Service Manual

ORDER NO. CRT2777

HIGH POWER CD PLAYER WITH FM/AM TUNER

D
 XU/UC DEH-14 хиис

- This service manual should be used together with the manual(s) listed below. For the parts numbers, adjustments, etc. which are not shown in this manual, refer to the following manual(s).

Model No.	Order No.	Mech. Module	Remarks
DEH-1400/XM/UC	CRT2754		
CX-977	CRT2624	S9	CD Mech. Module:Circuit Description, Mech.Description, Disassembly

EXPLODED VIEWS AND PARTS LIST
PACKING(Page 2)

PACKING SECTION PARTS LIST		* Non spare part
Mark No. Symbol and Description	DEH-1400/XM/UC	DEH-1400/XU/UC
11-4 Polyethylene Bag	Not used	CEG1116
12 Carton	CHG4489	CHG4600
13 Contain Box	CHL4489	CHL4600
14 Protector	CHP2421	CHP2101
15 Protector	CHP2422	CHP2102

PACKING SECTION PARTS LIST

Mark No. Symbol and Description	Part No.	
	DEH-14/XM/UC	DEH-14/XU/UC
$11-4$	Polyethylene Bag	Not used
12 Carton	CHG4493	CEG1116
13 Contain Box	CHL4493	CHG4603
14 Protector	CHP2421	CHL4603
15 Protector	CHP2422	CHP2101

EXTERIOR(Page 4)

EXTERIOR SECTION PARTS LIST

Mark No. Symbol and Description	Part No.	
	DEH-1400/XM/UC	DEH-1400/XU/UC
15 Screw	BPZ26P120FMC	BPZ26P080FMC
28 Heat Sink	CNR1583	CNR1614
29 Holder Unit	CXB6681	CNC8659(Holder)
31 Detach Grille Assy	CXB8748	CXB8981
34 Button(EQ)	CAC7186	CAC7678
39 Button(CLOCK)	CAC7298	CAC7680
41 Button(1-6)	CAC7180	CAC7683
43 Cover	CNS6720	CNS7126
53 Grille Unit	CXB8745	CXB8929
61 Panel	CNS6722	CNS7130
70 Panel	CNS6344	CNS7131

EXTERIOR SECTION PARTS LIST

Mark No. Symbol and Description	Part No.	
	DEH-14/XM/UC	DEH-14/XU/UC
15	Screw	BPZ26P120FMC
28	Heat Sink	CNR1583080FMC
29	Holder Unit	CXB6681

CD MECHANISM MODULE(Page 6)

CD MECHANISM MODULE SECTION PARTS LIST

Mark No. Symbol and Description	Part No.	
	DEH-1400/XM/UC	DEH-1400/XU/UC
	Bracket	CNC9123
59/UC	Cover	DEH-14/XU/UC
70	Motor Unit(M2)	CNV6334

ELECTRICAL PARTS LIST(Page 30)

MISCELLANEOUS PARTS LIST

Circuit Symbol and No.	Part No.	
	DEH-1400/XM/UC	DEH-1400/XU/UC
	DEH-14/XM/UC	DEH-14/XU/UC

Proneer sound.vision.soul

Service Manual

 DEH-1400/XM/UC

ORDER NO. CRT2754

HIGH POWER CD PLAYER WITH FM/AM TUNER

DEH-1400
 DEH-14 wex

This service manual should be used together with the following manual(s):

Model No.	Order No.	Mech. Module	Remarks
CX-977	CRT2624	S9	CD Mech. Module:Circuit Description, Mech.Description, Disassembly

CONTENTS

1. SAFETY INFORMATION2
2. EXPLODED VIEWS AND PARTS LIST 2
3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM 8
4. PCB CONNECTION DIAGRAM 22
5. ELECTRICAL PARTS LIST 30
6. ADJUSTMENT 34
7. GENERAL INFORMATION 38
7.1 DIAGNOSIS 38
7.1.1 DISASSEMBLY 38
7.1.2 CONNECTOR FUNCTION DESCRIPTION. 41
7.2 PARTS 42
7.2.1 IC 42
7.2.2 DISPLAY 50
7.3 OPERATIONAL FLOW CHART 51
8. OPERATIONS AND SPECIFICATIONS 52

CD Player Service Precautions

1. For pickup unit(CXX1480) handling, please refer to"Disassembly"(see page 38).
During replacement, handling precautions shall be taken to prevent an electrostatic discharge(protection by a jumper-solder).
2. During disassembly, be sure to turn the power off since an internal IC might be destroyed when a connector is plugged or unplugged.

1. SAFETY INFORMATION

CAUTION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer.
Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.
Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

This product contains lead in solder and certain electrical parts contain chemicals which are known to the state of California to cause cancer, birth defects or other reproductive harm.
Health \& Safety Code Section 25249.6 - Proposition 65

2. EXPLODED VIEWS AND PARTS LIST

NOTE:
Parts marked by "*" are generally unavailable because they are not in our Master Spare Parts List.
Screws adjacent to ∇ mark on the product are used for disassembly.

(1) PACKING SECTION PARTS LIST

Mark No.	Description	Part No.	Mark No.	Description	Part No.
*	Cord Assy	CDE6468	11-1	Owner's Manual	CRD3487
	Spring	CBH1650	11-2	Installation Manual	CRD3492
	Screw	CBA1002	* 11-3	Card	ARY1048
	Polyethylene Sheet	CNM4338	12	Carton	See Contrast table(2)
	Screw	CRZ50P090FMC	13	Contain Box	See Contrast table(2)
*	Screw	TRZ50P080FMC	14	Protector	CHP2421
	Polyethylene Bag	CEG-158	15	Protector	CHP2422
	Handle	CNC5395	16	Screw(M3x4)	CBA1488
	Bush	CNV3930	17	Accessory Assy	CEA2781
	Polyethylene Bag	CEG1173			

(2) CONTRAST TABLE

DEH-1400/XM/UC and DEH-14/XM/UC are constructed the same except for the following:

Mark No. Symbol and Description	Part No.	
	DEH-1400/XM/UC	DEH-14/XM/UC
12 Carton	CHG4489	CHG4493
13 Contain Box	CHL4489	CHL4493

Owner's Manual, Installation Manual

Model	Part No.	Language
DEH-1400/XM/UC	CRD3487	English, French, Spanish
DEH-14/XM/UC	CRD3492	

2.2 EXTERIOR

(1) EXTERIOR SECTION PARTS LIST

Mark No. Description	Part No.	Mark No.	Description	Part No.
1 Screw	BMZ30P100FMC		Button(VOL+,-)	CAC7182
2 Screw	BSZ26P060FMC	37 B	Button(SRC)	CAC7187
3 Screw	BSZ30P060FMC	38	Button(EJECT)	CAC7183
4 Cord Assy	CDE6468		Button(CLOCK)	CAC7298
5			Button(A,LD)	CAC7184
6 Cable	CDE6610		Button(1-6)	CAC7180
7 Fuse(10A)	CEK1136		Spring	CBH2210
8 CD Mechanism Module(S9ANA)	CXK5501	43	Cover	CNS6720
9 Case	CNB2686		Keyboard Unit	See Contrast table(2)
10 Holder	CNC5704		LCD	See Contrast table(2)
11 Cushion	CNM4870	46	Connector(CN1800)	CKS3580
12 Insulator	CNM7622		Holder	CNC9617
13 Tuner Amp Unit	CWM7942	48	Sheet	CNM7057
14 Screw	ASZ26P060FMC		Lighting Conductor	CNV6476
15 Screw	BPZ26P120FMC	50	Connector	CNV6868
16 Screw	BSZ26P160FMC		Lighting Conductor	CNV6869
17 FM/AM Tuner Unit	CWE1563		Rubber	CNV6905
18 Holder	CNC8815		Grille Unit	See Contrast table(2)
19 Pin Jack(CN351)	CKB1035	54	Button	CAC4836
20 Terminal(CN404)	CKF1059	55	Spring	CBH1835
21 Plug(CN901)	CKM1330		Spring	CBH2208
22 Connector(CN751)	CKS3581	57	Spring	CBH2367
23 Connector(CN501)	CKS3835		Bracket	CNC6791
24 Antenna Jack(CN402)	CKX1056	59	Holder	CNC8042
25 Holder	CNC8615	60	Cover	CNM6276
26 Holder	CNC9619		Panel	CNS6722
27 Insulator	CNM6949	62	Arm	CNV4692
28 Heat Sink	CNR1583	63	Arm	CNV4728
29 Holder Unit	CXB6681	64	Arm	CNV5576
30 Chassis Unit	CXB7816	65	Screw	IMS20P030FZK
31 Detach Grille Assy	See Contrast table(2)		Screw	ISS26P055FUC
32 Screw	BPZ20P100FZK	67	IC(IC361)	TDA7386
33 Button(DETACH)	CAC5789	68	Transistor(0501,910)	2SD2396
34 Button(EQ)	CAC7186	69	
35 Button(SELECT)	CAC7181	70 P	Panel	CNS6344
(2) CONTRAST TABLE				
DEH-1400/XM/UC and DEH-14/XM/UC are constructed the same except for the following:				
	Part No.			
Mark No. Symbol and Description	DEH-1400/XM/UC	DEH-14/XM/UC		
31 Detach Grille Assy	CXB8748	CXB8749		
44 Keyboard Unit	CWM7955	CWM7956		
45 LCD	CAW1723	CAW1716		
53 Grille Unit	CXB8745	CXB8746		

