
PHILIPS

QQE 03/12

Double Tetrode for Mobile

Transmitting Equipment

PHILIPS ELECTRONIC TUBE DIVISION

PREFACE

R.F.amplifiers in mobile transmitting equipment, operating at frequencies higher than 100 Mc/s are preferably designed with push-pull circuits, because these circuits offer the advantages of low parasitic capacitances, low radiation and simple construction. When the two tube systems, required for push-pull operation, are incorporated in a single envelope, the inductances between the cathodes and screen grids can be made low; they can be reduced to an ultimate limit when a common cathode and a common screen grid are used for both tube systems.

This idea has already been successfully applied to the double tetrodes QQE 06/40 and QQE 03/20, and now a small double tetrode, type QQE 03/12, which has been designed along the same lines, is available. The QQE 03/12 gives excellent performance in the frequency range up to 200 Mc/s. Owing to its small dimensions and rigid construction the QQE 03/12 is very suitable for use in mobile equipment and it is an attractive tube in the pre-stages of fixed transmitters.

This Bulletin contains complete data of the QQE 03/12, including operating conditions for use as a push-pull amplifier, frequency tripler, and modulator. The tube sections can also be used in cascade; in such circuits frequency multiplying factors up to 16 can be obtained with only one tube.

On the hand of practical circuits it will be demonstrated that only a small amount of components is required for the construction of compact transmitters with a high frequency stability and a high efficiency.

The information given in this Bulletin does not imply a licence under any patent.

CONTENTS

	page
QE 03-12 DOUBLE TETRODE	
DESCRIPTION	5
TECHNICAL DATA	7
General data	7
TABLE OF OBTAINABLE POWER	8
LIMITING VALUES AND OPERATING CONDITIONS	9
OPERATIONAL NOTES	18
Heater voltage	18
Asymmetry	18
Two-stage frequency multiplier	2 1
SMALL EXPERIMENTAL 200 Mc/s TRANSMITTER WITH THREE TUBES QQE 03/12	
CIRCUIT DESCRIPTION	2 4
Modulator	2 4
Amplitude modulation	2 8
The frequency multiplier by 16	2 8
The push-pull tripler	2 9
The push-pull output stage	3 0
Power supply	3 0
Overloading of tubes by absence of grid drive	3 1
Spurious signals	3 2

QQE 03/12 DOUBLE TETRODE

DESCRIPTION

The QQE 03/12 is a double tetrode with indirectly heated cathode, and is intended for use in low-power transmitter stages operating at frequencies up to 200 Mc/s. It can be used inpush-pull circuits as an output tube, driver or frequency tripler. Higher frequency multiplication can be obtained by connecting the tube sections in cascade. Moreover, the QQE 03/12 can be used as a modulator output tube, one QQE 03/12 in class C telephony adjustment being modulated with another tube of the same type.

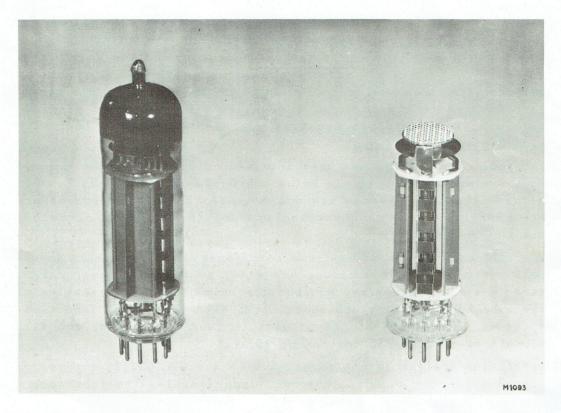


Fig.1. Double tetrode QQE 03/12 (left); the electrode system is shown right.

The cathode of the QQE 03/12 is oxide-coated and provided with a center-tapped heater the sections of which can be used either in parallel or in series. In the former case the heater current is 0.82 A, the voltage being 6.3 V; in the latter case a 0.41 A heater current flows at a voltage of 12.6 V.

When in mobile equipment utmost efficiency with respect to supply power is required, one of the heater sections may be switched off in stand-by position to be switched on simultaneously with the anode voltage when the transmitter is to be operated.

With 300 V supply voltage and both systems operating in push-pull class C telegraphy adjustment, one QQE 03/12 double tetrode can deliver 12 W useful power into the load when used in continuous commercial service (C.C.S.), and 16 W in intermittent commercial or amateur service (I.C.A.S.), in both cases at frequencies up to 200~Mc/s.

Fig.2 shows the cross sectional drawing of the QQE 03/12. The cathode has a rectangular cross section and is coated only at the long sides. Two flat gold-plated grids are placed at each coated side; they are surrounded by the hexagonal screen grid. The control grids

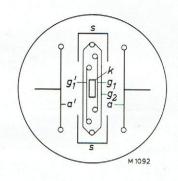


Fig. 2. Cross-sectional drawing of the QQE 03/12.

and the screen grid are "shadowed", which means that the screen-grid wires are placed behind the control-grid wires in the direction of the electron flow. This measure promotes the formation of a radial beam and ensures the correct space charge conditions between the screen grid and anode. Moreover, shadowed grids are favourable for obtaining a relatively low screen-grid current.

A screen is placed along the rods of the screen grid and partially extends in the space between the anodes and the screen grid; the extending parts act as beam plates and prevent secondary emission electrons

released from the anode from flowing to the screen grid. This screen is connected to the cathode. The anodes are coated and provided with cooling fins; both measures contribute to the relatively high anode dissipation.

Internal neutralising has been obtained by connecting the grid of each system to the base pin below the anode of the other. By this measure the capacitances are sufficiently balanced which offers the possibility of constructing transmitter circuits of rather simple lay-out.

The tube assembly is mounted in a noval envelope. A precision shrunk bulb and a square mica spacer are used, so that the inner structure is rigidly supported against the bulb. Production samples of the tube have to withstand shock tests with the N.R.L. impact machine of five shocks of 500 g each, in four directions, and with vibrations of 2.5 g, 50 c/s during 96 hrs.

Artificial cooling is not required with the QQE 03/12; the use of closed screening cans is, however, inadmissible. The tube socket type 5908/36 is recommended. In mobile equipment a tube retainer can keep the tube in place under conditions of shock and vibration; retainer type 40647 is recommended for the purpose. However, it must be born in mind, that any retainer will absorb some power. With the recommended retainer, this power absorption is 0.3 W at 200 Mc/s.

TECHNICAL DATA

GENERAL DATA

ELECTRICAL

Cathode: indirectly heated, oxide coated

Heater sections in

parallel series

Heater voltage $\binom{1}{2}$) 6.3

12.6 V

Heater current 0.82 0.41 A

Direct interelectrode capacitances

Each unit	Both units	
	in push-pull	
Output capacitance 2.6	1.4	$\mu \mu F$
Input capacitance 6.2	5.1	$\mu\mu$ F
Anode to grid No.1 (inter-		
nally neutralised) max. 0.1		$\mu\mu$ F
Amplification factor (each unit)		
grid No.2 to grid No.1	7.5	
Mutual conductance (each unit)		
at anode current = 30 mA	3 . 3	m A / V

MECHANICAL

Mounting position: Any. If the tube is mounted in a horizontal po-

sition it is essential that pins 2 and 7

are placed in a vertical line.

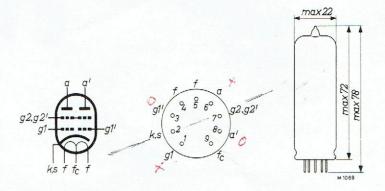
Cooling: Radiation and convection. The use of a closed

screening can is not permissible.

