TEEEVISIONCOLOUR

CHASSIS 11AK19

FOR ALL MODELS

DO NOT CHANGE ANY MODULE UNLESS THE SET IS SWITCH OFF

The mains supply side of the switch mode power supply transformer is live.
Use an isolating transformer.
The receivers fulfill completely the safety requirements.

Safety precautions:

Servicing of this TV should only be carried out by a qualified person.

- Components marked with the warning symbol on the circuit diagram are critical for safety and must only be replaced with an identical component.
- Power resistor and fusable resistors must be mounted in an identical manner to the original component.
- When servicing this TV, check that the EHT does not exceed 26 kV .

TV Set switched off:

Make short-circuit between HV-CRT clip and CRT ground layer.
Short C804 (150mF) before changing IC802 or other components in primary side of SMPS.

Measurements:

Voltage readings and oscilloscope traces are measured under following conditions.
Antenna signal 60dB from colourbar generator. (100\% white, 75% colour saturation)
Brightness, contrast, colour set for a normal picture.
Mains supply, 220VAC, 50 Hz .
PERI-TV SOCKET

SCART 1 (SC050)

1	Audio right output	$0.5 \mathrm{Vrms} / 1 \mathrm{~K}$
2	Audio right input	$0.5 \mathrm{Vrms} / 10 \mathrm{~K}$
3	Audio left output	$0.5 \mathrm{Vrms} / 1 \mathrm{~K}$
4	Ground AF	
5	Ground Blue	
6	Audio left input	$0.5 \mathrm{Vrms} / 10 \mathrm{~K}$
7	Blue input	$0.7 \mathrm{Vpp} / 750 \mathrm{hm}$
8	AV switching input	$0-12 \mathrm{VDC} / 10 \mathrm{~K}$
9	Ground Green	
10	-	
11	Green input	$0.7 \mathrm{Vpp} / 75 \mathrm{ohm}$
12	-	
13	Ground Red	
14	Ground Blanking	
15	Red input	$0.7 \mathrm{Vpp} / 750 \mathrm{hm}$
16	Blanking input	$0-0.4 \mathrm{VDC}, 1-3 \mathrm{VDC} / 75 \mathrm{ohm}$
17	Ground CVS output	
18	Ground CVS input	
19	CVS output	$1 \mathrm{Vpp} / 750 \mathrm{hm}$
20	CVS input	$1 \mathrm{Vpp} / 750 \mathrm{hm}$
21	Ground	

SCART 2 (SC051)

SCART 2 (SC051)	
Audio right output	$0.5 \mathrm{Vrms} / 1 \mathrm{~K}$
Audio right input	$0.5 \mathrm{Vrms} / 10 \mathrm{~K}$
Audio left output	$0.5 \mathrm{Vrms} / 1 \mathrm{~K}$
Ground AF	
Ground Blue	
Audio left input	$0.5 \mathrm{Vrms} / 10 \mathrm{~K}$
Blue input	$0.7 \mathrm{Vpp} / 750 \mathrm{hm}$
AV switching input	$0-12 \mathrm{VDC} / 10 \mathrm{~K}$
Ground Green	
-	
-	
Ground Red	
Ground Blanking	
-	
Ground CVS output	
Ground CVS input	
CVS output	$1 \mathrm{Vpp} / 75 \mathrm{ohm}$
CVS input	$1 \mathrm{Vpp} / 75 \mathrm{ohm}$
Ground	

* * ALL WIRES TO FRONT PANEL \& LOUD SPEAKERS MUST BE ZIP-TIED TOGETHER AFTER ANY KIND OF REPAIREMENT

1. INTRODUCTION

11 AK19 is a $90 \varnothing$ and $110 ø$ chassis capable of driving $20-21^{\prime \prime}, 24^{\prime \prime}, 25^{\prime \prime}, 28-29^{\prime \prime}, 32^{\prime \prime}, 33^{\prime \prime}$ tubes at appropriate currents.
The chassis is capable of working in both PAL and SECAM. The sound system is capable of giving 6watts
RMS output into a load of 8ohms.
One 8 page simple TELETEXT, TOPTEXT and FASTEXT is provided.
The chassis is equipped with 21-pin scart connectors which can accept via scart the SVHS format from VCRs so equipped.

2. SMALL SIGNAL PART WITH TDA884X

The TDA8840/8842/8844 combine all small signal functions required for a colour TV receiver, except tuning.

2.1. Vision IF amplifier

The IF-amplifier contains 3 AC-coupled control stages with a total gain control range which is higher than 66 dB .
The sensitivity of the circuit is comparable with that of modern IF-IC' s. The video signal is demodulated by means of a PLL carrier regenerator. This circuit contains a frequency detector and a phase detector. The AFC output is obtained by using the VCO control voltage of the PLL and can be read via the $I^{2} \mathrm{C}$-bus. For fast search tuning systems the window of the AFC can be increased with a factor 3 . The setting is realised with the AFW bit.
Depending on the type the AGC-detector operates on top-sync level (single standard versions) or on top sync and top white-level (multi standard versions). The demodulation polarity is switched via the $I^{2} \mathrm{C}$-bus. The AGC detector time-constant capacitor is connected externally. This mainly because of the flexibility of the application. The time-constant of the AGC system during positive
modulation is rather long to avoid visible variations of the signal amplitude. To improve the speed of the AGC system a circuit has been included which detects whether the AGC detector is activated every frame period. When during 3 frame periods no action is detected the speed of the system is increased. For signals without peak white information the system switches automatically to a gated black level AGC. Because a black level clamp pulse is required for this way of operation the circuit will only switch to black level AGC in the internal mode.
The circuits contain a video identification circuit which is independent of the synchronisation circuit. Therefore search tuning is possible when the display section of the receiver is used as a monitor. The ident output is supplied to the tuning system via the $I^{2} \mathrm{C}$-bus. The video ident circuit can be made less sensitive by means of the STM bit. This mode can be used during search tuning to avoid that the tuning system will stop at very weak input signals.

2.2. Video Switches

The circuits have two CVBS inputs (internal and external CVBS) and Y/C input. When the Y/C input is not required the Y input can be used as third CVBS input. The selection of the various sources is made via the $I^{2} \mathrm{C}$-bus. The circuit has one CVBS output.

2.3. Sound Circuit

The sound band pass and trap filters have to be connected externally. The filtered intercarrier signal is fed to a limiter circuit and is demodulated by means of a PLL demodulator. This PLL circuit tunes itself automatically to the incoming carrier signal so that no adjustment is required.
The volume is controlled via the $I^{2} \mathrm{C}$-bus. The deemphasis capacitor has to be connected externally. The non-controlled audio signal can be obtained from this pin. The FM demodulator can be muted via the $I^{2} \mathrm{C}$-bus. This function can be used to switch-off the sound during a channel change so that high output peaks are prevented. The TDA8840/8842 contain an automatic volume levelling (AVL) circuit which automatically stabilises the audio output signal to a certain level which can be set by the viewer by means of the volume control. This function prevents big audio output fluctuations due to variations of the modulation depth of the transmitter. The AVL function can be activated via the $I^{2} \mathrm{C}$-bus.

2.4. Synchronisation circuit

The sync seperator is preceded by a controlled amplifier which adjusts the sync pulse amplitude to a fixed level. These pulses are fed to the slicing stage which is operating at 50% of the amplitude. The separated sync pulses are fed to the first phase detector and to the coincidence detector. This coincidence detector is used to detect whether the line oscillator is synchronised and can also be used for transmitter identification. The first PLL has a very high statical steepness so that the phase of the picture is independent of the line frequency.
The horizontal output signal is generated by means of an oscillator which is running at twice the line frequency. Its frequency is divided by 2 to lock the first control loop to the incoming signal. The time-constant of the loop can be forced by the $\mathrm{I}^{2} \mathrm{C}$-bus (fast or slow). If required the IC can select the time-constant depending on the noise content of the incoming video signal.
To protect the horizontal output transistor, the horizontal drive is immediately switched off when a power-on-reset is detected.
The drive signal is switched-on again when the normal switch-on procedure is followed.
Via the $I^{2} \mathrm{C}$-bus, adjustments can be made of the horizontal and vertical geometry. The vertical sawtooth generator drives the vertical output drive circuit which has a differrential output current. For the EW drive a single ended current output is available.
When the horizontal scan is reduced to display $4: 3$ pictures on a $16: 9$ picture tube an accurate video blanking can be switched on to obtain well defined edges on the screen.
Overvoltage conditions can be detected via the EHT tracking pin. When an overvoltage condition is detected the horizontal output drive signal will be switched-off via the slow stop procedure but it is also possible that the drive is not switched-off and that just a protection indication is given in the $I^{2} \mathrm{C}$-bus output byte. The choice is made via the input bit PRD.

2.5. Chroma and Luminance processing

The circuits contain a chroma bandpass and trap circuit. The filters are realised by means of gyrator circuits and they are automatically calibrated by comparing the tuning frequency with the X-tal frequency of the decoder.
The luminance delay line and the delay for the peaking circuit are also realised by means of gyrator circuits.
The centre frequency of the chroma bandpass filter is switchable via the $I^{2} \mathrm{C}$-bus so that the performance can be optimised for
"front-end" signals and external CVBS signals.
During SECAM reception the centre frequency of the chroma trap is reduced to get a better suppression of the SECAM carrier frequencies.

2.6. Colour Decoder

The decoder contains an alignment-free X-tal oscillator, a killer circuit and two colour difference demodulators. The 90° phaseshift for the reference signal is made internally.
The IC contains an automatic colour limiting (ACL) circuit which prevents that oversaturation occurs when signals with a high chroma-to-burst ratio are received. The ACL circuit is designed such that it only reduces the chroma signal and not the burst signal. This has the advantage that the colour sensitivity is not affected by this function.
The base-band delay line is integrated in the PAL/SECAM IC' s.
The demodulated colour difference signals are internally supplied to the delay line. The matrixed signals are externally available.
The colour difference matrix switches automatically between
PAL/SECAM and NTSC, however, it is also possible to fix the matrix in the PAL standard.
Which colour standard the IC can decode depends on the external X-tals. The X-tal to be connected to pin 34 must have a frequency of 3.5 MHz (NTSC-M, PAL-M or PAL-N) and pin 35 can handle X-tals with a frequency of 4.4 and 3.5 MHz . To prevent calibration problems of the horizontal oscillator the external switching between the 2 X -tals should be carried out when the oscillator is forced to pin 35. For a reliable calibration of the horizontal oscillator it is very important that the X-tal indication bits (XA and XB) are not corrupted. For this reason the X-tal bits can be read in the output bytes so that the software can check the $I^{2} \mathrm{C}$-bus transmissinn.

