

 $\left[\right]$

[

[

[

AFM 3 Modulation Meter

2.

AFM 3 Modulation Meter

982-697, 7708D

re

Table of Contents

	page
SECTION A - INTRODUCTION	A1
SECTION B - SPECIFICATIONS	BI
SECTION C - ACCESSORIES	C1
SECTION D - GENERAL DESCRIPTION	DI
1. Description	DI
2. Controls, Meter and Terminals	D4
SECTION E - OPERATING INSTRUCTIONS	El
1. Connecting the Instrument	E1
2. Measuring Amplitude Modulation Percentage	E1
3. Measuring Frequency Deviation (FM kHz)	E3
4. Using a Crystal Oscillator Plug-in Unit, Code 900–252	E4

SECTION F - TECHNICAL DESCRIPTION	Fl
1. RF Input Circuit	Fl
2. Tuner	Fl
3. IF Filter	Fl
4. IF Preamplifier and IF Attenuator	F2
5. IF Amplifier	F2
6. Buffer Amplifier	F2
7. AM Detector	F4
8. IF Output Amplifier	F4
9. Limiter Stages	F4
10. FM Detector	F5
11. AF Amplifiers I and II	F5
12. AF Amplifiers III - V	F5
13. AF Detector	F6
14. Power Supply	F6
	01
SECTION G - MAINTENANCE	GI
SECTION H - PARTS LIST	HI

•

Modulation Meter Type AFM3

Section A. Introduction

Fig.A1. The Modulation Meter, type AFM3.

The Modulation Meter, type AFM3, is a solid-state, line- or battery-operated precision measuring instrument for accurate measurement of the modulation depth of AM signals and the peak deviation of FM signals in the carrier frequency range from 6 to 1001 MHz. The Modulation Meter is designed for accepting signals with a modulation frequency from 30 Hz to 15 kHz.

The indicating meter has full-scale deflection for 1, 3, 10, 30, and 100% AM, and ± 1 , ± 3 , ± 10 , ± 30 and ± 100 kHz FM, peak value; furthermore a 0 to -20 dB meter range enables frequency response measurements. Due to the very small amount of residual modulation generated in the Modulation Meter proper, it is possible to measure residual FM and AM in oscillators, spurious AM on FM signals, and vice versa. Accurate measurements on distorted signals are rendered easy by a switch that enables the positive and negative peak value to be measured separately. If increased resolution is desired, an external indicator, such as a voltmeter, can be employed to extend the measuring range downwards.

The input signal level necessary for full accuracy is 3 mV in the carrier frequency range 6 to 200 MHz, 30 mV in the range 200 to 1001 MHz. The maximum operating input voltage is 10 V. Besides a manual level control, the Modulation Meter features an automatic level control with a regulating range of 40 dB.

The IF bandwidth of the Modulation Meter is ± 300 kHz, and four deemphasis networks of 50, 75, 750 µs, and 6 dB/ octave (ref. 1 kHz), two low-pass filters with frequencies of 3 and 15 kHz, and two band-pass filters with 3 dB points at 50 Hz and 15 kHz, and 300 Hz and 3 kHz, respectively, ensure optimal measuring conditions for a wide range of applications.

A plug-in Crystal Oscillator Unit, code 900-252, is available for the reduction of residual FM - a convenience when measuring very low FM deviations.

Section B. Specifications

FREQUENCY RANGE OF INPUT SIGNAL	6 – 1001 MHz	
FREQUENCY RANGE OF VARIABLE OSCILLATOR	7 – 1000 MHz	
Fundamental ranges;	7–12, 12–21, 21–37, 37–65, 65–110, and 110–200 MHz	
Harmonic ranges:	200-330, 330-600, and 600-1000 MHz	
CALIBRATION ACCURACY	3%	
CRYSTAL OPERATION	An optional Crystal Oscillator Unit, code 900–252, that accepts up to four switch–selected crystals, en– sures low residual FM.	
	Specification changes due to crystal ope See SECTION C – ACCESSORIES_	eration:
INPUT LEVEL	One input socket in connection with a 3-step input attenuator (10 + 10 + 20 dB) adapts the AFM3 to input levels from 3 mV to 10 V.	
Carrier frequency ranges:	6-200 MHz	200-1001 MHz
Attenuation 0 dB ⁺ :	3-100 mV	30-100 mV
Attenuation 10 dB:	100-300 mV	
Attenuation 20 dB:	300-1000 mV	
Attenuation 30 dB:	1-3 V	
Attenuation 40 dB:	3-10 V	
	⁺ Basic sensitivity range, BSR	
Max. safe input level:	10 V r.m.s.	
Input level for residual FM and AM measurements:	Min. input level is 10 mV within the ro and 20 mV within the range 600–1001 A	ange 6-600 MHz, AHz.
INPUT IMPEDANCE	50 Ω nominal	
LEVEL SETTING		
Manual level setting:	Continuous within a range of min. 40 d	3
Automatic level setting:	The AGC system keeps the level setting for input level variations within the spec level ranges.	within 0.5% cified input
	Fine adjustment of the automatic level set	ting is possible.

FREQUENCY MODULATION

Deviation ranges:	± 1 , ± 3 , ± 10 , ± 30 and ± 100 kHz f.s.d. (peak deviation).	
	Positive and negative deviation peaks can be m sured separately.	ea-
Accuracy:		
±1 kHz deviation:	2% of reading +2% of full scale at modulation quencies within 30 Hz - 15 kHz.	fre-
±3 kHz to ±100 kHz deviation:	2% of reading +1% of full scale at modulation quencies within 30 Hz – 15 kHz.	fre-
	Notes:	
	 To obtain specified accuracy, the upper free cy limit of the built-in low-pass filter should be switched as follows: 	:quen- e
	Deviation range	
	±1 kHz and ±3 kHz3 kHz low-pass fil±10 kHz to ±100 kHz15 kHz low-pass f	ter ilter
	2. The specified accuracies are valid only with METER switch set to SLOW. In position FAST, lower frequency limit is 160 Hz.	n the the
Distortion:		
up to ±15 kHz deviation	0.2% distortion at modulation frequencies within 30 Hz – 5 kHz.	١
up to ±75 kHz deviation:	0.4% distortion at modulation frequencies within 30 Hz – 15 kHz.	1
AF output and meter response (FM):	Within 50 Hz – 15 kHz, the frequency response within +0.25% and –1.5%.	is
	Notes:	
	1. The built-in 15 kHz low-pass filter is to be used.	;
	2. The specified response for METER is valid o with the METER switch set to SLOW. In position FAST the lower frequency is 160 Hz.	nly n
Residual FM:	Filter: 50 Hz – 15 kHz (3 dB) Deemphases: 50 µs and 75 µs	
	On condition of a quiet test room (noise level <60 dB rel. 2 x 10 ⁻⁴ µbar.):	
	Less than 25 Hz FM (r.m.s.) within the frequen range 6–200 MHz; typically 10 Hz (r.m.s.).	су

FM due to AM:

Deemphases:

Standard deemphases:

Deemphasis:

AMPLITUDE MODULATION

Modulation depth range:

Accuracy:

Manual level setting:

±1% range

Less than 100 Hz FM (r.m.s.) up to 1001 MHz, typically 50 Hz FM (r.m.s.).

Filter: 300 Hz - 3 kHz Deemphasis: 750 µs

8 Hz FM (r.m.s.) within the frequency range 6-200 MHz, typically 5 Hz FM (r.m.s.).

Less than 30 Hz FM (r.m.s.) up to 1001 MHz, typically 20 Hz FM (r.m.s.).

Notes:

1. 0.1% of full deviation range is to be added.

2. Minimum RF input level: See Input Level.

Additional residual FM error due to AM is typically less than 50 Hz (r.m.s.) at 50% AM, when the bandpassfilter (50 Hz - 15 kHz) is used and only for crystal oscillator operation,

50, 75, and 750 µs, switchable.

6 dB/oct. (ref. 1 kHz). For frequency response of filter, see Fig.B1.

The deemphases can be switched off.

Fig.B1. Frequency response of the 6 dB/oct. filter.

1, 3, 10, 30, and 100% AM f.s.d.

Positive and negative modulation peaks can be measured separately.

2% of reading +2% of full scale at modulation frequencies within 30 Hz - 15 kHz.

± 3 to $\pm 100\%$ ranges	2% of reading +1% of full scale at modulation fre- quencies within 30 Hz - 15 kHz.			
	Notes:	Notes:		
	 To obtain specified accuracy, the upper fre- quency limit of the built-in low-pass filter should be switched as follows: 			
	modulation range	upper frequency range		
	1 and 3% 10 to 100%	3 kHz low–pass filter 15 kHz low–pass filter		
	2. The above accu depths up to 90% A range 6–200 MHz, carrier frequency ra	racies are valid for modulation M within the carrier frequency and up to 30% AM within the nge 200–1001 MHz.		
Automatic level setting:	ing: The following typical values are to be added to the above accuracies:			
	At a modulation frequency of 30 Hz: 5% of reading			
	At a modulation frequency of 50 Hz: 1% of reading			
	At modulation frequencies above 100 Hz, the addi- tional error is negligible.			
	Note: The specified accuracies (manual and automat- ic level settings) are valid only with the METER switch set to SLOW. In position FAST, the lower frequency limit is 160 Hz.			
AM distortion:				
Carrier frequencies within the range 6 – 200 MHz:	0.2% distortion at 30% AM and at modulation f quencies within 30 Hz – 15 kHz.			
	1% distortion at 90% AM and at modulation fre- quencies within 30 Hz - 15 kHz.			
Carrier frequencies within the range 200 – 1001 MHz:	1% distortion at 30% AM and at modulation fre- quencies within 30 Hz - 15 kHz.			
Residual AM at CW:	Less than 0.03% AA up to 200 MHz, typ	A (r.m.s.) at carrier frequencies bically 0.01% AM (r.m.s.).		
	Less than 0.1% AM (r.m.s.) at carrier frequencies up to 500 MHz, typically 0.03% AM (r.m.s.).			
	Less than 0.3% AM (r.m.s.) at carrier frequencies up to 1001 MHz, typically 0.1% AM (r.m.s.).			
	Notes:			
	1. 0.1% of full A	M range to be added.		
2. Minimum RF input level: See Input Le		out level: See Input Level.		

	3. The built-in band-pass filter (50 Hz – 15 kHz) is to be used.
	4. By use of the filter 0.3–3 kHz the residuals will be halved.
AM due to FM:	Additional error is less than 0.6% AM (r.m.s.) at ±50 kHz deviation.
AF output (AM)	
Manual level settings:	The frequency response is within $\pm 0.5\%$ in the range 30 Hz – 15 kHz.
Automatic level settings:	The following typical error contributions are to be added to the above frequency response:
	At a modulation frequency of 30 Hz: 5%
	At a modulation frequency of 50 Hz: 1%
	At modulation frequencies above 100 Hz, the error contribution is neglible.
INTERMEDIATE FREQUENCY CHANNEL	
Frequency:	1 MHz
Bandwidth:	Approx. $\pm 300 \text{ kHz/3 dB}$.
IF check:	The meter has a separate scale to facilitate correct tuning (IF = 1 MHz). Scale calibration 0, ±100, ±200, and ±300 kHz.
lf output:	1 MHz IF signal of 0.2 V EMF from 50 Ω source at correct frequency tuning and full scale deflection on meter.
AUDIO FREQUENCY CHANNEL	
<u>Bandwidths:</u>	Two switchable low–pass filters, 3 kHz, 15 kHz, to be used when measuring FM deviation and AM modulation.
3 kHz filter:	For mod. freq. up to 3 kHz.
15 kHz filter:	For mod. freq. up to 15 kHz.
50 Hz – 15 kHz filter:	Band–pass filter, 50 Hz (3 dB) – 15 kHz (3 dB), to be used when measuring residual FM and AM.
300 Hz – 3 kHz filter:	Band–pass filter, 300 Hz (3 dB) – 3 kHz (3 dB), to be used when measuring residual FM and AM.
AF output:	AF signal of 1 V EMF (peak value) at full scale deflection. Bandwidths as specified above.

dc OUTPUT	
Mod. level:	dc-voltage of 1 V EMF from 600 Ω source at full scale deflection.
POWER SUPPLY	
Voltages:	110 V and 220 V, ±10%.
Frequencies:	48 - 65 Hz.
Consumption:	about 20 VA.
External de supply:	The power cord is fixed and provided with a mains plug of the Schuko type.
de sources:	0 to $+(18 \text{ to } 25 \text{ V})$ and 0 to $-(18 \text{ to } 25 \text{ V})$.
	approx. 330 mA nom each source.
PE input and IE subsub	
Kr input and ir output:	DINC
AF output:	UHF
dc output (AF):	Banana jacks
External dc supply:	Belling Lee L1436/S
OPERATING AMBIENT TEMPERATURE RANGE DIMENSIONS AND WEIGHT	0 – 50 [°] C
Height:	197 mm (7 3/4 in.)
Width:	485 mm (19 1/8 in.)
Depth:	245 mm (9 5/8 in.)
Weights	13 kg (28.6 lbs)
mounting and finish	Steel cabinet finished in grey enamel lacquer.
ACCESSORIES SUPPLIED	1 coaxial cable (50 Ω), code 617-004, with type UG-88/U BNC plugs.
	1 battery plug, Belling & Lee, L1436/P, code 805–429. 2 sets of spare fuses
OPTIONAL ACCESSORIES AVAILABLE	Crystal Oscillator, code 900–252.
	1 set of dust covers (top plate and bottom plate) for rack mounting, code 884–002.

B6

Section C. Accessories

PLUG-IN CRYSTAL OSCILLATOR UNIT, CODE 900-252

General

The Plug-in Crystal Oscillator Unit, code 900-252, is preferably used within the frequency range 67 - 1001 MHz to achieve low residual FM. It is supplied without crystals.

The Crystal Oscillator Unit contains a crystal-controlled oscillator followed by a doubler stage, and it has room for up to four switch-selected crystals. The crystals are mounted inside the unit and can easily be exchanged. Initial adjustment is made by means of individual

Fig.C1. The Crystal Oscillator Unit, code 900-252.

screwdriver adjustments on the front panel.

The trimmers directly cover a tuning range of 360 - 1000 MHz. In the ranges 67 - 120 MHz and 200 - 360 MHz, a fixed capacitor must be added in parallel with the trimmer. Specifications

Frequency of crystals:

Number of crystals: Sockets for up to 4 crystals.

In order to achieve the highest possible sensitivity of the Modulation Meter, the frequency of the crystals must be as high as possible. Overtone crystals having frequencies within the range 33 - 100 MHz are recommended. The crystal frequency f is decr

$$f_{cr} = \frac{f_s - 1}{2n}$$
 MHz

where f indicates the carrier frequency and n the odd harmonic of the crystal overtone-frequency.

The sensitivity specifications, item INPUT LEVEL (SECTION B), are based on the following combinations of carrier frequency, order of harmonic, and range of crystal frequencies.

Carrier frequency	Order of harmonic	Range of crystal frequencies
f s	n	f cr
200 – 600 MHz	3	33 – 100 MHz
600 – 1000 MHz	5	60 – 100 MHz

Characteristics of the crystals:

Type:	HC - 25/U
Frequency:	See above.
Frequency tolerance:	10 × 10 ⁻⁶ at reference temperature 25°C
Frequency tolerance over operating temperature range:	10×10^{-6} , within 0-50°C
Condition of resonance:	Series
Mode of operation:	5. overtone
Max. drive level:	2 mW
Max. equivalent series resistance:	60 Ω
Input level for residual FM and AM measurements:	See INPUT LEVEL in SECTION B.

Initial conditions:

Section D. General Description

DESCRIPTION

As can be seen on the simplified blockdiagram shown in Fig.D1, the RF input signals to the 50 Ω coaxial connector are fed to a diode mixer via an input attenuator providing for 10, 20, 30, and 40 dB attenuation and thus accommodating RF signals from 3 mV to 10 V r.m.s. The mixer, which is balanced and highly linear, so that distortion of amplitude-modulated signals is avoided, is coupled to the local tuning oscillator. For RF input signals in the range from 6 to 200 MHz, mixing is realized with the fundamental frequency of the local oscillator, whilst it takes place with the third and fifth harmonics in the range from 200 to 1001 MHz. This results in an IF signal of 1 MHz. The mixer can also be coupled to an optional Crystal Oscillator Unit, code 900-252, which can accommodate four crystals, thereby enabling measurements at four predetermined, fixed frequencies.