2.3 CD MECHANISM MODULE

Mark No.	Description	Part No.	Mark No.	Description	Part No.
1	Control Unit	CWX2481	46	Gear	CNV6320
2	Connector(CN701)	CKS1959	47	Arm	CNV6322
3	Connector(CN101)	CKS3486	48	Arm	CNV6323
4	Screw	BMZ20P025FMC	49	Arm	CNV6324
5	Screw	BSZ20P040FMC	50	Arm	CNV6888
6	Screw(M2x4)	CBA1362	51	Arm	CNV6889
7	Screw(M2x3)	CBA1527	52	Guide	CNV6327
8	Screw	CBA1545	53	Arm	CNV6924
9	Washer	CBF1037	54	Guide	CNV6921
10	Washer	CBF1038	55	Rack	CNV6923
11	Washer	CBF1039	56	Clamper	CNV6331
12	Washer	CBF1060	57	Arm	CNV6332
13	Spring	CBH2378	58	Guide	CNV6333
14	Spring	CBH2379	59	Cover	CNV6334
15	Spring	CBH2514	60	Arm	CNV6335
16	Spring	CBH2533	61	Guide	CNV6336
17	Spring	CBH2382	62	Roller	CNV6338
18	Spring	CBH2383	63	Damper	CNV6339
19	Spring	CBH2384	64	Damper	CNV6340
20	Spring	CBH2527	65	Guide	CNV6925
21	Spring	CBH2386	66	Chassis Unit	CXB7980
22	Spring	CBH2537	67	Arm Unit	CXB7983
23	Spring	CBH2390	68	Arm Unit	CXB7984
24	Spring	CBH2391	69	Arm Unit	CXB7985
25	Spring	CBH2523	70	Motor Unit(M2)	CXB5903
26	Spring	CBH2426	71	Screw Unit	CXB5904
27	Spring	CBH2444	72	Gear Unit	CXB8076
28	Spring	CBL1561	73	Bracket Unit	CXB7982
29	Spring	CBL1553	74	Motor Unit(M1)	CXB6007
30	Shaft	CLA3845	75	Arm Unit	CXB8504
31	Roller	CLA3910	76	Screw(M2x5)	EBA1028
32	Frame	CNC9654	77	Screw	JFZ20P020FMC
33	Lever	CNC9664	78	Screw	JGZ17P020FZK
34	Lever	CNC8949	79	Washer	YE15FUC
35	Arm	CNC9661	80	Washer	YE20FUC
36	Arm	CNC9016	81	Pickup Unit(Service)(P9)	CXX1480
37	Arm	CNC9017	82	Screw	IMS26P030FMC
38	Bracket	CNC9123	83	Guide	CNV6922
39	Frame	CNC9656	84	Roller	CNV6887
40	Belt	CNT1086	85	Spring	CBH2509
41	Gear	CNV6886	86	Spring	CBH2512
42	Gear	CNV6316	87	Spring	CBH2536
43	Gear	CNV6317	88	Collar	CNV6906
44	Gear	CNV6318			
45	Gear	CNV6319			

DEH-1400,14

3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM

3.1 BLOCK DIAGRAM

A tuner amp unit

PICKUP UNIT
(SERVICE)(P9)

3.2 OVERALL CONNECTION DIAGRAM(GUIDE PAGE)

Note: When ordering service parts, be sure to refer to "EXPLODED VIEWS AND PARTS LIST" or "ELECTRICAL PARTS LIST".

A-a

D

3.3 KEYBOARD UNIT

A

CN751
uGND
GND
KYDT
DPDT
SW5V
NC
I LL+LAMP
DSENS

	DEH-1400/XM/UC	DEH-14/XM/UC
D1702-1708	SML-310PT	SML-310DT
IL1700,1701	CEL1651	CEL1638
LCD	CAW1723	CAW1716
R1711	820	121
R1715,1719	121	181

3.4 CD MECHANISM MODULE

Note:1. The encircled numbers denote measuring pointes in the circuit diagram.
2. Reference voltage VREF:2.1V

Waveforms

4. PCB CONNECTION DIAGRAM

4.1 TUNER AMP UNIT \boldsymbol{A} tuner amp unit

NOTE FOR PCB DIAGRAMS

1. The parts mounted on this PCB include all necessary parts for several destination.

For further information for respective destinations, be sure to check

4.2 KEYBOARD UNIT

IC. Q

4.3 CD MECHANISM MODULE

5. ELECTRICAL PARTS LIST

NOTES:

Parts whose parts numbers are omitted are subject to being not supplied.

- The part numbers shown below indicate chip components.

Chip Resistor
RS1/○S○○○J,RS1/○○S○○○J
Chip Capacitor (except for COS.....)
CKS \qquad CCS \qquad CSZS.....
=====Circuit Symbol and No.===Part Name
Part No.

A
 Unit Number: CWM7942
 Unit Name : Tuner Amp Unit

MISCELLANEOUS

IC	301	IC
IC	361	IC
IC	603	IC
IC	610	IC
IC	901	IC

Q	351	Transistor	IMH3A
Q	359	Transistor	DTA124EK
Q	361	Transistor	DTC124EK
Q	410	Transistor	2SC2412K
Q	510	Transistor	2SD2396
Q	511	Transistor	RN46A1
Q	750	Transistor	2SA1037K
Q	751	Transistor	2SA1036K
Q	753	Transistor	DTC114EK
Q	909	Transistor	RN46A1
Q	910	Transistor	2SD2396
Q	911	Transistor	2SB1243
Q	912	Transistor	DTC114EK
Q	913	Transistor	2SD1859
Q	920	Transistor	IMX1
Q	921	Transistor	DTA124EK
D	510	Diode	HZS9L(B1)
D	750	Diode	1SS270
D	751	Diode	1 SS 270
D	753	Diode	1SS270
D	754	Diode	1 SS 270
D	759	Diode	MA152WA
D	910	Diode	HZS9L(B3)
D	911	Diode	HZS6L(B2)
D	912	Diode	S5688G
D	913	Diode	HZS7L(C2)
D	914	Diode	HZS7L(A1)
D	919	Diode	S5688G
D	920	Diode	S5688G
D	921	Diode	DAN202U
D	923	Diode	S5688G
D	924	Diode	S5688G
L	310	Inductor	LAU1R0K
L	361	Choke Coil $600 \mu \mathrm{H}$	CTH1221
L	410	Ferri-Inductor	LAU4R7K
L	411	Ferri-Inductor	LAU2R2K
L	412	Ferri-Inductor	LAU2R2K
L	617	Ferri-Inductor	LAU101K
L	618	Ferri-Inductor	LAU2R2K
L	750	Ferri-Inductor	LAU2R2K
X	610	Crystal Resonator 4.194304MHz	CSS1023
AR	410	Surge Protector FM/AM Tuner Unit	DSP-201M-S00B

=====Circuit Symbol and No.===Part Name
Part No.

RESISTORS

R	310	RS1/16S101J
R	311	RS1/16S101J
R	314	RS1/16S101J
R	315	RS1/16S101J
R	351	RD1/4PU821J
R	352	RS1/16S821J
R	353	RS1/16S223J
R	354	RS1/16S223J
R	355	RS1/16S0R0J
R	361	RS1/16S103J
R	362	RS1/16S103J
R	363	RS1/16S331J
R	364	RD1/4PU153J
R	410	RS1/16S222J
R	411	RS1/16S222J
R	413	RS1/16S473J
R	414	RS1/16S473J
R	415	RS1/16S393J
R	417	RS1/16S681J
R	418	RS1/16S681J
R	419	RS1/16S681J
R	420	RS1/16S103J
R	421	RS1/16S681J
R	422	RD1/4PU473J
R	423	RD1/4PU472J
R	424	RD1/4PU473J
R	429	RS1/16S681J
R	430	RS1/16S681J
R	431	RS1/16S473J
R	432	RS1/16S473J
R	437	RS1/16S0R0J
R	438	RS1/16S0R0J
R	445	RS1/16S272J
R	446	RS1/16S272J
R	447	RS1/16S162J
R	448	RS1/16S162J
R	490	RS1/16S0R0J
R	510	RD1/4PU221J
R	511	RD1/4PU221J
R	512	RD1/4PU472J
R	513	RD1/4PU222J
R	516	RS1/16S104J
R	517	RD1/4PU222J
R	519	RD1/4PU102J
R	520	RS1/16S0R0J
R	521	RS1/16S0R0J
R	522	RS1/16S0R0J
R	523	RS1/16S0R0J
R	525	RS1/16S0R0J
R	527	RS1/16S0R0J

D	1704	LED
D	1705	LED
D	1706	LED
D	1707	LED
D	1708	LED
D	1800	Diode
D	1801	Diode
X	1800	Ceramic Resonator 4.97 MHz
IL	1700	Lamp 14V 40mA
IL	1701	Lamp 14V 40mA
		LCD
RESISTORS		
R	1700	
R	1701	
R	1702	
R	1703	
R	1708	
R	1709	
R	1710	
R	1711	
R	1712	
R	1713	
R	1714	
R	1715	
R	1716	
R	1717	
R	1718	
R	1719	
R	1800	
R	1801	
R	1802	
R	1803	
R	1804	
R	1805	

CAPACITORS

C 1700
 $\begin{array}{ll}\text { C } & 1701 \\ \text { C } & 1800\end{array}$

Part No.

SML-310PT
SML-310PT
SML-310PT
SML-310PT
SML-310PT

MA152WK
MA152WA
CSS1573
CEL1651
CEL1651
CAW1723

RS1/16S101J
RS $1 / 16 \mathrm{~S} 101 \mathrm{~J}$
RS1/16S101J
RS1/16S101J
RS1/16S151J

RS1/16S151J
RS1/16S151J
RS1/16S820J
RS1/16S181J
RS1/16S181J
RS1/16S181J
RS1/16S121J
RS1/16S181J
RS1/16S181J
RS1/16S181J
RS1/16S121J
RS1/16S222J
RS1/16S222J
RS1/16S471J
RS1/16S471J
RS1/16S471J
RS1/16S471J

CKSOYF104750
CKSQYF104Z50 CKSRYB103K50

Unit Number: CWM7956(DEH-14/XM/UC) Unit Name : Keyboard Unit
MISCELLANEOUS

IC	1800	IC	PD6340A
D	1700	LED	NSSW440-9159
D	1701	LED	NSSW440-9159
D	1702	LED	SML-310DT
D	1703	LED	SML-310DT
D	1704	LED	SML-310DT
D	1705	LED	SML-310DT
D	1706	LED	SML-310DT
D	1707	LED	SML-310DT
D	1708	LED	SML-310DT
D	1800	Diode	MA152WK
D	1801	Diode	MA152WA
X	1800	Ceramic Resonator 4.97 MHz	CSS1573
IL	1700	Lamp 14V 40mA	CEL1638
IL	1701	Lamp 14V 40mA	CEL1638
		LCD	CAW1716
RESISTORS			
R	1700		RS1/16S101J
R	1701		RS1/16S101J
R	1702		RS1/16S101J
R	1703		RS1/16S101J
R	1708		RS1/16S151J

Part No.

