ORDER NO. CRT2955

UNIVERSAL MULTI-CD SYSTEM
 CDX.FM1287. CDX-FM1289xnvi

- This service manual should be used together with the manual(s) listed below.

For the parts numbers, adjustments, etc. which are not shown in this manual, refer to the following manual(s).

Model No.	Order No.	Mech. Module	Remarks
CDX-FM1277/X1N/UC	CRT2590		
CX-938	CRT2357	C8	CD Mech. Module:Circuit Description, Mech.Description, Disassembly

EXPLODED VIEWS AND PARTS LIST
PACKING (Page 3)
PACKING SECTION PARTS LIST

Mark	No.	Description	Part No.	
	Carton	CDX-FM1277/X1N/UC	CDX-FM1287/XN/UC	
	Contain Box	CHE4288	CHG4886	
$32-1$	Installation Manual	CRD33586	CHL4886	
$32-2$	Owner's Manual	CRD3354	CRD3732	
35	Remote Control Unit	CXB6798	CRD3731	

B

Mark	No.	Description	Part No.	
	Carton	CDX-FM1277/X1N/ES	CDX-FM1287/XN/ES	
	Contain Box	CHG4287	CHG4887	
$32-1$	Installation Manual	CRD3387	CHL4887	
$32-2$	Owner's Manual	CRD3352	CRD3734	
35	Remote Control Unit	CXB6798	CRD3733	

Mark	No.	Description	Part No.	
	CDX-FM1279/X1N/UC	CDX-FM1289/XN/UC		
	Carton	CHG4289	CHG4888	
$32-1$	Contain Box	CHL4289	CHL4888	
$32-2$	Owner's Manual	CRD3356	CRD3732	
35	Remote Control Unit	CRD3355	CRD3735	

EXTERIOR (Page 6)

- EXTERIOR SECTION PARTS LIST

D

Mark		Part No.	
	No.	Description	CDX-FM1277/X1N/UC
	Remote Control Unit	CDX-FM1287/XN/UC	
35	Cover	CXB6798	CNS6439
	36	Display Assy	CXB6806

E

		Part No.	
Mark	No.	Description	CDX-FM1279/X1N/UC
34	Remote Control Unit	CXB6798	CXX-FM1289/XN/UC
35	Cover	CNS6439	CNS7068
36	Display Assy	CXB6807	CXC1168
45	Grille Unit	CXB6813	CXC1154
46	Grille Assy	CXB6833	CXC1157

ORDER NO. CRT2590

UNIVERSAL MULTI-CD SYSTEM

This service manual should be used together with the following manual(s):

Model No.	Order No.	Mech. Module	Remarks
CX-938	CRT2357	C8	CD Mech. Module:Circuit Description, Mech. Description, Disassembly

CONTENTS

1. SAFETY INFORMATION ... 2
2. EXPLODED VIEWS AND PARTS LIST....................... 3
3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM ... 12
4. PCB CONNECTION DIAGRAM 26
5. ELECTRICAL PARTS LIST ... 34
6. ADJUSTMENT... 38
7. GENERAL INFORMATION 48
7.1 DIAGNOSIS 48
7.1.1 TEST MODE 48
7.1.2 DISASSEMBLY 52
7.1.3 CONNECTOR FUNCTION DESCRIPTION54
7.2 PARTS 55
7.2.1 IC. 55
7.2.2 DISPLAY 57
7.3 OPERATIONAL FLOW CHART 58
8. OPERATIONS AND SPECIFICATIONS. 597

CD Player Service Precautions

1. For pickup unit(CXX1285) handling, please refer to"Disassembly"(see page 52).
During replacement, handling precautions shall be taken to prevent an electrostatic discharge(protection by a short pin).
2. During disassembly, be sure to turn the power off since an internal IC might be destroyed when a connector is plugged or unplugged.
3. Please checking the grating after changing the service pickup unit(see page 41).
4. Since these screws protects the mechanism during transport, be sure to affix it when it is transported for repair, etc.
 set in order to protect it during transportation. After removing the transport screw, cover the hole with the supplied seal. Be sure to remove the transport screw before mounting the set. The removed transport screw should be retained in the accessory bag for use the next time the set is transported.