Bulb temperature : max. 225 °C Temperature of pins : max. 90 °C Overall length : max. 78 mm Seated length : max. 72 mm Diameter : max. 22 mm

 Base
 : Noval

 Socket
 : 5908/36


 Tube retainer
 : 40647

 Net weight
 : 16 g

 Shipping weight
 : 23 g

Occasional operation at 5.3 or 7.8 volts with parallel connected heaters (10.6 or 15.6 volts with series connection) is permissible.

²⁾ The tube may be used with only half the heater energised during the stand-by period of a transmitter in order to reduce heater current consumption during this time.

dans le cas ou le tube est mente Houzenta pin No.1 = control grid g₁ of unit No.1.

lement, de plan des pin No.2 = cathode k and beam plates s.

broches 2 est 7 dest etre pin No.3 = control grid g₁' of unit No.2

verticale.

pin No.4 = heater f.

Fig.3. Socket connections and dimensional drawing (dimensions in mm) of QQE 03/12.

pin No.3 = control grid g_1 of unit No.2.

pin No.5 = heater f.

pin No.6 = anode a of unit No.1.

pin No.7 = screen grid g_2g_2' .

pin No.8 = anode a' of unit No.2.

pin No.9 = heater mid-tap f_c .

TABLE OF OBTAINABLE POWER

C.C.S. = Continuous Commercial Service.

I.C.A.S. = Intermittent Commercial and Amateur Service.

requency		H.F. class C														
requency		telegraph	Y		reen-											
Mc/s	anode voltage	The second secon	power 1,2)	anode voltage	output power (watts) 1,2)											
	(volts)	C.C.S.	I.C.A.S.	(volts)	c.c.s.	I.C.A.S										
	300	12	16	200	7.1	8.8										
200	250	9	11.2													
	200	7.4	9													

requency		.F. class quency tr	
Mc/s	anode voltage		t power s) 1,2,
	(volts)	C.C.S.	I.C.A.S.
	300	3.5	4.8
66.6/200	250	3	4.2
	200	2.8	3.5

A.F.	class	AB .
amplifier	or mo	dulator
anode	outpu	t power
vol tage	(₩α	tts)
(volts)	AB 1	AB 2
300	12	17
250	9.3	14
200	7	8.7

- 1) Two units in push-pull.
- 2) Useful power output in load.

LIMITING VALUES AND OPERATING CONDITIONS

H.F.CLASS C TELEGRAPHY (up to 200 Mc/s)		
LIMITING VALUES(absolute limits) C.C.S.	I.C.A.S.	
Anode voltage	300	V
Anode current	2 × 55	m A
Anode dissipation 2 x 5	2 x 7	W
Anode input powermax. 2 x 11.25	2 x 15	W
Screen grid voltagemax. 200	200	V
Screen grid dissipationmax. 2 x 1	2 x 1	W
Control grid voltagemax 150	- 150	V
Control grid dissipationmax. 2 x 0.2	2 x 0.2	W
Control grid currentmax. 2 x 3	2 x 4	m A
Cathode current	2 x 65	m A
Peak cathode currentmax. 2 x 225	2 x 300	m A
Voltage between cathode		
and heatermax. 100	100	V

OPER ATING CONDITIONS (two units in push-pull)

	C.C.S.	
Frequency 200	200	200 Mc/s
Anode voltage (=supply voltage) 300	2 5 0	200 V
Screen grid voltage		V
Control grid bias40		V
Screen grid dropping resistor	4 7	22 kΩ
Common control grid bias resistor	18	15 kΩ
Peak grid-to-grid driving voltage 110	110	115 V
Anode current	2 x 33.5	2 x 35 m A
Screen grid current 2.3	1.8	2.2 mA
Control grid current 2 x 0.9	2.2	2.7 mA
Driving power	0.12	0.14 W
Anode input power	2 x 8.4	2 x 7 W
Anode dissipation 2 x 4	2 x 2.9	2 x 2.8 W
Screen grid dissipation 0.4	0.3	0.33 W
Output power	11	8.4 W
Efficiency	6 5	60 %
Useful output power in load 12	9	7.4 W

OPERATING CONDITIONS (two units in push-pull)

I.C.A.S	
Frequency 200 200	200 Mc/s
Anode voltage (=supply voltage) 300 250	200 V
Screen grid voltage 200	V
Control grid bias45	V
Screen grid dropping resistor 27	8.2 kΩ
Common control grid bias resistor 18	15 kΩ
Peak grid-to-grid driving voltage 130 120	130 V
Anode current 2 x 50 2 x 40	2 x 42 mA
Screen grid current	3.1 mA
Control grid current 2 x 1.5 2.5	3 m A
Driving power 2 x 0.1 0.15	0.18 W
Anode input power 2 x 15 2 x 10	2 x 8.4 W
	2 × 3.4 W
Screen grid dissipation 0.6 0.45	0.55 W
Output power	10 W
Efficiency 62 65	60 %
Useful output power in load 16 11.2	9 w

H.F.CLASS C ANODE AND SCREEN GRID MODULATION (up to 200 Mc/s)

LIMITING VALUES (absolute limits)

C.C.S	. I.C.A.S.
Anode voltage	2 4 0 V
Anode current	2 x 46 m A
Anode dissipation	2 x 4.6 W
Anode input power	2 x 10 W
Screen grid voltagemax. 200	200 V
Screen grid dissipationmax. 2 x 0.65	2 x 0.65 W
Control grid voltagemax 150	- 150 V
Control grid dissipationmax. 2 x 0.2	2 x 0.2 W
Control grid currentmax. 2 x 3	2 x 4 mA
Cathode current	2 x 52 m A
Peak cathode currentmax. 2 x 180	2 x 240 mA
Voltage between cathode	***
and heatermax. 100	100 V

OPERATING CONDITIONS (two units in push-pull)

																										(Ξ.	C		S		I		C	. A		s.			
F	req	u e	n	Су		•											•		۰	٠		•						2	0	0					2	0	0	Mc	/ s	
Aı	nod	е	V	0]	t	a	g e		(=		-	_	1 t	4		e)	۰									2	0	0					2	2 0	0		V	
S	cre	e n	. ,	g ı	·i	d	p	0	t	e	n	t i	Lo	m	e	t	e	r		,	R	1	=						1	2						1	2		$\mathbf{k}\Omega$	
	(s																		1		R	-							3	9						3	3		kΩ	
S	cre																					4						1	7	6					1	7	3		V	
	o m m																		10	8	SR -		20												-					
										-	e																		3	3						1	5 4		$\mathbf{k}\Omega$	# -
P	eak		r	ic	- 1	+ 4	0 -	ċ								No.	50	20	٠	٠	•		•							•									Rus	
		9				•		9			v																	1	3	0					1	3	10		v	
А	nod	0	CI	1 7		01	n t																	2		x							2		X				m A	
																						95		2		^						_	4	_						
	cre																																						m A	1
	on t																														â						3		m A	
D	riv	in	g	F	0	WE	e r		•	•	•				•		•				,							0		1					C		2		W	
A	nod	е	i	n F	u	t	P	0	W	e	r						•			۰					2	1	K	6		7		2	Carrier of	x	8		6		W	
Aı	nod	е	d.	i s	s	i	p a	t	i	0	n						•							2		x	2	2 .	6	5		2		x	3		7		W	
S	cre	e n		gı	i	d	d	i	s	s	i	po	ı t	i	0	n											() .	4	6					0.	5	4		W	
01	utp	u t]	po	W	e :	r.												٠									8		1					9		8		W	
E	ffi	ci	eı	n c	y														۰										6	0						5	7		%	
U	se f	u l		ου	t	pı	ı t		p	0	W	e i		i	n																									
						•			•							a	d											7		1					8	} _	8		w	
-																														-		 								
	odu																													1							1			
M	odu	10	t t	ic	n	I	po	W	е	r	٠					٠			0	0	6	0	•					6		7					8	3 .	6		W	

