mackie.

M800

FR series power a mplifier

SERVICE MANUAL

CAUTION AVIS

RISK OF ELECTRIC SHOCK DO NOT OPEN risque de choc electrique NE PAS OUVRIR

CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK DO NOT REMOVE THE COVER (OR BACK) NO USER SERVICEABLE PARTS INSIDE REFER SERVICING TO QUALIFIED PERSONNEL

WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC SHOCK, DO NOT EXPOSE THIS PRODUCT TO RAIN OR MOISTURE

TO PREVENT ELECTRIC SHOCK, DO NOT USE THIS POLARIZED PLUG WITH AN EXTENSION CORD, RECEPTACLE OR OTHER OUTLET UNLESS THE BLADES CAN BE FULLY INSERTED TO PREVENT blade exposure.

ATTENTION: POUR EVITER LES RISQUES DE CHOC ELECTRIQUE,NE PAS ENLEVER LE COUVERCLE. AUCUN ENTRETIEN DE PIECES INTERIEURES PAR L'USAGER. CONFIER L'ENTRETIEN AU PERSONNEL QUALIFIE.

AVIS:POUR EVITER LES RISQUES D'INCENDIE OU D'ELECTROCUTION, N'EXPOSEZ PAS CET ARTICLE A LA pLUIE OU A L'HUMIDITE.

POUR PREVENIR LES CHOCS ELECTRIQUES NE PAS UTILISER CETTE FICHE POLARISEE AVEC UN PROLONGATEUR, UN PRISE DE courant ou une autre sortie de courant, sauf siles lames PEUVENT ETRE INSEREES A FOND SANS LAISSER AUCUNE PARTIE A DECOUVERT.

This apparatus does not exceed the Class $\mathrm{A} / \mathrm{Class} \mathrm{B}$ (whichever is applicable) limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications.

ATTENTION :Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant las limites applicables aux appareils numériques de class A/de class B (selon le cas) prescrites dans le réglement sur le brouillage radioélectrique édicté par les ministere des communications du Canada.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio energy and, if not installed properly and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

 (servicing) instructions in the literature accompanying the appliance.

CONIENTS

Introduction 3
Blockdiagram 4
Specifications 5
Connectors. 7
Troubleshooting tips 8
Safety test 9
Bias and test procedure 10
Circuit theory 11
Quick parts 15
Parts A-1
Fold-out Sections
Heatsink suba ssembly assembly B1
Assembly instructions C1
Schematic s a nd PCB la youts Main board 212-1
Display board 218-1

INTRODUCTION

This manual conta ins basic service information. It is essential that you have a copy of the user's manual as this conta ins the complete operating instructions.

SERVICE TEC HNICAL ASSISTANCE

Mackie Designs, Service Technic al Assista nce, is a va ila ble 8AM - 5PM PST, Monda y through Friday forAuthorized Mackie Service Centers, at 1-800-258-6883. Feel free to call with any questions and speak with a carefully-calibrated technician. If one is not available, leave a detailed message and a qualified Mackoid will retum your call asap.

DISC LAIMER

The information contained in this manual is proprietary to Mackie Designs, Inc. The entire manual is protected under copyright and may not be reproduced by any means without express written permission from Mackie Designs, Inc.

Specific ations

Maximum Power, mid band:

175 wattsperchannel into 8Ω 275 watts perchannel into 4Ω 400 wattsperchannel into 2Ω 550 watts into 8Ω bridged 800 watts into 4Ω bridged
Note: Powerratingsare specified at 120VAC line voltages.

The $\mathrm{M} \cdot 800$ powera mplifierdraws large amounts of curent from the AC line with continuoussine wave testing. Accurate measurement of powerrequiresa steady and stable AC supply. Thismeansthe line impedance must be very low to insure that the peakAC line voltage doesnot sag to lessthan 97\%of its value.

If driving highly reac tive loads, we rec ommend that the limiterc irc uit be engaged.

Continuoussine wave average outputpower, both channels driven:

150 wattsperchannel into 8Ω from 40 Hz to 20 kHz , with no more than 0.025 \%THD
225 wattsperchannel into 4Ω from 40 Hz to 20 kHz , with no more than 0.05 \%THD
280 watts perchannel into 2Ω from 40 Hz to 20 kHz , with no more than 0.1 \%THD
Bridged mono operation:
450 watts into 8Ω from 40 Hz to 20 kHz , with no more than 0.05% THD
560 watts into 4 ohms from 40 Hz to 20 kHz , with no more than 0.1% THD

PowerBandwidth:
20Hz to 70kHz (+0, -3dB)
Frequency Response:
20Hz to 40 kHz (+0, -1 dB)
10Hz to 70kHz (+0, -3dB)

Distortion:

SMPTE IMD, TIM (250 mW to rated power) $\quad<0.025 \%$ @ 8Ω <0.05\%@4 Ω
$<0.15 \%$ @ 2Ω

Signal-to-Noise Ratio:

>104 dB below rated power, 4Ω

Channel Separation:

$>70 \mathrm{~dB}$ @ 1 kHz
Damping Factor:
$>250 @ 400 \mathrm{~Hz}$
Input Impedance:
$20 \mathrm{k} \Omega$ balanced bridging

InputSensitivity:

1.23 volts (+4 dBu) for rated power into 4Ω

Voltage Gain:
28.0 dB

Maximum InputLevel:
9.75 volts (+22 dBu)

Rise Time:

$<5 \mu s$

Slew Rate:

Voltage Slew Rate

$$
\begin{aligned}
& >40 \mathrm{~V} / \mu \mathrm{s} \\
& >80 \mathrm{~V} / \mu \mathrm{sb} \text { bidged }
\end{aligned}
$$

Current Slew Rate
$>20 \mathrm{~A} / \mu \mathrm{sat} 2 \Omega$

CMRR:

$>40 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz
Load Angle:
8(Hx) time independent at 8Ω
4($\ddagger \mathrm{j} x)$ time dependent, $T>6 \mathrm{~min}$. at 4Ω
$2(1-\mathrm{j} x)$ time dependent, $\mathrm{T}>2 \mathrm{~min}$. at 2Ω

Transient Recovery:

$<1 \mu$ sfor 20 dB overdrive @ 1 kHz

High Frequency Overload and Latching:

No latch up at any frequency or level.

