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Preface

Solid-state electronics has been a familiar technology for almost a half century, 
yet some circuit ideas, like the transresistance method of fi nding amplifi er gain 
or identifying resonances above an amplifi er’s bandwidth that cause spurious 
oscillations, are so simple and intuitively appealing that it is a wonder they are 
not better understood in the industry. I was blessed to have encountered them 
in my earlier days at Tektronix but have not found them in engineering text-
books. My motivation in writing this book, which began in the late 1980s and 
saw its fi rst publication in the form of a single volume published by Academic 
Press in 1990, has been to reduce the concepts of analog electronics as I know 
them to their simplest, most obvious form, which can be easily remembered and 
applied, even quantitatively, with minimal effort.

The behavior of most circuits is determined most easily by computer simula-
tion. What circuit simulators do not provide is knowledge of what to compute. 
The creative aspect of circuit design and analysis must be performed by the 
circuit designer, and this aspect of design is emphasized here. Two kinds of 
reasoning seem to be most closely related to creative circuit intuition:

1. Geometric reasoning: A kind of visual or graphic reasoning that applies to 
the topology (component interconnection) of circuit diagrams and to graphs 
such as reactance plots.

2. Causal reasoning: The kind of reasoning that most appeals to our sense of 
understanding of mechanisms and sequences of events. When we can trace 
a chain of causes for circuit behavior, we feel we understand how the circuit 
works.

These two kinds of reasoning combine when we try to understand a circuit by 
causally thinking our way through the circuit diagram. These insights, obtained 
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x  Preface

by inspection, lie at the root of the quest. The sought result is the ability to write 
down accurate circuit equations by inspection. Circuits can often be analyzed 
multiple ways. The emphasis of this book is on development of an intuition into 
how circuits work with a perspective that can be applied more generally to cir-
cuits of the same class.

In this fi rst volume of the Analog Circuit Design series, basic transistor ampli-
fi er circuits are given a design-oriented analysis, using the simple but effective 
T model of the bipolar junction transistor (BJT) and fi eld-effect transistor 
(FET). It is delightful to be able to write down from inspection rather involved 
gain and port impedances that, when evaluated, give accuracies comparable 
to SPICE simulations. Designing Amplifi er Circuits remains focused on quasistatic 
(low-frequency ac) analysis and leaves the additional complication of reactance 
and dynamic analysis for succeeding volumes.

Consequently, feedback analysis – a topic that I never found satisfactory treat-
ment of in textbooks – is presented with insights and from angles that hopefully 
will reduce it to analysis by inspection for readers. Some circuit transformations 
that I call the b transform and the m transform, its dual, are especially helpful 
in reducing circuits to simpler forms for analysis. They are usefully applied 
in considering transistor circuits for which collector-emitter (or drain-source) 
resistance is not negligible, a topic often omitted in the coverage of amplifi er 
circuits.

Coverage of the list of basic amplifi er stages, including two-transistor combi-
nations and their interactions when connected, results in enough material for 
a book – this book.

Much of what is in this book must be credited in part to others from whom 
I picked up essential ideas about circuits at Tektronix, mainly in the 1970s. I 
am particularly indebted to Bruce Hofer, a founder of Audio Precision 
Inc.; Carl Battjes, who founded and taught the Tek Amplifi er Frequency and 
Transient Response (AFTR) course; Laudie Doubrava, who investigated 
power supply topics; and Art Metz, for his clever contributions to a number 
of designs, some extending from the seminal work on translinear circuits by 
Barrie Gilbert, also at Tek at the same time. Then there is Jim Woo, who, like 
Battjes, is another oscilloscope vertical amplifi er designer; Ian Getreu and Bob 
Nordstrom, from whom I learned transistors; and Mike Freiling, an artifi cial 
intelligence researcher in Tektronix Laboratories whose work in knowledge 
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Preface  xi

representation of physical systems infl uenced my broader understanding of 
electronics.

In addition, in no particular order, are Fred Beckett, Lee Jalovec, Wayne 
Kelsoe, Cal Diller, Marv LaVoie, Keith Lofstrom, Peter Staric, Erik Margan, Tim 
Sauerwein, George Ermini, Jim Geddes, Carl Hollingsworth, Chuck Barrows, 
Dick Hung, Carl Matson, Don Hall, Phil Crosby, Keith Ericson, John Taggart, 
John Zeigler, Mike Cranford, Allan Plunkett, Neldon Wagner, and Paul Magerl. 
These and others I have failed to name have contributed personally to my 
knowledge as an engineer and indirectly to this book. Most of all, I am indebted 
to the creator of our universe, who made electronics possible. Any errors or 
weaknesses in this book, however, are my own.
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1
Electronic Design

ELECTRONIC DESIGN

Design is a creative activity that begins with a defi nition of the problem to be 
solved or specifi cation of the device to be built. Solving the problem or specify-
ing the device in eno ugh detail to build it is the goal of the designer. Usually 
more than one alternative solution or design is possible. Sometimes they are 
already known, and the problem consists mainly in adapting a known general 
solution to a particular application for it. This is “standard engineering” 
practice.

Other problems have no known solution and require a novel search, which 
can include novel adaptation of existing solutions to similar problems. This is 
“state-of-the-art” engineering, sometimes called engineering research and devel-
opment (R&D). When a solution is found, it is then refi ned and specifi ed for 
use.

Design is largely a matter of achieving a desired function within given behav-
ioral constraints. Therefore, a signifi cant aspect of electronics circuit design skill 
is the ability to understand how circuit constraints affect desired function. Some 
analytic techniques, especially those best executed by computer, give the designer 
little insight into the relationship between circuit structure and function. The 
techniques developed here are intended to provide maximum insight into 
circuit function and how it relates to circuit behavior. Unlike the specifi c analysis 
that computer simulators perform on a specifi c circuit, design is the search 
among many circuits for the optimal one. Besides methods of analysis, a designer 
must be familiar with many existing circuits that can be used in a design.

In R&D projects, not enough is known about the detailed hierarchical levels 
of complexity of a design to proceed purely topdown from the system specifi ca-
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2  Chapter 1

tion. Experimentation with circuits and components is often necessary. When 
the details are adequately understood, the system-level design can then be clari-
fi ed. Complexity is handled in electronics (as in software design) through modu-
larity. A module is a subsystem that can be defi ned purely in terms of its interactions 
with other subsystems. Instead of passing objects, parameters, or pointers to data 
structures as in software, electrical connections are made between input and 
output ports of modular subsystems. Just as software parameter passing must be 
done according to a protocol, electrical connections between modules must 
take into account module interactions such as impedance matching, dynamic 
range, and loading effects.

Two kinds of reasoning in electronics seem to be most closely related to 
creativity in electronic design:

1. Geometric reasoning: This is a kind of visual or graphical reasoning that applies 
to circuit diagrams and to graphs.

2. Causal reasoning: This kind of reasoning most appeals to our sense of under-
standing of mechanisms. When we can trace a sequence of causes for circuit 
behavior, we intuit an understanding of how the circuit works.

These two kinds of reasoning combine when we try to understand a circuit by 
causally thinking our way through the circuit diagram. Because they involve 
seeing the whole in the parts, they rely extensively on intuitive insight.

PRODUCT DEVELOPMENT

Electronic design is often executed according to an overall plan. If the problem 
must be solved many times, the device that solves the problem is manufactured. 
The process of creating devices and specifying them for manufacture is often 
called product development. The major steps in development are given next.

Product Development Process
1. Concept phase: Clarify the idea for a new product with a one-page description 

of it and a quickly built functional prototype device that demonstrates the 
product idea. This phase is completed upon product or project approval.

2. Design phase: Specify the performance parameters of the new product and 
design the product more carefully to meet the specifi cations. Build a few 
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Electronic Design  3

models of this design, characterize their performance by testing, and refi ne 
the design to meet specifi cations where performance is inadequate. This 
phase ends upon design completion.

3. Evaluation phase: Evaluate the design more extensively by building several 
units of the product using the materials and processes that will be used in 
manufacturing, and testing them rigorously in the laboratory for perfor-
mance under all anticipated operating conditions. Design refi nement 
proceeds until the design meets the specifi cation or the models cannot be 
modifi ed further yet continue to embody the design. This phase is completed 
at prototype release.

4. Verifi cation phase: Verify that the design meets performance and reliability 
specifi cations under the conditions of its intended use. (This is also called 
fi eld testing.) Build a statistically signifi cant number of units and subject them 
to environmental testing. Refi nements to the design in this phase should be 
minimal and testing maximal. This phase is completed when all documenta-
tion that specifi es the design for manufacture is acceptable at engineering 
release (or, to manufacturing personnel, “manufacturing acceptance”).

After this, a pilot or pre-production run – the manufacture of a batch of product 
units using the design documentation – is carried out by manufacturing 
personnel to test the documented design for production fl aws. Engineers may 
be required to correct these fl aws.

DESIGN-DRIVEN ANALYSIS

The behavior of circuits is determined most easily by computer simulation. 
Simulators analyze circuits but do not determine what to compute. They do not 
design. Simulator results apply to particular circuits. The kind of analysis that is 
useful for design is more general. Parameters in equations can take on a range 
of possible design values. We need methods for easily writing down such equa-
tions from schematic diagrams.

Managing Complexity

Electronic systems are often so complex that we cannot think about all the details 
at once. Systems are often organized into hierarchies consisting of levels of 
manageable complexity. Electronic systems can be described by a multilevel 
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4  Chapter 1

hierarchy of concepts. At the most concrete level are the physical circuits them-
selves, represented commonly by a schematic (wiring) diagram or netlist. These 
are structural descriptions of the circuit. From these, various electrical (and 
thermal or mechanical) behaviors are deduced through a causal theory of cir-
cuits, by analysis. When analyzed, a behavioral description of the circuit results. 
At the next more abstract level of description, these behaviors are explained in 
terms of a functional theory that leads to a functional description.

Three Levels of Description in Electronics
• A structural description (schematic diagram) of a circuit describes what it is.

• A causal or behavioral description (waveforms) of a circuit describes what it 
does.

• A functional description (specifi cation) of a circuit describes what it is for.

(For a software-oriented description of electronics, see de Kleer, 1985, pp. 
205–280.) Each of these descriptions may be complex enough to require a 
hierarchical organization. For example, a structural description of a system 
consisting of hundreds of parts is too unwieldy to handle directly. Systems are 
consequently organized into subsystems, graphically described by a block diagram. 
These subsystems consist of circuits that, in turn, are composed of circuit elements, 
which are components in actual circuits. It is common for electronic systems to 
be structurally described by this kind of three-level hierarchy.

Electronics System Hierarchy
• Subsystems consist of circuits.

• Circuits consist of elements.

• Elements are idealized components.

Structural descriptions are often presented in a way that makes the causal and 
functional descriptions explicit. Block diagrams not only show which parts are 
grouped together but also represent various subsystem functions that help to 
show the overall function of the system.

Design begins with a functional description or specifi cation of the goals that 
the designed system is intended to accomplish. It describes function in terms 
of how the device or system should behave. The designer converts the specifi ca-
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Electronic Design  5

tion into a structural specifi cation of the system that achieves the goal. Analysis 
is about how to go from a given structure to its behavior. Design goes from 
function to structure. Because function is described in the language of behavior, 
the relationship between behavior and structure is also a major aspect of 
design.

NONLINEAR CIRCUIT ANALYSIS

Nonlinear systems can be analyzed by either solving for the desired result from 
the nonlinear (total-variable) model and linearizing the result or by fi rst linear-
izing the nonlinear elements of the system and then solving it as a linear system. 
The second method is often easier.

Nonlinear circuits result from nonlinear devices, and solid-state devices are 
nonlinear. To analyze them, we use linear approximations to their behavioral 
models. With a linear model, the well-established techniques of linear circuit 
analysis can be applied. Nonlinear device models are often linearized by select-
ing an operating point for the device. Constant values for model variables are 
chosen, and small variations around those quiescent values are analyzed. The 
total-variable device model includes both the fi xed operating point and the 
behavior due to small changes around it. The structure of this kind of analysis 
is shown below.

Total-variable
(large-signal)

Static
(dc)

(quiescence)

Incremental
(small-signal)

Low-frequency
(quasistatic)

Dynamic (ac)

Time-domain
(transient)

Frequency-domain
(steady-state)
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6  Chapter 1

Linear approximation is valid as long as the excursions from the operating 
point are small or incremental. Incremental models are also called small-signal 
models. In contrast the total-variable (large-signal) model is the exact (nonlin-
ear) model and does not depend on an operating point to be valid.

Static (dc) and quasistatic (low-frequency) quantities and behavior are 
different for nonlinear devices. To illustrate the difference between static and 
quasistatic device behavior, consider the voltage-current (v−i) relationship for 
a diode:

i I eS
v VT= −( )1

VT is the thermal voltage, defi ned as

V
kT
q

T
e

=

where k = Boltzmann’s constant, qe = electron charge, and T = absolute 
temperature.

VT ≅ °( )26 298 25mV at K C

The diode current is plotted below as a function of its voltage.

r dv
di1

1
v = V

V v

R V
I

I

i

=

=
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Electronic Design  7

For a fi xed operating point, Q = (V, I), and the static (or dc) resistance of the 
diode is

R
V
I

V i I
i

i IT S
S= = ( ) >>ln

,

This is shown as 1/slope of the line from the origin to Q. For a typical silicon 
diode operating at 1 mA, Q = (0.6 V, 1 mA) and R = 0.6 V/1 mA = 600 Ω.

For small excursions around Q, R varies slightly. A linear approximation to 
i(v) at Q is a line tangent to the curve. Its 1/slope is

r
dv
di

V
I

V
i

i IT
S= ≅ ≅ >>Δ

Δ
,

This is the quasistatic (or low-frequency) resistance of the diode at Q. A small 
change in v will result in a small change in i of about ΔV/r. For 1 mA 
operation,

r = =26 1 26mV mA Ω

and is considerably less than the static resistance. For a linear device such as a 
resistor, small- and large-signal behavior is identical for both small and large 
variations in variables.

The two circuit analyses just shown are static, or dc, and small-signal, low-
frequency, or quasistatic. They correspond to two major aspects of circuit 
design.

Circuit Design Procedure
1. Static design: Set the nonlinear devices to operate at the desired operating 

point, or bias.

2. Quasistatic design: Determine circuit parameters to achieve low-frequency 
performance, such as amplifi cation, and input and output resistances.

3. Dynamic design: Determine circuit parameters for desired dynamic response, 
such as risetime and bandwidth.

Quasistatic analysis, which involves only real-number mathematics, is sometimes 
confusingly referred to as dynamic analysis in electronics literature. More 
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8  Chapter 1

correctly, it is usually called low-frequency analysis. Quasistatic (low-frequency) 
and dynamic analyses are not the same, and they are distinguished here.

Dynamic analysis applies to circuits with reactive elements (inductance and 
capacitance). Analyses involving reactive elements use imaginary numbers. 
Circuits with a combination of reactive and resistive (dissipative) elements are 
described with complex numbers. The unifying quantity is the variable s, the 
complex frequency. The real part of s in the analysis involves response in time (the 
transient response), which decays to zero at infi nite time. The imaginary part is 
the frequency response. Together, they result in the total dynamic response. 
These analyses are done on linearized functions at an operating point.

The nomenclature of electronics literature uses upper case characters to 
stand for mathematical constants, which are static quantities (as in the diode 
example above), lower-case characters for quasistatic variables, and upper case 
characters with lower case subscripts for dynamic quantities in the s-domain. 
Total-variable quantities are represented by lower case characters with upper 
case subscripts. In this volume the nomenclature is simplifi ed somewhat. When 
a distinction is useful between static and quasistaic variables, the upper case and 
lower case distinction will be retained. For dynamic quantities, however, either 
may be used and the domain specifi ed (as s or t) in functional notation. Stan-
dard device modeling terminology is retained.
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Amplifi er Circuits

BIPOLAR JUNCTION TRANSISTOR T MODEL

For a bipolar junction transistor (BJT), the quasistatic resistance of the base-
emitter junction under forward bias is

r
dv
di

v
i

e
BE

E

be

e

= =

BJT transconductance, gm, can be inverted as a transresistance,

r
g

dv
di

v
i

m
m

BE

C

be

c

= = =1

For the BJT, static current gain is defi ned as

β0 = I
I

C

B

and quasistatic current gain as

β = i ic b

By Kirchhoff’s current law (KCL),

i i ie c b= +
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10  Chapter 2

Then, combining re and b,

r
v
i

v
i

e
be

e

be

b

= =
+( )⋅β 1

and

r
v
i

v
i

m
be

c

be

b

= =
⋅β

Substituting the previous equation into re results in

r r re m m=
+

⎛
⎝⎜

⎞
⎠⎟

⋅ = ⋅β
β

α
1

where

α β
β

= =
+

i
i
c

e 1

b and re are quasistatic BJT parameters that are used in a simple quasistatic 
BJT model, the T model, shown in the following fi gure.

ib
b

c

e

re

bib

THE b TRANSFORM

Another commonly used BJT model is the hybrid-p model. It differs from the 
T model in that it has a base resistance, rp, instead of the T-model emitter resis-
tance, re.
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The two models are equivalent. The T-model emitter resistance re is related to 
the hybrid-p base resistance rp. It is one of the more interesting transistor rela-
tionships. Both re and rp are across the same nodes, base and emitter. It might 
seem at fi rst that they must be the same resistance. They differ, however, in the 
connection of the collector current source. In the hybrid-p model, it is con-
nected to the emitter, whereas in the T model, it is connected to the base. 
Consequently, both base and collector current fl ow through re, but only base 
current fl ows through rp. By defi nition,

r
v
i
be

b
π =

From the defi nition of b,

i ie b= +( )⋅β 1

vbe causes (b + 1) times as much current to fl ow through re as rp. With (b + 1) 
times as much current fl owing in the emitter as in the base for the same applied 
voltage, the resistance on the base side of the base-emitter loop can be trans-
formed into an equivalent emitter resistance by the b transform.

b Transform

BJT base resistance, RB, can be referred to the emitter as rE:

r
R

E
B=

+( )β 1

b

e

bib

ib

c

rp
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12  Chapter 2

Similarly, emitter resistance, RE, can be transformed to an equivalent base 
resistance:

r RB E= +( )⋅β 1

This transform is extremely useful in transistor circuit analysis. It lets us place 
all resistances on either the base or emitter side of a circuit loop containing the 
base-emitter junction. This results in elimination of one of the variables ib or ie 
from the analysis.

TWO-PORT NETWORKS

An electrical port is a pair of terminals of a network. The terminals are marked 
for polarity of both port voltage and current. Current into the positive terminal 
is defi ned as positive.

A two-port network has two ports. The circuitry at each port can be represented 
by either a Thevenin or Norton equivalent circuit, as shown below. All networks 
can be reduced to one or the other of these equivalent circuits, which them-
selves are duals.

+

–

vth

Rth

Rnin

Thevenin Equivalent
Circuit:
vth = open-circuit v

Norton Equivalent
Circuit:
ith = short-circuit i

Generalized equivalent
circuit: Thevenin or Norton

Thevenin and Norton equivalent circuits are
duals: vth = Rn⋅in and Rn = Rth
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To represent amplifi ers as two-port networks, one port is designated as the 
input and the other as the output. The output-port source has a value T·xin 
dependent on (or controlled by) an input port quantity xin (where x is either 
voltage or current). T is the transmittance or amplifi cation or the gain. The two-
port network shown below depicts voltage amplifi cation.

+

–

+

–

+

–

Amplifier represented as a two-port network

vout

Rout

vin

iin

Rin
T·vin

The controlling variables of port output sources are the voltages or currents of 
the input port. The behavior of a two-port network is fully determined by its 
port quantities and network parameters.

Transmittance, T, can be one of four kinds, based on the current and voltage 
combinations of the two ports:

Voltage gain = =A v vv out in

Current gain i= =A i iout in

Transresistance m= =R v iout in

Transconductance m= =G i vout in

AMPLIFIER CONFIGURATIONS

A single transistor can be confi gured as an amplifi er in three ways when viewed 
as a two-port network with a common terminal. As a three-terminal device, one 
of the transistor terminals must be common to both input and output circuits, 
resulting in three basic transistor amplifi er confi gurations. For BJTs, they are as 
shown below.
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14  Chapter 2

VCC

RL

RE

RB

RB

vi

vi

+

–
VBB

RL

+

c

b

ib

re

e

vo

vo

RE

Common-emitter (CE) configuration

–

model
bib

+

–

c

b

e

+

–

Common-base (CB) configuration

ib

VCC

RL

RE

RB

RB

vi
vi

VBB

RL

re

vo

vo

RE

bib
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Equivalently, for fi eld-effect transistors (FETs), the three confi gurations are

Common source (CS)

Common gate (CG)

Common drain (or source-follower) (CD)

The circuit models shown above involve only quasistatic changes.
The total variables for input and output voltages,

v V v v V vI BB i O CC o= + = +;

are replaced by incremental variables vi and vo, respectively. The bias supplies, 
VBB and VCC, set the operating point, Q. Static analysis yields emitter current, 
from which re can be calculated. Also, b varies somewhat with IE in actual transis-
tors. For now, we will use the simple T model, for it can produce accurate qua-
sistatic gain and resistances if its two parameters are accurate. re is approximately 
constant when ie << IE, for

r
V
I

e
T

E

≅

Of major interest in the static analysis, which is based on static circuit 
quantities, is not only the operating point but also its stability. With signifi cant 
operating-point change, incremental parameters can vary too widely, resulting 

+

–

b

e

c

+

–

Common-collector (emitter-follower)

configuration

VCC

RE

RB

RB

vi

vi

VBB

ib

re

vo vo

RE

bib
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16  Chapter 2

in unacceptable performance. This is caused by temperature drift and changing 
values of aging components. The goal is to minimize sensitivity of the operating 
point to component-value variations.

THE TRANSRESISTANCE METHOD

The quantities of usual interest about an amplifi er are its amplifi cation (or gain) 
and its input and output resistances. The three transistor confi gurations can be 
analyzed using a common procedure. More complex circuits can also be ana-
lyzed by the same procedure by decomposing them into the three basic 
confi gurations.

The procedure is based on identifi cation of two circuit loops or nodes, one 
relating to the input and the other to the output. In the common-emitter (CE) 
confi guration, the input loop consists of vi, RB, re, and RE. The currents that fl ow 
in this loop, ib and ie, are caused by the input voltage source vi. Similarly, the 
output loop consists of RL, the b ·ib current source, re, and RE. The associated 
currents are ic and ie. As a CE circuit, ie is common to both input and output 
loops and is the key to relating input to output. The procedure – the transresis-
tance method – is as follows.

Transresistance Method
1. Refer all input circuit quantities to a common terminal by use of the b trans-

form. Calculate a variable common to both input and output circuits.

2. Calculate the output from the common variable and output circuit 
quantities.

The effect of this procedure is to calculate forward from the input source to 
the output. Consider again the CE amplifi er.

Step 1: By referring RB to the emitter side of the circuit using the b transform, 
it becomes an emitter resistance of value RB/(b + 1). Then calculate the common 
variable ie as

i
v

R r R
e

i

B e E

=
+( ) + +β 1
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Step 2: The output quantity vo is

v R i R io L c L e= − ⋅ = − ⋅ ⋅α

Substituting the variable common to both input and output, ie, from the previ-
ous equation,

A
v
v

R
R r R

v
o

i

L

B e E

CE( ) = = −
+( ) + +

α
β 1

The voltage-gain expression can be interpreted as a ratio of two resistances 
through which the common current ie (adjusted by a) fl ows. The numerator 
is the resistance across which the common current develops the output voltage. 
The denominator is the transresistance, the resistance across which the input 
source voltage develops the common current. The ie-to-ic current factor a 
must be included and the sign of the gain deduced from the circuit topology. 
The essence of the method is to develop the following relationships in the 
order

x x xi common o⇒ ⇒

For the CE, this amounts to vi ⇒ ie ⇒ ic ⇒ vo. The additional middle (⇒ ic) step 
accounts for a.

An alternative derivation based on the same approach is to refer the resis-
tances re and RE in the emitter circuit to the base and to calculate ib as the 
common variable. Then the form of Av is

A
R

R r R
v

L

B e E

= − ⋅
+ +( )⋅ +( )

β
β 1

If (b + 1) is factored from the denominator (thus transforming this resistance 
to an emitter-referred transresistance), the gain expression is the same as 
before.

The common-base (CB) amplifi er can be analyzed by fi rst using the b trans-
form to refer RB to the emitter circuit. Then the emitter current generated by 
vi is
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i
v

R r R
e

i

B e E

= −
+( ) + +β 1

The denominator is the transresistance. The collector current is ic = a·ie, and 
output voltage is

v i Ro c L= − ⋅

Combining these equations gives the CB voltage gain.

A
R

R r R
v

L

B e E

CB( ) = ⋅
+( ) + +

α
β 1

For the common-collector (CC) amplifi er, the order of variables is

v i vi e o⇒ ⇒

and the transresistance is

r
R

r RM
B

e E=
+

+ +
β 1

From ie = vi/rM and vo = ie·RE, the CC voltage gain is

A
R

R r R
v

E

B e E

CC( ) =
+( ) + +β 1

For the CB and CC, Av is also a ratio of resistances, adjusted by a and polarity. 
For the CC, the previous equation can be interpreted as a voltage divider with 
input vi and output vo. The top resistance of the divider is RB/(b + 1) + re, and 
the bottom resistor is RE.

INPUT AND OUTPUT RESISTANCES

Besides gain, the quasistatic input and output resistances, rin and rout, can be 
found using the b transform. For the CE, rin is a resistance referred to the base 
side of the input loop and is
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r
v
i

v
i

R r Rin
i

i

i

b
B e ECE( ) = = = + +( )⋅ +( )β 1

The base-side resistances are equivalently emitter-side resistances (b + 1) times 
larger. This results in a relatively high input resistance when RE is large.

Using similar analysis for the CB and CC confi gurations,

r
v
i

v
i

R r
R

in
i

i

i

e
E e

BCB( ) = = = + +
+( )β 1

r
v
i

v
i

R r Rin
i

i

i

b
B e ECC( ) = = = + +( )⋅ +( )β 1

Both CE and CC circuits have the same rin, whereas rin(CB) is smaller by a factor 
of (b + 1).

The output resistance of the CE and CB confi gurations is

r r Rout out LCE CB( ) = ( ) =

For the CC,

r R r
R

out E e
BCC( ) = +

+
⎛
⎝⎜

⎞
⎠⎟β 1

where || designates a mathematical operator that, for resistances, means “in 
parallel with.” Because the right-side resistance is relatively small, rout(CC) is 
small.

Example: CE Amplifi er

Assume the BJT CE amplifi er (shown below) has the following parameters:

β + =1 100

IS = −10 16 A
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The saturation current IS determines the v-i relationship of the base-emitter 
junction. For a fi rst guess for IC = 12 V/2.2 kΩ = 5.5 mA,

V V
I
I

I IBE T
E

S
C S≅ ⎛

⎝⎜
⎞
⎠⎟ >>ln ,

and VBE = 0.82 V. This gives a place to start for the static analysis. First, the emitter 
circuit can be simplifi ed by Thevenin’s theorem. The result is a −3.75 V source 
and 688 Ω resistance. Next, fi nd IE to determine re. Estimate IE by assuming VBE 
= 0.82 V. Then,

I E ≅ − =3 75 0 8
688

4 3
. .

.
V V

mA
Ω

Then recalculating, VBE = 0.81 V. IE can be recalculated using this more refi ned 
value for VBE. After only two iterations, the numbers converge to

V IBE E= =0 81 4 27. , .V mA

Because VBE is logarithmically related to IE, it is relatively insensitive to IE varia-
tion. (This is why convergence was rapid.) Now solve for re:

30

1.0 kΩ

vi

+

–

10

0

40

2.2 kΩ 

80

–12 V

90

2N3904

vo

1.0 kΩ  

+12 V 
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re = =26
4 3

6 1
mV
mA.

. Ω

The transresistance method can now be applied to determine voltage gain:

v
v

o

i

= − ( )
+

= −0 99
1 0

6 688
1 43.

.
.

kΩ
Ω Ω

Input resistance is

r r Rin e E= +( )⋅ +( ) = ⋅ +[ ]( ) =β 1 100 6 688 69 4Ω Ω Ω. k

and output resistance is rout = 1.0 kΩ.
These results agree with those of the SPICE circuit simulation to the two sig-

nifi cant digits of the manual calculations.

CE Amplifi er

.OPT NOMOD OPTS NOPAGE

.DC VI -0.25 0.25 0.05

.TF V(30) VI

VI 10 0 DC 0V
VCC 80 0 DC 12
VEE 90 0 DC -12
RE1 40 90 2.2K
RE2 40 0 1.0K
RL 80 30 1.0K
Q1 30 10 40 BJT1

.MODEL BJT1 NPN (BF=99)

.END

NODE VOLTAGE

(30) 7.7686 (40) -.8115

VOLTAGE SOURCE CURRENTS

NAME CURRENT
VI -4.274E-05
VCC -4.231E-03
VEE 5.086E-03

TOTAL POWER DISSIPATION 1.12E-01 WATTS
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V(30)/VI = -1.427E+00
INPUT RESISTANCE AT VI = 6.936E+04
OUTPUT RESISTANCE AT V(30) = 1.000E+03

The simulation uses the same idealized T model of the analysis in this example. 
How do the results compare for a more realistic BJT model? The parameters of 
a 2N3904 were used, and the simulation was rerun. The results show good agree-
ment except for rin. A typical 2N3904 b of 150 is about 50% larger than the value 
of 99 used, and the discrepancy between the rin values is also 50%. Therefore, 
the simple T model can produce accurate (typically <1% error) results.

CE Amplifi er with 2N3904 model
.OPT NOMOD OPTS NOPAGE
.DC VI -0.25 0.25 0.05
.TF V(30) VI

VI 10 0 DC 0V
VCC 80 0 DC 12
VEE 90 0 DC -12
RE1 40 90 2.2K
RE2 40 0 1.0K
RL 80 30 1.0K
Q1 30 10 40 BJT1

.MODEL BJT1 NPN (BF=150 IS=1E-16 VA=110 RB=15 RE=2)

.END

SMALL SIGNAL BIAS SOLUTION

TEMPERATURE = 27.000 DEG C

NODE VOLTAGE

(30) 7.7627 (40) -.8187

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VI -2.639E-05
VCC -4.237E-03
VEE 5.082E-03

TOTAL POWER DISSIPATION 1.12E-01 WATTS

V(30)/VI = -1.427E+00
INPUT RESISTANCE AT VI = 1.060E+05
OUTPUT RESISTANCE AT V(30) = 9.995E+02
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The use of a second resistor in the emitter circuit allows a choice of Thevenin 
equivalent emitter supply voltages other than −12 V and any equivalent RE. To 
maintain wide linear range for both input and output circuit (to avoid both 
saturation and cutoff) and to keep the operating point from shifting appreciably 
with operation, RE must be kept much larger than re so that it dominates the 
transresistance in the gain expression. For gain magnitude much greater than 
one, the equivalent emitter supply must be less in voltage magnitude than the 
collector supply. But if made too small, then RE no longer dominates as the 
input-circuit resistance (in rM), and gain stability suffers.