2.7. RGB output circuit and black-current stabilisation

The colour-difference signals are matrixed with the luminance signal to obtain the RGB-signals. The TDA 884X device has one linear RGB input. This RGB signal can be controlled on contrast and brightness.
The output signal has an amplitude of about 2 volts black-to-white at nominal input signals and nominal settings of the controls. To increase the flexibility of the IC it is possible to insert OSD and/or teletext signals directly at the RGB outputs.
This insertion mode is controlled via the insertion input (pin 26 in the S-DIP 56- and pin 38 in the QFP-64 level). This blanking action at the RGB outputs has some delay which must be compansated externally.
To obtain an accurate biasing of the picture tube a "Continuous Cathode Calibration" circuit has been developed.
This function is realised by means of a 2-point black level stabilisation circuit.
When the TV receiver is switched-on, the RGB output signals are blanked and the black current loop will try to set the right picture tube bias levels.Via the AST bit a choice can be made between automatic start-up or a start-up via the m-processor.

3. TUNER

Either a PLL or a VST tuner is used as a tuner.
UV1316 (VHF/UHF) is used as a PLL tuner. For only PALM/N, NTSC M applications UV 1336 is used as the PLL tuner. UV 1315 (VHF/ UHF) is used as a VST Tuner.

Channel coverage of UV1316:

BAND	OFF-AIR CHANNELS		CABLE CHANNELS	
	CHANNELS RANGE (MHz)	FREQUENCY	CHANNELS	FREQUENCY RANGE (MHz)
Low Band	E2 to C	48.25 to 82.25 (1)	S01 to S08	69.25 to 154.25
Mid Band	E5 to E12	175.25 to 224.25	S09 to S38	161.25 to 439.25
High Band	E21 to E69	471.25 to 855.25 (2)	S39 to S41	447.25 to 463.25

(1). Enough margin is available to tune down to 45.25 MHz .
(2). Enough margin is available to tune up to 863.25 MHz .

Noise	Typical	Max.	Gain	Min.	Typical	Max.
Low band	$: 5 \mathrm{~dB}$	9 dB	All channels	$: 38 \mathrm{~dB}$	44 dB	52 dB
Mid band	$: 5 \mathrm{~dB}$	9 dB	Gain Taper (of-air channels)	$:$	-	-
High band	$: 6 \mathrm{~dB}$	9 dB			8 dB	

Channel Coverage UV1336:

BAND	CHANNELS	FREQUENCY RANGE (MHz)
Low Band	2 to D	55.25 to 139.25
Mid Band	E to PP	145.25 to 391.25
High Band	QQ to 69	397.25 to 801.25

Noise is typically 6 dB for all channels. Gain is minimum 38 dB and maximum 50 dB for all channels.
Channel Coverage of UV1315:

BAND	OFF-AIR CHANNELS		CABLE CHANNELS	
	CHANNELS	FREQUENCY RANGE (MHz)	CHANNELS	FREQUENCY RANGE (MHz)
Low Band	E2 to C	48.25 to 82.25 (1)	S 01 to S10	69.25 to 168.25
Mid Band	E5 to E12	175.25 to 224.25	S 11 to S39	231.25 to 447.25
High Band	E21 to E69	471.25 to $855.25(2)$	S 40 to S 41	455.25 to 463.25

(1). Enough margin is available to tune down to 45.25 MHz .
(2). Enough margin is available to tune up to 863.25 MHz .

Noise	Typ.	Max.	Gain	Min.	Typ.	Max.
Low band	$: 6 \mathrm{~dB}$	9 dB	All Channels	38 dB	44 dB	50 dB
Mid band	$: 6 \mathrm{~dB}$	10 dB	Gain Taper	-	-	8 dB
High band	$: 6 \mathrm{~dB}$	11 dB	(off-air channels)			

4.VIDEO SWITCH TEA6415C

In case of three or more external sources are used, the video switch IC TEA6415C is used. The main function of this device is to switch 8 video input sources on the 6 outputs.
Each output can be switched on only one of each input. On each input an alignment of the lowest level of the signal is made (bottom of sync. top for CVBS or black level for RGB signals).
Each nominal gain between any input and output is 6.5 dB .For D2MAC or Chroma signal the alignment is switched off by forcing, with an external resistor bridge, 5VDC on the input. Each input can be used as a normal input or as a MAC or Chroma input (with external resistor bridge). All the switching possibilities are changed through the BUS.
Driving 750 hm load needs an external resistor.
It is possible to have the same input connected to several outputs.

5. AM DEMODULATOR TDA9830

The TDA9830 is designed for AM-sound demodulation used in L and L' standard.

Sound IF Input:

The sound IF amplifier consists of three AC-coupled differential amplifier stages each with approximately 20 dB gain. At the output of each stage is a multiplier for gain controlling. The overall control range is approximately -6 to +60 dB and the frequency response $(-3 \mathrm{~dB})$ of the IF amplifier is approximately 6 to 70 MHz . The steepness of gain control is approximately $10 \mathrm{mV} / \mathrm{dB}$.

IF AGC:

The automatic gain control voltage to maintain the AM demodulator output signal at a constant level is generated by a mean level detector.The AGC-detector charges and discharges the capacitor at pin 3 controlled by the output signal of the AM-demodulator compared to an internal reference voltage. The maximum charge/discharge current is approximately 5 mA .

AM-demodulator

The IF amplifier output signal is fed to a limiting amplifier (two stages) and to a multiplier circuit.
However the limiter output signal (which is not any more AM modulated) is also fed to the multiplier, which provides AM demodulation (in phase demodulation). After lowpass filtering (fg @ 400 kHz) for carrier rejection and buffering, the demodulator output signal is present at pin 6.

Audio Switch

This circuit is an operational amplifier with three input stages and internal feedback network determining gain (0dB) and frequency response (fg @ 700 kHz). Two of the input stages are connected to pin 7 and pin 9 , the third input stage to an internal reference voltage. Controlled by the switching pins 10 and 12, one of the three input stages can be activated and a choice made between two different AF signals or mute state. The selected signal is present at pin 8 . The decoupling capacitors at the input pins are needed, because the internally generated bias voltage for the input stages must not be influenced by the application in order to avoid DC-plop in case of switching.

Reference Circuit:

This circuit is a band gap stabiliser in combination with a voltage regulation amplifier, which provides an internal reference voltage of about 3.6 V nearly independent from supply voltage and temperature. This reference voltage is filtered by the capacitor at pin 4 in order to reduce noise. It is used as a reference to generate all important voltages and currents of the circuit.
For application in 12 V power supply concepts, there is an internal voltage divider in combination with a Darlington transistor in order to reduce the supply voltage for all IC function blocks to approximately 6 V .

6. DIGITAL TV SOUND PROCESSOR TDA9875

The TDA9875 is a single-chip Digital TV Sound Processor.
Supported standards are M, B/G, D/K, I and L.

Description of the demodulator and decoder section

SIF Input:
Two input pins are provided, SIF1 e.g. for terrestrial TV and SIF2 e.g. for a satellite tuner. The selected signal is passed through an AGC circuit and then digitized by an 8 -bit ADC operating at 24.576 MHz .
AGC:
The gain of the AGC amplifier is controlled from the ADC output by means of a digital control loop employing hysteresis.
The AGC has a fast attack behaviour to prevent ADC overloads and slow decay behaviour AGC oscillations.
For AM demodulation AGC must be switched off.

Mixer

The digitized input signal is fed to the mixers, which mix one or both input sound carriers down to zero IF. A 24-bit control word for each carrier sets the required frequency.

FM and AM Demodulation

An FM or AM input signal is fed via a band-limiting filter to a demodulator that can be used for either FM or AM demodulation. Apart from the standard (fixed) de-emphasis characteristic, an adaptive de-emphasis is available for encoded satellite programs. A stereo decoder recovers the left and right signal channels from the demodulated sound carriers.

FM Identification:

The identification of the FM sound mode is performed by AM synchronous demodulation of the pilot signal and narrow-band detection of the identification frequencies. The result is available via the $I^{2} \mathrm{C}$-bus interface.

NICAM Demodulation:

The NICAM signal is transmitted in a DQPSK code at a bit rate of $728 \mathrm{kbit} / \mathrm{s}$. The NICAM demodulator performs DQPSK demodulation and feeds the resulting bitstream and clock signal onto the NICAM decoder and, for evaluation purposes, to PCLK (pin 1) and NICAM (pin 2).

NICAM Decoder

The device performs all decoding functions in accordance with the "EBU NICAM 728 specification". After locking to the frame alignment word, the data is descrambled by applying the defined pseudo-random binary sequence; the device will then synchronise to the periodic frame flag bit CO.
The status of the NICAM decoder can be read out from the NICAM status register by the user. The OSB bit indicates that the decoder has locked to the NICAM data. The VDSP bit indicates that the decoder has locked to the NICAM data and that the data is valid sound data

7. SOUND OUTPUT STAGE TDA2614/TDA2615/TDA2616Q

TDA2614 is used as the AF output amplifier for mono applications. It is supplied by $\pm 12 \mathrm{VDC}$ coming from a separate winding in the SMPS transformer. An output power of 2*6W (THD=0.5\%) can be delivered into an 8ohm load.
TDA2615 is used as the AF output amplifier for stereo applications. It is supplied by
$\pm 12 \mathrm{VDC}$ coming from a separate winding in the SMPS transformer. An output power of $2 * 6 \mathrm{~W}$ (THD $=0.5 \%$)
can be delivered into an 8ohm load.
TDA2616Q is used as the AF output amplifier for stereo and dolby prologic applications. It is supplied by $\pm 16 \mathrm{VDC}$ coming from a separate winding in the SMPS transformer. An output power of $2 * 12 \mathrm{~W}$ ($\mathrm{THD}=0.5 \%$) can be delivered into an 8ohm load.

8. VERTICAL OUTPUT STAGE WITH TDA8351/8356

The TDA8351/8356 vertical deflection circuit can be used in 90° and 110° deflection systems with field frequencies from 50 up to 120 Hz . With its bridge configuration the deflection output can be DC coupled with few external components.
Only a single supply voltage for the scan and a second supply for the flyback are needed. The TDA8356 is intended for 90° systems and the TDA8351 is intended for 110° systems.
The drive voltage is amplified by an amplifier and fed to two amplifiers, one is inverting and the other is a non inverting amplifier. The outputs (pins 7 and 4) are connected to the series connection of the vertical deflection coil and feedback resistor Rsense (R702//R703). The voltage across Rsense is fed via pin 9 to correction amplifier, to obtain a deflection current which is proportional to the drive voltage. The supply voltage for the TDA8351/8356 is 15 VDC at pin 3 . The supply voltage generator has a separate supply voltage of 45VDC at pin 6.