High Frequenc y Stability:
Unc ond itiona lly stable driving any reactive orcapacitive load.

Tum On Delay:

3-4 sec onds

Variable Low-CutFilter:

10 Hz (Off) to 170 Hz , 2nd Order Bessel

ConstantDirectivity High Frequency Boost

2 kHz to 5.5 kHz (+3 dB points) $6 \mathrm{~dB} /$ octave high-frequency shelving filter, (shelving oc curs at approximately 30 kHz)

LimiterSection:

Complementary Positive and Negative Peak Detecting

Indicators:

5 meterLEDsperchannel $-20,-9,-6,-3$, OL(Overload)
TEMP STATUS NORMAL/HOTLEDs
specific ationscontinued.

PowerConsumption:	
55 watts	at idle
400 watts	with musical pro-
gram fully loaded	
(4 4 perside, or	
8Ω bridged)	
600 watts	with musicalpro- gram fully loaded (2 2 perside, or
4Ω bridged)	
550 watts	at rated power into 8Ω (continuous sine wave)
950 watts	at rated power into 4Ω (continuous sine wave)
1500 watts	
at rated power	
into 2Ω (continuous	
sine wave)	

AC Drop-outVoltage:

At approximately 65% of rated line voltage

Physical:

Height	3.5 inches(89mm)
Width	19.0 inc hes
	(483mm)
Depth	15.25 inc hes
	(387mm)
Overall Depth	16.25 inc hes
	(413mm)
Weight	28 pounds(12.7kg)

Disclaimer

Since we are always striving to make ourproductsbetterby incorporating new and improved materials, components, and manufacturing methods, we reserve the right to change these specificationsat a ny time without notice.

Owner's manual addendum

NOTE: The specific ations are from the owner'smanual addendum, and not from the initial release of the owner's manual. Since the owner'sma nual wasproduced, there have been a few otherchangesasfollows:

Bridge Mode

The amplifiercan accept inputsfrom Channel 1 and from Channel 2. If you do this, the two inputs will be summed and the result sent to the Bridge Mono output. Only Channel 1'sgain pot will control the overall volume. However, you must adjust the CD-EQ and Low-Cut Filter corectly on each input used.

The Meters

The meters indicate the powerlevel referenced to the clipping point of the amplifier, not to the rated power.

AC PowerConsiderations

The amplifierwill continue to operate down to 65\%of the rated line voltage, and will mute if the line dropslower than this.

The table below showsthe average a nd peak current draw from a 120VAC line forvariousspeakerloads. Forexample, if you are running the amplifier in stereo using 2Ω speakers, the average current draw from the 120VAC line is 7 amps .

	Average	Peak
	Current	Current
Amplifier Loading	Required	Required
2Ω perside or 4Ω bridged	7 A	16 A
4Ω perside or 8Ω bridged	4.5 A	11 A
8Ω perside or 16Ω bridged	3 A	6.5 A

Connectors

M800 SERVICE MANUAL

MAIN BOARD

000000%
0000000

Display board 7

FROM

Troubleshooting tips-output fa ilures

After a catastrophic failure, it is likely that the main supply fuse will be blown. Replace the fuse and very slowly bring up the Variac while monitoring line consumption. It is likely that substantial line current will be pulled due to shorted output parts.

Remove the main board from the unit and check for shorted output transistors. If one bad output transistor is found, replace all six in the channel. When an output device shorts it can place high current stresses on the other output parts. These output parts can fail overtime. Since long tem reliability is paramount, please replace all the outputs.

All six of the $5 \mathrm{~W} 0.51 \Omega$ emitter resistors must be verified forpropervalue. Any off-tolerance, or open parts, need to be replaced. An off tolerance (higher resistance) emitter resistor will prevent its related output transistor from "doing its share" and will place more stress on its mates in the output section. Also verify the 6 base drive resistors ($2.2 \Omega, 1 / 4 \mathrm{~W}$, fusible) are all OK. Verify that the drivers and pre-drivers are not shorted. If one driver is shorted, replace it's mate. Do the same with the pre-drivers. Also check all the resistors surrounding the drivers and pre-drivers. Note: if you change any fusible resistors, you must use identic al replacement parts.

Check the VI limiters and detectors. It is not uncommon to damage these parts when the amplifier fails in a spectacular way! Look for shorts on Q32, Q35, Q36 and Q39. Verify proper value on the resistors that go to the bases of these devices. It is c ritic al that these sections are working correctly. Shorted transistors can cause some odd asymmetrical clipping problems. Open parts will not a llow the current limiting to operate effectively. If problems exist in these sections the a mplifier might fail into a short, or might clip prematurely when loaded to 2Ω.

All of the above trouble shooting (not including part replacement) takes perhaps 15 to 20 minutes to do. If you take the time, and do all that is indicated above, it will allow 99% of the amplifiers to come up the first time! Trying to hury, and skipping what is suggested, can lead to a frustrating and time consuming repair.

Slowly bring up the supply a nd verify that line consumption isn't excessive and that the output is centered (no DC offset). It might be desirable to defeat the amplifier muting (connect U4-14 \& 12 together) temporarily so the a mplifiers a re active even when the supplies a re still very low. If the amp stays centered, verify that it will pass a nice clean sine wave. Remove any test jumpers, and proceed to the safety test and the "bias and test procedure" section on the next pages.

Safety test

You must perform the following leakage test before retuming the unit to your customer. Take every safety precaution to protect yourself while doing this test.

1. Make a small loading RC circuit as shown in the diagram below, and connect the $A C$ volt meter between the AC power source ground and any exposed metal on the unit undertest.
2. Connect the unit undertest to an AC powersource using a ground-lift adaptor, leaving the unit's safety ground floating. Tum the unit on.
3. The meter reading should be less than 750 mVAC (note: this is equivalent to 0.5 mA of leakage current).
4. Flip the plug over in the receptical so the hot and neutral are swapped. Verify that the reading is still less then 750 mVAC .
5. If either reading is greater than 750 mVAC , then you must investigate and repair the unit before retuming it to your customer.