RS1/16S151J RS1/16S151J RS1/16S121J RS1/16S181J RS1/16S181J

RS1/16S181J
RS1/16S181J
RS1/16S181J
RS1/16S181J
RS1/16S181J
RS1/16S181J
RS1/16S222J
RS1/16S222J
RS1/16S471J
RS1/16S471J
RS1/16S471J
RS1/16S471J

CKSQYF104Z50
CKSQYF104Z50
CKSRYB103K50
Q Unit Number : CWX2481
Unit Name : Control Unit
MISCELLANEOUS

IC	101	IC	TA2153FN
IC	201	IC	TC9495F2
IC	401	IC	BA5996FM
IC	701	IC	BA05SFP
Q	101	Transistor	2SD1664
Q	102	Transistor	
L	201	Inductor	UMD2N
L	202	Inductor	CTF1546
X	301	Ceramic Resonator 16.934MHz	CTF1546
S	901	Spring Switch(HOME)	CSN1051
S	902	Spring Switch(CLAMP)	CSN1052
S	903	Spring Switch(DSCSNS)	CSN1051
S	904	Spring Switch(12EJ)	CSN1052
S	905	Spring Switch(8EJ)	CSN1051

RESISTORS

R	101	RS1/16S222J
R	102	RS1/8S120J
R	103	RS1/8S100J
R	201	RS1/16S513J
R	202	RS1/16S513J
R	203	RS1/16S823J
R	204	RS1/16S823J
R	206	RS1/16S823J
R	208	RS1/16S124J
R	209	RS1/16S183J
R	210	RS1/16S153J
R	211	RS1/16S103J
R	212	RS1/16S103J
R	213	RS1/16S124J
R	215	RS1/16S0R0J
R	216	RS1/16S471J
R	301	RS1/16S333J
R	302	RS1/16S332J
R	303	RS1/16S332J
R	304	RS1/16S514J
R	306	RS1/16S102J
R	307	RS1/16S102J
R	312	RS1/16S103J
R	313	RS1/16S473J
R	315	RS1/16S334J

	Circuit Symbol and No.===Part Name	Part No.
R	321	RS1/16S331J
R	322	RS1/16S0R0J
R	323	RS1/16S332J
R	401	RS1/16S684J
R	402	RS1/16S103J
R	403	RS1/16S103J
R	404	RS1/16S183J
R	405	RS1/16S123J
R	407	RS1/16S622J
R	408	RS1/16S622J
R	409	RS1/16S113J
R	410	RS1/16S752J
R	701	RS1/16S102J
R	702	RS1/16S221J
R	703	RS1/16S221J
R	704	RS1/16S221J
R	705	RS1/16S221J
R	706	RS1/16S221J
R	707	RS1/16S221J
R	708	RS1/16S102J
R	709	RS $1 / 16 \mathrm{~S} 102 \mathrm{~J}$
R	710	RS1/16S102J
R	901	RS1/16S104J
R	902	RS1/16S473J
R	903	RS1/16S273J
CAPACITORS		
C	101	CEV470M6R3
C	102	CKSRYB102K50
C	103	CKSRYB104K16
C	104	CKSRYB224K16
C	105	CEV470M6R3
C	106	CKSRYB104K16
C	107	CKSRYB105K6R3
C	201	CKSRYB104K16
C	202	CCSRCH560J50
C	204	CKSRYB224K16
c	205	CKSRYB224K16
C	206	CKSRYB273K25
C	207	CKSRYB273K25
C	208	CKSRYB104K16
C	209	CKSRYB104K16
c	210	CCSRCK2ROC50
C	211	CCSRCH220J50
C	301	CKSRYB153K25
C	302	CKSRYB104K16
C	303	CKSRYB103K50
C	304	CKSRYB103K50
C	305	CKSRYB104K16
C	306	CKSRYB104K16
C	307	CKSRYB333K16
C	308	CKSRYB104K16
c	309	CKSRYB473K16
C	310	CKSRYB473K16
C	311	CKSRYB104K16
C	312	CKSRYB104K16
C	315	CEV220M6R3
c	317	CKSRYB104K16
C	318	CKSRYB104K16
C	319	CKSRYB104K16
C	320	CCSRCH470J50
C	325	CKSRYB471K50
C	328	CKSRYB472K50
c	329	CKSRYB104K16
C	330	CKSRYB104K16
C	331	CKSRYB104K16
C	401	CKSRYB221K50

=====Circuit Symbol and No.===Part Name

C	402	
C	403	
C	404	
C	405	
C	702	
C	703	
C	801	$10 \mu \mathrm{~F} / 10 \mathrm{~V}$
C	802	
C	803	
Miscellaneous Parts List		
M	Pickup Unit(Service)(P9)	
M	1	Motor Unit(SPINDL--------------------------
Motor Unit(LOADING/CARRIAGE)		

Part No.
CKSRYB221K50
CKSRYB153K25 CKSRYB103K50 CEV101M10 CKSRYB104K16

CKSRYB104K16 CCH1349 CEV101M10 CKSRYB224K16

CXX1480 CXB6007 CXB5903

CKSPVB102K50
CKSRYB102K50 CKSRYB104K16 CEV470M6R3

CKSRYB104K16
 CCSRCH560J50 CKSRYB224K16

CKSRYB224K16 CKSRYB273K25 CKSRYB104K1 CKSRYB104K16

CCSRCH2ROC50
CCSRCH220J50
CKSRYB153K25 CKSRYB104K16

CKSRYB103K50 CKSRYB104K16 CKSRYB104K16 CKSRYB333K16

CKSRYB473K16 CKSRYB473K16 CKSRYB104K16 CEV220M6R3

CKSR CKSRYB104K16 CCSRCH470J50 CKSRYB471K50

CKSRYB104K16 KSRYB104K16 CKSRYB221K50

6. ADJUSTMENT

6.1 CD ADJUSTMENT

1) Precautions

- This unit uses a single power supply $(+5 \mathrm{~V})$ for the regulator. The signal reference potential, therefore, is connected to VREF(approx. 2.1V) instead of GND.
If VREF and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the following.
Do not connect the negative probe of the measuring equipment to VREF and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to VREF with the channel 2 negative probe connected to GND.
Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status.
If by accident VREF comes in contact with GND, immediately switch the regulator or power OFF.
- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON, let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- The RFI and RFO signals are easy to oscillate because of a wide band. When observing them, insert a resistor of about $1 \mathrm{k} \Omega$ to the series.
- This equipment will not guarantee the load ejection operation when the mechanical unit is turned upside down. In particular, if the ejection operation is incorrectly performed and recovery is disabled, the recovery is enabled by resetting a product or turning ACC off to on.

2) Test Mode

This mode is used for adjusting the CD mechanism module of the device.

- Test mode starting procedure

Reset while pressing the 4 and 6 keys together.

- Test mode cancellation Switch ACC, back-up OFF.
- After pressing the EJECT key, do not press any other key until the disk is completely ejected.
- If the or \varangle key is pressed while focus search is in progress, immediately turn the power off (otherwise the actuator may be damaged due to adhesion of the lenses).

6.2 CHECKING THE GRATING AFTER CHANGING THE PICKUP UNIT

- Note :

The grating angle of the PU unit cannot be adjusted after the PU unit is changed. The PU unit in the CD mechanism module is adjusted on the production line to match the CD mechanism module and is thus the best adjusted PU unit for the CD mechanism module. Changing the PU unit is thus best considered as a last resort. However, if the PU unit must be changed, the grating should be checked using the procedure below.

- Purpose :

To check that the grating is within an acceptable range when the PU unit is changed.

- Symptoms of Mal-adjustment :

If the grating is off by a large amount symptoms such as being unable to close tracking, being unable to perform track search operations, or taking a long time for track searching.

- Method :
- Measuring Equipment • Oscilloscope, Two L.P.F.
- Measuring Points
- E, F, VREF
- Disc
- ABEX TCD-784
- Mode -TEST MODE

- Checking Procedure

1. In test mode, load the disc and switch the 5 V regulator on.
2. The display will change, returning to "81" on the fourth press.
3. As shown in the diagram above, monitor the LPF outputs using the oscilloscope and check that the phase difference is within 75°. Refer to the photographs supplied to determine the phase angle.
4. If the phase difference is determined to be greater than 75° try changing the PU unit to see if there is any improvement. If, after trying this a number of times, the grating angle does not become less than 75° then the mechanism should be judged to be at fault.

- Note

Because of eccentricity in the disc and a slight misalignment of the clamping center the grating waveform may be seen to "wobble" (the phase difference changes as the disc rotates). The angle specified above indicates the average angle.

- Hint

Reloading the disc changes the clamp position and may decrease the "wobble".
$\begin{array}{ll}\text { Grating waveform } & \text { Ech } \rightarrow \text { Xch 20mV/div, AC } \\ & \text { Fch } \rightarrow \text { Ych } 20 \mathrm{mV} / \mathrm{div}, \mathrm{AC}\end{array}$

45°

75°

30°

60°

90°

6.3 ERROR MODE

Error Messages

If a CD is not operative or stopped during operation due to an error, the error mode is turned on and cause(s) of the error is indicated with a corresponding number. This arrangement is intended at reducing nonsense calls from the users and also for facilitating trouble analysis and repair work in servicing.
(1) Basic Indication Method

1) When SERRORM is selected for the CSMOD (CD mode area for the system), error codes are written to DMIN (minutes display area) and DSEC (seconds display area). The same data is written to DMIN and DSEC. DTNO remains in blank as before.
2) Head unit display examples

Depending on display capability of LCD used, display will vary as shown below. xx contains the error number.

8-digit display
ERROR $-x x$

4-digit display
$E-x x$

(2) Error Code List

Code	Class	Displayed error code	Description of the code and potential cause(s)
10	Electricity	Carriage Home NG SERVO LSI Com- munication Error	CRG can't be moved to inner diameter. CRG can't be moved from inner diameter. \rightarrow Failure on home switch or CRG move mechanism. Communication error between microcomputer and SERVO LSI.
11	Electricity	Focus Servo NG	Focusing not available. \rightarrow Stains on rear side of disc or excessive vibrations on REWRITABLE.
12	Electricity	Spindle Lock NG Subcode NG	Spindle not locked. Sub-code is strange (not readable). \rightarrow Failure on spindle, stains or damages on disc, or excessive vibrations. A disc not containing CD-R data is found.
17	Electricity	Setup NG	Turned over disc are found, though rarely.
CD signal error.			

Remarks: Mechanical errors are not displayed (because a CD is turned off in these errors).
Unreadable TOC does not constitute an error. An intended operation continues in this case.
Upper digits of an error code are subdivided as shown below:
1x: Setup relevant errors, 3x: Search relevant errors, Ax: Other errors.

7. GENERAL INFORMATION

7.1 DIAGNOSIS

7.1.1 DISASSEMBLY

- Removing the Case (not shown)

1. Remove the Case.

- Panel Assy (Fig.1)

Take the two stoppers off the Chassis and then remove the Panel Assy.

- Removing the CD Mechanism Module (Fig.1)

Remove the four screws and then remove the CD Mechanism Module.

- Removing the Tuner Amp Unit (Fig.2)

Remove the two screws.

Straight the tabs at three locations indicated.

Remove the three screws.

Remove the screw and then remove the Tuner Amp Unit.

How to hold the Mechanical Unit

1. Hold the top and bottom frame.
2. Do not squeeze top frame's front portion too tight, because it is fragile.

Do not squeeze.

How to remove the Top and Bottom Frame

1. When the disk is in "clamp" state, unlock Spring A (6 pieces) and Spring B (2 pieces), and unscrew screws (4 pieces).
2. Unlock each 1 of pawl at the both side of the frame, then remove the top frame.
3. Remove the Carriage Mechanical part in such way that; you remove the mechanical part from 3 pieces of Damper while slowly pulling up the part.
4. Now, the top frame has been removed, and under this state, fix the genuine Connector again, and eject the disk.
(Caution)
When you reassemble the Carriage Mechanical part, apply a bit of alcohol to Dampers.