9. VIDEO OUTPUT AMPLIFIER TDA6107Q

The TDA6107Q consists of three monolithic video output amplifiers. The amplifier can be seen as an operational amplifier with negative feedback.
The advantage of negative feedback is that the amplifier characteristics do not play an important role up to certain frequencies. The internal flash diodes protect the amplifiers against flash over in the picture tube.
The only protections required at the cathode outputs are a flash resistor and a sparkgap.
The TDA6107Q has an internal thermal protection circuit which gives a decrease of the slew rate at high temperatures.
Furthermore, the device needs only one power supply voltage (Vdd).
In contrast to previous types of DMOS video amplifiers, all the external resistors (Rf, Ri and Ra) are integrated, so the gain is fixed and saves 9 resistors.
Furthermore, the reference voltage is integrated, it saves a resistor divider and a decoupling capacitor. So, the replacement value of the TDA6107Q is very high.
The TDA6107Q is provided with a black current data pin. Since TDA884X is used as drive device, no adjustments are required for gain and black setting, as the TDA884X has $I^{2} \mathrm{C}$ white point adjustment and black current set-up.

10. SINGLE/MULTISTANDARD VIF/SIF-PLL and FM-PLLIAM DEMODULATOR TDA9818

The TDA9818is an IC for multistandard vision IF signal processing, sound AM and FM demodulation.
It is a gain controlled wide band VIF-amplifier (AC-coupled). It is applicable for IF frequencies of $38.9 \mathrm{MHz}, 45.75 \mathrm{MHz}$ and 58.75 MHz .
True synchronous demodulation is provided with active carrier regeneration. It has a VCO frequency which can be switchable between L and L accent (alignment external) picture carrier frequency.
The TDA9818 has a SIF input for single reference QSS mode (PLL controlled). SIF AGC detector is to provide gain controlled SIF amplifier. The AM demodulator is without extra reference circuit. The supply voltage is +5 VDC at pin 21.

11. COMBFILTER SAA4961

The SAA 4961 is a one-chip, PAL/NTSC combfilter IC with internal delay lines, filters, clock control, synchronisation and signal switches. The combfilter function is realised in a switched capacitor technique, so it has time discrete but amplitude continuous processing.
The Y/CVBS input is first clamped and then fed to the delay-line and combfilter section via a low pass pre-filter.
This filter can be bypassed via the external LPF-on pin. This pin is internally pulled up, to put the filter default on. The Y/CVBs input is also fed to the sync seperator, where horizontal and vertical reference pulses are made.
Bypass mode can be forced via BYP (pin 3).FSC (pin 1) is the subcarrier input which is connected to the colour decoder.
Input FSCSW pin indicates if fsc or $2^{\star} \mathrm{fsc}$ is used.
The Sys 1,2 pins $(20,23)$ indicate which system standard is processed. Sys 2 is internally pulled up, Sys 1 is internally pulled down. Therefore when the Sys 1,2 inputs are left open, automatically PAL 4.43 MHz is forced.
SAA4961output pin 15 "CVBS" can be used for parallel-synced teletext decoders, to guarantee that the teletext display always has a correct timing relation with the main picture. Comb filter is disabled by setting SAA4961 pin 3 "BYP" high.

12. POWER SUPPLY (SMPS)

The DC voltages required at various parts of the chassis are provided by an SMPS transformer controlled by the IC MC44604 which is designed for driving, controlling and protecting switching transistor of SMPS. The transformer produces 150/115V for FBT input, $\pm 14 \mathrm{~V}$ for audio output IC, S +5 V for microcontroller, +15 V for vertical output (field scan) and +33 V for tuner and some other ICs and transistors.

13. MICROCONTROLLER SDA525X

The device is TV TEXT tuning and control system based on the SDA 525X TV TEXT microcontroller. It is designed for a low cost mono TV-SET with analogue picture and sound control. Neverthless the system offers an on screen display (OSD) and IR remote control of all functions.

SDA525X has the following features:

- Display of program number, channel number, TV standard, analogue values, sleep timer, parental control, and mute is done by OSD.
- Single LED for IR active, standby and on mode indication.
- 1 Control line to select external source.
- 3 Control lines for TV standard selection.
- Frequency synthesis tuning (62.5 kHz steps)
- 192 step fine tuning
- Channels corresponding to standards B/G, OIRT, L and I (I+)
- Mono sound control by analogue voltage
- System configuration with service mode

14. SERIAL ACCESS CMOS 8K (1024*8) EEPROM ST24C08

The ST24C08 is a 8 Kbit electrically erasable programmable memory (EEPROM), organised as 4 blocks of $256 * 8$ bits.
The memory is compatible with the $\mathrm{I}^{2} \mathrm{C}$ standard, two wire serial interface which uses a bi-directional data bus and serial clock.
The memory carries a built-in 4 bit, unique device identification code (1010) corresponding to the $I^{2} C$ bus definition.
This is used together with 1 chip enable input (E) so that up to $2^{*} 8 \mathrm{~K}$ devices may be attached to the $\mathrm{I}^{2} \mathrm{C}$ bus and selected individually.

15. CLASS AB STEREO HEADPHONE DRIVER TDA1308

The TDA1308 is an integrated class AB stereo headphone driver contained in a DIP8 plastic package
The device is fabricated in a 1 mm CMOS process and has been primarily developed for portable digital audio applications.

16. SAW FILTERS

```
Saw filter type : Model:
G1965M : PAL-SECAM B/G MONO
G3962M : PAL-SECAM B/G GER&NIC STEREO, PAL I' NIC STEREO, INT-1
G1984 : PAL-SECAM B/G GER&NIC STEREO INT-2
J1951M : PAL-I MONO
J3950M : PAL-I NIC STEREO
J1956M : PAL-l' MONO
K2955M : PAL-SECAM B/G-D/K MONO, PAL-SECAM B/G-D/K-I', MONO, PAL-SECAM B/G-D/K-L MONO
K2958M : PAL-SECAM B/G-D/K (38) MONO
K2962M : PAL-SECAM B/G-L/L' MONO
G3957M : PAL-SECAM B/G-L/L' GER&NIC BG/L STEREO
K6256K : PAL-SECAM B/G-D/K-I-L/L' MONO, PAL-SECAM B/G-D/K-I, L/L' GER&NIC BG/L STEREO,
PAL-SECAM B/G-D/K-I-L/L' I, NICAM STEREO, PAL-SECAM B/G-D/K-I-L/L' GER&NIC I'-B/G-L, STEREO
K6259K : PAL-SECAM B/G-D/K-I-M/N (EURO) MONO
M1963M : PAL M/N MONO, NTSC M MONO, PAL M/N-NTSC M MONO
```


17. BTSC STEREO/SAP/DBX-DECODER and AUDIO PROCESSOR TDA9855

The TDA9855 is a BTSC stereo/SAP/dbx decoder and audio processor. It performs all functions to transform the composite baseband signal into the appropriate audio output signals to line out and to the loudspeaker output stages.

IC DESCRIPTIONS AND INTERNAL BLOCK DIAGRAM
■ TDA8840/8842/8844
■ TUNER (UV1315, UV1316, UV1336)

- TEA6415C

■ TDA9830
■ TDA2614/2615/2616Q

- TDA8351/8356
- TDA6107Q
- SAA4961
- MC44604
- SDA525X
- TDA9875

■ TDA9818

- ST24C08
- TDA1308
- G1965M

■ TDA9855

TDA8840/8842/8844:

The TDA884X is IIC-bus controlled single chip TV processor which is intended to be applied in PAL, NTSC, PAL/NTSC and multi-standard television receivers. These IC' s are nearly pin compatible with the TDA837X TV processors but have a higher degree of integration because the delay line (TDA4665 function) and the SECAM decoder have been integrated. In addition to these functions some additional features have been added like "Continuous Cathode Calibration" (2-point black current loop which results in an accurate biasing of the 3 guns), adjustable luminance delay time, blue stretching and dynamic skin tone control.

Features:

- Vision IF circuit with PLL demodulator
- Alignment-free multi-standard FM sound demodulator (4.5 MHz to 6.5 MHz)
- Audio switch
- Flexible source selection with CVBS switch and $Y(C V B S) / C$ input so that a comb filter can be applied
- Integrated chrominance trap circuit
- Integrated luminance delay line
- Asymmetrical peaking in the luminance channel with a noise coring function
- Black stretching of non-standard CVBS or luminance signal
- Integrated chroma band-pass filter with switchable center frequency
- Blue stretch circuit which offsets colours near white towards blue
- RGB control circuit with "Continuous Cathode Calibration" and white point adjustment
- Linear RGB inputs and fast blanking
- Possibility to insert a "blue black" option when no video signal is available
- Horizontal synchronisation with two control loops and alignment-free horizontal oscillator
- Vertical count-down circuit
- Vertical driver optimised for DC-coupled vertical output stages
- I 1 C-bus control of various functions
- Low dissipation (850 mW)

IC VERSION (TDA)	8840	8842	8844
Multi-standard IF		X	X
Automatic Volume Limiting	X	X	
PAL Decoder	X	X	X
SECAM Decoder		X	X
NTSC Decoder		X	X
Dynamic Skin Control			X
Colour Matrix PAL/NTSC (Japan)		X	X
Colour Matrix NTSC Japan/USA			
YUV interface			X
Base-band delay line	X	X	X
Adjustable luminance delay time			X
Horizontal geometry			X
Horizontal and vertical zoom			X
Vertical scroll			X

Vertical scroll

PIN VALUE

1. Sound IF input

1 mV rms
2. External audio input

500 mV rms
3. IF demodulator tuned circuit 1
4. IF demodulator tuned circuit 2
5. IF-PLL loop filter
6. IF video output
7. Serial clock input
8. Serial data input/output
4.7V (Negative Modulation), 2V (Positive Modulation)

Low level max:1.5 V, High level min 3.5 V
Low level max:1.5 V, High level min 3.5V
9. Bandgap decoupling
10. Chrominance input (S-VHS)
11. External CVBS/Y input
12. Main supply voltage 1

1Vpp, Max:1.4Vpp
13. Internal CVBS input

1Vpp, Max:1.4Vpp
8V, Min:7.2V, Max:8.8V
1Vpp, Max:1.4Vpp
14. Ground 1
15. Audio output
16. SECAM PLL decoupling
17. External CVBS input
18. Black-current input
19. Blue output
20. Green output
21. Red output

700 mVrms , Min:500mVrms, Max: 900 mV rms
22. Beam current limiter input/ $/$-guard input
23. Red input for insertion
24. Green input for insertion
25. Blue input for insertion
26. RGB insertion input
27. Luminance input
28. Luminance output

