end	of	the	IC	pin	9	wire	to	place	it	there.	Now
KiCad	knows	that	I	shouldn’t	have	to	worry	about	this	pin	not	being	connected.	

Pin	9	is	marked	with	the	Unconnected	flag.	Kicad	now	knows	that	it	is	correct	to
leave	it	unconnected.

Let’s	do	the	ERC	again:

The	ERC	now	shows	no	errors!

No	errors	showing	in	the	ERC!	This	means	that	our	schematic	is	complete!

Let’s	save	our	project	now,	and	move	onto	the	next	task,	which	is	to	do	is	to	do	the
associations	between	the	schematic	parts	and	the	footprints	before	exporting	the	net	list
file.	We’ll	do	that	in	the	next	chapter.

Chapter	42:	Component	-	footprint	associations

I’m	happy	with	the	schematic	the	way	it	is	now,	so	I	think	we	are	ready	to	move	on	to	the
next	step.	The	next	step	is	to	associate	the	schematic	components	with	the	footprints.	After
that,	we	will	go	into	Pcbnew	and	do	the	layout.	To	do	the	associations,	we	will	use	Cvpcb.
Click	on	the	Cvpcb	button	to	start	this	app.

Start	Cvpcb.	The	components	that	must	be	associated	with	footprints	are	in	the
middle	pane.

It	will	take	a	few	seconds	for	the	panes	to	be	populated	with	data	from	Github.	The
middle	pane	contains	the	components	found	in	the	schematic.	We	will	associate	these
components	with	appropriate	footprints.

Let’s	start	with	the	resistors	first.	In	this	project	we	are	working	with	through	hole
components,	so	we	will	use	resistor	footprints	from	the	“Resistors_ThrougHole”	library.
There	are	a	lot	of	options	to	choose	from	in	this	library.	Since	we	are	working	with
footprints,	we	just	need	to	find	one	that	has	the	correct	dimensions.	

I	want	to	use	resistors	with	a	10mm	pitch.

Take	out	your	ruler	and	measure	the	pitch	(distance)	between	the	two	ends	of	the
resistors	you	would	like	to	use	on	your	PCB.	In	my	case,	the	pitch	is	10mm.	With	this
information,	I	will	look	for	a	footprint	that	has	a	distance	between	the	pads	of	10mm.

This	option	is	a	resistor	with	a	distance	of	10mm	between	the	pads.

Make	sure	the	the	L	filter	is	selected,	and	scroll	through	the	resistor	options	until	you
find	on	marked	with	“RM10mm”	in	its	name.	This	resistor	has	a	footprint	of	10mm,	which
is	the	one	I	am	looking	for.	You	can	confirm	by	creating	a	3D	view	of	the	footprint	(click
on	the	button	with	the	magnifying	glass	icon).	Double	click	to	select	it	and	associate	it
with	component	R1.	Continue	double-clicking	until	all	of	the	resistors	are	associated	with
the	same	footprint.	In	the	end,	your	Cvpcb	window	will	look	like	this:

The	resistors	(middle	pane)	are	associated	with	the	10mm	through	hole	resistor
footprint.

In	that	library,	So	there	is	a	library	with	resistors	somewhere	here,	yes,	I’ll	manually
going	to	look	through	it.	All	of	the	components	in	this	project	are	through	hole
components.	In	the	next	project,	in	the	last	for	this	course,	all	of	the	components	will	be
SMD,	so	for	now	I’m	looking	inside	the	resistor’s	through	hole	library.

Next,	let’s	work	on	the	connector.	We	are	looking	for	a	connector	with	five	pins	in	a
single	row.	So	let’s	look	for	this	connector.	A	quick	way	to	look	for	this	footprint	is	by
using	the	name	filter.	With	the	CONN_01x05	component	selected	in	the	middle	pane,
click	on	the	name	filter	(the	third	button	from	the	right).	This	will	return	4	compatible
footprints	in	the	right	pane:

The	name	filter	can	speed	up	searching	for	a	footprint.	

The	options	returned	all	involve	5	pins	in	1	row	configurations,	either	angled	or
straight.	Use	the	pre-viewer	to	see	what	each	one	will	look	like	on	the	board	to	help	you

decide	which	one	to	use.	

The	preview	of	the	5x1	straight	connector.	This	is	the	one	we’ll	use.

So	these	footprints	are	here	and	there’s	1x05	pins	that	is	angled	and	one	that	is	straight.
Double	click	on	the	first	option	to	do	the	association.	Your	Cvpcb	should	now	look	like
this:

The	connector	is	now	associated	with	the	1x5	straight	connector	footprint.

Next	lets	work	on	the	seven-segment	display.	The	keywords	filter	does	not	return
anything	useful,	maybe	it	does,	but	maybe	we	need	to	augment	it	with	a	number	of	pins
filter.

With	the	keyword	and	pins	filter	selected,	the	right	pane	contains	a	small	list	of
footprints	that	I	can	potentially	associate	with.	We	must	find	the	best	one	manually.

To	find	the	best	footprint	for	our	seven	segment	display	we	must	ensure	that	the	type	of
pins	(through	hole)	and	the	dimensions	are	correct.	The	name	and	the	preview	of	each
footprints	will	help	us	in	this.	Avoid	components	that	contains	the	letters	“SMD”	since
they	represent	surface-mounted	components	(we’ll	work	with	them	in	the	next	project).
Look	for	footprints	that	contain	“7-segment”	as	a	part	of	their	name.	

Footprint	“7SegmentLED_LTS6760_LTS6780”	has	the	right	measurements	and
pin	type.

Looking	through	the	list,	find	one	titled	“7SegmentLED_LTS6760_LTS6780”.	This
footprint	has	through-hole	pins,	and	the	dimensions	between	the	pins	are	an	exact	match
of	the	seven	segment	display	I	would	like	to	use	on	my	board	(see	image	above).	You	can
use	the	previewer	to	make	manual	measurements	in	order	to	confirm	that	match.	The
status	bar	in	the	bottom	of	the	previewer	window	shows	the	measurement	results.
Remember	to	press	the	space	bar	to	zero	the	counters.	The	distance	between	the
neighbouring	pins	is	2.54mm	and	the	distance	between	the	two	rows	of	pins	is	15.24mm.

These	are	the	dimensions	of	the	real	part	as		measured	with	my	ruler.	Double	click	on	it
this	footprint	to	associate	it	with	the	seven	segment	display	component.	Your	Cvpcb
should	now	look	like	this:

Completed	with	associating	the	seven	segment	display	component	with	a
footprint.

Finally,	let’s	work	on	the	shift	register.	It’s	a	74HC595	and	I	looked	up	the
documentation	and	its	data	sheet,	it’s	up	here	in	the	NXP	website.	And	the	part	that	I	want
to	use	is	this	one	here	and	you	can	see	that	the	name	of	the	package	that	my	shift	register
uses	is	DIP16	or	SO16.	

As	per	the	data	sheet,	the	595	shift	register	I	wish	to	use	comes	in	a	DIP16
package.

So,	we	should	search	for	a	DIP16	footprint.	The	way	that	we	configured	the	filters

earlier	return	several	options,	one	of	which	is	the	DIP-16_300	footprint,	inside	the
“Sockets_DIP”	library.	In	Kicad	4,	this	footprint	is	inside	the	“Housings_DIP”	library.

Preview	this	footprints	and	ensure	that	its	dimensions	match	the	dimensions	of	the
actual	part.	

It	is	important	to	cross-check	that	a	candidate	footprint	matches	the	dimensions
and	pin	type	of	the	real	part.

	Just	like	with	the	seven	segment	display,	measure	the	distances	between	the	pins	and
rows	of	the	real	part	and	compare	them	against	the	preview	of	the	candidate	footprint.	In
this	example,	I	have	a	perfect	match	(DIP16	packages	are	very	common	and	standardised
in	the	industry).	Double	click	to	setup	the	last	association.	Your	Cvpcb	will	now	look	like
this:

All	associations	are	complete!

Now	that	the	associations	are	complete,	click	on	the	Save	button	to	commit	them,	and
return	to	Eeschema.	Before	we	forget,	let’s	save	the	schematic	in	Eeschema.	The	last	thing
to	do	before	we	move	on	to	PCBnew	is	to	export	the	netlist.	Create	the	netlist	and	save	it

in	the	project	directory.	In	the	next	chapter	we	will	start	working	on	the	layout	in	PCBnew.

Chapter	43:	Create	a	2	layer	PCB	in	Pcbnew

In	this	chapter	we	will	use	Pcbnew	to	work	on	the	layout	and	wiring	of	the	second	project
PCB.

Start	Pcbnew.	Type	the	project	details	for	the	canvas	legend	by	selecting	Page	Setting
in	the	File	menu.	Type	in	your	own	details.	Here’s	an	example:

Setting	up	the	Pcbnew	project	information.

The	project	information	appears	in	the	Pcbnew	legend.

Next,	let’s	import	the	netlist	file.	Click	on	the	“read	netlist”	button,	navigate	to	the
netlist	file	you	created	in	Eeschema,	and	import	it	by	clicking	on	the	Read	Current	Netlist
button.	

All	the	footprints	from	the	netlist	appear	one	on	top	of	the	other	in	Pcbnew.

Pcbnew	will	read	the	netlist	file,	import	the	footprints	for	the	project,	and	place	them
one	on	top	of	the	other.	You	could	seperate	them	by	moving	each	one	individually,	but
with	so	many	components	bundled	together	this	is	boring	work.	Instead,	we	will	get
KiCad	to	separate	the	components.

To	seperate	the	footprints,	start	by	going	into	the	automatic	footprint	mode.

First,	enter	automatic	footprint	mode,	a	mode	that	fives	you	access	to	several	useful
features	in	the	Pcbnew	canvas.	Look	for	the	Mode	Footprint	button	in	the	image	above.	

Right-click	anywhere	in	the	canvas	to	bring	up	the	contextual	menu,	and	select
“Spread	out	All	Footprints”	from	the	“Global	Spread	and	Place”	menu.

Once	you	enter	Automatic	Footprint	mode,	right-click	anywhere	in	the	canvas	and
select	“Spread	out	All	Footprints”	from	the	“Global	Spread	and	Place	“menu.	You	will
receive	a	warning	that	any	footprint	not	locked	will	be	moved.	This	is	ok,	as	none	of	the
footprints	we	just	imported	are	locked.	Locking	a	component	makes	it	immovable	by
Kicad.	Notice	the	Lock	Footprint	menu	item	in	the	contextual	(right-click)	menu.

Kicad	has	spread	out	the	footprints.	We	can	now	start	positioning	them.

Click	OK	to	dismiss	the	warning,	and	Kicad	will	spread	out	the	footprint	so	that	none
are	overlaying	any	others.	We	can	now	start	positioning	them.

We	will	be	building	a	two-layer	PCB.	This	means	that	although	the	actual	parts	will	be
mounted	on	the	front	side	of	the	board,	the	traces	will	be	routed	on	both	the	front	and	the
back	side.	As	much	as	possible,	we	will	try	to	keep	all	the	GND	related	wirings	in	the
back	copper	layer.	We	will	also	try	to	keep	the	Vcc	and	data	traces	to	the	front	copper

layer.

Let’s	start	by	by	separating	the	components	and	putting	them	approximately	to	the
location	that	that	we	would	like	them	eventually	to	be	on	the	board.	We	will	use	the	M	key
(for	“M”ove)	a	lot.	Consider	changing	the	grid	to	something	bigger	in	order	to	make
placement	on	a	grid	faster.	I	set	my	grid	to	1.27	millimeters.	

At	the	end	of	the	placement	process,	my	canvas	looked	like	this:

This	is,	approximately,	the	final	position	of	the	footprints	on	the	PCB.	Also	notice
the	grid	setting.

With	this	placement	of	the	footprints,	the	3D	viewer	rendering	looks	like	this:

A	3D	rendering	of	the	board	with	the	current	placement	of	the	footprints.