Example: CC Amplifi er

The emitter-follower has a voltage divider at its output. Assuming the same BJT 
parameters and using a static analysis as in the CE example, VBE = 0.82 V and 
IE = 4.95 mA. Consequently, VC = 6.1 V, but this does not affect the small-signal 
amplifi er parameters (using the T model).

vi

+

–

10

30

Ω1.2 k

+12 V 

0

40

80

–12 V 

90

2N3904

Ω2.0 k

Ω10 k 20

50

Ω150

vo
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Next, re = 5.2 Ω and the quasistatic parameters of interest are

v
v

o

i

=
+ + +

=2 0
2 0 160 5 10 100

0 883
.

.
.

k
k k

Ω
Ω Ω Ω Ω

rin = + ( )⋅ + +( ) =10 100 5 160 2 0 227k k kΩ Ω Ω Ω Ω.

These compare to the SPICE results to three digits. Except for arithmetic round-
off, there is no difference between these results. A more accurate calculation 
of the operating point is necessary to produce a more accurate value of re, 
however.

CC Amplifi er

.OPT NOMOD OPTS NOPAGE

.DC VI -0.25 0.25 0.05

.TF V(50) VI

VI 10 0 DC 0V
VCC 80 0 DC 12
VEE 90 0 DC -12
RB 10 20 10K
RE1 40 50 160
RE2 50 90 2.0K
RC 80 30 1.2K
Q1 30 20 40 BJT1

.MODEL BJT1 NPN (BF=99)

.END

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 10) 0.0000 ( 20) -.4949 ( 30) 6.1206 ( 40) -1.3102
( 50) -2.1020 ( 80) 12.0000 ( 90) -12.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VI -4.949E-05
VCC -4.899E-03
VEE 4.949E-03

TOTAL POWER DISSIPATION 1.18E-01 WATTS
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SMALL-SIGNAL CHARACTERISTICS
V(50)/VI = 8.829E-01

INPUT RESISTANCE AT VI = 2.265E+05
OUTPUT RESISTANCE AT V(50) = 2.342E+02

The input and output resistances of the three confi gurations can be summa-
rized in a table.

Confi guration Input Resistance Output Resistance

CE large medium

CB small medium

CC large small

The large input resistances of the CE and CC cause them to appear like open 
circuits to the voltage sources driving them. In the three basic circuit confi gura-
tions, the internal (Thevenin equivalent) resistances of the sources are omitted, 
but actual sources have a nonzero resistance. This source resistance forms a 
voltage divider with the input resistance of the amplifi er circuit causing attenu-
ation of vi, as shown below.
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rs

rin vout
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If the voltage-source resistance, rS, is variable or unknown, the attenuation of 
the divider and the overall voltage gain will be too. To avoid this, the ideal 
amplifi er input resistance is infi nite, so that vin = vi independent of rS.

Similarly, for the voltage divider at the output, formed by the nonzero ampli-
fi er output resistance and the load resistance, Av  · vin = vout and is independent 
of RL when rout = 0. The ideal voltage amplifi er therefore has infi nite rin and zero 
rout. In actual amplifi er circuits, the input and output dividers must be taken into 
account when calculating the voltage gain.

For a current amplifi er, current dividers at input and output similarly affect 
the current gain unless rin = 0 and rout → ∞, the conditions for an ideal current 
amplifi er. Considering the four basic amplifi er types, the ideal terminal resis-
tances are tabulated.

Ideal Amplifi er Type Input Resistance Output Resistance

Voltage ∞ 0

Transconductance ∞ ∞
Current 0 ∞
Transresistance 0 0

When these ideal properties are compared with the three confi gurations, the 
optimal matches can be made.

Ideal Amplifi er Type Optimal Confi gurations

Voltage CC,CE

Transconductance CE

Current CB,CE

Transresistance CB

In this table, none of the confi gurations is ideal. Although the CC resistances 
approach the ideal, the CC has a maximum voltage gain of only one. Similarly, 
the CB has a good resistance match but also has a maximum current gain of 
one. In these cases, the CE is the best choice because it provides useful voltage 
and current gain. It also is optimal for transconductance amplifi cation because 
its resistances match best.

The CB is best for transresistance amplifi ers for the same reason. Overall, the 
CE is the most versatile confi guration and is used the most in practice. When 
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these basic confi gurations are combined in pairs, the resulting two-transistor 
confi gurations exceed the basic confi gurations in approaching the ideal.

THE CASCADE AMPLIFIER

The next step beyond single-transistor amplifi er circuits is two- and three-
transistor combinations. The three basic confi gurations can be combined in 
various ways to produce circuits with useful properties. These properties are not 
found in either of the confi gurations alone, just as molecules have properties 
different from their constituent atoms. Consequently, these circuits can be 
considered basic building blocks in themselves.

The most common combination of multiple-transistor amplifi ers is the cascade 
amplifi er, which consists of two CE amplifi ers, the output of the fi rst driving the 
input of the second. Each of these CE amplifi ers is called a stage of amplifi ca-
tion. Any unit of a sequence of consecutive amplifi er circuits is a stage. This 
amplifi er can be analyzed by the transresistance method. The only additional 
complication results from the interconnection of the two stages.

RL1

RE1

RB1

vi
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–

–VEE

Q1

+VCC

RL2

vo

RE2

Q2

RL1

re1
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If the base of the second stage is disconnected from the collector of the fi rst 
stage, the gain of the fi rst stage is

A
R

R r R
v

L

B e E
1 1

1

1 1 1 11
= − ⋅

+( ) + +
α

β

The output of the fi rst stage can be represented as a Thevenin equivalent circuit 
and connected to the input of the second stage. The voltage source has a value 
of Av1 · vi with a Thevenin resistance of RL1. The calculation of the second stage 
gain is similar to that of the fi rst stage, resulting in a total gain of

A A A

R
R r R

R
R

v v v

L

B e E

L

L

= ⋅

= − ⋅
+( ) + +

⎛
⎝⎜

⎞
⎠⎟

⋅ − ⋅
+( )

1 2

1
1

1 1 1 1
2

2

1 21 1
α

β
α

β ++ +
⎛
⎝⎜

⎞
⎠⎟r Re E2 2

An alternative view of the interaction of the stages is to consider the collector 
of the fi rst stage to be loaded by the input resistance of the second stage so that 
the collector load resistance is

R R r RC L e E1 1 2 2 21= +( )⋅ +( )β

Then the gain formula for the second stage does not include base resistance 
since it is already taken into account in the fi rst-stage collector resistance. With 
RC1 in the fi rst-stage gain formula, the output is at the base terminal of the 
second stage, not at the Thevenin equivalent voltage source as in the fi rst 
approach. The second approach is explicit in the gain formula when it is 
expressed as

A
R r R
R r R

R
r

v
L e E

B e E

L= − ⋅ +( )⋅ +( )
+( ) + +

⎛
⎝⎜

⎞
⎠⎟

⋅ − ⋅α β
β

α1
1 2 2 2

1 1 1 2
2

21
1 ee ER2 2+

⎛
⎝⎜

⎞
⎠⎟

These two equations for Av are equivalent but have different algebraic forms. 
Two alternative views of stage interaction follow from them. Often, the most 
diffi cult step in gaining insight into a new circuit is to express the equations 
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from circuit analysis in a meaningful form, one that reveals a simple equivalent 
circuit topology suggestive of higher circuit principles, such as the b 
transform.

The stage-interaction phenomenon of the loaded divider occurs often and can 
be generally demonstrated by analyzing the cascade attenuator shown below.
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The Thevenin equivalent circuit (left) and loaded-divider (right) methods 
achieve the same result. For the Thevenized approach,
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and for the loaded-divider approach,

v
v

R R R
R R R R

R
R R
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i

= +( )
+( ) +

⋅
+

⎛
⎝⎜

⎞
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3 4

As in the case of the cascade amplifi er voltage gain, the two equations are 
equivalent.
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BJT OUTPUT RESISTANCE

The simple BJT T model used in the preceding sections is now extended by 
considering the output resistance ro, as shown in the following equation. In the 
BJT Ebers-Moll three (EM3) model (of which the T model is a simplifi cation), 
ro is defi ned as

r
V V

I
o

A BC

C vbe

= + = 0

where VA is the Early voltage. This relationship is represented graphically by the 
collector family of curves as displayed by a curve tracer, as shown.

vc

+

–
c

b

ib
e

RE

BJT T model with ro

RB

bib

ic

1
ro

IC

– VA VCE

ro

Whenever vbe = 0, re can be neglected. Then, from the extended T model,

v R i i r i ic E c b o c b= ⋅ +( ) + ⋅ − ⋅( )β

− ⋅ = ⋅ +( )i R R i ib B E c b
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Solving these equations for rc results in

r
v
i

R R r
R

R R

i R

c
c

c
E B o

E

B E

c B

= = + ⋅ + ⋅
+

⎛
⎝⎜

⎞
⎠⎟

⇑

1 β

fraction of into

This expression for rc can be understood in terms of the T-model circuit. As 
indicated in the previous equation, the current divider formed by RE and RB 
determines the fraction of ic that fl ows into RB. When RB is much larger than RE 
(or the base terminal approaches an open circuit), then

r R rc R E oB →∞ = +

and for a shorted base,

r rc R oB = = +( )⋅0 1β

Thus, rc increases as RB decreases or RE increases. Consider four limiting 
cases:

R r r RB c o E→ ∞ ⇒ = +

R r rB c o= ⇒ = +( )⋅0 1β

R r R rE c B o→ ∞ ⇒ = + +( )⋅β 1

R r rE c o= ⇒ =0

To envision rc, begin at the b-e node where RB and RE are in parallel. This is 
accounted for by the fi rst term in rc. This parallel resistance is in series with ro 
and the current source b · ib, accounted for by the second term of rc. If b · ib has 
no effect, then ro is in series with RE || RB, and the second term is only ro. In this 
case, b · ib = 0 when ib = 0. This occurs when RB is infi nite.
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When all of the current through ro fl ows in the base (RB = 0), then both b · ib 
and the current through ro, io, fl ow in the collector, and

i i ic b o= ⋅ +β

With the base shorted to ground, no current fl ows in RE and

i ic b= −

Current fl owing out of the base is opposite in polarity to the indicated direction 
for the b · ib current source and causes b · ib to fl ow toward the collector terminal. 
Consequently, b · ib contributes to io and adds to ic, fl owing down through ro and 
out the base terminal. The effect is that most of io comes from b · ib instead of 
being supplied as ic. Because vc causes a current of vc/ro = io, most of this current 
is supplied as b · ib. Substituting ib and solving for ic gives

i
i v r v

r
c

o c o c

o

=
+

=
+

=
+( )⋅β β β1 1 1

The collector resistance, vc/ic is (b + 1) · ro, as the equation for rc with RB = 0 
indicates. The main insight here is the following:

Current through that flows in the base causes to appearr ro o β ++( )1
times larger at the collector.

This results from the equation for rc. The fraction of ic that becomes base 
current causes ro to be multiplied by b. The infl uence of ro on amplifi er per-
formance can be signifi cant because the collector node can affect collector 
current. The collector current is no longer isolated from the input circuit that 
causes it.

THE CASCODE AMPLIFIER

A cascode amplifi er is a CE stage followed by a CB stage, as shown.
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Because the output is a CB stage with zero base resistance, rout is high, yet rin is 
also high due to a CE input stage. This results in a good transconductance 
amplifi er with higher output resistance than a CE amplifi er alone. When the 
cascode amplifi er is analyzed by the transresistance method, the voltage gain 
is

A G R
R

R r R
v m L

L

B e E

= ⋅ = − ⋅ ⋅
+( ) + +

α α
β1 2

11

The a1 · a2 factor is due to loss of base current in both transistors; otherwise, the 
analysis holds no surprises. When the CB transistor ro is taken into account, the 
numerator of the previous equation is modifi ed so that

A
R r

R r R
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Because of the CB output stage, not only is the output resistance higher but so 
is the voltage gain. The input resistance is that of a CE amplifi er.

Example: Cascode Amplifi er

vi

+

–

Ω1.0 k

80

60 vo

40

+12 V

Q2

2N3904

Q1

2N3904

30

90

–3 V 

Ω3.6 k

50

Ω3.3 k VB

Ω1.0 k

80

+12 V

Ω10 k10

0

20

A typical cascode amplifi er is shown. Use a minimum-specifi ed b of 99. The 
static calculation of Q1 emitter current yields 600 μA. The emitter current of Q2 
is the collector current of Q1, or 594 μA. Then the quasistatic emitter resistances 
are

re1 = 43.3 Ω

re2 = 43.3 Ω

Applying the cascode gain formula, the voltage gain is Av = −0.26. This gain 
compares well to the SPICE results. The output resistance (assuming infi nite 
ro2) is RL = 1.0 kΩ. The input resistance is

r R r Rin B e E= + +( )⋅ +( ) =β1 11 374 3. kΩ
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The SPICE output agrees.

Cascode Amplifi er

.OPT NOMOD OPTS NOPAGE

.DC VI -0.25 0.25 0.05

.OP

.TF V(60) VI

VI 10 0 DC 0V

VCC 80 0 DC 12
VEE 90 0 DC -3
RI 10 20 10K
RE 30 90 3.6K
RB1 80 50 1.0K
RB2 50 0 3.3K
RL 80 60 1.0K
Q1 40 20 30 BJT1
Q2 60 50 40 BJT1

.MODEL BJT1 NPN (BF=99)

.END

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE

(20) -.0605 (30) -.8215 (40) 8.4440 (50) 9.2047
(60) 11.4070

BIPOLAR JUNCTION TRANSISTORS

NAME Q1 Q2
MODEL BJT1 BJT1

IB 6.05E-06 5.99E-06
IC 5.99E-04 5.93E-04
VBE 7.61E-01 7.61E-01
VBC -8.50E+00 -2.20E+00
VCE 9.27E+00 2.96E+00
BETADC 9.90E+01 9.90E+01
GM 2.32E-02 2.29E-02

V(60)/VI = -2.619E-01
INPUT RESISTANCE AT VI = 3.743E+05
OUTPUT RESISTANCE AT V(60) = 1.000E+03
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This particular example of a cascode amplifi er does not have a useful (>1) 
voltage gain, but it can function as a static voltage translator. If RE is reduced, 
the gain (magnitude) increases, but the static emitter current also increases and 
input resistance decreases. The diffi culty here is partly due to the values of the 
available power supplies. For a smaller RE, VEE must also be made smaller for the 
same bias current. But a decreasing VEE makes the bias current more sensitive 
to VBE1.

To achieve both a stable operating point and higher gain, use a large VEE 
for stable bias current and construct a Thevenin equivalent source by placing 
another resistor from the emitter to ground. Two emitter resistors give the 
freedom needed to choose both a Thevenin equivalent supply voltage and an 
emitter resistance.

Example: Complementary Cascode Amplifi er
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A variation on the cascode amplifi er is the complementary cascode, as shown. It is 
complementary because the two BJTs of the cascode are of different polarity 
(NPN and PNP).
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The output transistor Q2 is of opposite polarity to Q1. The cascode gain 
formula does not exactly apply because some current is lost in the 866 Ω biasing 
resistor that shunts the emitter of Q2. A static solution for IE1 is 3.0 mA. Then, 
re1 = 8.7 Ω. For Q2, node 40 is driven by a Thevenin equivalent circuit of 6 V and 
500 Ω. Solving for the static solution of the base-emitter circuit of Q2 is simpli-
fi ed by referring the 500 Ω equivalent base resistance to the emitter (as 5 Ω) 
and offsetting the 12 V supply by (866 Ω)(IC1) = 2.60 V. Then the familiar 
diode-resistance circuit can be iteratively solved. This produces IE2 = 3.05 mA 
and re2 = 8.5 Ω. Knowing the quasistatic emitter resistances, the voltage gain can 
be found. For Q1, the transresistance is 3.75 kΩ.

While we are at it, input resistance is

r r Rin e E= +( )⋅ +( ) =β1 11 374 9. kΩ

The collector current of Q1 is a1 · (vi/3.75 kΩ). For b = 99, a = 0.99. Next, the 
866 Ω resistor forms a current divider with the emitter circuit of Q2, and

i
r

ve
e

i2
2 2

866
866 500 1

0 99
3 75

0 975
3 75

=
+ + +( )

⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ =Ω
Ω Ω Ωβ

.
.

.
.k kΩΩ

⋅vi

Then −ic2 · RL= vo. Combining this with a2 = 0.99 and ie2 gives the gain

Av = −1 03.

This agrees with the SPICE gain.

Complementary Cascode Amplifi er

.OPT NOMOD OPTS NOPAGE

.DC VI -0.25 0.25 0.05

.OP

.TF V(50) VI

VI 10 0 DC 0V

VCC 80 0 DC 12
VEE 90 0 DC -12
RE1 20 90 3.74K
RB1 80 40 1.00K
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RB2 40 0 1.00K
R0 30 80 866
RL 50 90 4.02K
Q1 30 10 20 BJT1
Q2 50 40 30 BJT2

.MODEL BJT1 NPN (BF=99)

.MODEL BJT2 PNP (BF=99)

.END

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE

(20) -.8023 (30) 6.8176 (40) 6.0151 (50) .0196

BIPOLAR JUNCTION TRANSISTORS

NAME Q1 Q2
MODEL BJT1 BJT2

IB 2.99E-05 -3.02E-05
IC 2.96E-03 -2.99E-03
VBE 8.02E-01 -8.03E-01
VBC -6.82E+00 6.00E+00
VCE 7.62E+00 -6.80E+00
BETADC 9.90E+01 9.90E+01
GM 1.15E-01 1.16E-01

V(50)/VI = -1.035E+00
INPUT RESISTANCE AT VI = 3.749E+05
OUTPUT RESISTANCE AT V(50) = 4.020E+03

The static output voltage is, according to SPICE, about 20 mV, or nearly zero 
volts – the same as the input. This amplifi er is an inverting, (nearly) non offset-
ting ×(−1) amplifi er. Its output resistance of RL is high for a voltage-output 
amplifi er. The addition of a CC stage and static modifi cation (to correct for VBE 
of the CC) would result in a more acceptable inverting voltage amplifi er.

THE EFFECT OF BASE-EMITTER SHUNT RESISTANCE

An analysis similar to that for BJT output resistance can be applied to a base-
emitter shunt resistance, as shown in the circuit diagram below.
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The equivalent resistance for both emitter and base can be derived from the 
equivalent small-signal circuits. Beginning with the emitter side fi rst, we fi nd the 
nodal equations for base and emitter to be
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Solving for emitter resistance from the previous equation results in

v
i

v
v v

R
v v

r

v

v v
R r

e

o

e

b e

BE

b e

e

e

b e
BE e

= − + −⎛
⎝⎜

⎞
⎠⎟

=
−( )⋅ +⎡

⎣⎢
⎤
⎦⎥

1 1

Solving for vb at the base node gives
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Substituting for vb in ve/io and solving yields
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Emitter resistance with a shunt RBE can be understood in terms of the b trans-
form. The fi rst term is the parallel resistance of RBE and re on the emitter side 
of the base-emitter loop. The drive current io divides between the emitter 
current and the shunt RBE. The fraction of io that is emitter current results in 
base current that fl ows through RB and causes RB to appear 1/(b + 1) times 
smaller from the emitter. This fraction is determined by the current-divider 
factor in the second term of the previous equation. The third term accounts for 
the fraction of io that fl ows through RBE. The b transform does not apply to it, 
and this current fl ows through RB without being scaled down. This result is 
intuitively appealing since it can be constructed by use of the b transform and 
inspection of the circuit.
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The current gain of this circuit, also derived from the basic circuit equations, is

A
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Without RBE, the current gain would be a, but a fraction of io is lost to RBE. The 
remaining fraction that is emitter current is expressed by the current divider 
factor in the previous equation.

The lower circuit shown above can also be analyzed from the base side. 
Writing the nodal equations at base and emitter and solving for ve results in
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Substituting this into the emitter nodal equation yields
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This result is similar to the emitter equation in form, as might be expected. The 
fi rst term is the parallel combination of RBE and re from the base side. The second 
term is due to the b transform effect of the base current according to the frac-
tion of input current ii that fl ows in the base. The shunt-current fraction of ii 
that fl ows through RBE contributes the third term, where RE appears unscaled 
by b + 1.

The transconductance is

i
v

i
v

R
R r R R r

c

b

b

b

BE

BE e E BE e

= ⋅ = ⋅
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

⇑ ⇑

β α 1

fraction of vv

R
i R

b

E

e E

times
current in this is the

that current
is in
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42  Chapter 2

These equations can be better understood by considering the extremes of RBE. 
For RBE = 0, no current fl ows through re and no b + 1 scaling occurs. In this case, 
a passive resistive network results, and the second terms in the equation for ve/io 
and the equation for vb/ii are zero. When RBE → ∞, the analysis using the b 
transform applies completely, and the third terms of these two equations are 
eliminated.

The shunt RBE circuit has the useful property that the input resistance is 
higher than if RBE were returned to ground instead of the emitter. RBE is boot-
strapped because its bottom terminal voltage follows that of the top terminal. 
This causes vbe across it to be less than the vb that would be across a grounded 
RBE. RBE appears to be larger than its actual value because with less voltage across 
it, its current is reduced. To show this, consider fi rst that RBE ||(b + 1) · re (not 
RBE alone) is the bootstrapped resistance. The equivalence factor for this resis-
tance can be found by expressing the equation for vb/ii as

BJT r R r
R
r

Rin BE e
E

e
E= +( )⋅[ ]⋅ + ⋅⎡

⎣⎢
⎤
⎦⎥

+β α1 1

The interpretation of this expression is that [RBE ||(b + 1) · re] has an equivalent 
value that is larger by the bootstrap factor

1+ ⋅( )α R rE e

than its actual value.
This result, or that of the equation for vb/ii, can be modifi ed for a FET from 

that of a BJT by allowing b → ∞ (or a = 1) and let RBE become RGS. Then FET 
ig = 0 would be equivalent to setting ib to zero. From the equation of vb/ii,

v
i

R R
R
r

Rg

i
GS S

GS

m
S= + ⋅ +

Here it is apparent that for infi nite b, re → rm and RS replaces RE. This result can 
be given physical meaning by factoring RGS from the fi rst two terms on the right. 
Then the equivalent RGS due to bootstrapping is

R R
R
r

GS GS
S

m
equiv = ⋅ +⎡

⎣⎢
⎤
⎦⎥

1
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The equivalence factor is the reciprocal of the divider formed by rm and RS 
and is identical in form to the second factor of the equation for BJT rin. The 
difference is that for FETs, only RGS is bootstrapped because (b + 1) · re → ∞. 
For a FET circuit with RGS = 100 kΩ, rm = 100 Ω, and RS = 1 kΩ, then 
RGSequiv ≅ 1 MΩ.

THE DARLINGTON AMPLIFIER

Another two-transistor amplifi er with useful properties is the Darlington or com-
pound amplifi er (sometimes called the “Darlington confi guration”), as shown 
below. It consists of a CE stage emitter driving a second CE stage, except that 
the collectors are connected. This is a three-terminal amplifi er that resembles 
a single transistor with some improved properties.

+VCC

RL

vo

RE

RB

vi

+

–

Q2

–VEE

Q1
c

ib2

re2

e

RE

RL

b

b2ib2

b1ib1

e

c

RB

vi

+

–

b

ib1

vo
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This circuit presents a challenge in using the transresistance method. Note 
that it has a single-input loop containing the transresistance but generates two 
output currents in parallel (from the two collectors). This results in a two-term 
expression for the voltage gain, one term per transistor. For the input transistor, 
the voltage gain is

A
R

r R r R
v

L

e E e B
1 1

2 2 1 11 1
= − ⋅

+( )⋅ +( ) + + +( )α
β β

The fi rst term of the denominator is the external emitter resistance of the input 
transistor and is the input resistance of the driven BJT. The second term in the 
voltage gain is of the driven transistor:

A
R

R r r R
v

L

E e e B
2 2

2 1 2 2 11 1 1
= − ⋅

+ + +( ) + +( )⋅ +( )α
β β β

For Q2, the emitter resistance of Q1 is its base resistance and is divided by 
(b2 + 1). The sum of Av1 and Av2 is the Darlington voltage gain:

A
R

R r r R
v

L

E e e B

≅ −
+ + +( ) + +( )⋅ +( )2 1 2 1 21 1 1β β β

and b1, b2 >> 1. This gain is slightly less than that of a comparable CE amplifi er. 
Its advantage is its input resistance,

r R r r R

r R

in B e e E

e E

= + +( )⋅ + +( )⋅ +( )[ ]
≅ +( ) ⋅ +[ ] = =

β β

β β β
1 1 2 2

2
2 1 2

1 1

1 , ββ

which is larger than that of the CE by about a factor of (b + 1). A Darlington 
amplifi er makes a good input stage for voltage and transconductance amplifi ers 
because of its high input resistance. When transistor ro is taken into account, 
output resistance involves two parallel collector resistances with relatively low rc, 
especially for the driven transistor.

Example: Darlington Amplifi er

The fi gure shows a Darlington amplifi er with a shunt emitter resistor on Q2 
terminating at a common bootstrapping resistor of 10 kΩ at node 50.
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vi
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The static analysis follows a development similar to the quasistatic analysis. 
Therefore, the static solution will be taken from the SPICE model and only the 
quasistatic solution worked out. The emitter resistances of the BJTs are

r re e1 2156 31 9= =Ω Ω, .

Because the input of Q2 is bootstrapped, the input resistance to Q2 (from the 
base of Q2, including the 10 kΩ resistor between nodes 20 and 50) can be found 
by using the vb/ii equation. Substituting values,

rin 2 10 100 31 9 1 0
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10 100

= ( )⋅ +( )
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k k k
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⎡
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k
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⎢
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⎥
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Now the fi rst-stage gain formula is used to solve for the gain due to Q1:

A
R

r r
v

L

e in
1 1

1 2

0 0473= − ⋅
+

= −α .

The gain of Q2 is found as follows:

A
v
v

i
v

R
r

r r
i
v

R

i v

v
b

i

c

b
L

in

e in

c

b
L
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2
2 2

2

2

1 2

2

2

= ⋅ ⋅ −( ) =
+

⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ −( )

⇑

bb b efor shunt -

The bootstrapping equation is used to fi nd the transconductance of the Q2 stage. 
Substituting values into this equation,

Av 2 0 09985 0 4185 0 4179= − ( )⋅( ) = −. . .

Thus the total gain is

A A Av v v= + = −1 2 0 4652.

The input resistance is

r r rin e in= +( )⋅ +( ) = ( )⋅ +( ) =β1 1 21 100 156 106580 10 67Ω Ω Ω. M

The SPICE result agrees.

Darlington Amplifi er

.OPT NOMOD OPTS NOPAGE

.DC VI -0.25 0.25 0.05

.OP

.TF V(30) VI

VI 10 0 DC 0V
VCC 80 0 DC 12
VEE 90 0 DC -12
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RE1 20 50 10K
RE2 40 50 1.0K
RE3 50 90 10K
RL 80 30 5.1K
Q1 30 10 20 BJT1
Q2 30 20 40 BJT1

.MODEL BJT1 NPN (BF=99)

.END

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE

(20) -.7275 (30) 7.0652 (40) -1.4961 (50) -2.3073

BIPOLAR JUNCTION TRANSISTORS

NAME Q1 Q2
MODEL BJT1 BJT1

IB 1.66E-06 8.11E-06
IC 1.64E-04 8.03E-04
VBE 7.28E-01 7.69E-01
VBC -7.07E+00 -7.79E+00
VCE 7.79E+00 8.56E+00
BETADC 9.90E+01 9.90E+01
GM 6.36E-03 3.11E-02

V(30)/VI = -4.652E-01
INPUT RESISTANCE AT VI = 1.067E+07
OUTPUT RESISTANCE AT V(30) = 5.100E+03

With a gain of less than one, the purpose of this amplifi er stage is to reduce 
input loading rather than to achieve voltage gain. The gain can be readily 
increased, however. (See the cascode example.) The high input resistance is 
desirable for a voltage-input amplifi er.

THE DIFFERENTIAL (EMITTER-COUPLED) AMPLIFIER

For single-ended amplifi ers, the input and output ports share a common (ground) 
node. Amplifi ers with ports for which neither terminal is grounded are differen-
tial amplifi ers (or diff-amps for short). Usually, an amplifi er with differential input 
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(and differential or single-ended output) is called a differential amplifi er and 
has an output of

v A v vo v i i= ⋅ −( )2 1

for a voltage amplifi er. Some amplifi ers have single-ended inputs and differen-
tial outputs. Differential output voltage is

differential v v vo o o= −2 1

A differential amplifi er can be built from two CE amplifi ers that share current-
source resistor, Ro, as shown. Because the emitters are coupled, it is sometimes 
called an emitter-coupled amplifi er. To achieve true differential amplifi cation, the 
circuit must be symmetric so that the gains of each input to the output are the 
same in magnitude and opposite in sign. The output voltage for a general two-
input voltage-difference amplifi er is

v A v A vo v i v i= ⋅ − ⋅2 2 1 1
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RB1

vi1
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–

ib1

re1

e
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b
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FAC2.indd   48FAC2.indd   48 7/29/2009   9:59:52 AM7/29/2009   9:59:52 AM



Amplifi er Circuits  49

The condition for differential amplifi cation is that Av2 = Av1. The voltage gain 
of the diff-amp (shown as a small-signal model) is found by the transresistance 
method and superposition. Because of its symmetric topology, we need only to 
fi nd Av1 and to rewrite it for Av2 since it will have the same form:

A A A
v
v

v
v

v v v
o

i

o

i
1 1 1

2

1

1

1

= − = −+ −

Beginning with Av1−,

A
R

R r R R R r R
v

L

B e E o E e B
1 1

1

1 1 1 1 2 2 2 21 1
− = − ⋅

+( ) + + + + + +( )([ ]α
β β

Av1+ is somewhat more complicated in that it involves the input transistor, 
operating as a CC, driving the output transistor as a CB with a cascaded attenu-
ator in the emitter circuit. With the loaded-divider approach, the gain can be 
factored into two gains, using center node with voltage ve as a splitting point:
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v

v
v
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v

v
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e
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then,

A
R R

R R R
R
R

v
o
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L
1

2

2 1
2

2

2
+ =

+
⋅ ⋅⎛
⎝⎜

⎞
⎠⎟

α

The fi rst factor of the previous equation is the loaded divider; multiplied by vi1, 
it produces ve. The remaining factor is the voltage gain of the output transistor. 
Because calculation of ve took R2 into account, it is the input voltage to R2 when 
calculating gain.
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The Thevenin circuit approach breaks Re2 at Ro and solves for the gain from 
vi1 to ve. Because the loading of R2 is neglected, a Thevenin equivalent circuit 
must then drive R2. The alternative expression for Av1+ is

A
R

R R
R

R R R
v

o

o

L

o
1

1
2

2

1 2
+ =

+
⎛
⎝⎜

⎞
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⋅
+

⎛
⎝⎜

⎞
⎠⎟

α

The Thevenin resistance appears in the transresistance in the second factor as 
R1||Ro. This equation for Av1+ and the previous equation for Av1+ are equivalent. 
The total gain, Av1, according to the equation of Av1, is

A
R R

R R R
R
R

R
R R R

R
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α

Calculated thus far is the gain for a single-input diff-amp in that vi2 is shorted 
(by superposition). Before completing the derivation of the total differential 
gain, note that with vi2 = 0, this is a single-ended input, differential output ampli-
fi er. This circuit is common and useful; vertical input amplifi ers of oscilloscopes 
use this (with FETs) as an input stage from the probe.