The signal from the mixer is passed through an IF filter, which is a Butterworth band-pass filter with a bandwidth of ±300 kHz/3 dB.

From the IF filter, the IF signal is fed to an IF preamplifier which acts as a buffer. At the same time, the IF preamplifier provides for amplification of the IF signal. This amplification, together with ideal coupling to the IF filter, keeps the noise level down to a minimum at all input levels.

The IF preamplifier is followed by a diode attenuator whose biasing current can be controlled by the potentiometer LEVEL, accessible on the front panel of the Modulation Meter. Level control can be performed within a range of 40 dB. Alternatively, the IF attenuator can be driven by a voltage proportional to the IF level amplified in an AGC amplifier. This provides for automatic level control within 40 dB. Fine adjustment is nevertheless also possible by means of the potentiometer LEVEL.

The IF signal from the IF attenuator is then fed to an IF amplifier which consists of two wideband amplifier stages. The IF amplifier brings the IF signal to the level required by the AM detector.

A buffer amplifier separates AM detector and IF output amplifier. It consists of a unity-gain amplifier with low output impedance and serves to suppress any influence from the IF output which is available for external monitoring from a coaxial connector on the front panel.

The IF signal from the buffer amplifier

Fig.D1. Block-diagram of the Modulation Meter, type AFM3.

is fed to the AM detector and to the IF output amplifier. The AM detector is an amplifier with a mean-value detector in the feedback loop which also provides for the large amount of linearity required. The AM detector has a dc and an ac output. The first of these is coupled to the meter of the instrument via the FUNCTION selector.

In the corresponding position of the FUNCTION selector, the meter indicates the value of the AM detector's dc current - in other words: the IF level. The second output of the AM detector is coupled to the AF section (described below) via the selector FUNCTION.

As stated above, the IF signal from the buffer amplifier is also fed to the IF output amplifier which provides for amplification so that the level required for driving a following limiter is obtained.

The limiter transforms the IF signal into a square wave, the zero crossing of which is controlled by variations in the peak-to-peak value being compared with variations in the mean value. Subsequent limiting action takes place in the following limiter section. The resulting signal is fed via a buffer amplifier to the FM detector section which consists of a monostable multivibrator and an output amplifier.

The signal from the last limiter section is used to trigger a monostable multivibrator which provides for pulses of constant width. The pulses from the multivibrator are amplified in an output amplifier. The output amplifier is provided with a regulating loop consisting of a peak detector and an amplifier. This regulating loop keeps the value of the peak-to-peak voltage of the output amplifier constant. Hence, as the amplitude and the width of the pulses are constant, the mean value of the signal will vary according to the number of pulses per second. The mean value is utilized when the FUNCTION selector is in position IF CHECK for reading the value of the intermediate frequency. To ensure a high degree of accuracy and an extremely low hum level, both the multivibrator and the output amplifier are furnished with their own regulated power supply.

From the AM or FM detector, the signal is fed to a Butterworth low-pass filter via a relay controlled by the FUNCTION selector.

The low-pass filter is followed by a two-section, 4×10 dB precision attenuator which determines the metering ranges. It is followed by an amplifier providing for amplification of the AF signal to the level required by the next stages.

The AF amplifier is followed by deemphasis networks providing for the standard deemphases of 50, 75, and 750 μ s, and the non-standard deemphasis of 6 dB/oct. The amplified AF signal can also be passed through one of the two low-pass filters for modulation frequencies up to 3 and 15 kHz, or through two band-pass filters with 3 dB points at 50 Hz and 15 kHz, and 0.3 kHz and 3 kHz, respectively, ensuring a wide range of applications.

These networks and filters are followed by an AF amplifier. The output signal from this amplifier is available on the front panel via the AF OUTPUT connector for distortion measurements or external monitoring. Loading of the AF OUTPUT does not interfere with the meter indication. The output voltage from the first AF amplifier is also fed to another AF amplifier providing for the voltage necessary for the AF detector.

The AF detector gives the true peak value of any AF signal. Depending on the position of the FUNCTION selector, the positive or the negative modulation

Fig. D2. Front plate of the Modulation Meter, type AFM3.

peak can be measured. The AF detector has two time constants, thereby furnishing two meter responses.

The AF detector is followed by an impedance-matching network providing for low output impedance to the meter.

CONTROLS, METER AND TERMINALS

General

As can be seen in Figs.D2 and D4, the Modulation Meter, type AFM3, is provided with the following controls, meter, and terminals:

Controls, Meter, and Front Plate Terminals (see Fig.D2)

Power Lamp and ON switch (1)

The power switch ON is a toggle switch monitored by the lamp POWER.

RANGE Selector and Drum Scale (2)

The selector RANGE is an eight-position rotary switch. In the first six positions, the RANGE selector provides for selection of the frequency ranges according to the table printed on the front plate of the instrument. (Note that the ranges E and F each cover two frequency bands.) The next position is a rest position. In the last position, the plug-in Crystal Oscillator Unit (if any) is connected. The selector RANGE is monitored by the drum scale immediately above.

TUNING Knob (3)

The knob TUNING provides for adjustment of the local escillator frequency at 1 MHz from the signal frequency. It is monitored by a cursor on the drum scale.

LEVEL Potentiometer (4) and MAN.-AUTO. Switch (5)

The potentiometer LEVEL has two functions according to the position of the switch MAN.-AUTO.

When the switch MAN.-AUTO. is in position MAN., the LEVEL potentiometer is used to vary the sensitivity of the instrument manually within a range of min. 40 dB.

When the switch MAN.-AUTO. is in position AUTO., the LEVEL potentiometer is used for fine-adjustment of the automatically adjusted sensitivity of the instrument.

D4

FUNCTION Selector (6)

The selector FUNCTION is a sevenposition rotary switch. The position LEVEL is used when searching the signal (i.e., tuning) and monitoring the IF level. When measuring, the positions IF CHECK are used to tune the instrument to the exact carrier frequency. (See under "Meter" below.) The percentage of amplitude modulation of AM signals can be measured by placing the selector in position AM+ or AMaccording to the sign of the modulation peak to be measured. The frequency deviation of FM signals can be measured by placing the selector in position FM+ or FM- according to the sign of the modulation peak to be measured.

METER RANGE Selector (7)

The selector METER RANGE is a fiveposition rotary switch. Each position corresponds to the full-scale range of the meter, viz: AM 1 - 3 - 10 - 30 -100%, FM 1 - 3 - 10 - 30 - 100 kHz.

SLOW/FAST Switch (8)

The switch SLOW/FAST is a sliding switch. In position SLOW $f_{mod} > 10$ Hz, the meter response is slow. This position should not be used when measuring on signals with modulation frequencies higher than 160 Hz. In position FAST $f_{mod} > 160$ Hz, the meter response is fast.

FILTER/DEEMPHASIS Selector (9)

The selector FILTER/DEEMPHASIS is an eight-position rotary switch. In the first position (50 Hz - 15 kHz (3 dB)) and in the second position (0.3 kHz -3 kHz (3 dB)) a band-pass filter is switched in. They are used when measuring residual AM and FM. In the next two positions (15 kHz and 3 kHz) two low-pass filters are switched in. They are used when measuring FM deviation or AM modulation. The 3 kHz and 15 kHz filters are used for modulation frequencies up to 3 kHz and 15 kHz, respectively. The last four positions of the AF FILTER/ DEEMPHASIS selector introduce four deemphases of 50 µs, 75 µs (European and American standard), 750 µs (narrowband equipment) and 6 dB/oct (nonstandard).

Meter

The meter of the Modulation Meter, type AFM3, is of the taut-band suspension type. It is provided with three scales.

Scale (10) provides for reading in the AM ranges from 0 to 1% or 0 to 10% or 0 to 100%, and in the FM ranges from 0 to 1 kHz or 0 to 10 kHz or 0 to 100 kHz deviation, according to the position of the FUNCTION selector and the METER RANGE selector. It is also provided with a LEVEL mark to permit setting of the IF level.

Scale (11) provides for reading in the AM ranges from 0 to 3% or 0 to 30%, and in the FM ranges from 0 to 3 kHz or 0 to 30 kHz deviation, according to the position of the FUNCTION and ME-TER RANGE selectors.

Scale (12) is utilized when checking the frequency of the converted signal. It is marked at ± 100 , ± 200 , and ± 300 kHz around the 1 MHz intermediate frequency. An IF CHECK mark provides for exact tuning to the intermediate frequency.

Scale (13) enables frequency response measurements to be made in the range 0 to -20 dB.

AF OUTPUT Connector (14)

The AF signal of 1 V EMF (peak value) at full-scale deflection is delivered via the UHF connector AF OUTPUT.

RF INPUT Connector (15)

The BNC connector RF INPUT provides for connection of the RF signal to be measured on.

Input Attenuator (16)

The input attenuator is a three-step

Fig. D3. Attenuation and sensitivity ranges.

attenuator (10 + 10 + 20 dB). It is used to adapt the Modulation Meter, type AFM3, to input levels from 3 mV to 10 V. As can be seen in Fig.D3, the degree of attenuation to be selected depends on the input voltage range, and the sensitivity of the instrument depends on the frequency range.

IF OUTPUT (17)

The BNC connector IF OUTPUT provides for connection of the 1 MHz IF signal to, for example, external monitors. It delivers a 1 MHz IF signal of 0.2 V EMF from a 50 ohms source at correct frequency tuning and full deflection on the meter.

Plug-in Unit Receptacle (18)

The Modulation Meter, type AFM3, is so designed that two optional plug-in units can be used. (See SECTION C -ACCESSORIES.)

Rear Terminals (see Fig.D4)

MOD. (DC) (1)

The terminal MOD. LEVEL (DC) consists of two banana jacks (600 Ω) and delivers a dc voltage (meter current) of 1 V EMF at full-scale deflection.

Line Voltage Indicator (2)

The line voltage indicator shows the line voltage to which the instrument is switched: either 110 V or 220 V – 48 to 65 Hz. When the two screws (3) and (4) are loosened, the voltage indicator can be turned to the appropriate position. (For further details see SEC-TION E – OPERATING INSTRUCTIONS.)

Battery (5)

The terminals BATTERY are of the Belling & Lee L1436/S type and provide for connection of the instrument to an external dc supply by means of a Belling & Lee L1436/P Plug supplied with the instrument.

Fig. D4. Rear terminals of the Modulation Meter, type AFM3.

Section E. Operating Instructions

CONNECTING THE INSTRUMENT

Before connecting the instrument to the power line, make sure that the supply transformer and the line voltage indicator are set to the voltage of the power line.

To prepare the instrument for 110 V or 220 V line voltage operation, refer to diagram XI and proceed as follows:

1) If the instrument must be used at a line voltage of 110 V, interconnect lugs 3 and 5 and lugs 4 and 6 on the supply transformer.

2) If the instrument must be used at a line voltage of 220 V, interconnect lugs 4 and 5 on the supply transformer.

Then loosen the screws on the voltage indicator and set the indicator to the desired voltage.

MEASURING AMPLITUDE MODULA-TION PERCENTAGE

Modulation Percentage of AM Signals

1) Feed the signal to be measured to the RF INPUT connector. Bear in mind that the max. applicable signal is 10 V r.m.s., and that the input impedance is 50 Ω .

2) Use the RF input attenuator according to the instructions printed on the front panel, or refer to Fig.D3 in SEC-TION D - GENERAL DESCRIPTION.

3) Set the switch METER to SLOW if the modulation frequency of the signal is less than 160 Hz, otherwise set it to FAST.

4) Set the switch MAN.-AUTO to MAN.

5) Set the drum scale to the desired frequency range by using the RANGE selector.

6) Set the selector FUNCTION to LEVEL.

7) Set the tuning knob so that the cursor on the drum scale indicates the signal frequency ± 1 MHz, and then tune so as to obtain maximum meter deflection.

8) Turn the selector FUNCTION to IF CHECK.

9) Make a fine adjustment with the TUNING knob so that the meter reads IF CHECK.

10) Set the selector FUNCTION to LEVEL. When using MAN.-AUTO. in

position MAN., readjust to the LEVEL mark, if necessary by means of the LEVEL potentiometer. When using MAN.-AUTO. in position AUTO., fine level-adjustment can be accomplished by means of LEVEL. It is recommended to use the MAN.-AUTO. switch in position AUTO. when performing AM measurements, as the inevitable level variations of the signal then are equalized.

 11) In order to obtain the best accuracy, select the low-pass filter cor AM Range

Fig.El. Accuracy of modulation percentage measurements.

responding to the modulation frequency of the signal under test. See Fig.E1, and refer to SECTION B - SPECIFICA-TIONS under "AM MODULATION Accuracy".

12) Turn the selector FUNCTION to AM+ or AM-, depending on which peak of modulation is to be measured.

13) Rotate the selector METER RANGE until a proper deflection is obtained.

14) Read the modulation percentage. Check whether the reading is the same for both peaks of modulation: a difference indicates distortion of the modulation envelope. See Fig.E2, and refer to SECTION B - SPECIFICATIONS under "AM MODULATION Distortion".

Residual AM on FM Signals

Proceed as described above. If resolution somewhat higher than that corresponding to the 1% AM range is wanted, an external meter, e.g., an electronic voltmeter, may be connected to the AF OUTPUT connector. The external meter will read 1 volt for full deflection of the internal meter, i.e., with the ME-TER RANGE selector set to 1, the modulation percentage read on the voltmeter is 0.001% per mV.

The minimum residual AM reading for a given deviation caused by the instrument itself can be estimated as follows:

1) Apply a CW signal and set the selector FUNCTION to LEVEL.

2) Rotate the TUNING knob back and forth so that the intermediate frequency is changed over the range 1 MHz - ΔF to 1 MHz + Δf , where Δf is the deviation of the frequency-modulated signal whose residual AM is to be measured. (Check the frequency change with the IF CHECK scale.)

3) Read the peak-to-peak value of the

change in the LEVEL reading. The minimum residual AM is approx. half of this percentage change.

MEASURING FREQUENCY DEVIATION (FM kHz)

Frequency Deviation of FM signals

1) Feed the signal to be measured to the RF INPUT connector. Bear in mind that the max. applicable signal is 10 V r.m.s. and that the input impedance is 50Ω .

2) Use the RF input attenuator according to the instructions printed on the front panel, or refer to Fig.D3 in SEC-TION D - GENERAL DESCRIPTION.

3) Set the switch METER to SLOW if the modulation frequency of the signal is less than 160 Hz; otherwise set it to FAST.

4) Set the switch MAN.-AUTO. to MAN.

5) Set the drum scale to the desired frequency range by using the RANGE selector.

6) Set the selector FUNCTION to LEVEL.

7) Set the TUNING knob so that the cursor on the drum scale indicates the signal frequency ± 1 MHz, and then tune so as to obtain maximum deflection.

8) Turn the selector FUNCTION to IF CHECK.

9) Make a fine adjustment with the TUNING knob so that the meter reads IF CHECK.

10) Set the selector FUNCTION to LEVEL. When using MAN.-AUTO. in position MAN., readjust to the LEVEL mark. When using MAN.-AUTO. in position AUTO., fine level-adjustment can be accomplished by means of LEVEL. Modulation Frequency

Fig. E3. Accuracy of frequency deviation measurements.

11) In order to obtain the best accuracy, select the low-pass filter corresponding to the modulation frequency of the signal under test. See Fig.E3, and refer to SECTION B - SPECIFICA-TIONS under "FM MODULATION -Accuracy".

12) Turn the selector FUNCTION to FM+ or FM-, depending on which peak of modulation is to be measured.

13) Rotate the selector METER RANGE until a proper deflection is obtained.

E3

14) Read the modulation deviation. Check whether the reading is the same for both peaks of modulation: a difference indicates distortion of the modulation envelope. See Fig.E4, and refer to SECTION B - SPECIFICATIONS under "FM MODULATION - Distortion".