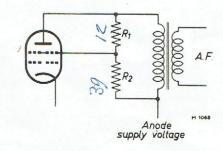


Fig. 4. Circuit denoting R_1 and R_2 .

	c.c.s.	I.C.A.S		
Frequencym			Mc/s	
Anode voltage			V	
Anode currentm	CANADA IN CO.		m Å	
Anode dissipationm		2 x 7	W	
Anode input power	ax. 2 x 7.5	2 x 10	W	
Screen grid voltage	ax. 200	200	V	
Screen grid dissipation	ax. 2 x 1	2 x 1	W	
Control grid voltage	ax 150	- 150	٧	
Control grid dissipation	ax. 2 x 0.2	2 x 0.2	W	
Control grid current	ax. 2 x 2	2 x 3	m A	
Cathode current		2 x 45	m A	
Peak cathode currentm			m A	
Voltage between cathode and heaterm	and the same of th		W A	
vortage between cathode and heater	ux. 100	100	٧	
OPERATING CONDITIONS (two units in push	-pull)			
, , , , , , , , , , , , , , , , , , , ,				
	C.C.S			
Input frequency 6	6.6 . 66.6	66.6	Mc/s	
Output frequency	200 200	200	Mc/s	
Anode voltage (=supply voltage)	300 250	200	٧	
Screen grid voltage	150 160	155	٧	
Control grid bias	100		V	
Screen grid dropping resistor	4.7	15	kΩ	
Common control grid bias resistor.	4.7	33	kΩ	
	230 230		V	
	24 2 x 25		m A	
Screen grid current	2 1.9		m A	
	x 1 2			
			m A	
			W	
이 그들은 사람들이 많은 사람들이 되는 것이 되었다. 그는 사람들이 되었습니다. 그리고 있는 것이 되었다.			W	
	x 4 2x3.75		. W	
	0.3 0.3		W	
	6.5 5		W	
Efficiency	45 40	33.5	%	
Useful output power in load	3.5	2.8	W	
OPERATING CONDITIONS (two units in push				
	-			
↓ I	.C.A.S.			
Input frequency66.6 66		66.6	Mc/s	
and the second s	00 200	200	Mc/s	
Anode voltage (=supply	200	200	MC/S	
	00 250	200	V	
Screen grid voltage 150.	7.5 17.5	175	V	
Control grid bias100 -1	0.0		V	
Screen grid dropping				
resistor	1,8	4.7	$\mathbf{k}\Omega$	
Common control grid bias	1			
resistor	2.7	2 2	kΩ	
Peak grid-to-grid driving	20 000	000		
	30 23,0	230	V	
Anode current2x32.5 2x32		2 x 3 9	m A	11
	.7 4.1	5.2	m A	
Control grid current2 x 1.9 2 x 1	1.	4.6	m A	
Driving power2x0.23 2x0.		0.52	W	
Anode input power2 x 9.7 2 x 9	.7 2 · x 9	2 x 7 . 8	W	
Anode dissipation2 x 5.8 2 x 6	.1 2 x 5.9	2 x 5.55	W	
Screen grid dissipation 0.53 0.	47 0.72	0.91	W	
Output power	.2 6.2	4.5	W	
Efficiency 40	37 34,5	2 9	%	
Useful output power in load 4.8 4	. 2 4 . 2	3.5	w	

(for music or speach only)
LIMITING VALUES (absolute limits)

Anoc	d e	v o	1	t	α	g e		•			•										m	α:	х.		3 0	0	v	
Anoc	d e	cu	r	r	e n	t															m	α;	х.	2 >	5	0	m A	
Anoc	d e	di	s	S	i p	0 0	t	i	o n	١.											m	a :	x .	2	x	7	W	
Anoc	de	i n	p	u	t	p	0	w e	e r												m	a :	x .	2 >	(1	5	W	
Scre	een	g	r	i	d	v	0	1	t a	g	e										m	α;	x .	2	0 2	0	V	
Scre	en	g	r	i	d	d	i	S	s i	P	α	t i	io	n							m	α	х.	2	x	1	W	
Scre																					m	a :	х.	2	x	2	W	
Cont	tro	1	g	r	i d		v	0	l t	α	g	e.									m	α >	٠.	- 1	5	0	V	
Cont																					m	α		2 x C		2	W	
Cont																					m	α >	٠.		x	4	m A	
Cont																					m	α >	٠.				kΩ	
Cath																					m	a x					m A	
Peak																					m	αx		2 x 3			245.50	
Volt																						αx			0	23	V	
																					200		-	_	0	0	Y	

OPERATING CONDITIONS

A	.F	.cl	ass	AB	1

Anode voltage	31	00	2	5 0	2	00	V	
Screen grid voltage	2	00	2	00	2	0.0	V	0 -0
Control grid voltage	- 21	. 5	- 21	. 5	-21	. 5	V	K = 656
Load resistance between								
anodes.		10		8	6	. 5	kΩ	
Driving voltage peak to						^		
peak	0	43.5	0	44.5	0	43.5	V	
Anode current	2×15	2x36	2x15	2x34.5	2×15	2 x 3 3	m A	
Screen grid current	2x0.6	2×6.3	2×0.7	2×6.2	2x1.2	2×7	m A	
Anode input power	2×4.5	2×10.8	2×3.75	2x8.65	2 × 3	2×6.6	W	
Anode dissipation	2×4.5	2x4.8	2x3.75	2 x 4	2 x 3	2×3.1	W	
Screen grid dissipation.	2×0.12	2x1.3	2x0.14	2×1.3	2×0.24	2×1.4	W	
Output power		12		9.3		7	W	
Total distortion		2.5		2.7		3.2	%	
Efficiency		56		54		53	%	

A.F. class AB 2

Anode voltage	3	00	2	50	2	00	v
Screen grid voltage	2	00	2	00	2	00	v
Control grid voltage	- 21	5	- 21	. 5	-21		v
Load resistance between							
anodes.	6	. 5		5		5	kΩ
Driving voltage peak to		^		^			
peak	0	64	0	67	0	54	v
Anode current	2×15	2×50	2×15	2×50	2×15	2×41.1	mA
Screen grid current	2×0.6	2×5.7	2×0.7	2×6.5		2x9.5	mA
Control grid current	0	2×0.56	0	2×0.62	0	2×0.22	m A
Driving power	0	2×0.02	0	2×0.02	0	2×0.01	W
Anode input power	2×4.5	2×15	2x3.75	2×12.5	2×3	2x8.22	W
Anode dissipation	2x4.5	2×6.25	2×3.75	2×5.5	2×3	2×3.87	w
Screen grid dissipation.	2×0.12	2×1.2	2×0.14	2×1.3	2×0.24		w
Output power		17.5		14		8.7	w
Total distortion		5		5.5		6	%
Efficiency		58		56		53	%