1. SAFETY INFORMATION

- CDX-FM1277/X1N/UC and CDX-FM1279/X1N/UC

CAUTION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.
Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely; you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

This product contains lead in solder and certain electrical parts contain chemicals which are known to the state of California to cause cancer, birth defects or other reproductive harm.
Health \& Safety Code Section 25249.6 - Proposition 65

2. EXPLODED VIEWS AND PARTS LIST

2.1 PACKING

CDX-FM1277,FM1279

NOTE:

- Parts marked by "*"are generally unavailable because they are not in our Master Spare Parts List.
- Screws adjacent to ∇ mark on the product are used for disassembly.

PACKING SECTION PARTS LIST

Owner's Manual

Model	Part No.	Language
CDX-FM1277/X1N/UC	CRD3354	English, French
CDX-FM1279/X1N/UC	CRD3355	English, French
CDX-FM1277/X1N/ES	CRD3352	English, Spanish, Portuguese(B), Arabic

Installation Manual

Model	Part No.	Language
CDX-FM1277/X1N/UC	CRD3356	English, French
CDX-FM1279/X1N/UC	CRD3356	English, French
CDX-FM1277/X1N/ES	CRD3353	English, Spanish, Portuguese(B), Arabic

(1) EXTERIOR SECTION PARTS LIST

Mark No.	Description	Part No.	Mark No.	Description	Part No.
1	Screw	BMZ26P040FMC	31	Connector(CN201)	CKS3920
2	Screw	BMZ30P040FZK	32	Holder	CNC8060
3	Button	CAC6363	33	Holder	CNC8069
4	Screw	CBA1353	34	Remote Control Unit	CXB6798
5	Spring	CBH1862	35	Cover	CNS6439
6	Connector	CDE5525	36	Display Assy	See Contrast table(2)
7	Connector	CDE6480	37	Screw	BPZ20P100FZK
8	Cord	CDE5812	38	Button	CAC5887
9	Resistor	RS1/2PMF102J	39	Cord	CDE5834
10	Cap	CNS1472	40	Cover	CNS5223
11	Upper Case	See Contrast table(2)	41	LCD(LCD901)	CAW1514
12	Arm	CNC8058	42	Holder	CNC8062
13	Insulator	CNM6074	43	Lighting Conductor	CNV5594
14	Panel	CNS5218	44	Rubber	CNV5599
15	Damper	CNV6778	45	Grille Unit	See Contrast table(2)
16	Antenna Select Assy	CWM7445	46	Grille Assy	See Contrast table(2)
17	Cord	CDE4087	47	Door	See Contrast table(2)
18	Antenna Cable	CDH1207	48	Door	See Contrast table(2)
19	Chassis	CNA1555	49	Lower Case Unit	See Contrast table(2)
20	Case	CNB1764	50	CD Mechanism Module(C8R2)	CXK4965
21	Antenna Select Unit	CWX2580	51	Screw	IMS20P030FZK
22	Plug(CN502)	CKS1222	52	Screw	IMS26P040FMC
23	Plug(CN501)	CKS2812	53	Transistor(0801)	2SD2396
24	Antenna Jack(CN503)	CKX1006	54	IC(IC902)	TSOP1840SB1
25	Extension Unit	CWX2560	55	Caution Card	CRP1233
26	Screw	BMZ26P060FMC			
27	Jack(CN401)	CKN1022			
28	Plug(CN801)	CKS-460			
29	Connector(CN802)	CKS3195			
30	Connector(CN803)	CKS3407			

(2) CONTRAST TABLE

CDX-FM1277/X1N/UC,CDX-FM1279/X1N/UC and CDX-FM1277/X1N/ES are constructed the same except for the following:

Mark No. Symbol and Description	Part No.		
	CDX-FM1277/X1N/UC	CDX-FM1279/X1N/UC	CDX-FM1277/X1N/ES
11 Upper Case	CNB2393	CNB2615	CNB2393
36 Display Assy	CXB6806	CXB6807	CXB6806
45 Grille Unit	CXB6812	CXB6813	CXB6812
46 Grille Assy	CXB6832	CXB6833	CXB6832
47 Door	CAT2205	CAT2203	CAT2205
48 Door			
49 Lower Case Unit	CAT2206	CAT2208	CAT2206
	CXB7008	CXB7007	CXB7008

2.3 CD MECHANISM MODULE

- CD MECHANISM MODULE SECTION PARTS LIST

Mark No.	Description	Part No.	Mark No.	Description	Part No.
1	Connector	CDE6069	46	Plate	CNC8375
2	CD Core Unit	CWX2495	47	Cover	CNC8434
3	Connector(CN701)	CKS1963	48	Sheet	CNM6009
4	Connector(CN101)	CKS2272	49	Spacer	CNM6428
5	Screw	BMZ20P025FMC	50	Sheet	CNM6296
6	Screw(M2x2.5)	CBA1037	51	PCB	CNP5227
7	Screw(M2x2.5)	CBA1041	52	PCB	CNP5228
8	Screw(M2x2)	CBA1176	53	Ball	CNR1189
9	Screw(M2x4)	CBA1362	54	Gear	CNR1531
10	Screw(M2x1.4)	CBA1387	55	Belt	CNT1086
11	Screw(M2x2.5)	CBA1493	56	Gear	CNV5472
12	Screw(M2x1.6)	CBA1476	57	Gear	CNV5473
13	Screw(M2x3)	CBA1486	58	Rail	CNV5920
14	Washer	CBF1038	59	Lever	CNV6091
15	Spring	CBH2374	60	Gear	CNV5477
16	Spring	CBH2172	61	Arm	CNV5478
17	Spring	CBH2173	62	Holder	CNV5480
18	Spring	CBH2174	63	Guide	CNV5921
19	Spring	CBH2175	64	Guide	CNV5922
20	Spring	CBH2177	65	Holder	CNV5483
21	Spring	CBH2178	66	Holder	CNV5484
22	Spring	CBH2179	67	Clamper	CNV5485
23	Spring	CBL1390	68	Gear	CNV5486
24	Spring	CBL1393	69	Gear	CNV5562
25	Spring	CBL1404	70	Holder	CNV5563
26	Short Pin	CBL1239	71	Stopper	CNV5564
27	Volume(VR801)	CCW1024	72	Lighting Conductor	CNV5785
28	Screw(M2x1.5)	CBA1491	73	Mechanism PCB	CWX2303
29	Shaft	CLA3894	74	Connector(CN801)	CKS1965
30	Arm	CNC8482	75	Connector(CN802)	CKS3486
31	Lever	CNC7905	76	Damper Unit	CXA7159
32	Lever	CNC7906	77	Chassis Unit	CXB4463
33	Arm	CNC7908	78	
34	Arm	CNC7909	79	Chassis Unit	CXB4461
35	Holder	CNC7911	80	Arm Unit	CXB2855
36	Holder	CNC7912	81	Screw Unit	CXB4464
37	Lever	CNC7919	82	
38	Stopper	CNC7920	83	Frame Unit	CXB4427
39	Frame	CNC7921	84	Magazine Holder Unit	CXB4460
40	Lever	CNC7922	85	Motor Unit(M851)(SPINDLE)	CXB3003
41	Bracket	CNC7923	86	Motor Unit(M854)(CARRIAGE)	CXB3004
42	Lever	CNC7924	87	Screw	JFZ20P025FMC
43	Frame	CNC7927	88	Motor Unit(M853)(TRAY)	CXB4421
44	Frame	CNC7928	89	Screw	JFZ20P025FMC
45	Bracket	CNC8355	90	Motor Unit(M852)(ELV)	CXB3006

CDX-FM1277,FM1279

Mark No.	Description	Part No.
91	Screw	JFZ20P025FMC
92	Lever Unit	CXB3938
93	
94	Gear Unit	CXB5061
95	Screw	JGZ17P025FZK
96	Pickup Unit(Service)	CXX1285
97	
98	
99	Screw	IMS26P040FMC
100	Screw	JFZ20P025FNI
101	Photo-transistor(0851)	PT4800
102	Spring Switch(S851,S853)	CSN1051
103	LED(D851)	CN504-2
104	Spring Switch(S852)	CSN1052

2.4 MAGAZINE ASSY

3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM

3.1 BLOCK DIAGRAM

B

CDX-FM1277,FM1279

3.2 CD MECHANISM MODULE

Note: When ordering service parts, be sure to refer to "EXPLODED VIEWS AND PARTS LIST" or "ELECTRICAL PARTS LIST".