Bias and test procedure

After the unit has been repaired, the following should be done to assure long term reliable operation. If a distortion a nalyzer is present, distortion specifications should be verified.

1. Adjusts bias in both channels (R51 \& R60) for $30 \mathrm{mV}+\mathrm{H}-2 \mathrm{mV}$ at bia stest points (J $5 \& \mathrm{~J} 6$) after unit has idled for a few minutes. With Full AC line voltage applied to unit, it will pull around 55 W from the line (700 mA at 120 V). Measure for DC offset on both output connectors. DC offset should be less than $+1-50 \mathrm{mV}$.
2. Apply a 1 KHz sine wave to the inputs and verify that the unloaded outputs have a waveform that is symmetric al and undistorted. Drive the outputs into clipping and verify symmetrical "flat-topping" on the waveform.
3. Reduce output levels, install the 0.1uF capacitor jumper from the output to ground connections, and verify that clipping behavior is proper. Verify that no high frequency oscillation occurs near and at clipping (parasitic oscillation).
4. Remove capacitive loading and minimize sine output. Verify and re-adjust bias if required. Note that the bias will not drift appreciably in a unit that is functioning properly.
5. Connect the amplifier directly to the $A C$ line and connect an 8Ω dummy load to both channels. Bring sine wave level up on both channels and verify symmetric al clipping. The output will clip somewhere between $90 \mathrm{~V}-110 \mathrm{~V} \mathrm{pk} / \mathrm{pk}$ depending on how stiff the line is. Clipping should be as described above. Add the 0.1uF capacitive loading and verify clipping is still well behaved.
6. Individually load Channel 1 and Channel 2 with 2Ω. Clipping should be symmetric al, well behaved, and occursomewhere around 60V-80V $\mathrm{pk} / \mathrm{pk}$. Verify that clipping is well behaved after adding the 0.1uF capacitive loading. My bosstold me that Ishould include a picture of "well behaved," so here is a picture of my boy Joe. I hope thisclears up any misunderstanding.
7. Remove loading and reduce output level to $20 \mathrm{Vpk} / \mathrm{pk}$ and short first channel one and then channel two. When one channel is shorted the
 product should pull around 250 W from the $A C$ line. If the power pulled from the line is substantially higher (290W or more) look for failed parts in the VI limiters. Immediately remove the short when the power consumption is excessive to prevent redamaging the output stage!
8. Place amplifier in bridge mode and connect 4Ω loading to bridge outputs (a cross both " + " output binding posts). Slip some card stock between the heatsink-outlets a nd chassis sides. Monitor one of the outputs, and adjust for a 45 V pk/pk sine output (250 W of output power bridged). After a few minutes the fan will begin running fast (heatsink at $60^{\circ} \mathrm{C}$) and a short time later the amplifier will mute (heatsink at $86^{\circ} \mathrm{C}$). The "Hot" LED will come on. Remove card stock and after a few minutes the amplifier will come out of mute mode and the "cold" LED will retum.
9. Disconnect loading and remove drive. Reconnect amplifier to Variac and confirm that the idle consumption is roughly 55 W or 700 mA , as before. Connect the amplifier to speakers and venify that it sounds OK with music.

Circ uit Theory

Much of the circ uitry in the $M \bullet 800$ is self explanatory from the schematics. This section will explain the unique circuits and architecture. Samples in this section will refer to Channel-1 for circ uitry that is identic al on both channels.

INPUT CIRC UITRY

The signal path begins at the $1 / 4^{\prime \prime}$ TRS and XLR input jacks. Following Channel-1's input, signal is fed to a unity gain differential op-amp, U6A. The signal is next sent to U6B which serves as both HPF, and CD hom EQ. The output of U6B is sent to mode switch, SW2, a nd also to Summing amplifier U8A. The output of SW2 feed both front panel volume controls, R2 and R25, which in tum feed unity gain buffers, U1A \& B, (all on the display board) before retuming to the main board. In stereo mode, the signals on the channel-1 and 2 inputs are routed through the front panel level controls, directly to their respective power amplifiers. U8A's summed signal is used to drive both front panel level controls in dual mono mode, with these signals being routed to both power a mplifier inputs. In bridge mode, U8A's summed signal is fed to the channel-1 level control, and the output of the level control feeds both the channel-1 power amplifier, and unity ga in inverter U8B. The output of inverter U8B feeds the channel-2 power a mplifier.

POWER AMPLIFIER CIRCUITRY

The $\mathrm{M} \cdot 800$ use a class $A B$ triple darlington output stage, with complementary output devices. The output stage has a voltage gain of slightly less than 1 and extremely high curent gain. The high current "output" parts (Q1-Q3 \& Q11-Q13) pull c urrent from the $+/-64 \mathrm{~V}$ supplies. Drivers (Q4 \& Q10), Pre-drivers (Q5 \& Q9), as well as the voltage-amp, are powered from the $+/-74 V$ supplies. Powering theses stages from the higher $+/-74 \mathrm{~V}$ rails results in lower output stage saturation voltages (less dissipation on the heatsink, so the amp is more efficient and runs cooler) and improved linearity (intrinsic ally lower distortion). In the event of a catastrophic amplifier failure, the triple darlington output stage is peppered with several fusible resistors to minimize damage.

Q6 and Q8 are the outputs of the second stage of voltage amplification, and can be thought of ascurrent sources. These current sources are prevented from tuming both positive and negative current amplifiers on hard by the bias network. The bias network consisting of V-BE multiplier Q7, and Buffer Q30, adjusts the voltage across C14 to a point where the output stage just beginsto conduct current (adjusted by the technician for 30 mV across) 5 the biastest points). This "bias" curent is needed to eliminate the conduction dead-zone that would otherwise exist close to zero volts. This dead-zone is also referred to as crossoverdistortion. This bias voltage across C14 needs to decrease as the output stage temperature increases. This is why V-BE multiplier transistor Q7 is mounted to the heatsink. Without this themal tracking, the output stage would conduct more and more current as it heated-up, resulting in eventual amplifier failure. This undesirable condition is commonly referred to as themal run away.