To produce a balanced differential output (vo1 = −vo2), the magnitudes of the 
gains to both outputs must be equal. The required conditions (that the terms 
of the equation for Av1 be equal) are

α α1 2=

R RL L1 2=
R

R R
o

o +
=

2

1

The fi rst condition requires matched transistors. For high-b transistors, this 
condition is not critical and is easily met. The third condition can be satisfi ed 
either by letting R2 = 0 or Ro → ∞. The fi rst alternative is not physically realiz-
able (because re2 > 0); a fi nite Ro causes an imbalance. Ro is often replaced by a 
current source, thereby satisfying the condition. In practice, this can be the 
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collector of another transistor generating the current Io, as shown in the above 
circuit on the right.

Returning to the full diff-amp gain derivation, by symmetry of the circuit 
topology, the gains to both outputs due to vi2 (with vi1 shorted) have the 
same form but with corresponding components from the other side of the 
circuit:
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v
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+ ⋅
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The total gain is
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v v
v v

A v A v
v v

v
o

i

o o

i i

v i v i

i i

= = −
−

= ⋅ − ⋅
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2 1

2 1

2 2 1 1

2 1

The condition for differential amplifi cation is that

A Av v2 1=

This condition can be met in two ways:

A A A Av v v v1 2 1 2+ + − −= − = − ( ), antisymmetric

A A A Av v v v1 2 1 2+ − − += = ( ), symmetric

The fi rst approach leads to the circuit component conditions

R R R1 2= =

Ro → ∞

and the second to the conditions

α α α1 2= =

R R RL L L1 2= =

R R R1 2= =
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The symmetric conditions require that the gains from the two inputs be the 
same to their corresponding inverting and non-inverting outputs, as shown 
graphically. The antisymmetric conditions are illustrated in the upper circuit 
drawing. Here, the gains from the two inputs to a given output must be equal. 
Neither approach to differential amplifi cation necessarily satisfi es the condition 
for balance. Either way, the differential gain is

A A Av v v= ⋅ = ⋅2 21 2

When the circuit is differential and balanced, components on corresponding 
sides are equal, and the gain reduces to

vo1 vo2

vi1 vi2

= =

A V1– A V1+ A
V2+

A
V2–

Diff-amp antisymmetric conditions

(a)

(b)

Diff-amp symmetric conditions

vo1 vo2

vi1 vi2

A V1– A V1+

A
V2+

A
V2–

=

=
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A
R
R

v
L= ⋅ ⋅2 α

With symmetric circuit topology, vi1 = −vi2 and ve = 0 because the two superim-
posed inputs at ve are equal and opposite. In this case, the ve node is a virtual 
ground, and the gains of each side of the amplifi er can be calculated under this 
assumption. Consequently, the transresistance is R on each side, and the gain 
for each side (vo1/vi1 and vo2/vi2) is a · RL/R in magnitude. For differential 
outputs, the gain is twice that of a single side.

The common-mode rejection ratio (CMRR) is the measure of how differential an 
amplifi er is. It is the change in output when both inputs are changed the same 
amount and is defi ned as

CMRR = −( )
+( )

v v v
v v v

o i i

o i i

2 1

2 1

The numerator is the differential-mode gain of the amplifi er; the denominator is 
the common-mode gain. Two arbitrary inputs, vi1 and vi2, can be combined into 
differential-mode vd and common-mode vc voltages:

v
v v

d
i i= −2 1

2

v
v v

c
i i= +2 1

2

A purely differential input occurs when vi2 = −vi1. Then vd = vi2 and vc = 0. When 
vi2 = vi1, the input is purely common mode and vc = vi2 whereas vd = 0. An infi nite 
CMRR is ideal because then the amplifi er amplifi es only the differential-mode 
voltage. CMRR is a measure of how well the conditions of antisymmetry or sym-
metry are achieved.

Example: Differential Amplifi er with CC Output

The fi gure is that of a differential-amplifi er stage buffered by an emitter-
follower, Q3. Both bases of the diff-amp are at the same static voltage (0 V), and 
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their emitter resistors have the same value. Then it is reasonable to assume that 
their currents are equal. Assume they both conduct

12 0 8 220 1 8 2 3V V k mA−( ) + ×( ) ≅. .Ω Ω

Then

I IE E1 2
12 0 8 3 220

220 2 1 8
2 76= = − + ( )( )( )

+ ( ) =V V mA
k

mA
.

.
.

Ω
Ω Ω

Using this current, we fi nd that VBE agrees with the assumed value of 0.80 V and 
that the bias point has converged. Then re1 = re2 = 9.6 Ω ≅ 10 Ω. Continuing the 
static analysis at the output collector,

VC 2 12
470

470 2 0
2 7 2 0 470 6 6=

+
⎛
⎝⎜

⎞
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− ( )( ) =V
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mA k k V

Ω
Ω Ω

Ω Ω
.

. . .
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I E 3
6 6 12 0 8

4 7
3 8≅ + − =. .

.
.

V V V
k

mA
Ω

Then re3 = 6.8 Ω. Solving for the usual amplifi er parameters gives:
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FAC2.indd   54FAC2.indd   54 7/29/2009   9:59:53 AM7/29/2009   9:59:53 AM



Amplifi er Circuits  55

v
v

o

i

=
+ +

⎛
⎝
⎜

⎞
⎠
⎟ ×

( )⋅
+ +

1 8
1 8 220 10

0 99
2 0

10 220 1 8 2

.
.

.
.
.

k
k

k
k

Ω
Ω Ω Ω

Ω
Ω Ω Ω 220 10

4 7
4 7 7 2 100

0 887 4 56 0

Ω Ω

Ω
Ω Ω Ω

+( )
⎛
⎝
⎜

⎞
⎠
⎟ ×

+ +
⎛
⎝
⎜

⎞
⎠
⎟ = ( )( ).

.
. .

k
k k

.. .994 4 02( ) =

rin = ( )⋅ + + +( )[ ] =100 10 220 1 8 220 10 43Ω Ω Ω Ω Ω Ω. k k
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Again, compared to the simulation, these results are right on.

Differential Amplifi er with CC Output

.OPT NOMOD OPTS NOPAGE

.DC VI -0.25 0.25 0.05

.OP

.TF V(70) VI

VI 10 0 DC 0V
VCC 80 0 DC 12
VEE 90 0 DC -12
RE1 30 40 220
RE2 50 40 220
R0 40 90 1.8K
RL 80 60 2.0K
RE3 70 90 4.7K
Q1 80 10 30 BJT1
Q2 60 0 50 BJT1
Q3 80 60 70 BJT1

.MODEL BJT1 NPN (BF=99)

.END

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C
NODE VOLTAGE

(30) -.8018 (40) -1.4467 (50) -.8018
(60) 6.1220 (70) 5.3143

BIPOLAR JUNCTION TRANSISTORS
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NAME Q1 Q2 Q3
MODEL BJT1 BJT1 BJT1

IB 2.93E-05 2.93E-05 3.68E-05
IC 2.90E-03 2.90E-03 3.65E-03
VBE 8.02E-01 8.02E-01 8.08E-01
VBC -1.20E+01 -6.12E+00 -5.88E+00
VCE 1.28E+01 6.92E+00 6.69E+00
BETADC 9.90E+01 9.90E+01 9.90E+01
GM 1.12E-01 1.12E-01 1.41E-01

V(70)/VI = 4.045E+00
INPUT RESISTANCE AT VI = 4.318E+04
OUTPUT RESISTANCE AT V(70) = 2.686E+01

CURRENT MIRRORS

A circuit that supplies a current of the same polarity and magnitude as 
its input current is a current mirror. A Widlar current mirror (after Bob 
Widlar – pronounced “Wide-ler”) is shown below.

IOII

Widlar current mirror

Input current II fl ows through the diode, creating a voltage that is also VBE of 
the transistor. If the diode and b-e junctions are matched (that is, have the same 
v -i function), then the resulting emitter current equals II. Consequently, the 
output current IO is equal to a · II. For a typical a ≅ 1, IO is a replication of II. 
This circuit is useful, for example, in supplying IO to a diff-amp. If the emitter 
and cathode are connected to −VEE, the current can be set by a resistor from 
the input to ground. If the voltage across the resistor is much larger than the 
diode voltage, II is largely determined by the resistor value.
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The basic Widlar current mirror can be improved by an additional transistor 
to compensate for base current lost to the transistor. If we take into account IB 
in the Widlar circuit, then

I I I I
I

O I B I
O= ⋅ −( ) = ⋅ −⎛

⎝⎜
⎞
⎠⎟

α α
β

Solving for the current gain gives

I
I

O

I

=
+

≅ >>β
β

α β
2

1,

Wilson current mirror

II IO

Q3

Q1

R1

Q2

R2

Three improvements have been made in the circuit shown here, invented by 
George Wilson. First, the diode has been made out of a similar transistor, Q1, 
by connecting the base and collector. This kind of diode is often used in inte-
grated circuits to achieve the best match of two p-n junctions. Second, the tran-
sistor Q3 has been added to compensate for a loss, now occurring in Q2. Third, 
to further reduce current-gain error, emitter resistors have been added.

The effect of Q3 is to divert IB amount of current from II. Q3 emitter current 
is then (b + 1) · IB. From this current, IB is diverted into the base of Q2. This loss 
of base current to Q2 was compensated by the diversion of Q3 base current. 
Though it is better than the simple current mirror, the compensation is not 
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perfect, even with matched junctions. Assume that the b-e junctions are matched 
and R1 = R2. Because the bases of Q1 and Q2 are connected, the same voltage 
occurs across identical branches. Thus IE1 = IE2 and

I
I

I IE
E

E E3
2

2
2 2

21
1

1
1

=
+

+ = ⋅ +
+

⎛
⎝⎜

⎞
⎠⎟β β

Also,

I I II E B= ⋅ +α2 2 3

Because IO = b3 · IB3, the current gain can be found from IE3 and II and is

I
I

O

I

= +
+ +

β β β
β β β

3 2 3

3 2 2

2
2 2

For b1 = b2 = b3 = b,

I
I

O

I

= +
+ +

β β
β β

2

2

2
2 2

This current gain is a closer approximation to one than that for the Widlar 
source; it is tabulated here for various values of b.

β IO/II (Wilson) b/(b + 2) (Widlar)

 1 0.60 0.33

 2 0.80 0.50

 10 0.98 0.83

 50 0.999 0.96

100 0.9998 0.98

For b = 100, IO/II is 100 times better than b/(b + 2) and 40 times better at 
b = 50.

This analysis assumes perfect matching of Q1 and Q2. In practice, the effect 
of mismatch tends to be minimized by R1 and R2 if the voltage dropped across 
them is much greater than the b-e junction voltages of the transistors. Resistors 
can be matched much better than transistors and can be made very stable. The 
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emitter currents are thereby determined dominantly by the emitter resistors. In 
integrated current mirrors, transistor matching can be very good, and the addi-
tional voltage drop of the emitter resistors can be minimized, giving the circuitry 
connected to the mirror a wider voltage range.

IC current mirror

II IO

Q3

Q1

R

Q2

R

Another three-BJT mirror, well suited for integrated circuit (IC) layout, is 
shown here. For matched junctions, IE1 = IE2 and

I
I I

II
E O

E− +( ) +[ ]
+

= ⋅2 2 1

3
2 2

1
1

β β
β

α

where the numerator of the second term on the left is IE3. Using the substitution 
IO/a = IE2 yields the current gain

I
I

O

I

= + + +
+ + + + +

β β β β β β β β
β β β β β β β β β

1 2 3 1 2 1 3 1

1 2 3 1 2 2 3 1 22 2

For b1 = b2 = b3 = b, then

I
I

O

I

= +
+ +

β β
β β

2

2 2

The terms in the numerator and denominator differ only by the constant term, 
resulting in accurate current mirroring.
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The current gain versus b for several values is given in the following table, 
along with the gain values for the Wilson mirror. For b >> 1, the Wilson and IC 
mirrors have almost identical current gains. Although for both, Q3 recirculates 
their base currents, taken from II back to Q2, only Q3 of the IC source provides 
base current for Q1 and Q2 and carries no output current.

b IO/II (Wilson) IO/II (IC)

  1 0.60 0.50

  2 0.80 0.78

 10 0.98 0.98

 50 0.99923 0.99922

100 0.99980 0.99980

RB-Compensated Current Mirror

A minimum-component current mirror is shown below. Input current, II is 
amplifi ed as output IO.

II IO

RE2

RB

Q2

Q1

RE1

The loss of IB2 from II causes the voltage drop across Q1 and RE1 to be low. This 
causes the voltage across Q2 and RE2 to also be low, and consequently, IE2 is low. 
A second error is due to a2. To compensate for these two current errors, RB is 
added. It causes an increase in VB2 that compensates for both of the errors.

To analyze the circuit, fi rst express emitter currents in terms of the input and 
output currents:
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I I IE I O1 2= − β

I IE O2 2= α

Apply Kirchhoff’s voltage law (KVL) around the input loop:

I R
R

V
I

I
I R V

I
E E

B
T

E

S
E E T1 1

1 1

1
2 2

2

1
⋅ +

+
⎛
⎝⎜

⎞
⎠⎟

+ ⋅ ⋅⎛
⎝⎜

⎞
⎠⎟ = ⋅ + ⋅ ⋅

β
α α

ln ln EE

SI
2

2

⎛
⎝⎜

⎞
⎠⎟

Assume Q1 and Q2 have matching b and IS values. Substituting for IE1 and IE2 and 
solving for IO:

I
R R

R
R

R
I

V V

R
RO

E B

E
B

E

I
BE BE

E
B

= + +( )

+
+

⎛
⎝⎜

⎞
⎠⎟

+
⋅ + −

+
+

⎛
1

1 2

1 2

1

1

1 1

β

β
β α

β⎝⎝⎜
⎞
⎠⎟

+β αRE 2

or

I
R R

R R R
I

V
R R

O
E B

E B E
I

BE

E B

= ⋅ + +( )
+ +( ) + +( )⋅

⋅ + −
+ +( ) +

β β
β β β

1

1 2 1

1
1 1 1

Δ
ββ +( )⋅

⎡
⎣
⎢

⎤
⎦
⎥1 2RE

The bracketed expression is IB2. The fi rst term within it is IB2 due to II and the 
voltage-divider expression is the gain, IO/II. The second term is an offset due to 
VBE mismatch, which causes IO to be low if the junction of Q1 is too large relative 
to the area of Q2.

In a good mirror design, the junctions are matched so that

ΔV V V V
I
I

I
I

BE BE BE T
E

E

S

S

= − = ⋅ ⋅
⋅

⋅⎛
⎝⎜

⎞
⎠⎟

=2 1
2 2

1 1

1

2

0ln
α
α

For monolithic transistors, the a values will match and cancel. IS is proportional 
to the geometric scaling of Q1 and Q2, allowing the ratio of emitter currents to 
be the inverse of the saturation current ratio, resulting in ln(1) and VBE match-
ing. Then the static offset term in IO is removed and the current gain is

A
I
I

R
R

R
R

R
I

O

I

E
B

E
B

E

= = ⋅
+

+

+
+

⎛
⎝⎜

⎞
⎠⎟

+ +( )⋅
β β

β
β

1

1 2

1

1
1
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Furthermore, the mirror can be designed with the additional constraint that 
the ratio of emitter resistors equals the current gain, or

A
R
R

I
E

E

= 1

2

Substituting into the gain equation and solving for RB,

R
A

A
RB

I

I
E= +( )

⋅ −⎛
⎝⎜

⎞
⎠⎟

⋅1

1
1

α
β

The compensating effect of RB can be seen from circuit simulations of the circuit 
with and without it. For a × 2 current gain, the following circuit with matched 
transistors of b = 100 was simulated.

A

CB

R4
1

Q2 Q3

R3
1 k

R2
2 k

Q1

–2 V

Is1
100 μA

The resulting output current (plotted as a load voltage) is shown below.
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0.000 μA

–25.00 μA

–50.00 μA

–75.00 μA

–100.0 μA

–125.0 μA

–150.0 μA

–175.0 μA

–200.0 μA
0.000 μA 20.00 μA 40.00 μA 60.00 μA 80.00 μA 100.0 μA

Ideally, at 100 μA of input current, the output current should be −200 μA with 
a ×2 gain, but it is low in magnitude by about 3%. The RB formula is now applied 
and RB added to the circuit, as shown below.

A

CB

R4
1

Q2 Q3

R3
1 k

R2
2 k

Q1

R1
6.73 k

–2 V

Is1
100 μA
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The corresponding output plot is shown below.

0.000 μA

–25.00 μA

–50.00 μA

–75.00 μA

–100.0 μA

–125.0 μA

–150.0 μA

–175.0 μA

–200.0 μA
0.000 μA 20.00 μA 40.00 μA 60.00 μA 80.00 μA 100.0 μA

The error is now much reduced, to about −0.1%.

Incremental Gain

The equation for IO can be linearized for incremental (small-signal) analysis by 
letting

v
dv
di

di
V
I

i r ibe
BE

E
E

T

E
e e e= ⋅ = ⋅ = ⋅

Substituting for vbe, the incremental expression for io results in

i
R R

R R R
i

r i r i
R

o
E B

E B E
i

e e e e

E

= ⋅ + +( )
+ +( ) + +( )⋅

⋅ + ⋅ − ⋅β β
β β

1

1 2

1 1 2 21
1 1 11 21 1+ +( ) + +( )⋅

⎡
⎣
⎢

⎤
⎦
⎥R RB Eβ β

When substitution is made for the emitter currents, the two terms join to result 
in a single incremental gain expression:
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A
i
i

r R R
r R R r R

i
o

i

e E B

e E B e E

= = ⋅ + + +( )
+ + +( ) + +( )⋅ +( )β β

β β
1 1

1 1 2 2

1
1 1

The rational factor is the current divider, ib2/ii represented by an incremental 
equivalent circuit, shown below. This gain expression is valid for a given operat-
ing point, where re1 and re2 are dependent on the static current values.

ii
iB2

re1 (b+1)re2

b+1
(b+1)RE2RE1+

RB

Although this gain formula is easily derived from the equivalent circuit, it does 
not make the junction-voltage matching constraint explicit. But when vbe1 = vbe2, 
then re1 · ie1 = re2 · ie2 and when substituted into io in the previous equation, the 
resulting incremental current gain for matched junctions is the same as for the 
static current gain:

A
i
i

R
R

R
R

R
i

o

i

E
B

E
B

E

= = ⋅
+

+

+
+

⎛
⎝⎜

⎞
⎠⎟

+ +( )⋅
β β

β
β

1

1 2

1

1
1

When also subjected to the additional constraint,

A
R
R

i
E

E

= 1

2

and substituting into Ai and solving for RB, the resulting expression is the same 
as for the static case:

R
A

A
RB

I

I
E= +( )

⋅ −⎛
⎝⎜

⎞
⎠⎟

⋅1

1
1

α
β
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b Sensitivity of RB-Compensated Current Mirror

RB was chosen according to the previous RE -ratio constraint, which simplifi es 
the selection of emitter resistor values. The current gain is nevertheless sensitive 
to b variation, and RB can instead be chosen for minimum b sensitivity, 
which is

min
∂

∂β
I
I

O

I

⎛
⎝⎜

⎞
⎠⎟

For b >> 1, IO/II can be rewritten as

I
I

R R
R R R

a
a R

fO

I

E B

E B E E

≅ ⋅ ⋅ +
⋅ + +

= ⋅
+

= ⋅ ( )β β
β β

β
β

β β1

1
2

2
2

2

Then

∂
∂

∂
∂

∂
∂β β

β β β
β

I
I

f f
fO

I

⎛
⎝⎜

⎞
⎠⎟ = ⋅ ( ) = + ⋅

∂
∂

f a R R

a R

R
a R

E E

E

E

Eβ
β

β β
= − ⋅ + ⋅( )

+ ⋅( )
+

+ ⋅( )
1 2

2
2

2
1

2
2

2

Substituting yields

∂
∂

f I
I

a a R aR a R a R R R
a R

O

I

E E E E E E

β
β β β β β

β
⎛
⎝⎜

⎞
⎠⎟ = + − − + +

+ ⋅

2 2
2 1

2
2 1

3
1 22

EE 2
2( )

To obtain RE at minimum sensitivity to b, the previous equation is set to zero 
and the numerator solved for RB. The result is

R R R R R RB E E E E E= − ⋅ − ⋅⎛
⎝

⎞
⎠ ± ⋅ ⋅ ⋅ − ⋅( )β β β β β1 2 2 2 1

2 2
4

Under the previous constraint, the sensitivity of AI with respect to b is

S
A A

A
AA I I

I

II
β β β

β
β

= = ⎛
⎝⎜

⎞
⎠⎟ ⋅∂

∂
∂
∂
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where AI is given with RE2 expressed in terms of RE1 and AI. With RB given and 
substituting into S,

A k
k k k k

k
R
R

k

A

B

E

I
β

β
β β

β
β

= ⋅
−( )⋅ + +( )⋅ −( ) −[ ]⋅ − +( )

=

≅
+

2
2

1

1 1 1 1 1

1
1

,

, , kk >> 1

The approximation to S is asymptotic with one, as graphed below.

1

Sb

RB

RE1

AI

b

For k > b, AI varies directly with b. This result suggests that k be kept less than 
b to reduce gain sensitivity to b. This is not always possible when attempting to 
satisfy the RE -ratio constraint. The circuit has gain limits for acceptable gain 
sensitivity to b that are set by b.

The dynamic current gain has a similar result to the static analysis given previ-
ously except that dynamic emitter resistances are included in series with RE1 and 
RE2. Then the quasistatic base resistance is

R
A

A
R RB

I

I
= +( )⋅

⋅ −⎛
⎝⎜

⎞
⎠⎟

⋅ −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

β
α

β

1
1

2 1

where

R r R R r Re E e E1 1 1 2 2 2= + = +,
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For AI = R1/R2, then

R
A

A
RB

I

I
= +

⋅ −⎛
⎝⎜

⎞
⎠⎟

⋅1

1
1

α
β

For a typical b of 99 and AI of 1, RB ≅ 2.04 · R1.

MATCHED TRANSISTOR BUFFERS AND COMPLEMENTARY COMBINATIONS

A simple but elegant circuit consists of a pair of matched junction fi eld-effect 
transistors ( JFETs). The lower JFET, Q2, functions as a current source for the 
upper source follower. The beauty of this circuit is that the lower transistor sinks 
a particular amount of current (IDSS) with VGS = 0 and that, with negligible loss 
of current to the load, IDSS also fl ows through the upper JFET, resulting in the 
same VGS of zero volts (because they have matched characteristics). This voltage 
amplifi er of unity gain (or ×1 buffer) consequently has zero voltage offset. This 
is desirable because the purpose of a buffer is to provide a voltage source at a 
much-reduced output resistance than the input voltage (from a higher-resistance 
source). A simple emitter- or source-follower would cause an offset due to an 
undetermined VBE or VGS and introduce a voltage error at the output.

+VDD

–VSS

Q1

Q2

vo

vi

Matched-FET buffer

+

–
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vi

+

–

–VEE

RE1

Q1

Q2

vo

RE2

+VCC

Complementary CC buffer

A BJT circuit based on the same general idea is shown here. The VBE offsets 
of opposite polarity CCs cancel to the extent that their currents are equal (for 
matched junctions). This offset match is more diffi cult than with the JFET 
circuit in that the devices are of opposite polarity. This circuit is nevertheless 
quite useful for acceptable offsets of typically less than 50 mV.

The NPN/PNP pair shown below functions like a PNP BJT but with current 
gain from the output NPN. This circuit is commonly used in the output stage 
of amplifi ers so that only power NPN transistors need be used (and is sometimes 
called a “quasi-complementary PNP” circuit). It can also be used, as shown 
below, to source current. Although the output is from an emitter, the base 
resistance is large (rc of Q1), resulting in an acceptably large output resistance 
to pass as a current source in applications in which the driven node is of rela-
tively low resistance.

Some complementary pairs are regenerative and form latching circuits. Thyris-
tors are a class of four-layer (PNPN or NPNP) devices that are used as high-power 
switches and also are formed as parasitic elements in ICs that have multiple n 
and p layers (such as complementary metal-oxide semiconductor (CMOS) or 
bipolor metal-oxide semiconductor circuits that have a tendency to latch if their 
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Q1

Q2

a

k

g

+VCC

RT

Q2

Q1

a

CT

k

RL

g

SCR PUT circuit

+VCC

RL

vo

RE

vi

+

–

Q2

–VEE

Q1

vi

+

–

R

Q1

Q2

+VCC

io

complementary current source quasi-complementary CC

inputs exceed the supply voltages). A common thyristor, the silicon controlled recti-
fi er (SCR), is shown below, along with a variant, the programmable unijunction 
transistor (PUT).
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For either device, transistor collector currents supply base current to the 
other transistor, causing regenerative action. SCRs cannot be turned off by the 
gate; the anode-to-cathode voltage must reverse, causing cessation of conduc-
tion. SCRs are used in power conversion, and PUTs are useful devices for con-
structing simple oscillators and programmable timers.

CLOSURE

We have examined a variety of amplifi er circuits that have one to three transis-
tors. More complicated “building blocks” will be introduced later. As additional 
transistors are added, complexity grows to the point that a multilevel or hierar-
chical organization is needed. Multiple circuits are combined to form complete 
subsystems, which in turn are combined with other subsystems to form the fi nal 
system. We can manage complexity at these various levels in the same way. An 
op-amp (introduced in Chapter 3) contains many circuits but, like the transistor, 
can be modeled as a single device with a simple functional description. In this 
chapter, we developed a “library” of basic circuits that can be used to develop 
a library of basic subsystems, in the same way that commonly used computer 
routines can be joined to form more complicated routines.

This circuit discussion was based on simplifying assumptions that must now 
be examined. We assumed that a circuit input was independent of the output, 
that there was no feedback. Furthermore, although both static and quasistatic 
quantities were introduced, we omitted reactive components such as capacitors 
and inductors. These components require the use of complex numbers to 
describe their behavior and lead to discussion of transient and frequency 
response.
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3
Amplifi er Concepts

THE REDUCTION THEOREM

The b transform greatly simplifi es open-loop amplifi er circuit analysis and 
makes the transresistance method possible. We now examine circuits with more 
complex topologies. It is common for transistor amplifi er stages to have a sig-
nifi cant forward transmittance through ro. This results in parallel forward paths. 
Parallel c-e or c-b resistance causes bilateral signal fl ow with a combination of 
feedback and multiple forward paths.

This leads to some network theorems that are useful for simplifying these 
circuits. Analytic techniques adaptable to intuitive use are based on powerful, 
general circuit theorems. The b transform is half of a more general theorem, 
the reduction theorem. It has two forms:

current form transform⇒ β

voltage form transform⇒ μ

These forms are duals. The fi gure below portrays the b transform as a general 
network theorem. Two networks, represented by blocks, share a common port 
with a controlled source between them. In the current-source case, network N1 
could be a bipolar junction transmitter (BJT) base circuit, in which i is the base 
current. Then network N2 is the emitter circuit, and the current source that 
shunts the common port is a BJT collector current source.

Wherever circuits are equivalent to the top network, two equivalent circuits 
(middle and bottom) are possible. These correspond, respectively, to equivalent 
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base and emitter circuits for a BJT. In the middle diagram, N2 is transformed 
using b + 1; in the bottom, N1 is transformed instead. All voltages, currents, and 
resistances in the transformed network are affected as shown.

N1 N2
i (        )β + 1 i

r1

v1

i1

r2

v2

i2

β i

b transform

N2 referred to N1

N1 referred to N2

i
r

v

i

v

r2(        )β + 1

i (        )β + 1/

(        )β + 1 i

v

r2

v

i

(        )β + 1

(        )β + 1 i

1

1

1

2

2

1

1

/r1

2

2

The fi gure below displays the corresponding dual of the b transform, 
the m transform. It applies to circuits with a voltage gain because m is a 
voltage gain. This transform was used extensively in modeling vacuum-tube 
triodes and applies especially to fi eld-effect transistors (FETs) because of their 
low drain resistance. It enables us to avoid use of feedback analysis in shunt-
feedback circuits by transforming them into circuits most easily analyzed 
open-loop.
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m TRANSFORM OF BJT AND FET T MODELS

The m transform cannot be applied directly to circuits using the T model 
because the transform is based on a controlled voltage source. The T model, 
shown below, is shunted by ro. This familiar model is used later when feedback 
analysis is applied to multipath circuits. For now, it must be transformed into a 
model with a controlled voltage source. This can be done by fi rst referring re to 
the base as rp (using the b transform). Then ro shunts the controlled current 
source and forms a Norton equivalent circuit with it. The Norton circuit can be 
converted to a Thevenin equivalent by noting that

β α α⋅ = ⋅ = ⋅⎛⎝⎜
⎞
⎠⎟ =i i

v
r

v
r

b e
be

e

be

m
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i
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v

i

r1

v

i

r2

i

r2

v

i

mv
– +

+

_

+

_
μ + 1(        )vv
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_
v

μ + 1(        )/

v μ + 1(        )/
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μ + 1(        ) v

r

i

μ + 1(        )

v1μ + 1(        )

1

1 2

2

2

2

2

2

1
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1

1

m transform

N2 referred to N1

N1 referred to N2
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This current is converted to a Thevenin voltage by multiplying by the series 
resistance ro, resulting in

r
v
r

r
r

v vo
be

m

o

m
be be⋅⎛⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ ⋅ = ⋅μ

More precisely, the defi nition of m for the BJT model is

μ ≡ −
=

v
v

ce

be ic 0

b

e

re

ro

c

ib

b

e

ro

c

ib

T model with ro Norton equivalent
hybrid-p

Thevenin equivalent
hybrid-p

rp

rp

vbe

+

–

ro

c

e

b
+ –

mvbe

bibbib

The condition that ic be zero allows vce to be the voltage of the controlled 
source alone, without additional drop across ro. Furthermore,
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For ic = 0 (and fi nite collector resistance), then vc = 0 and

λ μ
μ

=
+

⎛
⎝⎜

⎞
⎠⎟

=
1

v
v

e

b

This relationship appears often in circuit analyses and is designated by l, the 
counterpart of a = b/(b + 1).