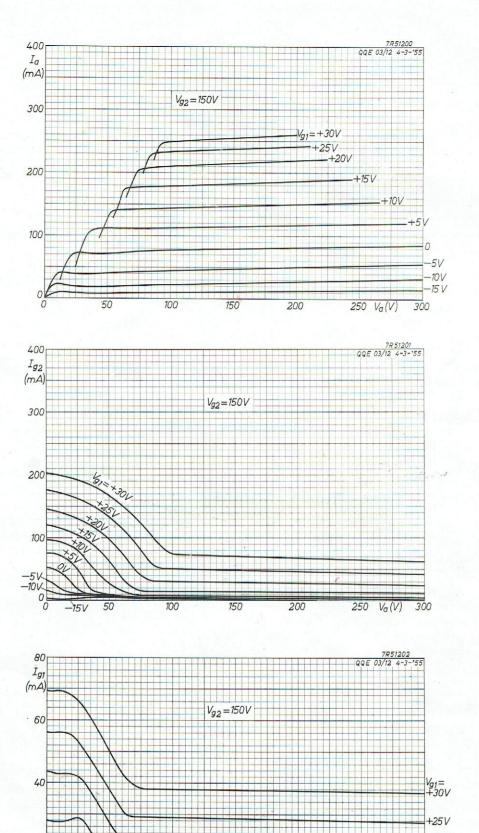
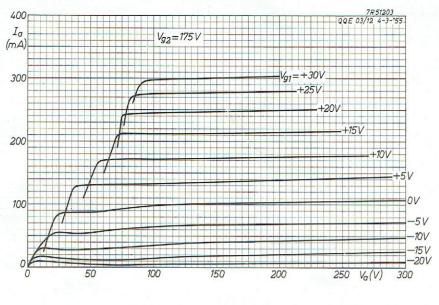
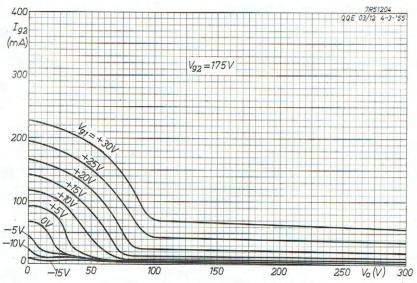




Fig. 5, 6 and 7. Anode current I_a , screen grid current I_{g2} and control grid current I_{g1} as functions of the anode voltage V_a with the control grid voltage V_{g1} as parameter at a screen-grid voltage V_{g2} = 150 V (all current values per unit).

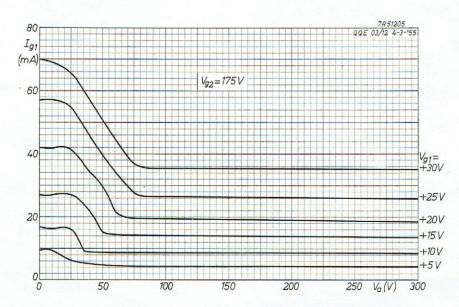
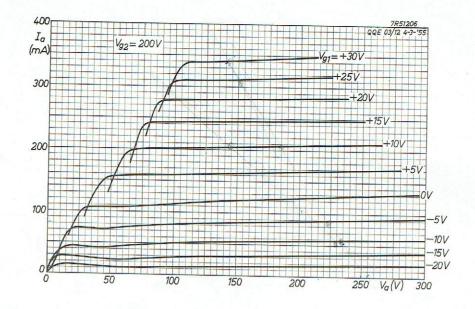
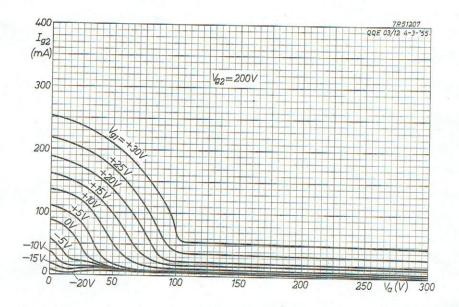




Fig. 8, 9 and 10. Anode current I_{α} , screen grid current I_{g2} and control grid current I_{g1} as functions of the anode voltage V_{α} with the control grid voltage I_{g1} as parameter at a screen-grid voltage $I_{g2} = 175$ V (all current values per unit).

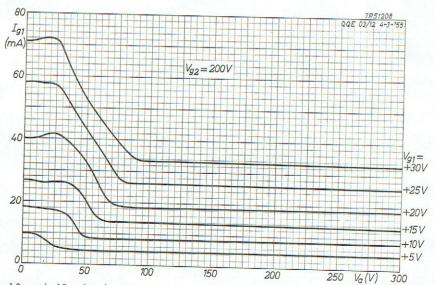
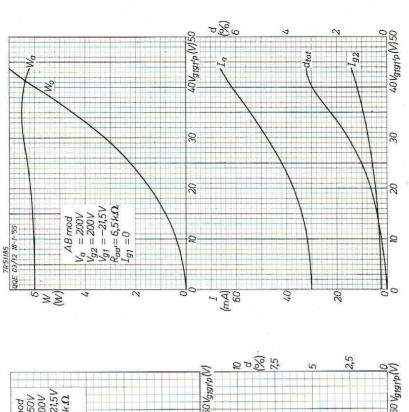
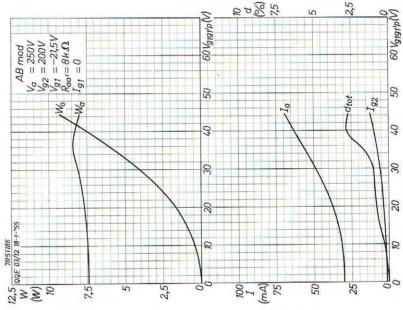




Fig.11, 12 and 13. Anode current I_{α} , screen grid current I_{g2} and control grid current I_{g1} as functions of the anode voltage V_{α} with the control grid voltage V_{g1} as parameter at a screen-grid voltage V_{g2} = 200 V (all current values per unit).

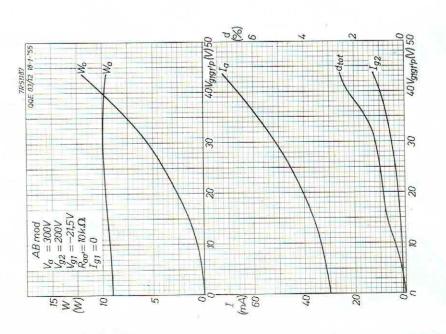
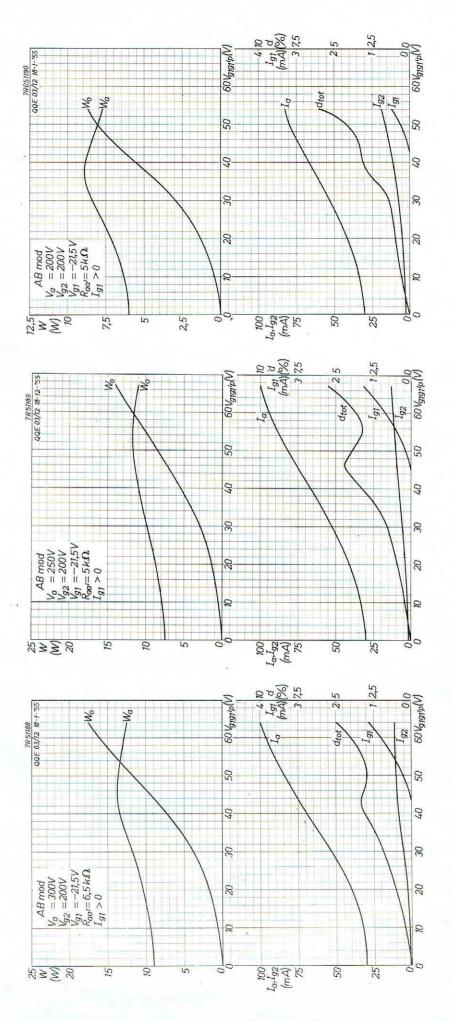