Vpp, Max:1.4Vpp
Amplitude of "low" reference current : 8mA
Amplitude of "high" reference current : 20 mA
2Vpp
2Vpp
2 Vpp
29. (B-Y) signal output
30. (R-Y) signal output
31. (B-Y) signal input
: 0.7Vpp, Max:0.8Vpp
$0.7 \mathrm{Vpp}, \mathrm{Max}: 0.8 \mathrm{Vpp}$
$0.7 \mathrm{Vpp}, \mathrm{Max}: 0.8 \mathrm{Vpp}$
Max:0.3V
1.4 Vpp
1.4 Vpp
1.05 Vpp
1.05 Vpp
1.05 Vpp
32. (R-Y) signal input
1.05 Vpp
33. Subcarrier reference output
$3.58 / 4.43 \mathrm{MHz}$
34. 3.58 MHz crystal connection
35. 4.43/3.58 MHz crystal connection
36. Loop filter phase detector
37. 2 nd supply voltage 1

8V, Min:7.2V, Max:8.8V
38. CVBS output
39. Decoupling digital supply
40. Horizontal output
41. Flyback input/sandcastle output
42. Phase-2 filter
43. Phase-1 filter
44. Ground 2
45. East-west drive output
46. Vertical drive A output : 0.95 mA
47. Vertical drive B output : 0.95 mA
48. IF input 1
49. IF input 2
50. EHT/overvoltage protection input
51. Vertical sawtooth capacitor
52. Reference current input
53. AGC decoupling capacitor
54. Tuner AGC output
55. Audio deemphasis

Max:9V (Maximum tuner AGC Output voltage), 300mV (Output saturation voltage)
56. Decoupling sound demodulator

Min:1.2V, Max : 2.8V
3Vpp
3Vpp
$1 \mathrm{Vpp}, \mathrm{Max}: 1.4 \mathrm{Vpp}$
1.8 V

Max: 0.3 V
Min:100ma, Max:300mA
$150 \mathrm{~ms} / \mathrm{ms}$
$\pm 0.9 \mathrm{kHz}$, Max: $\pm 1.2 \mathrm{kHz}$

500 mV rms

UV1315, UV1316, UV1336

General description of UV1315:

The UV1315 tuner belongs to the UV 1300 familiy of tuners, which are designed to meet a wide range of applications. It is a combined VHF, UHF tuner suitable for CCIR systems B/G, H, L, L', I and I'. The low IF output impedance has been designed for direct drive of a wide variety of SAW filters with sufficient suppression of triple transient.

Features of UV1315:

■ Member of the UV1300 family small sized UHF/VHF tuners

- Systems CCIR:B/G, H, L, L', I and I'; OIRT:D/K
- Voltage synthesized tuning (VST)
- Off-air channels, S-cable channels and Hyperband
- Standardized mechanical dimensions and pinning
- Compact size

PINNING

1. Gain control voltage (AGC)
2. Tuning voltage
3. High band switch
4. Mid band switch
5. Low band switch
6. Supply voltage
7. Not connected
8. Not connected
9. Not connected
10. Symmetrical IF output 1
11. Symmetrical IF output 2

PIN VALUE

4.0V, Max:4.5V

5V, Min:4.75V, Max:5.5V
5V, Min:4.75V, Max:5.5V
5V, Min:4.75V, Max:5.5V
5V, Min:4.75V, Max:5.5V

Bandswitching table:

	Pin 3	Pin 4	Pin 5
Low band	0 V	0 V	+5 V
Mid band	0 V	+5 V	0 V
High band	+5 V	0 V	0 V

General description of UV1316:

The UV1316 tuner belongs to the UV 1300 family of tuners, which are designed to meet a wide range of applications. It is a combined VHF, UHF tuner suitable for CCIR systems B/G, H, L, L', I and I'. The low IF output impedance has been designed for direct drive of a wide variety of SAW filters with sufficient suppression of triple transient.

Features of UV1316:

■ Member of the UV1300 family small sized UHF/VHF tuners
■ Systems CCIR: B/G, H, L, L', I and I'; OIRT: D/K

- Digitally controlled (PLL) tuning via lıC-bus
- Off-air channels, S-cable channels and Hyperband
- World standardized mechanical dimensions and world standard pinning
- Compact size

■ Complies to "CENELEC EN55020" and "EN55013"

PINNING

1. Gain control voltage (AGC)
2. Tuning voltage
3. $I^{2} \mathrm{C}$-bus address select
4. $I^{2} \mathrm{C}$-bus serial clock
5. $\mathrm{I}^{2} \mathrm{C}$-bus serial data
6. Not connected
7. PLL supply voltage : 5.0V, Min:4.75V, Max:5.5V
8. ADC input
9. Tuner supply voltage : 33V, Min:30V, Max:35V

PIN VALUE

4.0V, Max:4.5V

Max:5.5V
Min:-0.3V, Max:5.5V
Min:-0.3V, Max:5.5V
10. Symmetrical IF output 1
11. Symmetrical IF output 2

General description of UV1336:

UV1336 series is developed for reception of channels broadcast in accordance with the M, N standard. The tuning is available through built-in digitally controlled IIC bus (PLL).

Features of UV1336:

- Global standard pinning
- Integrated Mixer-Oscillator\&PLL function
- Conforms to CISPR 13, FCC and DOC (Canada) regulations
- Low power consumption
- Both Phono connector and ' F ' connector are available

PINNING

1. Gain control voltage
2. Tuning voltage
3. Address select
4. Serial clock
5. Serial data
6. Not connected
7. Supply voltage : 5.0V, Min:4.75V, Max:5.5V
8. ADC input (optional)
9. Tuning supply voltage : 33V, Min:30V, Max:35V

PIN VALUE

: 4.0V, Max:4.5V
: Max:5.5V
: Min:-0.3V, Max:5.5V
: Min:-0.3V, Max:5.5V
10. Ground
11. IF output

TEA6415C:

General Description:

The main function of the TEA6415C is to switch 8 video input sources on the 6 outputs.
Each output can be switched to only one of the inputs whereas but any same input may be connected to several outputs.
All switching possibilities are controlled through the lıC-bus.

Features:

- 20 MHz Bandwith
- Cascadable with another TEA6415C (Internal address can be changed by pin 7 voltage)
- 8 inputs (CVBS, RGB, Mac, CHROMA, ...)
- 6 Outputs
- Possibility of MAC or chroma signal for each input by switching-off the clamp with an external resistor bridge
- Bus controlled
- 6.5 dB gain between any input and output
- -55 dB crosstaljk at 5 MHz
- Fully ESD protected

PINNING

1. Input
2. Data
3. Input
4. Clock
5. Input
6. Input
7. Prog
8. Input
9. Vcc
10. Input
11. Input
12. Ground
13. Output
14. Output
15. Output
16. Output
17. Output
18. Output
19. Ground
20. Input

PIN VALUE

Max	: 2Vpp, Input Current	: 1mA, Max	: 3mA
Low level	: -0.3V Max:1.5V, High level	:3.0V Max	: Vcc+0.5V
Max	: 2Vpp, Input Current	: 1mA, Max	: 3mA
Low level	: -0.3V Max:1.5V, High level	3.0V Max	: Vcc+0.5V
Max	: 2Vpp, Input Current	: 1mA, Max	3 mA
Max	: 2Vpp, Input Current	: 1mA, Max	3 mA
Max	: 2Vpp, Input Current	: 1mA, Max	: 3mA
12V			
Max	2Vpp, Input Current	: 1mA, Max	3 mA
Max	: 2Vpp, Input Current	: 1mA, Max	: 3mA

TDA9830:

General description:

The TDA9830, a monolithic integrated circuit, is designed for AM-sound demodulation used in L- and L'-standard.
The IC provides an audio source selector and also mute switch.

Features:

- Adjustment free wideband synchronous AM demodulator
- Audio source-mute switch (low noise)
- Audio level according EN50049
- 5 to 8 V power supply or 12 V alternative
- Low power consumption

PINNING

1. Sound IF differential input signal
2. Not connected
3. AGC capacitor
4. REF voltage filtering capacitor
5. Not connected
6. AM demodulator output
7. Input signal (from AM) to audio switch
8. Output signal from audio switch
9. Input signal (from external) to audio switch

PIN VALUE

Minimum IF input signal (between pins 1 and 16): 60 mV
Max:100mV Maximum IF input signal (between pins 1 and 16) :120mV Min :70mV

THD:0.8\%, Max:2\%; S/N:53dB, Min:47\%; DC potential:2.15V, Min : 2.00V Max :2.30V
Max:1.2V
80dB, Min : 70dB
Max:1.2V
10. Switch input select control
11. Supply voltage
12. Mute control
13. Ground
14. Supply voltage
15. Not connected
16. Sound IF differential input signal : Look at pin 1

TDA2614/TDA2615/TDA2616Q:

General Description of TDA2614:

The TDA2614 is a power amplifier in a 9-lead single-in-line (SIL9) plastic medium power package. It has been especially designed for mains fed applications.

Features:

- Requires very few external components
- No switch-on/switch-off clicks
- Input mute during switch-on and switch-off
- Low offset voltage between output and ground
- Hi-fi in accordance with IEC 268 and DIN 45500
- Short-circuit proof and thermal protected
- Mute possibility

PINNING

1. Not connected
2. Mute input : 300 mA (For mute to activate)
3. Ground
4. Not connected
5. Supply voltage (negative) : -12VDC
6. Output : 6.9Vrms
7. Supply voltage (positive) : +12VDC
8. Inverting input (Ground) : OV
9. Non-inverting input : 700mVrms, Min : 500mVrms, Max : 900mVrms

PIN VALUE

General Description of TDA2615:

The TDA2615 is a dual power amplifier in a 9-lead single-in-line (SIL9). It has been especially designed for mains fed applications.

Features:

- Requires very few external components
- No switch-on/switch-off clicks
- Input mute during switch-on and switch-off
- Low offset voltage between output and ground
- Excellent gain balance of both amplifiers
- Hi-fi in accordance with IEC 268 and DIN 45500
- Short-circuit proof and thermal protected
- Mute possibility

PINNING

1. Non-inverting input 1
2. Mute input
3. Ground
4. Output $1 \quad: 6.9 \mathrm{Vrms}$
5. Supply voltage (negative)
6. Output 2
7. Supply voltage (positive)
8. Inverting inputs 1 and 2 (Ground)
9. Non-inverting input 2

PIN VALUE
700 mVrms , Min :500mVrms, Max : 900 mVrms
: 300 mA (For mute to activate)
-12VDC
6.9 Vrms
$+12 \mathrm{VDC}$
OV
700mVrms, Min : 500mVrms, Max : 900mVrms

General Description of TDA2616Q:

The TDA2616Q is a dual power amplifier. It is supplied in a 9-lead SIL-bent-to DIL plastic power package (SOT157). It has been especially designed for mains fed applications.