A similar transformation can be applied to the quasistatic FET circuit model, 
shown below, where ro is included.

g

s

ro

d

vgs

g

s

ro

mvgs

d

Thevenized FET model

vgs

+

-

ro

d

s

g

FET T modelFET model with r
o

rm

vgs

+

-

vgs

+

+

-

-

rm

vgs

rm

The model immediately converts to the Thevenin equivalent form of the BJT 
model. An alternative equivalent model is also shown, in which the gate is con-
nected to the current source and rm is added. This is an FET T model. The gate 
current ig remains zero because all ig must fl ow through rm. Its resulting voltage 
drop affects vgs, and since the current source is controlled by vgs, a change in 
drain current equal to ig is injected into the gate node. In other words, since 
the voltage across rm is vgs, the current that must be fl owing in rm is vgs/rm. But 
this is the amount of current injected into the gate node by the drain current 
source. By Kirchhoff’s current law (KCL), ig must be zero.
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The defi nition of m applied to this FET model is substantially the same as the 
BJT model. The relationship between the BJT and FET models is simple: If re 
of the BJT model is replaced by rm, the FET model results.

BJT to FET T-Model Conversion

r r e s b g c d v ve m be gs⇒ ⇒ ⇒ ⇒ ⇒, , , ,

Applying this conversion to the BJT defi nition of m results in the FET version 
of m:

FET μ ≡ −
=

v
v

ds

gs id 0

Because ro for FETs is typically much lower than for BJTs, the use of transistor 
models that include ro is more common for FETs.

COMMON-GATE AMPLIFIER WITH ro

The fi gure below shows a common-gate (CG) amplifi er, drawn so that the reduc-
tion theorem can be easily applied to it. The gate is at ground and is the 
common terminal of the two networks shown in boxes. Network N1 is the source 
circuit, and N2 is the drain circuit.

The FET model of the CG circuit is between N1 and N2. To make this circuit 
correspond to the m-transform circuit, ro must be included in N2. The result of 
transforming the drain circuit (N2) is shown in the lower equivalent circuit. The 
drain circuit has been referred to the source side. The output voltage vo across 
RL is also transformed to vo/(m + 1). This transformed circuit is now a voltage 
divider between input vi and output vo/(m + 1):

v R
R r R

vo L

S o L
iμ

μ
μ μ+

= +( )
+ +( ) + +( )

⋅
1

1
1 1

The voltage gain is thus
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CG A
R

R R r
v

L

S L o

=
+ +( ) +( )μ 1

This result is reminiscent of the transresistance method but uses the m transform 
instead of the b transform. It demonstrates the voltage form of the transresis-
tance method. The denominator of the expression for CG Av can be interpreted 
as amplifi er transresistance, rM. The resistance in the drain contributes to rM and 
appears smaller by 1/(m + 1) when referred to the source side of the FET. The 
b transform involves base and emitter networks; the m transform involves the 
drain (or collector) and source (or emitter) circuits instead.

The input resistance rin can be envisioned directly from the upper circuit 
to be

CG r
r R

Rin
o L

S= +
+

+
μ 1

RS

vi

–

N2N1

+

g

– –

+ –

RL

ro

vo
s

++

vgs vgs(    + 1)μ

     + 1μ
RL

     + 1μ
vo

     + 1μ
ro

s

RS

vi

–

+

–

+

vgs

d
mvgs
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The CG output resistance can be found by m-transforming the source circuit. In 
this case, the resistance of the source referred to the drain is (m + 1) times larger, 
so that

CG r R r Rout L o S= + +( )[ ]μ 1

COMMON-SOURCE AMPLIFIER WITH ro

A common-source (CS) FET amplifi er is shown below.

vo

g

vi

–

++
vgs

–

RS

s

mvgs

d

+

–

ro

RL

+ mvg –

RS

vi

–

N2

+

+ +

mvs–       +

RL

––

vs (m + 1) vs

s

g

vgs

+

–

ro

N1

vo

The voltage-source FET model makes Kirchhoff’s voltage law (KVL) analysis 
easy with only one loop. The needed equations are

 v i Rs s S= ⋅

 v i Ro s L= − ⋅

i R r R v v R is S o L gs g S s⋅ + +[ ] = ⋅ = ⋅ − ⋅ ⋅μ μ μ

Solving for Av gives
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v
v

R
r R R

o

g

L

m L S

= −
+ ( ) + +( )( )⋅μ μ μ1

Although this gain is a ratio of resistances, the terms in the denominator 
involving m do not have a simple interpretation in terms of the m transform and 
circuit topology. But by factoring (m + 1)/m out of the denominator, we obtain 
two factors containing vs:

CS A
R

R r R

v v v v

v
L

S o L

s g o s

= −
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+ +( ) +( )

↑ ↑

( ) ( )

μ
μ μ1 1

The fi rst factor, l, is the gate-to-source gain. The second is the same as the CG 
Av. Its denominator can be interpreted as rM, keeping in mind that it is vs (not 
vg) across rM that generates is. Consequently, the voltage form of the transresis-
tance method is based on fi nding rM across vs and then (if needed) relating vs 
to vg through l:

r
v
i

M
s

s

=

and

v v vs g g=
+

⎛
⎝⎜

⎞
⎠⎟

⋅ = ⋅μ
μ

λ
1

The gain expression of vo/vg was found using basic circuit laws, not by applying 
the m transform directly to the circuit topology. To do so for the CS is not as 
obvious as for the CG. The gate is not common to both source and drain circuits. 
In the circuit shown above, it is redrawn on the right so that application 
of the m transform is explicit. Because the port voltage is chosen to be vs, the 
drain voltage source m · vgs is split into two sources so that the fi rst is dependent 
upon vs. The remaining source, m · vg, becomes part of the drain network and is 

FAC3.indd   81FAC3.indd   81 7/29/2009   10:00:14 AM7/29/2009   10:00:14 AM



82  Chapter 3

The voltage across the source-referred RL is

v v
r

Ro i

M

L

μ
λ

μ+
= − ⋅ ⋅

+
⎛
⎝⎜

⎞
⎠⎟1 1

Solving for the voltage gain gives

CS A
R

R r R
R

R r R
v

L

S o L

L

S s L

= − ⋅
+ +( ) +( )

= − ⋅
+ + +( )

λ
μ

λ
μ1 1

The expression ro/(m + 1) has been expressed as

r
r r

rs
o o

m=
+

= ⋅
+

⎛
⎝⎜

⎞
⎠⎟

= ⋅
μ μ

μ
μ

λ
1 1

When ro is referred to the source, it transforms to rs, the FET analog of re, in 
that both are related to rm by dual factors, a and l. Although a expresses a 
current loss due to base current, l expresses a voltage loss due to vgs; m and b 
are duals, as are l = m/(m + 1) and a = b/(b + 1).

m Transform (Voltage) b Transform (Current)

m b
l = m/(m + 1) a = b/(b + 1)

The input resistance of the CS amplifi er is infi nite. The output resistance is the 
same as the CG; the source circuit referred to the drain is the same for both.

RL

m + 1

m + 1

m + 1 vo

ro

RS

+       –lvi

transformed along with it. When the m transform is applied to the drain circuit, 
the circuit shown below results.
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COMMON-DRAIN AMPLIFIER WITH ro

The last of the three basic FET confi gurations is the common-drain (CD) or 
source-follower, shown below. Applying the voltage form of the transresistance 
method, rM is found by determining the resistance across which the source 
voltage generates the source current is. The m transform is required to refer the 
resistance on the drain side of the FET voltage source to the source side.

vo

g

vi

–

++
vgs

mvgs

–

RS

s

d

+

–

ro

RD

As before, it is

r
R

s
D+
+μ 1

This resistance, when referred to the source circuit, is in series with RS. The total 
transresistance is thus

r R r
R

M S s
D= + +
+μ 1
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The source current generated by vs across rM develops an output voltage across 
RS. The voltage gain from gate to source must include the l factor;

CD A
R

R r R
v

S

S s D

= ⋅
+ + +( )

λ
μ 1

This gain is more general than for a CD amplifi er without a resistance in the 
drain, RD.

The input resistance of the CD is infi nite, and the output resistance is

CD r R r
R

out S s
D= +
+

⎛
⎝⎜

⎞
⎠⎟μ 1

FET CASCODE AMPLIFIER WITH ro

The voltage form of the transresistance method extends directly to multiple-
transistor amplifi er stages. The FET cascode amplifi er model, shown below, has 
a voltage gain of

cascode A
R

R
r r R

R

R r r

v
L

S
o o L

L

S s

= − ⋅
+ + +( ) +( )( )

+

= − ⋅
+ +

λ μ
μ

λ

1
1 2 2

1

1

1

1
1

ss
LR

2 1
2

1

1
1

1
μ μ

μ
+( ) + +( )( )

+

This can be interpreted (and also constructed) by inspection of the circuit 
diagram. The input voltage vi at the gate of the CS produces vs via l1. The CS 
rM is RS in series with the drain resistance, referred to the source. Drain resis-
tance is ro1 in series with the CG drain circuit referred to its source, or (ro2 + 
RL)/(m2 + 1). When these resistances are referred to the CS source, the denomi-
nator of the previous gain equations, rM, results. The source current develops 
the output voltage, vo, over RL (in the numerator) and is an inverting output. 
Av can be written as the lower equation just presented, using the defi nition of 
rs, which is ro referred to the source circuit.
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The output resistance of the cascode stage can be found using the same 
approach and is

cascode r R r r Rout L o o S= + +( )⋅ + +( )⋅( )[ ]2 2 1 11 1μ μ

To construct this expression for rout, the m transform is used to refer source 
resistances to the drain circuit.

COMMON-BASE AMPLIFIER WITH ro

The application of the voltage form of the transresistance method to BJT 
amplifi ers adds the complication of rp. It forms an additional loop or node not 
present in the CG circuit. This complication does not signifi cantly affect the 
approach.
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The circuit model is redrawn (upper right) to make the application of the m 
transform explicit. After the collector circuit is referred to the emitter side 
(middle), the divider formed by RE and rp is Thevenized (lower). The voltage 
gain can then be found by solving the voltage divider:
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This gain expression has two additional complications over that of the CG. 
At the emitter, RE is now shunted by rp. This affects rM in the second factor 
of the common-base (CB) gain equation. The fi rst factor accounts for the 
divider formed by rp with RE. An alternative formulation of Av regards rp and RE 
as forming a current divider with a transmittance of (ic/ie):

CB A
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r r R
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R r r R
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v
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c

e in
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For the CB gain equation, ie is the common quantity of the transresistance 
method. The input vi generates ie across the input resistance rin, which is rM, the 
denominator of the second factor:

CB r R r
r R

in E
o L= + +

+
⎛
⎝⎜

⎞
⎠⎟π μ 1

Some of ie is lost to the base, leaving ic, and is accounted for by the fi rst factor 
of CB Av. The output voltage is then developed across RL by ic. In this formula-
tion, both voltage and current forms of the transresistance method are present. 
The m transform refers the collector resistances to the emitter; the voltage form 
is applied. The (ic/ie) factor, however, is a circuit-dependent a characteristic of 
gain equations resulting from the current form. In contrast, the previous CB 
gain equation has a purely voltage-form interpretation. It is easier to apply only 
one form, and is preferred in most cases.

The CB output resistance is found by applying the m transform to the emitter 
circuit:
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CB r R r r R R rout L o E L c= + +( )⋅( )[ ] =μ π1

The m-transformed expression for the collector resistance, rc, has been derived 
before:

r
v
i

R R r
R

R R
c

c

c
E B o

E

B E

= = + + ⋅
+

⎛
⎝⎜

⎞
⎠⎟

1 β

This equivalent formula was given a b-transform interpretation before. To derive 
rc of CB rout from rc, substitute m · rp for b · ro and let RB = rp.

CC AND CE AMPLIFIERS WITH ro

The common-collector (CC) (emitter-follower) is shown below, with a simpli-
fi ed equivalent circuit. This is a generalized CC amplifi er in that collector resis-
tance is included.

Following the approach used with the CS amplifi er, the gain is

CC passA
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R r
R r

R r R r
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E

C o

E C o

=
+
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1
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+ +( ) +( )

⎡
⎣
⎢

⎤
⎦
⎥λ

μ
π

π

R r
R r R r

E

E C o 1

The CC has two gain paths: an active path due to the gain of the transistor, 
and a passive path due to a fi nite rp. The fi rst factor of both terms is (ve/vi). 
For the active path, the second factor is a ratio of load resistance RE||rp 
over rM.

The second factor of the passive path term is a voltage-divider gain due to 
the drop across the collector resistance, referred to the emitter. This is a loaded 
divider with

R
r R

E
o C+( )

+( )μ 1
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The passive path gain can be rewritten to make this explicit:

R r R
R r R r

E o C

E o C

+( ) +( )[ ]
+( ) +( )[ ] +

μ
μ π

1
1

The fi gure below shows the common-emitter (CE) circuit model and its succes-
sive modifi cations leading to equivalent circuit (e).

Again, the m transform reduces this circuit to a voltage divider. rp creates 
a loaded divider (c) that is Thevenized in (d). The voltage source, l · vi is 
combined with vi in (e), from which a voltage gain expression can be 
written as
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The second factor of the CE Av is the load resistance over rM, the same as for 
the CB amplifi er. The novelty is in the fi rst factor. The fi rst term, −l, is the m-
transform base-to-emitter voltage gain due to the active device m amplifi cation; 
it expresses the gain due to the active forward path. The CS Av contained only 
this term. With the CE, the second term is added due (once again) to rp. This 
term represents a voltage divider formed from rp and RE and expresses the gain 
of a passive path from input to output. This term gives the passive gain from vi 
to ve. The voltage component of ve due to the passive path is then amplifi ed 
along with the active path component by the second factor of the CE Av. Because 
the passive-path gain is noninverting, it decreases the overall (inverting) gain 
somewhat.

The output resistance can be obtained by direct application of the m trans-
form to the input side of the circuit:

CE r R r r Rout L o E= + +( )⋅( )[ ]μ π1

The input resistance rin of the CE can be found by redrawing (c) as shown below. 
The right side is Thevenized in (b). The voltage source on the right is controlled 
by vi and affects rin. Resorting to basic circuit analysis, we can solve for the input 
resistance:

r
v
i

v

v
R

R R r
v

r R R r

in
i

i

i

i
E

E L o
i

E L o

=
− ⋅

+ +( ) +( )
⎛
⎝⎜

⎞
⎠⎟

+ +( ) +( )

λ
μ

μπ

1
1

CE r r
R

R R r
R R rin

E

E L o
E L o= ⋅

+ +
⎛
⎝⎜

⎞
⎠⎟

+⎡
⎣
⎢

⎤
⎦
⎥ + +( )π μ 1

This expression is not immediately apparent from the circuit topology, as 
previous circuit expressions were and reveals limits to the extent a topology-
oriented approach can take. Substituting b · ro for m · rp gives an alternative 
b-transform-like expression. It is left to the reader to fi nd a topology-oriented 
explanation for these expressions of rin.
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LOADED DIVIDERS, SOURCE SHIFTING, AND THE SUBSTITUTION THEOREM

For circuits with more that three branch or loop equations, fi nding algebraic 
solutions can be tedious. In these situations, the following formulas are often 
useful. Thevenin and Norton circuits for loaded dividers are shown below. For 
the voltage divider in (a), 

v v
a c

a c b
i

v
c

a c
a c b c

vi i= ⋅
+

⎛
⎝⎜

⎞
⎠⎟

= =
+

⎛
⎝⎜

⎞
⎠⎟

⋅⎛⎝
⎞
⎠ ⋅,

1

and for the current divider in (b),

i
a b

a b c
v
b

i=
+

⎛
⎝⎜

⎞
⎠⎟

⋅⎛⎝
⎞
⎠

Loaded dividers often appear, and it is useful to be able to reverse the loading, 
as the following formulas allow:

+

–

+

–

λvi

     + 1μ

(a)

vi

vi

+

–

rin

rin

+

–

viλ

     + 1μ

(b)

⏐⏐
⏐⏐
⏐⏐⏐⏐

RE

RE

RE

RE + (ro + RL)/(m + 1)

ro + RL

ro + RL
rp

rp
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a b c a c b
a c
a b

+ = +( )⋅ +
+

⎛
⎝

⎞
⎠

a c
a c b

a b
a b c

c
b+

=
+

⋅

It is also handy to note that

a b
a

b
a b

=
+

The manipulation of expressions involving the || operation are made easier by 
the following properties:

associative property of : a b c a b c( ) = ( )

distributive property of over× = ⋅( ): ab ac a b c

commutative property of : a b b a=

a b
c d

a b
c

a b
d

= +

vi

b

vi

+

–

b

(a)

c

iv

a

(b)

c

iv

ab
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Source Shifting

An alternative to algebraic manipulation is the direct manipulation of circuit 
models. The source-shifting transformation can separate a circuit into two inde-
pendent circuits, as shown below. A current source is replaced by two sources 
with the same current in series. This change introduces an additional node c 
between the two sources. This is useful, for example, in transforming a loop 
with a fl oating current source into two separate loops with ground-referenced 
current sources, as shown in (b).

a b

i
i

c

a b

(a)

i

1 R2

(b)

R1 R2i i

i

R

The voltage dual of this source-shifting transformation is shown below.
A voltage source is replaced by two parallel sources of the same voltage. This 

transformation is useful in separating two branches, giving each its own source, 
as in (b).

Substitution Theorem

The substitution theorem applies to controlled sources as shown below. It too has 
dual current and voltage forms. In (a), a voltage-controlled current source 
(VCCS) of current v/r has a terminal voltage of v. Because it is controlled 
by the voltage across its terminals, it behaves as a resistance of r. Similarly, the 
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current-controlled voltage source (CCVS) in (b) has a terminal voltage of ri with 
current i, and is also equivalent to a resistance of r.

a b

v+                –

R1 R2 R1 R2

ba

v+                –

v+                –

(a)

(b)

v

+

–

v

+

–

v

+

–

v

+

–

v

+

–

r

v r/

v
r

(a)

r·i

+

–

i

rVCCS

rCCVS

(b)

i

rr·i

+

–
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To demonstrate source shifting and the substitution theorem, the CS with ro 
is modeled in (a) below.

vi 

+

–

(a)

RS RL

ro

vgs + –
g

vo 

vgs 
rm 

vg 
rm RS RL vo 

+

–

rovs 

(c)

vgs 
rm rm

vg 
rm 

vs 
rm RS

vgs 
rm vo 

+

–

rovs 

RL

(b)

Current-source shifting is applied, resulting in (b). This circuit is also modifi ed 
by splitting vgs/rm into two sources, vg/rm and vs/rm. The current source, vs/rm is 
across vs, and the substitution theorem can be applied, resulting in rm in (c). 
Successive applications of Norton and Thevenin conversions then reduce the 
circuit to an equivalent form, from which the CS gain readily follows.

CLOSURE

The dual forms of the reduction theorem, source-shifting, and the substitu-
tion theorem expand the power of circuit analysis, allowing the reduction of 
active amplifi er stages to voltage and current dividers. These methods, however, 
are not suffi cient in themselves. In the next chapter, feedback theory is 
developed – another analytic method that greatly simplifi es circuit analysis. The 
methods of this chapter are based on transformations of networks that eliminate 
dependent sources and result in a single network. Feedback theory reduces signal 
paths (transmittances) instead, resulting in a single transmittance.

FAC3.indd   96FAC3.indd   96 7/29/2009   10:00:16 AM7/29/2009   10:00:16 AM



4
Feedback Amplifi ers

FEEDBACK CIRCUITS BLOCK DIAGRAM

Circuits that combine some of their output with input are feedback circuits. The 
general case is shown as a block diagram below, where x quantities are voltages 
or currents.

xi Σ
+

−

xE xfTi
ToG

H
xB

xo

Block diagrams do not represent circuit interconnections (topology) but instead 
describe the fl ow of electrical cause and effect. Each block has an input (cause) 
and an output (effect). The arrows represent causal constraints, pointing from 
the output of one block to the input of the next. The input multiplied by the 
transmittance written in the block is the output. For example, xf = G · xE. The 
summing block, Σ, adds its inputs according to the sign by the arrowhead.

This block diagram is a graphic way of expressing the following algebraic 
equations:

x G xf E= ⋅

x T x H xE i i f= ⋅ − ⋅

x T xo o f= ⋅
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The fi rst two equations describe the feedback loop itself. The loop is closed and 
consists of G, H, and Σ. Ti and To are outside the loop but are included because 
they commonly occur in feedback circuits. Solving for the overall closed-loop gain 
of the feedback amplifi er, T = xo/xi and is

T
x
x

T
G
GH

To

i
i o= = ⋅

+
⎛
⎝

⎞
⎠ ⋅

1

The middle factor in parentheses is the transmittance, or gain, of the closed 
feedback loop itself. If the corresponding block transmittances of a circuit can 
be found, its closed-loop feedback gain can be calculated from the above general 
expression. Circuits are usually not obviously decomposable into the block 
transmittances. What is needed is a general procedure that derives the blocks 
from feedback circuits in equivalent circuit form so that circuit analysis can then 
be used to determine their transmittances.

PORT RESISTANCES WITH DEPENDENT SOURCES

The resistance of a port, as represented by its Thevenin or Norton resistance, 
cannot be found by shorting a dependent Thevenin voltage source or by opening 
a dependent Norton current source. A dependent source can only be removed 
by causing its controlling variable to be set to zero – that is, by nulling it. The 
port resistance can then be found.

Two-Port Nulling Rules

open loop

iin

T⋅iin Ro ⇐ Ro

short node
RoT⋅vin ⇐ Ro

+

−

vin

FAC4.indd   98FAC4.indd   98 7/29/2009   10:00:32 AM7/29/2009   10:00:32 AM



Feedback Amplifi ers  99

A dependent source can behave as a resistance if its controlling variable is 
the dual terminal (port) quantity. This is shown by the substitution theorem: 
Across an arbitrary network with a port having voltage v is a dependent current 
source of current v/r. This current source is equivalent to a resistance of r, by 
Ohm’s law. The dual is a network with a port having current i fl owing into a 
dependent voltage source of value i · r. It too is equivalent to r. Any resistance 
associated with a dependent source must therefore be removed by nulling its 
controlling quantity so that the port resistance alone remains.

If a two-port network contains a source dependent on the voltage of the other 
port, then by shorting the other port, the resistance of the source’s port can be 
found. Similarly, a source dependent on the current of the other port can be 
nulled by opening the other port. The controlling variable must be associated 
with the other port, or the network is not self-contained. The two-port nulling 
rules are shown above.

GENERAL FEEDBACK CIRCUIT

The feedback block diagram is brought closer to actual feedback circuit topol-
ogy as a general feedback circuit, shown below.

xHo

xE

xB

Tixi

xGo

To xo

xf

Input
Net-
work

Output
Net-
work

x(xHo)

x(xf)

x(xE)

RGi

The x variables are generalized port quantities (current or voltage).
Relating this to the feedback block diagram:

• H starts at xf of the lower two-port and extends from xHo through the input 
network to xB.

• Σ is in the input network.
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• Ti extends from xi into the input network to sum with xB to result in xE.

• To extends from xf to circuit output quantity xo.

• G has two paths: an active path, G1, and a passive path, G2.

• G1 starts at xE of the upper two-port network and extends from xGo through 
the output network to xf.

• G2 starts at xE and extends through the input network to xHo and through the 
two-port network (in reverse of the H path) to xf.

The upper and lower two-port networks in the general circuit diagram are not 
the G and H blocks of the block diagram. The upper two-port is the fi rst trans-
mittance of the G1 forward path. The reverse source of the lower two-port, x(xHo), 
is the second transmittance of the G2 path. Because the reverse transmittance 
through the active path (G1) is usually insignifi cant, a reverse source at the xE 
port is omitted. The block diagram with the two paths for G is shown below.

G1

G2

Σ

+

+

xf

xE

INPUT NETWORK SUMMING

The summation symbol of the block diagram can be realized at the circuit level 
in the ways currents and voltages add (or subtract) using Kirchhoff’s current 
law (KCL) and Kirchhoff’s voltage law (KVL):

• Currents sum at nodes.

• Voltages sum around loops.

Input networks can be simplifi ed to one of two basic topologies: series 
(common loop) or shunt (common node). The three port quantities of the 
input network combine as a sum of voltages around a loop for which loop 
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current is common or as a sum of currents at a node for which the node voltage 
is common. The input xi is modifi ed by Ti before it appears in the loop or at 
the node. The two input network topologies are shown above in generalized 
form.

In the series topology, the common input network quantity is the loop current, 
iE. It is common to all three input-network ports and when set to zero, or nulled 
by opening the loop, nulls the G-path transmittances: x(xE) becomes nulled 
when iE is nulled, thereby nulling the G1 source, and nulling iE also nulls the 
G2-path source x(xHo) = x(iE). Similarly, both of the G -path transmittances, 
dependent on vE in the shunt (parallel) topology, are nulled by shorting the 
common input node. By choosing the common input quantity as the error 

Input Network Series Topology

++

+
+

+

−−

−

−

− iE

vB = H⋅xf

vB

Ti⋅xi
vi

RGi

Ri

v(xf)

vE

Input Network Shunt Topology

vE

iE

iB = H⋅xf

iB

Ti⋅xi

RGi

Ri

ii

i(xf)
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quantity, both Kirchhoff’s laws and Ohm’s law (ΩL) are applied as follows. For 
an error voltage at the common node (shunt topology),

v R inode n
node

= ⋅ ∑

For an error current around the common loop (series topology),

i
R

vloop n
loop

= ⋅ ∑1

By choosing the error current in the shunt topology or the error voltage in the 
series topology, summation is by Kirchhoff’s laws alone.

Another way of accounting for summing in circuits is by superposition. In 
linear systems, the contributions of sources independent of each other can be 
calculated and their individual contributions to circuit quantities added for the 
total quantities. The general principle is shown below for both voltage and 
current summing.

++ +

−− −

v

R1

R

R2

v = ΣTn ⋅ vn = T1 ⋅ v1 + T2 ⋅ v2
node

v2v1

i1 i2

i

R1

R
R2

i = ΣTn ⋅ in = T1 ⋅ i1 + T2 ⋅ i2
branch

When superposition is used to effect error summing, the input network topol-
ogy cannot be reduced to a single loop or node. Feedback analysis can still be 
done, but there is no common quantity which, when nulled, nulls the input to 
G. However, the input to G (upon which its controlled source depends) itself 
can be nulled.
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CHOOSING xE, xf, AND THE INPUT NETWORK TOPOLOGY

Before transmittances can be found, xE and xf must be chosen. These choices 
are largely arbitrary and are usually not unique. However, some choices make 
the resulting feedback-circuit analysis easier than others. For a diffi cult analysis, 
choose a different circuit quantity for xE or xf, guided by the previously described 
input and output network considerations.

If xf is chosen too close to the input, common factors appear in the expres-
sions for H and To. To show this, let G = GA · GB, where xf is the output of GA 
instead of GB and is shown graphically below.

Ti⋅xi Σ
+

−

xE
xf

GA

H

xf opt xoGB To

xf too close
to input

This block diagram results in feedback equations:

x G xf A E= ⋅

x T x G H xE i i B f= ⋅ − ⋅ ⋅

x G T xo B o f= ⋅ ⋅

GB is common to both the H term of xE and To in xo. By letting xf be the output 
of GB instead, GB appears as a factor in the fi rst equation and disappears from 
the others.

If xf is instead chosen too close to the output, so that To = ToA · ToB and xf is 
the output of ToA, then

x G T xf oA E= ⋅ ⋅

x T x T H xE i i oA f= ⋅ − ⋅ ⋅−1

x T xo oB f= ⋅
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In this case, introducing factor ToA into the third equation removes it from the 
fi rst two.

If xE is chosen too close to the output, common factors occur in the two terms 
of xE. Let xE be the input to GB. Then

x G xf B E= ⋅

x G T x G H xE A i i A f= ⋅ ⋅ − ⋅ ⋅

x T xo o f= ⋅

By letting G = GA · GB, GA becomes a factor in the fi rst equation and is eliminated 
from the second.

The fi nal case is that of choosing xE too close to the input, as the input of TiB. 
Then TiB appears as a common factor with G and in the error term containing 
H.

x G T xf iB E= ⋅ ⋅

x T x T H xE iA i iB f= ⋅ − ⋅ ⋅−1

x T xo o f= ⋅

By moving xE to the output of TiB, TiB is eliminated from the fi rst equation 
and from the H term of xE. It becomes a factor in the fi rst xE term so that 
Ti = TiA · TiB.

The form of input-network topology (series or shunt) is not generally deter-
mined by the circuit. But the choice of xE affects the choice of input topology. 
This can be seen from the following input network.

RHo x(xf)vi

+

++

−

−

−
v2

v1

If v1 is chosen as vE, the H-path port (to the right) is made a Thevenin circuit 
and the input forms a loop – a series topology. If v2 is chosen for vE instead, 

FAC4.indd   104FAC4.indd   104 7/29/2009   10:00:33 AM7/29/2009   10:00:33 AM



Feedback Amplifi ers  105

then converting the input and feedback ports to Norton equivalent circuits 
results in a common node with voltage vE –  a shunt topology.

TWO-PORT EQUIVALENT CIRCUITS

The transmittances of the general feedback block diagram are found by fi rst 
fi nding the equivalent circuits of upper and lower two-port blocks shown in the 
general feedback circuit below.

Input
Net-
work

Output
Net-
work

x(xHo)

x(xf)

x(xE)

RGi

xHo

xE

xB

Ti
xi

xGo

To
xo

xf

Port resistances are found fi rst by applying two-port nulling to dependent 
sources. Port resistances enter the calculation of transmittances by forming 
dividers in the input and output networks or by changing the gain of amplifi er 
circuits. Other sources that contribute to the output-port quantity of the trans-
mittance being found but that are not part of its path must be nulled. After 
nulling, transmittance is found by applying amplifi er or divider analyses that 
include port resistances.

To fi nd the two-port equivalent circuits, null the controlling variable of each 
port and fi nd the port resistance. To fi nd RGo, null xE and xHo to null the upper 
and lower two-port sources driving the output network. To null xE, short the 
node of vE or open the loop of iE. Then inspect the xGo and xf ports for their 
resistances, using circuit analysis.

Nulling the common error quantity, xE = xHo, of the input network nulls both 
output-network sources. For a series (summing loop) input topology, open the 
loop to null iE. This nulls vE = RGi · iE, thus nulling the G1-path source x(xE), and 
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also nulls G2-path source x(xHo), where xHo = iE. For a shunt (summing node) 
input topology, short the node to null vE. This nulls iE = vE/RGi.