Fig.14, 15 and 16. Output power W_o , anode dissipation W_a , anode current I_a , screen grid current I_{g2} and total distortion $\mathbf{d}_{\mathrm{tot}}$ as functions of the peak-to-peak driving voltage V_{g1g1} , for two units in push-pull

ABl operation at different anode voltages $V_{\rm a}$ and different load resistances $R_{\rm a}a$ between anodes. Screen grid voltage $V_{\rm g}=200$ V and control grid bias $V_{\rm gl}=-21.5$ V.

for two units in push-pull AB2 operation at different anode voltages V_α and different load resistances R_α , between anodes. Screen grid voltage = 200 V and control grid bias V_{g1} = -21.5 V. V 92 Fig.17, 18 and 19, Output power W, anode dissipation W, anode curscreen grid current I_{g2} , control grid current I_{g1} , and total distortion a_{tot} as functions of the peak-to peak driving voltage v_{glgl} p rent I_{α} ,

OPERATIONAL NOTES

1. HEATER VOLTAGE

It has already been stated that the QQE 03/12 can be operated at nominal heater voltages of 6.3 or 12.6 V, either a.c. or d.c.With a.c. supply in fixed stations this requires no further comment. Mobile equipment is, however, often fed from storage batteries, and it may then occur that the tube is operated at a lower heater voltage (almost discharged battery), or at a higher voltage (battery being charged during operation).

To cope with conditions of underrunning or overvoltage, as will be met in mobile equipment, the heater of the QQE 03/12 has been so designed that the tube can withstand occasional operation within the limits of 5.3 V or 7.8 V with parallel connected heaters, respectively 10.6 V, or 15.6 V with series connected heaters, without the tube life being affected.

In order to reduce heater current during stand-by, it is possible to keep only one heater section switched on, the other being switched on simultaneously with the anode voltage. Full output is then available immediately.

2. ASYMMETRY

As with all double tubes a slight asymmetry between the two sections cannot always be prevented. A number of tests have been carried out on the experimental transmitter described in the last chapter of this Bulletin to investigate the influence of several circuits on the asymmetry, especially with respect to the efficiency.

There are external and internal causes for asymmetry. The former can be prevented by careful and symmetric circuit lay-out. Causes of internal asymmetry are: slight differences in tube capacitances, in internal inductances, in the transit times and in the characteristics.

As a rule class C adjustment is not very critical to asymmetry in characteristics, in contrast to class B operation. In the latter case individual adjustment of the grid bias is recommended if distortion has to be kept low. In the transmitter circuit mentioned above, various methods of connecting the supply sources to the circuit, and the use of bypass capacitors, series chokes and dropping resistors have been investigated. The results of these tests are described below as a guidance for equipment designers. This implies by no means that they offer the only solution to the problem it also being possible to obtain good results with other circuits.

A. CENTRE TAP ON THE ANODE-COIL

When the anode circuit is perfectly symmetrical, it makes no difference whether the anode supply is connected directly to the tap of the coil or via a choke, the centre tap of the anode coil being capacitively earthed. However, when some asymmetry occurs - which usually will be the case - and the centre tap of the anode coil is bypassed, part of the R.F. power will flow to earth via the bypass capacitor and be lost. Therefore, the anode circuit should be fed via a choke that is not bypassed, see figs 20a and b.

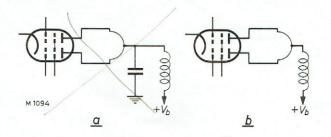


Fig. 20. Connecting the H.T. supply to the anode circuit; (a) incorrect, (b) correct.

B. BYPASSING OF THE SCREEN GRID

When the anode circuit is fed correctly as described under (A), it is immaterial whether the screen grid is bypassed or not.

Some designers are inclined to bypass the screen grid dropping resistors and to feed the screen grid via a choke. This circuit (fig. 21a), which occasionally gives satisfactory results, may give rise to parasitic oscillations. As a rule the use of an unbypassed dropping resistor gives the best results.

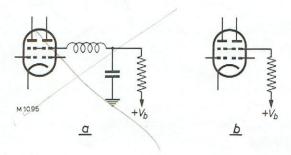


Fig. 21. The screen-grid resistor should not be bypassed, and no choke be used in the screen-grid lead; (a) incorrect, (b) correct.

C. CENTRE TAP ON THE GRID COIL

Experiments reveal that asymmetry is practically annihilated when the centre tap on the grid coil is bypassed to earth. This can be explained as follows.

When the centre tap of the grid coil is earthed, the driving voltages in the coil halves are substantially edual and independent of the input capacitances of each tube section, provided the circuit lay-out is symmetric, and the coupling of the pre-stage is tight. However, when the grid leak is not bypassed (see fig. 22a), asymmetry of the input capacitances will influence the symmetry of the grid drive

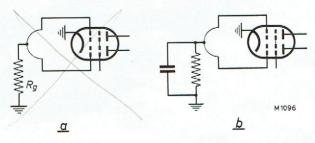


Fig. 22. The best symmetry is obtained when a single gridleak is used, bypassed to earth; (a) incorrect, (b) correct.

It proved to be immaterial whether two separate grid leaks were used or a single grid leak for both sections. The most simple and economic circuit according to fig. $20 \, \mathrm{p}$, therefore, proved to be the most successful in the tests carried out.

D. CATHODE CONNECTIONS

Coils in the cathode circuit, bypassed or not, affect the stability because they may give rise to parasitic oscillations. The cathode is preferably connected directly to earth.

E. HEATER CONNECTIONS

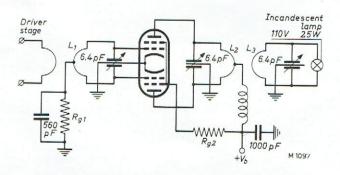
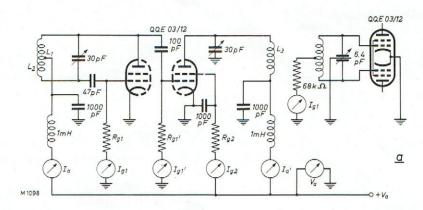
One heater connection can be directly earthed. If, at 200 Mc/s, the other connection is not bypassed, the driver power must be increased with 60% to obtain the normal anode current, and even then the output is decreased by 33%. This leads to the conclusion that one heater connection should be connected directly to chassis, whereas the other should be earthed capacitively. Much depends, however, on the circuit lay-out. In some cases bypassed chokes included in both heater leads are to be preferred.

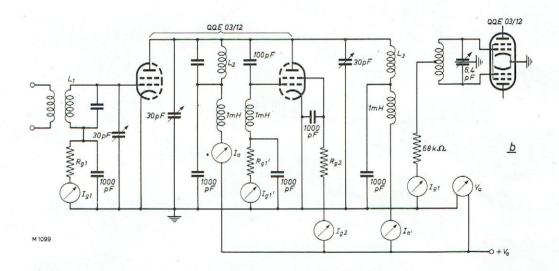
CONCLUSION

In the tests carried out the best performance was obtained with the circuit given in fig.23, in which:

- a) The centre tap of the anode coil is connected to the H.T. supply via an R.F. choke;
- b) the screen grid is fed via an unbypassed dropping resistor;
- c) the centre tap of the grid circuit is capacitively earthed;
- d) a single grid resistor is used for biasing both control grids;
- e) the cathode is connected directly to the chassis;
- f) one heater pin is connected directly to the chassis and the other via a capacitor.

Finally, it should be noted that it is important to construct the amplifier stage as symmetrically as possible.


Fig. 23. Push-pull output stage with QQE 03/12.