Residual FM on CW and AM signals

Proceed as described immediately above. Because of the very effective limiter stages in the FM detector, the residual FM caused by amplitude modulation is quite low, viz. 25 Hz (r.m.s.) when the band-pass filter (50 Hz - 15 kHz) is used. The residual FM at a carrier frequency within 6 - 200 MHz is less than 25 Hz FM (r.m.s.), and less than 100 Hz FM (r.m.s.) up to 1001 MHz, when measurements are performed in a room with an acoustical noise level lower than 60 dB (rel. 2 10⁻⁴ µbar) and the band-pass filter (50 Hz - 15 kHz) or one of the deemphases (50 µs or 75 μ s) is used. When the 0.3 - 3 kHz band-pass filter or the 750 µs deemphasis is used, the residual FM is 8 Hz FM (r.m.s.) within the frequency range 6 - 200 MHz, and less than 30 Hz FM (r.m.s.) up to 1001 MHz for the noise level specified above. (See SECTION B - SPECIFICATIONS.)

If a resolution somewhat higher than that corresponding to the 1 kHz deviation range is wanted, an electronic voltmeter can be connected to the AF OUT-PUT terminals. The external meter will read 1 volt for full deflection of the internal meter, i.e., with the METER switch set to 1, the deviation read on

Fig. E5. The arrows show screws and plate to be removed when a plug-in unit is to be used.

the electronic voltmeter will be 1 Hz per mV.

USING A CRYSTAL OSCILLATOR PLUG-IN UNIT, CODE 900-252

1) Remove the two screws and the plate covering the receptacle in which the Crystal Oscillator Unit is to be placed (see Fig.E5).

2) Supply the Crystal Oscillator Unit with crystals. Bear in mind that the crystals must have the frequency f_{cr} defined below:

$$f_{cr} = \frac{f_s - 1}{2n}$$
 MHz

where f_s indicates the carrier frequency and n the odd harmonic of the crystal overtone frequency. The sensitivity specifications (see item INPUT LEVEL in SECTION B - SPECIFICATIONS or Fig.E6) are based on the combinations shown below of carrier frequency, order of harmonic, and range of crystal frequencies.

Carrier frequency	Order of harmonic	Range of crystal frequencies
fs	n	fcr
200 - 600 MHz	3	33 - 100 MHz
600 - 1000 MHz	5	60 – 100 MHz

3) Position the Crystal Oscillator Unit in the Modulation Meter and fasten the two screws.

4) Switch the RANGE selector to position G - "CRYSTAL OSCILLATOR".

5) Tune the Modulation Meter to the desired carrier frequency.

6) Switch the function selector to IF CHECK.

7) Switch the Crystal Oscillator Unit to the desired channel by means of the four-position selector. 8) Insert a screwdriver in the hole corresponding to the selected channel, and adjust the corresponding trimmer until the meter indicates IF CHECK.

9) If necessary, repeat steps 6 to 8 until all four channels are trimmed.

10) The Crystal Oscillator Unit, code 900-252, is now ready for use.

Proceed as described above for AM or FM measurements.

Section F. Technical Description

RF INPUT CIRCUIT (See diagram No.I)

The RF input signal is fed to the BNC connector on the front plate of the instrument, then passed through a resistive attenuator (providing for 10 dB, 20 dB, 30 dB or 40 dB attenuation) which is inserted to avoid overloading of the mixer and to adapt the Modulation Meter to RF signals in the range 3 mV to 10 V r.m.s.

All components of the RF attenuator are numbered between 1300 and 1399.

TUNER (See diagram No.I)

The local oscillator consists of Q103 in a common-base Hartley coupling. The same circuit configuration is used in all ranges. Only the tank circuit (C_C , C_B , and L_A) and the emitter capacitor C_A are exchanged to obtain the different fundamental ranges from 7 to 200 MHz. Up to 200 MHz the mixing takes place with the fundamental frequency of the local oscillator. Mixing with input signals which have a frequency higher than 200 MHz is accomplished with the 3rd or 5th harmonics of the local oscillator.

The intermediate frequency is chosen to be 1 MHz, and both sidebands can be used; however, only the lower sideband can be used at 6 MHz RF input signal because the lower frequency limit of the local oscillator is 7 MHz.

With the selector RANGE in position CRYSTAL OSCILLATOR, the local oscillator is disconnected, and an oscillator providing for operation at a fixed frequency, such as the Crystal Oscillator Unit, code 900-252, may be used.

The signal from the RF attenuator and that from the local oscillator or the Crystal Oscillator Unit are fed to the diodes CR101 to CR104 which form a balanced mixer and provide for good insulation between the input terminals and the local oscillator or the Crystal Oscillator Unit, and thereby reduce the influence of stray radiation. The resulting 1 MHz signal is fed to the IF filter via T102.

The tuner has its own current limiters, i.e., Q101 for +12 V, and Q102 for -12 V.

All components of the tuner are numbered between 100 and 199.

IF FILTER (See diagram No.II)

The output impedance of the mixer is matched capacitively to that of the IF filter. In this fashion, variations of the output impedance of the mixer become uncritical. From T102, the intermediate frequency signal of 1 MHz passes through a band-pass filter which rejects unwanted mixing products. It is of the Butterworth type, and it has a bandwidth of ± 300 kHz around the intermediate frequency.

All components of the IF filter are numbered between 200 and 299.

IF PREAMPLIFIER AND IF ATTENUATOR (See diagram No.III)

The three-stage IF preamplifier consists of Q301, Q302, and Q303. It protects the IF filter against load impedance variations from the IF attenuator. At the same time, it provides for amplification before the signal is fed to the IF attenuator. Amplification alongside with an almost ideal connection to the IF filter results in a minimum amount of noise at all input levels. The ohmic part of the IF amplifier input is matched by means of R304, and the reactive part by means of C306. The amplified IF signal is then fed to the IF attenuator via C308.

The IF attenuator (see Fig.F1) consists of R311 and the four diodes CR301 to CR304. R311 and the four diodes form a voltage divider with one fixed resistance and the variable resistance resulting from the combination CR301 -CR302 // CR303 - CR304. Combining these four diodes ensures linear characteristic and thereby minimum distortion. The resistance value resulting from the above combination depends on the biasing current of the four diodes. This biasing current is drawn from the collector of the current generator Q310. In position MAN. of the MAN.-AUTO switch, the base of Q310 is at a potential determined by the reference voltage source Q311. The emitter current of Q310, and thereby its collector current, is controlled by means of the potentiometer R1A (LEVEL) accessible from the front of the instrument. This results in regulation of the biasing current of the diode complex CR301 to CR304, and, therefore, in regulation of the IF level. Finally, the sensitivity of the IF attenuator at a given RF input voltage can be adjusted by means of R345.

When the switch MAN.-AUTO is in position AUTO., the base of Q310 is at a voltage delivered by the AGC amplifier. The AGC amplifier consists of a differential amplifier Q512, followed by a unity-gain amplifier Q308 and Q309. The right base of Q512 is at a potential determined by the divider consisting of R1B (LEVEL), R552, R553, and R554. The left base of Q512 receives a signal proportional to the IF level from the AM detector. The difference signal (if any) is then fed to the input (base of Q308) of the unitygain amplifier driving the amplifier Q310. The emitter of Q310 is at a voltage provided by the voltage reference source Q311. The emitter basis voltage of Q310, and thereby the biasing current of the diodes CR310 to CR304, is in this case controlled by the potentiometer R1B (LEVEL) and by the AGC amplifier.

All components of the IF preamplifier and IF attenuator are numbered between 300 and 399.

IF AMPLIFIER (See diagram No.III)

The signal from the IF attenuator is then fed to the IF amplifier which consists of the two wideband amplifier stages Q304, Q305 and Q306, Q307. The IF amplifier brings the IF signal to a voltage level higher than that required by the AM detector.

All components of the IF amplifier are numbered between 300 and 399.

BUFFER AMPLIFIER (See diagram No.V)

The signal from the IF amplifier is fed to a buffer amplifier which separates

Fig.F1. IF attenuator and AGC amplifier.

AM detector and output amplifier. It consists of a two-stage unity-gain amplifier (Q501 and Q502) and serves to suppress any influence from the IF output. The signal from the buffer amplifier is fed both to the AM detector and to the IF output amplifier.

All components of the Buffer amplifier are numbered between 500 and 599.

AM DETECTOR (See diagram No.V)

The signal from the buffer amplifier is fed to the AM detector. It consists of a three-stage amplifier Q507, Q508, and Q509, with a mean-value detector CR505 and CR506 in the feedback loop. The feedback ensures a good linearity. A pair of output transistors, Q510 and Q511, provides for two outputs. The signal on the collector of Q511 is proportional to the IF level. This signal is fed via R546 to the differential amplifier which is part of the automatic levelsetting circuitry (described above). The signal from the collector of Q511 is also fed via R544 to the indicating meter which provides for checking of the IF level.

The signal on the collector Q510 is the detected signal which is fed through a first low-pass filter section (L701, L702, C710 and C711 on diagram VII), via the network consisting of R537, R538, R539, and C530. R539 is used to cal-ibrate the AM detector.

Note: The low-pass filter and the following AF section are described below.

All the components of the AM detector are numbered from 500 to 599.

IF OUTPUT AMPLIFIER (See diagram No.V)

The signal from the buffer amplifier is also fed to the IF output amplifier which consists of the four stages Q503, Q504, Q505, and Q506, and which provides for amplification of the IF signal to the level required by the following limiter stages. The two diodes CR502 and CR503 are used to protect the limiter input stage against too high a voltage.

All components of the IF output amplifier are numbered between 500 and 599.

LIMITER STAGES (See diagram No.VI)

General

The amplified IF signal is fed to a series of three limiters.

First limiter stage

The first limiter stage consists of two emitter-coupled transistors, Q601 and Q602. Their working point is determined by the current delivered by the constant dc current generator Q607. The amplified IF signal from the IF output amplifier is fed to the base of Q601, whilst the base of Q602 is connected to ground. When a sufficient IF level is reached, Q601 and Q602 are cut off, and the output voltage (at C605) of the first limiter is a square-wave. The peak-to-peak value of this square-wave is fixed by the constant current generator Q607. The first limiter is provided with a regulation circuit which holds the zero-crossing of the square-wave output voltage. The regulation circuit consists of a peakdifference detector, CR601 and CR602, and a differential amplifier, Q603 and Q604, where any signal from the peakdifference detector is compared with the dc component of the square-wave. The output signal (if any) of the differential amplifier is fed to the bases of Q601 and Q602 via the two emitter-followers Q605 and Q606.

Subsequent limiter stages

From C605, the square-wave signal is fed to two subsequent limiter stages Q608-Q609 and Q610-Q611 where it is again limited. The resulting signal is then fed to the FM detector via Q612.

All components of the limiter stages are numbered from 600 to 699.

FM DETECTOR (See diagram, No.VII)

The FM detector consists of a monostable multivibrator and an output stage.

The multivibrator consists of Q701 and Q702. It is triggered by the train of positive pulses from the last limiter stage. This train of pulses is fed to the base of Q701 via C701. Transistor Q701 is cut off when no IF signal is applied to its base whilst transistor Q702 conducts, and conversely.

The multivibrator has a time-constant determined by R707, R708 and C703, and it delivers a square-wave signal across R702. The positive pulses drive the output stage which consists of Q703 and Q704. The working points of the two transistors of the output stage are determined by the constant dc current generator Q708. The peak value of the square-wave is detected by CR704 and amplified in Q705 and Q706, which in turn drive the constant-current generator Q708 via Q707, thereby regulating amplitude variations. As the wi⁻¹th of the pulses and their amplitude are constant, the mean value of the output voltage of the output stage will vary according to the number of pulses per second of the square-wave. i.e., according to the modulating frequency. Frequency-modulation of the IF signal will cause a variation of the output voltage of the output stage. This signal is then passed, via a low-pass filter consisting of L701, L702, C711 and C712, to the AF section described below.

The monostable multivibrator and the output stage are provided with their own +10 V and -10 V regulated power supplies. They consist of Q613, Q614, Q615 and Q616 for +10 V, and of Q617, Q618, Q619 and Q620 for -10 V. (See diagram VI.)

All components of the FM detectors are numbered between 700 and 799.

AF AMPLIFIERS | AND || (See diagram VIII)

The filtered signal, either from the AM detector or from the FM detector, is then passed through the first section of a two-section resistive AF attenuator (see diagram XII) and fed to the first AF AMPLIFIER, which consists of Q801, Q802, and Q803.

The amplified signal at the collector of Q803 is passed via the second section of the AF attenuator (see diagram XII) and fed to the second AF AMPLI-FIER which consists of Q804, Q805 and Q806. It provides for the necessary amplification and for the low output impedance required for coupling to the subsequent low-pass filter.

All components of the AF AMPLIFIERS 1 and 11 are numbered from 800 to 899.

AF AMPLIFIERS III – V (See diagram IX)

The amplified signal from amplifier II is fed to the third AF amplifier, which is a unity gain amplifier consisting of Q901 and Q902. It acts either as part of an active filter, in conjunction with the RC networks of the FILTER/DEEM-PHASIS selector, or as a buffer.

The following AF amplifiers IV and V, consist respectively of Q903, Q904, Q905, Q906, Q907, and of Q908, Q910, Q911 and Q912. They bring the signal up to the level required by the AF detector.

The AF OUTPUT signal is drawn from the emitter of Q907 via R920.

All the components of the AF amplifiers III - V are numbered from 900 to 999.

AF DETECTOR (See diagram X)

The signal from the emitter of Q912 is fed to the AF detector which consists of diodes CR1001 and CR1002. Diode CR1002 is used for detection of the negative peaks of modulation, whilst diode CR1001 is used for detection of the positive modulation peaks. Selection of the peak of modulation (positive or negative) is done by means of the FUNCTION selector in the positions AM or FM.

The detected signal is fed to an impedance converter so that it can be passed on to the MOD. (DC) output and to the meter.

All the components of the AF detector are numbered from 1000 to 1099.

POWER SUPPLY (See diagram XI)

The power supply provides for the regulated dc voltages (-12 V, 0 V, +12 V) required by the different sections of the instrument. (For -10 V and +10 V supply, see FM DETECTOR.)

All the components of the power supply are numbered from 1100 to 1199.

GENERAL

The following maintenance procedure is based on the assumption that any printed circuit found defective is replaced by a new one delivered by Radiometer and prealigned at the factory. This procedure reduces adjustments in the field to a minimum. However, the test instruments necessary to make these field adjustments must be of high quality to achieve the required standard of performance of the AFM3.

TEST INSTRUMENTS REQUIRED

The following is a list of preferred instruments. Any alternatives must have equivalent specifications and should possess the same degree of accuracy.

Instruments:

Signal generators (referred to in the text as Sig.Gen.) to cover 5 – 1000 MHz, 50 Ω impedance, as follows:

- 1 Hewlett Packard 606B (50 kHz-65 MHz)
- 1 Hewlett Packard 8640A (10 MHz-480 MHz) or equivalent
- 1 Hewlett Packard 8640B (450 MHz-1230 MHz) or equivalent
- 1 AF Oscillator, * distortion $\langle 0.01\%$ (referred to in the text as AF Osc.)
- 1 Oscilloscope, for example, Philips PM3231
- 1 DC DVM (digital voltmeter), Hewlett Packard 3403A or C
- 1 AC DVM, Hewlett Packard 3430A or 3465A
- 1 AC VTVM, Hewlett Packard 400E or equivalent (1%, with scales calibrated in rms)
- * For example, the Radiometer BKF10.

<u>Miscellaneous</u>

- 1 Resistor, $500 \Omega \pm 0.1\%$, 0.25 W, precision carbon film
- 2 Resistors, 10 k Ω ± 0.1%, 0.25 W, precision carbon film or precision 6 dB attenuators
- 2 Resistors, 1 MQ $\pm 0.1\%$, 0.25 W, precision carbon film

- 1 Capacitor, 0.47 μ F (30 V wkg. is suitable)
- 1 Hexagonal Key, 2.5 mm (at least 75 mm in length)

DISMANTLING

- To remove the AFM3 from its case proceed as follows:
- a) Stand the instrument on its rear panel.
- b) Remove the four hexagonal bolts located beside the carrying handles on the front panel.
- c) Carefully lift the instrument out of the case.

PRELIMINARY

Prepare the following items:

- a) Refer to Fig.G1 and connect two $1 M\Omega \pm 0.1\%$ resistors in series. Connect a 500 $\Omega \pm 0.1\%$ resistor in parallel and connect the 0.47 μ F capacitor as shown.
- b) Prepare an attenuator as shown in Fig.G2 from two 10 k Ω ±0.1% resistors.
- c) Alternatively, two precision 6 dB attenuators may be used.