How to remove the Guide Arm Assy

1. Unlock the spring (1 piece) at the right side of the assembly.
2. Unscrew screws (2 pieces), then remove the Screw Gear Bracket.
3. Shift the Guide Arm Assy to the left and slowly rotate it to the upper direction.
4. When the Guide Arm Assy rotates approximately 45 degree, shift the Assy to the right side direction and remove it.

- How to remove the Control Unit

1. Give jumper-solder treatment to the Flexible Wire of the Pickup unit, then remove the wire from the Connector.
2. Remove all 4 points of solder-treatment on the Lead Wire. Also, unscrew the screw(1 piece).
3. Then, Remove the Control unit.

(Caution)

Be careful not to damage SW when you reassemble the Control Unit into the device.

- How to remove the Loading Arm Assy

1. Unlock the spring (1 piece) and remove the E ring (1 piece) of the Fulcrum Shaft.
2. Shift the arm to the left side direction and unlock pins (2 pieces).

How to remove the Pickup Unit

1. Unscrew 2 pieces of screws, then remove the Pulley Cover.
2. Remove the Feed Screw unit from the pawl of the Feed Screw Guide (The pawl is located inside the guide).
3. Remove the belt from the Pulley, then remove the Pickup unit.
(Caution)
Make sure not to stain the belt with grease when you fix the belt.

7.1.2 CONNECTOR FUNCTION DESCRIPTION

[^0]| 16 14 12 10 8 6 4 2 | | |
| :---: | :---: | :---: |
| 15\|13|11/9 7 | 53 | 1 |
| , | \square | |

1. GND
2. BACK UP
3. ACC
4. NC
5. NC
6. B.REM
7. NC
8. NC
9. RL-
10. FL-
11. RL+
12. FL+
13. RR-
14. FR-
15. RR+
16. $\mathrm{FR}+$

7.2 PARTS

7.2.1 IC

- Pin Functions(PE5262A)

Pin No.	Pin Name	I/O	Format	Function and Operation
1	MODEL1	I		Model select input
2,3	NC			Not used
4	AVSS	1		A/D GND
5	ST	I		FM stereo input
6	SD	I		SD input
7	AVREF1			A/D converter reference voltage
8	KYDT	1		Key data input
9	DPDT	0	C	Display data output
10	SDBW	1		SDBW input
11	TUNPDI	1		PLL IC data input
12	TUNPDO	0	C	PLL IC data output
13	TUNPCK	0	C	PLL IC clock output
14	TUNPCE	0	C	PLL IC chip enable output
15	CURRQ	0		Tuner voltage FIX output
16	LOCL	0	C	Local L output
17	NC			Not used
18	FM/AM	0	C	FM/AM power select output
19	NC			Not used
20	FLPILM	0	C	Inside of flap illumination output
21	VDCONT	0	C	VD control output
22	NC			Not used
23	CONT	0	C	Servo driver power supply control output
24	XCE	0	C	CD LSI chip enable output
25	$\overline{\text { XRST }}$	0	C	CD LSI reset output
26	XPCK	0	C	CD LSI clock output
27-30	XPI0-3	I/O	C	CD LSI data input/output
31	CLCONT	0	C	Driver input select output
32	HOME	1	C	Home position detector input
33	VSS			GND
34	LOEJ	0	C	CD load motor LOAD/EJECT direction exchange output
35	CD5VON	0	C	CD +5 V power supply control output
36,37	ROT1-0	I		Rotary encoder data input
38	TELIN	1		Telephone mute input
39	NC			Not used
40	ILMPW	0	C	Illumination power supply control output
41	$\overline{\text { SWVDD }}$	0	C	Keyboard unit power supply control output
42	SYSPW	0	C	System power supply control output
43	VST	0	C	Strobe pulse output for electronic volume
44	$\overline{\text { MUTE }}$	0	C	System mute output
45	PEE	0	C	Beep tone output
46	LOCH	0	C	Local H output
47	NC			Not used
48	TUNPCE2	0	C	EEPROM chip enable output
49	PCL	0	C	Clock adjustment output
50	VCK	0	C	Clock output for electronic volume
51	VDT	0	C	Data output for electronic volume
52	ANTPW	0		Antenna output
53	EJECTS	,		Eject key input pin
54	DALMON	0	C	Stand-by output
55-59	NC			Not used
60	$\overline{\text { RESET }}$	1		Reset input
61,62	NC			Not used
63	BSENS	I		Back up power sense input
64	ASENS	I		ACC power sense input
65	DSENS	1		Grille detach sense
66	ADPW	0	C	A/D converter power supply output
67	NC			Not used

Pin No.	Pin Name	I/O	Format	Function and Operation
68	VDD			Power supply
69	X2			Crystal oscillator connection pin
70	X1	I		Crystal oscillator connection pin
71	IC(VPP)			Connect to GND
72	NC			Not used
73	TESTIN	I		Test program mode input
74	AVDD			Positive power supply terminal for analog circuit
75	AVREF0			A/D converter reference voltage
76	SL	I		SD level input from tuner
77	TEMP	I		CD temperature sense input
78	VDSENS	I		VD power supply voltage sense input
79	DISCSNS	I		CD DISC sense input
80	CSENS	I		Flap open/close sense input

Output Format	Meaning
C	C MOS output
N	N channel open drain output

IC's marked by * are MOS type.
Be careful in handling them because they are very liable to be damaged by electrostatic induction.
*PE5262A

- Pin Functions (PD6340A)

Pin No.	Pin Name	I/O	Function and Operation
$1-5$	SEG4-0	O	LCD segment output
$6-9$	COM3-0	O	LCD common output
10	VLCD		LCD drive power supply
$11-14$	KST3-0	O	Key strobe output
15,16	KDT0,1	I	Key data input (analogue input)
17	REM	I	Remote control reception
18	DPDT	I	Display data input
19	NC		Not used
20	KYDT	O	Key data output
21	MODA		GND
22	X0		Crystal oscillator connection pin
23	X1		Crystal oscillator connection pin
24	VSS		GND
25,26	KDT2,3	I	Key data input
27	NC		Not used
28	KST4	O	Key strobe output
$29-32$	NC		Not used
$33-55$	SEG35-13	O	LCD segment output
56	VDD		Power supply
$57-64$	SEG12-5	O	LCD segment output

*PD6340A

Pin Functions(TA2153FN)

Pin No.	Pin Name	I/O	Function and Operation
1	VCC		Power supply voltage terminal
2	RFGC	I	RF amplitude adjustment control signal terminal
3	GMAD	I	AGC amplifier frequency characteristic adjustment terminal
4	FNI	I	Main beam amplifier input terminal
5	FPI	I	Main beam amplifier input terminal
6	TPI	I	Sub beam amplifier input terminal
7	TNI	I	Sub beam amplifier input terminal
8	MDI	O	Monitor photodiode amplifier input terminal
9	LDO	I	Laser diode amplifier output terminal
10	SEL	I	APC circuit ON/OFF signal, LDO terminal control input terminal and bottom and peak detection frequency switching terminals
11	TEB	I	Tracking error balance adjustment signal input terminal
12	2 VRO	O	Reference voltage (2VRO) output terminal
13	TEN	I	Tracking error signal generation amplifier reverse phase input terminal
14	TEO	O	Tracking error signal generation amplifier output terminal
15	SBAD	O	Sub beam addition signal output terminal
16	FEO	O	Focus error signal generation amplifier output terminal
17	FEN	I	Focus error signal generation amplifier reverse phase input terminal
18	SEB	I	RFRP generation circuit mode switching terminal
19	VRO	O	Reference voltage (VREF) output terminal
20	RFRP	O	Signal generation amplifier output terminal for track count
21	BTC	I	Bottom detection time constant adjustment terminal for RFCT signal generation
22	RFCT	O	RFRP signal center level output terminal
23	PKC	I	Peak detection time constant adjustment signal for RFCT signal generation
24	RFRPIN	I	Signal generation amplifier input terminal for track count
25	RFGO	O	RF signal amplitude adjustment amplifier output terminal
26	GVSW	I	AGC, FE or TE amplifier gain switching terminal
27	AGCIN	I	RF signal amplitude adjustment amplifier input terminal
28	RFO	O	RF signal generation amplifier output terminal
29	GND	I	GND terminal
30	RFN2	I	RF signal generation amplifier input terminal

- Pin Functions(TC9495F2)

Pin No.	Pin Name	I/O	Function and Operation
1	TESTO		Test mode terminal
2	HSO	0	Replay speed flag output terminal
3	UHSO	0	Replay speed flag output terminal
4	EMPH	0	Emphasis flag output terminal for sub code Q data
5	LRCK	0	Channel clock (44.1 kHz) output terminal
6	VSS		Digital ground terminal
7	BCK	0	Bit clock output terminal
8	AOUT	0	Digital audio data output terminal
9	DOUT	0	Digital out output terminal
10	MBOV	0	Buffer memory over signal output terminal
11	IPF	0	Correction flag output terminal
12	SBOK	0	CRCC decision result output for sub code Q data
13	CLCK	I/O	Clock input/output terminal for sub code P-W data read
14	VDD		Digital + power supply terminal (5 V)
15	VSS		Digital ground terminal
16	DATA	0	Sub code P-W data output terminal
17	SFSY	0	Replay-system frame sync signal output terminal
18	SBSY	0	Sub code block sync output terminal
19	SPCK	0	Clock for processor status signal read
20	SPDA	0	Processor status signal output terminal
21	COFS	0	Correction-system frame clock (7.35 kHz) output terminal
22	MONIT	0	LSI internal signal output terminal
23	VDD		Digital + power supply terminal (5 V)
24	TESIOO	1	Test input/output terminal
25	P2VREF		PLL-system only 2VREF terminal
26	HSSW	0	The VREF voltage is reached for double or quad speed.
27	ZDET	0	One-bit DAC zero detection flag output terminal
28	PDO	0	Phase error signal issue between the EFM and PLCK signals
29	TMAXS	0	TMAX detection result output terminal
30	TAMX	0	TMAX detection result output terminal
31	LPFN	1	Reverse input terminal of amplifier for lowpass filter
32	LPFO	0	Output terminal of amplifier for lowpass filter
33	PVREF		PLL-system only VREF terminal
34	VCOREF	1	VCO center frequency reference level terminal
35	VCOF	0	Filter terminal for VCO
36	AVSS		Analog-system ground terminal
37	SLCO	0	Output terminal of DAC for data slice level generation
38	RFI	1	RF signal input terminal
39	AVDD		Analog-system power supply terminal (5 V)
40	RFCT	1	RFRP signal center level input terminal
41	RFZI	I	Input terminal for RFRP signal zero cross
42	RFRP	1	RF ripple signal input terminal
43	FEI	1	Focus error signal input terminal
44	SBAD	1	Sub beam addition signal input terminal
45	TSIN	1	Test input terminal
46	TEI	I	Tracking error input terminal
47	TEZI	1	Input terminal for tracking error or zero cross
48	FOO	0	Focus equalizer output terminal
49	TRO	0	Tracking equalizer output terminal
50	VREF		Analog reference power supply terminal
51	RFGC	0	RF amplitude adjustment control signal output terminal
52	TEBC	0	Tracking balance control signal output terminal
53	FMO	0	Feed equalizer output terminal
54	FVO	0	Speed error signal or feed search EQ output
55	DMO	0	Disc equalizer output terminal
56	2VREF		Analog reference power supply terminal
57	SEL	0	APC circuit ON/OFF signal output terminal