To fi nd RHo, null xf : if vf, short its node; for if, open its loop. This nulls the 
x(xf) source of the input-network feedback port, allowing its resistance alone to 
appear across the xHo port. Next, the transmittances are found.

To fi nd Ti, null xf. This both nulls the feedback contribution to xE (which 
is xB) and presents the feedback (xHo) port resistance, RHo, to the input 
network for calculation of Ti. Find the transmittance from xi to xE by circuit 
analysis.

To fi nd G, both paths must be found. For the active (G1) path, the effect of 
loading by the output network is chosen to be included in calculating transmit-
tance. The G paths are in parallel from xE to xf and when the transmittance of 
each is calculated, the other must not be allowed to contribute to their common 
output. G1 is through x(xE) and G2 is through x(xHo). These sources are each 
nulled directly while transmittance of the other is being found. To null, open 
independent current sources and short independent voltage sources.

To fi nd H, null the independent source xi by shorting, if vi, and opening, if 
ii. Apply circuit analysis from xf forward through the H path to xB or to xE. 
Then

H
x
x

x
x

B

f

E

f xi

= = −
=0

Finally, fi nd To = xo/xf.

TWO-PORT LOADING THEOREM

Calculation of two-port equivalent circuits is simplifi ed when two independent 
ports are connected via a common resistance, as shown below for the voltage 
case.

The two-port equivalent circuit is derived from the upper circuit by applying 
superposition at nodes having vA and vB:

v
R R v R v

R R R
A = +( )⋅ + ⋅

+ +
2 1 1 2

1 2
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v
R v R R v

R R R
B = ⋅ + +( )⋅

+ +
2 1 1 2

1 2

These equations are equivalent to

v
R

R R
v v vA B B=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ −( ) +
1

1

v
R

R R
v v vB A A=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ −( ) +
2

2

where vA and vB are calculated assuming the other is given. In general, if vA were 
found, including the loading by port B on the vA node, then vB can be found 
assuming vA. What this derivation shows is that both vA and vB can be found 
assuming the other already has been.

The dual circuit for current is shown below. Port currents iA and iB are found 
assuming that the other is already determined. The corresponding equations 
are

i
R

R R
i i iA B B=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ −( ) +1

1
1

i
R

R R
i i iB A A=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ −( ) +2

2
2

+
+

−−
v1

v2

R1 R R2

A ⇒ ⇐ B

vA vB

+
+

−
−

R

vBvA

+
+

−
−

R

vBvA
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This loading theorem is applicable, for instance, to the upper two-port block of a 
feedback circuit when xf and xE are connected by a resistance.

FEEDBACK ANALYSIS PROCEDURE

A general procedure can now be given for solving feedback circuits. Before the 
actual procedure is applied, simplify the circuit, if possible, using Thevenin and 
Norton equivalent circuits and then feedback-analyze the simpler circuit.

1. Choose xf. xf is dependent on xE. For vf, identify a node; for if, identify a 
loop.

2. Choose xE and identify the input network topology. xE is dependent on xi and 
xB(xf). Port voltages sum around a loop; port currents sum at a node.

• For series (loop) topology, iE is the common input-network quantity to both 
error and feedback ports; for shunt (node) topology, vE is the common 
quantity. Either vE or iE can be chosen for xE. Both output-network sources 
of G are nulled by choosing the common port quantity for xE.

• For error-summing by superposition, no common input-network nulling 
quantity exists; multiple loops or nodes exist.

3. Find Ti. Ti is found by nulling xB by nulling xf. Input-network feedback port 
resistance is found by nulling the output port, xf, and determining RHo. If 
xf = vf, short the vf node; if if, open the if loop. Then Ti = xE/xi with xf = 0.

i1 i2

R1 R R2

A ⇒ ⇐ B

iA iB

R
iB

iA

R

iB

iA
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4. Find G. G1 = xf/xE while nulling x(xHo). Output-network G1-path port resis-
tance, RGo, and G2-path port resistance, RHi, are found by nulling the input-
network common error quantity (iE for loop; vE for node). Find G2 = xf/xE 
while nulling x(xE).

5. Find H. Null input source xi. If xi = vi, short it; if ii, open it. Then H = 
xB/xf = −(xE/xf) with xi = 0.

6. Find To. To = xo/xf.

NONINVERTING OP-AMP

Now that the general procedure for analysis of feedback amplifi er circuits has 
been developed, it will be applied to specifi c amplifi ers. The fi rst example of its 
use is the noninverting operational amplifi er (abbreviated as op-amp) confi gura-
tion, shown here. The triangular amplifi er symbol with + and − inputs (differ-
ential input) and single-ended (ground-referenced) output is the symbol of 
an op-amp. It has infi nite input resistance, an ideal voltage-source output 
(zero output resistance), and infi nite voltage gain. In practice, actual op-amps 
approach these conditions suffi ciently so that use of the ideal op-amp model is 

Σ G

H

–

–

+

+

vi

Ri

vi

Rf

K

vo

vo

Rf + Ri

Ri

K
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often justifi ed. If the model is made slightly more realistic by assuming a fi nite 
voltage gain of K,

v K v vo = ⋅ −( )+ −

where v+ is the voltage at the op-amp + (noninverting) input.
The voltage amplifi er can be analyzed using the feedback analysis 

procedure:

1. Choose xf  = vo. This choice is the only path back to the input from the ampli-
fi er output, through Rf. The amplifi er output quantity is the same as the 
feedback quantity. The feedback node is the op-amp output.

2. Choose xE = vE = v+ − v− and note that the input topology is a loop in which 
vi, vE, and vB are in series. Because the op-amp input resistance (across vE) is 
infi nite, iE is zero.

3. Ti = 1; vi adds directly to vE as v+ in the error loop. This can be found by nulling 
vf = vo by shorting the op-amp output. With vf = vo shorted, RHo = Ri  || Rf. This 
results in vi = v+ and no input attenuation.

4. G1 = vo/vE = K. This is found while nulling x(xHo) = v(vHo) = vf by shorting 
vHo = v−. Because the op-amp output is an ideal voltage source, the output 
has no loading effect, no attenuation between the op-amp output (output of 
G1) and the amplifi er output, vo. G2-path port resistance, RHi = Rf + Ri. Simi-
larly, G2 = 0 because the ideal op-amp voltage-source output has no resistance 
across which to develop voltage from vE through Rf.

5. With vi shorted, H = −(vE/vf). This is negative the attenuation of the voltage 
divider from vf = vo to v+ or

H
R

R R
i

f i

= − −
+

⎛
⎝⎜

⎞
⎠⎟

6. Because xo = vo = xf = vf, To = 1.

Now that all of the quantities of the feedback formula are known, 
the feedback-amplifi er voltage gain (or closed-loop gain) can be found by 
substitution:
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A T
G G
G G H

T

K

K
R

R R

v i o

i

f i

= ⋅ +( )
+ +( )⋅

⋅

=
+ ⋅

+
⎛
⎝⎜

⎞
⎠⎟

1 2

1 21

1

Multiplying numerator and denominator of the gain expression by 1/K, then 
for large K (as K approaches infi nity), 1/K approaches 0 and for the ideal non-
inverting op-amp, the voltage gain formula is

A
R
R

v
f

i

= + 1

For example, if Rf = 10 kΩ and Ri = 1.0 kΩ, then the op-amp voltage gain is 
11.

INVERTING OP-AMP

The other confi guration, that of the inverting op-amp, is shown below.

Σ G

H

–

+ ETi vo

R       R
––––––

f i
–––––

+

Ri–

R       R
––––––

f i
–––––

+

Rf

vi –

+
K

Rf

Ri

vo

vi

K–
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To analyze this amplifi er, apply the feedback analysis procedure:

1. Choose xf = vo. As with the noninverting op-amp, the only path back to the 
input is through Rf, which connects to vo.

2. Choose xE = iE, the current fl owing into the node of the inverting op-amp 
terminal. Error current is thereby summed at this node; it is dependent upon 
input current through Ri and feedback current through Rf. Both sources are 
Norton equivalents, in parallel across v− (shunt topology). The common 
input-network node quantity is v−. Shorting v− nulls both forward paths of 
G.

3. Null xf = vo by shorting the output (to ground). Then RHo = Rf. Also, Ti = iE/vi. 
No current fl ows into either input of the op-amp. Therefore, iE = ii and 
iE/ii = 1. But from the Norton equivalent of the input current source, ii = vi/Ri, 
and Ti = 1/Ri.

4. For the G1 path, v− is the op-amp input quantity, not iE. G1 consists of two 
cascaded transmittances, (v−/iE) times (vo/v−). The second transmittance is 
−K, the voltage gain of the op-amp. The fi rst transmittance is the resistance 
of the op-amp inverting-input node. The feedback is x(xf) = iB. This is the 
current source of the Norton equivalent feedback circuit, as shown, and it is 
nulled by setting xf = vo to zero. Shorting vo has the effect of grounding the 
output side of Rf, which results in an input-node resistance of Ri || Rf. Then

G
v
i

v
v

R R K
E

o
i f1 = ⎛

⎝⎜
⎞
⎠⎟ ⋅⎛⎝⎜

⎞
⎠⎟ = ( )⋅ −( )−

−

For G2, x(xE) must fi rst be nulled before fi nding the passive path through Rf 
to vo. But since x(xE) = xGo determines vo as an ideal voltage source, there is 
no feedback contribution through the passive path, and G2 = 0. Consequently, 
G = G1.

5. To fi nd H, null ii. This is the Norton input circuit, where ii = vi/Ri. To 
null it, open the current source, and H = −(iE/vo). Then, iE is only the 
current from the Norton feedback source, which is vo/Rf. Substituting, 
H = −1/Rf.

6. Finally, To = 1.

Now that the transmittances have been found, the closed-loop voltage gain is
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A T
G
G H

T

R
R R K

R R K R

v i o

i

i f

i f f

= ⋅
+ ⋅

⋅

= ⎛
⎝⎜

⎞
⎠⎟ ⋅

− ( )⋅
+ − ( )⋅[ ]⋅ −[ ] ⋅

1

1
1 1

1

When K becomes infi nite, this reduces to

A
R
R

v
f

i

= −

An alternative analysis demonstrates a different choice of xE that uses super-
position to sum error quantities.

(c)

vT
vo

–K

(b)

–i
ii

Rf + Ri

Ri–

ii
1 i – –rin ⋅ K vo

1–––––
Rf

–

+

Rf
v–

vo

ii

(a)

Ri
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1. Choose xf = vo. As with the noninverting op-amp, the only path back to the 
input is Rf which connects to vo.

2. Choose xE = vE = v− and observe that xB must be a voltage that sums in a series 
(loop) input topology. (xB is the feedback quantity that sums directly with 
Ti · xi.) The input and feedback sources are a voltage source (vi and vo) in 
series with a resistance (Ri and Rf). Because the input port to G is across the 
op-amp input terminals, this port is in parallel with the input and feedback 
sources and no single series loop exists. Consequently, xE = vE = v− must be 
obtained by superposition. To null both G transmittances, vE itself can be 
shorted.

3. Ti = vE/vi with feedback nulled by shorting vo. Then Ti is a voltage divider:

T
R

R R
i

f

f i

=
+

The feedback port resistance RHo is found by nulling vo, and it is Rf. RGo and 
RHi are zero because of the ideal op-amp output. When vE is nulled, the 
output node is still zero ohms.

4. G1 = vo/vE = vo/v− = K. G2 = 0 and G = G1.

5. Null vi by shorting it. Then the path from vo to vE is a divider – the same one 
as for Ti but in the reverse direction. Then

H
R

R R
i

f i

= −
+

vB is the Thevenin equivalent voltage at v− due to vo. Because of summing 
convention, it subtracts from vE, and the − sign appears in H.

6. To = 1 because vGo = vo.

Substituting the previous transmittances into the feedback gain formula pro-
duces the same result as the previous analysis. Another choice of xE, the voltage 
across Ri, is also workable, but much more diffi cult. In this case, the error quan-
tity is chosen too close to the input and a redundant factor, Rf/Ri, appears in both 
G and H. (But it cancels, resulting in the same closed-loop gain as already 
derived.)
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An example of an inverting op-amp: Rf = 10 kΩ and Ri = 1.0 kΩ. Then the 
op-amp voltage gain is −10.

The topological difference between the inverting and noninverting op-amp 
confi gurations is where ground is connected. Without rewiring, if the inverting 
input voltage-source + terminal is grounded instead of its − terminal, the non-
inverting confi guration results. The noninverting confi guration has a gain of 
one more because the input source is in series with and adds to the op-amp 
output.

INVERTING BJT AMPLIFIER EXAMPLES

A discrete transistor feedback amplifi er with idealized output buffer stage is 
shown below. To simplify analysis, the ideal unity-gain buffer has a voltage-source 
(zero resistance) output but otherwise could be an emitter-follower, as in the 
following example.

Applying the feedback-analysis procedure:

1. The output pickoff is simply xf = vo.

2. This circuit poses a challenge in identifying the input summing circuit, Σ. 
The input is vi, a voltage, so the error quantity must also be a voltage (unless 
there is a quantity-transforming Ti). Voltages are summed around loops, 

VCC

LR

ER

BR

iv

+

–

VEE–

+

1Q

×1 ov

fR

bv
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according to KVL. The error voltage must be in a loop that includes the 
feedback; then the loop containing Rf (the only component providing feed-
back) must include the error voltage.

It is appealing to let the error voltage be vb because both vi and vo contribute 
to it, in the loop containing Rf and RB. This error loop is shown below and is 
similar to that for the inverting op-amp confi guration – two loops combine, 
resulting in error voltage vb across the common branch of the loop.

vi

+

–

rin

vb
RfRB

+

–

vo

What is not apparent is what to do with the input resistance of Q1: rin = 
(b + 1) · (re + RE). It turns the two voltage sources with their series resistances 
into a loaded divider similar to that of the cascade amplifi er. As in that case, a 
decision must be made about what to do with rin. If it is included in calculation 
of vb, then when the gain of G is found, the external base resistance is not 
included in the gain formula because it was taken into account in fi nding vb.

3. We fi rst analyze the circuit by letting rin load the input. The contribution of 
vi to vb is through the divider formed by RB in series with rin||Rf. This divider 
has a transfer function of vb/vi = Ti:

T
R r

R r R
i

f in

f in B

=
+

4. Because rin is taken into account in Ti and H, vb is the actual base voltage with 
external base resistance taken into account. Therefore, G does not include 
its effect and is

G
v
v

R
r R

o

b

L

e E

= = − ⋅
+

α
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5. A divider similar to Ti defi nes H:

H
v
v

R r
R r R

o

b v

B in

B in fi

= − = −
+=0

6. There is no additional circuitry between the fed-back quantity and the output; 
both are vo and therefore To = 1.

The closed-loop voltage gain is found by substituting the previous quantities 
into the feedback formula:

A T
G
GH

R
r R R r R R R R

v i
L

e E B e E L B f

= ⋅
+

= − ⋅
+ + +( ) + + + ⋅( )( )1 1

α
β α

This gain expression is essentially a resistance ratio like that of nonfeedback 
amplifi er stages but has no transresistance interpretation; it is merely a simpli-
fi ed form of the feedback formula in terms of component values and Q1 param-
eters. It is useful for calculating the closed-loop gain but offers little of the 
insight into feedback characteristics of individual block transmittances.

An alternative gain derivation is based on incorporation of external base 
resistance into G. By solving for a Thevenin equivalent vE in series with RB||Rf 
(equivalent circuit shown below), this resistance is included in the gain formula 
of Q1 as external base resistance. In this approach, vE is different; the error 
voltage is no longer vb but is the Thevenin equivalent voltage from the voltage 
divider formed by the two sources with the base of Q1 open. The summing block 
is due to superposition of input and feedback voltages and is

v
R

R R
v

R
R R

vE
f

f B
i

B

f B
o=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ +
+

⎛
⎝⎜

⎞
⎠⎟

⋅

vE

+

–

RB

rin

G

Rf
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vi
vo

RB

RL

RE1

RE2

Q2

Q1

+VCC

Rf

This Thevenin error voltage is in series with a Thevenin resistance of RB||Rf that 
forms a divider with rin, as shown previously. Then,

v
r

r R R
vb

in

in B f
E=

+
⎛
⎝⎜

⎞
⎠⎟

⋅

It is apparent from the expression for vE that Ti is different from the previous 
analysis and is

T
v
v

R
R R

i
E

i v

f

f Bo

= =
+=0

From the expression for vE, H is

H
v
v

R
R R

E

o v

B

f Bi

= − = −
+=0

G is

G
v
v

R
r R R R

o

E B

L

e E B f

= = − ⋅
+ + ( ) +( )=0 1

α
β

Choice of feedback quantity, vo, and To remain the same.
Combining the block transmittances in the feedback formula and rearranging 

gives the same result as before. This circuit demonstrates a multiplicity of valid 
choices for the error voltage. In the loaded-divider case, the error quantity is 
an actual node voltage vb whereas in the second analysis it is the Thevenin 
voltage vE. Both approaches produce the correct closed-loop gain.
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The discrete-component BJT amplifi er shown here resembles the inverting 
op-amp and replaces the buffer amplifi er of the previous circuit with a common-
collector (CC) stage. It also demonstrates use of the loading theorem.

Assuming that the transistors are biased for linear operation (so that the 
incremental BJT model is valid), the feedback analysis procedure is as follows:

1. Choose xf = vo. This is the output node.

2. Choose xE = iE = iB1, the current into the base of Q1. Components connect to 
this node from both the input and output nodes, in parallel. The shunt input-
network topology is consequently the most easy to identify. The equivalent 
input network is shown below.

rin
Rf

RB vo/Rfvi/RB

+

−

vB1

iE

The Norton equivalent input and feedback circuits are in parallel with the 
input of G1, and vB1 is the common input-port error-node quantity.

3. With output nulled (vo = 0), RHo = Rf . Ti is the current divider formed by rin 
in parallel with Rf and RB. Nulling vo (by shorting it) opens the corresponding 
current source in the equivalent circuit. Then

T
R R

r R R
i

B f

in B f

=
+

This is the fraction of input current, vi/RB, that fl ows through rin, which is iB1 
= iE.

4. G1 = vo/iE = vo/iB1. With the input-error node shorted, RHi = Rf. The gain of 
the fi rst stage, neglecting the loading of Q2, is vC1/iB1 = −b · RL. RHi (= Rf) is in 
parallel with RE2, as G1 output loading. The total gain is the product of fi rst- 
and second-stage gains, or

G R
R R

R R r R
L

E f

E f e L
1 1

2

2 2 2 1
= − ⋅( )⋅

+ + +( )
⎛
⎝⎜

⎞
⎠⎟

β
β
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Both input and output loading of the G path is taken into account in G1.

G2 is the reverse path through the H block. It is

G
x
x

v
i

v
v r

r
v
v

f

E

o

B

o

B in
in

o

B
2

1 1 1

= = = = ⋅

and

r r Rin e E= +( )⋅ +( )β1 1 11

While nulling the common input-port error-node quantity (the node voltage, 
vB1), RGo is the output resistance of the active path (at the emitter of Q2). At 
the G output port, the b transform is applied to Q2. The resistance is RE2 in 
parallel with re2 plus the b-transformed base resistance, RL, or RL/(b + 1).

R r
R

RGo e
L

E= +
+

⎛
⎝⎜

⎞
⎠⎟2

2
2

1β

For the passive path G2, Rf forms a voltage divider with RGo. Then

G r
R

R R
in

Go

Go f
2 = ⋅

+

By substituting component values into the previous equations, it will typically 
be the case that G2 is much less than G1 and can usually be ignored.

5. The feedback block, H, is found by nulling the input quantity, vi, and calcu-
lating the fraction of current due to vo that is iB1. It is found by the current 
divider formula from the equivalent circuit:

 i
R R

R R r
v
R

B
f B

f B in

o

f
1 =

+
⎛

⎝
⎜

⎞

⎠
⎟ ⋅

⎛

⎝
⎜

⎞

⎠
⎟

Then

 
H

i
v

R R
R R r R

B

o v

f B

f B in fi

= − = −
+

⋅
=

1

0

1

6. To = 1, because the feedback quantity, xf = vo.

The previous quantities are substituted into the feedback equation to calcu-
late the closed-loop gain.
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For step 4, the loading theorem is applied to allow us to assume that vo and 
vB1 are the actual (loaded) node voltages with Rf the connecting resistance. 
Then the effects of the input and output networks (due to loading) can be taken 
into account. Input summing would then be applied by superposition of vi and 
vo to the calculation of vB1, from the equivalent circuit, shown below.

+ +

− −

vo
vi

Rf
RB

rin

vB1

Two-BJT Inverting Feedback Amplifi er

The schematic diagram shows an inverting feedback amplifi er similar to that of 
the previous example. The SPICE program follows.

BR

iv
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–
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80
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fR
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Inverting 2-BJT Feedback Amplifi er

.OPT NOMOD OPTS NOPAGE

.OP

.DC VI -2V 2V 0.05V

.TF V(50) VI

VCC 80 0 DC 5V
VEE 90 0 DC -5V
VI 10 0 DC 0V

RB 10 20 1K
RP 80 20 6.2K
RL 30 80 22K
RF 20 40 10K
RE1 60 0 330
RE2 40 50 1K
RE3 50 90 3.9K
Q1 30 20 60 BJT1
Q2 80 30 40 BJT1

.MODEL BJT1 NPN (BF = 99)

.PROBE

.END

After static (direct current, or dc) analysis (and assuming b = 99, IS = 10−16 A), 
the dynamic emitter resistances are

r re e1 2230 93 18 61= =. ; .Ω Ω

A few other incremental resistances are needed. The input can be Thevenized, 
combining RB and RP into rs; the input voltage source has an attenuation of Ts:

r R R T
R

R R
s B P s

P

P B

= = =
+

=861 11 0 8611. , .Ω

Let E = vb = v(20) and xf = ve2 = v(40). The input resistance of Q1 is 
rGi = (b1 + 1) · (re1 + RE1) = (100) · (230.9 Ω + 330 Ω) = 56.093 kΩ. Then,

T T
r R

r R r
i s

Gi f

Gi f s

= ⋅
+

= 0 78179.
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G
R

r R
R R R

R R R r R
L

e E

f E E

f E E e L

= − ⋅
+

⋅
+( )

+( ) + + +( ) = −α
β1

1

2 3

2 3 2 2 1
36 201.

The forward passive path through Rf to ve2 adds G2 to G because it is in parallel 
with it:

G
R R r R

R R r R R
E E e L

E E e L f
2

2 3 2 2

2 3 2 2

1
1

2 225= +( ) + +( )( )
+( ) + +( ) +( )

=β
β

. ×× −10 2

When added to G, G = −36.179, a difference of 0.06%.
The remaining transmittances are

H
r r

r r R
s Gi

s Gi f

= −
+

= − × −7 8179 10 2.

T
R

R R
o

E

E E

=
+

=3

2 3

0 79592.

Putting the transmittances together, we obtain a voltage gain of

v
v

T
G
GH

To

i
i o= ⋅

+
⋅ = −

1
5 8802.

where 1 + GH = 3.8284. The input and output resistances are

r R R r
R

G
in B P Gi

f= +
+ −( )

=
1

1 2566. kΩ

r
R R r R r R R R

GH
R Rout

B P Gi f e L E E
E E=

+( ) + +( )⎡⎢ ⎤⎥ +( )
+

+⎛
⎝⎜

⎞
⎠⎟

2 2 2 3
2

1
1

β
33

832 3= . Ω

The SPICE simulation verifi es these numbers to three digits, the simulation 
convergence accuracy.

The graph of vo = v(50) versus vi (below) shows feedforward through Rf 
outside the linear range of the active path (through the transistor), when its 
gain is zero.
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NONINVERTING FEEDBACK AMPLIFIER EXAMPLES

A noninverting BJT feedback amplifi er is shown below.

It feeds back via Rf to the emitter of the common-emitter (CE) input transistor 
Q 1. Both input and output quantities are voltages; this is a voltage amplifi er. To 
simplify analysis, the output of the CE stage is buffered by an ideal ×(−1) ampli-
fi er. (This could be implemented as a PNP CE stage.) The feedback quantity is 
vo, and To is 1.

+VCC

RL

RB

vi

+

–

Q1

RiIo

–1 vo

Rf

–VEE

ve

2.0 V

1.0 V

0.0 V

–1.0 V

–2.0 V
–2.0 V –1.5 V –1.0 V –0.5 V 0.0 V 0.5 V 1.0 V 1.5 V 2.0 V

v(50)

Vi
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Ri

rs

re ve
Rf

vi

+

–

vo

+

–

RB

b + 1

We analyze this circuit for three different choices of error, E. The fi rst choice 
is preferred because it is simplest to reduce to gain and summing blocks.

From the schematic diagram, let

R R R r r
R

E f i s e
B= = +

+
, and

β 1

The summing loop must include both vi and vo terms, as shown below.

The feedback from vo is Thevenized with a series resistance of RE and Thevenin 
voltage source of

v
R

R R
vfb

i

f i
o=

+
⎛
⎝⎜

⎞
⎠⎟

⋅

The output of the equivalent circuit is at the feedback node of ve. The loop 
continues and includes rs and vi. The simplifi ed Thevenin equivalent circuit is 
shown below.

rs

re ve
Rf

vi

+

–

vo

+

–

Ri

Ri
Rf + Ri

RE

RB

b + 1
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The error is chosen to be

E v vi f b= −

The input quantity vi adds directly to E so that Ti = 1.

The forward path is

G
v
E

R
r R

o

B

L

s E

= = ⋅
+=0

α

From the choice of E,

H
E
v

R
R Ro v

i

f ii

= − =
+

⎛
⎝⎜

⎞
⎠⎟=0

This results in a closed-loop voltage gain of

A
R r R

R r R R R R
v

L s E

L s E i f i

= ⋅ +( )( )
+ ⋅ +( )( )[ ]⋅ +( )[ ]

α
α1

Now that the circuit has been analyzed by a straightforward analysis, we inves-
tigate alternatives, to show how the feedback circuit can be solved several ways. 
Examination of two alternatives should clarify some of the subtler aspects of the 
approach.

First, note that in the preceding solution of Av, because vfb was chosen as the 
term relating vo to E, the gain of G was calculated to include RE in the transre-
sistance of Q1. If ve were chosen for E instead, RE would have been taken into 
account in the expression for ve, and G would have only rs in its denominator. 
In this case, the transresistance of Q1 would be around an input loop from vi to 
ve instead of from vi to vf b.

Taking this approach, we begin by noting that both vi and vo sum at the 
emitter of Q1. The equivalent-circuit loop that contains E is shown above. An 
expression for the emitter voltage ve can be constructed by superposition:

v
R

r R
v

r
r R

R
R R

v T ve
E

s E
i

s

s E

i

f i
o i i=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ +
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

⋅ = ⋅ + −HH vo( )⋅
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This time, let E = ve. It qualifi es because it contains terms for both vi and vo. The 
coeffi cients of these quantities are expressions for blocks Ti and −H, as desig-
nated. These blocks are

T
R

r R
H

r
r R

R
R R

i
E

s E

s

s E

i

f i

=
+

= −
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

,

Now, an unusual step must be taken to produce G. We need two equivalent 
expressions, which are

G
R
r

R
R

L

s

L

E

= − ⋅ = ⋅α α

These expressions for G are equal because the voltage developed across RE 
is the same as that developed across rs except inverted in polarity. If vE 
increases, the voltage across RE increases and IE increases. This same voltage 
change across rs causes a decrease in IE out of the emitter of Q1, inverting 
the polarity of the change in IE; hence the minus sign for the fi rst expression 
for G.

Combining the gain expressions gives the closed-loop gain as

A
R

r R
R R

R r r r R R R R
v

E

s E

L E

L s s s E i f i

=
+

⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅( )
+ ⋅( ) +( )[ ]⋅ +( )[ ]

α
α1

This is equivalent to the previous Av, after the Ti factor is multiplied by the 
numerator. Although the result is the same, the derivation is less obvious due 
to the need for two expressions for G.

The fi nal approach uses a different choice for E in that ve is used as the output-
related term and is subtracted from the input vi:

E v vi e= −

E can be expanded as in the previous case so that

E v
R

r R
v

r
r R

R
R R

vi
E

s E
i

s

s E

i

f i
o= −

+
⎛
⎝⎜

⎞
⎠⎟

⋅ +
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

⋅
⎡

⎣
⎢

⎤

⎦
⎥
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This reduces to

E
r

r R
v

R
R R

vs

s E
i

i

f i
o=

+
⎛
⎝
⎜

⎞
⎠
⎟⋅ −

+
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

⎛

⎝
⎜

⎞

⎠
⎟

From the expression for E, Ti and H are

T
r

r R
H

r
r R

R
R R

i
s

s E

s

s E

i

f i

=
+

⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

,

With H = −(vi − ve)/vo, solve the E equation for −E/vo with vi = 0. This yields a 
negative expression that is then negated to produce a positive H of ve/vo.

The gain of G is from E to vo, and G is calculated starting from the difference 
voltage, E, which is

G
R
r

L

s

= ⋅α

Combining block transmittances and rearranging gives the previous closed-loop 
Av. This choice of E does not require two gain expressions for G and is somewhat 
simpler conceptually. In both solutions, E is expressed as a linear combination 
of vi and vo.

These solutions were constructed by inspection of the loops and nodes of the 
circuit without use of explicit two-port synthesis. The analysis took place at a 
higher level than basic circuit laws, however, since the transresistance method 
and identifi cation of voltage or current dividers made it possible to write the 
block gains directly from inspection of the circuit. This approach is intuitively 
simple as long as the H loading is obvious and G and H are easy to identify.

Otherwise, the two-port approach would be applied, with a two-port H as 
shown below.

BR

iv

+

– ei Ri
Rf Ri+(          )

+

–

ov Ri

+

–

ie

Rf Ri+

ov

H

RfRi⏐⏐
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To set the error voltage to zero, the loop around which it is summed must be 
opened. The loop current is ie; opening the loop at the emitter of Q1 sets E to 
zero, and ie = 0 nulls E. The H input source must be controlled by ie. Also, since 
vo is the feedback output of G, the H output source must be controlled by it. 
The H output is the result of Thevenizing Ri, Rf, and vo. When vo is shorted, the 
G input loading is Ri||Rf. When ie is nulled by opening the emitter, the G output 
loading is Rf + Ri. The H output source voltage is the voltage due to vo with zero 
port current (ie = 0); it is

R
R R

vi

f i
o+

⎛
⎝⎜

⎞
⎠⎟

⋅

because of the divider action of Rf and Ri. The H input source voltage appears 
at the H input when the H input port current is zero. When the port is opened 
(disconnecting it from vo), the resulting voltage is due to ie fl owing through Ri, 
or Ri · ie.

As for the virtues of this feedback amplifi er, two transistors provide a gain 
determined by Rf and Ri for large G. With two BJTs, G can be made larger by 
allowing the output inverting buffer to have a gain magnitude >>1. A typical 
achievable gain for G is 500. Then for a closed-loop gain << 500, the gain is set 
predominantly by the external resistors.