REPLACEMENT AND REALIGNMENT PROCEDURE OF THE PRINTED CIRCUIT BOARDS

TUNER printed circuit board DISMANTLING/REMOUNTING

- 1) Fig. G4 shows the location of the TUNER and Fig. G5 shows a top view of the TUNER assembly.
- 2) To remove the TUNER printed circuit rotor, first remove the cover plate of the TUNER (pry up).

3) Remove the 7 screws retaining the circular printed rotor. Carefully pull the rotor out of the fixed contacts and then lift out. Replace the new rotor in the opposite sequence. Check the orientation of the rotor and take extreme care not to damage the contacts on the fixed printed circuit board. Before securing the 7 retaining screws, check that the rotor does not foul the fixed printed circuit board. Check that it is properly centred and that the contacts mesh correctly (no overlapping of the contacts).

To remove the fixed TUNER printed circuit board, proceed as follows:

- 4) Remove the TUNER printed circuit rotor as described in 3) above.
- 5) Turn the TUNING knob fully anticlockwise.
- 6) Insert the 2.5 mm hexagonal key through the hole in the bottom chassis support plate and loosen the set screw in the coupling of the variable capacitor.
- 7) Unsolder the leads and cables soldered to the printed board, taking care not to damage the leads or the cable insulation. Do not use excessive heat when unsoldering the connections.
- 8) Remove the three screws securing the printed circuit board.
- 9) Using the blade of a screwdriver inserted through the hole in the bottom chassis support, hold the coupling in place and carefully pull out the printed circuit board.
- 10) To replace the printed circuit board, proceed as follows:
- Again using the blade of a screwdriver inserted through the hole in the bottom chassis support, guide the coupling into position on the shaft of the variable capacitor and mount the replacement PC board in position.
- 12) Insert the 3 retaining screws, but do not tighten them at this point.
- 13) Mount the printed circuit rotor as described above in 3).
- 14) Secure the 3 retaining screws when both the rotor and the fixed printed circuit boards are orientated correctly.
- 15) Rotate the variable capacitor until fully meshed.
- 16) Tighten the screw in the coupling, using the 2.5 mm hexagonal key.

ELECTRICAL ADJUSTMENT

- 1) Proceed to the electrical adjustments as follows:
- 2) Set the following controls:
 - a) RANGE switch to A
 - b) TUNING to 7 MHz
 - c) MAN./AUTO switch to MAN.
 - d) FUNCTION switch to LEVEL
 - e) LEVEL potentiometer to 10
- 3) Connect the Sig.Gen. to the RF INPUT connector of the AFM3.
- 4) Set the Sig.Gen. to 8 MHz.
- 5) Adjust the Sig.Gen. output until a suitable deflection on the meter of the AFM3 is obtained.
- 6) Using an insulated trimming tool, adjust the core of the oscillator <u>coil</u> for RANGE A (marked on the circular printed circuit rotor) for a maximum deflection on the meter. If the meter overshoots, turn the LEVEL knob anticlockwise until again a suitable deflection is obtained.
- 7) Reset the Sig.Gen. to 11 MHz.
- 8) Reset the TUNING to 12 MHz.
- 9) Using an insulated trimming tool, adjust the oscillator trimming <u>capacitor</u> for RANGE A (located next to the oscillator coil for RANGE A) for a maximum deflection on the meter.
- 10) Because of interaction between these adjustments it will be necessary to repeat items 2a) and 2b), 6) to 9) inclusive several times until the maximum deflection occurs at the respective TUNING settings without readjustment.
- 11) Repeat items 1) to 10) on the remaining ranges B, C, D, E and F at the appropriate range frequencies, choosing the Sig.Gen. necessary to cover the range in question.

IF FILTER (WIDE) and IF AMPLIFIER/IF ATTENUATOR printed circuit boards

These two printed circuit boards are matched at the factory and must be replaced as a matched pair. No realignment adjustments are necessary. REPLACEMENT

- 1) To replace the IF FILTER (WIDE), proceed as follows:
- 2) Remove the cover plate by unscrewing the four screws A (two shown in Fig.G6).
- 3) Unsolder the input and output cables to the printed circuit, taking extreme care not to damage the cables or the nearby components by overheating.
- 4) Using a posidrive angle screwdriver, unscrew the four screws securing the printed circuit board to the housing.
- 5) Lift the printed circuit board out.
- 6) Replace in the opposite sequence, again taking extreme care when resoldering the input and output cables.
- 7) When the IF FILTER (WIDE) is replaced, the IF AMP/ATTENUATOR printed circuit board must also be changed out (or vice versa), as these two boards are matched at the factory in pairs.
- To change out any of the printed circuit boards, first remove the retaining bar C by unscrewing the two securing screws D (shown in Fig.G6).
- 9) The printed circuit boards may now be withdrawn. Some resistance will be felt when disengaging the multiconnectors.
- 10) When replacing the boards, first make sure that they are located in the correct position and then slide them into the guides. Some resistance will be felt when engaging the multiconnectors. Make sure that the boards are pressed fully in.

G5

AM DETECTOR + IF OUTPUT AMPLIFIER circuit board (see diagrams 1279 – A1 & 1303–A1

- 1) Set the FUNCTION switch to LEVEL and the LEVEL potentiometer fully counterclockwise.
- 2) Set the METER RANGE switch to 100.
- 3) Set the FILTER/DEEMPHASIS switch to 50 Hz 15 kHz.
- 4) Set the MAN./AUTO switch to MAN.
- 5) Remove the cover of the TUNER (pry up) and unsolder the cable W2, shown in Fig.G5. (On the latest versions, a plastic-covered short-circuiting plug is provided to obviate unsoldering.)
- 6) Connect the output of the Sig.Gen. to the cable.
- Set the Sig.Gen. to 1 MHz and adjust the output until the meter deflects to the LEVEL mark on the meter scale of the AFM3.
- 8) Note the output level on the Sig.Gen. and then reduce this output 10 times.
- 9) Set the MAN./AUTO switch to AUTO.
- 10) Set LEVEL potentiometer to 5.
- Adjust the potentiometer R553, shown in Fig.G4, until the meter again deflects to the LEVEL mark.
- 12) Set the MAN./AUTO switch to MAN.
- 13) Connect an oscilloscope to tags J500/5 and J500/6 (0 V AM DET. PC-board).
- 14) Adjust the oscilloscope and check that the display shows a sine waveform.
- 15) Turn the LEVEL potentiometer clockwise until the display just shows the commencement of "flats" on the peaks.
- 16) Adjust potentiometer R514 (location shown in Fig.G4) until the sine waveform is symmetrical with respect to the X-axis.
- Disconnect the Sig. Gen. and reconnect the cable W2 (or replace short-circuiting plug). Replace the timer cover plate.
- 18) Reconnect the Sig. Gen. to the RF INPUT connector.
- 19) Set the RANGE to scale A.
- 20) Set the Sig. Gen. to 12 MHz with a modulation of 1 kHz at about 30%. The output of the Sig. Gen. should be about 30 mV.
- 21) Set TUNING to maximum response of the meter around 11 MHz.
- 22) Adjust the output of the Sig. Gen. until the meter deflects to the LEVEL mark on the scale of the AFM3.
- 23) Set the FUNCTION switch to IF CHECK (AM) and adjust the TUNING knob until the meter deflects to the IF CHECK mark.
- 24) Set FILTER/DEEMPHASIS to 3 kHz.
- 25) Set METER RANGE switch to 100.
- 26) Set MAN./AUTO switch to AUTO.
- 27) Carefully unsolder the centre conductor of the cable W16 from terminal J800/16. (AF AMPLIFIER I-II).
- 28) Connect the prepared assembly shown in Fig.G1 as follows:
 - a) Connect point A to tag J700/8.
 - b) Connect point B to tag J800/16.
 - c) Connect point C to the centre conductor of cable W16.
- 29) Withdraw the AF AMPLIFIER I-II printed circuit board and connect a temporary short circuit across the capacitor C805. (See Fig.H8 for location.) Replace the board into circuit.
- 30) Withdraw the AM DET. printed circuit board (V) and refer to Fig.G3 and Fig.H5. Proceed as follows:
 - a) Refer to Fig. H5 and locate the tag block TB501.
 - b) Disconnect the strap on the tag block TB501 marked at A in Fig.G3.
 - c) Temporarily connect straps C and D as shown in Fig.G3.
 - c) Replace the board into circuit.
- 31) Connect the DC DVM to the points A and B of the prepared assembly (shown in Fig.G1) now connected between J700/8 and J800/16 (see item 28 above).

- 32) Set the FUNCTION switch to LEVEL and adjust the LEVEL potentiometer until the meter deflects to the LEVEL mark.
- 33) Set the FUNCTION switch to + AM and adjust the trimmer potentiometer R539 (location shown in Figs.G3 and G6) until the DC DVM indicates 93.9 mV. This value will be referred to as U1.
- 34) Connect the AC VTVM to the AF OUTPUT connector and note the value obtained. Remove the AC VTVM.
- 35) Now connect the prepared attenuator shown in Fig.G2 to the AF OUTPUT connector, connecting point D to the centre conductor and point F to the outer screen.
- 36) Reconnect the AC VTVM between points E and F of the prepared attenuator.
- 37) Set the MAN./AUTO switch to MAN. and adjust the LEVEL potentiometer until the AC VTVM indicates <u>the same value</u> as was noted in 34 above.
- 38) Now note the voltage indicated on the DC DVM. This value will be referred to as U2.
- 39) Check that U2-U1 = 94.9 mV.
- 40) If U2-U1 is greater than 94.9 by a value x (i.e., U2-U1 = 94.9 + x), readjust R539 until the value indicated by the DC DVM = 93.9 mV-x.
- 41) Repeat 40) until U2-U1 = 94.9 mV.
- 42) Disconnect the DC DVM and the AC VTVM. Remove the prepared attenuator from the AF OUTPUT socket. Unsolder the prepared assembly from J700/8-J800/16 and resolder the centre conductor of cable W16 to J800/16.
- 43) Disconnect the temporary straps C and D (location shown in Fig.G3) on TB501 (AM DETECTOR printed circuit board) and reconnect the strap at A.
- 44) Disconnect the short circuit across C805 on the AF AMPLIFIER printed circuit board which was connected in item 29 above.

LIMITER printed circuit board (see diagrams 1197-A1 & 1303-A1)

- 1) Connect the DC DVM between tags J600/15 (0 V) and J600/16.
- Using a trimming tool, adjust potentiometer R660 (shown in Fig.G7) until the DC DVM indicates +10 V dc ±0.5%.
- 3) Disconnect the DC DVM.

FM DETECTOR printed circuit board (see diagrams 1281-A1 & 1303-A1)

- 1) Set the FUNCTION switch to LEVEL.
- 2) Set the METER RANGE switch to 100.
- 3) Set the MAN./AUTO switch to MAN.
- Set the FILTER/DEEMPHASIS switch to 50 Hz 15 kHz and the RANGE selector to A.
- 5) Locate the FM Detector printed circuit board and unsolder the inner conductor of W31 at tag J800/19 (AF AMP. I-II PC board).
- 6) Solder the resistance assembly shown in Fig.G1, as follows: Point A to tag J700/5 and point B to tag J700/8. Points C and H are not used in this check.
- 7) Connect the DC DVM between tags J700/8 and J700/5.
- 8) Connect the Sig.Gen. to the RF INPUT and set the frequency to 9 MHz.
- 9) Tune the AFM3 to about 8 MHz and peak for max. deflection. Adjust the LEVEL control until the meter deflects to the LEVEL mark.
- 10) Set the FUNCTION switch to FM.
- Using a trimming tool, adjust the potentiometer R708 (shown in Fig.G6) until the DC DVM indicates 943 mV.
- 12) Disconnect the DC DVM and the resistance assembly. Reconnect cable W31.

G9

IF CHECK realignment adjustments

- Remove the cover of the TUNER (pry up) and unsolder the cable W2, shown in Fig.G5. (On the latest versions, a plastic-covered short-circuiting plug is provided to obviate unsoldering).
- 2) Connect the output of the Sig.Gen. to the cable.
- 3) Set the Sig.Gen. to $1 \text{ MHz} \pm 100 \text{ Hz}$.
- 4) Set the LEVEL control fully clockwise.
- 5) Set the FUNCTION switch to LEVEL.
- 6) Adjust the output level of the Sig.Gen. until the meter deflects to the LEVEL mark on the scale.
- 7) Reset the FUNCTION switch to IF CHECK.
- 8) Using a trimming tool, adjust the potentiometer R737 shown in Fig.G7 until the meter deflects to the IF CHECK mark on the scale.
- Disconnect the Sig.Gen. and replace cable W2, or replace short-circuiting plug. Replace the TUNER cover.

AF AMPLIFIER I-II printed circuit board (see diagrams 1952-A2 & 1303-A1)

- 1) Withdraw the AF AMPLIFIER III-V printed circuit board from the AFM3.
- 2) Unsolder the centre conductor of the cable W15 from tag J800/15.
- 3) Set the FILTER/DEEMPHASIS switch to 6 dB/oct.
- 4) Set the METER RANGE switch to 1.
- 5) Connect the DC DVM between the tags J800/2 and J800/3.
- 6) Using a trimming tool, adjust the potentiometer R803 (shown in Fig.G6) until the DC DVM indicates $0 \vee \pm 10 \text{ mV}$.
- 7) Replace the AF AMPLIFIER III-V printed circuit board, and reconnect W15.

G10

- 8) Adjust the AF AMPLIFIER III-V printed circuit board as set out in AF AMPLI-FIER III-V PC-board, page G10, below, items 1 to 12.
- Adjust the AF DETECTOR printed circuit board as set out in AF DETECTOR PC-board, page G10, below, items 1), 2) and 3).

AF AMPLIFIER III-V printed circuit board

- 1) Set FUNCTION to + AM and set RANGE to G.
- 2) Set METER RANGE to 100.
- 3) Using a trimming tool, adjust potentiometer R929 shown in Fig.G7 until the meter indicates zero.
- 4) Set METER RANGE to 30.
- 5) Set the FILTER/DEEMPHASIS switch to 50 Hz 15 kHz.
- 6) Connect the AF Osc. between tags J700/4 and J700/6 (0 V), (FM DET.PC board) and set the frequency to 1 kHz.
- 7) Connect the AC DVM between tags J800/15 and J800/18 (0 V), (AF AMP. I-II).
- 8) Adjust the output from the AF Osc. until the AC DVM indicates 2 mV (rms value).
- 9) Disconnect the AC DVM from the tags J800/15 and J800/18 and reconnect it to the AF OUTPUT connector.
- 10) Using a trimming tool, adjust potentiometer R929 (shown in Fig.G7) until the AC DVM indicates 0.672 V (rms value).
- Using a trimming tool, adjust the potentiometer R923 shown in Fig.G4, until the meter on the AFM3 indicates 30.
- 12) Disconnect the AF Osc. and the AC DVM.

AF DETECTOR printed circuit board

- 1) Set the FUNCTION switch to AM
- 2) Set METER RANGE to 100.
- Using a trimming tool, adjust potentiometer R1002 shown in Fig.G7, until the meter on the AFM3 indicates zero.

POWER SUPPLY printed circuit board

No realignment is necessary after replacing the POWER SUPPLY printed circuit board.

RF ATTENUATOR printed circuit board

- 1) No realignment is necessary after replacing the RF ATTENUATOR printed circuit board.
- 2) To replace the RF ATTENUATOR, proceed as follows:
- 3) Remove the TUNER cover plate (pry up).
- Remove the cover of the attenuator by unscrewing the two securing screws and loosening the 8 mm nut.
- 5) Unsolder the input lead at the RF INPUT connector and loosen the nut securing the connector. (To give further access to the attenuator and RF INPUT connector, it is recommended that the left-hand side frame of the chassis be removed by unscrewing its 6 mounting screws, 2 on the front panel, 2 on the side frame and 2 on the rear frame.
- 6) Unsolder the cable from the attenuator inside the TUNER and withdraw it from the screening tube between the TUNER and the attenuator.
- 7) Remove the screw located to the right-hand side of the attenuator pushbuttons, and lift the attenuator assembly out of the chassis.
 - NOTE: When replacing the attenuator assembly, secure the screws carefully and check that the front panel does not foul the pushbuttons.