Pin No.	Pin Name	1/0	Function and Operation
58-61	FLGA-D	0	External flag output terminal for internal signal monitor
62	VDD		Digital + power supply terminal (5 V)
63	VSS		Digital ground terminal
64	100	0	RF amplifier gain switching terminal
65	IO1	0	Not used
66	IO2	I	HOME detection switch input terminal
67	103	0	FocusDrv and signal output terminal
68	$\overline{\text { DMOUT }}$	I	Field equalizer PWM output terminal for IO0 and IO1 Disc equalizer PWM output terminal for IO2 and IO3
69	$\overline{\text { CKSE }}$	1	Usually open
70	$\overline{\text { DACT }}$	I	DAC test mode terminal
71	TESIN	I	Test input terminal
72	TESIO1	1	Test input/output terminal
73	VSS		Digital ground terminal
74	PXI	1	DPS-system clock oscillator circuit input terminal
75	PXO	0	DPS-system clock oscillator circuit output terminal
76	VDD		Digital + power supply terminal (5 V)
77	XVSS		Ground terminal for system clock oscillator circuit
78	XI	1	System clock oscillator circuit input terminal
79	XO	0	System clock oscillator circuit output terminal
80	XVDD		For system clock oscillator circuit + power supply terminal
81	DVSR		R channel D/A converting unit power supply terminal
82	RO	0	R channel data forward rotation output terminal
83	DVDD		D/A converting unit power supply terminal (5 V)
84	DVR		Reference voltage terminal
85	LO	0	L channel forward rotation output terminal
86	DVSL		L channel D/A converting unit power supply terminal
87-89	TEST1-3	1	Test mode terminal
90-93	BUS0-3	I/O	Data input/output terminal for microcomputer interface
94	VDD		Digital + power supply terminal (5 V)
95	VSS		Digital ground terminal
96	BUCK	1	Clock terminal for microcomputer interface
97	CEE	1	Chip enable signal for microcomputer interface
98	TEST4	I	Test mode terminal
99	TSMOD	1	Test mode terminal
100	$\overline{\mathrm{RST}}$	1	Reset signal input terminal

*TC9495F2

Pin Functions(BA5996FM)

Pin No.	Pin Name	Function and Operation
1	VR	Input pin for reference voltage
2	OPIN2(+)	Input pin for non-inverting input for CH 2 preamplifier
3	OPIN2(-)	Input pin for inverting input for CH 2 preamplifier
4	OPOUT2	Output pin for CH 2 preamplifier
5	OPIN1(+)	Input pin for non-inverting input for CH 1 preamplifier
6	OPIN1(-)	Input pin for inverting input from CH 1 preamplifier
7	OPOUT1	Output pin for CH 1 preamplifier
8	GND	Ground pin
9	MUTE	Mute control pin
10	POWVCC1	Power supply pin for $\mathrm{CH} 1, \mathrm{CH} 2$, and CH 3 at "Power" stage
11	VO1(-)	Driver CH1 - Negative output
12	VO1(+)	Driver CH2 - Positive output
13	VO2(-)	Driver CH 2 - Negative output
14	VO2(+)	Driver CH2 - Positive output
15	VO3(+)	Driver CH2 - Positive output
16	VO3(-)	Driver CH 2 - Negative output
17	VO4(+)	Driver CH4 - Positive output
18	VO4(-)	Driver CH4 - Negative output
19	POWVCC2	Power supply pin for CH 4 at "Power" stage
20	GND	Ground pin
21	CNT	Control pin
22	LDIN	Loading input
23	OPOUTSL	Output pin for preamplifier for thread
24	OPINSL	Input pin for preamplifier for thread
25	OPOUT3	CH3 preamplifier output pin
26	OPIN3(-)	Input pin for inverting input for CH 3 preamplifier
27	OPIN3(+)	Input pin for non-inverting input for CH 3 preamplifier
28	PREVCC	PreVcc

- FM/AM Tuner Unit

No.	Symbol	I/O	Explain	
1	STIND	0	stereo indicator	"Low" when the FM stereo signals are received. To be pulled up to the "VDD" at $47 \mathrm{k} \Omega$.
2	FMSD	0	FM station detector	"High" when signals are received. To be pulled up to the "VDD" at $47 \mathrm{k} \Omega$ Meanwhile, $10 \mathrm{k} \Omega$ should be used when taking diver FIX trigger from here and "High: 0.9VDD or more" and "Low: 250 mV or less". (Should satisfy the diver IC specifications)
3	NL1	0	noise level-1	"High" when noise is received. Output for the RDS. GND at $47 \mathrm{k} \Omega / / 1,800 \mathrm{pF}$.
4	NL2	0	noise level-2	"High" when noise is received. Output for the RDS. GND at $36 \mathrm{k} \Omega / / 330 \mathrm{pF}$.
5	Rch	0	R channel output	FM stereo "R-ch" signal output or AM audio output. Add the specified de-emphasis constant.
6	Lch	0	L channel output	FM stereo "L-ch" signal output or AM audio output. Add the specified de-emphasis constant.
7	WC		write control	EEPROM write control. Writing permissible at "Low". Normally open.
8	SDBW	0	SD bandwidth	SD bandwidth signal output. For detection of detuning data for the RDS.
9	NC			Not used
10	VDD		power supply	Power supply pin for the digital section. DC $5 \mathrm{~V}+/-0.25 \mathrm{~V}$. Be careful about overlapping noise in the logic section.
11	DGND		digital ground	Grounding for the digital section.
12	CE2	I	chip enable-2	EEPROM chip enable. Active a "Low" To be pulled up to the "VDD" at $47 \mathrm{k} \Omega$
13	SL	I/O	signal level	Received FM/AM signal level (strength) output. Connect the specified load resistor and capacitor (10k $\Omega+39 \mathrm{k} \Omega / / 4,700 \mathrm{pF}$)
14	DI/DO	I/O	data input/ data output	Data input/Data output To be pulled up to the "VDD" at $47 \mathrm{k} \Omega$
15	CK	1	clock	Clock input To be pulled up to the "VDD" at $47 \mathrm{k} \Omega$
16	CE1	I	chip enable-1	AF.RF chip enable. Active at "High" To be grounded at $47 \mathrm{k} \Omega$
17	NC			Not used
18	LDET	0	lock detector	Active at "Low". To be pulled up to the "VDD" at 47k
19	CREQ	1	current request	Active at "Low". To be grounded at $47 \mathrm{k} \Omega$
20	NC			Not used
21	COMP	0	composite signal	FM composite signal output. r out < 100Ω
22	VCC		power supply	Analog section power supply pin.DC $8.4 \mathrm{~V}+/-0.3 \mathrm{~V}$
23	LOCH	1	local high	FM local high pin. When seeking local high, apply 5V together with "LOCL".
24	FMLOCL	I	FM local low	FM local low pin. When seeking local low, apply 5 V to the base of the NPN transistor with which the specified resistor is being connected to the emitter. Keep it open in case of ordinary marketed models.
25	LOCL	I	local low	FM/AM local low pin. When seeking local low, apply 5 V to the base of the NPN transistor. Since this pin is exclusive for AM when the FMLOCL is in use, do not drive it under FM.
26	RFGND		RF ground	Grounding for the antenna section.
27	FMANT	1	FM antenna input	FM antenna input. 75Ω. Surge absorber (DSP-201M-S00B) is necessary.
28	AMANT	I	AM antenna input	AM antenna input. High impedance. Connect to the antenna through an L (LAU type) of $4.7 \mu \mathrm{H}$. To cope with the power transmission line hums, insert a series circuit consisting of an L (a coil of about 100 mH) +R (a resistor of 470Ω to $2.2 \mathrm{k} \Omega$) between the GND.

7.2.2 DISPLAY

CAW1723(DEH-1400/XM/UC), CAW1716(DEH-14/XM/UC)

7.3 OPERATIONAL FLOW CHART

Completes power-on operation.(After that, proceed to each source operation.)

8. OPERATIONS AND SPECIFICATIONS

8.1 OPERATIONS

What's what

(1) VOLUME button

Press to increase or decrease the volume.
(2) CD EJECT button

Press to eject a CD from your built-in CD player.
(3) AUDIO button

Press to select various sound quality controls.
(4) CLOCK button

Press to switch clock display on or off.
(5) EQ button

Press to select various equalizer curves.
(6) $\Delta / \nabla / 4 / \boldsymbol{D}$ buttons

Press to do manual seek tuning, fast forward, reverse and track search controls. Also used for controlling functions.
(7) LOUDNESS button Press to switch loudness function on or off.
(8) SOURCE button

This unit is switched on by selecting a source. Press to cycle through all of the available sources.
(9) 1-6 (PRESET TUNING) buttons Press for preset tuning.
(10) LOCAL/BSM button
(11) BAND button

Press to select among three FM and one AM band and cancel the control mode of functions.
(12) DETACH button

Press to remove the front panel from the head unit.
Built-in CD player
Playing a CD

- You can eject a CD by pressing CD EJECT. 2 After a CD has been inserted, press
2 After a CD has been inserted, press
SOURCE to select the built-in CD player.
3 Use VOLUME to adjust the sound level. When you press VOLUME up/+, the volume is raised and when pressed down/-, the volume is lowered.

3 Press BAND to select a band.
Press BAND until the desired band is dis-
played, FM1, FM2, FM3 for FM or AM.
4 To perform manual tuning, press $\boldsymbol{<}$ or with quick presses.

The frequencies move up or down step by step.

5 To perform seek tuning, press and hold 4 The tuner will scan the frequencies until a broadcast strong enough for good reception is found.

- You can cancel seek tuning by pressing
either
- If you press and hold \measuredangle or you can skip soon as you release the buttons.

(Note

- When the frequency selected is being
 tor will light.