Example: Noninverting Feedback Amplifi er

The noninverting feedback amplifi er shown here has an idealized ×(−1) buffer, 
similar to the one analyzed previously. Assuming the static analysis from the 
simulation data is available, re = 32.73 Ω. Then the three quantities of interest 
are

rout = 0Ω

r r R R GHin e i f= +( )⋅ +( )⋅ +( ) =β 1 1 314 25. kΩ

v
v

G
GH

o

i

=
+

=
+ ( )( ) ×

=−1
3 2106

1 3 2106 7 5630 10
2 5833

2

.
. .

.
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The SPICE data are

v
v

r ro

i
in out= = =2 583 314 2 0. ; . ;kΩ Ω

Also, from bias point calculation,

I V VE BE O= = − =0 7907 0 7679 0 4192. ; . ; .mA V V

Example: Noninverting BJT Feedback Amplifi er

In this example, a two-port circuit for H is constructed, to simplify deter mination 
of the transmittances. The 2-BJT feedback amplifi er is shown below. This 
amplifi er is analyzed by fi rst choosing the error E. Let E = vbe1. The choice of a 
Thevenin equivalent output port for H results in a single summing loop. The 
port current is ie1. When the emitter is opened, ie1 = 0, and the H output voltage 
is

v
R

R R
v vfb o o=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ = ⋅2

1 2

0 167.

vc

vi

+

–

8.2 kΩ

2.7 kΩ

33 kΩ

–3 V

+12 V

vc

–

+

6 V

+

–

vo
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From the emitter of Q1, R1 and R2 are in parallel. The Thevenin resistance of 
the H output port is 2 kΩ||10 kΩ = 1667 Ω.

The H input port samples the output voltage vo. The reverse path through 
H is represented by a Thevenin equivalent circuit at the H input. The contribu-
tion to vo through H is the voltage at vo due to the path through the feedback 
network and is dependent on the H output port current ie1. It is ie1 · R2. The 
resistance of the port is found by nulling ie1. This is accomplished by opening 
the Q1 emitter. The resistance is R1 + R2.

Next, reanalyze the circuit for a different choice of E:

E v v v

v
R

R R
r

r R R
v

R R
r

i e be

i
e

e
o

e

= − =

= −
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

⋅ +

1 1

2

1 2

1

1 1 2

1 2

11 1 2+
⎛
⎝⎜

⎞
⎠⎟

⋅⎡
⎣
⎢

⎤
⎦
⎥R R

vi

10 μA

R1

vo

vi

+

–
Q2

Q1

–5 V

10

90

30

20

+12 V

1 mA

40

R2
2 kΩ

10 kΩ

80

vi

+

–

vo

ib2

re2

rm1

vbe1

re1

ve1

||

ie1

+

–

+

E

–

+

–
R2 vo

b2ib2

R1 + R2

R1    R2 R1 + R2

R2ie1
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and vo = G · E. When E is simplifi ed, Ti and H are the coeffi cients of vi and vo, 
respectively. They are

T
r

r R R
i

e

e

=
+

⎛
⎝⎜

⎞
⎠⎟

1

1 1 2

H
v
v

R
R R

r
r R R

be

o G

e

eoff

= − =
+

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

1 2

1 2

1

1 1 2

G has two paths: the active path G1 through the transistors, and the passive path 
G2 through H. G is

G G G
v
v

v
v

R R
r

R
r

o

be H G

o

be H G m eoff off

= + = + = ⋅ + +1 2
1 1

2
1 2

1

2

12 1, ,

β

Finally, this is combined in

A T
G
GH

v i= ⋅
+1

for the closed-loop gain.
A numerical solution begins with a static solution, in which

I IE E1 26 87 680= =. ,μ μA A

r r re m e1 1 23 763 3 803 38 04= = =. , . , .k kΩ Ω Ω

Substituting these and the circuit element values into the previous equations,

G G G1 2312 4 0 5312 312 9= = =. , . , .

Also,

H Ti= ( )⋅( ) = =0 1667 0 6932 0 1155 0 6932. . . , .
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Putting it all together, the closed-loop gain is

Av = 5 838.

The circuit is solved more easily by choosing

E v vi fb= −

as shown below. This E is also a voltage, leaving the loading of G the same as we 
found before. But now

E v
R

R R
vi o= ⋅ −

+
⎛
⎝⎜

⎞
⎠⎟

⋅1 2

1 2

and Ti = 1 whereas

H
R

R R
=

+
⎛
⎝⎜

⎞
⎠⎟

=2

1 2

0 1667.

G has two paths, as before:

G
v
E

R R
r R R

o

H G e
1 1

1 2

1 1 2
2

2

216 5= = ⋅ +
+

⋅ =
,

.
off

α β

vo

vi

+

–

R2 vo

–

+

R2ie1

–

+

R1 + R2
R1    R2

R1 + R2

ie1

E

+

–
⏐⏐
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G
v
E

R i
i r R R

R
r R R

o

H G

e

e e e
2

2 1

1 1 1 2

2

1 1 21

0 368= = ⋅
+( )

=
+

=
,

.
off

Then G = G1 + G2 = 216.9. The closed-loop gain is 5.838, the same as before. 
SPICE simulation confi rms the result.

A NONINVERTING FEEDBACK AMPLIFIER WITH OUTPUT BLOCK

In previous examples, feedback was sampled directly at the output. This is not 
always the case, however. Another block between the sampling circuit and 
output must then be introduced, just as Ti was required for similar situations 
at the input. This block is To. Both Ti and To can be included in an expression 
for E:

E T x
H x

T
i i

o

o

= ⋅ − ⋅

The amplifi er, shown below, is a modifi ed version of a previous noninverting 
feedback amplifi er, with a PNP BJT, Q2, added.

+VCC

RL

vi

+

–

Q1

Ri

I0

Rf

–VEE

v1

vo

Q2

Ro

–VEE

–1
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Its block diagram is shown below.

Σ
+

–

G To

H

v1Evi vo

Here, vo/To, the feedback voltage, vf is labeled v1. Choosing feedback quantities 
is like choosing error quantities; within the loop, the choice is somewhat arbi-
trary. The sampled feedback quantity is preferably chosen as far forward in the 
signal fl ow-path as possible to minimize common expressions in To and H.

Choose the error quantity to be

E v vi fb= −

where vfb is given in the complete error expression:

E v
R

R R r
vi

i

i f e

= −
+ +

⎛
⎝⎜

⎞
⎠⎟

⋅
2

1

Again, a choice of summing is accomplished using superposition. Then for 
re2 << Rf + Ri, the two resistors dominate the denominator of the coeffi cient 
of v1, which is −H, and variations in re2 are negligible. G is the same as in the 
previous non-Q2 amplifi er except that now RE = Ri||(Rf + re2) and

G
R

r R r R
L

e i e f

= ⋅
+ +( )α1

1 2

The fi nal block to be determined is To:

T
v
v

R
r R R

o
o

E

o

e f i

= = − ⋅
+ +=1 0

2
2

α

This is the gain of Q2 from v1 to vo, with the loading of H included. (E is a voltage, 
so the summing loop is opened.)
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+VCC

R1

R3

vi

+

–

R2

v2
2Q

Q1

v1

+VEE

vo

vi

+

–

+

–

re1 R3v1

R3ic2 = vfb

(a)

(b)

ic2

The closed-loop gain can then be constructed by substituting the expressions 
for the blocks into

A
G
GH

Tv o=
+

⋅
1

The resulting expression is unwieldy and not intuitively benefi cial. For compli-
cated feedback amplifi ers, more insight is gained into amplifi er behavior from 
the expressions for the blocks themselves.

An inverting voltage amplifi er with the same block diagram is shown below 
(a), with equivalent input voltage error loop (b).
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The error voltage is chosen to be

E v v v R ii fb i c= − = − ⋅3 2

The collector current source of Q2 is shunted by R3. This Norton source can be 
transformed into a Thevenin source with a voltage of R3 · ic2. The feedback quan-
tity is ic2. G is consequently a transconductance amplifi er with a gain of

G
i
E

R
r R R r R

R
r

c

v

e e

M

f b

=

= − ⋅
+

⋅ −
+ + +( )

= ⋅ ⋅ ⋅

=

2

0

1
1

1 3
2

2 2 1 2

1
1

1
2

1
1

1

α α
β

α α
rrM 2

H must be a transresistance and is

H
E
i

R R
c vi

= − = − −( ) =
=2 0

3 3

Finally, To is

T
v
i

v
i

i
i

Ro
o

c

o

e

e

c

= = ⋅ = − ⋅
2 2

2

2
2

2

1
α

These blocks are combined for the closed-loop voltage gain:

A
R r R r
R r R r

v
M M

M M

= − ⋅( )⋅( )
+ ⋅( )⋅ ⋅( )

α
α α

1 1 1 2 2

1 1 1 2 3 21

To demonstrate an alternative derivation, To can be eliminated from the feed-
back topology by choosing the feedback node to be vo instead. For this choice, 
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the blocks are composed somewhat differently. With the same E, G and H 
become voltage amplifi ers:

G
R
r

R
r

H
R
RM M

= − ⋅ ⋅ = − ⋅α α1
1

1

2

2

3

2
2,

These expressions when substituted into the feedback formula yields Av as given 
already. For this circuit, this latter choice of feedback quantity is better since it 
eliminates the redundant path of ic2 to vo in H and To.

This two-transistor amplifi er not only provides a gain determined by R2 and 
R3 but also has a low-resistance source at the output with voltage translation 
from the input. Unless R3 is very small, the input resistance is large, approach-
ing the ideal input-output requirements for a voltage amplifi er. A limitation is 
that all of the voltage gain must be realized in the fi rst stage (Q1). Thus, R1 
must be large relative to R3. R1 is loaded by rin(CC), which is large, so that a 
large gain can be realized from Q1. This amplifi er achieves much functional 
capability from its fi ve components. Because VEE constrains the value of R3 for 
biasing, an additional resistor from the emitter of Q1 to ground could be 
required.

FET BUFFER AMPLIFIER

Another amplifi er similar to that above is a common buffer amplifi er that uses 
feedback to reduce gain error. The goal is to achieve an accurate ×1 gain from 
an ideal voltage amplifi er so that a high-resistance voltage source can be trans-
formed into a low-resistance source capable of supplying varying amounts of 
load current at the input voltage. The circuit, shown below, provides this capa-
bility with few components.

The input transistor is chosen to be a junction fi eld-effect transistor (JFET) 
for high resistance. A BJT could be used instead if the base current causes 
negligible static offset across RG. The current source at the drain simplifi es 
the analysis and can be implemented as a large resistor or a PNP collector 
current supply. Being constant, it enters into the dynamic analysis as an open 
circuit.
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Choose the error voltage to be

E v vi o= −

Then E = vgs. In the FET T model, vgs develops id across rm; then

G
v
E

v
v

R
r

o

B

o

gs

o

m

= = = ⋅
=0

β

Both input and output directly contribute to E, and H = 1. To fi nd G, set 
B = 0 as usual. This means that the feedback contribution to E must be eliminated 
to calculate forward path gain. In this case, set vo to zero. But since vo is the 
numerator of G, it must remain free to vary. Therefore, to conceptually satisfy 
the nulling requirement, another vo source is separately connected to provide 
feedback, and it is set to zero. Think of it this way. If the loop is broken at the 
output and the feedback vo is vo′, then vo′ is set to zero while calculating G.

For calculating H, vo′ = vo. The closed-loop gain of this buffer is

A
R

r R
v

o

m o

= ( ) +β

For a typical JFET, rm = 100 Ω. If Ro = 1 kΩ and b = 100, then Av is 0.9990 for 
approximately 10 bits of accuracy.

Ro

RG

vi

+

–

–VSS

vo

Q2

Q1

+VDD

FAC4.indd   139FAC4.indd   139 7/29/2009   10:00:40 AM7/29/2009   10:00:40 AM



140  Chapter 4

The previous examples illustrate the notion that feedback analysis is a very 
fl uid activity in that a given circuit can be analyzed several ways, all consistent 
with the basic concept. Whenever a circuit can be cast in the feedback form, it 
can be viewed as having feedback. Even the common-drain (CD) (or CC) con-
fi guration can be analyzed from a feedback perspective. The FET buffer ampli-
fi er is a CD stage with an additional transistor that increases loop gain. But even 
without Q2, feedback analysis can be applied. Let E = vi − vo as before. Then 
G = vo/E = Ro/rm and H = 1. The closed-loop gain is

A
v
v

G
GH

R r
R r

R
r R

v
o

i

o m

o m

o

m o

= =
+

=
+ ( )⋅( )

=
+1 1 1

This result is what the transresistance method yields for the CC gain, with 
RB = 0, Ro = RE, and re = rm.

FEEDBACK EFFECTS ON INPUT AND OUTPUT RESISTANCE

The input resistance of a voltage-summing amplifi er is increased and of a 
current-summing amplifi er is decreased due to negative feedback. In the 
feedback-amplifi er block diagram below, let xi and E be voltages.

Σxi

xi

xo

xo

G

H

B

–

(a)

1 G

–H

E

(b)

+ E
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Let the circuit represented by this block diagram have an open-loop input 
resistance Ri, the input resistance of G shunting the output resistance of H, as 
shown below.

Without feedback in (a) above, E = xi = vi, and the input voltage is applied to 
Ri directly. The same input voltage is largely canceled by feedback, resulting in 
a much smaller error voltage applied to Ri. In effect, the input resistance is 
increased because the same input voltage, vi produces a current in Ri that is E/Ri. 
The ratio of open-loop to closed-loop input resistance is the ratio E/xi. This ratio 
can be derived from the basic feedback equations as follows:

E
x

H
x
x

GH
GH GHi

o

i

= − ⋅ = −
+

=
+

1 1
1

1
1

The closed-loop voltage reduction across Ri makes the input resistance effec-
tively larger by (1 + GH) for voltage input:

r cl
v
i

E B
i

E GH
i

R GHin
i

i i i
i( ) = = + = ⋅ +( ) = ⋅ +( )1

1

vi

+

–

rin

E

(a)

Ri
–

+

B
–

+

ii

ii rin Ri

(b)

vi

+

–

B

E
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For the noninverting op-amp circuit, the effective op-amp differential input 
resistance is made larger by feedback. The feedback voltage, v− tracks v+, and 
the differential voltage across the input terminals is the error voltage. This small 
voltage produces a much smaller current in the op-amp input resistance than 
vi alone would produce (with v− grounded). The op-amp input resistance is 
bootstrapped by the feedback voltage. Thus, the resistance across which the 
error voltage is developed is effectively larger with feedback.

A dual argument applies to an amplifi er with an error current, from (b) 
above. In this case, input resistance is reduced by (1 + GH). The input current 
(rather than voltage) is increased by feedback current. The same input current 
results in a reduced voltage across the input resistance due to feedback 
current cancellation. The resulting voltage across Ri produced by the error 
current is 1/(1 + GH) times smaller than the voltage that the input current 
alone would produce. A smaller voltage resulting from the same input current 
means that the effective resistance is smaller:

r cl
v
i

v
E B

v
E GH

R
GH

in
i

i

i i i( ) = =
+

=
⋅ +( )

=
+1 1

The inverting feedback amplifi er on page 113 has an open-loop input resistance 
of Ri||Rf. With negative feedback, the resulting error current produces an error 
voltage of v− that is much reduced from the voltage ii alone would produce across 
rin of the op-amp input. The closed-loop input resistance is effectively reduced 
to (Ri||Rf)/(1 + GH). 

The effect of negative feedback on output resistance can be analyzed by rep-
resenting the output as a Thevenin equivalent voltage source with internal 
voltage of v and open-loop output resistance of Ro.

An output voltage of vo is produced by a current io through Ro toward the 
output node. With feedback, output voltage error due to the drop across Ro is 
corrected. The output voltage (with no input applied) is

v v i R

G H v i R

i R
GH

o o o

o o o

o o

= + ⋅
= − ⋅ ⋅ + ⋅

= ⋅
+1
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The effective closed-loop output resistance for voltage output, vo/io, is

r cl
R
GH

out
o( ) =

+1

Similarly, for current output amplifi ers, rout is increased by feedback. If the 
output is represented by a Norton equivalent circuit with current source i, then 
internal shunt resistance Ro reduces output current. The output resistance can be 
found by applying a voltage vo to the output. The resulting output current is

i i
v
R

GH i
v
R

v
R GH

o
o

o
o

o

o

o

o

= + = −( )⋅ + =
⋅ +( )1

The effective closed-loop output resistance is

r cl R GHout o( ) = ⋅ +( )1

Feedback has advantages for both input and output resistance. For the four 
cases considered, the effect of feedback is toward the ideal. We have considered 
the effect of input resistance at the error node or loop and output resistance at 
the feedback node or loop. For voltage summing, the resistance across the error 
voltage is increased; for current summing, the resistance through which the 
error current fl ows in decreased. If other gain blocks separate these nodes 
or loops from input or output, their effect on resistance must also be 
considered.

MILLER’S THEOREM

The inverting op-amp confi guration has a resistor connected from output 
to inverting input. This is not uncommon for feedback amplifi ers and can be 
generalized as shown below.

The inverting voltage amplifi er has a gain of −K with input quantities of vi 
and ii. The output voltage is vo. The equivalent input resistance can be found 
as follows. First,

v K vo i= − ⋅
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For the input node, applying KCL,

v v
R

ii o

f
i

− − = 0

Substituting for vo gives

v K v
R

K v
R

ii i

f

i

f
i

− − ⋅( ) = +( )⋅ =1

–K

Rf

vi vo

ii

(a)

–K

–K =

vi vo

vo
vi

Rf––––––
K + 1

Rf
––––––
K + 1

K

(b)

Rearranging the previous equation for input resistance, we have

Miller’s theorem r
R

K
in

f=
+1

This result is in conformance with the current-input equation for closed-loop 
input resistance,

r cl
v
i

v
E B

v
E GH

R
GH

in
i

i

i i i( ) = =
+

=
⋅ +( )

=
+1 1
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and also follows from it as a special case. It is given separately here because it 
appears repeatedly when working with CE amplifi er stages with collector-to-base 
feedback.

For an amplifi er with output resistance, the equivalent shunt contribution 
due to Rf can be found similarly, or from the closed-loop output resistance equa-
tion for current output,

r cl R GHout o( ) = ⋅ +( )1

It is

r
v
i

K v
v K R

K
K

Rout
o

i

i

i f
f=

−
= −( )⋅

− ⋅ +( )
=

+
⎛
⎝

⎞
⎠ ⋅

1 1

From the output, Rf appears to be slightly less than its actual value for large K. 
From the input, Rf appears to be 1/(1 + K) times its actual value, causing input 
resistance to be much reduced and providing a low-resistance path for ii. For 
infi nite K, the input node is a virtual ground, as is v− for the inverting 
op-amp.

The equivalent circuit resulting from Miller’s theorem is shown in fi g. (b).

NOISE REJECTION BY FEEDBACK

Feedback increases the immunity of a circuit to noise, which is any undesirable 
electrical disturbance to the circuit. The fi gure below shows the classical feed-
back topology with the addition of noise N injected into the forward path.

Σ G1
–

+
Xi XoΣ G2

H

+
+

N
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Noise rejection ability will be defi ned as the signal-to-noise ratio (SNR), the ratio 
of signal to noise at the output, or

SNR = X X
X N

o i

o

For the open-loop case,

X
X

G G G
X
N

Go

i

o= ⋅ = =1 2 2,

Then open-loop SNR is

SNRol
G G

G
G= ⋅ =1 2

2
1

With feedback, the ratios are

X
X

G
GH

X
N

G
GH

o

i

o=
+

=
+1 1

2,

The closed-loop SNR is

SNRcl G= 1

The open- and closed-loop SNRs are the same, suggesting no advantage to 
feedback. However, for the same input, the open-loop output is much larger 
than the closed-loop output for G >> 1. Comparing Xo/Xi for open and closed 
loop, the open-loop gain is (1 + GH) times larger. For the same Xo/Xi, the open-
loop G must be 1/(1 + GH) that of the closed-loop amplifi er, or

G
G
G H

ol
cl

cl

=
+1

Normalizing open- and closed-loop gains, the ratio of open- to closed-loop SNRs 
shows the advantage of feedback:
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SNR
SNR

cl

ol

cl

ol

cl cl

ol ol

ol

cl
cl

G
G

G G
G G

G
G

G H= = = ⎛
⎝⎜

⎞
⎠⎟

⋅ +( )1

1

2

2

2

2

1

When G2cl = G2ol, the familiar (1 + GH) factor reappears as the advantage of 
feedback on SNR. This feature of op-amp circuits leads to better rejection of 
noise from the power supply by stages following a suffi ciently large G1. The 
closer to the input that N is injected (that is, the smaller fraction of G that G1 
is), the less advantage feedback has. In the extreme, noise injected at the input 
summer is indistinguishable from signal. Noise at the output is rejected by a 
factor of (1 + GH).

REDUCTION OF NONLINEARITY WITH FEEDBACK

A further benefi t of feedback is the linearization of nonlinear forward-path gain 
blocks. Assuming the classical feedback topology, let G = K + e, where K is a 
fi xed gain and e represents the nonlinear terms of G; e varies with E or xo. The 
closed-loop gain T is then

T
K
K H

= +( )
+ +( )⋅

ε
ε1

For K >> e, 1 + (K + e) · H ≅ 1 + K · H, and T can be separated into linear and 
nonlinear terms:

T
K
KH KH

K≅
+

+
+

>>
1 1

ε ε,

The second term is the nonlinear closed-loop gain. The open-loop nonlinearity 
has been reduced by (1 + KH).

In all of the improvements brought about by feedback, the improvement 
factor has been (1 + GH). The improvements investigated in this and the previ-
ous sections were the sensitivity of the closed-loop gain to the open-loop gain, 
input and output resistances, noise rejection, and linearization of nonlinear 
open-loop forward-path gain.
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CLOSURE

A major diffi culty in analyzing feedback circuits is in relating fl ow-graph repre-
sentation to their circuit diagrams. The major diffi culty is in identifying error 
summing and feedback sampling. Furthermore, the G and H blocks load each 
other so that loading interactions must be accounted for. We approached 
loading by using two-port models of G and H to derive some general rules that 
are simple and intuitive. (No memorization of various kinds of two-port param-
eters was required.) Happily, as long as the summing and sampling quantities 
are chosen within the feedback loop, closed-loop analysis can be performed. 
This allows various choices for E and xf. Various feedback amplifi er examples 
were investigated with multiple derivations to cultivate the art of choosing them 
well.
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5
Multiple-Path Feedback Amplifi ers

MULTIPATH FEEDBACK CIRCUITS

Feedback analysis can be extended to multipath topologies involving a feedback 
loop – in particular, topologies with a single feedforward path, F.

vovi 
E GTi

–H

F

In this topology, the feedforward path injects its signal into the feedback loop 
at the output. When the fl ow graph is reduced, voltage gain and error are

v
v

T G F
G H

o

i

i= ⋅ +
+ ⋅1

E
T F H

G H
vi

i= − ⋅
+ ⋅

⋅
1

The next topology differs from the fi rst in that it isolates the feedforward path 
from the feedback loop with a ×1 transmittance from C to vo, functionally a ×1 
buffer amplifi er.

vovi 
E CGTi 1

–H

F
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For this topology with an isolated feedforward path:

v
v

T
G
G H

Fo

i
i= ⋅

+ ⋅
+

1

E
T
G H

vi
i=

+ ⋅
⋅

1

F adds to the output without involving the loop, whereas in the nonisolated case, 
its output contributes to E via H, and the F · H term is also divided by 1 + G · H 
of the loop.

The relationship between the two topologies can be made explicit by writing 
the isolated feedforward gain as

v
v

T G F
G H

F H G
G H

o

i

i= ⋅ +
+ ⋅

+ ⋅( )⋅
+ ⋅1 1

where the fi rst term is the nonisolated gain and the second adds transmittance 
F  · H from vi to E. This gives the equivalent topology of the fl ow graph shown 
below. Isolating F from C at vo is equivalent to adding the F  · H branch parallel 
to Ti. What this branch adds to E exactly cancels the contribution to E from the 
path from vi through F and −H.

vovi

E GTi

–H

F

FH

To fi nd F from circuit topology, the G path must be nulled. Then F can be found 
from

F
v
v

o

i G E

=
⋅ =0

If we set G  ·  E to zero, then vo is contributed by F alone. In the isolated-
feedforward topology, C can be set to zero as an alternative to E, if the circuit 
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allows. Similarly, because the F branch contributes to vo, fi nding G must have 
the additional condition (besides B = 0) that F  ·vi = 0. These conditions are 
necessary in envisioning the transmittances from the topology.

The general feedback analysis procedure can be applied only if forward 
and feedback paths are separately identifi able. Then their interactions can be 
reduced to loading and two-port source transmittances. If path interactions are 
not apparent, it is always possible to fall back on basic circuit laws: Kirchhoff’s 
current law (KCL), Kirchhoff’s voltage law (KVL), and Ohm’s law (ΩL). The 
disadvantage to this is the diffi culty of expressing equations so that the path 
transmittances are explicit.

Falling back to the basic laws is not always the end of intuitive elegance. More 
algebraic calculation is involved, but this too can be neatly minimized by an 
orderly procedure that builds fl ow graphs from circuit equations and then 
reduces the graphs:

1. Apply KVL, KCL, and ΩL to produce circuit equations.

2. Construct a fl ow graph from these equations.

3. Reduce the fl ow graph.

More generally, an approach to solving extremely diffi cult circuits is as 
follows:

1. Make simplifying assumptions and apply feedback analysis.

2. Apply fl ow-graph circuit analysis.

3. Use the results of step 1 to guide the formulation of equations from step 2 
so that the fl ow paths become obvious.

An example of this approach is to solve a fi eld-effect transistor (FET) equivalent 
of a given bipolar junction transistor (BJT) circuit and then attempt to construct 
the more complicated BJT expressions, guided by the FET results.

COMMON-BASE AMPLIFIER FEEDBACK ANALYSIS

We now apply both fl ow-graph and two-port feedback analysis to the BJT con-
fi gurations with ro since (as we shall see) the signal paths are not obvious. The 
corresponding FET circuits follow from the BJT-to-FET transformation. We 
begin with the simplest confi guration, the CB amplifi er, shown below.
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Applying KCL to the emitter node e, we obtain

at e
v v

R
v
r

v v
r

e i

E

e

e

e c

o

,
− + + − = 0

This can be rewritten as

v
r r

r r R
v

R r
R r r

ve
e o

e o E
i

E e

E e o
c=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ +
+

⎛
⎝⎜

⎞
⎠⎟

⋅

Similarly, for the collector node c, we obtain

at c
v
R

v v
r

v
r

c

C

c e

o

be

m

, + − + = 0

vc 

(b)

vi 
a E

b

1
d

RC

vc

vi

+

–

re

RE

ro

vbe
rm

(a)

RC

vi

+

–

re

RE

Ti

vc

ro

vbe
rm

vbe 
+

–

H

G2

(c)

G1
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which reduces to

v
r r
R r

ve
m o

C o
c=

⎛
⎝⎜

⎞
⎠⎟

⋅

The equations for ve have the general form

at e E a v b vi c, = ⋅ + ⋅

at c E d v v
d

Ec c, = ⋅ ⇒ = ⎛
⎝

⎞
⎠ ⋅1

where

E v ve be= = −

The form of these equations is similar to the basic feedback equations. These 
equations are represented as a fl ow graph in fi g. (b).

From the fl ow graph, Ti, G, and H can be identifi ed as

T a G
d

H bi = = ⎛
⎝

⎞
⎠ = −1
,

When two-port loading rules from feedback analysis are applied, Ti is the voltage 
divider attenuation from vi to ve. RE forms a divider with re||ro. From the expres-
sion for ve, H is

−
+

⎛
⎝⎜

⎞
⎠⎟

R r
R r r

E e

E e o

Finally, G requires further decomposition:

G
d

R r
r r

R r
r

R
R r

G GC o

m o

C o

m

C

C o

= = = +
+

= +1
1 2

G can be interpreted as having two signal paths, G1 and G2. G1 has a trans-
resistance interpretation and is the gain from vbe to vc. This is the active path. 
G2 is a passive path attenuation from ve to vc, formed by divider resistances ro 
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and RC. Both paths are from E to vc; therefore, these parallel paths both 
contribute to G.

In this analysis, the circuit equations led to the identifi cation of four signal 
paths, shown in (c). From fi gure (b), these paths interact to form a familiar 
feedback topology. Combining Ti, G, and H into the feedback formula, the 
common-base (CB) closed-loop gain is

CB A T
G
GH

a d
b d

v i= ⋅
+

=
− ( )1 1

The input and output resistances can be derived by making use of the gain 
calculations. The input resistance can be found by Nortonizing vi and RE. Then 
the closed-loop emitter resistance is

r
v
i

E
i

R i GH
i

R
GH

r r R
GH

E
e

i i

i i

i

i e o E= = = ⋅ +( )[ ] =
+

=
+

1
1 1

where

R
v
i

r r Ri
e

i B
e o E= =

=0

and ii = vi/RE. Then rin can be put in the following form:

CB r R
r r

GH
R
GH

R r r

R
r r

GH

in E
e o E

E e o

E
e o

= +
+

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ >>

≅ +
+

⎛
⎝

⎞
⎠

1

1

,

Feedback is ordinarily negative and 1 + GH > 1. Here, 0 < 1 + GH < 1; the feed-
back is positive but less than 1. This causes some reversals of effect. For rin, RE 
is in series with the closed-loop resistance of the emitter node. By inspection, 
the resistance there is due to re (grounded at the base) in parallel with the 
resistance to the output, ro. The closed-loop resistance is re||ro, divided by 1 + GH, 
or CB rin. The exact expression includes RE/GH in parallel with this resistance 
and is due to interaction of the feedback loop with RE.

Easier to derive is rout:
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CB r
R r

GH
R r

b d
out

C o C o=
+

=
−1 1

The loop gain for this amplifi er is less that one because the feedback due to ro 
is positive. Although typically G > 1, −H << 1 so that |GH| < 1, and the circuit 
does not oscillate. But the effect of positive feedback is to work against the 
benefi ts of negative feedback. In most circuits of this kind, where ro is due to 
transistor base width or channel length modulation, ro is much larger than 
external circuit resistances and has little effect on circuit performance. For 
accurate calculations, however, it is among the dominant second-order effects 
to be accounted for.

Example: Inverting CB Feedback Amplifi er

The amplifi er shown below is a CB stage with a ×(−1)-buffered output and with 
feedback through Rf.