METER

- If the meter has been changed out, it will be necessary to realign the following printed circuits:
 - a) AF AMPLIFIER I-II
 - b) AF AMPLIFIER III-V
 - c) AF DETECTOR
- 2) With models of serial number 175936 and above, no realignment adjustment is necessary after replacement of the meter.

REPLACEMENT OF THE SCALE CORDS

Refer to Figs.G8 and G9.

Two cords are used, a long and a short. The long cord couples the cursor to the drive wheel. The short cord couples the TUNING knob shaft to the drive wheel.

To facilite replacement, remove first the scale drum. This is done by unscrewing the screws at either side of the scale window. Take care not to scratch the window, which is retained in place by the screws securing the scale drum. After replacement of the cords, remount the scale drum and window, taking care not to scratch the window. Check that the scale exposed in the window corresponds to the RANGE setting.

Using a hexagonal key, loosen the two screws securing the drive wheel to the shaft. Turn the TUNING knob until the cursor is in its extreme left-hand position. Check that the capacitor in the TUNER is fully meshed. Set the reference line on the cursor over the trimming mark to the left of the scale and tighten the screws securing the drive wheel.

Fig. G-1

resistors to be $\pm 0.1\%$

Fig. G-2

Fig. G4

L

0

Í

0

Π

0

Π

Fig. G6

Fig.G8.

Section H. Parts List

In the following parts list a group code prefix number is used. To facilitate the use of this code, the different types of parts and their corresponding group code prefixes are listed below:

Standard resistors	100- to 139-
Precision resistors	140- to 152-
Non–linear resistors	160-
UHF resistors	170- to 172-
Carbon potentiometers	180- to 185-
Wire-wound potentiometers	190- to 195-
Mica capacitors	200- to 208-
Ceramic capacitors	210- to 214-
Paper capacitors	220- to 222-
Metal-paper capacitors	224- to 229-
Plastic capacitors	240- to 245-
Electrolytic capacitors	260- to 267-
Variable capacitors	280- to 286-
Special tubes	310-
Rectifiers	340- to 341-
Diodes	350-
Transistors	360-
Integrated circuits	364-
Lamps, batteries, fuses	400- to 486-
Switches	500- to 580-
Coils, coil material and transformers	700- to 785-

As we are continually improving our instruments, it is important, when ordering spare parts, that you include the following information:

The code number and description of the part The circuit reference from the wiring diagram The complete type designation of your instrument The serial number of your instrument

Please note that the position of any part can easily be found by referring to the last column of the parts list. This indicates on which figure the part can be located.

[×]Indicates special parts made by Radiometer.

MAIN PARTS LIST

Designation	Туре	Value	Code No.
Cl	polyester	2.2 µF 100 V	241-007
C2	polystyrene	50 nF 1% 63 V	243-019
C3	polystyrene	12 nF 2% 63 V	243-017
C4	polystyrene	4 nF 1% 63 V	243-043
C5	polystyrene	12 nF 2% 63 V	243-017
C6	polystyrene	6 nF 2% 63 V	243-016
C7	polystyrene	6 nF 2% 63 V	243-016
C8	polystyrene	50 nF 1% 63 V	243-019
С9	polystyrene	12 nF 2% 63 V	243-017
C10	polystyrene	50 nF 1% 63 V	243-019
C11	polystyrene	3 nF 2% 63 V	243-107
C12	polystyrene	3 nF 2% 63 V	243 -1 07
C13	polystyrene	2 nF 1% 63 V	243-106
C14	tantalum	10 μF -20 +50% 50 V	267-000
C15	tantalum	10 µF 10% 10∕12 ∨	267-017
C1300	ceramic	2.2 pF ±0.5 pF	210-122

LAMP

Designation	Туре	Code No.
11	neon lamp, 110 V, yellow	400-703

TERMINALS

Designation	Туре	Code No.
ار	coaxial bushing BNC UG657/U	800-108
J3	coaxial bushing BNC UG657/U	800-108
J4	coaxial bushing UHF 83GB-73	800-009
J5	phone jack	803-241
010	phone jack, red	803-206
וונ	phone jack, black	803-205

H2

~

Designation	Туре	Code No.
J12	socket, 3-pole	805-430
J13	socket, special	805-717 + 805-718
J300	terminal strip, 20-pole	805-612
J500	terminal strip, 20-pole	805-612
J600	terminal strip, 10-pole	805 - 739
J700	terminal strip, 15-pole	805-613
J800	terminal strip, 10-pole + 5 -pole	805-614 + 805-666
J900	terminal strip, 20-pole	805-612
0001	terminal strip, 15-pole	805-613
J1200	terminal strip, 13-pole	805-639

INDUCTORS

Designation	Туре	Code No.
LI	ferrite tube 15 mm	704-301
L2	ferrite tube 15 mm	704-301
L3	ferrite tube 15 mm	704-301
L4	ferrite tube 15 mm	704-301
L5	ferrite tube 15 mm	704-301
L6	ferrite tube 15 mm	704-301
L7	ferrite tube 15 mm	704-301
L8	ferrite tube 15 mm	704-301
L9	ferrite tube 15 mm	704-301
L10	ferrite tube 15 mm	704-301

METER

Designation	Туре	Code No.
×M1	moving coil, with scale, 0.45 mA FS	482 -1 54

RESISTORS

Designation	Туре	Value	Code No.
RI	carbon pot.	500 Ω/250 kΩ pos.log.	180-203
×R2	wire-wound	110 Ω 2%	152-051
R3	metal film	4.95 kΩ 0.2% 0.25 W	140-393
R4	metal film	550 Ω 0.2% 0.25 W	140-390
R5	metal film	1 kΩ 0.2% 0.25 W	140-391
R6	metal film	3.16 kΩ 0.2% 0.25 W	140-392
R7	metal film	10 kΩ 0.2% 0.25 W	140-394
R8	carbon film	1.5 kΩ 5% 0.25 W	106-415
R9	carbon film	1.2 kΩ 5% 0.25 W	106-412
R10	metal film	3.74 kΩ 1% 0.1 W	140-572
R11	metal film	14 kΩ 1% 0.1 W	140-574
R12	metal film	649 Ω 1% 0.1 W	140-568
R13	metal film	3.48 kΩ 1% 0.1 W	140-571
R14	metal film	1 kΩ 1% 0.1 W	140-477
R15	metal film	1.5 kΩ 1% 0.1 W	140-570
R16	metal film	15 kΩ 1% 0.1 W	140-575
R17	metal film	3.16 kΩ 1% 0.1 W	140-483
R18	metal film	3.74 Ω 1% 0.1 W	140-572
R19	metal film	14 kΩ 1% 0.1 W	140-574
R20	metal film	649 Ω 1% 0.1 W	140-568
R21	metal film	3.48 Ω 1% 0.1 W	140-571
R22	metal film	46.4 kΩ 1% 0.1 W	140-576
R23	metal film	14 kΩ 1% 0.1 W	140-574
R24	metal film	56.2 kΩ 1% 0.1 W	140-443
R25	metal film	93.1 kΩ 1% 0.1 W	140-578
R26	metal film	1.27 kΩ 1% 0.1 W	140-569
R27	cermet pot.	1 kΩ 0.1 W	182-030
R28	cermet pot.	500 Ω 0.1 W	182-038
R29	cermet pot.	500 Ω 0.1 W	182-038
R30	metal film	1.78 kΩ 1% 0.1 W	140-580
R31	metal film	22 kΩ 5% 0.2 W	106-522
R34	carbon film	31.6 Ω 1% 0.1 W	140-604

Designation	Туре	Value	Code No.
×R36	wire-wound	100 Ω 2%	152-051
R37	carbon film	3.3 kΩ 5% 0.2 W	106-433
		SWITCHES	
Designation	Туре		Code No.
S1	switch "MAN./A	NUTO"	510-204
S3	switch "SLOW/F	AST"	510-206
×S5	switch "RANGE"		550-985
×S6	switch "FUNCTIO	ON"	551-049
xS7	switch "DEEMPH	ASIS"	551-062
S8	power switch		500-102

TRANSFORMERS

Designation	Туре	Code No.
۲T×	transformer	770–593
×T101	transformer	770–593

CABLES

Designation	Туре	Code No.
WI	coaxial, 50 Ω, RG196/U, 0.24 m	600-008
W2	coaxial, 50 Ω, RG196/U, 0.17 m	600-008
W3	coaxial, 50 Ω, RG196/U, 0.13 m	600-008
W4	coaxial, 50 Ω, RG196/U, 0.085 m	600-008
W5	coaxial, 50 Ω, RG196/U, 0.165 m	600-008
W6	coaxial, 50 Ω, RG196/U, 0.045 m	600-008
W7	coaxial, 50 Ω, RG196/U, 0.39 m	600-008
W8	coaxial, 50 Ω, RG196/U, 0.195 m	600-008
W9	coaxial, 50 Ω, RG196/U, 0.18 m	600-008
W10	coaxial, 50 Ω, RG196/U, 0.155 m	600-008

Designation	Туре	Code No.
WII	coaxial, 50 Ω, RG196/U, 0.205 m	600-008
W12	coaxial, 50 Ω, RG196/U, 0.275 m	600-008
W13	coaxial, 50 Ω, RG196/U, 0.16 m	600-008
W14	coaxial, 50 Ω, RG196/U, 0.145 m	600-008
W15	coaxial, 50 Ω, RG196/U, 0.23 m	600-008
W16	coaxial, 50 Ω, RG196/U, 0.18 m	600-008
W17	coaxial, 50 Ω, RG196/U, 0.21 m	600-008
W18	coaxial, 50 Ω, RG196/U, 0.21 m	600-008
W19	coaxial, 50 Ω, RG196/U, 0.285 m	600-008
W20	coaxial, 50 Ω, RG196/U, 0.175 m	600-008
W21	coaxial, 50 Ω, RG196/U, 0.215 m	600-008
W22	coaxial, 50 Ω, RG196/U, 0.19 m	600-008
W23	coaxial, 50 Ω, RG196/U, 0.195 m	600-008
W24	coaxial, 50 Ω, RG196/U, 0.20 m	600-008
W25	coaxial, 50 Ω, RG196/U, 0.51 m	600-008
W26	coaxial, 50 Ω, RG196/U, 0.26 m	600-008
W27	coaxial, 50 Ω, RG196/U, 0.25 m	600-008
W29	coaxial, 110 Ω , T3283, 0.32 m	600-001
W30	coaxial, 50 Ω, RG196/U, 0.028 m	600-008
W31	coaxial, 50 Ω, RG196/U, 0.155 m	600-008
W32	coaxial, 50 Ω, RG196/U 0.155 m	600-008
	MISCELLANEOUS	
Designation	Туре	Code No.
x	knob N20	850-121
x	knob NPV18	850-122
×	knob N30	850-230
x	knob N40, with handle	850-241
x	rubber foot	855-002
x	scale A	861-220

861-220 861-214

861-215

H6

х

х

х х

х

х

х

х

scale B

scale C

Designation	Туре	Code No.
×	scale D	861-216
x	scale E	861-217
x	scale F	861-218
x	scale G	861-221
x	scale, blank	861-219

TUNER Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.
C101	electrolytic	250 μF 25 V	260-042
C102	tantalum	10 µF 15 ∨	267-000
C103	ceramic	47 pF 20% 25 V	213-019
C104	ceramic	4.7 pF -20 +80% 40 V	213-010
C105	ceramic	4.7 pF -20 +80% 40 V	213-010
C106	variable	△ C 25 pF	285-513
C107	ceramic	2.2 nF -20 +80% 25 V	213-012
C108	trimmer	0.5-3 pF	286-206
C109	ceramic	1 nF -20 +80% 25 V	213-013
C110	trimmer	0.5-3 pF	286-206
C111	ceramic	1 nF - 20 +80% 25 V	213-013
C112	trimmer	0.5-3 pF	286-206
C113	ceramic	470 pF -20 +80% 25 V	213-014
C114	trimmer	0.5-3 pF	286-206
C115	ceramic	220 pF -20 +80% 25 V	213-018
C116	trimmer	0.5-3 pF	286-206
C117	ceramic	47 pF 5%	210-247
C118	trimmer	0.5-3 pF	286-206
C119	ceramic	47 pF 20% 25 V	213-019
C121	ceramic	2.2 pF ±0.25 pF	210-122
C123	tantalum	10 µF -20 +50% 15∕18 ∨	267-000
C124	ceramic	1.5 pF	210-115

DIODES

Designation	Туре		Code No.
CR101	HP5082-2812		350-802
CR102	HP5082-2812		350-802
CR103	HP5082-2812		350-802
CR104	HP5082-2812		350-802
FL101	lead through filter	B85313 – A – Cl	910-032
FL102	lead through filter	B85313 – A – Cl	910-032

INDUCTORS

Designation	Туре	Code No.
L101	choke, 47 µH	703-008
L102	choke, 47 µH	703-008
×L103	oscillator coil	10467-A4
xL104 ¹⁾ 1) not used on	oscillator coil S1 version	10468-A4
×L105	oscillator coil	10469-A4
× L106	oscillator coil	10470-A4
x L107	oscillator coil	10471-A4
× L108	oscillator coil	10472-A4
L109	ferrite tube, 15 mm	704-301
L110	ferrite tube, 1.2/3.5 x 3.2	704-305
L113	ferrite tube, 1.2/3.5 x 3.2	704-305
L114	ferrite tube, 1.2/3.5 x 3.2	704-305
L115	choke, 47 µH	703-008
L116	ferrite tube, 7 mm	704-300
L117	ferrite tube, 1.2/3.5 x 3.2	704-305
L118	ferrite tube, 1.2/3.5 x 3.2	704-305

TRANSISTORS

Designation	Туре	Code No.
Q101	2N3906	360-062
Q102	BC149	360-072
Q103	BF274	360-123
Q104	BC147	360-074

RESISTORS

All resistors 5%	5, 0.25 W		
Designation	Туре	Value	Code No.
R101	carbon film	100 Ω	106-310
R102	carbon film	47 Ω	106-247
R103	carbon film	1 kΩ	106-410

All resistors 5%, 0.25 W

Designation	Туре	Value	Code No.
R104	carbon film	5.6 kΩ	106-456
R105	carbon film	100 Ω	106-310
R106	carbon film	47 Ω	106-247
R107	carbon film	1 kΩ	106-410
R108	carbon film	6.8 kΩ	106-468
R109	carbon film	3.3 kΩ	106-433
RIIO	carbon film	100 Ω	106-310
RIII	carbon film	1 kΩ	106-410
R112	carbon film	50 Ω	106-355
R113	carbon film	50 Ω	106-355
R114	carbon film	2.2 kΩ	106-422
R115	carbon film	10 kΩ	106-510

TRANSFORMERS

Designation	Туре	Code No.
×T101	transformer	10473-A4
×T102	transformer	6376 - A4
×T103	transformer	10857 - A4

. -

FILTER - DEEMPHASIS Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C2	polystyrene	50 nF 1% 63 V	243-019	н١
C3	polystyrene	12 nF 2% 63 V	243-017	ні
C4	polystyrene	4 nF 1% 63 V	243-043	HI
C5	polystyrene	12 nF 2% 63 V	243-017	ні
C6	polystyrene	6 nF 2% 63 V	243-016	ні
C 7	polystyrene	6 nF 2% 63 V	243-016	н١
C8	polystyrene	50 nF 1% 63 V	243-019	HJ
С9	polystyrene	12 nF 2% 63 V	243-017	ні

RESISTORS

Designation	Туре	Value	Code No.	Shown Fig.
R10	metal film	3.7 kΩ 1% 0.1 W	140-572	HI
R11	metal film	14 kΩ 1% 0.1 W	140-574	HI
R12	metal film	649 kΩ 1% 0.1 W	140-568	HI
R13	metal film	3.48 kΩ 1% 0.1 W	140-571	HI
R18	metal film	3.74 kΩ 1% 0.1 W	140-572	НI
R19	metal film	14 kΩ 1% 0.1 W	140-574	HI
R20	metal film	649 kΩ 1% 0.1 W	140-568	НI
R21	metal film	3.48 kΩ 1% 0.1 W	140-571	HJ
R22	metal film	46.4 kΩ 1% 0.1 W	140-576	ні
R23	metal film	14 kΩ 1% 0.1 W	140-574	нı
R26	metal film	1.27 kΩ 1% 0.1 W	140-569	нι
R27	carbon pot.	1 kΩ lin. 0.1 W	182-030	НI
R28	carbon pot.	500 Ω lin. 0.1 W	182-038	НI
R29	carbon pot.	500 Ω lin. 0.1 W	182-038	١Н
R30	metal film	1.78 kΩ 1% 0.125 W	140-580	HI