[^1] Shows to which frequency the tuner is
tuned.
(3) STEREO (D) indicator Shows that the frequency selected is being broadcast in stereo.
(4) PRESET NUMBER indicator

Shows what preset has been selected.

Power ON/OFF
Turning the unit on
Press SOURCE to turn the unit on.
When you select a source the unit is turned
on.
Selecting a source
 to. To switch to the built-in CD player, load a disc in this unit

Press SOURCE to select a source.
Press SOURCE repeatedly to switch between
Press SOURCE repeatedly to switch between the following sources:
Built-in CD player-Tuner

8 Notes

When no disc is set in this product, built-in
CD player source will not change. CD player source will not change. When this unit's blue/white lead is con-
nected to the car's auto-antenna relay nected to the car's auto-antenna relay
control terminal, the car's antenna
extends when this unit's source is switched on. To retract the antenna, switch the source off.

Press SOURCE and hold for at least one second to turn the unit off.

Using balance adjustment	Using the equalizer
You can select a fader/balance setting that provides an ideal listening environment in all occupied seats.	The equalizer lets you adjust the equalization to match car interior acoustic characteristics as desired.
1 Press AUDIO to select FADER.	
Press AUDIO until FADER appears in the dis-	Recalling equalizer curves
play. - If the balance setting has been previously adjusted, BAL will be displayed.	There are six stored equalizer curves which you can easily recall at any time. Here is a list of the equalizer curves:
2 Press $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ to adjust front/rear speaker balance.	Display Equalizer curve
Each press of $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ moves the front $/$ rear speaker balance towards the front or the rear.	SBASS Super bass
	PWRFL Powerful
- F15-R15 is displayed as the front/rear speaker balance moves from front to rear. - 0 is the proper setting when only two speakers are used.	NTRL Natural
	VOCAL Vocal
	CSTM Custom
3 Press $\boldsymbol{\square}$ or to adjust left/right speaker balance.	FLAT Flat
	- CSTM is an adjusted equalizer curve that
When you press 4 or BAL: 0 is displayed. Each press of $\boldsymbol{<}$ or moves the left/right	you create.
speaker balance towards the left or the right. - BAL:L9 - BAL:R9 is displayed as the left/right speaker balance moves from left to right.	- When FLAT is selected no supplement or correction is made to the sound. This is useful to check the effect of the equalizer curves
	by switching alternatively between FLAT and a set equalizer curve.
	Press EQ to select the equalizer. - If the equalizer has been previously set to an equalizer curve other than PWRFL then the title of that previously selected equalizer curve will be displayed, such as SBASS, NTRL, VOCAL, CSTM, or FLAT.

Audio Adjustments
Introduction of audio adjust-
ments

AUDIO display
Shows the aud
Shows the audio adjustments status.
LOUD indicator
Appears in the display when loudness is turned on.
Press AUDIO to display the audio function
names.
Press AUDIO repeatedly to switch between
the following audio functions:
FADER (balance adjustment)-EQ
(equalizer)—LOUD (loudness)—FIE (front
image enhancer)-SLA (source level adjust-
ment)
When selecting the FM tuner as the
source, you cannot switch to SLA.

- To return to the display of each source, press BAND.

8 Note

If you do not operate the audio function within about 30 seconds, the display is automatically returned to the source display.

8.2 SPECIFICATIONS

Service Manual

CD MECHANISM MODULE

- This service manual describes the operation of the CD mechanism module incorporated in models listed in the table below.
- When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Module
DEH-P630/X1N/UC	CRT2648	CXK5500
DEH-P7300R/X1N/EW	CRT2649	
DEH-P730/X1N/UC	CRT2650	
DEH-P7350/X1N/ES	CRT2651	

CONTENTS

1. CIRCUIT DESCRIPTIONS ... 2
2. MECHANISM DESCRIPTIONS................................. 26
3. DISASSEMBLY ... 28

1. CIRCUIT DESCRIPTIONS

From divisional viewpoint, the CX-977 is roughly divided into four sections, namely, Preamplifier, Servo, Power Supply and Loading Control.
This LSI realizes eight types of automatic adjustments (controls) through cooperative work between Preamplifier and Servo unit.
Because the system uses the single power source (+5 v) specification, reference voltages used in the servo system (Preamplifier, Servo DSP and Pickup) are all Vref (2.1V).

1.1 PREAMPLIFIER (TA2153FN; IC101)

The Preamplifier processes output signals sent from the Pickup and generates signals to supply to each unit of the next stage, that is, Servo, Demodulator or Control. It also performs power control of Pickup's laser diode. Signals from the Pickup are I-V-converted by the Preamplifier, which is built-in in Pickup's photo detector, and then added-up by the RF amplifier to obtain signals such as RF, FE and TE.

Reference voltage, Vref (2.1v), is output from \#19 pin of the IC, and 2Vref (4.2v) is supplied to the Servo DSP as the reference voltage to determine its D range of A / D input.

Fig. 1: TA2153FN circuit

1) Focus Error Amplifier unit

In this sub-unit, outputs from the photo detector, namely, ($A+C$) and ($B+D$), are processed in the differential amplifier and further in the error amplifier, and then, (A+C-B-D) is output as FE signal from \#16 pin of IC101 (TA2153FN). Low frequency component of voltage FE is expressed as:

$$
F E=(A+C-B-D) \times(150 k /(51 k+1 k)) \times(60 k / 60 k) \times(120 k / 60 k)=5.77 \text { times }
$$

In FE output, "S" curve of approximately 1.45 Vpp on the basis of Vref is obtained. The cutoff frequency of the succeeding amplifier is 11.4 kHz .

Fig. 2: FE circuit

2) Tracking Error Amplifier unit

In this sub-unit, outputs from the photo detector, namely, E and F, are processed in the differential amplifier and further in the error amplifier, and then, (E-F) is output as TE signal from \#14 pin of IC101 (TA2153FN). Low frequency component of voltage TE is expressed as:

$$
\mathrm{TE}=(\mathrm{E}-\mathrm{F}) \times 300 \mathrm{k} / 100 \mathrm{k} \times 82 \mathrm{k} / 20 \mathrm{k}=5.8 \text { times }
$$

In TE output, "TE" waveform of approximately 1.51 Vpp on the basis of Vref is obtained. The cutoff frequency of the succeeding amplifier is 20 kHz .

3) RF Amplifier unit

Outputs from the photo detector, namely, $(\mathrm{A}+\mathrm{C})$ and $(\mathrm{B}+\mathrm{D})$, are added up, amplified and equalized in the Head Amplifier LSI (TA2153FN). The processed-signals are output to RFI terminal as RF signals (These signals are used to check eye patterns).
Low frequency component of voltage RFI is expressed as:

$$
\mathrm{RFI}=(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}) \times 5.43
$$

RFI is used for RF Offset Control circuit. These RFI signals so output from \#28 pin are AC-coupled outside the unit, and then re-input to \#27 pin and amplified by the RFAGC amplifier to obtain RFO signals.
TA2153FN has built-in function for RFAGC adjustment, as described later, and through such function, the gain of RFAGC is controlled so that RFO output stays within $1.2 \pm 0.3 \mathrm{Vpp}$ range.
Also, RFO signals are used for EFM and RFAGC Adjustment circuit. They are further used to generate RFRP and RFCT signals, both of which are used for track counting.

Fig. 4: RF circuit

4) RFRP and RFCT Signal Circuit unit

RFCT signals are generated through the Head Amplifier (IC101). A RFCT signal is the difference signal that represents the difference between the peak and bottom level of RF signal. RFRP and RFCT can be monitored at TP203 (\#20 pin of IC101, namely, TA2153FN) and TP204 (\#20 pin of IC101) respectively.

Size-comparison among TE, RFRP and RFCT signals is performed by the Hysteresis Comparator in IC201 (TC9495F2), and through such comparison, track information (TEZC and RFZC signal) is generated. Based on these signals, information to determine tracking speed of the lens when it moves on the disk is generated. Also based on these signals, number of tracks is counted.

Fig. 5: RFRP and RFCT circuit

5) SBAD Signal Circuit unit

In this unit, outputs from the photo detector, namely, E and F are processed through the addition amplifier. That is, E and F are added together and ($\mathrm{E}+\mathrm{F}$) signal is output from \#15 pin of IC101 (TA2153FN), as SBAD signal.
This SBAD signal, along with Focus Error signal, is used as one of the conditions that the system uses to internally judge Focus ON/OFF based on them.
Also, SBAD signal is used to detect defects: defects that may be detected when the Pickup passes a scratch on the disk, for instance.

Fig. 6: SBAD circuit

6) APC Circuit unit

If a laser diode is driven at constant current, its optical output comes to have high level negative-characteristics, and this may cause it out-of-control drive because of the heat. So, driving current must be controlled, through use of a monitoring diode, so that optical output remains within the specific degree. This is exactly where APC circuit works. LD current can be obtained by measuring the voltage between LD1 and GND. The value is approximately 35 mA at room temperature.

Fig. 7: APC circuit

1.2 SERVO DSP (TC9495F2; IC201)

1) Focus Servo system

The main equalizer of the Tracking Servo is comprised with a digital equalizer unit. Fig. 8 shows the block diagram of the Tracking Servo.

Fig. 8: Block diagram of Focus Servo circuit

A series of actions of detecting in-focus point and switching on the Focus Servo upon such detection are called "focus search." In Focus Servo system, the system needs to move the lens to in-focus point so that it performs "Focus Close." So, the system detects in-focus point moving the lens up and down, which it performs by changing focus search voltage of a triangle wave. During these operations, the spindle motor maintains offset mode and keeps constant rotating speed.

The Focus Servo is switched on through three steps shown below.

1. FOK=H
2. The Focus Error signal exceeds "Focus Standby" level threshold
3. The Focus Error signal reaches "Zero Cross"

Here are descriptions of the three steps.
While there is enough distance between the lens and the in-focus point, the system cancels SBAD offset, and defines this level (distance) as SBOFF. Then, starting from this SBOFF standard, SBAD level moves toward FOK threshold, reaches it, and finally exceeds the threshold. Upon this passing over the threshold, the condition of the lens becomes FOK ="H."

As the lens moves up and down, the focus error signal changes at the in-focus point. CD-LSI (IC201) analog/digitalconverts such signal, and then, let the signal pass through the high-pass filter to remove the offset component of the signal. The signal so processed is called FEHPF signal. When the level of the FEHPF signal (internal signal of the LSI) exceeds "Focus Standby" level, because it means the lens has come to close to the in-focus point, the system sets the condition of the lens to "Servo-ON Standby." Finally, the FEHPF signal matches the value of the in-focus point, and the system triggers ON of the Focus Servo.

Fig. 9: Focus Search Timing

The microcomputer monitors FOON signal while the system is performing focus search, and starts monitoring of FOK signal from the point when 40 ms has passed after FOON signal became active (The signal is active when the condition is "Servo ON." It shows "L" in a test with a probe). If the microcomputer judges that FOK is not active, it performs necessary actions such as protection.