	 You	can	see	that	the	silkscreen	markings	for	the	resistors	(“R1”,	“R2”,	etc),
appear	to	be	misaligned.	Let’s	put	a	reminder	to	adjust	the	markings	so	that	they	are
correctly	inside	the	rectangle	that	denotes	each	resistor.	This	is	a	aesthetic	adjustment,	so	I
rather	work	on	it	towards	the	end	of	this	chapter.

	 The	next	thing	we	want	to	do	is	to	add	the	edge	cuts	perimeter	for	the	PCB.	This
will	define	the	limits	of	the	PCB	and	therefore	is	useful	to	do	before	we	start	work	on	the
the	wiring.	Select	the	edge	cuts	layer	(Edge.Cuts),	and	then	click	on	the	polygon	button.	I
think	that	the	current	grid	setting	(1.27mm)	is	appropriate	for	drawing	the	edge	cut.

Ensure	you	are	working	in	the	Edge.Cuts	layer.	The	select	the	polygon	tool.

From	the	top	right	corner	of	the	PCB,	start	drawing	the	edge	cut.	

Start	drawing	the	boundary	of	the	PCB	front	the	top	right	corner…	

…And	complete	drawing	where	you	started.

Because	the	price	of	a	PCB	depends	greatly	on	its	size,	try	to	create	a	boundary	that
make	it	as	small	as	possible.	The	positions	of	the	footprints,	of	course,	influence	the	way
that	the	boundary	wraps	around	them.

tart	drawing	the	perimeter.	

A	3D	view	rendering	of	the	PCB,	after	the	boundary	is	defined.

This	looks	fine	so	far.	Before	we	continue	with	the	wiring,	I	would	like	to	correct	the
positions	of	the	silkscreen	labels,	“R1”,	“R2”	etc.	Let’s	move	them	to	appropriate
positions	inside	the	resistor	boxes.	Let’s	also	adjust	the	positions	of	the	rest	of	the
silkscreen	labels	so	that	they	are	better	aligned	with	the	footprints	they	represent.

Use	the	“M”	key	to	move	the	labels	around.	By	the	end	of	this	process,	your	PCB
should	look	a	bit	like	this:

The	R1..R8,	S1,	U1	and	P1	labels	were	moved	(in	blue).

The	3D	rendering	of	the	board	shows	the	new	label	locations.

With	the	label	positions	adjusted,	we	can	continue	to	the	next	step:	the	Wiring.	In	the
next	chapter	I	will	show	you	how	to	do	the	wiring	so	that	the	track	width	is	automatically
set	to	the	correct	value	based	on	the	net	name.	Remember	that	in	project	1,	I	showed	you
how	to	control	the	track	width	manually.

Chapter	44:	Control	track	widths	with	nets

In	this	chapter	I	will	show	you	how	to	wire	the	tracks	on	both	top	and	bottom	layer	of	the
PCB,	and	have	the	width	of	each	track	set	automatically	by	Kicad.	To	make	this	possible,
we	will	define	the	desired	width	of	Vcc	and	GND	tracks,	as	well	as	the	default	track	width
(that	is,	the	width	for	tracks	that	are	neither	Vcc	or	GND).	Then,	Kicad	will	set	the	width
for	a	track	based	on	this	information	and	the	name	of	the	net	that	the	track	belongs	too.	If
this	sounds	a	bit	complicated,	rest	assured	it	isn’t;	it	will	all	make	sense	by	the	end	of	this
chapter.

In	the	first	project	we	controlled	the	width	of	each	wire	manually.	We	did	this	by
creating	a	custom	track	width	and	then	we	used	the	track	width	drop-down	menu	to
manually	choose	the	width	of	a	particular	track.	What	I	would	like	to	do	now	is	to	get
Kicad	to	automatically	set	the	correct	track	width.	

Here	is	how	this	can	be	done:

Start	by	bringing	up	the	Design	Rules	editor	from	the	Design	Rules	menu.

Go	to	the	Design	Rules	editor.

You	have	seen	the	Design	Rules	editor	in	the	past,	when	you	created	several	custom
track	widths	in	the	Global	Design	Rules	Tab.

We	will	work	in	the	Net	Classes	Editor	tab.

In	this	chapter,	we	will	work	in	the	Net	Classes	Editor	tab,	instead	of	the	Global
Design	Rules	tab.	

There’s	a	few	things	to	notice	here.	First,	at	the	top	of	the	editor	there	is	the	Net
Classes	matrix.	There	is	a	single	net	class,	“Default”,	with	the	various	settings	for
clearance,	Track	Width	etc.	

In	the	middle	of	the	editor	are	the	Memberships.	On	the	left	side,	you	can	see	that	all
the	nets	belong	to	the	Default	class.	There	is	no	other	class	to	which	any	of	these	nets
could	have	belonged	to	anyway.	You	can	see	the	same	information	on	the	right	side.	At	the
top	of	each	list	is	a	drop	down	menu.	This	allows	you	to	filter	out	nets	of	a	particular	class,
and	only	display	those	in	the	list.	With	two	lists,	one	next	to	the	other,	you	can	select	nets
of	a	desired	class	in	each	list,	and	then	use	the	four	buttons	between	the	lists	to	move	nets
from	one	class	to	another.

A	net	is	a	wire,	and	it	gets	its	name	from	the	names	of	the	pads	that	it	connects.

A	net	gets	its	name	from	the	names	of	the	pads	it	connects

In	the	example	image	above,	you	can	see	that	the	wire	that	connects	any	“GND”	pads
is	named	also	“GND”.	The	wire	that	connects	the	two	“sg4”	pads	is	also	named	“sg4”.	If
you	wish	to	change	the	name	of	a	net,	you	must	change	the	names	of	the	pads	that	it
connects.

To	create	a	new	Net	Class	so	that	tracks	that	belong	to	this	class	have	an	individual	set
of	values	for	their	various	characteristics,	start	by	clicking	on	the	Add	button	in	the	Net
Class	Editor	tab.

To	add	a	new	net	class,	click	on	Add,	give	the	new	class	a	name,	and	click	OK.

Give	the	new	class	its	name,	Power.	Then	click	OK.	Now,	edit	the	values	for	the	Power
class.	I	set	those	values	as	per	the	screenshot	below:

The	values	for	the	new	Power	net	class.

Great,	we	have	a	new	net	class,	for	Power.	We	would	now	like	to	assign	nets	to	this
class,	so	that	the	power		class	characteristics	are	inherited	by	these	member	nets.	

Make	the	GND	net	a	member	of	the	Power	net	class.

To	do	this,	first	use	the	drop	down	filter	menu	of	the	right	net	list	to	select	the	Power
class.	Then,	select	the	GND	net	from	the	left	list	of	nets.	With	the	GND	net	selected,	click
on	the	“>>>”	button	to	move	the	GND	to	the	right	side	list.	That’s	it,	the	GND	net	is	now
a	member	of	the	Power	class.

Repeat	the	same	process	for	the	Vcc	net,	and	what	you	will	end	up	with	is	this:

The	Vcc	net	is	also	a	member	of	the	Power	net.

At	this	point,	we	have	the	GND	and	Vcc	nets	as	members	of	the	Power	net	class.	Let’s
see	the	effect	that	his	has	on	routing	tracks.Let’s	connect	a	couple	of	wires,	starting	with
the	GND	pads.	Because	I	prefer	to	place	GND	tracks	in	the	back	copper	layer,	select	the
B.Cu	layer	first.

We	will	place	the	GND	track	in	the	back	copper	layer.

Then	click	on	the	green	wire	button	to	select	it,	and	connect	any	two	GND	pads.	

Click	on	the	green	wire	button	to	go	into	the	wiring	mode.

Wire	the	connector	and	595	IC	GND	pins.	Notice	the	thickness	of	the	track?

I	connected	the	GND	pins	between	the	connector	and	the	left	595	IC.	Notice	that	the
new	track	is	thicker	than	the	default	thickness.	This	is	an	indication	that	Kicad	applied	the
correct	track	thickness	value	best	on	the	membership	of	the	GND	net.	

Let’s	do	the	wiring	for	a	non-power	related	set	of	pins.	Let’s	connect	pin	5	of	the
connector	to	pin	11	of	the	595	IC.	Since	this	is	a	normal	data	signal,	not	GND,	we	will
switch	to	the	front	copper	layer.

Select	the	F.Cu	layer	in	order	to	do	wirings	in	the	front	copper	layer.

Then	do	the	connection	between	these	pads.	This	is	what	you	should	see:

The	red	track	connects	two	non-power	pads	with	a	net	that	does	not	belong	to	the
power	net	class.	It	is	thinner	than	the	green	track	because	Kicad	applied	the	default
track	setttings	to	it.

Notice	the	difference	between	the	thickness	of	the	green	and	the	red	tracks.	The	red
track	(indicating	it	is	placed	on	the	front	of	the	PCB)	is	thinner	than	the	green	one.	This	is
because	the	Data	net	(the	net	that	connects		pin	5	of	the	connector	to	pin	11	of	the	IC)
belongs	to	the	default	net	class.	This	class	has	a	thinner	value	set	for	he	thickness.	Again,
we	didn’t	have	to	do	anything	specific	to	apply	the	thickness	value.	Kicad	used	the	net
class	settings	to	workout	the	correct	thickness	for	each	net.

Let’s	continue	with	the	rest	of	the	wirings.	I	prefer	to	do	my	wiring	from	left	to	right
when	possible.	Spend	a	bit	of	time	experimenting	with	the	routing,	try	to	figure	out	the
shortest	path	from	one	path	to	another,	and	try	to		make	the	tracks	as	neat	as	possible.	Try
to	lay	the	tracks	in	parallel	paths,	with	adequate	space	between	them.	Do	an	Design	Rules
Check	occasionally	to	make	sure	the	the	design	is	valid	at	all	times.	Usually	wiring	the
back	copper	layer	is	easier	since	it	involves	mostly	the	GND	pads.	Then	move	to	the	front
layer.

In	some	cases,	you	may	not	be	able	to	find	a	route	between	two	pads	because	of
obstacles,	like	existing	tracks	or	pads.	You	can	try	to	re-arange	existing	tracks	by	deleting
them	and	re-drawing.	You	may	also	be	able	to	create	a	route	by	inserting	vias.	A	via	is	a
small	hole	that	implements	an	electrical	connection	between	layers.	This	way,	a	track	that
starts	in	the	front	layer	can	continue	in	the	back	layer,	and	then	come	back	to	the	front	to
finish	a	connection.	To	insert	a	via,	just	type	“V”.	This	will	create	a	via	representation	on

the	canvas	that	looks	like	this:

A	via	is	a	connection	between	layers	that	allows	tracks	to	move	from	one	layer	to
another.	In	this	example,	a	via	is	used	to	make	allow	for	a	front	layer	track	to
continue	to	the	back	layer.

My	track	routes	eventually	look	like	in	the	image	below.	Yours	may	be	different.

A	possible	wiring.	Your	actual	routes	may	be	different.

The	DRC	is	also	clear:

A	clear	DRC	report!

You	can	also	have	a	look	at	the	3D	render	of	your	board,	and	admire	the	tracks	you	just
created.	Look	at	the	back	layer	to	notice	how	the	thicker	GND	net	is	clearly	visible.

The	track	are	clearly	visible	in	the	3D	rendering	of	the	board.

Let’s	save	the	project.	In	the	next	chapter,	we	will	add	copper	fills	for	Vcc	and	GND.

Chapter	45:	Add	GND	and	Vcc	copper	fills

In	this	chapter,	we	will	add	the	copper	fills	for	the	ground	and	Vcc	planes.	Since	we
placed	the	ground	tracks	in	the	back	copper	layer,	and	the	Vcc	and	data	signals	on	the
front	copper	layer,	we	will	create	copper	fills	in	the	back	and	front	layers.	