RL

 +12 V 

RE

Rf

vc

2.7 kΩ 

40 kΩ 

8.2 kΩ  

4.8716 V 

vi

–

+

+3 V 

vc

–

+

–

vo 5 V 

100 Ω

RO
vo

0.1337 V 

2.2294 V 

–

+
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(The default BJT model is being used here: b = 99, IS = 10−16 A.) From SPICE, 
we have the following data:

I V V VE E C O= = = =0 8781 2 2294 4 8716 0 1337. , . , . , .mA V V V

and

v
v

r ro

i
in out= − = =2 470 2 724 83 12. , . , .kΩ Ω

From these data, re = 29.46 Ω and re ||Rf = 29.44 Ω. Then, applying feedback 
analysis with E = ve, we have

G
R
r

R
R R

L

e

f

O f
1 274 78= − ⋅ ⋅

+
⎛
⎝⎜

⎞
⎠⎟

= −α .

G
R

R R
O

O f
2

32 4938 10 0=
+

= × ≅−.

Then G = G1 + G2 = −274.78. Furthermore,

H
R r

R R r
E e

f E e

= −
+

= − × −7 2826 10 4.

T
R r

R r R
i

f e

f e E

=
+

= × −1 0789 10 2.

Combining these transmittances yields

v
v

T
G
GH

o

i
i= ⋅

+
= −

1
2 4703.

r R r
R

G
in E e

f= +
+ −( )

=
1

2 7245. kΩ

r
R R

GH
out

O f=
+

=
1

83 118. Ω
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Example: CB BJT Amplifi er with RCE

The circuit shown below is a CB amplifi er with a fi xed external collector-emitter 
resistance RCE.

RL

+12 V

RE

RCE

cv

+3 V

vi

–

+

2.7 k  Ω

2.2355 V  

40 k  Ω

8.2 k Ω

5.2785 V

This resistor is a simplifi ed form of ro since it is independent of IE. To analyze 
this circuit, the approach given for diffi cult circuits will be taken. If we solve the 
same circuit without RCE, then if RCE has a minor effect on the circuit, the simpli-
fi ed analysis gives us an approximation by which to evaluate more complicated 
solutions. The static solution for the simplifi ed circuit is

I V VE E C= = =0 826 2 231 5 292. , . , .mA V V
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(The default BJT model is being used here: b = 99, IS = 10−16 A.) Then the qua-
sistatic solution follows:

r v v r re c i in out= = = =31 3 2 97 2 73 8 2. , . , . , .Ω Ω Ωk k

SPICE simulation results for the operating point are

I I V VE RCE E C= = = =0 7511 76 075 2 2355 5 2785. , . , . , .mA A V Vμ

The dynamic parameters are

r r re m= = = =34 456 34 804 3 4456 1149 3. , . , . , .Ω Ω Ωπ μk

The simulation results are

v
v

r rc

i
in out= = =2 955 2 741 8 162. , . , .k kΩ Ω

With these data, we can now apply various methods to fi nd the three parameters 
of interest and to verify the results. The fi rst solution is based on the CB Av 
equation, derived from KCL, and involves simple substitution:

v
v

a
d b

o

i

=
−

= ×
− × + ×

=
−

− −

1 2591 10
8 4982 10 5 1100 10

2 9556
2

4 3

.
. .

.

From this calculation, 1 + GH = 1 − b/d = 0.83370. The resistances are

r
r r

GH
Rin

e o
E≅

+
+ =

1
2 7413. kΩ

r
R r

GH
out

C o=
+

= =
1

6 8050
0 83370

8 1624
.
.

.
k

k
Ω Ω

Next, solve the circuit using the m transform and equations from CB with ro:

v
v

c

i

= ( )⋅( ) =0 56066 5 2710 2 9552. . .
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rin = + =2 7 41 399 2 7414. . .k kΩ Ω Ω

rout = +( ) =8 2 40 1 7413 8 1624. . .k k M kΩ Ω Ω Ω

For a third and fi nal approach, use Miller’s theorem to fi nd rin. First,

K
v
E d

c= − = − = −1
195 69.

then,

r R r
R

K
in E e

CE= +
+

⎛
⎝

⎞
⎠

= + ( ) −( )( =
1

2 7 34 46 40 194 7 2 7414. . . .k k kΩ Ω Ω Ω

COMMON-EMITTER AMPLIFIER FEEDBACK ANALYSIS

The common-emitter (CE) with ro is shown in (a) below, with fl ow graph (b) 
and quasistatic circuit model (c).

KCL is applied at emitter and collector:

at e v
R r

R r r
v

R r
R r r

ve
E o

e o e
i

E e

E e o
c, =

+
⎛
⎝⎜

⎞
⎠⎟

⋅ +
+

⎛
⎝⎜

⎞
⎠⎟

⋅

at c v
r

r r
v

r r
R r

ve
o

o m
b

m o

C o
c, =

+
⎛
⎝
⎜

⎞
⎠
⎟⋅ + ⎛

⎝⎜
⎞
⎠⎟
⋅

Let E = vbe. These equations can be made explicit in E by negating them and 
adding vb. The result is

v
r

R r r
v

R r
R r r

vbe
e

E o e
i

E e

E e o
c=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ −
+

⎛
⎝⎜

⎞
⎠⎟

⋅

v
r

r r
v

r r
R r

vbe
m

o m
i

m o

C o
c=

+
⎛
⎝⎜

⎞
⎠⎟

⋅ −
⎛
⎝⎜

⎞
⎠⎟

⋅
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The more general forms of these equations are, respectively,

E a v b vi c= ⋅ + ⋅

E c v d v v
d

E
c
d

vi c c i= ⋅ + ⋅ ⇒ = ⎛
⎝

⎞
⎠ ⋅ − ⎛

⎝
⎞
⎠ ⋅1

Compared with the CB amplifi er, the CE has the additional term with coeffi cient 
c. These equations are represented by the fl ow graph (b). The identifi able paths 
are

CR

er

ER

or

v be
r m

(c)

CR

er

ER

cv

or

v be
r m

v 
T

be

+

–

H2G

(a)

iv

F1G

 i

c
d

v c

(b)

v i
a

b

–

d
      c1 –   v be

d
c

iv

+

–

v be

+

–

b

e
cv

+

–

or

cv

+

–

cv

c
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T a H b G
d

F
c
d

i = = − = ⎛
⎝

⎞
⎠ = − ⎛

⎝
⎞
⎠, , ,

1

G is the same as for the CB but is negative, as expected for a CE. (The CE E is 
also the negated CB E.) G represents the same two paths, G1 and G2, as for the 
CB. H is a voltage divider from vc to ve = −E (and is the negated CB H). Ti is the 
voltage divider attenuation from vi to vbe. Because of the additional term in vc, 
there is a feedforward path F from vi to vc in the CE that is absent in the CB. F 
can be expressed as

F
c
d

R r
r r

r
r r

R
R r

C o

m o

m

o m

C

C o

= − = ⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

The path of F can be traced from this expression. It is the attenuation of 
the passive divider from emitter to collector through ro. F is vc/vi, where vi is 
at the base (not the emitter). To fi nd F, as we did with G and H in multipath 
feedback analysis, the path through G must be nulled to allow only the 
signal through F to effect vc. This can be accomplished in this case by setting E 
to zero, or

F
v
v

c

i E

=
=0

For E = vbe = 0, then vb = ve and F = vc/ve, as in the previous expression for F 
above. Fig. (a) shows the fi ve signal paths. The two additional paths, G2 and F, 
are a result of the ro branch to the collector. They differ in that G2 is the path 
from vbe whereas F is from the input vi. For F, an increase in base voltage causes 
an increase in emitter voltage. This increase is transmitted through the divider 
to the collector uninverted.

For E = vbe, an increasing E causes a decreasing ve. Consequently, G2 is inverted. 
E and vi do not follow identical paths to the output since vi (through F ) can 
affect vc even though the effect of G2 on vc is due to E.

A two-port equivalent of H is shown in (c). To meet the constraints on H 
(from two-port analysis), the H input source ve must be expressed in terms of 
vbe (using a divider formula). Since this is possible, this approach also leads to 
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The choice of E is

E v
R

R r
vi

E

E o
c= −

+
⎛
⎝⎜

⎞
⎠⎟

⋅

The two-port equivalent CE circuit is shown in (a). The fl ow graph (b) can be 
derived from the previous fl ow graph by moving a forward through the E node. 

c
d

vc

(b)

vi

–

E1
a
d
b
a

RC

er

ER or

vbe
rm

(a)

iv

+

–

vbe

+

–

b

e

+

–

or

ve

+

–

cv

c

||

ev

RE

RE ro+ cv

re

r
e

+
ER or||

E=

–

+

E

–

a solution. We now examine this aspect further. The choice of E is arbitrary 
within the feedback loop; an equivalent two-port circuit is shown below.
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Paths out of E become multiplied by a and paths into E divided by a, as shown. 
The paths are identifi ed as follows:

Ti = 1

G
a
d

c
d

a
c
d

a G G= = −( ) ⋅ + ⋅ = +1
1 2

where

G
R r

R r r
C o

E o e
1 = − ⋅

+
α ,

G
r

R r r
R

R r
e

E o e

C

C o
2 = −

+
⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

H
b
a

R
R r

E

E o

= − =
+

F
c
d

R r
r r

r
r r

R
R r

C o

m o

o

m o

C

C o

= − = ⎛
⎝⎜

⎞
⎠⎟

⋅ −
+

⎡
⎣
⎢

⎤
⎦
⎥ =

+
1

The choice of E places it across the transresistance rM of the transistor forward 
path gain G1. vi is directly in the loop containing E, so that Ti = 1. Similarly, the 
divider formula of the Thevenin feedback source is H.

G2 is the passive forward path through ro and consists of two voltage divider 
factors in the G2 expression. The fi rst is the divider from E to ve with output 
across vbe. The second is from ve to vc. To fi nd G2, then, G1E, B and F  ·vi must be 
nulled. The G1 path is nulled by disconnecting the BJT collector current source. 
B is set to zero when the H output source is set to zero. Nulling the signal 
through F is not easy because it shares essentially the same path as G2. In this 
case, instead of attempting to null Fvi, subtract it from the derived expression 
for G2. We must fi nd

v G E F v G T F v B Gc i B G i i= ⋅ + ⋅ = ⋅ +( )⋅ ==2 0 2 11
0, , ,
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Then,

G

v
v

F

T
v
v

v
v

F

R r
R r r

c

i

i

B G

e

i

c

e

E o

E o

2

01

=

⎛
⎝⎜

⎞
⎠⎟ −

= ⎛
⎝⎜

⎞
⎠⎟ ⋅⎛⎝⎜

⎞
⎠⎟ −

=
+

=,

ee

C

C o

C

C o

e

E o e

C

C o

R
R r

R
R r

r
R r r

R
R r

⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝⎜

⎞
⎠⎟

−
+

⎛
⎝⎜

⎞
⎠⎟

= −
+

⋅
+

This derivation of G2 shows that when paths overlap signifi cantly, isolating the 
path being found may require an approach other than nulling sources. Opening 
paths and subtracting the effects of intertwined paths are also options in meeting 
the transmittance constraints. Use of a different fl ow graph, such as the isolated 
feedforward topology instead of (a), can “untangle” paths. The basic idea when 
fi nding a path transmittance is to eliminate contributions from other paths to 
the output node of the path being found.

Example: CE Amplifi er with RCE

The fi gure shows a CE amplifi er with the default BJT model:

β = = −99 10 16, IS A

From SPICE, the static values are

I V VE E C= = − =0 6775 0 7639 5 2644. , . , .mA V V

The simulated quasistatic solution is

v
v

r rc

i
in out= − = =2 946 216 4 8 160. , . , .k kΩ Ω

From these data, we can calculate the following:

r r re m= = = + =38 2 38 585 3 82 1 1037 7. , . , . , .Ω Ω Ωπ μk
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With RCE → ∞, vc/vi ≅ −2.96. Applying Blackman’s formula for rin, we get rin = 
216.40 kΩ. Applying CE gain and resistance expressions gives:

v
v

c

i

= −( )⋅( ) = −0 58493 5 0358 2 9456. . .

rin = ( )⋅( ) + ( ) =3 82 55 992 2 5568 216 45. . . .k k kΩ Ω Ω

rout = ( )⋅ +( ) =8 2 1037 7 1 5819 40 8 1602. . . .k k k kΩ Ω Ω Ω

Next, use feedback analysis to fi nd a solution. Let E = vbe. Then the transmit-
tances are

T G H Fi = × = − = × =− −1 4878 10 176 53 9 4079 10 0 170122 4. , . , . , .

LR

 +12 V

fR

40 k  Ω

8.2 k Ω

5.2644 V

ER

2.7 k  Ω

iv

–

+

–3 V

0v

–0.7639 V
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Then 1 + GH = 0.83392 and

v
v

TG
GH

F
GH

c

i

i=
+

+
+

= − + = −
1 1

3 1496 0 20401 2 9456. . .

r
R R

GH
out

C CE=
+

=
1

8 1602. kΩ

Another feedback solution is based on a different choice of E,

E v
R

R R
vi

E

E CE
c= −

+
⎛
⎝⎜

⎞
⎠⎟

⋅

The transmittances are

T G G Gi = = + = − − ×
= −

−1 2 6240 2 5312 10

2 6265
1 2

3, . .

.

H F= − × =−6 3232 10 0 170122. , .

Then 1 + GH = 0.83392 and vc/vi = −2.9456. Furthermore,

r GH r R R Rin e E CE C= +( )⋅ +( )⋅ + +( )( ) =1 1 216 40β . kΩ

r
R R

GH
out

C CE=
+

=
1

8 1602. kΩ

These results are further confi rmed by the m transform:

v
v

c

i

= −2 9456. ,

rin = 216 45. kΩ

r R r R Rout C E CE= +( )⋅( ) +[ ] =μ π1 8 1602. kΩ

COMMON-COLLECTOR AMPLIFIER FEEDBACK ANALYSIS

The last BJT confi guration is the common collector (CC), shown below. If we 
base the CC analysis on the results of the CE analysis, then E is chosen to be vbe. 
Combining
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E a v b vi c= ⋅ + ⋅

E c v d v v
d

E
c
d

vi c c i= ⋅ + ⋅ ⇒ = ⎛
⎝

⎞
⎠ ⋅ − ⎛

⎝
⎞
⎠ ⋅1

results in

E v a v b
d

E
c
d

v
a b c d

b d
vbe i i i= = ⋅ + ⋅ ⎛

⎝
⎞
⎠ ⋅ − ⎛

⎝
⎞
⎠ ⋅⎡

⎣⎢
⎤
⎦⎥

= − ⋅( )
− ( ) ⋅1

1

c
d

RC

re

RE

ro

vbe
rm

vbe

+

–

HG2

(a)

vi

+

–

FG1

Ti

vo

(b)

vi

b

–ve

ve

d
1 – c

d
1 – c–

1–a
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The CC output, ve, is related to E by ve = vi − E. Dividing by vi and substituting

v
v

E
v

a b c d
b d

a b d c
b d

e

i i

= − = − − ⋅( )
− ( ) = −( ) − ( )⋅ −( )

− ( )1 1
1

1 1
1

The paths, identifi ed on the topological model above correspond to paths of 
the CE fl ow graph. In (b), the ve/vi equation is represented as a fl ow graph with 
ve made explicit. The paths are

1
1 1− =

+
− = − − −( ) = +

+

− =
+

a
R r

R r r d
c
d

c
d

R r
r

R
R r

b
R r

R r r

E o

E o e

C o

m

C

C o

E e

E e

;

oo

C o

m

c
d

R r
r

;
1− = −

INVERTING OP-AMP WITH OUTPUT RESISTANCE

A feedback approach is now taken to the inverting operational amplifi er (op-
amp) with op-amp output resistance of Ro, shown below.

A nonzero Ro results in another forward path to vo through Rf. Assume that 
the circuit can be represented by the fl ow graph in fi g. (b), or as an equivalent 
block diagram in (c). Applying feedback analysis, let E = v−. Then

v K v1 = − ⋅ −

E v T v H vi i o= = ⋅ − ⋅−

T
R R

R R R
i

f o

f i o

=
+

+ +

G K
R R

R R R
f i

f i o

= − ⋅
+

+ +
⎛
⎝⎜

⎞
⎠⎟

H
R

R R
i

f i

= −
+

The transfer function from fi g. (b) is

A
v
v

T
G
GH

Fv
o

i
i= = ⋅

+
+

1
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The feedforward path F is determined as

F
v
v

R
R R R

o

i C

o

o f i

= =
+ +=0

Substituting and solving, then simplifying, the closed-loop gain is

A
R R

R R R
K R R

R R K R
R

R
v

f i

f o i

f o

f o i

o

o

=
+

+ +
⎛
⎝⎜

⎞
⎠⎟

⋅
− ⋅ +( )
+ + +( )⋅

⎛
⎝⎜

⎞
⎠⎟

+
1 ++ +R Rf i

vo

(b)

vi
G

–H

F

(a)

(c)

Rf

vo

vi

+

–

Ro

Ri v–
v1

+

–
K

vi G

F

H

vo

v–+

–

+
+

v–

B

Ti

Ti
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A
K R R

R R K R
v

f o

f o i

=
− ⋅ +

+ + +( )⋅1

Taking the limit of Av as K → ∞, the familiar −Rf/Ri of the inverting op-amp 
results. This shows that Ro does not affect the closed-loop gain with suffi ciently 
large K.

This op-amp circuit can also be used to demonstrate an alternative gain deri-
vation based on a different fl ow graph, shown below, with its two-port equivalent 
circuit in (a) and fl ow graph in (b).

vo 

(b)

vi 
GTi

–H

(a)

Rf

vo

vi

+

–

Ro

Ri v  
v1

+

–
K

v  

vo

–

+

Rf

–v

–

+

–

–

This choice of topology has no feedforward; instead, G has two parallel paths. 
H is confi gured as a two-port block, using the loading theorem. The transmit-
tances, found by the feedback procedure, are

T
R

R R
i

f

f i

=
+
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G G G K
R

R R
R

R R
f

f o

o

f o

= + = − ⋅
+

⎛
⎝⎜

⎞
⎠⎟

+
+

⎛
⎝⎜

⎞
⎠⎟1 2

H
R

R R
i

f i

= −
+

Substituting these transmittances into the feedback formula,

v
v

T
G
GH

o

i
i= ⋅

+1

results in an equivalent equation for Av. This fl ow graph gain expression can be 
verifi ed by applying KCL at v− and vo. From the resulting equations, the three 
transmittances can be readily extracted.

We have examined in some detail the effects of ro or similar shunt resistance 
around the active path of single transistors or amplifi ers. Usually the contribu-
tion of the extra forward path is negligible, as for the preceding op-amp circuit. 
In precision amplifi er stages such as the differential input stage of an op-amp, 
fi nite ro can contribute signifi cantly to imbalance in the collector (or drain) load 
resistance. A differential cascode input stage reduces this problem because 
the CB (or CG) output transistors have a maximum output resistance resulting 
from ro.

Another infl uence of a feedforward path is to cause the step response to begin 
with a momentary inversion before responding with the expected polarity of 
step. This is due to a faster passive forward path than the active inverting path. 
This dynamic phenomenon is called preshoot.

FEEDBACK ANALYSIS OF THE SHUNT-FEEDBACK AMPLIFIER

The BJT shunt-feedback amplifi er circuit is topologically similar to the 
inverting op-amp but has much less gain. It is shown below with its incremental 
model.

Rf shunts the transistor from collector to base. This is the third of three 
resistor shunting confi gurations for a transistor and is another basic kind of 
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This shunt-feedback amplifi er is a transresistance amplifi er. The input is a 
current ii. Applying KCL at base and collector:

at b v r R i
r

r R
vb f i

f
o, .= ( )⋅ +

+
⎛
⎝⎜

⎞
⎠⎟π

π

π

at c v
R r

R R v
R

R R
R R

r
vo

f m
L f b

L

L f

f L

m
b, = −

⎡

⎣
⎢

⎤

⎦
⎥⋅( )⋅ =

+
−

⎡

⎣
⎢

⎤

⎦
⎥⋅1 1

These equations can be expressed more compactly and directly as transmit-
tances of the signal-fl ow diagram, shown below.

With E = vb,

v T i H v v G G vb i i o o b= ⋅ − ⋅ = +( )⋅, 1 2

RL

ii

vo

Rf

vb

+VCC

RL

ii

vo

Rf

vb

ib

bib

re

amplifi er stage. Unlike the base-emitter or collector-emitter (ro) shunts, this one 
is quite useful. We analyze it from several perspectives.
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The closed-loop gain is

v
i

T
G
GH

r R R R R R r
r R R R

o

i
i

f L f L f m

f L f

= ⋅
+

= − ( )⋅ +( )[ ]⋅ ( ) −[ ]
+ ( )⋅ +1

1
1

π

π RR R r RL f m f( )[ ]⋅ ( ) −[ ]⋅( )1 1

This result can be simplifi ed for a similar amplifi er with Ri in shunt with ii. This 
makes the input a Norton circuit, which can be converted to a Thevenin equiva-
lent with

v R ii i i= ⋅

resulting in a voltage amplifi er. These equations are easily modifi ed to account 
for Ri by replacing each occurrence of rp with rp||Ri, since Ri shunts rp.

Now consider some simplifi cations of the transresistance equation. If RL is 
replaced by a current source,

v
i

R ro

i R
f e

L →∞

= − ⋅ +α

For BJT b → ∞,

v
i

R r
R

R r
R

R
R r

r Ro

i
f e

L

L e
f

L

L e
e L

β→∞

= − +( )⋅
+

⎛
⎝⎜

⎞
⎠⎟

= − ⋅
+

⎛
⎝⎜

⎞
⎠⎟

+

With both of the previous assumptions,

v
i

R ro

i R
f e

L ,β→∞

= − +

Rf RL

voii

–
||

rp || Rf
vb

rm

RL
RL + Rf

rp
rp + Rf
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Here,

E i T i
R r

vb i i
f

o= = ⋅ +
+

⎛
⎝⎜

⎞
⎠⎟

⋅1

π

The transmittances can be derived from the previous calculations by shifting rp 
forward, out of Ti in the above fl ow graph. The previous E = vb is then divided 
by rp, making E = ib. Then rp multiplies G and divides H. The closed-loop gain 
is the same as the transresistance equation.

RL

vo

ib

re

H

vb

ii

iB

bib

Rf

vb

+

–

vo

Rf
Rf

A two-port feedback analysis with error quantity E = ib is based on the following 
fi gure. H is identifi ed as the two-port equivalent circuit shown as a block.
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From inspection of the modifi ed fl ow graph, Ti is now an input current 
divider:

T
R

R r
i r ii

f

f
i b=

+
= =( )

π
πfraction of through

G has two paths, an active G1 path and a passive G2 path:

G G G R R r
R

R R
f L

L

f L

= + = − ⋅( ) + ⋅
+

⎛
⎝⎜

⎞
⎠⎟1 2 β π

The fi rst term is ib, multiplied by b to become ic. This current develops vo across 
the collector resistance Rf ||RL and is negative. The second term is the passive 
path from the base through Rf to the collector. The H input source (see block 
diagram for H) is vb. Now that E is ib, then ib · rp, or vb, is divided by Rf and RL. 
The second term G2 is thus (vb/ib) · (vo/vb).

If RL << Rf, then G2 ≅ 0 and, for b → ∞,

v
i

Ro

i
f

β→∞

≅ −

This simple formula is the approximate transresistance for the single-BJT shunt-
feedback amplifi er for implementations in which Rf is large. The greatest error 
is usually due to fi nite b, causing rp to excessively shunt Rf.

The input resistance is easy to fi nd by using the feedback approach and is

r
v
i

r R
GH

r R
r r R R R R R r

in
b

i

f f

f L f L f m

= =
+

=
+ +( )[ ]⋅ +( )[ ]⋅ ( ) −[ ]

π π

π π1 1 1

Rf

ii
RL

Rf + RL
rp

ib
vo

b– (Rf⏐⏐RL)

1
Rf + rp

Rf + rp
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This can be checked by resorting to the basic feedback equations for this 
circuit:

v r R i H vb f i o= ( )⋅ − ⋅π

v G vo b= ⋅

Then

v r R i G H vb f i b= ( )⋅ − ⋅ ⋅π

Solving for vb/ii yields

r
r R

G H
r R

G r r R
r

R
G

in
f f

f

f=
+ ⋅

=
− ⋅ +( )[ ] =

−
⎛
⎝

⎞
⎠

π π

π π
π

1 1 1

The last expression is cast in the form of Miller’s theorem, showing that the 
theorem could have been applied to fi nd rin. Rf is across an amplifi er of gain 
vo/vb and is reduced by 1/(1 − G) times its value. This effective resistance is 
shunted by rp. If Ri is involved, rin is easily modifi ed by replacing rp by the parallel 
combination, as for the complete transresistance equation.

A KCL solution for rout follows from

i
v
R

v v
R

v
r

v
r

R r
vo

o

L

o b

f

b

m
b

f
o= + − + =

+
⎛
⎝⎜

⎞
⎠⎟

⋅, π

π

and is vo/io:

r R
R r

out L
f=

+
+

π

β 1

For a current-source load, RL → ∞ and

r
R r

out R
f

L →∞ =
+
+

π

β 1

This result has a topological interpretation. A change in output voltage vo 
causes a current in Rf that fl ows entirely into the base. This current is
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i
v

R r
b

o

f

=
+ π

The total current resulting from vo is this current plus the collector current, 
or

i i i i
v

R r
o b c b

o

f

= + = +( )⋅ = +( )⋅
+

β β
π

1 1

Solving for vo/io, we again obtain the simplifi ed equation for rout.
Miller’s theorem cannot be used to fi nd rout because vo is not a voltage source; 

RL is part of the internal resistance.

Example: Shunt-Feedback BJT Amplifi er

The shunt-feedback amplifi er shown below has VBE = 0.8085 V, IE = 3.81 mA, and 
VC = 1.1896 V. (The default BJT model is used here: b = 99, IS = 10−16 A.)

RL

+5 V

vo

10 k Ω

1.1896 V

1 k Ω

ii

0.8085 V

Rf
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Then re = 6.79 Ω, rm = 6.858 Ω, and rp = 678.92 Ω. Feedback analysis, with 
E = vbe, yields

G = − + × = −−909 09
6 858

9 0909 10 132 472.
.

. .
Ω

Ω

H
r

r R f

= −
+

= − × −π

π
6 3576 10 2.

so that 1 + GH = 9.4220 and, from the transresistance equation,

v
i

o

i

= −8 9386. kΩ

The resistances are

r
R R

GH
out

L f=
+

=
1

96 486. Ω

Alternatively, from the simplifi ed rout equation,

r R
R r

out L
f=

+
+

⎛
⎝⎜

⎞
⎠⎟

=π

β 1
96 486. Ω

Finally,

r r
R

G
in

f=
−

⎛
⎝

⎞
⎠ =π

1
67 476. Ω

To check these results, the SPICE simulation produced

v
i

r ro

i
in out= − = =8 939 67 44 96 48. , . , .kΩ Ω Ω

SHUNT-FEEDBACK AMPLIFIER SUBSTITUTION THEOREM ANALYSIS

Another way to fi nd shunt-feedback amplifi er output resistance is to use the 
substitution theorem to fi nd the equivalent resistance of the collector path. With 
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ic controlled by vo, it can be expressed as resistance rc. Keeping in mind the m 
transform,

r
r

v v
r

r R r
R r

c
m

b o

m

f

f= ( ) =
+( )( ) =

+
π π

π

β

The resistance shunting rc through Rf is Rf + rp. These parallel resistances 
combine to result in the rout equation. In the previous equation, for feedback 
analysis, vb/vo is −H instead of the reverse transmittance through G because ii is 
nulled.

The substitution theorem can be applied in a more general way to the com-
bination of Rf and the b ib current source, as shown below.

ib

Rf bib = b

vb

vc

vcb
Rf

ib

Rf

vb

vc

Rf

vb

vc

Rf

b b + 1

Starting from

i
v v

R
v
R

b
c b

f

cb

f

= − =

the current source becomes b · vcb/Rf. The source is across vcb and is also depen-
dent on it, making the substitution theorem applicable. In the middle fi gure 
above, the current source is replaced by a resistance of Rf/b. When this is com-
bined with Rf, the result is a single resistance of Rf/(b + 1).

This equivalent circuit makes shunt-feedback amplifi er resistance analysis 
much simpler than feedback analysis. The following fi gure shows the shunt-
feedback amplifi er equivalent circuit used to fi nd rout. The circuit has been gen-
eralized slightly by including external emitter resistance RE. This resistance 
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always adds to re and can be lumped with it. With this equivalent circuit, output 
resistance reduces to divider formulas and parallel resistances:

r R
R

R rout L
f

E e=
+

+ +⎛
⎝⎜

⎞
⎠⎟β 1

RE

RL

rout

re

b + 1

b + 1

Rf

RL

RE

VCC+

vo

Rf

vi

+

–

RL

re

Rf

vo

RE

vi

+

–

Input resistance cannot be found as easily because ii is injected at the base. The 
resulting ib is not from the Rf branch alone as assumed in the equivalent 
circuit.

Another direct application of the shunt-feedback equivalent circuit is to 
fi nd rin of the emitter-driven shunt-feedback amplifi er, shown in the left fi gure 
above and modeled on the right. Here, if = ib, and the shunt-feedback equivalent 
is exact. The input and output resistances and voltage gain of this amplifi er 
are

r R
R

r Rin L
f

e E= +
+

+ +
β 1
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r R
R

r Rout L
f

e E=
+

+ +⎡
⎣⎢

⎤
⎦⎥β 1

v
v

R
R R r R

o

i

L

L f e E

=
+ +( ) + +β 1

This amplifi er is of limited use for voltage amplifi cation; it has a voltage gain 
of less than 1. It can be used as a voltage translator for meeting biasing 
conditions.

Example: CB Shunt-Feedback Amplifi er

The example circuit is shown below.

RL

+12 V

vo

1 kΩ

RE

vi

–

+

90 Ω

Rf

10 k  Ω
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For b = 99 and IS = 10−16 A, from SPICE,

V V V IE B C E= = = =0 1671 0 9571 1 1428 1 86. , . , . , .V V V mA

Then re = 13.91 Ω and

v
v

R
R R r R

o

i

L

L f e E

=
+ +( ) + +

=
β 1

0 83063.

r R
R

r Rin L
f

e E= +
+

+ + =
β 1

1 2039. kΩ

r R
R

r Rout L
f

e E=
+

+ +⎡
⎣⎢

⎤
⎦⎥

=
β 1

169 37. Ω

The SPICE values for these parameters are

v
v

r ro

i
in out= = =0 8306 1 204 169 4. , . , .kΩ Ω

IDEALIZED SHUNT-FEEDBACK AMPLIFIER

A more general form of shunt-feedback amplifi er is shown here.

i
i

R
i

v
i

R
L

G
M

R
f

v
o
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An ideal transconductance amplifi er replaces the BJT, with source resistance Ri 
included. Solving for the usual incremental quantities using feedback analysis 
based on the fl ow graph, the resulting transmittances are

T R Ri f i=

G
R R

G
R

R R
f L

M

L

f L

= ( ) +
+1

H
R

R R
i

f i

= −
+

vi
ii vo

G

Ri + Rf 
–––––––––––

Ri

Rf⏐⏐Ri

Then if we combine these transmittances, the transresistance is

v
i

T
G
GH

R R

R R
R G

R R
R G

R
R R

o

i
i f i

f L

f M

f L

f M

i

f i

= ⋅
+

= ( )⋅ ( )
− ( ) ⋅

+
1

1

1
1

Removing RL simplifi es this transresistance equation somewhat:

v
i

R R

R G
G

R G
G

R
R R

o

i R
f i

f M

M

f M

M

i

f i

L →∞

= ( )⋅

+

−
+

⋅
+

1
1

1
1

1

If Ri is removed instead, then

v
i

R

R R
R G

R R
R G

o

i R
f

f L

f M

f L

f M

i →∞

= ⋅ ( )
− ( )

1

1
1
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Finally, when both RL and Ri are removed, the transresistance reduces to the 
simple form of

v
i

R
G

o

i R R
f

Mi L, →∞

= − +⎛
⎝⎜

⎞
⎠⎟

1

This expression is similar to the simplifi ed BJT shunt-feedback transresistance. 
When Ri is set to rp, 1/GM to rm, and the sign of GM made negative, then the trans-
conductance amplifi er is equivalent to the BJT shunt-feedback amplifi er.