RF ATTENUATOR Printed-circuit board

RESISTORS

Designation	Туре	Value	Code No.	Shown Fig.
R1300	metal film	95.3 Ω 1% 0.5 W	140-428	H2
R1302	metal film	95 .3 Ω 1% 0 .5 W	140-428	H2
R1303	metal film	95.3 Ω 1% 0.5 W	140-428	H2
R1305	metal film	95 .3 Ω 1% 0.5 W	140-428	H2
R1306	metal film	95.3Ω1%0.5W	140-428	H2
R1307	metal film	71.5Ω 1% 0.5 W	140-429	H2
R1308	metal film	48.7 Ω 1% 0.5 W	140-430	H2
R1309	metal film	71.5Ω1%0.5W	140-429	H2
R1310	metal film	95.3Ω1%0.5W	140-428	H2
R1311	metal film	143Ω1%0.1W	140-527	H2
R1312	metal film	143Ω1%0 . 1W	140-527	H2
R1313	metal film	143Ω1%0.1W	140-527	H2
R1314	metal film	143 Ω 1% 0 . 1 W	140-527	H2

SWITCH

Designation	Туре	Code No.	Shown Fig.
S 1300	switch "ATTENUATOR"	550 -9 92	H2

_

IF FILTER (WIDE) Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C201	polystyrene	4.476 nF 63 V	243-161	H3
C202	polystyrene	1.875 nF 1% 63 V	243-166	H3
C203	polystyrene	2.863 nF 1% 63 V	243-163	H3
C204	polystyrene	2.433 nF 1% 63 V	243-162	H3
C205	polystyrene	1.098 nF 1% 63 V	243-159	H3
C206	polystyrene	4.198 nF 1% 63 V	24 3-1 65	H3
C207	polystyrene	1.768 nF 1% 63 V	243-160	H3
		COILS		
Designation	Туре	Value	Code No.	Shown Fig.
×L201	filter coil	μH	6430-A4	H3
×L202	filter coil	11 µH	6430-A4	H3
×L203	filter coil	11 µH	6430 - A4	H3

IF AMPLIFIER and ATTENUATOR Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C301	polyester	0.1 µF 10% 250 ∨	241-017	H4
C302	ceramic	47 pF 5%	210-247	H4
C303	ceramic	1 pF ±0.25 pF	210-110	H4
C304	ceramic	47 nF −20+ 80% 30 V	213-016	H4
C305	ceramic	47 nF -20+80% 30 V	213-016	H4
C306	trimmer	10-60 pF	286-006	H4
C307	ceramic	22 nF -20+80% 40 V	213-011	H4
C308	ceramic	10 nF -20+50% 40 V	213-020	H4
C309	ceramic	47 nF -20+80% 30 V	213-016	H4
C311	ceramic	0.1 µF -20+80% 12 ∨	213-017	H4
C312	ceramic	10 nF -20+50% 40 V	213-020	H4
C313	ceramic	47 nF -20+80% 30 V	213-016	H4
C314	ceramic	3.3 pF ±0.5 pF	210-133	H4
C315	ceramic	47 nF -20+80% 30 V	213-016	H4
C316	ceramic	2 μF -20+50% 25/30 V	267-007	H4
C317	ceramic	10 pF 5%	210-210	H4
C318	ceramic	47 nF -20+80% 30 V	213-016	H4
C319	ceramic	10 nF -20+50% 40 V	213-020	H4
C320	ceramic	47 nF -20+80% 30 V	213-016	H4
C321	ceramic	47 nF -20+80% 30 V	213-016	H4
C322	ceramic	0.1 µF -20+80% 12 ∨	213-017	H4
C323	ceramic	22 pF 5%	210-222	H4
C324	polyester	0.22 µF 10% 63 V	241-036	H4
C325	ceramic	0.1 µF -20+80% 12 ∨	213-017	H4
C326	polyester	1.5 μF 10% 160 V	241-029	H4
C327	ceramic	4.7 nF -20+80% 40 V	213-010	H4
C328	ceramic	82 pF 5%	211-282	H4

DIODES

Designation	Туре	Code No.	Shown Fig.
CR301	BAY74	350-413	H4
CR302	BAY74	350-413	H4
CR303	BAY74	350-413	H4
CR304	BAY74	350-413	H4

TERMINALS

Designation	Туре	Code No.	Shown Fig.
P300	terminal strip, 20-pole	805-612	H4

TRANSISTORS

Designation	Туре	Code No.	Shown Fig.
Q301	BFY90	360-071	H4
Q302	2N3904	360-064	H4
Q303	2N3906	360-062	H4
Q304	BFY90	360-071	H4
Q305	2N3906	360-062	H4
Q306	2N3904	360-064	H4
Q307	2N3906	360-062	H4
Q308	BC149	360-072	H4
Q309	2N3906	360-062	H4
Q310	2N3906	360-062	H4
Q311	BC149	360-072	H4

H16

RESISTORS

5%, 0.25 W unless otherwise stated					
Designation	Туре	Value	Code No.	Shown Fig.	
R300	carbon film	1 kΩ	106-410	H4	
R301	metal film	48.7 Ω 1%	140-430	H4	
R302	carbon film	47 Ω	106-247	H4	
R303	carbon film	390 Ω	106-339	H4	
R304	carbon pot.	1 kΩ lin. 0.3 W	182-030	H4	
R305	carbon film	680 Ω	106-368	H4	
R306	carbon film	100 Ω	106-310	H4	
R307	carbon film	12 Ω	106-212	H4	
R308	carbon film	1.8 kΩ	106-418	H4	
R309	carbon film	4.7 kΩ	106-447	H4	
R310	carbon film	8.2 kΩ	106-482	H4	
R311	carbon film	1.2 kΩ	106-412	H4	
R312	carbon film	1.2 kΩ	106-412	H4	
R313	carbon film	39 Ω	106-239	H4	
R314	carbon film	8.2 kΩ	106-482	H4	
R315	carbon film	3.3 kΩ	106-433	H4	
R316	carbon film	1.5 kΩ	106-415	H4	
R317	carbon film	3.9 kΩ	106-439	H4	
R318	carbon film	22 Ω	106-222	H4	
R319	carbon film	270 Ω	106-327	H4	
R320	carbon film	150 Ω	106-315	H4	
R321	carbon film	82 Ω	106-282	H4	
R322	carbon film	2.2 kΩ	106-422	H4	
R323	carbon film	100 Ω	106-310	H4	
R324	carbon film	3.3 kΩ	106-433	H4	
R325	carbon film	8.2 kΩ	106-482	H4	
R326	carbon film	100 Ω	106-310	H4	
R327	carbon film	100 Ω	106-310	H4	
R328	carbon film	2.2 kΩ	106-422	H4	
R329	carbon film	33 Ω	106-233	H4	
R330	carbon film	470 Ω	106-347	H4	
R331	carbon film	180 Ω	106-318	H4	
R332	carbon film	82 Ω	106-282	H4	

Designation	Туре	Value	Code No.	Shown Fig.
R333	carbon film	330 Ω	106-333	H4
R334	carbon film	27 kΩ	106-527	H4
R335	carbon film	3.3 kΩ	106-433	H4
R336	carbon film	15 kΩ	106-515	H4
R337	carbon film	330 Ω	106-333	H4
R338	carbon film	1.8 kΩ	106-418	H4
R339	carbon film	68 Ω	106-268	H4
R340	carbon film	100 Ω	106-310	H4
R341	carbon film	1.5 kΩ	106-415	H4
R342	carbon film	3.3 kΩ	106-433	H4
R343	carbon film	1.5 kΩ	106-415	H4
R344	carbon film	68 Ω	106-268	H4
R345	cermet pot.	470 Ω	182-038	H4
		CABLE		
Designation	Туре		Code No.	Shown Fig.

600-014

H4

coaxial, 50 $\Omega,$ RG196/U, 0.14 m

5%, 0.25 W unless otherwise stated

W300

AM DETECTOR and IF OUTPUT AMPLIFIER

Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C501	polystyrene	200 pF 5% 160 V	243-001	H5
C502	ceramic	47 nF -20+80% 30 V	213-016	H5
C503	polystyrene	100 pF 5% 125 V	243-037	H5
C 504	ceramic	0.1 µF -20+80% 12 ∨	213-017	H5
C505	ceramic	47 nF -20+80% 30 V	213-016	H5
C506	polystyrene	150 pF 5% 125 V	243-030	H5
C507	ceramic	47 pF 5%	210-247	H5
C508	ceramic	47 nF -20+80% 30 V	213-016	H5
C510	tantalum	10 µF 15 V	267-000	H5
C511	ceramic	3.3 pF ±0.5 pF	210-133	H5
C512	ceramic	47 nF -20+80% 30 V	213-016	H5
C513	ceramic	47 nF -20+80% 30 V	213-016	H5
C514	ceramic	47 nF - 20+80% 30 V	213-016	H5
C515	tantalum	10 µF 15 V	267-000	H5
C516	tantalum	10 µF 15 V	267-000	H5
C517	polystyrene	151 pF 1% 63 V	243-145	H5
C518	ceramic	10 nF -20+80% 40 V	213-020	H5
C519	polystyrene	120 pF 5% 63 V	243-130	H5
C520	ceramic	47 nF -20+80% 30 V	213-016	H5
C521	ceramic	22 nF -20+80% 40 V	213-011	H5
C522	ceramic	0.1 µF -20+80% 12 ∨	213-017	H5
C523	ceramic	2.2 nF -20+80% 25 V	213-012	H5
C524	polystyrene	500 pF 2% 63 V	243-134	H5
C525	ceramic	0.1 µF -20+80% 12 ∨	213-017	H5
C526	ceramic	0.1 µF -20+80% 12 V	213-017	H5
C527	polystyrene	500 pF 2% 63 V	243-134	H5
C528	polyester	10 µF 10% 63 V	241-028	H5
C530	tantalum	68 µF 15/18 V	267-015	H5
C531	polystyrene	300 pF 5% 63 V	243-133	H5
C533	polyester	4.98 nF 1% 64 V	240-165	H5

H18

37

DIODES

Designation	Туре		Code No.	Shown Fig.
CR501	zener BZY8	8C9V1	350-606	H5
CR502	1 N916		350-019	H5
CR503	1 N916		350-019	H5
CR504	zener BZY9	9C7V5	350-621	H5
CR505	HD5004		350-017	H5
CR506	HD5004		350-017	H5
		COILS		
Designation	Туре	Value	Code No.	Shown Fig.
L501	choke	Hµ 001	703-009	H5
L502	choke	100 µH 2%	703-015	H5
L503	choke	47 µH	703-008	H5
		TERMINALS		
Designation	Туре		Code No.	Shown Fig.
P500	terminal str	ip, 20-pole	805-612	H5
		TRANSISTORS		
Designation	Туре		Code No.	Shown Fig.
Q501	2N3904		360-064	H5
Q502	2N3906		360-062	H5
Q503	2N3904		360-064	H5
Q504	2N3904		360-064	H5
Q505	2N3904		360-064	H5
Q506	2N3906		360-062	H5

 Q506
 2N3906
 360-062
 H5

 Q507
 2N3904
 360-064
 H5

 Q508
 2N3906
 360-062
 H5

 Q509
 2N3906
 360-062
 H5

H19

191

Designation	Туре	Code No.	Shown Fig.
Q510	2N3904	360-064	H5
Q511	2N3906	360-062	H5
Q512	TD121	360-077	H5

RESISTORS

5%, 0.25 W unles	5%, 0.25 W unless otherwise stated					
Designation	Туре	Value	Code No.	Shown Fig.		
R501	carbon film	10 kΩ	106-510	H5		
R502	carbon film	4.7 kΩ	106-447	H5		
R503	carbon film	27 Ω	106-227	H5		
R504	carbon film	560 Ω	106-356	H5		
R505	carbon film	120 Ω	106-312	H5		
R506	carbon film	47 Ω	106-247	H5		
R507	carbon film	330 Ω	106-333	H5		
R508	carbon film	22 Ω	106-222	H5		
R509	carbon film	47 Ω	106-247	H5		
R510	carbon film	2.7 kΩ	106-427	H5		
R511	carbon film	5.6 kΩ	106-456	H5		
R512	carbon film	220 Ω	106-322	H5		
R513	carbon film	5.6 kΩ	106-456	H5		
R514	carbon pot.	2.5 kΩ lin. 0.3 W	182-031	H5		
R151	carbon film	560 Ω	106-356	H5		
R516	carbon film	2.7 kΩ	106-427	H5		
R517	carbon film	390 Ω	106-339	H5		
R518	carbon film	47 Ω	106-247	H5		
R519	carbon film	1 kΩ	106-410	H5		
R520	carbon film	2.2 kΩ	106-422	H5		
R521	carbon film	100 Ω	106-310	H5		
R522	carbon film	22 Ω	106-222	H5		
R523	carbon film	3.9 kΩ	106-527	H5		
R525	carbon film	10 kΩ	106-510	H5		

Designation	Туре	Value	Code No.	Shown Fig.
R526	carbon film	470 Ω	106-347	H5
R527	carbon film	3.3 kΩ	106-433	H5
R528	carbon film	27 Ω	106-227	H5
R530	carbon film	100 Ω	106-310	H5
R531	carbon film	1.5 kΩ	106-415	H5
R532	carbon film	4.7 kΩ	106-447	H5
R533	carbon film	10 kΩ	106-510	H5
R534	carbon film	680 Ω	106-368	H5
R535	carbon film	22 Ω	106-222	H5
R536	carbon film	1.5 kΩ	106-415	H5
R537	carbon film	1 kΩ	106-410	H5
R538	metal film	444 Ω 1% 0.25 W	140-396	H5
R539	cermet pot.	10 kΩ lin.	182-033	H5
R540	carbon film	5.6 kΩ	106-456	H5
R541	carbon film	1.2 kΩ	106-412	H5
R542	carbon film	5.6 kΩ	106-456	H5
R543	carbon film	1.8 kΩ	106-418	H5
R544	carbon film	2.07 kΩ 5% 0.1 W	143-038	H5
R545	carbon film	1.8 kΩ	106-418	H5
R546	carbon film	56 kΩ	106-556	H5
R547	carbon film	1.2 kΩ	106-412	H5
R548	carbon film	82 kΩ	106-582	H5
R549	carbon film	150 kΩ	106-615	H5
R550	carbon film	100 kΩ	106-610	H5
R551	carbon film	3.3 kΩ	106-433	H5
R552	carbon film	12 kΩ	106-512	H5
R553	carbon pot.	1 kΩ lin. 0.1 W	182-030	H5
R554	carbon film	1.8 kΩ	106-418	H5
R561	metal film	500 kQ 1% 0.1 W	140-586	H5

5%, 0.25 W unless otherwise stated

•					
Designation	Туре	Value	Code No.	Shown Fig.	-
R562	metal film	121 kΩ 1% 0.125 W	140-522	H5	-
R563	carbon film	100 Ω	106-310	H5	
R564	carbon film	82 Ω	106-282	H5	-
R565	carbon film	68 Ω	106-268	H5	
R566	carbon film 1.	5 kΩ	106-415	H5	
R567	carbon film	221Ω1%0 . 1W	140-873	H5	
		TERMINALS			-
Designation	Туре		Code No.	Shown Fig.	-
TB501	terminal strip, 5-pole		821-105	H5	