Let’s	start	with	the	bottom	layer.	Select	the	bottom	layer	“B.Cu”	from	the	Layer
chooser.

Select	the	appropriate	layer,	then	enable	the	copper	fills	function	button.

You	may	get	a	warning	like	this:

The	zone	display	is	OFF.	This	will	make	copper	layers	invisible,	so	we	should	turn
zone	display	on.

When	a	PCB	is	fully	populated,	routed	and	filled	with	copper,	it	may	be	difficult	to
distinguish	individual	features.	You	can	make	the	canvas	easier	to	examine	by	switching
off	various	display	features.	One	of	them	is	the	copper	fills.	This	warning	is	complaining
that	because	the	zone	display	is	off,	you	will	be	unable	to	see	the	new	copper	fill	that	you
are	about	to	add	to	the	canvas.	To	enable	the	zone	display,	click	on	the	“Show	field	areas
in	zones”	button	from	the	left	vertical	tool	bar.

To	make	copper	fills	visible,	click	on	the	“Show	filled	areas	in	zones”	button.	The
two	buttons	below	it	control	the	visibility	of	other	canvas	features.	Toggle	them	on
and	off	to	see	what	they	do!

With	the	zone	display	on,	B.Cu	layer	selected,	and	copper	fills	function	enabled,	start
drawing	the	copper	fill	region.	Click	at	the	top	right	corner	to	start	drawing.	The	Copper
Zone	Properties	window	will	show	up.	The	B.Cu	layer	is	already	selected	in	the	Layer	list.
In	the	Net	list,	look	for	the	GND	net	and	click	on	it	to	choose	it.

To	add	a	copper	fill	in	the	bottom	layer	for	the	GND	net,	select	the	layer	and	net
from	the	Copper	Zone	Properties	window.	Also	notice	the	Grid	setting	(0.508)	in	the
drop-down	menu	above	the	properties	window.

Click	OK	to	dismiss	the	properties	window,	and	start	creating	the	box.	A	single	click
will	complete	an	edge,	and	a	double	click	will	finish	the	box.

Click	to	create	an	edge	of	the	box…

Double-click	at	the	first	corner	of	the	box	to	complete	the	fill.

The	bottom	layer	copper	fill	(marked	in	green)	is	ready.	Let’s	move	to	the	front	layer
and	create	the	copper	fill	there.	Choose	the	front	copper	layer	(F.Cu):

Move	to	the	front	copper	layer.

The	fill	zones	tool	is	already	selected,	so	we	can	go	ahead	to	start	the	box	for	the
copper	fill	in	the	front	copper	layer.	Again,	start	by	clicking	on	the	top	right	corner	of	the
PCB	(this	is	not	a	requirement,	only	my	preference).	The	properties	window	will	come	up:

F.Cu	will	be	already	selected.	Choose	the	VCC	net,	and	click	OK.

Since	we	are	already	working	on	the	front	layer,	the	F.Cu	layer	will	be	already	selected
in	the	Copper	Zone	Properties.	In	the	Net	list	box,	scroll	to	find	the	VCC	net,	and	selected.
Click	on	Ok	to	dismiss	the	properties	box.	Begin	drawing	the	box	close	to	the	edge	of	the
PCB:

Drawing	the	front	layer	copper	fill…

The	front	layer	copper	fill	box	is	complete.	Notice	the	thin	red	line	outlining	it.

We	now	have	the	outline	for	the	top	and	bottom	layer	fill	zones,	but	they	zones	are	still
empty.	To	actually	fill	them	with	copper	(at	this	point,	virtual	copper!),	right-click
anywhere	inside	the	fill	zones	and	click	on	“Fill	or	Refill	All	Zones”)	from	the	contextual
menu:

To	fill	all	zones,	right	click	anywhere	inside	the	zone	and	select	“Fill	or	Refill	All
Zones”.

Our	PCB,	with	its	fill	zones	filled	with	virtual	copper.

Our	board	is	now	filled	with	copper	in	its	fill	zones:	red	for	the	front,	and	green	for	the
back.	The	3D	rendering	shows	the	copper	filled	area	with	a	lighted	shade	of	green	when
compared	with	areas	that	have	no	copper:

A	3D	rendering	of	the	front	layer.	Notice	that	the	areas	filled	with	copper	have	the
same	shade	of	green	as	a	normal	track.	Darker	green	indicates	an	area	that	has	no
copper.

The	back	layer,	almost	completely	covered	with	copper.

I	like	to	preview	a	3D	rendering	of	the	front	and	back	layers	before	doing	any	more
work,	in	order	to	visually	inspect	the	board.	It	is	also	a	good	practice	to	do	regular	DRCs.
In	my	case,	there	were	no	errors,	which	is	how	I	like	it!

Before	we	move	on,	have	a	look	at	one	of	the	Vcc	pins,	like	pin	10,	GND	pin	8,	and
unconnected	pin	9:

Small	but	important	details:	pins	8,	9	and	10.

Notice	how	pin	9,	which	in	Eeschema	we	marked	as	“unconnected”	is	actually	not
connected	to	anything	in	Pcbnew.	Thermal	reliefs	were	also	added	to	pins	8	and	10,	GND
and	Vcc	respectively,	since	we	chose	to	connect	these	nets	to	the	back	and	front	layer
copper	fills.

The	bulk	of	the	layout	and	wiring	work	is	complete.	In	the	next	lecture	we	will	add
text	labels	in	the	silkscreen	layer.

Chapter	46:	Add	text	labels

In	this	chapter	we	will	add	a	few	text	labels	in	the	silkscreen	layer.	Text	labels	provide	a
convenient	way	to	provide	useful	information	to	the	end	user	of	the	PCB,	like	the	name	or
model	and	version	number.	Select	the	Text	tool	from	the	right	vertical	tool	bar:

The	text	tool	button

Select	the	front	silk	screen	layer,	“F.Silk”,	where	we	would	like	the	text	to	go:

We	will	place	the	text	labels	in	the	front	silk	screen	layer.	You	can	also	place	text
labels	in	the	back	silk	screen	layer.

Start	with	the	version	number.	There	is	a	bit	of	empty	space	in	the	bottom	left	corner	of
the	board,	so	click	there.	The	Text	Properties	window	will	come	up.	Type	“v1.0”	in	the
text	box:

The	Text	Properties	window

The	default	settings	for	the	text	label	are	appropriate	for	this	text.	Notice	that	the	Layer
setting	is	“F.SilkS”,	which	is	carried	over	from	our	earlier	layer	selection.	Click	OK,	and
then	move	the	mouse	so	that	the	level	(which	is	now	tethered	to	the	mouse	pointer)	is
positioned	close	to	the	bottom	left	corner	of	the	board.	Click	to	place	the	label	in	position,
like	this:

The	“V1.0”	text	label	in	place.

In	the	screenshot	above,	you	can	see	that	the	text	(in	light-tray)	looks	“unclean”	and
there	is	a	ghost	image	in	red.	This	is	an	artefact	the	Kicad	generates	as	the	label	is	moved
around.	You	can	force	a	redraw	by	pressing	F3.	This	will	clean	up	any	such	artefacts.

Create	another	label	with	information	about	the	board.	Something	like	this	will	be

good:

A	new	label.	The	width	and	height	settings	are	smaller	in	order	to	produce
smaller	text.

I	would	like	this	text	to	be	smaller,	so	set	the	width	and	height	values	to	1mm.	When
you	click	OK	you	will	see	a	warning.	This	is	telling	you	the	Kicad	needs	to	adjust	the
thickness	of	the	text	to	accomodate	for	the	smaller	text	size.	This	is	fine,	so	click	OK
again	to	dismiss	the	warning.	Use	your	mouse	to	fine-tune	the	position	of	the	label	in	the
bottom	right	corner	of	the	board,	and	click	to	lock	it	in	place.	The	label	will	look	like	this:

Another	label	with	drawing	artefacts.	Type	F3	to	redraw	and	clean	it.

While	looking	at	the	bottom	right	corner	of	the	board,	notice	an	existing	label,
“7SEGM”	that	is	part	of	the	display	footprint:

The	label	“7SEGM”	is	not	useful.	Let’s	make	it	invisible.

This	label	is	not	very	useful,	so	I	would	prefer	to	make	it	invisible.	Place	your	mouse
pointer	over	the	label	and	type	“E”	(for	edit).	A	small	menu	may	appear	if	more	than	one
items	are	sharing	the	same	space,	asking	you	to	indicate	which	item	you	would	like	to
select.

If	multiple	items	are	sharing	the	same	space,	a	menu	will	appear	to	help	you	select
one	of	them.

You	can	make	a	label	invisible	by	selecting	the	“Invisible	radio	button”.

The	text	label	has	disappeared.

Our	board,	after	a	re-draw,	now	looks	like	this:

The	board	after	a	redraw	(F3).

There	are	several	yellow-coloured	labels.	These	labels	are	located	in	the	F.Fab	layer,
which	we	will	not	be	sending	to	the	fabricator	anyway.	Therefore,	these	labels	will	not	be
present	in	the	final	printed	circuit	boards,	even	though	they	are	visible	in	this	view.	

The	3D	preview	of	our	board	is	this:

The	3D	rendering	of	out	board,	with	the	new	text	labels	in	the	silkscreen.

I	think	our	board	looks	good!	Save	the	project.	

In	the	next	chapter	we’ll	create	a	decorative	graphic	to	put	in	the	back	of	the	PCB	with
a	logo.

Chapter	47:	Add	a	decorative	graphic

In	this	chapter	I	will	show	you	how	to	add	a	decorative	graphic	on	the	back	layer	of	our
PCB.	

To	better	understand	what	we	will	achieve	in	this	chapter,	let’s	start	from	the	end.	I
would	like	to	add	a	graphic	in	the	back	silkscreen	of	the	board,	so	that	it	will	look	like
this:

In	the	end	of	this	chapter,	the	back	layer	of	our	PCB	will	look	like	this.

Of	course,	you	can	use	whichever	graphic	you	like!

First,	we	need	to	find	out	the	dimensions	of	our	board:	width	and	height.	Kicad
contains	a	measuring	tool	in	Pcbnew.	Starting	with	the	width,	place	your	mouse	cursor
over	the	top	left	corner	of	the	PCB	and	hit	the	space	bar.	This	will	zero	the	measuring	tool
at	the	right	side	of	the	status	bar	(at	the	bottom	of	the	Pcbnew	window).

Pressing	the	space	bar	will	zero	the	measuring	tool.

Then,	move	the	mouse	cursor	to	the	top	right	corner	of	the	board	to	measure	the
horizontal	distance.	

The	distance,	in	the	X	and	Y	axis,	between	the	start	point	(the	position	of	the
cursor	when	the	space	bar	was	pressed)	and	end	points	where	the	cursor	is	now
showing	in	the	status	bar.

In	the	right	side	of	the	status	bar	you	can	see	the	horizontal	(X-axis)	distance	between
the	original	point	of	the	cursor	(when	the	space	bar	was	pressed)	and	the	current	position.
This	tells	us	that	the	width	of	the	board	is	49.53	mm.

Move	the	cursor	to	the	bottom	left	corner	of	the	board	to	measure	the	height:

The	height	of	the	board	is	31.75	mm

We	now	know	that	the	height	of	the	board	is	31.75	mm.	Because	we	are	taking	these
measurements	in	order	to	calculate	the	maximum	dimensions	of	our	decorative	graphic,
we	don’t	need	to	be	too	accurate.	We	can	round	these	dimensions	down	to	round	numbers.
Let’s	make	the	width	49	mm	and	the	height	31	mm.

The	process	of	creating	the	decorative	graphic	involves	using	a	simple	Kicad	utility
that	convert	a	PNG	image	file	into	a	Kicad	footprint.	Of	course,	we	need	a	graphic	file.	I
will	use	this:

I	will	convert	this	graphic	into	a	Kicad	footprint.	Feel	free	to	use	your	own
graphic.