Given the very high curent gain of the output stage, if asked to, this stage can deliver enough current to the load to destroy itself. To protect against this, VI limiting is employed. Simply stated: if the output stage try's to supply unsafe amounts of power, Q 32 and Q 35 divert drive curent from the output of the voltage amp (Q6 and Q8) that was meant for the predrivers. Near zero crossing, if the volta ge drop ac ross either emitter resistor (R14, R53) gets greater than .6 V , then Q32 or Q 35 conduct, limiting the output stage current. As the output sta ge gets closer to the supply rails it is capable of sinking more current, so the drop across the emitter resistors is divided down by R26, R27, R28, D21 and R75, R74, R73, D26. Also inc luded in this VI limiter is energy sensing, which is a fancy way of saying that for a short time (I.E. a music al
circ uit theory continued.
transient) the output stage is allowed to drive even higher a mounts of current. This is ac complished by AC dividers consisting of R26, R76, C 16 and R75, R87, C21. C 17 and C 20 provide for high frequency stability of the limiter, and D22 and D25 isolate this stage from the rest of the amp, when not being used.

It's important that the output stage never saturates. When an output stage saturates, it slows down, resulting in higher distortion (bad) and common mode conduction (real bad because this can blow-up a poweramp). Common mode conduction is where both the positive and negative half of the darlington conduct at the same time, not a good thing! To prevent saturation, a Baker clamp is employed. For positive going signals, as the amplifier clips, Q52 and D1 conduct and hold the Voltage at the collector of Q6, 2 diode dropsabove the +64 V supply. D6, D5, D23, the drop a cross Q5-BE, and Q4-BE, result in the voltage on the base of the output parts being three diode drops $(1.8 \mathrm{~V})$ below the +64 V rail. Since the base of the outputs can never be any greater than 1.8 V below the collector, the output stage can not saturate. The negative Baker clamp functionsthe same way.

The second stage voltage gain is set via R104, R105, R80, R79, R81, and R82. The gain is somewhat less than the simple ratio of these parts due to the limited transconductance of Q42 and Q43. On the positive half, Q41 acts as a unity gain buffer and it's output drives Q42. The output of Q42 feeds common base amp Q6 forming a cascode, with D7, C10 R2 and R50 being biasing and decoupling elements. The negative half, made up of Q44, Q43 and Q8, is a mirror of the positive half. The topology of this stage has intrinsic ally lower distortion, better high frequency response, and substantially better defined voltage gain, than many othercommonly used topologies. The quiescent current in both of these stages is determined by the voltage drop across R100 and R109. D41-D44 allow the second stage quiesc ent current to remain constant, as temperature changes.

The first stage is fully complimentary and differential in design. O verall input to the system, and all feedback for the a mplifier occ urs in this stage. Differential pairs Q56, Q57, Q58 and Q59 are cascode coupled to the second stage via Q40 and Q45. The gain of the first stage is determined by the transc onductance of the differential pairs, R121, R122, R126, R127, R100 and R109. Current to this stage is provided by constant current sources Q66 and Q65. The current sources can be switched on and off in tandem via Q67, which allows the amp to be tumed on or muted silently (no pop presented to speaker outputs). D65 and D64 linea nize these current sources with temperature. Again this first stage of the amplifier is quite linear, has good frequency response, haswell defined gain, and hasexcellent common mode and powersupply rejection. All these things are quite important, as negative feedback can only provide optimum correction if it is summed in a very linear stage.

Open loop pole number one is determined by C18, C 19, and R79-82. The second open loop pole is determined by C32, R102, R100, C33, R107, and R109. The open loop zero is determined by C32, R102, C33, and R107. The final loop compensation is the feedback zero composed of C49 and R145. Closed loop gain of the amp is 27 and is set by R123 and R145. C 48 and R123 roll-off the amplifier's gain at low frequencies. At DC, the amp has a closed loop gain of 1.

The a mplifier has well defined open loop gain. The loop compensation is dominated by the above mentioned parts, and is not sensitive to circuit parasitics. The voltage amp has intrinsic ally low distortion. The high current gain of the output stage effectively isolates the load from the voltage amplifier. Consequently Mackie can get nice low distortion numbers, with less negative feedback than the competition. Lessfeedback, and good frequency response, results in a very stable amplifier (it won't oscillate).

To further insure stability of the amplifier, the output node is de-coupled from the load via $L 5$, R187-R189. The values of these parts have also been selected to ensure good transient response (i.e. square waves look like square waves, so the amplifier doesn't sound unnaturally bright). The output stage also sees a defined load at high frequencies, made up of R181 and C 75. D17 and D18 protect the output stage from situations when energy from the speaker (counter-EMF in the speaker's voice coil) might try and drive the output note above the +64 V supply or below the -64V supply. These partsare referred to asflybackdiodes.

All things above, meld together to make for a better sounding amplifier when not driven into clipping. When driven into clipping, the above mentioned Bakerclamps, and the smaller amount of negative feedback, also allows the amplifier to sound better than the competition. After coming out of clipping the amp immediately retums to nomal operation, faithfully following the musical input signal. Other amps, of more conventional design, take a finite amount of time to "catch up" before they begin to follow the input signal again. Mackie refers to this phenomenon as "latching". The "FR-Fast Recovery series" isn't just marketing buzzwords: It really does result in a more reliable, and better sounding product, with "good" performance numbers.

The power a mp's limiter circ uit is implemented with an LED / LDR (Light dependant resistor) opto-coupler, and the Bakerclamps. Refering to the positive Baker clamp: when the amplifier clips, D1 and Q52 forward bias. This curent originating at the collector of Q6 also flows out the collector of Q52. The current flows through the LED in the opto. (U2A) which in tum decreases the LDR's resistance (U2B). Since R146 and U2B form a voltage divider, as U2B's resistance dec reases, the drive to the poweramp decreases (limited). Negative clipping activates the LED in the same fashion through Q53. The limiter is defeated by shorting together LIM1(1) and LM1 (2) at SW3 whic h shorts ac ross the U2A LED.