The measurements were carried out with the circuit of fig. 23; the output was measured with a calibrated combination of a $110\ V.25\ W$ incandescent lamp and a photocell.

3. TWO-STAGE FREQUENCY MULTIPLIER

Apart from the operation as amplifier and tripler, the QQE 03/12 can be used as a two-stage frequency multiplier by connecting the two systems in cascade. In such circuits (see figs 24a, b, and c) the multiplication factor of each section can be chosen between 1 and 4, so that with both systems used, multiplication factors of 2, 3, 4, 6, 8, 9, 12, or 16 can be obtained.

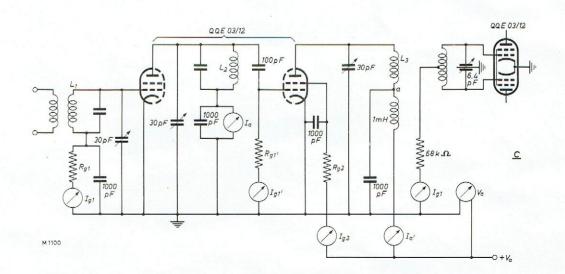


Fig. 24. Circuits of two-stage multipliers with one QQE 03/12.

multiplying factor	ng fac		frequency (Mc/s)		$\frac{R_{g,1}}{(\mathbf{k},t)}$	п _{д2} (кД)	I g 2 (mA)	I (mA)	•	1 (m£)	53	cir-		coil number	
section sec	section	total		section	section			section	section	section I	section	fig.	L	L_2	L_3
oscil.	2	62	33 1/3	8.2	8.2	120	1.1	10	6	0.5	6.0	24α	t u	in fr	t u
lator			6.6 %										$d = 12mm$ $C_{p\alpha r} = 39$	1 = 19mm pF	1 = 19mm
l oscil-	m	е	22 %	8 2	82	120	7.	6	10.5	0.33	=	240	10 turns 1,8mm tap 3 turns fr	urns 1,8mm 3 turns from grid	8 turns 1.8mm $d = 12mm$
Lator			6.6 %										$\mathbf{d} = 12mm$ $\mathbf{C}_{\mathbf{par}} = 82$	1 = 22mm pF	1 = 19mm
1	4	4	16 %	82	8.2	8.9	1.7	11.5	12	0,45	1.1	240	10 turns (0.45 mm	۱ ټ
lator	 		66 %					Ä	•)				$d = 12mv$ $C_{c,\alpha r} = 47$	3 turns from grad 12mm 1 = 5mm = 47 pF	α - 12mm 1 = 19mm
8	2	9	11 1/9	8 2	82	150	8.0	13	9.5	0.75	0.7	24b	15 tu	8 turns 1.8mm	8 turns 1.8mm
	***************************************		66 2/3								N		d = 12mm I = 8mm C = 68 pF	d = 12mn; $l = 19mnC_{} = 27 pF$	d = 12mm $I = 19mm$
4	2	8	8 1/3	8.2	8.2	220	9.0	11	- 80	0.85	0.5	24b	25 turns 0.45mm	ns 1.	8 turns 1.8mm
			66 2/3										d = 12mm 1 = 13mm Cpar = 56 pF	$d=12mm; I=19mm$ $C_{par}=27 pF$	d = 12mm 1 = 19mm
8	က	6	7 11/27	8.2	8.2	150	8.0	1.2	10.5	9.0	0.85	24b	25 turns	8 turns 1.8mm	8 turns 1.8mm
			66 %										α - 12mm 1 - 13mm Cραr = 68 pF	Cpar = 100 pF	1 T
4	e	12	5 %	8 2	8.2	120	6.0	14.5	11	1.1	0.7	24b	42 turns 0.45mm	8 turns 1	8 tı
			66 %										d = 12mm 1 = 8mm Cpar = 33 pF	d = 12mm; I = 19mm Cpar = 120 pF	d = 12mm 1 = 19mm
4	4	16	4 1/6	82	8.2	27	2.4	22	21.5	1.35	1.25	24c	50 turns 0.45mm	10 turns 0.45	8 tr
			66 2,3										S III	Cpor = 47 pF	

The operating conditions for the multiplier stages according to the circuits of fig.23 are given in the table on p.22. The output of all multipliers described is sufficient to drive a push-pull tripler with another QQE 03/12.

Operating conditions in which both systems operate as frequency doublers are not given, because it is more efficient to use one tube section as a quadrupler and the other as an oscillator.

The total parallel capacitance across the grid coil is quoted in the table. This capacitance (\mathcal{C}_{par}) consists of the stray capacitances of the coil,the parasitic capacitances of the circuit, and the tuning capacitor.

SMALL EXPERIMENTAL 200 Mc/s TRANSMITTER WITH THREE TUBES QQE 03/12

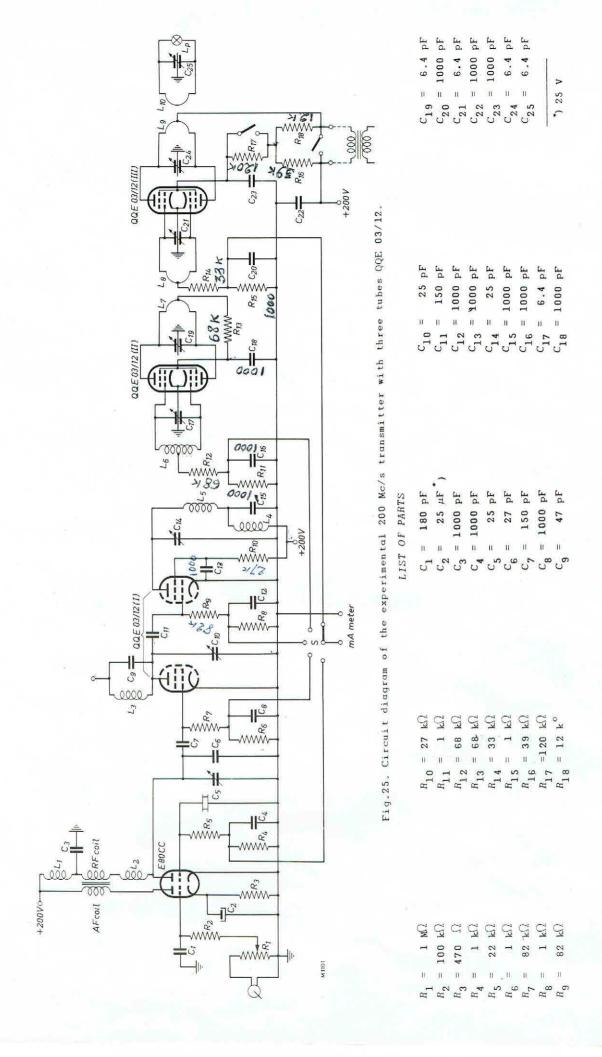
In this section a small transmitter, operating at about 200 Mc/s, is described. This transmitter has not been made to demonstrate which results can be obtained under the most favourable conditions, but to investigate what the performance will be even when lower limit tubes are used.

The transmitter has been made for use with narrow-band F.M.; two different modulator stages are described. A.M. modulation can be obtained by connecting a modulator via a transformer to the anode circuit of the output stage.

The crystal-controlled master oscillator operates at 4182 kc/s, and since the frequency multiplication in three stages with two tubes QQE 03/12 is 48, the frequency of the output signal is 200.736 Mc/s. The power output, measured in an artificial load, is 7 W.