Features:

- Requires very few external components
- No switch-on/switch-off clicks
- Input mute during switch-on and switch-off
- Low offset voltage between output and ground
- Excellent gain balance of both amplifiers
- Hi-fi in accordance with IEC 268 and DIN 45500
- Short-circuit proof and thermal protected
- Mute possibility

PINNING

1. Non-inverting input 1
2. Mute input
3. Ground
4. Output 1
5. Supply voltage (negative)
6. Output 2
7. Supply voltage (positive)
8. Inverting inputs 1 and 2 (Ground)
9. Non-inverting input 2

PIN VALUE
700 mV rms, $\mathrm{Min}: 500 \mathrm{mVrms}$, Max : 900 mVrms
300 mA (For mute to activate)
9.8 Vrms
-16VDC
9.8Vrms
+16VDC
OV
700mVrms, Min : 500mVrms, Max : 900 mVrms

TDA8351/8356:

General Description:

The TDA8356 is a power circuit for use in $90 \varnothing$ colour deflection system for field frequencies of 50 to 120 Hz .
The circuit operates as a highly efficient class G system.
The TDA8351 is a power circuit for use in 110ø colour deflection system for field frequencies of 50 to 120 Hz .
The circuit operates as a highly efficient class G system.

Features:

■ Few external components

- Highly efficient fully DC-coupled vertical output bridge circuit

■ Vertical flyback switch

- Guard circuit
- Protection against: - short-circuit of the output pins (7 and 4)
- short-circuit of the output pins to Vp
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs
- A guard signal in zoom mode

PINNING

1. Input power-stage (positive); includes li(sb) signal bias
2. Input power-stage (negative); includes li(sb) signal bias
3. Operating supply voltage
4. Output voltage B
5. Ground
6. Input flyback supply voltage
7. Output voltage A
8. Guard output voltage
9. Input feedback voltage

PIN VALUE

400mA, Min : 50mA, Max : 500mA
400mA, Min : 50mA, Max : 500mA
+15VDC
Max : 52V Output current : 2App (TDA8356) 3App (TDA8351)
Min : Vp, Max : 50V
Max: 52V Output current : 2App (TDA8356) 3App (TDA8351)
Max:5.5V (lo:100mA)
Max:52V

TDA6107Q:

The TDA6107Q includes three video output amplifiers in a SIL 9 MP (Single In Line 9 pins Medium Power) package SOT111BE, using high-voltage DMOS technology, and is intended to drive the three cathodes of a colour picture tube. In contrast to previous types of DMOS video amplifiers, all external resistors (Rf, Ri and Ra) are integrated, so the gain is fixed and it saves 9 resistors.
To obtain maximum performance, the amplifier should be used with black-current control and mounted on the CRT panel.

Features:

■ Bandwith: 4.0 MHz typ at 100 Vpp (Measured in appli, cation set-up, with $\mathrm{Rfl}=1 \mathrm{~K} 5$ and $\mathrm{Cl}=\mathrm{Ctube}+\mathrm{Cpcb}=10 \mathrm{pF}$)
■ Slewrate: $950 \mathrm{~V} / \mathrm{ms}$

- Fixed gain of 50 times
- No external components, only the well known supply decoupling
- Very simple application with a variety of colour decoders

■ Black-current measurement output for automatic black current stabilization

- Only one supply voltage needed
- Internal protection against positive appearing CRT flash-over discharges
- Protection against ESD
- Internal reference voltage
- Thermal protection
- Controllable switch-off behaviour
- Very small PCB dimensions
- Very high replacement value

PINNING

1. Inverting input 1
2. Inverting input 2
3. Inverting input 3
4. Ground
5. BSC-output
6. Supply voltage
7. Cathode output 3
8. Cathode output 2
9. Cathode output 1

PIN VALUE

: 2Vpp
: 2Vpp
: 2Vpp
: Max:7V
: 200VDC
: 20mA, 100Vpp
: 20mA, 100Vpp
: $20 \mathrm{~mA}, 100 \mathrm{Vpp}$

SAA4961:

The SAA4961 is an adaptive alignment-free one chip comb filter compatible with both PAL and NTSC systems and provides high performance in Y/C separation.

Features:

- One chip adaptive multi-standard comb filter
- Time discrete but continuous amplitude signal processing with analogue interfaces
- Internal delay lines, filters, clock processing and signal switches
- Alignment-free
- No hanging dots or residual cross colour on vertical transients
- Few external components

It is possible to switch the comb filter into one of the following 3 modes:

1. Comb mode : In this mode, luminance and chrominance comb filter function are active.

Chrominance output pin (pin 12) outputs comb filtered chrominance signal, luminance output pin (pin 14) outputs comb filtered luminance signal and CVBS output pin (pin 15) outputs delay compensated CVBS signal.
2. Comboff mode : In this mode, luminance comb filter function is turned off, but chrominance comb filter function operates. Chrominance output pin (pin 12) outputs comb filtered chrominance signal, luminance output pin (pin 14) outputs delay compensated CVBS signal and CVBS output pin (pin 15) outputs delay compensated CVBS signal.
3. Bypass mode : In this mode, no IC-function is active. Cext is bypassed to chrominance output pin (pin 12) and Yext/CVBS is bypassed to luminance output pin (pin 14) and CVBS output pin (pin 15).

PINNING

1. Subcarrier frequency input
2. Internal connected
3. Bypass mode forcing
4. Internal connected
5. Decoupling capacitor
6. Internal connected
7. Analogue supply voltage
8. Analogue supply voltage output buffer
9. Analogue ground
10. External chrominance input
11. Analogue ground output buffer
12. Chrominance output signal
13. fsc reference selection
14. Luminance output signal
15. CVBS and Y output signal
16. Internal connected
17. CVBS and Y input signal
18. Disable prefilter
19. Storage Capacitor
20. Standard select 1
21. Digital ground
22. Digital supply voltage
23. Standard select 2
24. Decoupling capacitor
25. Controlling I/O pin
26. Analogue ground PLL
27. Analogue supply voltage PLL
28. Internal connected

PIN VALUE
200mVpp, Min : 100mVpp, Max : 400mVpp
HIGH level input voltage Min : 2.4VDC, Max : Vcc
: 1.25VDC, Min : 1.1VDC, Max : 1.4VDC
5VDC, Min : 4.75VDC, Max : 5.5VDC
5VDC, Min : 4.75VDC, Max : 5.5VDC
: 0.7Vpp, Max : 1Vpp
0 mV , Min : -400 mV , (DC offset voltage related to input) Max : +400 mV BYPASS-mode:Co/Cext : OdB, Min : -1dB, Max : +1dB
HIGH level input voltage Min : 2V, Max : Vcc
Low level input voltage Min: OV, Max: 0.8V
$1 \mathrm{Vpp}, \mathrm{Min}: 0.6 \mathrm{Vpp}$, Max : 1.54 Vpp
$1 \mathrm{Vpp}, \mathrm{Min}: 0.6 \mathrm{Vpp}, \mathrm{Max}: 1.54 \mathrm{Vpp}$
$1 \mathrm{Vpp}, \mathrm{Min}: 0.7 \mathrm{Vpp}$, Max : 1.4Vpp
HIGH level input voltage Min : 2.0VDC, Max : Vcc
LOW level input voltage Min : OVDC, Max : 0.8VDC
2.5VDC, Min : 1.8VDC, Max: Vcc

HIGH level input voltage Min : 2.0VDC, Max : Vcc
LOW level input voltage Min : OVDC, Max : 0.8VDC
: 5VDC, Min : 4.75VDC, Max : 5.5VDC
HIGH level input voltage Min : 2.0VDC, Max : Vcc
LOW level input voltage Min : OVDC, Max : 0.8VDC
1.25VDC, Min : 1.1VDC, Max : 1.4VDC

HIGH level input voltage Min : 2.4VDC, Max : Vcc
LOW level input voltage Min : 0VDC, Max : 1.5 VDC
: 5VDC, Min : 4.75VDC, Max : 5.5VDC

MC44604:

General description:
The MC44604 is an enhanced high performance controller that is specifically designed for off-line and DC-to-DC converter applications. It offers a really safe and reliable power management thanks particularly to its protection features (foldback, overvoltage detection, soft start, accurate demagnetization detection). Its high current totem pole output is also ideally suited for driving a power MOSFET, but can also be used for driving a bipolar transistor in low power converters. In addition to these features, the MC44604 offers an efficient stand-by mode.

Features:

Current Mode Controller

- Operation up to 250 kHz Output Switching Frequency
- Inherent Feed Forward Compensation

■ Latching PWM for Cycle-by-Cycle Current Limiting

- Oscillator with Precise Frequency Control

High Flexibility

- Externally Programmable Reference Current
- Secondary or Primary Sensing
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis

Safety/Protection Features

- Overvoltage Protection Facility against Open Loop
- Protection against Short Circuit on Oscillator Pin
- Fully Programmable Foldback
- Soft-Start Feature
- Accurate max Duty Cycle Setting
- Demagnetization (Zero Current Detection) Protection
- Internally Trimmed Reference

"Green Controller"

- Low Start-Up and Operating Current
- Patented Stand-by Pulsed Mode for low stand-by losses

■ Low dV/dT for Low EMI radiations

PINNING

1. Output Supply Voltage (Vcc)
2. Output Supply Voltage (Vc)
3. Output voltage
4. Ground
5. Foldback input
6. Overvoltage protection (OVP)
7. Current sense input
8. Demagnetization detection input
9. Standby current set
10. Oscillator voltage swing
11. Soft start/Dmax/Voltage mode
12. Clamp E/A input
13. E/A output
14. E/A input
15. Stand-by management
16. Rref input

PIN VALUE
12VDC
12VDC
LOW Level Drop Voltage 1VDC, Max : 1.2VDC (Isink=100mA)
1.4VDC, Max : 2VDC (Isink=500mA)

HIGH Level Drop Voltage 1.5VDC, Max : 2VDC (Isource=200mA)
2VDC, Max : 2.7VDC (Isource=500mA)
0.9VDC, Min:-0.3VDC, Max : Vcc+0.3VDC
0.78VDC, Min:-0.3VDC, Max : Vcc+0.3VDC