In the event that the power amplifier does fail, Crow-bars protect the speakers connected to the output teminals. Refeming to Page-3 of the 212 schematic: Q74 is tumed on a few hundred millisecondsafter DC is present on the output line. When DC is present, R140 and R169 begin to charge C68. When the voltage ac ross C68 gets to around 10V, silicon bilateral switch Q72 tums on, dumping current through R183 to the Gate of Q74, tuming on Q74, and shorting the output line to ground.

THERMAL MANAGEMENT

The $\mathrm{M} \cdot 800$ T-Design Heatsink/Fan cools output devic es evenly, a nd does not collect dust on the circuitry. The fan operates at two speeds, controlled by the amplifier. An LM35DZ mounted in the center of the heatsink, provides temperature information to the fan control and overtemp circ uits. There is also a themal breaker in the powertransformer.

FAN CONTROL CIRCUIT

The fan runs at two different speeds. When running fast, around 27 V is across the fan. Voltage is supplied to the fan by follower Q14 and the reference for this follower is derived from D59, D46 and R137. When running slow, a round 15 V is on the fan. In slow mode Q60 tums-on, acting as a saturated switch, shorting out D59.

The fan speed increases in the following instances:

- At tum on. To give the Fan an extra "goose" to get it spinning. At tum on Pin-11 of U5 (non inverting input) is lower that pin-10 (inverting). This makes the output (Pin-13) low and Q60 tums off. The fan runsfast. A half second later, C82 chargesenough to allow pin-13 to go high, tuming on Q60 and making the fan run slow.

fan control continued.
The fan speed increases in the following instances:
- When the heatsink is a bove $86^{\circ} \mathrm{C}$. Comparator U5B's output switc hes low when the heatsink-mounted temperature sensor's soutput voltage increasesto $860 \mathrm{mV}\left(86^{\circ} \mathrm{C}\right)$. The output of U5B is coupled to the fan controller via D80. Note: hysteresis for the overtemp detector is supplied by R177 and R179, so that the heatsink temperature must dec rease to $61^{\circ} \mathrm{C}(610 \mathrm{mV})$ before the circuit resets and the fan begins to run slow.
- When the amplifier is playing loud enough and the heatsink temperature is above $60^{\circ} \mathrm{C}$. When the temperature is above $60^{\circ} \mathrm{C}$, the voltage at U4-7 is above 600 mV . This "opens" output U4-1. When program material is suffic ient to drive U4-5 above 5V (D75 and D76 charging C70 through R193) output pin U4-2 also opens, and R174 is allowed to pull this line high. With U4-10 high, the output of U4-13 goes low, allowing the fan to run fast.

AMPLIFIER MUTING

The amplifier is muted in the following instances:

- At tum on. C79 is low at tum on and is charged by R195. When U4-8 goes above U4-9 (after about 4 seconds) output pin U4-14 goes low, tuming on the power amps.
- When the heatsink rises above $86^{\circ} \mathrm{C}$. U5-2 goes low and this is coupled to C79 Via D79. 4 sec onds after the heatsink cools to $61^{\circ} \mathrm{C}, \mathrm{C} 79 \mathrm{charges}$ enough to again un-mute the amps.
- When the AC supply voltage goes below 65% of nominal. At high voltage levels D67 is able to charge C60 enough to reverse bias Q68. As the AC input voltage is reduced to 65% or less, R155 is no longer able to offset the current through R154. This tums on Q 68 which again resets C 79 and mutes the amps.
- When the powertransformer's core gets above $130^{\circ} \mathrm{C}$. A themostat in the transformer shorts to ground (J 2-2). With J 2-2 at ground potential, Current flows through R156 which tums on Q68 and mutes the amps.

Quick Parts

avacrile M800 SERVICE MANUAL

Parts	Numbering guide
$040-$	Cables
$055-$	Finished PCBAssy
$100-$	Potsand resistors
200-	Capacitors
$300-$	Semiconductors
$400-$	Jacks/Connectors
$500-$	Switches
$510-$	Fuses
$550-$	Chassis Metalwork
$600-$	Transformers
$601-$	Inductors
$610-$	Wiresand Cables
$640-$	AC line cords
$700-$	Hardware
$760-$	Knobs/Plastic
$770-$	Fans
$790-$	Misc./Packing
$800-$	Printed Material
$860-$	EPROM

PART\#	DESCRIPTION	PAGES
$090-107-00$	Master Parts	A-2
080-105-00	Heatsink subassembly	A-3
$055-212-00$	Main Board	A-4
$055-218-00$	Display Board	A-6

Click on any item to open that page

Components noted with this symbol shall be replaced only by the component specified.
This is required to mainta in product safety.