The input resistance can be found from the feedback equations:

v T i H v v G vi i i o o i= ⋅ − ⋅ = ⋅,

Substituting vo from the second equation into the fi rst and solving,

r
v
i

T
G H

R R
G H

in
i

i

i f i= =
+ ⋅

=
+ ⋅1 1

An alternative solution that uses recursion begins with the fi rst feedback equa-
tion. It is divided by ii. Then,

r
v
i

T H
v
i

T H
v
v

v
i

T G H r
T
G H

in
i

i
i

o

i
i

o

i

i

i

i in
i

= = − ⋅⎛⎝⎜
⎞
⎠⎟ = − ⋅ ⋅

= − ⋅ ⋅ =
+ ⋅1

Writing H in terms of circuit component values, we can reformulate rin as

r
R R

G R R R
R R

G R R
R

R
G

in
f i

i f i

i f

i f
i

f=
− ⋅ +( )[ ] =

⋅
−( )⋅ +

=
−

⎛
⎝

⎞
⎠1 1 1

This result suggests that we can apply Miller’s theorem as an alternative approach 
to fi nding rin.

Output resistance is derived by applying KCL to the output node,

i
v
R

v v
R

G v v
R

R R
vo

o

L

o i

f
M i i

i

f i
o= + − − ⋅ =

+
⎛
⎝⎜

⎞
⎠⎟

⋅,
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Solving for vo/io gives

r R
R R
R G

out L
f i

i M

=
+

− ( )1 1

This form of rout is similar to the simplifi ed BJT equation when Ri → rp and 
1/GM → −rm. (GM is positive as defi ned in the above fi gure of the idealized shunt-
feedback amplifi er.)

Because the feedback output quantity vo is across rout, feedback analysis applies 
directly, resulting in

r
R R

GH
out

f L=
+1

Finally, for a voltage-amplifi er variation, the Norton equivalent circuit formed 
by ii and Ri can be Thevenized so that vi = iiRi. The voltage gain is then vo/vi. 
This transformation of the idealized amplifi er is easy to make by changing Ti 
and the input node of the fl ow graph. The new transmittance is

T
R

R R
vi

i

f i
i=

+
; input node is

The voltage gain is

v
v

v i
R

R
R R

R R
R G

R R
R G

R
R R

o

i

o i ideal

i

f

f i

f L

f M

f L

f M

i

f

=
( )

=
+

⋅ ( )
− ( ) ⋅

+

1

1
1 ii

where (vo/ii)ideal is the ideal shunt-feedback amplifi er transconductance.

Example: Transconductance Amplifi er

The fi gure shows a transconductance amplifi er with a forward-path transcon-
ductance of
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GM = − = −10 1 100mS Ω

The SPICE circuit simulation results are

v
v

r ro

i
in out= − = =4 500 500 0 500 0. , . , .Ω Ω

As a curiosity, for 1/GM = +100 Ω instead, this positive-feedback amplifi er has

v
v

r ro

i
in out= = =50 50 5 500 5 500. , . , .k kΩ Ω

These results agree with those obtained from the previously derived equations 
for the ideal shunt-feedback amplifi er.

CASCODE AND DIFFERENTIAL SHUNT-FEEDBACK AMPLIFIERS

The basic shunt-feedback amplifi er can be combined with other elemental 
circuits such as the cascode or differential amplifi ers. Shown below is a shunt-
feedback cascode amplifi er (a) with current-source load, modeled in (b).

First, ic2 must fl ow through R2. Thus,

i i iR e c1 2 1= =

Rf
10 kΩ

iR

1 k  Ω
ii

iv

iv

ov

mG LR

1 k  Ω
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and

i i i i i i
v
r

i b R b c b
b= + = + = +( )⋅ = +( )⋅1 1 1 1 1 1 1
1

1

1 1β β
π

Then

v r ib e i1 1= ⋅

The output voltage is

v v i R i Ro b c c= − ⋅ − ⋅1 1 1 2 2

Substituting,

v r i i R i R r i i R Ro e i c c e i i= ⋅ − ⋅ − ⋅ ⋅ = ⋅ − ⋅ ⋅ + ⋅( )1 1 1 2 1 2 1 1 1 2 2α α α

The transresistance is

v
i

R R ro

i
e= − ⋅ − ⋅ ⋅ +α α α1 1 1 2 2 1

This result is similar to the single-BJT shunt-feedback amplifi er transresis-
tance, where Rf corresponds approximately to R1 + R2. Because ic2 loses current 

+VCC

Li

2R

1R

ii

1Q

2Q

(a)

2R

1R

(b)

ov

ov

c2i

e2r

c1i

e1r

b2i

R2i

R1i

b1i

ii

b1v

b2v
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to both Q1 and Q2 bases, both a1 and a2 are factors of R2 in the previous 
transresistance expression.

A differential shunt-feedback amplifi er and incremental model is shown 
below. The results of previous shunt-feedback input-resistance analysis can be 
applied in fi nding the equivalent emitter resistance of one side of the differential 
pair due to the other side. With one input open, the other input appears as a 
high resistance, but when both inputs are driven differentially, the emitter cur-
rents caused by each input are equal and opposite for a symmetrical circuit.

+VCC

o1v o2v

ov–         +

L1R L2R

f 1R

1Q 2Q

oI

–VEE

i2i

f 2R

i1i

(a)

o1v o2v

ov–         +

L1R L2R

f 1R

i2i

f 2R

i1i

(b)

c1i c2i

e1r e2r
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Example: Differential Shunt–Feedback Amplifi er

Using the default BJT model, the amplifi er shown below has the (reduced) 
SPICE program and output. The transmittance follows directly from substitu-
tion of circuit element values into the shunt-feedback gain equation and 
doubling the result to account for both sides of the circuit.

f 1R

10 k Ω

ii

L1R

+12 V

2.7 kΩ

80

20

10

L2R

+12 V

2.7 kΩ

80

f 2R

10 k Ω

ov– +

40

501Q 2Q

ii

oI

0

2 mA

30

Shunt Differential Feedback Amplifi er

.OPT NOMOD OPTS NOPAGE

.OP

.DC II -0.10mA 0.10mA 10uA

.TF V(40,20) II

VCC 80 0 DC 12V
IO 30 0 DC 2mA
II 50 10 DC 0A
RL1 80 20 2.7K
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RL2 80 40 2.7K
RF1 20 10 10K
RF2 40 50 10K
Q1 20 10 30 BJT1
Q2 40 50 30 BJT1

.MODEL BJT1 NPN (BF=99)

.END

NODE VOLTAGE
(10) 9.2000 (20) 9.3000 (30) 8.4261
(40) 9.3000 (50) 9.2000

OPERATING POINT INFORMATION

TEMPERATURE = 27.000 DEG C

BIPOLAR JUNCTION TRANSISTORS
NAME Q1 Q2
MODEL BJT1 BJT1

IB 1.00E-05 1.00E-05
IC 9.90E-04 9.90E-04
VBE 7.74E-01 7.74E-01
VBC -1.00E-01 -1.00E-01
VCE 8.74E-01 8.74E-01

BETADC 9.90E+01 9.90E+01
GM 3.83E-02 3.83E-02

V(40,20)/II = 1.887E+04

INPUT RESISTANCE AT II = 2.325E+02
OUTPUT RESISTANCE AT V(40,20) = 2.405E+02

BLACKMAN’S RESISTANCE FORMULA

The effects of feedback on circuit resistances were introduced in “Feedback 
Effects on Input and Output Resistance.” These resistance techniques are gener-
ally applicable to feedback circuits but have limitations. In previous sections, it 
was diffi cult to derive rin for the CB, and no attempt was made for the CE and 
common collector (CC). Miller’s theorem provides rout, but under the condition 
that the amplifi er output be a voltage source (no resistance). It has sometimes 
even been necessary to resort to Kirchhoff’s laws. Feedback analysis, applied to 
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fi nd transmittances, is not always useful in fi nding circuit resistances for several 
reasons.

First, feedback results can be applied directly to determine the closed-loop 
resistance across an error voltage or in series with an error current. But these 
error quantities are often not associated with the resistances of interest. In the 
three basic BJT confi gurations, input and output resistances were not directly 
associated with the error quantity. For example, for the CE and CC, for E = vbe, 
we can immediately determine that re becomes effectively re ⋅ (1 + G ⋅ H) with 
feedback. But rin involves re in series with the rest of the emitter circuit. How is 
its resistance affected by feedback? It is usually not obvious.

Second, most of the equivalent-circuit methods used to fi nd transmittances 
do not preserve circuit resistances. Two-port, Thevenin, and Norton equivalent 
circuits and divider formulas do not preserve resistances. For example, a voltage 
divider consisting of two 1 kΩ resistors has a transmittance of 0.5, rin = 2 kΩ, and 
rout = 500 Ω (when the input is driven by a voltage source). But rout ≠ 0.5 · rin; the 
transmittances do not apply to resistances as they do to voltages or currents.

The reduction theorem is resistance-preserving. Consequently, we are able to 
apply the b transform directly to circuit topology to fi nd resistances. The same 
was done with the m transform. The reduction theorem reduces circuits to a 
form that makes resistances available by topological inspection, by appealing to 
causal and topological reasoning, or intuition. Therefore, feedback analysis is 
usually not a good approach for fi nding resistance, whereas the reduction 
theorem is. Miller’s theorem can also be used, but like feedback analysis, it is 
limited in its application. No single method is generally best; judgment is 
required, based on the particular circuit and what aspects of it are desired to 
be made explicit.

An early method for fi nding resistances was published by R. B. Blackman in 
1943, but it lay dormant for decades and is found in few circuits textbooks. In 
more recent years, R. D. Middlebrook of Cal Tech and Sol Rosenstark of the 
New Jersey Institute of Technology have been reviving it. Blackman developed 
a simple formula for calculating resistances in feedback circuits that is also based 
on inspection of the topology. A feature of this method is that only loop gain 
is needed; no decisions about input or output feedback quantities are required. 
Another advantage is that it can use loop-gain results from feedback analysis. 
Its disadvantage is that it is not as intuitive to use as the reduction theorem 
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because the answer results from substituting these inspected values into a 
formula that, in  itself, is not easily envisioned in terms of circuit topology. But 
it is easy to apply and minimizes calculation. Consequently, it is developed 
here.

i
A xi xo

T–R

v

D

The fi gure represents a feedback circuit with loop gain −T and a port with ter-
minal voltage v driven by a current source i. We want to fi nd the closed-loop 
resistance at this port. Within the feedback loop, choose a convenient point 
where it can be opened so that two fl ow-graph nodes, xi and xo, are created. We 
have done this before when fi nding G  ⋅ H; the gain from E through G and H 
back to E again (or −B/E = G  ⋅ H) is represented here by −T = −xi/xo. To derive 
Blackman’s formula, it is not necessary to choose E, but instead to pick a point 
within the loop where it can be opened so that loop gain under different condi-
tions can be derived. The x quantities can be either voltages or currents some-
where in the loop. The simplicity of this approach is that G, H, and E need not 
be identifi ed, only loop gains.

The fl ow graph can be expressed algebraically as

x A i T xi o= ⋅ − ⋅

v R i D xo= ⋅ + ⋅

For a closed-loop amplifi er, xo = xi = x, and

x A i T x
A

T
i v R i D

A
T

i= ⋅ − ⋅ =
+

⋅ = ⋅ + ⋅
+

⎡
⎣⎢

⎤
⎦⎥
⋅

1 1
,
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Solving for closed-loop terminal resistance,

v
i

v
i

R
D A

T
R

T D A R
Tcl x xo i

= = + ⋅
+

= ⋅ + + ⋅( )[ ]
+= 1

1
1

This is the resistance we are seeking, but to use it in this form requires that we 
know the transmittances it contains. This can be an onerous task. An ingenious 
simplifi cation is made by fi nding the topological meaning of the sub-expressions 
in the closed-loop resistance.

Let us fi nd the open-loop resistance. To obtain an open-loop circuit, set 
xo = 0. Then from the equation for v,

r
v
i

v
i

Rol
ol xo

= = =
=0

From this, we know that R in the closed-loop resistance is the terminal resistance 
when the loop is opened.

Next, consider the expressions for loop gain that result from both open- and 
short-circuiting the port. For an open-circuited port, i = 0. Substituting for i in 
the fl ow-graph equations and solving for loop gain,

T
x
x

x
x

Toc
i

o oc

i

o i

= = = −
=0

The denominator of the closed-loop resistance expression can be expressed in 
terms of the open-circuit loop gain as 1 − Toc. Finally, for the short-circuit loop 
gain, set v = 0 and solve for Tsc from the fl ow-graph equations:

T
x
x

x
x

A D
R

Tsc
i

o sc

i

o v

= = = − ⋅ +⎡
⎣⎢

⎤
⎦⎥=0

Interestingly enough, this matches the numerator of the closed-loop resist-
ance, and can be expressed as 1 − Tsc. When these expressions are substituted 
into the closed-loop resistance expression, Blackman’s resistance formula 
results.
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Blackman’s Resistance Formula

r r
T
T

cl ol
sc

oc

= ⋅ −
−

1
1

To fi nd closed-loop resistance at an arbitrary port within the loop of a feedback 
amplifi er:

1. Open the feedback loop and fi nd the port resistance rol.

2. Open the port and fi nd the closed-loop gain Toc.

3. Short the port and fi nd the closed-loop gain Tsc.

4. Substitute these results into Blackman’s formula for rcl.

Blackman’s formula can be applied to feedback amplifi ers to fi nd input and 
output resistances. For the pathological cases of the CE and CC with ro, rin is 
easily found. From the input port, the topology of the CC is the same as the CE 
and rin is identical:

r r R r R
b d

in e E o C= +( )⋅ + +( )[ ]⋅ − ( )
−

β 1
1

1 0

or

CE CC, r r R r R
R r

R r r
R r
r r

in e E o C
E e

E e o

C o

m o

= +( )⋅ + +( )[ ]⋅ −
+

⎛
⎝⎜

⎞
⎠⎟

⋅β 1 1
⎛⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

Finally, rin for the CB with ro is:

CB r R r r R
b d

d r r r
in E e o L

e e o

= + +( )[ ]⋅ −
− ( )⋅ +( )[ ]

1
1 1

For the CB, neither Tsc nor Toc is zero.

Example: Shunt-Feedback Voltage Amplifi er

The analysis of the shunt-feedback amplifi er shown below follows from shunt-
feedback amplifi er analysis and demonstrates the application of Blackman’s 
formula. It is the output stage of a subsequent audiotape playback amplifi er 
example.
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The 2N930 BJT is used here with b = 170 and IS = 10−14 A. The static analysis 
yields

I V V VE BE C E= = = =411 0 646 8 4941 70 3μA V V mV, . , . , .

The rather exacting value of Ri happens to be the output resistance of the previ-
ous stage, an inverting feedback amplifi er. (In the audiotape playback amplifi er, 
they are connected.) This Ri accounts for interstage loading. The feedback cal-
culations are based on E = vb, and the shunt-feedback amplifi er formulas apply 
directly:

r
r R

r
R

M
e E

m
E= + = + = + =

α α
37

100
0 99415

137 63Ω Ω Ω
.

.

G = − ⎛
⎝⎜

⎞
⎠⎟

⋅ −⎛
⎝⎜

⎞
⎠⎟

= −10
160

150
137 63

1 68 057
k
k

kΩ
Ω

Ω
Ω.

.

Let

r R R r Rs i B e E= +( )⋅ +( ) = =β 1 6 873 9 1400 3 9230. . .k k kΩ Ω Ω

LR

+16 V

iv
+

–

10 k Ω

ov

iR
6.873 kΩ

ER
100 Ω

2N930

0.7161 V
+

–

BR
15 k Ω

fR
150 kΩ
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Then

H
r

r R
s

s f

= −
+

= −
+

= − × −3 9230
3 9230 150

2 5487 10 2.
.

.
k

k k
Ω

Ω Ω

From this, 1 + GH = 2.7346 and rs||Rf = 3.8230 kΩ. Then,

v
v

r R
R

G
GH

o

i

e f

i

= ⎛
⎝⎜

⎞
⎠⎟

⋅
+

⎛
⎝

⎞
⎠ = ⎛

⎝⎜
⎞
⎠⎟

⋅ −(
1

3 8230
6 873

24 888
.
.

.
k

k
Ω

Ω
)) = −13 843.

Using Blackman’s formula for rin,

r R R r R R
GH
GH

in i B e E f
sc

oc

= + +( )⋅ +( )[ ]⋅ + ( )
+ ( )

⎛
⎝⎜

⎞
⎠⎟

=

β 1
1
1

15 488. kΩ⋅⋅⎛⎝
⎞
⎠ =2 7346

4 9088
8 6280

.

.
. kΩ

For

GH GHoc ii( ) = ( ) =0

G is the same as before, but H is

H oc = −
+

= − × −9 1400
9 1400 150

5 7434 10 2.
.

.
k

k k
Ω

Ω Ω

The output resistance is

r
R R

GH
out

L f=
+

= =
1

9 3750
2 7346

3 4283
.

.
.

k
k

Ω Ω

THE ASYMPTOTIC GAIN METHOD

In close connection with Blackman’s resistance method is the asymptotic gain 
method for fi nding feedback-circuit gain. Middlebrook developed it extensively. 
Here the equivalence of the asymptotic gain method and the signal fl ow-graph 
feedback method we have been using are made clear.
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From previously developed multipath feedback theory,

x
x

T G
G H

Fo

i

i= ⋅
+ ⋅

+
1

where the path transmittances are

T
E
x

G
x
E

H
E
C

F
x
x

i
i H C

o

F x T x

o

i Ci i i

= = − = =
− ⋅ = ⋅ = ⋅ = =0 0 0 0

, , ,

The asymptotic gain formula is

Asymptotic Gain Formula

x
x

G
T

T
G

T
o

i

= ⋅
+

+ ⋅
+∞

1
1

1
0

where

G
T G

G H
F

T
H

F
T G

T
Fi

G H

i i
∞

⋅ →∞

= ⋅
+ ⋅

+ = + = ⋅ +
1

T G H= ⋅

G F0 =

Substituting for G∞ and G0 into the asymptotic gain formula,

x
x

T G
T

F
T

T
F

T
T G

G H
Fo

i

i i= ⋅ +⎛
⎝

⎞
⎠ ⋅

+
+ ⋅

+
= ⋅

+ ⋅
+

1
1

1 1

vovi
i ET CG 1

–H

F

Consider the isolated feedback topology, shown below, with feedforward to 
the output.
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The signifi cance of the asymptotic gain formula is that it reformulates the 
isolated feedforward gain in a form that makes another method explicit. By 
fi nding G∞ and G0 from circuit maneuvers, the results are substituted into the 
asymptotic gain formula. The method is similar to Blackman’s formula: Find 
some circuit quantities by imposing constraints on the circuit, and then substi-
tute these results into a simple formula. G∞ is xo/xi with infi nite loop gain. This 
is not unfamiliar; we analyzed what happens to op-amp circuits when op-amp 
gain becomes infi nite. Discrete transistor amplifi ers can be analyzed similarly; 
the result is the feedforward path added to Ti  ⋅(1/H). G0 is xo/xi with zero loop 
gain, which is the feedforward path F.

EMITTER-COUPLED FEEDBACK AMPLIFIER

A common multipath topology involving both cascade and emitter coupling is 
shown below with small-signal equivalent circuit shown in (b), two-port equiva-
lent for H in (c), and fl ow graph in (d).

iv

–

+

L1R

VCC+

1Q

L2R

ov

ER

(b)

2Q

L2R

VCC+

ov

ER

VEE–

(a)

–1

iv

–

+

L1R

c1v

c1v

–

+

e1r e2r

c1i c2i

–

ie1 ie2
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Let E = ie1. The error-summing node is at the output port of H. F = 0, because 
all paths from vi to vo are along either G1 (cascade path) or G2 (emitter-coupled 
path). The transmittances are

T
i
v r R

T
v
i

Ri
e

i i e E
o

o

e
L

e

= =
+

= = − ⋅
=

1

0 1 2
2 2

2

1
, α

G
i
i

G G
R

r R
R

r R
e

e Hi

L

e E

E

e Ee

= = + = ⋅
+

−
+

2

1
1 2

1 1

2 22

α

H
i
i

R
r R

e

e v

E

e Ei

= − =
+=

1

2 0 1

L2R

ov

(c)

iv

–

+

L1R

e1r e2r

c1i c2i

ie1

–1

ER

ie2

ERie2 ie1

i
i

H–

v ov
oe2ie1iT T

(d)

G
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Because the input and output quantities are voltages and the error quantity is 
a current, Ti is a conductance and To is a resistance. Other choices for E are 
possible, of course. The voltage gain is

A T
G
GH

Tv i o= ⋅
+

⋅
1

This amplifi er can be implemented by replacing the ×(−1) amplifi er with a 
PNP CE stage or NPN CE stage with negative voltage offset. Unlike previous 
amplifi ers with multiple forward paths (for G), the passive path (G2) has a sig-
nifi cant transmittance and cannot be ignored.

EMITTER-COUPLED FEEDBACK AMPLIFIER EXAMPLE

Feedback analysis of the circuit in the fi gure below assumes E = ie1.

L1R

c1v

+12 V

iv

+

–

4.7 kΩ

1Q

L2R

ov

+12 V

2.2 kΩ

2Q

c1v

+

–

6.71 V
+

–

ER

–3 V

1 kΩ

Then static analysis produces the following values:

V V V V

I
C E O B

E

1 2

1

6 7112 0 7773 9 6345 0 0012

1 14

= = − = = −
=

. , . , . , .

. ,

V V V V

mA II E 2 1 09= . mA
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From the current values,

r re e1 222 69 23 73= =. , .Ω Ω

The transmittances are

T H G G

G G G
i = × = = = −
= + =

−9 7781 10 0 97781 4 5451 0 97682

3 5

4
1 2

1 2

. , . , . , .

.

S

6683 2 178 1 4 4892, . , .T GHo = − + =kΩ

Then

v
v

T
G
GH

To

i
i o= ⋅

+
⋅ = −

1
1 6928.

r GH r Rin e E= +( ) +( )⋅ +( )[ ] =1 1 459 11 1β . kΩ

rout = 2 2. kΩ

Inverting Feedback Amplifi er Example

The static bias solution is given in the SPICE simulation for the inverting feed-
back amplifi er shown below, the fi rst stage of an audiotape playback amplifi er. 
The transistor parameters are for 2N930 transistors. From these values,

r re e1 2244 26 6= =Ω Ω, .

Furthermore, the base input resistance of Q1 is

r r R r Ri e E e E= +( )⋅ + +( )⋅ +( )[ ] = ( )⋅ +( ) =β β1 1 1 2 2 21 1 171 244 5 5700Ω Ω. k 9994 2. kΩ

Additionally,

r R ri f i= =180 1 2 2 2 1951. , . .k k kΩ Ω Ω

Let E = vb1 = v(30). Then,
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Inverting Feedback Amplifi er

.OPT NOMOD OPTS NOPAGE

.OP

.DC VI -2V 2V 0.05V

.TF V(70) VI

VCC 80 0 DC 16V
VI 10 0 DC 1.3484V
RB 10 30 2.2K
RF 30 70 220K
RL1 80 40 100K
RE1 50 0 7.5K
RE2 60 0 100
RL2 80 70 15K
Q1 40 30 50 BJT1
Q2 70 50 60 BJT1
* 2N930

.MODEL BJT1 NPN (BF = 170 IS = 1E-14)

.END

NODE VOLTAGE
(10) 1.3484 (30) 1.3484 (40) 5.4728 (50) .7515
(60) .0973 (70) 1.4837

BIPOLAR JUNCTION TRANSISTORS
NAME Q1 Q2

L1R

+16 V

iv
+

–

100 k Ω

1Q

L2R

ov

+16 V

15 kΩ

2Q

fR

220 k Ω

80

30
BR

2.2 kΩ10

40

50

E1R
7.5 kΩ

70

2N930

2N930

E2R
100 Ω

601.3484 V
+

– 0

80
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MODEL BJT1 BJT1
IB 6.19E-07 5.69E-06
IC 1.05E-04 9.67E-04
VBE 5.97E-01 6.54E-01
VBC -4.12E+00 -7.32E-01
VCE 4.72E+00 1.39E+00
BETADC 1.70E+02 1.70E+02
GM 4.07E-03 3.74E-02

V(70)/VI = -5.106E+01
INPUT RESISTANCE AT VI = 4.260E+03
OUTPUT RESISTANCE AT V(70) = 6.873E+03

Ti =
+

=180 1
180 1 2 2

0 9879
.

. .
.

k
k k

Ω
Ω Ω

G1
5 5700

5 570 244
15 220
26 6 100

170
171

=
+

⎛
⎝⎜

⎞
⎠⎟

⋅ −
+

⋅⎛.
. .

k
k

k kΩ
Ω Ω

Ω Ω
Ω Ω⎝⎝⎜

⎞
⎠⎟

= ( )⋅ −( ) = −0 9580 110 3 105 7. . .

G2
215

15 220
6 3830 10 0=

+
= × ≅−k

k k
Ω

Ω Ω
.

G = −105 6.

H = − × = −−9 8793 10
1

101 2
3.

.

1 2 0433+ =GH .

Then

v
v

T
G
GH

o

i
i= ⋅

+
= −

1
51 057.

r
GH

out =
+

=15 220
1

6 8726
k k

k
Ω Ω Ω.

r
GH

GH
in

v

i

i

i

= +[ ]⋅ + ( )
+ ( )

= ⋅

=

=

2 2 180 1
1

1

182 3
2 0433
87

0

0

. .

.
.
.

k k

k

Ω Ω

Ω
4466

182 3 2 3360 10 4 25862= ( )⋅ ×( ) =−. . .k kΩ Ω
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In using Blackman’s formula to fi nd rin, G remains the same for both numera-
tor and denominator, the numerator is the (1 + GH) calculated previously, and 
what is different in the denominator is H:

H
r

r Ri
i

i f
i = =

+
= −0 0 81881.

The SPICE simulation results are

v
v

r ro

i
in out= − = =51 06 4 260 6 873. , . , .k kΩ Ω

AUDIOTAPE PLAYBACK AMPLIFIER EXAMPLE

The fi gure below combines the inverting feedback amplifi er and the shunt-
feedback voltage amplifi er stages presented in previous examples into a discrete-
BJT tape playback amplifi er design.

iv

+

–

10 20

0

Cin
0.47   Fμ

30

40

2.2 kΩ
RB

50

100

RL1
100 kΩ

+ C1
100   Fμ

1Q

RE1
7.5 kΩ

0

2Q
2N930

2N930

60

0

100Ω
RE2

+16 V

+16 V

100

RL2

70

15 kΩ
5   Fμ

+ 80

RS
15 kΩ

0

R f 2
150 kΩ

RE3
100 Ω

90
vo

100

+16 V

RL3
10 kΩ

3Q
2N930

0

R f 1
200 kΩ

C2

95
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From the prior analysis of these stages, the voltage gain is

A Av v1 2 51 06 13 84 706 7⋅ = −( )⋅ −( ) =. . .

A SPICE ac simulation was performed on the amplifi er. Although we have 
not considered frequency response in this volume, the quasistatic parameters 
are closely approximated by these results at high frequencies. At 100 kHz, 
Av = v(90)/v(10) = 706.8, showing good agreement.

Additionally, from the simulation, Av1 = v(70)/v(10) = 10.38 and rin = v(10)/
i(RB) = 19.19 kΩ at 100 kHz. The discrepancy between Av of the stand-alone 
inverting feedback amplifi er and Av1 is due to how interstage loading is handled. 
In combining the two amplifi er stages, the Thevenin equivalent of the fi rst stage 
was used to drive the second instead of loading the output of the fi rst by the 
second. The loaded fi rst stage has a gain of Av1 and can be calculated using 
feedback analysis with a loaded

R r QL in= ( ) =15 1 5633k kΩ Ω.

Then the gain of the shunt-feedback output stage is its open-loop G = −68.057. 
By accounting for the loading of rin(Q3) on the fi rst stage, the actual output 
voltage of the fi rst stage is derived, and this is the base voltage of the second 
(loading) stage. As vb3 is known (with Q3-stage feedback taken into account in 
the loading), the remaining transmittance is from the base of Q3 to its collector, 
or G. The overall gain is then

Av = −( )⋅ −( ) =10 38 68 057 706 4. . .

Example: Audio Preamplifi er with Noninverting Feedback

The circuit shown below is an audio preamplifi er design using similar 
gain stages as the previous one but employing a noninverting feedback 
amplifi er.
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It is followed by an emitter-follower to provide a low-resistance (voltage source) 
output. The amplifi er has high input resistance due to feedback, as desired for 
a voltage amplifi er. SPICE simulation produced the following voltage gains:

v
v

v
v

30
10

1 512 100
70
10

21 09 100
( )
( )

= ( )
( )

=. , .at kHz at kHz

CLOSURE

Multiple paths through amplifi ers are common, and multiple methods are often 
applicable for fi nding a circuit quantity of interest. Multipath (or “composite”) 
amplifi ers appear again when frequency response is of primary interest, in 
Designing Dynamic Circuit Response.
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10 20

0

25   Fμ
40

95

RL1
15 k Ω

C1

1Q

RE1
100 Ω

2N930

+18 V

+

Cin
RB1
10 kΩ

Rf1
100 kΩ

+18 V

95

100 kΩ
Rf 2

RL2
10 kΩ

60

RB2

25   Fμ
+ 50

30
2Q

2N930

80

100 Ω
RE2

R f
2.2 k Ω 100   Fμ

90
40

+

C2

+18 V

95

3Q
2N930

4.7 kΩ
RE3

ov
70

10 kΩ
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