Min:-0.3VDC, Max : Vcc+0.3VDC
Idemag-ib (source):-4mA Idemag-ib (sink) : 10mA
Ipeak-stby/Iref : 0.40 Min : 0.37 Max : 0.43
2Vpp
Idischarge : 5mA, Min : 1.5 mA (Vsoft start=1V)
4.7VDC, Min : 4.5VDC Max : 4.9VDC

HIGH State: 6.5 VDC , Min : 5.5VDC, Max : 7.5VDC LOW State : 1.0VDC, 1.1VDC
2.5VDC, Min : 2.4VDC, Max : 2.6VDC

Stand-by On Detection current ratio : Idet/Iref : 0.38, Min : 0.34, Max : 0.42
Stand-by regulation current ratio : Ireg/Iref : 20.5, Min : 18, Max : 23
2.5VDC, Min : 2.4VDC, Max : 2.6VDC

SDA525X:

General description:

The SDA525X is designed for a low cost mono TV-set with analogue picture and sound control. IN SDA525X the following IC' s are used and supported:

Non-volatile memory : SDA 2526 or SDA2546
PLL : SDA 3202-3, SDA 3302
IR transmitter : SDA 2208-3 or SDA 2218
IR preamplifier : SFH 506-32

Features:

General:

- Display of program number, channel number, TV standard, analogue values, sleep timer, parental control, and mute is done by OSD
- Single LED for IR active, standby and on mode indication
- Local control (8 keys)
- IR remote control
- Control of volume, contrast, brightness, and saturation by analogue voltages

■ Non-volatile memory for 50 or 100 programs, optimum analogue values and system parameters

- Individual delta volume for each program
- 1 control line to select external source
- 3 control lines for TV standard selection
- Automatic muting if no carrier detected
- Automatic switch-off when carrier disappears for more than 5 minutes
- Software protection against tube flashovers with internal watchdog timer
- Sleep timer
- Parental control

■ IF 38 MHz or 38.9 MHz selectable
Tuning:
■ Frequency synthesis tuning (62.5 kHz steps)

- 192 step fine tuning
- Channels corresponding to standards
- 100 programs selectable by directly entering a program number or by up/down function depending on the NVM size
- Channel selection by directly entering a channel number or by up/down function
- Channel search function in two directions

Sound:

- Mono sound control by analogue voltage

Service Mode:

- System configuration with service mode

PINNING

1. Crystal selection output 1
2. Volume + switch input
3. Volume - switch input
4. Program - switch input
5. Program + switch input:
6. LED output
7. Filter (sound standard) selection output 1
8. Filter (sound standard) selection output 2
9. Mod-switch selection output
10. Ground
11. Supply voltage
12. 18 MHz crystal connection 1
13. 18 MHz crystal connection 2
14. L-ACC output
15. RESET output
16. Comb filter PAL/SECAM selection output
17. Tuning output
18. Audio switch transistor selection 1
19. Audio switch transistor selection 2
20. Audio switch transistor selection 3
21. Audio switch transistor selection 4
22. Comb filter standard selection 1
23. Comb filter standard selection 2
24. Analogue ground
25. Filter 3
26. Filter 2
27. Filter 1
28. Analogue supply voltage
29. Reference current input
30. CVBS input
31. Service output
32. AV2-status input
33. AV1-status input
34. AFC output
35. Ground
36. IR-input
37. Supply voltage
38. LC input
39. LC output
40. Mute output
41. St-by output
42. Clock signal output
43. Data output
44. Local connection
45. SAND input
46. ODD/EVEN output
47. OSD-red output
48. OSD-green output
49. OSD-blue output
50. OSD-blanking output
51. COR output
52. Crystal selection output 2

PIN VALUE
: LOW level : OV HIGH level: 4.2V
: LOW level: OV HIGH level : 5V
: LOW level : OV HIGH level:5V
: LOW level: OV HIGH level:5V
: LOW level: OV HIGH level: 5V
: LOW level: OV HIGH level: 4.2VDC
: LOW level : OV HIGH level : 4.2V
: LOW level : OV HIGH level : 4.2V
: LOW level: OV HIGH level : 4.2V
$+5 \mathrm{~V}$
2Vpp
2 Vpp
LOW level: OV HIGH level : 3.6 V LOW level: OV HIGH level: 5V
: LOW level : OV HIGH level: 5V
: LOW level : OV HIGH level : 3.4V
: LOW level : OV HIGH level : 5V
: LOW level: OV HIGH level : 5V
: LOW level: OV HIGH level: 5V
: LOW level: OV HIGH level : 5V
: LOW level: OV HIGH level : 5V
: LOW level : OV HIGH level:5V
: 5VDC
: 1Vpp
: LOW level: OV HIGH level : 5V
: LOW level : OV HIGH level: 5V
: LOW level : OV HIGH level: 5V 600mVpp
: LOW level : OV HIGH level : 5V
5V
5Vpp
5Vpp
: LOW level : OV HIGH level : 4.2 V
: LOW level : OV HIGH level : 1.4V
: LOW : OV HIGH : 5V
: 4Vpp
1.8 V
: LOW level : OV HIGH level : 5V
LOW level: OV HIGH level:5V
LOW level: OV HIGH level: 5V
: LOW level : OVh HIGH level:5V
: LOW level: OV HIGH level: 5V LOW level: OV HIGH level: 4.2V

TDA9875:

General description:

The TDA9875 is a single-chip Digital TV Sound Processor (DTVSP) for analogue and digital multi-channel sound systems.

Features:

Demodulator and decoder section:

- Sound IF (SIF) input switch e.g. to select between terrestrial TV SIF and SAT SIF sources
- SIF AGC with 21 dB control range
- SIF 8-bit Analogue-to-Digital Converter (ADC)
- DQPSK demodulation for different standards, simultaneously with 1-channel FM demodulation
- NICAM decoding (B/G, I and L standard)
- Two-carrier multistandard FM demodulation (B/G, D/K and M standard)

■ Decoding for three analogue multi-channel systems (A2, A2+ and A2*) and satellite sound

- Optional AM demodulation for system L, simultaneously with NICAM
- Programmable identification (B/G, D/K and M standard) and different identification times

DSP section:

- Digital crossbar switch for all digital signal sources and destinations
- Control of volume, balance, contour, bass, treble, pseudo stereo, spatial, bass boost and soft-mute
- Plop-free volume control
- Automatic Volume Level (AVL) control
- Adaptive de-emphasis for satellite
- Programmable beeper
- Monitor selection for FM/AM DC values and signals, with peak detection option
- ${ }^{2}$ S-bus interface for a feature extension (e.g. Dolby surround) with matrix, level adjust and mute.

Analogue audio section:

- Analogue crossbar switch with inputs for mono and stereo, SCART 1 input/output, SCART2 input/output and line output
- User defined full-level/-3dB scaling for SCART outputs
- Output selection of mono, stereo, dual A/B, dual A or dual B
- 20 kHz bandwith for SCART-to-SCART copies
- Standby mode with functionality for SCART copies
- Dual audio digital-to-analogue converter from DSP to analogue crossbar switch, bandwith 15 kHz
- Dual audio ADC from analogue inputs to DSP

■ Two dual audio Digital-to-Analogue Converters (DACs) for loudspeakers (Main) and headphone (Auxiliary) outputs; also applicable for L, R, C and S in the Dolby Pro Logic mode with feature extension.

PINNING

1. NICAM clock output (728kHz)
2. Serial NICAM DATA output $(728 \mathrm{kHz})$
3. First $I^{2} \mathrm{C}$-bus slave address modifier
4. $\mathrm{SCL}\left(I^{2} \mathrm{C}\right.$-bus clock)
5. SDA ($I^{2} \mathrm{C}$-bus data)
6. Analogue supply ground 1
7. Analogue supply voltage 1
8. Resistor for reference current generator
9. First general purpose I/O pin
10. Sound IF input 2
11. Reference voltage for demodulator part
12. Sound IF input 1
13. Second $\mathrm{I}^{2} \mathrm{C}$-bus slave address modifier
14. Digital supply ground 1
15. Digital supply voltage 1
16. Capacitor for power-on reset
17. Crystal oscillator output
18. Crystal oscillator input
19. Tuning voltage output for crystal oscillator
20. Second general purpose I/O pin
21. System clock output
22. ${ }^{2}$ S-bus clock
23. ${ }^{2}$ S-bus word select
24. ${ }^{2}$ S-bus data output 2
25. I ${ }^{2} \mathrm{~S}$-bus data output 1
26. I ${ }^{2}$ S-bus data input 2
27. I2S-bus data input 1
28. First test pin; connected to ground for normal operation
29. Audio mono input

PIN VALUE

LOW level input voltage : Max : 0.8V
HIGH level input voltage: Min : 2.0V
: LOW level input voltage : Max : 0.8 V
HIGH level input voltage : Min : 2.0V
: LOW level input voltage : Max : 0.8 V
HIGH level input voltage: Min : 2.0V
: LOW level input voltage : Max : 1.6 V
HIGH level input voltage : Min : 3.0V
: LOW level input voltage : Max : 0.8 V
HIGH level input voltage : Min : 2.0V
OV
5V, Min : 4.75V, Max : 5.5V
Iref : 220mA, Min : 170mA, Max : 260 mA
Min : 21Vrms, Max : 250 mV rms
Vdda1/Vssa1: 50\%, Min : 35\%, Max : 65\%
Min : 21Vrms, Max : 250mVrms
LOW level input voltage : Max : 0.8 V
HIGH level input voltage: Min : 2.0V
OV
$5 \mathrm{~V}, \mathrm{Min}: 4.75 \mathrm{~V}$, Max : 5.5 V
LOW level input voltage : Max : 1.6V
HIGH level input voltage: Min : 3.0V
: LOW level input voltage : Max : 0.5V HIGH level input voltage : Min : 2.9 V
: LOW level input voltage : Max : 0.8 V HIGH level input voltage : Min : 2.0V
: LOW level input voltage : Max : 0.8 V HIGH level input voltage : Min : 2.0 V
: LOW level input voltage : Max : 0.8 V HIGH level input voltage : Min : 2.0V
: LOW level input voltage : Max : 0.8 V HIGH level input voltage : Min : 2.0V
: LOW level input voltage : Max : 0.8 V HIGH level input voltage : Min : 2.0V
: LOW level input voltage : Max : 0.8 V HIGH level input voltage: Min : 2.0V

500 mV rms

350 mV rms
32. External audio input left channel
33. SCART 1 input right channel
34. SCART 1 input left channel
35. Ground guards
36. SCART 2 input right channel
37. SCART 2 input left channel
38. Analogue supply voltage 2
39. Positive reference voltage
40. Reference voltage ground
41. Filter capacitor pin 1
42. Filter capacitor pin 2
43. Analogue supply ground 2

350 mVrms
350 mV rms
350 mV rms
350 mV rms
350 mVrms
5 V , Min : 4.75V, Max : 5.5 V
: OV
44. Filter capacitor pin 2
45. Filter capacitor pin 1
46. Reference voltage 2 : Vdda2/Vssa2 : 50\%
47. Scart 1 output right channel : 500mVrms
48. Scart 1 output left channel

500 mV Vms
49. Digital supply ground 2

OV
50. Analogue supply ground 4
51. Scart 2 output right channel
52. Scart 2 output left channel
53. Reference voltage 3

OV
500 mV rms
500 mV rms
Vdda3/Vssa3:50\%
54. Post-filter capacitor pin right channel
55. Post-filter capacitor pin left channel
56. Analogue supply ground 3
57. Headphone output right channel
58. Headphone output left channel
59. Analogue supply voltage 3
60. Loudspeaker (main) output right channel
61. Loudspeaker (main) output left channel
62. Line output left channel
63. Line output right channel
64. Digital supply voltage 2

OV
Vo(clip) : Min : 1400 mV rms
Vo(clip) : Min : 1400 mVrms
$5.0 \mathrm{~V}, \mathrm{Min}: 4.75 \mathrm{~V}, \mathrm{Max}: 5.5 \mathrm{~V}$
Vo(clip) : Min : 1400 mV rms
Vo(clip) : Min : 1400 mVrms
500 mV rms
500 mV Vms
5.0V, Min : 4.75V, Max : 5.5 V

TDA9818:

General description:

The TDA9818 is an integrated circuit for multistandard vision IF signal processing, sound AM and FM demodulation.