M800 SERVICE MANUAL

Master Parts List

Part \#	Description	Rev	Qty	Notes
090-107-00	M800 AMP 120V	A3 A1	1	
090-107-01	M800 AMP 230V	A1	1	
090-107-02	M800 AMP 100V	A2	1	
070-107-XX	BOMSHEL M800	A	1	
040-240-00	RIB 28GA 14C . 100 16IN	A	1	
040-242-00	DIS 18G 1010 GRYL 5IN LQD	A	1	
040-312-00	DIS 18GA 1010 BRN 7.75 QK	A	1	
040-313-00	DIS 18GA 1010 BLU 7.75 QK	A	1	
055-218-00-01	PCB ASSY DISPLAY M800	A A1	1	See page A-6
080-035-00	PWR SW HARNESS - AMP	A	1	
080-105-00	SA HEATSINK M800	A1 A1	1	See next page
- -080-135-00	SA IEC ASSY M800	A	1	
! -500-022-00	SW RCKR ILLUMINATED	A	1	
- 550-249-00	PLATE XFMR .335IDX4.5280D	1	AR	
550-380-00	SCR CHASSIS M800 AMP	A	1	
550-381-00	PNT LEFT SIDE M800	A	1	
550-382-00	PNTTOP COVER M 800 AMP	A	1	
550-560-00	PNTRTSIDE M 800	A	1	
550-562-00	BRKTPLENUM M800	A	1	
551-029-50	EXTR SCRN DSPLY BZ M 800	D	1	
700-005-00	SEMS 8-32X1/2 PHP BLKZC	A	4	
700-011-00	MCH 4-40X1/4 BTNSKTBLKOX	A	4	
700-028-01	SEMS 6-32X5/16 PHP BLKZC	B	24	
700-033-04	TF 8-32X3/8 PHP BLKZC	A	4	
700-041-04	MCH 6-32X3/8 FL 100DG BLK	A	7	
700-085-03	SCR PHP M3X6 STL BLK ZC	A	4	
700-086-00	TF 6-32X3/8 FL 100DG BLK	A	4	
700-106-00	BOLTHEX 5/16X23/4 ZC GD5	A	1	
701-016-00	5-20X5/16 PHPII TYP B BLK	A	8	
705-001-00	KEPNUT6-32	A	6	
705-008-00	NUTLOCK 8-32	A	4	
705-015-00	NUTSLOTNCKL	A	2	
705-019-00	NUTSTOVER LOCK 5/16X18	A	1	
705-029-00	NUT HEX W/ 400-287-00	A	AR	
710-001-00	WA SH STAR 3/8 OD . 02 THK	A	2	
710-019-00	WASH FIBRE BLK	A	2	
710-024-00	WASH FLAT 5/16 HARD (USS)	A	2	
710-046-00	WASH FLAT W/ 400-287-00	A	AR	
720-014-00	TAPE ELEPHANTSKIN 1.25X2	A	1	
720-015-00	TAPE ELEPHANTSKIN.75X2.5	A	1	
730-016-00	LOC TITE 242	A	AR	
730-025-00	LOCTITE 222	A	AR	
740-003-00	TYRAP 8IN BLK	A	1	
750-001-00	BUMPON ROUND BLK .63X. 31	A	4	
760-061-00	KNOB VOLUME AMPS	A	2	
760-110-00	KNOB 9MM BLU/ LG HTG REY	A	4	
! -770-005-00	FAN 80MM 24VDC	A	1	
. 780-111-00	WASH RUB (W/TRANSFORMER)	A	2	
790-002-00	BAG POLY 12×18 2MIL	A	1	
790-022-00	POLY-SHEET 52CF X 26 4MIL	A	1	
800-092-00	BOX M800	A	1	
800-133-00	SLEEVE M800	A	1	
810-056-00	INSTTOP/BOTTOM - AMP OWN MANUAL M800 ADDENDUM		2	
820-079-02			1	

Part \#	DesC ription	Rev	Qty	Notes
$-080-139-00$	SA XFMR M800 $120 \mathrm{~V} / 60 \mathrm{HZ}$	C2	1	120 v units
$-080-139-01$	SA XFMR M800 $240 \mathrm{~V} / 50 \mathrm{HZ}$	C1	1	240 v units
$-080-139-02$	SA XFMR M800 100V/50HZ	C1	1	100 v units
$510-028-00$	FUSE SB 10A 3AB $1 / 4 \mathrm{XI}-1 / 4$	A	1	120 v units
$510-057-00$	FUSE SB 3AG 5AMP	A	1	230 v units
$-510-018-00$	FUSE SB 15A 3AB 1/4X1-1/4	A	1	100 v units
$-640-001-00$	LC IEC SJ T10A/125V 6FT	D	1	120 v units

080-105-00 Heatsink subassembly

Part $\#$	DesC ription	Rev	Qty	Notes
$080-105-00$	SA HEATSINK M800	A1 A1	1	
$055-212-00-02$	PCB ASSY M800	C3C2	1	See page A-4
$301-022-00$	DIO PWR BRIDGE 25A 400V Q	A	1	
$-410-016-00$	SILPAD DIEC UTK6 M800	A	1	
$550-396-00$	BRKTTO-92 VERTM800	A	1	
550-563-00	BRKT XSTR CLIP M800	A	2	
551-066-00	EXTR FAB HEATSINK M800	A1	1	
700-035-04	TF 6-32X3/8 PHP C LRZC	A	6	
700-087-00	TF 4-40X5/8 TORX 1/4 WASH	A	4	
700-088-00	TF 4-40X5/8 TORX 3/8 WASH	A	12	
700-117-00	TF 10-32-3/4 PANHD TORX	A	1	
710-005-00	WASHER INTSTAR NO.6 BLK	A	6	
710-036-00	WASH FLT STL NO.4 .030THK	A	3	
730-001-00	THERMALJ OINTCOMPOUND	A	AR (as required)	
730-003-00	ADHESIVE INDSTRL 3M 4799	A	AR	

040-295-00
040-296-00
040-297-00
040-347-00
100-017-00
110-060-00
110-065-00
110-079-00
115-427-00
123-045-00
123-056-00
123-112-00
125-032-00
130-053-00
130-072-00 130-073-00 140-025-00 140-051-00 140-064-00 140-066-00 140-074-00 140-078-00 140-082-00 140-085-00 140-087-00 140-089-00 140-095-00 140-096-00 140-101-00 140-104-00 140-111-00 140-118-00 140-119-00 140-123-00