MECHANISM PCB

c

Note:1. The encircled numbers denote measuring pointes in the circuit diagram.
2. Reference voltage REFO:2.5V

Waveforms

(19) $\mathrm{CH} 1:$ R OUT $\quad 2 \mathrm{~V} / \mathrm{div} . \quad 500 \mu \mathrm{~s} / \mathrm{div}$. (20) $\mathrm{CH} 2:$ L OUT $2 \mathrm{~V} / \mathrm{div}$. Normal mode: Play $(1 \mathrm{kHz} 0 \mathrm{~dB})$	(6) $\mathrm{CH} 1: \mathrm{FE} \quad 0.2 \mathrm{~V} / \mathrm{div} . \quad 1 \mathrm{~ms} / \mathrm{div}$. (3) $\mathrm{CH} 2: \mathrm{FD} \quad 0.5 \mathrm{~V} / \mathrm{div}$.	(8) $\mathrm{CH} 1:$ TE $0.2 \mathrm{~V} / \mathrm{div} . \quad 1 \mathrm{~ms} / \mathrm{div}$. (9) $\mathrm{CH} 2: ~ T D ~$ $0.5 \mathrm{~V} / \mathrm{div}$. Normal mode: During AGC
	$\begin{array}{lll}\text { (3) } \mathrm{CH} 1: \mathrm{FD} & 1 \mathrm{~V} / \mathrm{div} . & 0.5 \mathrm{~ms} / \mathrm{div} . \\ \text { (21) } \mathrm{CH} \text { : } \mathrm{HOLD} & 5 \mathrm{~V} / \mathrm{div} . & \end{array}$ Normal mode: The defect part passes $800 \mu \mathrm{~m}$ (B.D)	(9) $\mathrm{CH} 1: \mathrm{TD} 0.1 \mathrm{~V} / \mathrm{div}$. (21) $\mathrm{CH} 2: \mathrm{HOLD} 5 \mathrm{~V} / \mathrm{div}$. $0.5 \mathrm{~ms} / \mathrm{div}$. Normal mode: The defect part passes $800 \mu \mathrm{~m}$ (B.D)

CDX-FM1277,FM1279

3.3 EXTENSION UNIT

B

C

3.4 ANTENNA SELECT UNIT

3.5 DISPLAY ASSY

4. PCB CONNECTION DIAGRAM

4.1 CD CORE UNIT

 NOTE FOR PCB DIAGRAMS1. The parts mounted on this PCB include all necessary parts for several destination.
For further information for respective destinations, be sure to check with the schematic diagram.
2. Viewpoint of PCB diagrams

3
27
\bigcirc

CDX-FM1277,FM1279

4.2 EXTENSION UNIT

4.3 MECHANISM PCB

C MECHANISM PCB

4.4 SWITCH PCB

D SWITCH PCB

4.5 MOTOR PCB

튼́ㅇ РСв

4.6 ANTENNA SELECT UNIT

G display assy

@

5. ELECTRICAL PARTS LIST

NOTE:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor
RS1/○S○○○J,RS1/○○S○○○J
Chip Capacitor (except for COS.....)
CKS....., CCS... , CSZS.....