Features:

- 5 V supply voltage
- Applicable for IF frequencies of $38.9 \mathrm{MHz}, 45.75 \mathrm{MHz}$ and 58.75 MHz
- Gain controlled wide band VIF-amplifier (AC-coupled)
- True synchronous demodulation with active carrier regeneration (very linear demodulation, good intermodulation figures, reduced harmonics, excellent pulse response)
- Robustness for overmodulation better than 105% due to gated phase detector at L/L accent standard and PLL-bandwidth control at negative modulated standards
- VCO frequency switchable between L and L accent (alignment external) picture carrier frequency
- VIF AGC detector for gain control, operating as peak sync detector for B/G, peak white detector for L; signal controlled reaction time for L
- Tuner AGC with adjustable takeover point (TOP)
- AFC detector without extra reference circuit
- AC-coupled limiter amplifier for sound intercarrier signal
- Alignment-free FM-PLL demodulator with high linearity
- SIF input for single reference QSS mode (PLL controlled); SIF AGC detector for gain controlled SIF amplifier; single reference QSS mixer able to operate in high performance single reference QSS mode and in intercarrier mode
- AM demodulator without extra reference circuit
- Stabilizer circuit for ripple rejection and to achieve constant output signals
- ESD protection for all pins

PINNING

1. VIF differential input signal voltage 1
2. VIF differential input signal voltage 2
3. Standard switch
4. VIF AGC capacitor
5. SIF AGC capacitor
6. PLL loop filter
7. L/L accent switch and adjust
8. Audio output
9. De-emphasis input
10. De-emphasis output
11. Decoupling capacitor
12. Single reference QSS/intercarrier output voltage

PIN VALUE

Input signal voltage sensitivity 60 mVrms , Max: 100 mVrms
: Input signal voltage sensitivity 60mVrms, Max:100mVrms
Min : 2.8V, Max : Vp
Charging current : 1 mA , Min : 0.75 mA , Max : 1.25 mA Discharging current : B/G standard : 20 mA , Min : 15 mA , Max: 25 mA Normal mode L: 300nA, Min : 225nA, Max : 375nA
Fast mode L : 40mA, Min : 30mA, Max : 50mA
Charging current : FM mode : 12 mA , Min : 8 mA , Max : 16 mA AM mode : 1.2 mA , Min : 0.8 mA , Max : 1.6 mA
Discharging current : FM mode : 12 mA , Min : 8 mA , Max : 16 mA
Normal mode AM : 1.4 mA , Min : 1 mA , Max : 1.8 mA
Fast mode AM : 85 mA , Min : 60mA, Max : 110 mA
Min : OV, Max: Vp
Min : OV, Max : Vp
Rx : 470ohm : 250 mV rms, Min : 200 mV rms, Max : 300 mV rms
Rx : Oohm : 500mVrms, Min : 400mVrms, Max : 600 mVrms
Min: OV, Max: Vp
Min : OV, Max : Vp
Min : OV, Max: Vp
140 mV rms, Min : 100 mV rms Max : 180 mV rms
13. Sound intercarrier input voltage
14. Tuner AGC output
15. Black level detector
16. Composite video output voltage
17. AFC output
18. VCO1 resonance circuit
19. VCO2 resonance circuit
20. Ground : OV
21. Supply voltage
22. Tuner AGC takeover adjust (TOP)
23. SIF differential input signal voltage 1
24. SIF differential input signal voltage 2

Input signal voltage for lock-in: Max : 100mVrms
Input signal voltage : 250 mVrms
: IF input signal voltage for minimum starting point of tuner takeover 2 mV , Max : 5 mV
IF input signal voltage for maximum starting point of tuner takeover 100 mV , Min : 50 mV
Min: OV, Max : Vp
$1.1 \mathrm{Vpp}, \mathrm{Min}: 0.97 \mathrm{Vpp}, \mathrm{Max}: 1.23 \mathrm{Vpp}$
Upper limit : Vp-0.3V, Min : Vp-0.6V, Lower limit : 0.3V, Max : 0.6V

ST24C08:

General description:

The ST24C08 is a 8Kbit electrically erasable programmable memory (EEPROM), organized as 4 blocks of 256 * 8 bits.
The memory operates with a power supply value as low as 2.5 V . Both Plastic Dual-in-Line and Plastic Small Outline packages are available.

Features:

- Minimum 1 million ERASE/WRITE cycles with over 10 years data retention
- Single supply voltage: 4.5 to 5.5 V
- Two wire serial interface, fully lıC-bus compatible
- Byte and Multibyte write (up to 8 bytes)
- Page write (up to 16 bytes)
- Byte, random and sequential read modes
- Self timed programming cycle

PINNING

1. Write protect enable (Ground)
2. Not connected (Ground)
3. Chip enable input (Ground)
4. Ground
5. Serial data address input/output
6. Serial clock
7. Multibyte/Page write mode
8. Supply voltage

PIN VALUE

OV
OV
OV
OV
Input LOW voltage : Min : -0.3V, Max : 0.3^{*} Vcc Input HIGH voltage: Min : $0.7^{*} \mathrm{Vcc}$, Max : Vcc+1
: Input LOW voltage: Min: -0.3 V , Max : $0.3^{*} \mathrm{Vcc}$ Input HIGH voltage: Min : $0.7^{*} \mathrm{Vcc}$, Max : Vcc+1
: Input LOW voltage : Min: -0.3 V, Max $: 0.5 \mathrm{~V}$
Input HIGH voltage: Min : Vcc-0.5, Max : Vcc+1
: Min : 2.5V, Max : 5.5 V

TDA1308:

Features:

- Wide temperature range
- No switch ON/OFF clicks
- Excellent power supply ripple rejection
- Low power consumption
- Short-circuit resistant
- High performance
- high signal-to-noise ratio
- high slew rate
- low distortion
- Large output voltage swing

PINNING

1. Output A (Voltage swing)
2. Inverting input A
3. Non-inverting input A
4. Ground
5. Non-inverting input B
6. Inverting input B
7. Output B (Voltage swing)
8. Positive supply

G1965M:

Features:

■ TV IF filter with Nyquist slope and sound shelf at typ. 20.4dB

- High colour carrier level at typ. 1.0dB
- Constant group delay

■ Insertion attenuation typ. 15.0dB

PINNING

1. Input
2. Input-ground
3. Chip carrier-ground

PIN VALUE

Min : 0.75V, Max : 4.25V
Vo(clip) : Min : 1400mVrms
2.5 V

OV
2.5 V

Vo(clip) : Min : 1400 mV rms
Min : 0.75V, Max : 4.25V

5V, Min : 3.0V, Max : 7.0V

TDA9855

General description:
The TDA9855 is a bipolar-integrated BTSC stereo/SAP decoder with hi-fi audio processor (lıC-bus controlled) for application in TV sets.
Features:
■ Quasi alignment-free BTSC stereo decoder due to auto adjustment of channel separation via lıC-bus

- High integration level with automatically tuned integrated filters
- Input level adjustment lıC-bus controlled
- Alignment-free Sap processing
- dbx noise reduction circuit
- Audio processor
-Selector for internal and external signals (line in)
-Automatic volume level control
-Subwoofer or surround output with separate volume control
-Volume control
-Special loudness characteristic automatically controlled in combination with volume setting
-Bass and treble control
-Audio signal zero crossing detection between any volume step switching
-Mute control at audio signal zero crossing
-lıC-bus tranceiver.

PINNING

PIN VALUE

1. Treble control capacitor, left channel
2. Bass control capacitor, left channel
3. Bass control capacitor, left channel
4. Not connected
5. Programmable address bit (module address)
6. Output, left channel
7. Input loudness, left channel
8. Input volume control, left channel

500mVrms, Min : 480mVrms, Max : 520mVrms
9. Output effects, left channel
10. Automatic volume control capacitor
11. Reference voltage 0.5 Vcc
12. Line input, left channel
13. Input automatic volume control, left channel
14. Output selector, left channel
15. Line output, left channel
: 2.15Vrms, Min : 2Vrms
16. Capacitor timing wideband for dbx
17. Capacitor timing spectral for dbx
18. Capacitor wideband for dbx
19. Capacitor spectral for dbx
20. Variable emphasis out for dbx
21. Variable emphasis in for dbx
22. Capacitor noise reduction for dbx
23. Capacitor mute for SAP
24. Capacitor DC decoupling for SAP
25. Common ground
26. Serial data input/output
27. Serial clock input
28. Supply voltage
: OV
High level input voltage:
Min : 3VDC, Max : Vcc Low level input voltage:
Min : -0.3VDC, Max : 1.5VDC
Low level output voltage : Max : 0.4VDC
: High level input voltage:
Min : 3VDC, Max : Vcc
Low level input voltage : Min : -0.3VDC, Max : 1.5VDC
Low level output voltage : Max : 0.4VDC
8VDC
250mVrms
29. Input composite signal
30. Capacitor for electronic filtering of supply
31. Capacitor for pilot detector
32. Capacitor for pilot detector
33. Capacitor for phase detector
34. Capacitor for filter adjust
35. Ceramic resonator
36. Capacitor DC decoupling mono
37. Capacitor DC decoupling stereo/SAP
38. Line output, right channel

500 mV rms
39. Output selector, right channel
40. Input automatic volume control, right channel
41. Line input, right channel

Min:2Vrms
2.3Vrms, Min : 2Vrms
42. Capacitor 2 pseudo function
43. Capacitor 1 pseudo function
44. Output effects, right channel
45. Input volume control, right channel
46. Input loudness, right channel
47. Output, right channel
: Min : 2Vrms
: 500mVrms, Min : 480mVrms Max : 520mVrms
48. Not connected
49. Filter capacitor for subwoofer
50. Bass control capacitor, right channel
51. Bass control capacitor, right channel
52. Treble control capacitor

AK19 CHASSIS MANUAL ADJUSTMENTS PROCEDURE

In order to enter the service mode, first enter the installation menu (or press blue button on the remote control handset) and then press the digits 4, 7, 2 and 5 respectively.