140-137-00 140-147-00 145-115-00 145-182-00 145-226-00

145-239-00 145-285-00 145-318-00 145-331-00

145-389-00
145-397-00 145-427-00 150-009-00 150-025-00 150-037-00 150-045-00 150-066-00
WIRE 18AWG WHTTERM/QD

J1 J 3
J 8
J 9
J 33
R183-184
R27-28 R36-37 R69-70 R73-74
R140-141 R169-170
R193
R145 R165
R187-192
R181-182
R137-139
R12-17 R53-58
R51 R60
R227 R229
R223 R225
R78 R83 R92 R97
R185
R197
R3 R8 R19 R22
R171 R186 R198
R199 R201 R207 R230
R212 R214
R176
R20-21
R203 R205 R218 R220 R224 R228 R231-233
R172 R208 R210
R180
R18 R23 R79-82 R85 R90 R93-96
R151 R159 R173
R152 R158 R174-175 R179 R196
R178
R154
R50 R52 R59 R61 R150 R153 R155 R157
R160 R194
R177 R195
R216-217
R121-122 R126-127 R129-130 R134-135
R102 R107 R112 R117
R76-77 R86-89 R98-99 R104-105 R114
R116 R125 R131
R2 R5-6 R9 R84 R91 R101 R108 R111 R118
R123 R133
R1 R219 R221-222 R226
R100 R103 R106 R109-110 R113 R115
R119-120 R136 R142 R146-147 R163-164
R168
R128 R143-144 R148-149 R156 R161-162
R166-167 R209 R211 R213 R215
R4 R7 R200 R202 R204 R206
R124 R132
R11 R24-25 R34-35 R39 R63-67 R71
R10 R31
R29 R32 R40-41 R43 R46 R48-49 R62 R72
R30 R33 R44 R47
R26 R38 R42 R45 R68 R75

	PART NO.	DESC RIPTIO N	VALUE	REFERENCE DESIG NATORS
	200-007-02	CAPACITORMYLARTER	0.01	C8C46
	200-015-02	CAPACITORMYLART\&R	0.0047	C91-94
介	200-023-00	CAPACTOR, POLYBOX	.001uF 20\%	C89 C97
1.	-200-024-00	CAPACTOR, POLY BOX	.01uF 20\%	C74
	200-025-02	CAPACITORMYLART\&R	0.56	C90 C 100-101 C114
	200-027-02	PLY .1UF 5\% 100V TR	0.1 5\%	C 30-31 C 35-36 C40-45
	200-041-00	PLY/FL . 01 UF 10\% 250V	0.01 10\%	C 75 C78
	200-046-02	PLY FILM 180PF 5\% 630V TR	180pF 5\%	C 18-19 C25-26
	212-001-00	CAPACITORCERAMIC SMT	0.01 10\%	$\begin{aligned} & \text { C 1-2 C5 C9-10 C } 13 \text { C } 17 \text { C } 20 \text { C } 24 \text { C } 27 \\ & \text { C } 71-72 \text { C } 81 \text { C } 83 \text { C } 86 \text { C } 88 \text { C } 98-99 \text { C } 103 \\ & \text { C } 112 \end{aligned}$
	212-002-00	CER 22PF 5\% 100V COG SM	22PF 5\%	C 49 C 54
	212-004-00	CAPACITORCERAMIC SMT	220PF 5\%	C92 C95 C 102 C 104 C 107-109 C 113
	212-006-00	CAPACITORCERAMIC SMT	470PF 5\%	C50 C53
	212-009-00	CER 47PF 5\% 50V NPO SM	47PF 5\%	C85C87 C93C96
	212-020-00	CER 750PF 5\% 50V NPO SM	750PF	С32-33 С $38-39$
	212-023-00	CER .001UF 10\% 50V NPO SM	0.001 10\%	C3C6C11-12 C57 C59 C63 C 65
	212-025-00	CAP CER .1UF 50V 10\% X7R	.1UF 10\%	C 4 C 7 C 22 C 29 C 47 C $51-52$ C 56 C $76-77$ C 80 C 84
	220-002-02	LYT 47UF 20\% 25V RAD TR	47UF 20\%	C 105-106 C 110-111
	220-004-02	CAPACITORLYTIC RADIALTER	470UF 10\%	C 48 C55
	220-027-02	LYT 10UF 20\% 50V RAD TR	10UF 10\%	C 14-15 C58 C 61-62 C64 C 70 C 73 C 79 C 82
(large caps)	220-033-00	LYT 10000UF 20\% 80V RAD	B 2	C66, C67 (on main board for 120v units)
	220-035-00	LYT 12000UF 20\% 80V RAD	A 2	C66, C67 (for 230 v and 100v units)
	220-034-00	CAPACITORLYTIC RADIAL	0.47UF 20\%	C60
	220-039-00	CAPACITORLYTIC RADIAL	1000UF 20\%	C34C37
	220-049-02	LYT 100UF 10V 20\% RAD BIP	100uF 20\%	C16 C21 C 23 C 28 C68-69
	300-003-00	DIODE SIGNAL SMD	DL4148	D5-6 D8-9 D11-12 D14-15 D21-32 D40-45 D48-58 D60-66 D68-69 D74 D77-88
	300-010-00	DIODE SIGNAL SMD	RLS245	D1-4 D67 D75-76
	301-010-00	DIODE POWER	1N5404	D17-20
	301-017-00	THY MBS4992	M BS4992	Q72-73
	301-021-00	DIO PWR DL4004 SM	DL4004	D33-39 D47
\square	-301-026-00	TRIAC 200V 40A	MAC 224A4	Q $74-75$
	302-003-03	DIO ZEN DL4745 16V 1W	DL4745A	D70-73
	302-013-03	DIO \mathbb{T} N DL5242 12V SM	DL5242B	D59
	302-016-03	DIO \mathbb{E} N DL5234B 6.2 V SM	DL5234B	D7 D10 D13 D16
	302-022-03	DIO	DL4744A	D46
	310-028-00	TRANSISTOR PNP	2SB940A	Q16
	310-029-00	TRANSISTO R NPN	2SD1264A	Q14-15
	310-033-00	TRANSISTOR PNP	MJ L21193	Q11-13 Q17-19
	310-034-00	TRANSISTO R NPN	MJ L21194	Q1-3 Q27-29
	310-035-00	TRANSISTOR PNP	2SA1478	Q6Q9 Q21 Q24
	310-036-00	TRANSISTOR NPN	2SC 3788	Q5 Q8Q22 Q25
	310-042-00	TRANSISTOR NPN	MJE15032	Q4Q26
	310-043-00	TRANSISTOR PNP	MJ E15033	Q10 Q20
	310-049-00	TRANSISTOR PNP	2SA 794A	Q7 Q23
	311-001-00	XSTR NPN IMBT4401 SM	IMBT4401	Q30-32 Q 39 Q60 Q65 Q68 Q 71
	311-002-00	X-SISTOR PNP SMD	IMBT4403	Q35-36 Q66-67 Q69-70
	311-007-00	XSTR PNP 2SA1415	2SA1415	Q33 Q38 Q42 Q49
	311-008-00	TRANSISTOR NPN SMD	2SC 3645	Q34 Q37 Q43 Q48
	311-009-00	TRANSISTOR PNP SMD	2SA1552	Q52 Q55
	311-010-00	XSTR NPN 2SC 4027-FA	2SC 4027	Q53-54
	311-019-00	TRANSISTOR PNP SMD	2SB792	Q41 Q 45-46 Q50 Q58-59 Q61-62
	311-020-00	TRANSISTOR NPN SMD	2SD814	Q40 Q44 Q47 Q51 Q 56-57 Q63-64
	320-012-00	OPAMP NJ M4560M	NJ M4560M	U6-8
	323-002-00	I.C. QUADCOMPARATORSMD	LM339	U4-5