It	is	better	to	start	with	a	graphic	that	has	high	resolution.	Part	of	the	process	that	will
follow	involve	scaling	down	the	image	in	order	to	reduce	its	size	and	make	it	fit	inside	our
PCB.

From	the	main	Kicad	window,	click	on	the	button	with	the	“a”	icon	to	start	the
Bitmap2component	utility.

Click	to	start	Bitmap2Component.

When	the	utility	starts,	notice	that	there	are	three	tabs	that	allow	you	to	convert
different	types	of	images	into	components.	Because	silkscreen	are	typically	able	to	print	in
a	single	colour	only,	because	my	original	image	is	black	and	white,	I	will	select	the	“Black
and	White	Picture”	tab:

In	most	cases,	we	will	be	dealing	with	black	and	white	PCB	decorative	images.

To	load	the	image	file,	click	on	the	“Load	Bitmap”	window.	Browse	to	select	the
image,	and	once	it	loads,	the	utility	will	show	you	a	full-sized	preview:

The	tool	will	provide	a	full-size	preview	of	the	image.

At	the	top	right	corner	of	the	tool	you	can	see	the	statistics,	and	a	couple	of	fields
where	you	can	specify	the	resolution	of	the	final	footprint.	You	can	also	see	the
dimensions	of	the	footprint.	The	process	is	simple:	change	the	DPI	resolution	until	the	size
of	the	image	is	smaller	than	the	size	of	the	board.

When	we	start	with	this	image,	the	footprint	contains	3000	pixels	horizontally	and
2000	pixels	vertically,	and	this	translates	to	a	footprint	of	1058.3	mm	by	705.5	mm.	This
is	a	very	large	image	and	will	not	fit	on	our	board,	which	measures	only	49	mm	by	31
mm.	Let’s	edit	the	resolution	down,	and	see	how	this	changes	the	dimensions.	

We	can	change	the	dimensions	of	the	footprint	by	changing	the	resolution.

If	we	change	the	horizontal	resolution	to,	say,	1100	DPI,	the	horizontal	size	will	be
reduced	to	69.3	mm	(from	1058.3	mm).	Still,	too	large,	so	we	need	to	increase	the
resolution	further.

At	1800	DPI,	the	horizontal	dimension	is	42.3	mm.

If	we	increase	the	horizontal	resolution	to	1800	DPI,	the	horizontal	dimension	is
reduced	to	42.3	mm,	which	is	fine	for	our	board	(considering	that	the	image	has	a	border
around	it).	Let’s	make	the	vertical	resolution	also	1800	DPI	in	order	to	preserve	the	aspect
ratio.

At	1800	DPI	for	both	horizontal	and	vertical	axes,	our	image	is	resampled	so	that
it	will	fit	inside	the	PCB.

At	1800	DPI	resolution,	our	image	is	scaled	down	to	42.3	mm	by	28.2	mm,	which	will
fit	inside	our	PCB.	To	create	the	footprint,	click	on	the	Export	button.	We	must	store	the
footprint	file	in	our	project	directory,	inside	a	new	“.pretty”	named	directory.

We	will	store	the	new	footprint	in	a	directory	titled	“Graphics.pretty”,	inside	the
project	directory.

Name	the	footprint	file	“logo_bw”:

We	will	name	the	new	footprint	file	“logo_bw”.	Kicad	will	give	it	the
“.kicad_mod”	extension.

Click	on	the	Save	button,	and	close	the	utility.	Our	new	footprint	is	now	saved	inside
the	project	directory.

Return	to	Pcbnew	and	bring	up	the	library	manager	in	order	to	import	the	new
footprint.	

Start	the	Footprint	Libraries	Manager	in	Pcbnew.

We	will	use	the	library	Wizard	to	import	the	new	footprint	library.	In	the	libraries
manager	window,	click	on	the	Append	with	Wizard	button	to	start	the	Wizard:

Start	the	Wizard.

The	file	we	are	importing	is	on	the	local	machine.

Browse	to	the	local	directory	where	we	created	the	Graphics.pretty	folder	with
the	footprint	file.

The	Wizard	recognises	this	as	a	native	Kicad	footprint.

We	will	make	this	library	available	to	the	current	project	only.	If	you	want	it
available	to	all	your	projects	select	the	first	radio	button.	Click	Finish	to	…	finish	…
Wizard.

When	the	Wizard	finished,	you	will	be	shown	the	Project	Specific	Libraries	tab	in
the	Library	Manager.	Our	newly	imported	library	is	included!

Now	we	can	add	the	footprint	we	just	created	to	the	back	silkscreen	of	our	board.	Click
on	the	Add	Footprint	button:

The	Add	Footprint	button.

Click	anywhere	on	the	canvas	to	add	the	footprint,	and	the	footprint	chooser	will
appear:

The	component	chooser.	Click	on	List	All.

We	can	use	the	filter	to	look	for	the	new	footprint.	Click	on	List	All:

In	the	filter	box,	type	a	part	of	the	footprint	name,	like	“logo”.

Select	the	footprint	and	click	OK.	This	will	drop	the	graphics	footprint	on	the	canvas:

The	decorative	footprint.	Since	we	want	to	place	it	in	the	bottom	layer,	we	need	to
reverse	it.

At	the	moment,	the	footprint	is	placed	on	the	top	layer	by	default.	We	would	like	to
place	it	on	the	bottom	layer	instead.	To	do	this,	place	you	mouse	over	the	graphic,	and
type	“E”	to	reveal	the	footprint	properties	window:

In	Footprint	Properties,	choose	“Bottom	side”	in	the	“Side”	group,	and	“180.0”	in
the	“Rotation”	group.

In	the	Footprint	Properties	window,	we	will	choose	to	place	the	footprint	in	the	Bottom
side.	We	also	have	to	mirror	the	footprint	in	order	to	orient	it	properly,	so	choose	“180.0”
in	the	Rotation	group.	The	board	now	looks	like	this:

The	decorative	graphic	is	now	in	the	back	layer,	properly	oriented.

The	PCB	view	is	not	very	clear,	so	let’s	check	out	the	3D	rendering:

Here	is	the	decorative	graphic,	nicely	showing	in	this	3D	rendering.

I	really	like	this,	I	hope	you	agree!	With	the	decorative	graphic	footprint	in	place,	we
have	completed	the	implementation	of	the	PCB.	The	only	thing	left	to	do	is	to	export	the
Gerber	files,	test	it	with	Gerblook,	and	upload	it	to	the	manufacturer.	We	will	do	this	in	the
next	chapter.

Chapter	48:	Exporting	Gerber	files

We	have	our	PCB	ready	to	export	as	Gerber	files,	and	upload	to	the	manufacturer!	We’ll
work	on	this	in	this	chapter.	Let’s	start	with	the	Gerbers.

Click	on	the	Plotter	icon	to	start	the	Gerber	export	process.

In	the	Plot	window,	we’ll	select	the	layers	that	we	would	like	to	export	as	Gerber	files,
Gerber	file	type,	an	output	directory,	and	then	we	will	create	the	files	themselves.	

The	Plot	window	controls	the	creation	of	the	Gerber	files.	The	numbers	indicate
the	order	of	interaction	with	the	window.

In	the	Plot	window,	start	by	selecting	the	layers	to	export.	Just	like	in	the	first	project,
we	are	going	to	export	the	F.Cu,	B.Cu,	B.Paste,	F.Paste,	B.Silk,	F.Silk	and	the	Edge.Cuts
layers.	As	you	will	see	later,	one	of	the	required	layers	is	missing,	but	lets	continue	with
this	omission	to	see	what	will	happen	later	in	the	process.	

In	the	Gerber	Options	group,	check	the	“Use	Protel	filename	extensions”,	and	the
select	the	output	directory.	Create	a	new	directory	so	that	we	can	create	a	ZIP	archive	from
it	later.	

Next,	click	on	the	Plot	button	to	have	the	Gerber	files	for	these	layers	created.	You	will
see	the	Messages	box	populated	with	the	status	of	the	Gerber	generation	process.	The	last
thing	to	do	here	is	to	create	the	Drill	file,	which	tells	the	manufacturer	where	to	drill	for
pad	holes	and	vias.	Click	on	the	Generate	Drill	File	button.

All	the	defaults	in	the	Drill	Files	Generation	window	a	good.

In	the	Drill	Files	Generation	window	simply	inspect	the	settings	as	the	defaults	are
correct.	Click	on	the	Drill	File	to	generate	the	file,	and	confirm	the	operation	by	looking	in
the	Messages	box.

The	Gerber	files	are	now	saved	in	the	Gerber	directory,	so	click	on	Close	to	close	the
Drill	Files	Generation	window,	and	Close	again	to	dismiss	the	Plot	window.

Here	are	the	Gerber	files:

The	Gerber	files.	One	for	each	layers,	plus	the	drill	file.

Create	a	ZIP	archive	from	the	Gerber	directory:

The	Gerber	files	ZIP	archive.

We	will	use	Gerblook.org	to	confirm	that	our	Gerber	files	are	valid	and	that	we	have
not	forgotten	any	of	the	layers	(which	is	often	the	case!).	Use	your	browser	and	go	to
gerblook.org.	Then	upload	the	Gerber	ZIP	archive:

Go	to	gerblook.org	and	upload	the	ZIP	archive	that	contains	the	Gerber	files.

Oh	no!	It	seems	that	we	forgot	to	include	a	required	layer!

Gerblook	detected	that	a	required	layer,	the	solder	mask	layer,	is	not	included	in	the
ZIP	archive.	If	we	had	proceeded	and	uploaded	this	ZIP	archive	to	a	manufacturer,	the

http://gerblook.com
http://gerblook.org
http://gerblook.org

board	would	be	produced	anyway,	but	with	this	layer	missing	the	board	would	be	useless.
Therefore,	it	is	a	good	practice	to	always	check	your	Gerber	ZIP	archive	with	a	service
like	Gerblook	or	similar	to	make	sure	that	the	archive	is	valid!

Go	back	to	the	Plot	window	in	Pcbnew,	and	click	to	select	the	B.Mask	and	F.Mask
layers.	You	should	un-select	the	B.Paste	and	F.Paste	layers	that	I	incorrectly	selected	in
my	first	attempt.

Select	the	back	and	front	solder	mask	layers.	Unselect	the	front	and	back	paste
layers.

Click	on	the	Plot	button	to	create	the	missing	Gerber	files,	and	the	Close	to	dismiss	the
window.	We	don’t	worry	about	the	Drill	file	since	we	generated	it	earlier.	

Delete	the	existing	ZIP	archive,	and	create	it	again	from	the	Gerber	file	directory.
Return	to	your	web	browser	and	Gerbview,	and	upload	the	new	ZIP	archive.	Gerbview
will	render	the	layer	and	present	them	in	a	single	page:

The	new	Gerber	ZIP	archive	passed	the	Gerblook	test!

The	back	of	the	PCB	on	Gerblook.

Gerblook	reported	that	the	new	Gerber	ZIP	archive	is	in	order.

We	can	now	proceed	with	our	order.	I	got	mine	from	OSH	Park,	but	feel	free	to	choose
you	own	manufacturer.	The	ZIP	archive	we	have	created	is	a	de-facto	industry	standard
and	I	had	no	trouble	using	it	with	various	manufacturers.	

PART	SEVEN
Project	3:	a	full-SMD	16-LED	board

Chapter	49:	What	is	this	part

In	the	third	project	for	this	course,	we	will	build	a	16-led	array	PCB,	using	two	layers	and
surface-mounted	components.

Using	surface-mounted	components	does	not	change	materially	the	process	of
designing	the	PCB.	In	fact,	in	the	schematic	editor	you	don’t	even	have	to	think	about	it.
Any	changes	to	the	design	process	apply	at	the	layout	and	wiring	stage,	in	Pcbnew.

In	Pcbnew	you	need	to	be	mindful	of	the	fact	that	the	components	are	placed	on	pads
that	only	exist	on	one	layer,	instead	of	pads	that	are	connected	on	both	sides	of	the	PCB
through	a	hole.	