For ADJUST settings:
Select Adjust using ∇ or \triangle button and press \triangle or \triangleleft button to enter it. To select different adjust parameters, use ∇ or \triangle button. To change the selected parameter, use $>$ or \measuredangle button.

WHITE BALANCE ADJUSTMENT:

The following three parameters are used to make white balance adjustment. To do this, use a Colour Analyser. Using white point RED, white point GREEN and white point BLUE parameters, insert the + sign in the square which is in the middle of the screen.
ADJUST 00 = White Point RED
ADJUST 01 = White Point GREEN
ADJUST 02 = White Point BLUE
AGC ADJUSTMENT:
In order to do AGC adjustment, enter a 60 dBmV RF signal level from channel C-12.
Connect a digital voltmeter to pin 1 of the tuner. Change the AGC parameter until you see 3.70VDC on voltmeter display. Check that picture is normal at 90 dBmV signal level.

IF-PLL NEGATIVE ADJUSTMENT (Only with PLL tuner):

Connect 38.9 MHz test pattern for PAL B/G, PAL-SECAM B/G, 39.5 MHz test pattern for PAL I or 45.75 MHz test pattern for PAL M/N, NTSC M model to Z401 SAW filter input terminals. Change the IF-PLL Negative parameter until you see IN, DOWN below. If you cannot catch IN, DOWN position this way, using a screwdriver rotate the VIF-COIL LT401 left or right until you see IN, DOWN.

IF-PLL POSITIVE ADJUSTMENT (Only with PLL tuner):

Connect 33.9 MHz test pattern for SECAM L' model to Z401 SAW filter input terminals. Change the IF-PLL Positive parameter until you see IN, DOWN below. If you cannot catch IN, DOWN position this way, using a screwdriver rotate the VIF-COIL LT401 left or right until you see IN, DOWN.

LUMINANCE DELAY ADJUSTMENT (with only TDA 8844 video processor):

Y-Delay PAL
Enter a PAL B/G colour and black-white bar test pattern via RF. Adjust Y-Delay PAL till the colour transients on the colour bar of the pattern become as sharper and colours between transients do not mix with each other as possible.
Note: If the SAW filter is one of the G1965M, J1951M, J3950M, K2958M, K2962M, G3957M, K6256K, K6259K or M1963M, there is constant group delay distortion, so for an equal delay of the luminance and chrominance signal the delay must be set at a value of 160 nS . This means the adjustment must be set to the maximum value.
Y-Delay SECAM
Enter a SECAM B/G colour and black-white bar test pattern via RF. Adjust Y-Delay SECAM till the colour transients on the colour bar of the pattern become as sharper and colours between transients do not mix with each other as possible.
Note: If the SAW filter is one of the G1965M, K2958M, K2962M, G3957M, K6256K or K6259K, there is constant group delay distortion, so for an equal delay of the luminance and chrominance signal the delay must be set at a value of 160 nS .
This means the adjustment must be set to the maximum value.
Y-Delay NTSC
Enter an NTSC colour and black-white bar test pattern via RF. Adjust Y-Delay NTSC till the colour transients on the colour bar of the pattern become as sharper and colours between transients do not mix with each other as possible.
Note: If the SAW filter is M1963M, there is constant group delay distortion, so for an equal delay of the luminance and chrominance signal the delay must be set at a value of 160 nS . This means the adjustment must be set to the maximum value. Y-Delay Other

In case of other colour systems, enter this system with colour and black-white bar test pattern via RF. Adjust Y-Delay Other till the colour transients on the colour bar of the pattern become as sharper and colours between transients do not mix with each other as possible. Normally for an equal delay of the luminance and chrominance signal the delay must be set at a value of 160 nS . This means the adjustment must be set to the maximum value.

VERTICAL ZOOM ADJUSTMENT (only for 110ø picture tubes):
Enter a PAL B/G circle test pattern via RF. Change vertical zoom till you see the upper and lower limit of the circle as close to the upper and lower limit of the picture tube as possible.

VERTICAL SCROLL ADJUSTMENT (only for $110 ø$ picture tubes):

Enter a PAL B/G circle test pattern via RF. Change vertical scroll till you see the circle exactly in the middle of the screen.

4:3 HORIZONTAL SHIFT ADJUSTMENT:

Enter a RED PURITY test pattern via RF.Change horizontal shift till the picture is horizontally centred. Check whether this adjustment is correct after completing Service Mode Adjustment.

4:3 VERTICAL SLOPE ADJUSTMENT:

Enter a CROSS-HATCH B/G test pattern via RF. Change vertical slope till the size of squares on both the upper and lower part of test pattern become equal to the squares laying on the vertical centre of the test pattern. Check and readjust VERTICAL SLOPE item if the adjustment becomes improper after some other geometric adjustments are done.

4:3 VERTICALAMPLITUDE ADJUSTMENT:

Enter a PAL B/G test pattern via RF. Change vertical slope till horizontal black lines on both the upper and lower part of the test pattern become very close to the upper and lower horizontal sides of picture tube and nearly about to disappear. Check and readjust VERTICAL AMPLITUDE item if the adjustment becomes improper after some other geometric adjustments are done.

4:3 S-CORRECTIONADJUSTMENT:

Enter a PAL B/G circle test pattern via RF. Change S-correction till the middle part of the circle is as round as possible.

4:3 VERTICAL SHIFT ADJUSTMENT:

Enter a PAL B/G test pattern via RF. Change Vertical Shift till the test pattern is vertically centred, i.e. horizontal line at the centre pattern is in equal distance both to upper and lower side of the picture tube. Check and readjust Vertical Shift item if the adjustment becomes improper after some other geometric adjustments are done.

4:3 EW WIDTH ADJUSTMENT (only for $110 ø$ picture tubes):

Enter a PAL B/G test pattern via RF. Change EW Width till the vertical black and white bars on both left and right side of the pattern exactly disappear.

4:3 EW PARABOLA WIDTH ADJUSTMENT (only for $110 \varnothing$ picture tubes):

Enter a PAL B/G test pattern via RF. Change EW Parabola Width till vertical lines close to the both sides of the picture frame become parallel to vertical sides of picture tube. Check and readjust EW Parabola Width item if the adjustment becomes improper after some other geometric adjustments are done.

4:3 EW CORNER PARABOLA ADJUSTMENT (only for $110 ø$ picture tubes):

Enter a PAL B/G test pattern via RF. Change EW Corner Parabola till vertical lines at the corners of both sides of picture frame become vertical and parallel to vertical corner sides of picture tube. Check and readjust EW Corner Parabola item if the adjustment becomes improper after some other geometric adjustments are done.

4:3 EW TRAPEZIUM ADJUSTMENT (only for $110 ø$ picture tubes):

Enter a PAL B/G test pattern via RF. Change EW Trapezium till vertical lines, especially lines at the sides of the picture frame became parallel to the both sides of picture tube as close as possible. Check and readjust EW Trapezium item if the adjustment becomes improper after some other geometric adjustments are done.

16:9 HORIZONTAL SHIFT ADJUSTMENT:

Enter a RED PURITY test pattern via RF.Change horizontal shift till the picture is horizontally centred. Check whether this adjustment is correct after completing Service Mode Adjustment.

16:9 VERTICAL SLOPE ADJUSTMENT:

Enter a CROSS-HATCH B/G test pattern via RF. Change vertical slope till the size of squares on both the upper and lower part of test pattern become equal to the squares laying on the vertical centre of the test pattern. Check and readjust VERTICAL SLOPE item if the adjustment becomes improper after some other geometric adjustments are done.

16:9 VERTICAL AMPLITUDE ADJUSTMENT:

Enter a PAL B/G test pattern via RF. Change vertical slope till horizontal black lines on both the upper and lower part of the test pattern become very close to the upper and lower horizontal sides of picture tube and nearly about to disappear. Check and readjust VERTICAL AMPLITUDE item if the adjustment becomes improper after some other geometric adjustments are done.

16:9 S-CORRECTION ADJUSTMENT:

Enter a PAL B/G circle test pattern via RF. Change S-correction till the middle part of the circle is as round as possible.

16:9 VERTICAL SHIFT ADJUSTMENT:

Enter a PAL B/G test pattern via RF. Change Vertical Shift till the test pattern is vertically centred, i.e. horizontal line at the centre pattern is in equal distance both to upper and lower side of the picture tube. Check and readjust Vertical Shift item if the adjustment becomes improper after some other geometric adjustments are done.

16:9 EW WIDTH ADJUSTMENT (only for $110 \varnothing$ picture tubes):
Enter a PAL B/G test pattern via RF. Change EW Width till the vertical black and white bars on both left and right side of the pattern exactly disappear

16:9 EW PARABOLA WIDTH ADJUSTMENT (only for $110 ø$ picture tubes):

Enter a PAL B/G test pattern via RF. Change EW Parabola Width till vertical lines close to the both sides of the picture frame become parallel to vertical sides of picture tube. Check and readjust EW Parabola Width item if the adjustment becomes improper after some other geometric adjustments are done.

16:9 EW CORNER PARABOLA ADJUSTMENT (only for $110 \varnothing$ picture tubes):

Enter a PAL B/G test pattern via RF. Change EW Corner Parabola till vertical lines at the corners of both sides of picture frame become vertical and parallel to vertical corner sides of picture tube. Check and readjust EW Corner Parabola item if the adjustment becomes improper after some other geometric adjustments are done.

16:9 EW TRAPEZIUM ADJUSTMENT (only for $110 ø$ picture tubes):

Enter a PAL B/G test pattern via RF. Change EW Trapezium till vertical lines, especially lines at the sides of the picture frame became parallel to the both sides of picture tube as close as possible. Check and readjust EW Trapezium item if the adjustment becomes improper after some other geometric adjustments are done.