Components noted with this symbol shall be replaced only by the component specified. A-5 This is required to mainta in product safety.

M800 SERVICE MANUAL
PART NO. DESC RIPTION VALUE REFERENCE DESIGNATORS

329-012-00	OPTO-ISOLATOR,LED/CDS VTL5C 10	U2-3	
329-014-00	IC, DEG C TEMPERATURESENSOR LM35DZ	U1	
400-061-00	CONNECTOR HDR STR 2P. 100×1	J 7	
400-079-00	CONNECTOR STR LCK SHRD 14P. 100×2	J 34	
400-118-00	CONNECTORJACK1/4 HORIZPC MOUNTSUM	J 39 J 41	
400-129-00	FUSE CUP PC MT. 25 DIA	Z306-307	
400-131-00	CON XLR PC MTG HORIZFMLSML NC3FAH1O	J 42 J 45	
400-133-00	HEADER, 2X3, MATE-N-LOCK 11A 600V	J2	
400-143-00	CONN, HDR, 3-PIN, UN-SHROUDED,	J 11-12	
400-171-00	HDR 2P .100X1 STR	J 5-6	(bias test points)
400-173-00	CONN QUICK DISC . 250 W/STABLE-LOK TABS	J 4 J 10 J 13-18	
400-175-00	CONN XLR 3PIN MALE RTA, A-SERIES	J 43-44	
400-237-00	CONNECTOR, QUAD BANANA	J 40	
400-287-00	CONNECTORJACK1/4RTA STEREO PC MOUNT	J 37-38	
450-212-00	PCB, MAIN, M-800	Z304	
500-042-00	SWITCH, SLIDE 4P3T	SW1-4	
550-392-00	SHIELD, GROUND M800	M1	
601-006-00	INDUCTOR,AIRCORE 1uH 10\%	L5-6	
601-008-00	INDUCTOR 10uH	L1-4	
730-038-00	JETMELT3M 3779-Q A	AR	

218a 055-218-00 REV A Display pcb assembly

PART NO. DESC RIPTION VALUE REFERENCE DESIGNATORS

130-070-00	POTRTY 5K LN 9MM 21DET	5KB	20\%	R2 R25	(gain pots)
140-065-00	RESISTO R CF	470	5\%	R26 R31	
140-068-00	RESISTOR TF SMT	620	5\%	R7 R17	
140-076-00	RESISTOR CF	1K3	5\%	R19	
140-081-00	RESISTO R CF	2K2	5\%	R1 R24	
140-083-00	RESISTOR TF SMT	2K7	5\%	R13-14	
140-087-00	RESISTORCF	3K9	5\%	R11	
140-092-00	RESISTOR CF	6K2	5\%	R10	
140-094-00	RESISTOR CF	7K5	5\%	R12	
145-338-00	RESISTOR MF SMT	2K94	1\%	R8	
145-389-00	RESISTOR MF SMT	10K0	1\%	R5 R16 R18 R23	
145-443-00	RES MF SM . 1 W 1\% 36K5 OHM	36K5	1\%	R6 R22	
145-454-00	RESISTOR MF SMT	47K5	1\%	R28 R30 R32-33	
145-458-00	RES MF SM .1W 1\% 52K3 OHM	52K3	1\%	R15	
145-485-00	RESISTOR MF	100K	1\%	R3 R21	
145-505-00	RES MF SM . 1 W 1\% 162K OHM	162K	1\%	R9	
145-522-00	RES MF SM . 1 W 1\% 243K OHM	243K	1\%	R27 R29	
145-547-00	RESISTOR MF SMT	442K	1\%	R4 R20	
212-001-00	CAPACITORCERAMIC SMT	0.01	10\%	C1C3C6C9-1	C 17-18
212-010-00	CAPACITORCERAMIC SMT	.1UF	-400	C7-8 C 12-14	
220-002-02	CAPACITORLYTIC RADIALT\&R	47UF	20\%	C2C4-5C15	
220-014-00	CAPACITORLYTIC RADIALKS	2.2UF	10\%	C16C19	
300-003-00	DIODE SIGNAL SMD	DL4148		D1 D8-9 D16-20	
- -304-070-00	LED RED TI W/. 550 SPCR	RED		D2 D10 D15	(OL and TEMP LEDS)
! -304-071-00	LED GRN T1 W/ 5550 SPCR	GRN		D3-7 D11-14	(-20.-9,-6,-3, and NORM)
311-002-00	X-SISTOR PNP SMD	IMBT44		Q1-2	
320-012-00	OPAMP NJ M 4560 M	NJ M45	60M	U1 U5	
323-002-00	I.C. QUAD COMPARATORSMD	LM339		U2-4	
400-079-00	CONNECTOR STR LCK SHRD 14P	100×2		J1	
450-218-00	PCB, M800 DISPLAY			Z8	
706-033-08	STANDOFF, SWAGE, 4-40 X . 665			H1-4	

Components noted with this symbol shall be replaced only by the component specified. This is required to maintain product safety.