CIRCUIT DESCRIPTION

Fig. 25 shows the circuit diagram of the transmitter. One section of an E 80 CC double triode is used as crystal-controlled master oscillator, operating at 4182 kc/s. The anode of this oscillator is capacitively coupled to a multiplier (multiplication factor 16), equipped with one QQE 03/12 (I), the two systems of which are connected in cascade according to the data and circuit c given in the previous section.


The anode circuit of the second section of the QQE 03/12 (I) is inductively coupled to the symmetrical tripler equipped with the QQE 03/12 (II) which in turn, operates as a driver for the output stage equipped with the QQE 03/12 (III) connected as a push-pull R.F. amplifier.

MODULATOR

Since a crystal-controlled oscillator cannot be frequency modulated, phase modulation is applied which is transformed into frequency modulation by a simple artifice.

Phase modulation is obtained by providing the tuned anode circuit of the oscillator tube with a variable inductance. This is achieved by winding part of the coil on a Ferroxcube rod which is placed on a U-shaped, laminated iron core carrying the A.F. coils on its legs (see fig. 26). The anode current of the modulator tube (first section of the E 80 CC) flows through the A.F. coils, so that the inductance of the coil on the Ferroxcube rod varies with the modulation, and phase modulation of the oscillator output voltage is obtained.

Phase modulation can easily be transformed into frequency modulation by rendering the amplitude of the modulation signal inversely proportional to the frequency. In the present circuit this is achieved by connecting the filter R_2C_1 in series with the grid of the modulator tube.

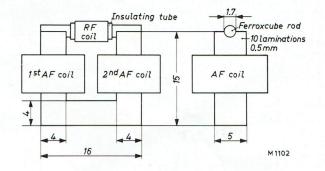


Fig. 26. Diagram and dimensions in mm of the modulation transformer.

The operating conditions of the E 80 CC are tabulated below.

E 80 CC	v _b	I_{α}	Rg	I_g	Vg
Oscillator	200 V	11.5 mA	22 kΩ	1.95 mA	-
Modulator	200 V	7 mA	1000	-	-3.3 V

An alternative modulation circuit is given in fig.28. In this circuit one section of the E 80 CC is connected as a variable reactance tube and shunted across the anode circuit of the oscillator section. An E 80 F pentode is used as pre-amplifier for the A.F. signal. The values of the resistors and capacitors at the input circuit of the first section of the E 80 CC are so chosen that the required frequency response is obtained for the transformation of phase modulation into frequency modulation. The resistors and capacitors in the feedback circuit introduce the required phase shift so that the reactance tube operates as a variable capacitor shunting the tuned anode circuit of the second section.

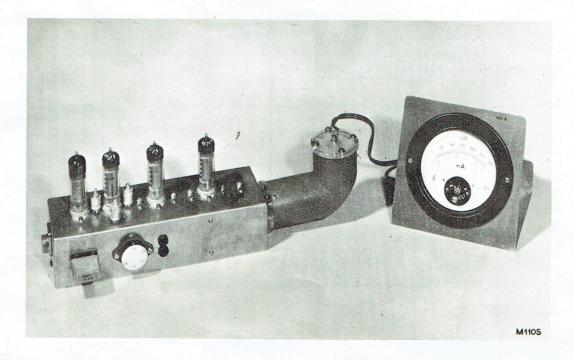


Fig. 27. 200 Mc/s transmitter with artificial load and phototube output meter.

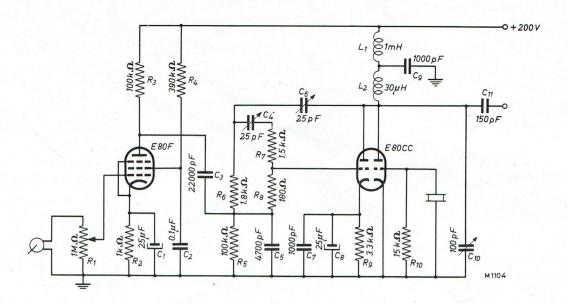


Fig. 28. Modified modulator stage of the 200 Mc/s transmitter.

The operating conditions of the oscillator and modulator stages are tabulated below.

Tube	v _b .(V)	I _a	R _{g2} (kΩ)	I _{g2} (mA)	V _k (V)	I _g (mA)
E 80 F	200	1.5	390	0.3	1.8	-
E 80 CC first section	200	2.4	-	-	7.9	-
E 80 CC second section	200	12.6	-	<u>-</u>	-	2.15

With either modulator stage a frequency sweep of 2 x 15 kc/s can be obtained at the output of the transmitter.

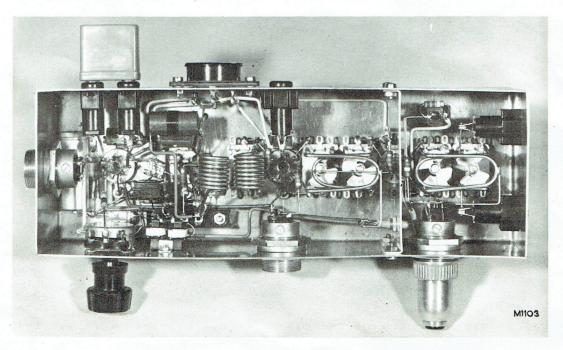
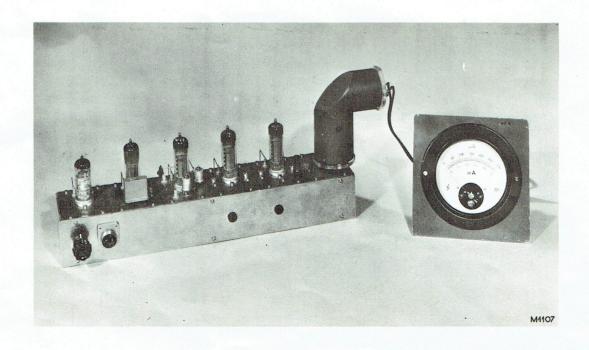


Fig. 29. Chassis of the 200 Mc/s transmitter seen from below.

AMPLITUDE MODULATION

Although transmitters of this type are as a rule used with narrow-band frequency modulation. which is the most economical system, A.M. is preferred in some countries.


Amplitude modulation can be applied to the output stage by using combined anode and screen-grid modulation according to the operating conditions given under Technical Data. One QQE 03/12 can be used as a modulator tube, under push-pull class AB_1 or class AB_2 conditions.

THE FREQUENCY MULTIPLIER BY 16

For multiplying the frequency by a factor 16, a QQE 03/12 is used with both sections in cascade in a circuit similar to that of fig.24c. The input circuit, however, is capacitively coupled to the oscillator.

The control grid resistors of both tube sections are 82 k Ω , the screen-grid resistor is 27 k Ω . With these values the operating conditions of the multiplier stage are as tabulated below.

Tube	Multi- plying factor	V _b (V)	Ι _α (mA)	I g 2 (mĀ)	I _{g l} (mA)
QQE 03/12 (I) first section	4	200	2,2		1.35
QQE 03/12 (I) second section	4	200	21.5	4	1.25

28

Fig.30. 200 Mc/s transmitter with modified modulator stage.

Under these conditions the negative grid bias of the first tube section is 102~V, and that of the second section 110~V. The screengrid voltage is 92~V.

THE PUSH-PULL TRIPLER

The push-pull tripler is adjusted more economically than stated in the Technical Data under Operating Conditions. This is due to the fact that the tripler is used as a driver for the output stage, a comparatively low output thus being required. Both the common grid leak for the two sections and the screen-grid dropping resistor have a value of 68 k Ω . At the supply voltage of 200 V, the control grid current ($I_{g\,l}$) measured is 1.65 mÅ, hence the negative grid bias is 112 V. The screen-grid current ($I_{g\,l}$) is 1.1 mÅ and the screen-grid voltage is 125 V. Under these conditions the total anode current ($I_{g\,l}$) for the two sections is 34 mÅ.