In	this	project,	apart	from	using	surface	mounted	components,	you	will	consolidate	the
features	and	techniques	you	learned	about	up	to	know.

You	will	work	with	components,	nets,	labels,	busses,	power	flags,	the	electrical	rules
check,	netlist,	footprints,	track	widths,	copper	fills,	graphics,	and	Gerber	files.

This	is	what	the	final	board	will	look	like:

The	final	PCB	for	the	third	project,	front	side.

The	final	PCB	for	the	third	project,	back	side.

Chapter	50:	The	circuit

Before	we	start	with	the	design	work	of	the	PCB	in	Kicad,	let’s	have	a	look	at	the	original
circuit.

The	circuit,	implemented	on	a	breadboard,	comes	from	one	of	my	Arduino	step-by-
step	lectures.	If	you	haven’t	completed	that	lecture	from	Arduino	step-by-step,	again,
don’t	worry	about	it.	You’ll	be	perfectly	able	to	follow	along	with	what	we’re	doing	here.

The	circuit,	on	a	breadboard.	We	will	design	a	PCB	for	it.

As	you	can	see	in	this	circuit,	there	are	16	LEDs	in	total	on	the	breadboard.	I	would
like	the	PCB	to	provide	pads	for	common	0805	surface	mounted	LEDs	supported	by
similarly	sized	surface	mounted	resistors.	The	circuit	will	also	contain	two	surface
mounted	595	shift	register	integrated	circuits,	and	a	surface	mounted	electrolytic	capacitor.

The	only	through-hole	component	on	the	PCB	for	this	project	will	be	the	5	pin	connector.

The	two	ICs	will	be	contained	in	an	SMD	package	like	this.

Examples	of	capacitors.	The	left	of	the	image	shows	several	surface	mounted
capacitors.

Let’s	begin	with	the	work	in	Kicad!

Chapter	51:	Create	the	schematic	in	Eeschema

In	the	last	chapter	we	looked	at	the	breadboard	wiring	diagram	for	the	circuit	that	we	will
work	to	create	a	PCB	for.	In	this	chapter,	we’ll	start	the	process	by	creating	a	new	Kicad
project,	and	doing	the	schematic	in	Eeschema.

Let’s	create	the	new	project.	Start	Kicad,	go	to	the	File	menu	item,	then	New	Project,
and	then	click	on	New	Project.

Starting	a	new	project.

Create	a	new	directory	for	the	project,	and	give	it	a	name	like	“16-LED-board”.	Give
your	project	a	reasonable	name,	like	“16-LED-board”,	and	the	Kicad	main	window	will
look	like	this:

The	new	project	is	created,	ready	for	Eeschema!

Let’s	start	Eeschema.	Click	on	the	Eeschema	button.	Once	Eeschema	launches,	edit	the
page	properties	so	that	the	project	information	is	shown	in	the	canvas	legend.

Bring	up	the	Page	Settings	window	to	edit	the	project	information.

Populate	the	project	information	text	fields.

Once	all	the	details	are	completed,	click	OK.	The	canvas	legend	will	look	like	this:

The	canvas	legend	with	the	project	information.

We	will	start	again	as	usual	by	dropping	in	the	components	into	the	canvas,	making
extensive	use	of	pin	labels	and	buses.	We	will	use	lines,	boxes	and	text	labels	to	annotate
the	schematic	to	make	it	easy	to	read	if	you	decide	to	print	it	out.	

Let’s	start	the	process	by	dropping	the	components	to	the	canvas.	Hit	the	“A”	key	to
bring	up	the	components	chooser.	Look	for	the	larger	components	first,	like	the	595	shift
register.	Just	like	in	previous	project,	we	will	use	the	HC595	version	of	the	shift	register.
We	will	need	two	for	these	ICs.	We	can	simply	copy	the	first	one	by	placing	the	mouse
pointer	over	the	first	component	and	typing	“C”	to	make	a	copy.	We	now	have	two	shift
registers	on	the	canvas.	Here’s	what	your	canvas	will	look	like	now:

Select	the	HC595	IC	and	click	OK	to	drop	it	to	the	canvas.

Make	a	copy	of	the	first	IC	with	the	“C”	key.	We	now	have	two	ICs	on	the	canvas.

Next	let’s	add	the	LEDs.	Hit	the	“A”	key	to	bring	up	the	component	chooser,	and
select	the	LED	component:

Select	an	LED	component.

We	will	need	16	of	the	LED	components,	arranged	in	two	rows	of	8	LEDs	each.	Just
like	with	the	IC,	the	easiest	way	to	add	more	of	the	same	is	to	make	copies	of	the	first
component	using	the	“C”	key.	Go	ahead,	make	another	15	copies	of	the	first	LED,	and
arrange	them	in	two	rows.	Then,	do	exactly	the	same	thing	and	add	16	resistors,	also
arranged	in	two	rows.

At	the	end	of	this	process,	your	canvas	should	look	like	this:

The	canvas	now	contains	2	595	ICs,	16	LEDs	and	16	resistors.

Check	the	breadboard	schematic,	what	else	do	we	need?	Of	course,	we	need	a
capacitor,	so	let’s	add	one.	We’re	using	an	electrolytic	capacitor	so	we	want	to	add	a
polarized	capacitor	to	the	canvas.	In	the	component	chooser,	use	“C”	as	the	filter	keyword,
and	choose	one	of	the	available	polarised	capacitors:

Add	a	polarised	capacitor.

Because	we	will	connect	the	capacitor	to	the	rest	of	the	circuit	via	labels,	instead	of
actual	wires,	we	don’t	have	to	place	it	close	to	the	other	components.	In	fact,	because	there
will	be	a	lot	of	wires,	buses	and	labels	close	to	the	two	ICs,	I	prefer	to	place	this	capacitor
further	away	from	them.	Let’s	place	it	at	the	top	left	corner	of	the	canvas,	where	there	is
plenty	of	space:

The	capacitor	is	at	the	top	left	corner	of	the	canvas.

The	last	thing	we	need	is	the	connector.	Like	with	the	other	projects,	we	will	use	a
straight	1	x	5	connector.	Find	it	in	the	component	chooser:

The	1x5	connector	in	the	component	chooser

Like	with	the	capacitor,	we	don’t	need	to	place	the	connector	in	close	proximity	to	the
rest	of	the	components	in	the	circuit	because	we	will	be	using	labels	instead	of	wires	to	do
the	connections.	Feel	free	to	spread	out	your	components	to	produce	a	balanced	and	easy
to	read	schematic.	Here	is	the	current	version	of	the	schematic,	with	the	connector	at	the
bottom	left	corner	of	the	canvas:

The	current	version	of	the	schematic.

We	now	have	all	the	components	of	the	circuit	on	the	canvas.	In	the	next	chapter,	we
will	start	working	on	the	wiring.

Chapter	52:	Schematic	wiring,	Part	1

In	the	previous	chapter	we	added	the	circuit	components	to	the	canvas.	In	this	chapter,	we
will	start	work	on	the	wiring.	We’ll	make	full	use	of	the	techniques	we	learned	in	the
previous	two	projects,	and	especially	buses	and	labels.	

Let’s	begin	with	the	connector.	Consult	the	breadboard	wiring	diagram	to	find	out	the
role	of	each	pin.	We	will	assign	pin	#1	to	be	connected	to	five	volts,	pin	#2	will	be
connected	to	ground,	pin	#3	will	be	latch,	pin	#4	will	be	clock,	and	pin	#5	will	be	data.	So,
let’s	put	in	a	VCC	component.	So	that	will	go	say	here,	and	I	put	in	a	ground	component
as	well	GND.	So	that	will	go	rotated,	that’ll	go	here.	And	I	can	do	the	wiring,	so	W.	Just
start	the	wiring,	and	it	will	go	around	here	to	pin	number	one.	Same	thing	for	ground,
click	to	start	the	wire	and	that	would	be	connected	to	number	two.	This	is	very	similar	to
how	we	configured	the	connector	in	project	two,	so	I	will	show	you	the	way	the	connector
will	look	like	on	the	schematic	now:

The	wiring	of	the	connector.

In	the	connector	schematic,	notice	the	GND,	VCC	and	PWR_FLAG	components,	all
added	via	the	component	chooser.	We	use	labels	for	pins	3,	4	and	5,	though	which	we	will
achieve	connection	with	other	parts	of	the	circuit.

To	make	the	connector	part	of	the	schematic	easier	to	identify,	I	would	also	like	to
wrap	it	in	a	box,	and	give	it	a	name.	First,	select	the	line	tool	from	the	right	vertical
toolbox:

With	the	line	tool	you	can	draw	boxes	and	other	shapes.

Draw	a	box	around	the	connector	schematic:

With	a	box	outline,	we	can	mark	out	parts	of	the	schematic.

Add	a	name	to	this	part	of	the	schematic.	Use	the	Text	tool:

With	the	Text	tool	you	can	add	arbitrary	text	to	the	schematic.

Click	inside	the	box	you	just	created,	somewhere	in	the	top	right	of	the	box.	The	Text
properties	window	will	come	up.	Type	something	like	“Connector	to	the	Arduino”	in	the
text	box:

Type	some	text	in	the	text	box,	and	click	OK.

The	text	label	you	just	created	is	now	tethered	to	the	mouse	pointer.	Place	it	in	the	box,
so	that	at	the	end	you	have	something	like	this:

This	part	of	the	schematic	is	now	marked	and	titled.

The	box	and	the	title	we	just	added	are	not	part	of	the	circuit!	They	only	serve	in
marking	out	special	parts	of	the	circuit.	They	just	make	the	schematic	easier	to	read.

Do	the	exact	same	thing	for	the	capacitor.	Add	the	VCC	and	GND	components,	place
the	area	in	a	box,	and	give	it	a	title.	It	should	look	like	this:

The	capacitor	part	of	the	schematic,	boxed	and	titled.

Next,	let’s	switch	our	attention	to	the	resistors	and	LEDs.	Because	of	the	way	we
positioned	these	components	in	the	previous	chapter,	one	next	to	the	other	in	two	columns,
we	can	simply	use	wires	to	connect	them.	Type	“W”	to	select	the	wire	tool,	or	click	on	the
Wire	tool	button	from	the	right	tool	bar,	and	draw	the	wires.	

Use	normal	wires	to	connect	the	LEDs	to	the	resistors.

The	circuit	requires	that	the	anode	of	each	LED	is	connected	to	VCC.	The	cathodes
will	be	connected	to	the	shift	register	data	pins.	So,	lets	add	the	VCC	component	next,	and

connect	the	resistors	to	it,	for	both	LED	banks.	The	first	LED	bank	circuit	will	look	like
this:

Added	a	VCC	component,	and	completed	the	connections	with	the	LED	anode,
via	the	resistors.

Notice	the	solid	green	dots	indicating	that	the	wires	actually	connect	instead	of	only
intersecting.	The	two	LED	banks,	completed,	look	like	this:

Both	LED	banks	connected	to	the	VCC	component	via	the	current	limiting

resistors.

We’ll	continue	with	the	data	pins	and	wires.	Because	we	have	8	data	pins	for	each
LED	bank,	it	is	preferable	to	bundle	them	together	via	buses.	We	will	create	one	bus	for
each	LED	bank,	and	assign	8	data	signals	to	each	bus.	

Start	the	process	for	the	first	bank	by	labelling	the	data	pins	on	the	shift	register	and
the	LEDs,	then	draw	the	bus,	add	the	bus	entries,	and	finish	with	the	wiring	between	the
bus	entries	and	the	pins.

Click	on	the	Local	Label	button:

Select	the	Local	Label	button.

Next,	add	labels	to	pins	QA	to	QH	of	the	shift	register,	and	the	8	LEDs	that	are	across
it.	The	labels	that	you	create	should	contain	the	same	name	for	each	data	pin	and	LED
pair.	The	schematic	should	look	like	this:

The	data	pins	and	LEDs	are	now	labeled.