When, under Test mode, you press the Focus Close button, with the "Mode Select" of the focus set to "Display 01," you can check Focus Error signals, search-voltage and actual actions of the lens.

2) Tracking Servo system

The main equalizer of the Tracking Servo is comprised with a digital equalizer unit. Fig. 10 shows the block diagram of the Tracking Servo.

Fig. 10: Block diagram of the Tracking Servo

Track jump

Track jump is automatically performed with a command issued by the microcomputer. It is performed through AutoSequence function that the LSI has in it.
The CX-977 has two types of track jump as those used for searching. Namely, the "Lens Kick" mode used for 1, 4, 10, 32 and 100 track, and the "Carriage Move" mode used for jumping of more than 1,000 tracks. Under Test mode, you can use, to check the track position, 1, 32 and 100 jump as Lens Kick jump and Carriage Move jump according to mode selection.

- Lens Kick jump

A Lens Kick jump is performed when the LSI receives a Lens Kick command from the microcomputer. Direction of jump and number of tracks are specified by the command. When the LSI receives a Lens Kick command, it applies kick pulses to the tracking EQ, and the jump occurs.
The LSI controls travelling speed of the lens by referring to the table it holds in it. In such way, the lens travels faster when there are a good number of tracks to go, while travelling speed gets slower as the number of remaining tracks decreases.
When track count is completed, Tracking Close is performed. During jump, the LSI observes RFRP signals, and based on the signals, performs track count. It detects the direction of the jump based on phases of RFRP and TEZI signals.

To prepare for good servo-feed in next time track jump, the system performs operations to increase Tracking Servo's gain and hysteresis operations for 50 ms after completion of Tracking Close. The system realizes FF/REV actions under Normal mode by continuously performing single jumps. The speed of FF/REV is approximately 10 to 20 times faster than "Play" (varies depending on the direction).

Fig. 11: Lens Kick

- Carriage Move jump

A Carriage Move jump is performed when the LSI receives a Carriage Move command from the microcomputer. Direction of move and number of tracks are specified by the command. When the LSI receives a Carriage Move command, it makes the Tracking Servo "Open," applies kick signals to the Carriage EO and make the carriage motor drive. Thus, a track jump occurs.
The profile of the kick signals so applied to the EO has the specific constant given to it at the starting-up of the jump operations. So, as the number of remaining tracks decreases, voltage is lowered so that travelling speed of the carriage becomes slower. In this way, by reducing speed just before the jump terminates, the servo-feed at the end of the jump is improved.
Also, to prepare for good servo-feed in next time track jump, every time a jump is completed, the system performs operations to increase the gain of the Tracking Servo and hysteresis operations for 60 ms after the completion of the jump.

Fig. 12: Carriage Move

- Hysteresis operations

In certain operation, such as Setup or jump, servo-feed tends to be deteriorated during operations. Hysteresis is the operation to keep stable feed to servo-loop under such conditions. It acts in such manner that it holds a TE signal when each beam spot comes to off-track position, so that convergence of the Tracking Servo can be improved.

Fig. 13: Hysteresis operations

3) Carriage Servo system

The Carriage Servo inputs low-frequency-component output (lens position information) of the tracking equalizer into the carriage equalizer, then, after it has earned certain amount of gain, it outputs a drive signals from the LSI. Further, such drive signals are applied to the carriage motor via the driver.

Specifically, the system works as follows. That is, entire body of the pickup needs to move to the forward direction when the lens offset reaches certain level during Play. So, the gain of the equalizer is set in such manner that the equalizer constantly outputs higher voltage than the starting-up voltage of the carriage motor when such condition occurs. Practically, the system satisfies such requirement in such manner that the Servo LSI outputs the drive voltage only when the equalizer's output exceeds the specific level of threshold.

To minimize power consumption, and to stabilize operations, the level of threshold is pre-set slightly higher than the starting-up voltage of the motor. Waveforms of output of this drive voltage take pulse shape.

Fig. 14: Block diagram of Carriage Servo circuit

Fig. 15: Carriage signal waveform

4) Spindle Servo system

Fig. 16 shows the block diagram of the Spindle Servo.

Fig. 16: Block diagram of the Spindle Servo circuit

Spindle Servo has the following modes

- CLV Servo mode

This is the mode the system uses for such span as "after Focus Close and before it applies brake to the motor to stop the disk." Before Tracking Close and during normal Play, the system operates under this mode.

During this mode, the system performs synchronous detection in EFM demodulation block in the CD-LSI (IC201) so that the disk keeps predefined rotating speed. To realize synchronous detection before Tracking Close the system adopts such method that it applies to PLL circuit the same speed control by VCO that is performed in the LSI.
On the other hand, as to speed control after Tracking Close, control by VCO is muted and the method is switched to speed/phase control through the master clock (a ceramic oscillator).

- Offset Servo mode
(a) After the kick is over in the setup, this mode is turned on until changing to rough servo mode.
(b) When focus is lost during play, this mode is turned on until the focus is restored.

Both of the above are used for maintaining the disc rotation rate near to the specified rate.

- Brake mode

The mode is for use to stop the spindle motor.
Brake Sequence starts up when the microcomputer sends the command to CD-LSI. Then, the LSI, watching disk's rotating speed, sets the flag when it detects that the speed comes to approximately one twentieth ($1 / 20$). On the other hand, the microcomputer, also monitoring such flag, switches off the servo when it caches the flag.

In case the microcomputer cannot catch such flag within the specific period after starting-up of the Brake Sequence, it changes the mode to Stop, and monitoring FG pulses, keep the mode until it confirms that the speed has become slow.

In case such change to Stop mode occurs at Eject time, the microcomputer moves the operations to Eject operations after Timeout time elapses.

- Stop mode

This is the mode used for Power-On and Eject operations. Drive's output is "0."

1.3 AUTOMATIC ADJUSTMENT FUNCTION

In this CX-977 system, all circuit adjustments are automatically performed in CD-LSI (IC201: TC9495F2). Adjustments are automatically performed every time a disk is inserted into the unit, or a CD mode is selected through the Source Key.

1) Automatic TE offset/FE offset adjustment

This is the adjustment performed at POWER ON time. It adjusts both TE and FE amp-offsets of the Preamplifier to the target value defined for each signal (TE and FE), using Vref as the reference. The target values are (TE, FE) $=(0,0)$ [V]

Adjustments are performed as follows.
(1) Servo LSI reads each offset value under the condition of "Laser Diode is OFF."
(2) The LSI, based on the value so read, calculates the voltage to be reversed, and assigns the revised value to the location specified for use for such adjustment.

If you want to observe changes of voltage to examine actual offset voltage shown as error (focus error or tracking error), you cannot see such changes, even after adjustment, because such adjustment is made inside the digital filter.

IC201 TC9495F2

Fig. 17: Offset adjustment

2) Automatic Tracking Balance (T, BAL) adjustment

This is the control that eliminates the difference between pickup's Ech and Fch output by changing the gain in the Preamplifier. In practice, the LSI realizes the control in such manner that it makes a TE waveform vertically symmetric against the Servo Reference level.

Adjustments are performed as follows.
(1) After Focus Close
(2) The system switches on the spindle servo.
(3) The LSI fetches the level of TE signal and the level of TE offset, and based on these values, calculates the TE center value.
(4) The LSI changes RF amp's gain so that such center value comes to close to the Servo Reference level.

CX-977

Servo Reference level is set as follows.
In case offset adjustment is made, the level is set to:
The level of TEI input (i.e. TF offset level) at "Servo = OFF."
In case offset adjustment is not made, the level is equal to:
Vref level.
In this case, the adjustment is repeated several times to improve adjustment accuracy.

Fig. 18: Tracking Balance Adjustment

3) Focus/Tracking AGC

This is the control that automatically adjusts servo loop gain of the Focus Servo and Tracking Servo. The adjustment is performed in the following manner.
(1) The system (microcomputer) injects a disturbance into servo loop.
(2) Then, caused by such injection, error signals (FE and TE) are generated, and the system samples such error signals through BPF.
(3) Then, inside the LSI, comparison of the difference of phase between the error signal and the disturbance is performed.
(4) Finally, the system adjusts the gain so that the difference of phase accords to the target value preset by the microcomputer.

IC201 TC9495F2

Fig. 19: Loop gain adjustment

4) FE Bias automatic adjustment

The task of this adjustment is to maximize RFI level by optimizing the focus point during Play. The adjustment is performed by examining RFRP level and phase-difference as of the time when a disturbance to generate focus errors is injected into focus loop.
Steps of the adjustment are shown below.
(1) A disturbance is injected into focus loop based on the command issued by the microcomputer. (The session is performed in the Servo LSI.)
(2) In the LSI, level of RFRP signal is detected.
(3) Also in the LSI, the relation between such RFRP signal and the disturbance is examined, and through such examination the degree and direction of focus misalignment is detected.
(4) Then, the system substitutes the detected-result for the value in the "Bias Adjustment" item (field).

As to this FE Bias automatic adjustment, as similar to cases of automatic gain control, the system repeats a series of adjustments several times to maximize accuracy of adjustments.

Fig. 20: FE Bias adjustment

5) RF Level automatic adjustment (RFAGC)

The aim of this adjustment is to adjust the variance of signals' level (RFO signals), which may be caused by mechanical factors or those factors derived from the disk, and keeps such variant levels to the specific value so that stable and accurate signal transfer can be secured. The adjustment is realized by varying amplifier-gains between RFI and RFO.
The following steps are taken.
(1) Based on the peak and bottom value of RFRP level inside the Servo LSI, RFRP 's PP level is calculated.
(2) The system compares this PP level with the standard level and catches the difference between the two. Then, based on this difference, it sets such amount of amplifier-gain, inside the LSI, as it needs to accord RFO signals with the target RFO level, so that RF amp's gain can be controlled.

These adjustments are performed in the following timing. Just before the completion of Setup (i.e. just before "Play") After restoration of correct focus, in case focus point comes to out of focus.

Fig. 21: RF level adjustment

6) Gain adjustment at Preamplifier-Stage

This adjustment increases the gain of entire RFAMP (FE, TE and RE amp.) by +13 dB through the specific setting on GVSW terminal. The adjustment occurs in such occasion that the lens is stained, or there is remarkably little reflection (light), during CD-RW replay operations, for instance.

The adjustment is performed as follows.
During Setup operations, if the system judges that there is remarkably little reflection of the disk, it switches the value of GVSW terminal from "H" to "L." Then, the gain of entire RFAMP increases by 13 dB .

For reference, if the system so changes the gain, it performs Setup operations over again form the beginning.