5%, 0.25 W unless otherwise stated

LIMITER Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C601	ceramic	1 nF -20+80% 25 V	213-013	H6
C602	polystyrene	100 pF 5% 125 V	243-037	H6
C603	tantalum	10 µF 15 ∨	267-000	H6
C604	tantalum	10 µF 15 ∨	267-000	H6
C605	ceramic	22 nF 40 V	213-011	H6
C606	ceramic	l nF −20+80% 25 V	213-013	H6
C607	ceramic	4.7 nF -20+80% 40 V	213-010	H6
C608	tantalum	10 µF 15 ∨	267-000	H6
C609	polystyrene	100 pF 5% 125 ∨	243-037	H6
C610	polystyrene	100 pF 5% 125 ∨	243-037	H6
C611	ceramic	1 nF -20+80% 25 V	213-013	H6
C612	ceramic	47 nF -20+80% 30 V	213-016	H6
C613	ceramic	1 nF -20+80% 25 V	213-013	H6
C614	ceramic	33 pF 5%	210-233	H6
C615	ceramic	22 nF -20+80% 40 V	213-011	H6
C616	ceramic	22 nF -20+80% 40 V	213-011	H6
C617	ceramic	33 pF 5%	210-233	H6
C618	ceramic	22 nF -20+80% 40 V	213-011	H6
C619	ceramic	22 pF 5%	210-222	H6
C620	ceramic	22 nF -20+80% 40 V	213-011	H6
C621	tantalum	10 µF 15 ∨	267-000	H6
C622	ceramic	470 pF -20+80% 25 V	213-014	H6
C623	tantalum	10 µF 15 ∨	267-000	H6
C624	ceramic	47 nF -20+80% 30 V	213-016	H6
C625	tantalum	10 µF 15 ∨	267-000	H6
C626	ceramic	22 nF -20+80% 40 V	213-011	H6
C627	tantalum	10 µF 15 ∨	267-000	H6
C628	electrolytic	10 μF -10+50% 63 V	261-062	H6
C630	ceramic	2.2 nF -20+80% 25 V	213-012	H6
C631	tantalum	10 µF 15 ∨	267-000	H6

H24

DIODES

Designation	Туре	Code No.	Shown Fig.
CR601	BAV10	350-022	H6
CR602	BAV10	350-022	H6
CR603	BAX16	350-023	H6
CR604	BAX16	350-023	H6
CR605	BAV10	350-022	H6
CR606	BAV10	350-022	H6
CR607	zener 1N3497	350-637	H6
CR608	BAV10	350-022	H6
CR609	BAV10	350-022	H6
CR610	BAV10	350 - 022	H6
CR611	BAV10	350-022	H6
	TERMINALS		
Designation	Туре	Code No.	Shown Fig.
P600	terminal strip, 10-pole	805-614	H6
P601	terminal strip	805-738	H6
	TRANSISTORS		
Designation	Туре	Code No.	Shown

			Fig.
Q601	2N3906	360-062	H6
Q602	2N3906	360-062	H6
Q603	BC149	360-072	H6
Q604	BC149	360-072	H6
Q605	BC149	360-072	H6
Q606	BC149	360-072	H6
Q607	2N3906	360-062	H6
Q608	2N3906	360-062	H6
Q609	2N3906	360-062	H6
Q610	2N3906	360-062	H6
Designation Туре Code No. Shown Fig. Q611 2N3906 360-062 H6 Q612 2N3906 360-062 H6 Q613 360-062 2N3906 H6 Q614 2N3907 360-064 H6 Q615 BC149 360-072 H6 Q616 TD100 360-105 H6 Q617 BC149 360-072 H6 Q618 2N3906 360-062 H6 Q619 360-062 H6 2N3906 2N3906 360-062 Q620 H6 RESISTORS 5%, 0.25 W unless otherwise stated Value Code No. Shown Designation Type Fig.

R601	carbon film	330 Ω	106-333	H6
R602	carbon film	470 Ω	106-347	H6
R603	carbon film	330 Ω	106-333	H6
R604	carbon film	150 Ω	106-315	H6
R605	carbon film	3.9 kΩ	106-439	H6
R606	carbon film	1.8 kΩ	106-418	H6
R607	carbon film	180 Ω	106-318	H6
R608	carbon film	18 Ω	106-218	H6
R609	carbon film	33 kΩ	106-533	H6
R610	carbon film	56 kΩ	106-556	H6
R611	carbon film	56 kΩ	106-556	H6
R612	carbon pot.	10 kΩ lin. 0.1 W	182-033	H6
R613	carbon film	8.2 kΩ	106-482	H6
R614	carbon film	3.3 kΩ	106-433	H6
R615	carbon film	27 kΩ	106-527	H6
R616	carbon film	5.6 kΩ	106-456	H6
R617	carbon film	68 kΩ	106-568	H6
R618	carbon film	68 kΩ	106-568	H6

Designation	Туре	Value	Code No.	Shown Fig.	-
R619	carbon film	10 kΩ	106-510	H6	
R620	carbon film	10 kΩ	106-510	H6	
R621	carbon film	l kΩ	106-410	H6	
R622	carbon film	lkΩ	106-410	H6	
R623	carbon film	6.8 kΩ	106-468	H6	
R624	cermet pot.	1 kΩ lin.	182-030	H6	
R625	carbon film	560 Ω	106-556	H6	
R626	carbon film	2.2 kΩ	106-422	H6	
R627	carbon film	1.5 kΩ	106-415	H6	
R628	carbon film	390 Ω	106-339	H6	
R629	carbon film	47 Ω	106-247	H6	
R630	carbon film	lkΩ	106-410	H6	
R631	carbon film	1.8 kΩ	106-418	H6	
R632	carbon film	560 Ω	106-356	H6	
R633	carbon pot.	1 kΩ lin . 0.1 W	182-030	H6	
R634	carbon film	6.8 kΩ	106-468	H6	
R635	carbon film	2.2 kΩ	106-422	H6	
R636	carbon film	1.5 kΩ	106-415	H6	
R637	carbon film	390 Ω	106-339	H6	
R638	carbon film	47 Ω	106-247	H6	
R639	carbon film	lkΩ	106-410	H6	
R640	carbon film	1.8 kΩ	106-418	H6	
R641	carbon film	12 kΩ	106-512	H6	
R642	carbon film	1 kΩ	106-410	H6	
R643	carbon film	47 Ω	106-247	H6	
R644	carbon film	lkΩ	106-410	H6	
R645	carbon film	68 Ω	106-268	H6	
R646	carbon film	10 kΩ	106-510	H6	
R647	carbon film	10 Ω	106-210	H6	
R648	carbon film	10 Ω	106-210	H6	

5%, 0.25 W unless otherwise stated

5%,	0.25	W	unless	otherwise	stated
-----	------	---	--------	-----------	--------

Designation	Туре	Value Code No		Code No. Shown Fig.	
R649	carbon film	6.8 kΩ	106-468	H6	
R650	carbon film	6.8 kΩ	106-468	H6	
R651	carbon film	6.8 kΩ	106-468	H6	
R652	carbon film	100 kΩ	106-610	H6	
R653	carbon film	4.7 kΩ	106-447	H6	
R654	carbon film	1.5 kΩ	106-415	H6	
R655	carbon film	680 Ω	106-368	H6	
R656	carbon film	1.8 kΩ	106-418	H6	
R657	carbon film	27 kΩ	106-527	H6	
R658	carbon film	18 kΩ	106-518	H6	
×R659	wire-wound	4.18 kΩ 1%	152-031	H6	
R660	trimmer	500 Ω 10%	193-000	H6	
R661	wire-wound	2.46 kΩ 1%	152-029	H6	
R662	carbon film	6.8 kΩ	106-468	H6	
R663	carbon film	100 kΩ	106-610	H6	
R664	carbon film	4.7 kΩ	106-447	H6	
R665	carbon film	47 kΩ	106-547	H6	
×R666	wire-wound	10 kΩ 0.1%	152-032	H6	
×R667	wire-wound	10 kΩ 0.1%	152-032	H6	
R668	carbon potm.	10 kΩ lin.	182-033	H6	
R669	metal film	221 kΩ 0.1 W	140-605	H6	
R670	carbon film	10 Ω	106-210	H6	
R671	carbon film	560 Ω	106-356	H6	
R672	carbon film	22 Ω	106–222	H6	
R673	carbon film	560 Ω	106-356	H6	

CABLE

Designation	Туре		Code No.	Shown Fig.
W600	coaxial, 50 Ω,	RG196/U 0.06 m	600-008	H6

FM DETECTOR Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C701	ceramic	39 pF 5%	211-239	H7
C702	ceramic	47 nF -20+80% 30 V	213-016	H7
C703	ceramic	68 pF 5%	211-268	H7
C704	ceramic	47 nF -20+80% 30 V	213-016	H7
C705	ceramic	47 nF -20+80% 30 V	213-016	H7
C706	ceramic	10 μF 15 V	267-000	H7
C707	tantalum	10 μF 15 V	267-000	H7
C708	ceramic	1 nF -20+80% 25 V	213-013	H7
C709	tantalum	10 µF 15 V	267-000	H7
C711	polystyrene	8.45 nF 1% 63 V	243-167	H7
C716	polystyrene	3.48 nF 1% 63 V	243-164	H7
C717	polystyrene	3.48 nF 1% 63 V	243 -1 64	H7

DIODES

Designation	Туре		Code No.	Shown Fig.
CR701	zener BZY88C3V3		350-625	H7
CR702	zener BZY88C3V6		350-626	H7
CR703	5082-2811 HP	•	355-032	H7
CR704	5082-2811 HP		355-032	H7
CR705	5082–2811 HP		355-032	H7

RELAY

Designation	Туре	Code No.	Shown Fig.	-1400
K700	gas relay	570-033	H7	

INDUCTORS

Designation	Туре	Value	Code No.	Shown Fig.
xL701	inductor	2.12 mH	6374 - A4	H7
×L702	inductor	0.822 mH	6375 - A4	H7
×L703	choke	100 _µ H	703-009	H7

TERMINALS

Designation	Туре	Code No.	Shown Fig.
P700	terminal strip, 21-pole	805-621	H7
P701	socket, 2-pole, special	970-650	H7
P702	socket, 6-pole, special	970 - 649	H7

TRANSISTORS

Designation	Туре	Code No.	Shown Fig.
Q701	2N3904	360-064	H7
Q702	2N3904	360-064	H7
Q703	2N3904	360-064	H7
Q704	2N3904	360–064	H7
Q705	2N3251	360-052	H7
Q706	2N3251	360-052	H7
Q707	2N3906	360-062	H7
Q708	BC149	360–072	H7

RESISTORS

Designation	Туре	Value	Code No.	Shown Fig.	
R701	carbon film	100 Ω	106-310	H7	
R702	carbon film	270 Ω	106-327	H7	
R703	metal film	390 Ω 1% 0.125 W	140-409	H7	~
R704	carbon film	10 Ω	106-210	H7	
R705	metal film	910 Ω 1% 0 .12 5 W	140-410	H7	
R706	carbon film	10 Ω	106-210	H7	
R707	metal film	8.06 kΩ 1% 0.1 W	140-622	H7	
R708	trimmer	2 kΩ 10%	193-001	H7	
R709	carbon film	470 Ω	106-347	H7	
R710	carbon film	10 Ω	106-210	H7	
R711	carbon film	820 Ω	106-382	H7	-
R712	carbon film	3.3 kΩ	106-433	H7	
R713	metal film	100 Ω 0.2%	140-389	H7	
R714	carbon film	240 Ω 5% 0.5 W	100-324	H7	
R715	carbon film	220 Ω	106-322	H7 .	-
R716	carbon film	68 Ω	106-268	H7	
R717	metal film	500 Ω 1% 0.25 W	140-397	H7	
R718	metal film	500 Ω 1% 0 .25 W	140-397	H7	
R719	carbon film	15 kΩ	106-515	H7	
R720	carbon film	33 kΩ	106-533	H7	
R721	carbon film	10 MΩ 5% 0.5 W	100-810	H7 -	
R722	carbon film	39 kΩ	106-539	H7	
R723	carbon film	39 kΩ	106-539	H7 -	
R724	carbon film	33 kΩ	106-533	H7	
R725	carbon film	3.3 MΩ 5% 0.5 W	100-733	H7 -	
R736	metal film	7.5 kΩ 1% 0.1 W	140-299	H7	
R737	cermet pot.	1 kΩ 0.1 W	182-030	H7 -	-
R738	cermet pot.	25 kΩ 0.1 W	182-034	H7	
R740	metal film	191 kΩ 1% 0 . 1 W	140-688	H7 -	-
R741	carbon film	3.3 kΩ	106-433	H7	

	CABLE		
Designation	Туре	Code No.	Shown Fig.
W701	coaxial, 50 Ω, RG196/U 0.095 m	600-008	H7

AF AMPLIFIER I - II Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C805	electrolytic	250 μF 15/18 V	260-037	H8
C806	polystyrene	130 pF 5% 125 V	243-039	H8
C807	ceramic	15 pF 5%	210-215	H8
C808	polystyrene	600 pF 5% 125 V	243-027	H8
C809	ceramic	1 nF -20+80% 25 V	213-013	H8
C810	tantalum	10 µF -20+50% 15 ∨	267-000	H8
C811	ceramic	47 nF -20+80% 30 V	213-016	H8
C812	polystyrene	54.5 nF 1% 63 V	243-158	H8
C813	ceramic	82 pF 5%	210-282	H8
C814	tantalum	10 µF -20+80% 15 ∨	267-000	H8
		DIODES		
Designation	Туре		Code No.	Shown Fig.
CR801	BAY88		350-022	H8
CR802	zener BZY88C6V	8	350-627	H8
CR803	zener BZY88C6V	8	350-627	H8
		TERMINALS		
Designation	Туре		Code No.	Shown Fig.
P800	terminal strip, 20)-pole	805-612	H8
		TRANSISTORS		
Designation	Туре		Code No.	Shown Fig.
Q801	TD121		360-077	H8
Q802	BC149		360-072	H8
Q803	2N3906		360-062	H8

Designation	Туре	Code No.	Shown Fig.
Q804	TD121	360-077	H8
Q805	BC149	360-072	H8
Q806	BC149	360-072	H8

RESISTORS

5%, 0.25 W unless otherwise stated

Designation	Туре	Value	Code No.	Shown Fig.
R801	metal film	550 Ω 0.2% 0.125 W	140-390	H8
R802	carbon film	680 Ω	106-368	H8
R803	carbon pot.	100 kΩ lin. 0.1 W	182-035	H8
R804	carbon film	3.9 MΩ 5% 0.5 W	100-739	H8
R805	metal film	3.16 kΩ 1% 0.25 W	140-408	H8
R806	carbon film	47 kΩ	106-547	H8
R807	carbon film	22 kΩ	106-522	H8
R808	carbon film	330 Ω	106-333	H8
R809	carbon film	lkΩ	106-410	H8
R810	carbon film	lkΩ	106-410	H8
R811	carbon film	4.7 kΩ	106-447	H8
R812	carbon film	180 Ω	106-318	H8
R813	carbon film	82 Ω	106-282	H8
R814	carbon film	2.2 kΩ	106-422	H8
R815	carbon film	560 Ω	106-356	H8
R816	carbon film	lkΩ	106-410	H8
R817	carbon film	39 kΩ	106-539	H8
R818	carbon film	27 kΩ	106-527	H8
R819	carbon film	6.8 kΩ	106-468	H8
R820	carbon film	12 kΩ	106-512	H8
R821	carbon film	470 Ω	106-347	H8
R822	carbon film	6.8 kΩ	106-468	H8
R824	carbon film	5.6 kΩ	106-456	H8

5%, 0.25 W unless otherwise stated					
Designation	Туре	Value	Code No.	Shown Fig.	
R825	metal film	12.6 kΩ 0.5% 0.25 W	140-395	H8	
R826	carbon film	47 Ω	106-247	H8	
R827	carbon film	27 kΩ	106-527	H8	

.

AF AMPLIFIER III - V Printed-circuit board

.