Notice	how	a	label	is	structured	according	to	a	convention:	“led_x_y”,	where	“x”	is	the
number	of	the	LED	bank	(in	this	example,	we	are	working	on	bank	2	of	2),	and	“y”	is	the
number	of	the	data	pin	(1	of	8,	2	of	8	etc).	Also	notice	that	the	same	label	is	used	for	pins
that	are	meant	to	be	electrically	connected.	So,	the	shift	register	pin	QA	is	meant	to	be
connected	to	the	LED	at	the	top	of	the	bank.	The	names	of	the	labels	will	be	used	to	name

the	corresponding	net.	Later	in	Cvpcb,	we	will	see	these	nets	again,	so	it	is	important	to
choose	names	that	have	meaning	otherwise	there	is	a	good	change	you	will	get	confused
later!

Let’s	create	the	bus	next.	Select	the	bus	too	from	the	right	tool	bar:

The	bus	tool	button.

Draw	a	bus	as	a	single	line	between	the	shift	register	IC	and	the	LEDs:

The	blue	line	represents	a	bus.

Select	the	bus	entry	tool	from	the	right	tool	bar:

The	bus	entry	tool.

And	create	entries	on	the	IC	side	first:

Added	bus	entries.	They	are	very	similar-looking	to	normal	wires,	except	that
they	are	at	a	45	degree	angle.

Use	a	normal	wire	(“W”	key)	to	connect	each	pin	of	the	shift	register	with	a	bus	entry:

The	pins	are	now	connected	with	a	corresponding	bus	entry.

Repeat	the	process	on	the	LED	side:	add	bus	entries	and	connect	them	to	the	LEDs:

The	LEDs	are	now	connected	to	the	bus.

The	shift	register	is	now	fully	connected	to	the	LEDs.	Draw	a	boundary	around	this
part	of	the	schematic,	and	give	it	a	name,	like	“LED	Bank	2”:

This	part	of	the	schematic	highlighted	and	titled.

Repeat	the	exact	same	process	for	the	other	shift	register	IC	and	its	LEDs.	To	avoid
boring	you,	I	will	just	show	you	the	end	result:

This	is	the	LED	Bank	1	segment	of	the	schematic,	complete	with	a	bus,	bus
entries,	net	labels	and	wires.

Detail,	showing	a	text	label	with	the	name	of	this	segment	for	the	schematic.

We	have	made	substantial	progress	so	far:	the	shift	registers	and	the	LED	as	connected
via	buses,	and	the	connections	to	the	capacitor	and	the	connector	are	complete.	

Next,	we	need	to	complete	the	circuit	by	connecting	the	shift	register	communications
pins	to	the	connector.	We	will	use	net	labels	for	this.	Let’s	proceed	to	the	next	chapter	and
to	get	this	done.

Chapter	53:	Schematic	wiring,	Part	2

In	this	chapter	we	will	continue	where	we	left	of	last	time.	We	will	complete	the	wiring	of
the	shift	registers.

The	shift	register	that	is	connected	to	LED	Bank	1	will	be	wired	directly	to	the
connector.	We	will	start	by	adding	net	labels.	Pin	#14	is	data,	pin	#11	is	clock,	pin	#12	is
latch,	pin	#10	is	Vcc,	and	pin	13	will	be	left	unconnected.	Here’s	the	result:

Added	labels	to	pins	14,	11,	12,	connected	pin	10	to	VCC,	and	marked	pin	13	as
unconnected.

	On	to	the	second	shift	register	now.	The	second	shift	register	receives	its	data	in	pin	14
from	pin	9	of	the	first	shift	register.	We	could	use	a	wire	to	do	this	connection,	but	the
schematic	will	look	better	with	a	label,	so	let’s	do	that.	Add	the	net	label	“DATA_S”	(“S”

stands	for	serial)	to	both	pin	9	of	the	first	shift	register,	and	pin	14	of	the	second	shift
register.	The	end	result	is	this:

Pin	9	of	register	1	and	pin	14	of	register	2	are	connected	via	net	labels.

Let’s	finish	the	labelling	of	shift	register	2.	Create	labels,	as	you	did	for	shift	register	1.
In	addition,	attach	the	Unconnected	component	to	register	2	pin	9.	Eventually,	register	2
will	look	like	this:

Register	2	labelling	complete!

With	this,	the	wiring	of	the	circuit	is	complete.	Save	the	schematic,	and	zoom	out	to
see	what	we	have:

The	complete	16-LED	project	schematic.

We	have	got	all	the	LEDs	with	their	current	limiting	resistors,	connected	to	VCC	on
side,	and	then	via	a	bus	to	each	one	of	the	shift	registers.	We	have	the	connector	down	the
left	side,	and	we’ve	got	the	bypass	capacitor	at	the	top.

Let’s	do	the	annotation	now.	Click	on	the	annotate	schematic	components	button.	The
default	settings	are	good,	so	we	can	accept	them	as	they	are.	Click	on	Annotate.

The	schematic	is	now	annotated.

All	the	components	now	have	a	unique	designator.	The	connector	is	P1,	the	first	shift

register	U1,	the	second	U2,	and	then	all	the	LEDs	also	have	got	their	own	designators.
Save	the	project	again.

Finally,	let’s	do	an	electrical	rules	check:

Nothing	to	worry	about!

Excellent,	no	errors!	

In	the	next	chapter	we’ll	do	the	component-footprint	associations	and	export	the	netlist
for	Pcbnew,

Chapter	54:	Associate	components	with	footprints

In	this	chapter	we’ll	create	the	component-footprint	associations	and	then	we	will	export
the	netlist	file.	Let’s	begin	with	starting	Cvpcb.	If	you	are	still	in	Pcbnew,	click	on	the
Cvpcb	button:

Start	Cvpcb.

You	will	see	the	Cvpcb	window,	with	the	middle	pane	containing	the	components	from
the	schematic.

Cvpcb	lists	the	schematic	components	in	the	middle	pane.

We	can	start	with	the	capacitor.	For	the	capacitor,	we’re	looking	for	an	SMDs	type
package.	The	one	I	would	like	to	use	is	an	electrolytic	SMD	aluminium	capacitor,
measuring	6.3	mm	by	5.3	mm,	like	this	one:

An	electrolytic	SMD	capacitor.

Select	the	Capacitors_SMD	library	from	the	left	pane,	and	enable	the	Library	filter.	In
the	right	pane	there	is	a	long	list	of	candidate	footprints.	Scroll	down	until	you	find	one
that	measures	the	correct	dimensions:

Select	the	library,	filter,	and	look	for	the	right	footprint.

Confirm	that	you	have	the	right	footprint	by	looking	at	its	preview:

This	is	the	footprint	of	an	SMD	electrolytic	capacitor.

Double	click	to	select	this	footprint	and	associate	it	wit	the	capacitor	component.

For	the	LEDs,	again	I	amlooking	for	an	LED	surface	mounted	device	of	0805	type.
Select	the	LEDs	library,	and	inspect	the	list	in	the	right	pane.	

Candidate	footprints	for	the	LEDs.

There	are	several	options	for	3mm,	5mm,	and	0805	here,	among	others.	I	am	looking
for	the	0805,	so	double	click	on	that	to	select	it.	Continue	to	double	click	until	all	LED
have	the	0805	footprint	associated.

The	LED	components	are	associated	with	the	0805	footprint.

Let’s	skip	the	connector	and	work	on	the	resistors	next.	Instead	of	selecting	a	library
first,	I	will	use	the	keyword	and	pin	count	filters	to	find	the	right	footprint.

With	the	keyword	and	pin	count	filter,	I	can	quickly	find	the	correct	Resistor
footprint.

Look	for	the	0805	type	resistor,	and	double	click	several	times	to	associate	this
footprint	with	all	of	the	resistor	components.	Here	is	the	end	result:

The	resistor	components	are	now	associated	with	the	0805	footprint.

Let’s	continue	with	the	connector.	Click	on	the	CONN_01X05	component	in	the
middle	pane,	and	with	the		filter	settings	unchanged,	the	suggested	footprint	in	the	right
pane	are	just	four.	I’d	like	to	use	the	straight	header	connector,	so	double	click	on	the
second	option	to	select	it.

The	options	of	the	connector.

The	connector	component	is	associated	with	the	straight	header.

Lastly,	for	the	shift	register,	we	need	to	look	in	the	SMD	package	to	find	the
appropriate	footprint.	Click	on	the	library	filter	button,	and	click	again	on	the	other	two
filters	to	disable	them.	This	part	is	more	complicated	than	the	resistor	and	capacitor,	so	I
prefer	more	control	over	the	browsing	process.	The	integrated	circuit	I	would	like	to	use
on	the	board	comes	in	an	SO16	package,	so	we	need	to	find	one	of	them	in	the	right	pane.	

Only	the	Library	filter	is	used	for	the	search	for	the	SO16	package.

The	correct	footprint	for	our	component	is	most	likely	the	SO-16-N	option.	But
because	there	are	three	varieties	of	this	footprint,	it	is	better	to	make	sure	we	have	the	right
one.	Let’s	bring	up	the	footprint	preview:

The	SO16-N	footprint	preview.

Measure	the	dimensions	between	the	pads,	between	the	rows,	and	of	the	package	itself.
The	actual	part	that	I	have	in	my	toolbox	is	this:

The	actual	IC	I	would	like	to	use	comes	in	an	SO16	package	like	this	one.

I	used	my	rule	to	measure	the	distances	and	found	that	the	pitch	between	the	pads	is
1.27mm	and	that	the	distance	between	the	two	rows	is	6.35mm.	Use	the	measuring	tool	in
the	footprint	previewer	to	make	sure	the	the	footprint	you	are	about	to	select	has	the	same
measurements.	This	is	the	correct	footprint,	so	double	click	to	select	it	for	both	ICs:

The	shift	registers	are	associated	to	the	correct	footprint.

We	now	have	all	our	components	associated	with	their	footprints,	so	we	can	save	the
associations	and	return	to	Eeschema.

Before	we	close	this	chapter,	let’s	export	the	netlist	file,	store	it	in	the	project	folder:

Generate	the	netlist	file.

Let’s	continue	with	Pcbnew	now	and	work	on	the	layout	and	the	wiring.

Chapter	55:	Create	the	PCB	in	Pcbnew

After	creating	the	netlist	file	in	Eeschema	in	the	previous	chapter,	we’ll	move	into	Pcbnew
to	work	on	the	layout,	the	wiring,	and	produce	the	final	pcb.	Start	Pcbnew	and	fill	in	the
page	details	details.	Bring	up	the	Page	Settings	window	by	clicking	on	File	and	Page
Settings:

Bring	up	the	Page	Setting	window.

Fill	in	the	page	and	project	information,	like	in	this	example:

The	page	and	project	information,	entered.

Now,	let’s	go	ahead	to	read	the	netlist	file.

Read	the	netlist	file.	The	path	to	the	file	should	be	correct	by	default.

The	default	path	should	be	correct	if	you	saved	the	netlist	file	in	the	project	directory.
Click	on	the	Read	Current	Setlist	file	to	read	it,	and	then	close	the	window	(click	on	the
Close	button).	The	footprints	will	be	bundles	together	on	the	canvas.	You	will	need	to
zoom	in	and	pan	to	be	able	to	distinguish	the	individual	components	in	the	bundle.

The	footprints	are	placed	in	the	canvas,	in	a	bundle.

Picking	and	moving	individual	footprints	is	too	much	trouble,	so	let’s	get	Kicad	to	help
us	out	here.	Click	on	the	Mode	Footprint	button	to	enable	automatic	mode.

Enable	Automatic	Footprint	mode.

Then	click	anywhere	on	the	canvas	and	select	Spread	out	All	Footprints,	to	do	what
this	items	says	it	will	do!

Select	Spread	out	All	Footprints.