7) Comments for initial values of the foregoing adjustments

In principle, every and each automatic adjustment uses previous adjustment-value as the initial value unless microcomputer's power is switched off (That is, unless backup power is switched off.) (There are several exceptions.) In case backup power is switched off, or the value of CVSW terminal is "L," default initial value is used instead of such previous adjustment-value.

8) Function to display coefficient of the adjustment-result

In some automatic adjustments (FE Offset/TE Offset, Tracking Balance, Focus/Tracking AGC, FE Bias and RF AGC) you can display the result of the adjustment, that is, display the coefficient, under Test mode, to confirm the result. Below, details of coefficient-display function for each automatic adjustment are shown.

(1) FE Offset/TE Offset adjustment

Standard value = 32 (Value "32" indicates that no adjustment was required, and this value-definition applies to every case described in this section.) The unit of value representation of coefficient is 46 mV .

Example: Coefficient of FE offset $=35$

$$
35-32=33 \times 46 \mathrm{mV}=138 \mathrm{mV}
$$

This means, that FE offset before the adjustment was 138 mV .
(2) T. BAL (Tracking Balance) adjustment

Standard value $=32$
Coefficient $=33$ to 63 ------ TE: Top side - Bottom side <0
Coefficient $=31$ to 0 ------ TE: Top side - Bottom side >0
Every time the value moves by " 1 " misalignment changes by approximately 0.71 to 4.97 \%.
Maximum misalignment of minus side $(<0)=$ When coefficient is 63
This is the misalignment of [TYP-45 \%].
Maximum misalignment of plus side $(>0)=$ When coefficient is 0
This is the misalignment of [TYP + 45%].
(3) Focus/Tracking AGC adjustment

Standard value: Focus/Tracking = 32 The unit of value representation of coefficient is approximately 0.375 dB .
Example: Coefficient of $\mathrm{AGC}=48$
$48-32=1616 \times 0.375 \mathrm{~dB}=6 \mathrm{~dB}$
The meaning is, the system performed adjustment of " +6 dB " (i.e. 2 times).
In other words, servo-loop's gain before adjustment was " $1 / 2$ times" (a half) so the system doubled the entire gain to obtain the target value.
4) FE Bias adjustment

Standard value = 32 The unit of value representation of coefficient is approximately 21.5 mV .
Example: Coefficient of FE Bias $=35$
$35-32=3 \quad 3 \times 21.5 \mathrm{mV}=64.5 \mathrm{mV}$
Thus, you can see that misalignment of FE Bias before the adjustment was "+ 64.5 mV ."
5) RF Level adjustment (RFAGC)

Standard value $=32$
Coefficient $=33$ to $63 \ldots .$. Adjustment of level-variance is being made to the direction of raising RF level (Direction of increasing gain)
Coefficient $=31$ to $0 \ldots \ldots$. Adjustment of level-variance is being made to the direction of lowering RF level (Direction of decreasing gain)
Every time the value move by " 1 " gain changes by approximately 0.07 to 0.15 dB .
Maximum gain $=$ When coefficient is 63
This is the gain of [TYP-2.69 dB].
Minimum gain $=$ When coefficient is 0
This is the gain of [TYP-3.93 dB].

1.4 POWER SUPPLY AND LOADING CONTROL SECTION

CX-977 uses power sources of two systems. One is the VD ($8.3 \pm 0.5 \mathrm{~V}$) supplied by the motherboard. This system of power source ("Drive system" power source) is supplied to the 4-CH CD Driver IC and the 5V Regulator IC. The second is $\mathrm{V}+5$ power source ("Control system" power source).

ON/OFF switching of the CD driver, except those for Load and Eject, is controlled by the microcomputer through "CONT" control terminal. ON/OFF switching of 5 V is controlled through "CD5VON" control terminal. As to ON/OFF switches of the loading drive (Load/Eject), there is no control terminal specifically provided for such use. However, "LOEJ," which is an input signal, performs similar task. Also, at LCO Output part, switching of LOADING and CARRIAGE mode is performed through "CLCONT."

Fig. 22: Block diagram of circuits in Power supply/Loading system

CLCONT

Fig. 23: Switching of LOADING/CARRIAGE mode

LOAD/EJECT actions are controlled through condition-changes of four switches, namely, the Clamp switch on the mechanical unit and three switches on the Control unit (Combination of ON/OFF conditions of each one of these 4 switches is called "status" as a whole). That is, DSCSNS voltage changes according to ON/OFF conditions of these switches, and controls are performed through such change of voltage. Accordingly, to control this voltage, the microcomputer judges each status (A to E) using its A / D port. Also, it judges whether the disk is 8 cm -disk or 12 cm -disk through such change of status, too.
Fig. 24 shows each status and Fig. 25 shows transition of status.

DETECTION SWITCH STATUS AT THE TIME OF LOAD EJECTION

STATUS	A	B	C	D	E		
SW1(S903)	ON	OFF	OFF	OFF	ON		
SW2(S905)	OFF	OFF	ON	ON	OFF		
SW3(S904)	OFF	OFF	OFF	ON	OFF		
SW4(S902)	OFF	OFF	OFF	OFF	ON		
MECH. STATUS	NO DISK						OLAMP

Fig. 24: DSCSNS status

LOAD EJECTION OPERATING STATUS TRANSITION DIAGRAM
LOADING
12 cm

 LOAD/CARRIAGE SWITCHING

8 cm

EJECT
12 cm

8 cm

Fig. 25: Transition of loading actions in correlation to status-change

2. MECHANISM DESCRIPTIONS

- Loading actions

1. When a disk is inserted, SW Arm L and R rotate. Due to the rotation of Arm $L, S W 1$ is switched from ON to OFF and the Load Carriage Motor starts.
2. If the disk is 12 cm -disk, when it is carried to the position shown with the dotted line in the drawing, SW 3 switches to ON due to such rotation of Arm L. Then, the microcomputer judges that the disk is 12 cm -disk.
3. In case of 8 cm -disk, the disk cannot reach such dotted line position, and from such limitation of approach, the microcomputer judges that the disk is 8cm-disk and simply triggers clamp actions.
(Movement of SW Arm L and R are connected together. So, if pushing force is fed to only one arm, the distance between tow arms cannot be widened beyond the specific degree, because the coupling part is locked in such case.)

Disk centering mechanism

1. In case of 12 cm -disk, the 12 cm -Disk Detection Arm rotates, and with such rotation, it raises the Centering Arms to retreat the arms from disk's trace. The disk passes through under the arms, and at the inner part, it is centered.
2. In case of 8 cm -disk, it is just centered at the position where its edge touches the front portion of the Centering Arm.

Clamp actions

1. When centering of 12 or 8 cm -disk onto the Spindle is completed, the Detection Arm starts driving.
2. Then, the Detection Arm, via the Detection Reversion Arm, triggers driving of the Plunging Rack, which is on the Mode Switching Arm unit, in order to engage the rack with the 2-Stage Gear.
3. With such engaging, the Mode Switching Arm rotates, and with the rotation, slides the Clamp-Up Lever and pushes down the Clamp Arm. At the same time, the Mode Switching Arm slides the Loading-Up lever, and separates the Loading Arm from the disk. Also, the Loading-Up Lever rotates the Mechanics Lock Arm, releases the Mechanics Lock, and switches on the Clamp SW. Now, at this position (the position where the disk is situated when the Clamp SW is switched on), clamping actions are completed.
4. Then, upon the completion of clamping actions, the Plunging Rack lets the Pickup Lock Arm start rotating, and this Pickup Lock Arm, with such rotation, feeds the Pickup to Feed Screw's screw portion. Now, Carriage actions start.

Eject actions

1. Eject actions start when the Pickup is fed to the position inner than "Home SW ON" point in the internal circumference of the circle, caused by backward rotation of the Load Carriage Motor. Eject actions follow the foregoing procedures (steps taken in loading, centering and clamping actions), but each action in those steps is performed in reversed manner.
2. In case of 12 cm -disk, Eject is completed when SW3 completes its condition- transition of OFF \rightarrow ON \rightarrow OFF.
3. For 8 cm -disk, Eject is completed when SW2 completes its condition-transition of OFF \rightarrow ON \rightarrow OFF.

3. DISASSEMBLY

- How to hold the Mechanical Unit

1. Hold the top and bottom frame.
2. Do not squeeze top frame's front portion too tight, because it is fragile.

Do not squeeze.

- How to remove the Top and Bottom Frame

1. When the disk is "clamp" state, unlock Spring A (6 pieces) and Spring B (2 pieces), and unscrew screws (4 pieces).
2. Unlock each 1 of pawl at the both side of the frame, then remove the top frame.
3. Remove the Carriage Mechanical part in such way that; you remove the mechanical part from 3 pieces of Damper while slowly pulling up the part.
4. Now, the top frame has been removed, and under this state, fix the genuine Connector again, and eject the disk.

(Caution)

When you reassemble the Carriage Mechanical part, apply a bit of alcohol to Dampers.

How to remove the Guide Arm Assy

1. Unlock the spring (1 piece) at the right side of the assembly. 2. Unscrew screws (2 pieces), then remove the Screw Gear Bracket.
2. Shift the Guide Arm Assy to the left and slowly rotate it to the upper direction.
3. When the Guide Arm Assy rotates approximately 45
degree, shift the Assy to the right side direction and remove it.

- How to remove the Control Unit

1. Give jumper-solder treatment to the Flexible Wire of the Pickup unit, then remove the wire from the Connector.
2. Remove all 4 points of solder-treatment on the Lead Wire. Also, unscrew the screw(1 piece).
3. Then, Remove the Control unit.
(Caution)
Be careful not to damage SW when you reassemble the Control Unit into the device.

How to remove the Loading Arm Assy

1. Unlock the spring (1 piece) and remove the E ring (1 piece) of the Fulcrum Shaft.
2. Shift the arm to the left side direction and unlock pins (2 pieces).

- How to remove the Pickup Unit

1. Unscrew 2 pieces of screws, then remove the Pulley Cover.
2. Remove the Feed Screw unit from the pawl of the Feed Screw Guide (The pawl is located inside the guide).
3. Remove the belt from the Pulley, then remove the Pickup unit.
(Caution)
Make sure not to stain the belt with grease when you fix the belt.

CX-977

- How to remove the Load Carriage Motor Assy

1. Unscrew the screw (1 piece).
2. Remove the Load Carriage Motor Assy.

- How to remove the Clamp Arm Assy

1. Unlock springs (3 pieces).
2. Remove the Clamp-Up Lever.
3. Remove the Assy in such way that; you shift the Assy to the left side direction while you rotate it to the upper direction slowly.

- How to remove the Spindle Motor

1. Unscrew 2 pieces of screws. Then you can remove the motor.

[^0]: ANTENNA PRE OUT

[^1]:
 Shows which band the radio is tuned to,
 AM or FM.
 (2) FREQUENCY indicator