The anode coil in the last quadrupler stage has an inductance of 0.62 μ H, and the anode circuit is tuned with a trimmer of 25 pF to the required frequency of 66.912 Mc/s. The input circuit of the push-pull tripler also has a tuning coil of 0.62 μ H, but this is provided with a centre tap to which the common grid leak for the sections is connected. The grid circuit is tuned with a split stator trimmer of 6.4 pF the rotor of which is connected to chassis. The anode coil of the preceding stage is placed in the immediate vicinity of the grid coil (see figs 29 and 31).

The anode coil consists of a loop of 1.8 mm copper wire; the width of the loop is 18 mm, the length is 60 mm. This loop is provided with a centre tap for connection to the anode supply.

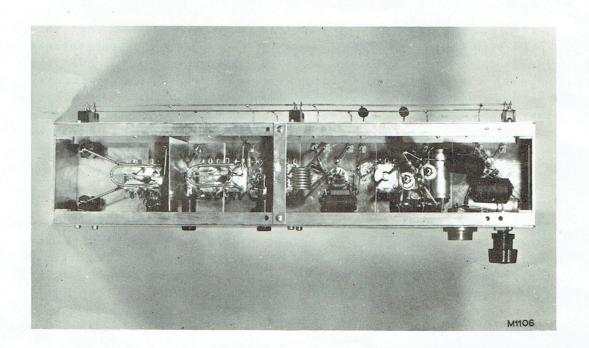


Fig. 31. Modified 200 Mc/s transmitter seen from below.

The output stage is equipped with another QQE 03/12, coupled to the tripler with a loop of 1.8 mm copper wire with a width of 18 mm and a length of 40 mm. This loop is also centre tapped for connection of the common grid leak (33 k Ω) of the two sections. The input circuit is tuned with a similar capacitor as that used in the output circuit of the tripler. Coupling between the two stages is obtained by mounting the two loops above each other and can be adjusted by slightly bending them.

The anode coil of the output stage consists of a loop of the same dimensions as that used in the tripler and is also provided with a centre tap for connection to the supply source.

Provision has been made for connecting the secondary of a modulator transformer in series with the anode supply. Considered from the point of view of modulation, the screen-grid dropping resistor is a voltage divider, but with respect to the direct current the two resistors are connected in parallel. Their values are 39 and 12 k Ω , which gives for the dropping resistor a value of 9.2 k Ω . With respect to the modulation the result is, however, that about 20% of the modulation is applied to the screen-grid. At this adjustment of the tube the total anode current (I_q) of the QQE 03/12 (III) is 67 mA and the screen-grid current (I_{g2}) is 2.6 mA, so that the screen-grid voltage is 176 V.The total grid current (I_{g1}) is 1.5 mA, which gives for the grid bias -50 V.

In the experimental set-up of the transmitter the output was measured with an incandescent lamp of 110 V, 25 W and a photocell. Such a circuit has the advantage that it can easily be calibrated with direct current. This output unit is connected to a loop of 1.8 mm copper wire; the width of the loop is 18 mm and the length is 50 mm. It is coupled to the anode circuit in a similar way as described for the coupling between the tripler and the output stage.

The output of the QQE 03/12 (III) is about 8 W, the output measured in the load is about 7 W. It has already been mentioned that this transmitter design has not been made for demonstrating the optimum results that can be obtained under the most favourable conditions and with the most refined components. It has, on the contrary, been made with average components and average tubes. Moreover, lower limit tubes have been tested in this circuit; with such a tube in the output stage the output power was about 85% of the average. In the other stages the use of lower limit tubes has no influence on the reliable operation and output.

POWER SUPPLY

From the data given in the preceding paragraphs the total H.T. supply can be determined. It totals to 200 V, 170.7 mÅ when the modulation system with Ferroxcube coil is used and to 200 V, 169.2 mÅ when the modulation system with a reactance tube is applied. The heater current is 3.06 Å in the first case and 3.26 Å in the latter, the voltage being 6.3 V. During stand-by the heater current can be reduced to 1.83 Å and 2.03 Å respectively when the current-saving circuit described on page 18 is used. When the heaters are fed from a 12.6 V supply source, the heater currents are 1.53 Å and 1.72 Å respectively (the E 80 F must then be fed over a series resistor of 31.5 Ω). A current saving circuit is then impracticable.

Tube	I _a (mA)	Ig2 (mA)	$I_{g_1} \atop (mA)$
Output tube QQE 03/12 (III)	67	2.6	1.5
Tripler QQE 03/12 (II)	34	1.1	1.65
Second quadrupler QQE 03/12 (I) second section	21.5		1.25
First quadrupler QQE 03/12 (I) first section	22	4	1.35
Oscillator E 80 CC second section	11.5	-	1.95
F.M.modulator E 80 CC first section	7	-	

OVERLOADING OF TUBES BY ABSENCE OF GRID DRIVE

All the QQE 03/12 tubes employed in this transmitter are biased by the voltage drop produced by the grid current flowing through the grid leaks. This implies that when a tube is not driven, due to a failure or an incorrect adjustment in one of the preceding stages, it is operated without bias. This has no consequences for the tubes in the quadruplers and the tripler because the screen-grid dropping resistors are sufficiently high to prevent the anode current from attaining an inadmissible value. In the output stage, however, absence of grid bias would result in anode currents far in excess of the limiting value. It is for this reason that an additional screen-grid dropping resistor is incorporated in this stage. This resistor is connected in series with the other dropping resistors when the transmitter is adjusted, and short-circuited when the transmitter is ready to operate. This is obviously no protection against overlanding of the output tube when, due to α failure in the pre-stages, the negative grid bias falls off. The use of an over-current relay that cuts out when the anode current increase above its limit, is therefore recommended to protect the output tubes.

A different solution consists in using either a cathode resistor in the output stage, or in applying fixed negative grid bias. As far as stationary transmitters are concerned this will not be objectionable, but in mobile equipment where utmost efficiency with respect to supply power is imperative, the higher H.T. supply voltage required cannot as a rule be accepted. When a mobile transmitter is fed from a 12 V storage battery the latter constitutes a handy supply source either for giving the cathode of the output tube a positive bias of 12 V or for giving its control grids a negative bias of the same value. If, in a mobile transmitter, the grid bias is obtained partially from the voltage drop in the grid leak and partially from a 12 V storage battery, there is no risk of the tube being overloaded when the driving power falls off due to a failure of one of the preceding stages, or when the grid bias drops to an excessively low value due to mismatching or incorrect tuning.

SPURIOUS SIGNALS

The spurious signal output of the transmitter described has been measured; the results of these measurements at a carrier frequency at 200.736 Mc/s are tabulated below.

Signal	Circuit f	ig.25	Modified mo Circuit f	
No.	Frequency (Mc/s)	Output (dB)	Frequency (Mc/s)	Output (dB)
1	133.824	-50	133.824	- 54
2	192.372	<-64	192.372	<-64
3	196.554	-56	196.554	- 64
4	204.918	-54	204.918	- 64
5	209.100	-55	209.100	-64
6	401.472	-60	401.472	-55

The frequencies 2, 3, 4 and 5 are spurious signals, 6 is the second harmonic of the carrier, and 1 is the second harmonic of the driving signal of the tripler.

Considerable improvement can be obtained by replacing the single tuned circuit between the two quadruplers by a double tuned circuit. This improvement is approximately -10 dB.