You	will	get	a	warning	informing	you	that	any	unlocked	footprints	will	be	moved.	That
is	fine,	so	accept	the	warning.	I	will	show	you	how	to	lock	footprints	in	place	in	a	seperate
chapter.

None	of	our	footprints	are	locked,	so	all	of	them	will	be	spread	out.

Kicad	will	spread	out	all	footprints	and	produce	a	layout	similar	to	this:

The	footprints	from	the	bundle	have	been	spread	out	so	none	is	overlapping.

All	the	footprints	are	now	spread	out	somewhere	in	the	canvass,	in	a	grid-like	manner.
It	is	now	much	easier	to	find	individual	footprints	and	place	them	to	a	position	that	we
think	is	appropriate.	

We	can	now	go	ahead	working	on	the	layout.	I	would	like	to	position	the	two
integrated	circuits	in	the	middle	of	the	board,	and	the	LEDs	with	the	resistors	along	side
the	shift	registers.	I	would	like	to	place	one	bank	of	the	LEDs	on	the	left	side	of	the	PCB,
and	the	other	bank	on	the	other	side.	I	will	also	try	to	place	the	footprints	in	a	way	that
minimises	the	total	area	for	the	PCB	in	order	to	reduce	its	cost.	

With	a	bit	of	trial	and	error,	and	after	several	iterations,	I	ended	up	with	this	layout:

The	final	example	layout,	with	the	edge	cut	set.

The	screenshot	above	also	includes	the	edge	cut	border.	Don’t	forget	to	select	the
Edge.Cuts	layer	and	the	polygon	tool	in	order	to	draw	it.	

The	3D	preview	of	this	PCB	looks	like	this:

The	3D	preview	of	the	current	PCB.	

Now	that	the	placement	of	the	footprints	is	complete,	we	can	proceed	with	the	wiring.
We’ll	do	that	in	the	next	chapter.

Chapter	56:	Wiring	in	Pcbnew

Now	that	our	footprints	are	placed	on	the	PCB,	let’s	go	ahead	with	the	wiring!	First,	let’s
edit	our	design	rules	so	that	KiCad	can	automatically	select	the	appropriate	width	for	each
track.	Bring	up	the	Design	Rules	window:

Bring	up	the	Design	Rules	window

Click	on	the	Add	button	to	create	a	new	Net	Class:

Create	a	new	Net	Class.

Configure	the	new	Power	class	with	the	values	from	this	example:

The	values	for	the	new	Power	net	class.

Finally,	move	the	VCC	and	GND	nets	into	the	power	net	class:

Move	the	GND	and	VCC	nets	into	the	Power	net	class.

In	the	screenshot	above,	notice	that	the	filter	of	the	right	membership	list	is	set	to
Power.	After	you	set	the	filter,	find	the	GND	net	in	the	right	membership	list,	select	it,	and
click	on	the	“>>>”	button	to	move	it	to	the	right	list.	Do	the	same	for	the	VCC	net.

Let’s	start	laying	out	some	tracks	now.	We	can	start	with	the	VCC	net.	I	would	like	the
VCC	signals	to	go	on	the	top	copper	layer	and	ground	as	much	as	possible	on	the	ground
copper	layer.	Just	like	in	the	previous	project,	we	will	have	to	switch	signals	from	top
layer	to	bottom	layer	through	vias.	Select	the	F.Cu	layer:

Select	the	F.Cu	layer.

Then,	click	on	the	green	Wire	button	or	type	“W”	to	select	the	wiring	tool,	and	create	a
wire	between	the	Vcc	pin	of	the	connecter	and	the	Vcc	pin	of	U2.

Just	wired	the	first	VCC	net.

Notice	that	the	name	of	the	wire	is	written	on	it:	“VCC”,	the	name	of	the	net.

Let’s	work	on	one	of	the	ground	wires	next.	Switch	to	the	B.Cu	layer:

Select	the	B.Cu	layer	for	the	ground	signals.

Now	try	to	create	a	wire	between	the	GND	pin	of	the	connector	(the	second	pin	from
the	right)	and	the	GND	pin	of	U1:

	

You	will	be	unable	to	complete	the	green	wire!

No	matter	how	hard	you	try,	you	will	not	be	able	to	complete	the	green	GND	wire.
This	is	because	footprint	U1	is	surface	mounted,	and	its	pads	are	only	accessible	on	the
top	layer.	Therefore,	we	must	use	a	via	to	switch	the	wire	from	the	bottom	layer	to	the	top
layer,	and	then	complete	it	on	the	GND	pad	of	footprint	U1.	Use	the	“V”	key	to	create	a
via	close	to	U1’s	GND	pin,	and	then	double	click	to	complete	the	wire	on	the	pad:

Use	a	via	to	switch	a	wire	between	layers.

Connect	the	GND	pad	of	U2	to	the	same	GND	wire,	again	using	a	via	to	switch
between	layers:

Connect	the	GND	pad	of	U2	by	joining	a	new	wire	to	the	wire	of	the	U1	GND.

We	can	continue	by	wiring	the	rest	of	the	connector	pins.	Switch	to	the	top	layer,	and
follow	the	ratsnests	to	help	you	wire	the	connector	pins	to	the	U1	and	U2	pads.	You	can
use	vias	if	needed	to	keep	the	tracks	from	being	too	long	or	having	too	many	twists	and
turns.	My	wiring	ended	up	like	this:

Wiring	the	connector	pins	to	U1	and	U2.

Now	let’s	have	a	closer	look	to	the	wiring	between	the	VCC	pin	in	the	connector	and
the	resistors	on	the	right	side	of	the	PCB.	At	the	moment,	the	layout	is	this:

The	orientation	of	the	resistors	can	be	improved	in	order	to	minimise	the	length
of	the	VCC	wire.

Notice	how	the	VCC	pad	of	the	resistor	is	oriented	away	from	the	VCC	pad	of	the
connector.	At	this	orientation,	the	wire	that	connects	the	two	would	have	to	be	routed
around	the	back	of	the	resistor.	If	we	simple	flip	the	resistor	over	so	that	its	VCC	pad	is
right	opposite	the	VCC	pad	of	the	connector,	the	length	of	the	wire	would	be	minimal,
without	any	angles.	It	would	also	make	it	easy	to	connect	the	VCC	pads	of	all	other
resistor	in	the	bank	to	the	same	wire.	So,	that’s	what	you	should	do	next:	place	your	mouse
pointed	over	an	resistor,	hit	the	“R”	key	to	flip	it.	Repeat	for	all	resistors.	Then,	connect
the	VCC	pad	of	the	connector	to	the	VCC	pad	of	the	first	resistor,	and	extend	the	wire
downwards	to	connect	the	VCC	pads	of	all	resistors.	Then,	also	connect	the	LEDs	to	their
current	limiting	resistors.	The	PCB	will	look	like	this:

The	Connector	and	Resistor	VCC	pads	are	connected.	The	LEDs	are	also
connected	to	their	resistors.

It’s	a	fairly	clean	and	straight	forward	route	for	the	VCC	wire.	The	unconnected	pad	of

the	LEDs	must	be	connected	to	the	data	pins	on	U2.	To	do	the	wiring	we	will	need	to	use
vias	so	that	part	of	the	wire	is	routed	in	the	back	copper	layer	so	that	it	does	not	cross	the
long	VCC	wire	that	connects	the	resistors.	Here	is	how	you	can	route	this	wire:

Routing	the	LED	to	the	data	pins	of	U2.

In	this	example,	starting	from	the	first	LED	pad	on	the	front	layer,	use	a	via	to	switch
to	the	back	layer,	continue	the	wire	until	it	gets	close	to	pin	#7	of	U2,	then	use	another	via
to	continue	on	the	front	copper	layer,	and	end	the	wire	on	pin	#7.	Repeat	the	same	process
for	the	rest	of	the	resistors,	until	you	complete	the	wirings	on	the	right	side	of	the	board.
The	PCB	will	look	like	this:

The	wiring	on	the	right	side	of	the	PCB	is	complete.

Repeat	the	process	to	connect	the	LEDs	and	resistors	on	the	left	side	of	the	board.
Don’t	forget	to	do	a	Design	Rules	Check	occasionally.	This	will	tell	you	if	you	have	left
unconnected	pads.	When	you	complete	the	left	side	of	the	board,	the	PCB	will	look	like
this:

The	left	side	of	the	PCB	is	complete.

The	last	footprint	to	connect	is	the	capacitor.	We	can	connect	pin	1	to	any	existing
VCC	net,	and	pin	2	to	any	existing	GND	net.	Here	is	the	way	I	wired	mine:

The	capacitor	is	wired.

At	this	point	I	can	see	a	couple	of	ratsnest	threads,	which	means	that	I	have
unconnected	pins.	The	canvas	is	crowded,	so	I	find	it	hard	to	see	exactly	which	pads	are
left	unconnected.	A	good	solution	is	to	do	an	DRC,	and	get	a	list	of	unconnected	pads.	

The	DRC	gives	a	handy	list	of	unconnected	pads.

The	DRC	tells	me	that	pad	#9	of	U1	should	be	connected	to	pad	#14	of	U2,	pad	#10	of
U2	should	be	connected	to	pad	#16	of	U2,	pad	#16	of	U1	should	be	connected	to	pad	#16
of	U2,	and	pad	#2	of	R4	should	be	connected	to	pad	#2	of	R3.	Let’s	do	these	connections.

Here	is	the	final	wiring:

The	final	wiring

Wiring	takes	some	time	to	do	properly,	and	several	iterations.	You	should	not	be	afraid
of	deleting	traces	and	redoing	them	better!	

In	the	next	chapter,	will	will	work	on	the	copper	fills.

Chapter	57:	Adding	copper	fills

In	this	chapter	we	will	add	the	copper	fills	for	the	ground	(in	the	back	layer)	and	Vcc	(in
the	front	layer).

Start	with	selecting	the	F.Cu	layer	and	the	Filled	Zones	tool.

Select	F.Cu	and	the	Filled	Zones	tool

Configure	the	front	copper	fill	so	that	it	is	connected	to	VCC:

The	front	copper	fill	will	be	connected	to	the	VCC	net.

Draw	the	fill	rectangle	close	to	the	edge	of	the	board:

The	copper	fill	for	the	front	layer,	connected	to	VCC.

Click	again	at	the	top	right	corner	of	the	board	(inside	the	yellow	edge	cuts	line!)	to
start	setting	up	the	back	copper	fill.	Choose	the	B.Cu	layer,	and	connect	it	to	the	GND	net:

Configure	the	back	copper	fill.

Set	the	boundary	for	the	back	copper	fill:

The	back	and	front	copper	fills	defined	(detail).

Both	copper	fills	are	now	defined.	Let’s	fill	them	with	copper.	Right-click	anywhere
inside	the	fill	zones	and	select	“Fill	or	Refill	All	Zones”:

Fill	the	zones	with	copper.

The	PCB	will	look	like	this	once	the	zones	are	filled:

The	copper	zones	are	now	filled.

Let’s	also	have	a	look	of	the	board	in	3D:

The	front	of	the	PCB,	in	3D.

The	back	of	the	PCB,	in	3D.

Notice	the	different	shade	of	green	that	marks	areas	that	are	filled	with	copper	and
those	that	are	not.	

The	electrical	work	on	the	board	is	now	complete.	In	the	next	chapter	we	will	finish
the	board	by	adding	text	labels	and	a	decorative	graphic.

Chapter	58:	Adding	text	labels	and	decorative	graphics

We	are	approaching	the	end	of	this	project.	One	of	the	last	few	things	to	do	is	adding	text
labels	with	information	about	the	PCB,	and	if	you	choose,	a	nice	decorative	graphic.

Let’s	add	some	text	labels.	First,	I	would	like	to	put	one	with	the	version	of	the	project.
Choose	the	front	silk	layer	and	place	the	label	inside	a	clear	area	towards	the	bottom	of	the
PCB:

Select	the	Text	tool.