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C903	polystyrene	100 pF 5% 160 V	243-037	H9
C906	electrolytic	22 μF 50/60 V	260-008	H9
C907	ceramic	47 pF 5%	210-247	H9
C908	polystyrene	700 pF 5% 125 V	243-033	H9
C909	tantalum	10 µF 15 V	267-000	H9
C910	tantalum	10 µF 15 V	267-000	H9
C912	polyester	2.2 μF 10% 100 V	241-007	H9
C913	ceramic	68 pF 5%	211-268	H9
C914	ceramic	2.2 pF ±0.5 pF	210-122	H9
C915	ceramic	0.1 µF -20+80% 12 V	213-017	H9
C916	tantalum	10 µF 15 V	267-000	H9
C917	tantalum	10 μF 15 V	267-000	H9
		DIODES		
Designation	Туре		Code No.	Shown Fig.
CR901	BAX16		350-023	H9
CR902	zener BZY88Co	5V2	350-604	H9
CR903	1N916		350-019	H9
CR904	1 N916		350-019	H9
		TERMINALS		
Designation	Туре		Code No.	Shown Fig.
P900	terminal strip,	20-pole	805-612	H9

H36

TRANSISTORS

Designation	Туре	Code No.	Shown Fig.
Q901	BC149	360-072	H9
Q902	2N3906	360-062	H9
Q903	BC149	360-072	H9
Q904	BC149	360-072	H9
Q905	BC149	360-072	H9
Q906	2N3906	360-062	H9
Q907	BC149	360-072	H9
Q908	BC149	360-072	H9
Q909	BC149	360-072	H9
Q910	BC149	360-072	H9
Q911	2N3906	360-062	H9
Q912	BC149	360-072	H9

RESISTORS

5%, 0.25 W un	less otherwise stated	1		
Designation	Туре	Value	Code No.	Shown Fig.
R902	carbon film	150 Ω	106-315	H9
R903	carbon film	2.7 kΩ	106-427	H9
R904	carbon film	1.5 kΩ	106-415	H9
R905	carbon film	56 Ω	106-256	H9
R906	carbon film	150 Ω	106-315	H9
R908	metal film	634 Ω 1% 0.1 W	140-567	H9
R910	carbon film	27 kΩ	106-527	H9
R911	carbon film	12 kΩ	106-512	H9
R912	carbon film	330 Ω	106-333	H9
R913	carbon film	3.3 kΩ	106-433	H9
R914	carbon film	560 Ω	106-356	H9
R915	carbon film	100 Ω	106-310	H9
R916	carbon film	10 kΩ	106-510	H9
R917	carbon film	1 kΩ	106-410	H9
R918	carbon film	100 Ω	106-310	H9

5%,	0.25	W	unl	ess	otherw	ise	stated	
-----	------	---	-----	-----	--------	-----	--------	--

Designation	Туре	Value	Code No.	Shown Fig.
R 91 9	metal film	57.6 kΩ 1% 0.125 W	140-581	H9
R920	metal film	850 Ω 1% 0.25 W	140-399	H9
R921	metal film	2.04 kΩ 1% 0.25 W	140-400	H9
R923	carbon pot.	10 kΩ lin. 0.1 W	182-033	H9
R924	metal film	50 kΩ 1% 0.25 W	140-405	H9
R925	carbon film	5.6 k Ω matched 0.3 W	106-456	H9
R926	carbon film	470 kΩ	106-647	H9
R927	carbon film	120 kΩ	106-612	H9
R928	carbon film	5.6 MΩ 5% 0.5 W	100-756	H9
R929	carbon pot.	0.5 MΩ lin. 0.1 W	182-036	H9
R930	carbon film	680 Ω	106-368	H9
R931	carbon film	330 Ω	106-333	H9
R932	carbon film	39 kΩ	106-539	H9
R933	carbon film	lkΩ	106-410	H9
R934	carbon film	12 kΩ	106-512	H9
R935	carbon film	1.2 kΩ	106-412	H9
R936	carbon film	100 Ω	106-310	H9
R937	metal film	270 kΩ 1% 0.25 W	140-406	H9
R938	carbon film	100 Ω	106-310	H9

AF DETECTOR Printed-circuit board

٠

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C1001	polyester	68 nF 10% 400 V	240-568	ніо
C1002	polyester	68 nF 10% 400 V	240-568	H10
C1003	polyester	0.47 µF 10% 125 ∨	240-001	H10
C1004	polyester	0.47 µF 10% 125 V	240-001	H10
C1005	ceramic	1 nF ±20%	212-410	H10
C1006	ceramic	1 nF -20+80% 12 V	213-017	H10
		DIODES		
Designation	Туре		Code No.	Shown Fig.
CR1001	BAV10		350-022	HIO
CR1002	BAV10		350-022	H10
CR1003	IN4002		350-409	H10
CR1004	IN4002		350-409	H10
CR1005	zener BZY88C5V6	5	350-629	H10
		TERMINALS		
Designation	Туре		Code No.	Shown Fig.
P1 000	terminal strip, 15	-pole	805-613	H10
		TRANSISTORS		

Designation	Туре	Code No.	Shown Fig.
Q1001	21930	360-038	H10
Q1002	2N3906	360-062	HIO
Q1003	BC149	360-072	H10

RESISTORS

Designation	Туре	Value	Code No.	Shown Fig.
R1001	carbon film	18 MΩ 5% 0.5 W	100-818	H10
R1002	carbon pot.	0.5 MΩ lin. 0.1 W	182-036	H10
R1003	carbon film	5.6 MΩ 5% 0.5 W	100-756	H10
R1004	carbon film	470 kΩ 5% 0.25 W	100-647	H10
R1005	carbon film	180 kΩ 5% 0.25 W	106-618	H10
R1006	carbon film	12 k Ω selected 0.3 W	106-	H10
R1007	carbon film	560 Ω selected 0.3 W	106-	H10
R1008	carbon film	1.2 kΩ 5% 0.25 W	106-412	H10
R1009	carbon film	120 kΩ 5% 0.25 W	106-612	H10
R1010	carbon film	1.8 kΩ 5% 0.25 W	106-418	HIO
R1011	carbon film	10 kΩ 5% 0.25 W	106-510	H10
R1012	carbon film	1.5 kΩ 5% 0.25 W	106-415	H10
R1013	metal film	700 Ω 1% 0.25 W	140-398	H10
R1014	metal film	4.2 kΩ 1% 0.25 W	140-402	H10
R1015	metal film	14.9 kΩ 1% 0.25 W	140-403	H10
R1016	carbon film	2.2 kΩ 5% 0.25 W	106-422	ніо

POWER SUPPLY Printed-circuit board

CAPACITORS

Designation	Туре	Value	Code No.	Shown Fig.
C1101	electrolytic	1000 µF 25 ∨	261-029	нп
C1102	ceramic	0.1 µF 30 V	213-009	HII
C1103	ceramic	15 pF 5%	210-215	HII
C1104	polyester	1 µF 10% 160 V	241-004	нп
C1105	polyester	33 nF 10% 400 V	240-533	нП
C1106	polyester	0.22 nF 10% 160 V	241-002	нл
C1107	electrolytic	1000 µF 25 ∨	261-029	HII
C1108	ceramic	33 pF 5%	210-233	HII
C1109	polyester	2.2 nF 10% 400 V	240-422	H11
C1110	polyester	0.22 µF 10% 160 ∨	241-002	НЛ
		DIODES AND RECTIFIERS		
Designation	Туре		Code No.	Shown Fig.
CR1101	1 N4002		350-409	нп
CR1102	1 N4002		350-409	нп
CR1103	B80C2000		340-204	HII
CR1104				
	zener BZY88C5V	6	350-629	HII
CR1105	zener BZY88C5V zener BZY88C6V	6 8	350-629 350-627	H11 H11
CR1105 CR1106	zener BZY88C5V zener BZY88C6V 1N4002	6 8	350-629 350-627 350-409	H11 H11 H11
CR1105 CR1106 CR1107	zener BZY88C5V zener BZY88C6V 1N4002 BAX16	6 8	350-629 350-627 350-409 350-023	H11 H11 H11 H11
CR1105 CR1106 CR1107	zener BZY88C5V zener BZY88C6V 1N4002 BAX16	6 8 TERMINALS	350-629 350-627 350-409 350-023	H11 H11 H11 H11
CR1105 CR1106 CR1107 Designation	zener BZY88C5V zener BZY88C6V 1N4002 BAX16 Type	6 8 TERMINALS	350-629 350-627 350-409 350-023 Code No.	H11 H11 H11 H11 Shown Fig.

~~~

TRANSISTORS

| Designation | Туре    | Code No. | Shown<br>Fig. |
|-------------|---------|----------|---------------|
| Q1100       | 2N2905A | 360-073  | HII           |
| Q1101       | BC149   | 360-072  | H11           |
| Q1102       | BC149   | 360-072  | H11           |
| Q1103       | 2N3906  | 360-062  | H11           |
| Q1104       | 2N2905A | 360-073  | HII           |
| Q1105       | BDY92   | 360-097  | HII           |
| Q1106       | BDY92   | 360-097  | H11           |

#### RESISTORS

5%, 0.25 W unless otherwise stated

| Designation | Туре          | Value               | Code No. | Shown<br>Fig. |
|-------------|---------------|---------------------|----------|---------------|
| R1101       | carbon pot.   | 1 MΩ lin. 0.1 W     | 182-037  | нп            |
| R1102       | carbon film   | 1 ΜΩ                | 106-710  | H11           |
| R1103       | wire-wound 6. | 8 Ω 5% <b>2.5</b> W | 133-045  | H11           |
| R1104       | carbon film   | 12 Ω                | 106-212  | HII           |
| R1105       | carbon film   | 68 Ω                | 106-268  | HII           |
| R1106       | carbon film   | 2.7 kΩ              | 106-427  | H11           |
| R1107       | carbon film   | 82 Ω                | 106-282  | HII           |
| R1108       | carbon film   | 2.7 kΩ              | 106-427  | H11           |
| R1109       | wire-wound    | 2 Ω 2% 0.5 W        | 135-000  | H11           |
| R1110       | carbon film   | 1.2 kΩ              | 106-412  | нП            |
| R1111       | carbon film   | 150 Ω               | 106-315  | нП            |
| R1112       | carbon film   | 2.7 kΩ              | 106-427  | H11           |
| R1113       | carbon film   | 5.6 kΩ              | 106-456  | H11           |
| R1114       | carbon film   | 2.2 kΩ              | 106-422  | H11           |
| R1115       | carbon pot.   | 1 kΩ lin. 0.1 W     | 182-030  | H11           |
| R1116       | carbon film   | 2.7 kΩ              | 106-427  | HIJ           |
| R1117       | carbon film   | 1.2 kΩ              | 100-412  | H11           |
| R1118       | carbon film   | 1.2 kΩ              | 106-412  | Н١١           |
| R1119       | wire-wound 8. | 2Ω5%2 <b>.</b> 5W   | 133-044  | нП            |

| Designation | Туре        | Value              | Code No. | Shown<br>Fig. | 1 |
|-------------|-------------|--------------------|----------|---------------|---|
| R1120       | carbon film | 330 Ω              | 106-333  | н11.          | _ |
| R1121       | carbon pot. | 1 MΩ lin.          | 182-037  | нп            |   |
| R1122       | carbon film | 2.7 ΜΩ             | 100-727  | H11           | ( |
| R1123       | carbon film | 100 Ω              | 106-310  | нп            |   |
| R1124       | carbon film | 4.7 kΩ             | 106-447  | H11           | ~ |
| R1125       | metal film  | 4.4 kΩ 0.5% 0.25 W | 140-407  | НЛ            |   |
| R1126       | metal film  | 4.4 kΩ 0.5% 0.25 W | 140-407  | н11           | - |
| R1127       | carbon film | 2.2 kΩ             | 106-422  | нп            |   |
| R1128       | carbon film | 4.7 kΩ             | 106-447  | н             | _ |

# CABLES

| Designation | Туре                  | Code No. | Shown<br>Fig. |
|-------------|-----------------------|----------|---------------|
| W1101       | power cable with plug | 615-005  | нл            |
| W1102       | cable, 5-core         | 611-008  | нп            |

# 5%, 0.25 W unless otherwise stated



Fig.H1.





Fig.H2.







Fig.H4.





Fig.H6.







Fig.H8.







Fig.H10.



Fig.H11.







| an ing a shakar ana shiyara a sa shikarar |        |              |          | · •   |       |       |          |                   |           |       | The sector |                 |
|-------------------------------------------|--------|--------------|----------|-------|-------|-------|----------|-------------------|-----------|-------|------------|-----------------|
|                                           | 6      | 208892       | 15.3.73  | он    | AH    |       | PADIOM   | ETER - COPENHACEN | Málostok  | Tega. | EI4        | 5.9.68          |
|                                           | 5      | 197442       | 18.9.72  | BG.   | joh   |       | NADIUM   |                   |           | Kenf. |            |                 |
|                                           | 4      | 175936       | 10,11.70 | B.G.  | OH    |       | -72      | EMDRUPVEJNV       |           | Norm. | Pt         | 3.10.4          |
| This drawing must not be passed on t      | io 3   | 144435       | 6,6.69   | NH    | AIH   | PK    | XI       |                   | Erstatter |       |            | \$ <sup>5</sup> |
| any person not autilorized by us to r     | e 2    | 133865       | 25.9.68  | NH    |       | PK    | PC       | OWER SUPPLY       | 111       | 96.   | - ^        | 1               |
| coive it, nor of copied or otherwise mad  | 1      |              | 5.7.68   | SHM   | AIH   | PK    |          | 900-250           |           | 50    | - <b>H</b> | ني <b>ا</b> د   |
| use of by such person without our zuthorn | Rt.Nr. | Fra Faŭ, Nr. | Data     | Bt af | Kaut. | Korm. | From no. | to no.            | Erstattes | 1     | -          |                 |
| 11                                        |        | 12           |          | 1     |       | 13    |          | 14                |           | 15    |            |                 |











|    | R/             |                                | 4      | 227389       | 19.8.74  | он     | Put   |       | RADIONETER = COPENHAGEN AND TO EMDRUPYEJNY | istok Tegn. EA 22.12.69<br>Konl. <b>94</b> 97.7.70<br>Norm. 41, 7.1.70 |
|----|----------------|--------------------------------|--------|--------------|----------|--------|-------|-------|--------------------------------------------|------------------------------------------------------------------------|
| 1  | This drawing   | must not be passed on to       | 3      | 22 73 89     | 27.6.74  | AK     | AIH   |       | VII Ers                                    | latter                                                                 |
|    | any person     | not authorized by us to re-    | 2      | 175936       | 12.11.70 | он     |       |       | FM DETECTOR                                | $281 - \Lambda 1$                                                      |
|    | ceive it, nor  | be copied or otherwise made    | 1      | 173161       | 12.8.70  | SHM    | sa    |       | 900-360                                    | 201- AT                                                                |
|    | use of thy suc | an person menoae our authority | RL.NI. | Fra Habi Nt. | Date     | Rt. at | Koat. | Norm. | From no. 160661 to no. Ersi                | attes at                                                               |
| 10 |                | 11                             |        | 12           | · · ·    |        |       | 13    | 14                                         | - 15 -                                                                 |













| <br> |   |
|------|---|
|      | - |

|   | 5                                                                                                                                                                                     | 4                                                                                                 | 3                              | 2                                                                                                                           |                                      | 1                                                            |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|
| G |                                                                                                                                                                                       |                                                                                                   |                                |                                                                                                                             |                                      | G                                                            |
| F |                                                                                                                                                                                       | •                                                                                                 |                                |                                                                                                                             |                                      | F                                                            |
| E | C202<br>1,875 n<br>202<br>0<br>C201                                                                                                                                                   | С204<br>2,433n<br>                                                                                | L 202<br>11µH<br>205<br>206    | C206<br>4,198n<br>207<br>C205<br>C205<br>C207<br>1,098n<br>C205                                                             | 21<br>)  <br>)   L203<br>Т. )   11µн | 0<br>)<br>E                                                  |
| D | 4,476n<br>201                                                                                                                                                                         | 2 0 3                                                                                             | 209                            |                                                                                                                             | 21                                   | D                                                            |
| С |                                                                                                                                                                                       |                                                                                                   | •                              | · · ·                                                                                                                       |                                      | С                                                            |
| В |                                                                                                                                                                                       |                                                                                                   |                                |                                                                                                                             |                                      | В                                                            |
| A | THIS DRAWING MUST NOT<br>BE PASSED ON TO ANY<br>PERSON NOT AUTHORIZED<br>BY US TO RECEIVE IT NOT<br>BE COPIED OR OTHERWISE<br>MADE USE OF BY SUCH<br>PERSONS WITHOUT OUR<br>AUTHORITY | REVISIONS<br>2 175936 11.11.70 OH<br>1 160661 26.2.70 OH<br>SSUE FROM NO: DATE DRAWN<br>BY<br>4 . | CHECKED APPR.<br>BY<br>BY<br>3 | RADIOMETER A'S<br>EMURUPYEL 12<br>DK 24 COPENNALEN NU<br>DENMARK<br>II<br>IF FILTER (W<br>900-357<br>FROM NO-160651 TO<br>2 | IDE)                                 | ву NH 281169<br>D By 9k 7/.70<br>Sv d(q 7.1.76<br>A<br>12-A3 |