Click	inside	a	clear	part	of	the	PCB	and	type	the	content	of	the	label	in	the	text
box.

Fine	tune	the	position	of	the	label	with	your	mouse,	and	click	to	set	it.

	I	would	like	to	make	some	more	space	available	just	above	the	bottom	edge	of	the
board.	At	the	moment,	the	“200uF”	label	is	there,	so	let’s	move	it	up:

Move	this	label	up	to	make	room.

Let’s	add	a	label	with	the	name	of	the	board.	The	name	of	the	board	is	“16-LED	board
with	shift	registers”.	Reduce	the	size	of	each	character	to	0.9	mm	for	both	width	and
height:

Add	a	label	with	the	name	of	the	board.

Added	a	label	with	the	name	of	the	board.

The	version	and	name	labels	overlap,	so	let’s	move	the	version	label	at	the	top	of	the
board	where	there	is	enough	space:

The	version	label,	repositioned.

It’s	all	aesthetics	really	at	this	point.	I	think	that	what	we	have	now	is	sufficient	as	far
as	text	labels	are	concerned.	It’s	really	a	personal	thing	so	decide	what	messages	or	text	or
numbers	you’d	like	to	put	in.	

Let’s	have	a	look	at	the	3D	preview:

A	3D	preview	of	the	board.

Save	the	project.	Let’s	work	on	the	decorative	graphic	next.	We	will	need	the
dimensions	of	the	board	to	use	with	the	Bitmap	to	Component	Converter,	so	let’s	use	the
Pcbnew	measuring	tool.

Measuring	the	horizontal	size	of	the	board.

Measuring	the	vertical	size	of	the	board.

I	will	use	the	same	logo	as	in	the	previous	project,	but	you	feel	free	to	choose
something	else.	We	need	to	find	out	the	dimensions	of	the	PCB.	My	measurement	for	the
horizontal	size	is	55.75	mm,	and	for	the	vertical	35.5	mm.	I	will	write	down	55	mm	x	35
mm,	rounded	down	to	the	next	decimal.	We	don’t	need	to	be	too	accurate	about	this
because	all	we	are	trying	to	do	is	create	a	footprint	that	will	be	within	the	boundaries	of
the	PCB.	Therefore	rounding	the	exact	size	down	is	fine.

Close	Pcbnew	and	start	the	Bitmap2Component	app.	Load	your	graphic	PNG	file.	

Bitmap	to	Component	Converted	with	the	graphic	loaded.

You	can	see	that	the	image	size	as	it	is	around	1000	mm	by	700	mm,	too	big	for	the
PCB.	Use	the	DPI	setting	to	reduce	the	size	to	somewhere	smaller,	around	55	mm	width.	

At	1600	DPI,	the	graphic’s	size	will	be	able	to	fit	inside	the	PCB.

At	1600	DIP,	the	graphic	will	be	resized	to	47.6	mm	X	31.8	mm,	which	will	allow	it	to
fit	easily	inside	the	PCB.	So	we	can	accept	this	value	and	export	the	footprint.

Create	a	new	folder	in	the	project	directory	to	hold	the	new	footprint.	Call	it
“Graphic.pretty”.	“Pretty”	is	the	required	extension	here.	Go	inside	the	library	directory

and	call	this	footprint	as	“logoforTB”	text	boration’s	logo.	

Store	the	new	footprint	in	a	new	directory	called	Graphic.pretty,	with	file	name
“logo_te”.	The	Graphic.pretty	directory	is	stored	inside	the	project	directory.

Click	on	Save	to	finish	with	the	footprint	generation,	and	restart	Pcbnew.

In	Pcbnew	we	will	import	the	new	footprint	so	we	can	add	it	to	the	board.Go	to	the
footprint	library	manager	and	add	a	new	library	with	the	wizard.	

Start	the	Footprint	Libraries	Manager

Start	the	Wizard.

Look	for	files	on	your	computer.

Look	for	the	library	on	your	filesystem.

Kicad	will	detect	the	footprint	library	inside	the	.pretty	directory.

Choose	the	accessibility	level	for	the	new	footprint.	I	selected	to	use	it	for	the
current	project	only.

Click	“Finish”	to	complete	the	import	process.	The	new	footprint	will	now	be	available
to	use	in	the	current	project.

The	new	library	is	now	imported,	and	is	available	for	the	current	project.

Let’s	add	the	new	footprint	to	the	back	silk	screen.	Click	on	the	Add	Footprint	button
and	click	somewhere	in	the	canvas:

The	Add	Footprint	button.

The	Footprint	chooser	will	appear.	Click	on	List	All.

Type	part	of	the	name	of	the	footprint	in	the	filter,	and	double	click	on	the
footprint	to	add	it	to	the	canvas.

The	footprint	is	on	the	canvas,	but	it	is	placed	in	the	front	silkscreen	layer.	Put	the
mouse	over	the	footprint	and	type	“E”	to	edit	its	properties.

Select	the	Bottom	Side	radio	button,	and	the	180.0	radio	button	for	the	Rotation.
Click	OK.

Select	and	move	the	footprint	in	place	in	the	middle	of	the	board.	The	new	footprint	is
now	in	place	in	the	back	silk	screen	layer.	It	looks	like	this:

The	decorative	graphic	is	now	in	place.

Let’s	have	a	look	in	3D	preview:

The	decorative	graphic,	in	the	back	of	the	PCB.

Save	the	project.	In	the	next	project	we	will	complete	the	project	by	exporting	the
Gerber	files	and	uploading	to	the	manufacturer.

Chapter	59:	Export	the	Gerber	files

We	can	now	go	ahead	and	export	the	Gerber	files.	Click	on	the	plotter	button:

Click	on	the	Plotter	button	to	bring	up	the	Plotter	window.	Choose	the	required
layers,	set	the	export	directory	and	Gerber	options,	and	click	on	Plot.	Then	click	on
Generate	Drill	File.

The	default	settings	in	the	Drill	Files	Generation	window	are	fine.	Click	on	the
Drill	File	button.

Close	the	two	Gerber	generation	windows.	

Use	your	file	system	browser	to	find	the	directory	that	contains	your	Gerber	files,	and
create	a	ZIP	archive:

Create	a	ZIP	archive	from	the	directory	that	contains	the	Gerber	files.

Use	your	web	browser	to	go	to	gerblook.org	so	that	we	can	test	our	Gerber	archive.
Upload	the	ZIP	file	to	Gerblook,	and	if	everything	goes	well,	the	different	layers	will	be
rendered	in	the	browser:

Gerblook	renders	the	layers	in	the	Gerber	archive,	so	it	is	a	valid	archive!

Once	Gerblook	confirms	that	we	have	a	valid	Gerber	archive,	we	can	go	ahead	with
the	order.	In	the	case	of	OSH	Park,	I	uploaded	the	ZIP	archive	to	my	account,	and	ordered
my	boards:

http://gerblook.org

Ordering	my	boards	from	OSH	Park!

A	few	weeks	later,	I	received	the	PCBs	in	the	mail!

This	project	is	now	complete,	so	what’s	next?	Please	read	the	conclusion	for	a	few
ideas.

PART	EIGHT
Conclusion

Chapter	60:	What’s	next?

Congratulations!

By	completing	this	course,	you	have	gained	the	skill	set	you	need	to	design	the	vast
majority	of	PCBs	that	a	hobbyist,	and	in	a	large	extend	a	professional,	maker	would	ever
dream	of.

Going	forward,	the	best	advise	I	can	give	you	is	to	use	these	skills	as	much	and	as
often	as	you	can.	Look	around	your	desk	and	you	lab.	Look	inside	drawers	and	boxes.
Find	breadboarded	projects	that	you	placed	aside	because	you	didn’t	want	to	take	them
apart.	Convert	these	breadboard	circuits	into	PCBs.	Start	with	the	simple	ones,	move	on
the	the	more	complicated	ones.

Try	to	minimize	the	size	of	your	boards,	and	increase	their	elegance.	Place	components
in	nice	tidy	grids,	minimise	the	total	number	of	vias,	and	minimise	the	total	length	of	each
track.

Once	you	master	this	process,	think	about	Kicad’s	more	advanced	features.

Let’s	say	that	at	some	point	you	wish	to	build	a	PCB	that	contains	a	high-speed	RAM,
or	a	microprocessor	running	at	a	few	hundreds	megahertz.	You	will	need	to	extend	your
skills	in	order	to	tackle	a	problem	like	this.	Look	for	documentation	that	can	be	of
assistance.	Or,	simply	look	inside	your	computer,	appreciate	the	skill	of	the	engineers	that
created	such	elaborate	and	efficient	designs	and	learn	from	them.

Like	much	in	engineering,	there	is	no	limit	to	what	you	can	learn	and	make!

	Contents
	About this book
	Video course companion
	Discussion forum and email list
	Dedication
	Copyright
	Part One - About this course
	Chapter 1 - What is Kicad?
	Chapter 2 - The structure of this course

	Part Two - Kicad basics
	Chapter 3 - What is this part
	Chapter 4 - Installation on Windows
	Chapter 5 - Installation on Mac OS X
	Chapter 6 - Kicad main components
	Chapter 7 - Finding documentation
	Chapter 8 - What is a Printed Circuit Board?
	Chapter 9 - The Kicad design process
	Chapter 10 - Fabrication

	Part Three - Project 1: create an nRF24 breakout board
	Chapter 11 - What is this part
	Chapter 12 - Creating a new project
	Chapter 13 - Starting the schematic for the nRF24
	Chapter 14 - How to create a schematic component
	Chapter 15 - Wiring
	Chapter 16 - Annotating the schematic
	Chapter 17 - Electrical Rules Check
	Chapter 18 - Associate components to footprints
	Chapter 19 - Create a custom footprint
	Chapter 20 - Saving the new footprint
	Chapter 21 - Associate the new footprint and component
	Chapter 22 - Create a netlist
	Chapter 23 - Footprints placement
	Chapter 24 - Edge cuts
	Chapter 25 - Wiring
	Chapter 26 - Add text labels

	Part Four - Project 1: Enhancing the design
	Chapter 27 - What is this part
	Chapter 28 - Add a capacitor to the schematic using Eeschema
	Chapter 29 - Add a capacitor to the layout in Pcbnew
	Chapter 30 - Controlling the track width
	Chapter 31 - Calculate the appropriate track width
	Chapter 32 - Adding copper fills

	Part Five - Project 1: Fabrication
	Chapter 33 - What is this part
	Chapter 34 - Creating the Gerber files and uploading to fabricator
	Chapter 35 - Adding a decorative graphic

	Part Six - Project 2: a 7-segment display board
	Chapter 36 - What is this part
	Chapter 37 - Create the schematic with Eeschema
	Chapter 38 - Create nets and labels
	Chapter 39 - Hidden pins and the power flag
	Chapter 40 - The data bus
	Chapter 41 - The unconnected component
	Chapter 42 - Component - footprint associations
	Chapter 43 - Create a 2 layer PCB in Pcbnew
	Chapter 44 - Control track widths with nets
	Chapter 45 - Add GND and Vcc copper fills
	Chapter 46 - Add text labels
	Chapter 47 - Add a decorative graphic
	Chapter 48 - Exporting Gerber files

	Part Seven - Project 3: a full-SMD 16-LED board
	Chapter 49 - What is this part
	Chapter 50 - The circuit
	Chapter 51 - Create the schematic in Eeschema
	Chapter 52 - Schematic wiring, Part 1
	Chapter 53 - Schematic wiring, Part 2
	Chapter 54 - Associate components with footprints
	Chapter 55 - Create the PCB in Pcbnew
	Chapter 56 - Wiring in Pcbnew
	Chapter 57 - Adding copper fills
	Chapter 58 - Adding text labels and decorative graphics
	Chapter 59 - Export the Gerber files

	Part Eight - Conclusion
	Chapter 60 - What's next?