	=Cir	Symbol a	Part No.		Cir	Part No.
BUnit Number : CWX2560				R	206	
				R	207	$\text { RS } 1 / 16 \mathrm{~S} 225 \mathrm{~J}$
				R	208	RS1/16S225J
MISCELLANEOUS				R	209	RS1/16S223J
				R	210	RS1/16S223J
IC	201	IC	BU4066BCF			
IC	301	IC	BA1404F	R R	211	RS1/16S681J RS1/16S681J
IC	302	IC	BA4560F	R	213	$\begin{aligned} & \text { RS1/16S681J } \\ & \text { RS1/16S112.J } \end{aligned}$
IC	401	IC	BU2611FS	R R	213	$\begin{aligned} & \text { RS 1/16S112J } \\ & \text { RS1/16S112J } \end{aligned}$
IC	801	IC	NJM78L06A	R	215	RS1/16S362J
\bigcirc	201	Transistor	IMD3A			
Q	202	Transistor	FMG12	R R	231	$\begin{aligned} & \text { RS1/16S362J } \\ & \text { RS1/16S101. } \end{aligned}$
Q	301	Transistor	DTC143TK	R	232	RS1/16S101J
Q	401	Transistor	IMX1	R R	301	RS1/16S362J
Q	402	Transistor	2SC2059K	R	302	$\begin{aligned} & \text { RS1/16S362J } \\ & \text { RS1/16S823J } \end{aligned}$
Q	403	Transistor	2SC2059K	R	303	
Q	404	Transistor	2SC2059K	R	304	$\text { RS } 1 / 16 \text { S392J }$
Q	801	Transistor	2SD2396	R	305	
Q	802	Transistor	IMD2A	R R	305	$\begin{aligned} & \text { RS1/16S102J } \\ & \text { RC1/16cion } \end{aligned}$
Q	803	Transistor	2SB710A	R	307	RS1/16S102J
Q	804	Transistor	IMH10A	R	308	RS1/16S392J
Q	805	Transistor	2SB710A	R R	309	$\begin{aligned} & \text { RS 1/16S392J } \\ & \text { RS } 1 / 16513 \mathrm{~J} \end{aligned}$
Q	806	Transistor	IMX1	R	310	$\begin{aligned} & \text { RS 1/16S513J } \\ & \text { RS } 1 / 16 \text { S103J } \end{aligned}$
D	201	Diode	MA152WA	R R	311	$\begin{aligned} & \text { RS 1/16S103J } \\ & \text { RS1/16S103J } \end{aligned}$
D	301	Diode	MA111	R	312	RS1/16S103J
D	302	Diode	RB706D40	R	313	
D	401	Diode	DA204K	R R	314	$\begin{aligned} & \text { RS 1/16S513J } \\ & \text { RS10 } \end{aligned}$
D	402	Diode	KV1440	R	315	RS1/16S221J
D	403	Diode	MA111	R	316	RS1/10S104J
D	801	Diode	1SR139-400	R	317	RS1/10S104J
D	802	Diode	1SR139-400	R	318	
D	803	Diode	UDZS5R1(B)	R R	319	$\text { RS } 1 / 16 \mathrm{~S} 123 \mathrm{~J}$
D	804	Diode	UDZS5R1(B)	R R	320	$\text { RS } 1 / 16 \mathrm{~S} 472 \mathrm{~J}$
D	805	Diode	UDZ3R3(B)	R R	322	$\begin{aligned} & \text { RS1/16S472J } \\ & \text { RS } 1 / 16 \text { S393J } \end{aligned}$
L	201	Filter	CTF1333	R	323	RS1/16S0R0J
L	202	Filter	CTF1333		324	
L	301	Inductor	LCTB2R2K2125	R R	324 401	$\begin{aligned} & \text { RS1/16S0R0J } \\ & \text { RS1/16S223J } \end{aligned}$
L	302	Inductor	CTF1302	R	402	$\begin{aligned} & \text { RS 1/16S223J } \\ & \text { RS 1/16S681 } \end{aligned}$
L	401	Inductor	LCTB2R2K2125	R	403	RS1/16S362J
L	402	Coil	CTC1079	R	404	RS1/16S242J
L	403	Inductor	LCTB2R2K2125			
L	404	Inductor	LCTA1R0J3225	R R	406	$\begin{aligned} & \text { RS1/16S822J } \\ & \text { RS1/16S103J } \end{aligned}$
L	405	Inductor	LCTA101J3225	R	407	
L	406	Inductor	LCTAR68J3225	R	408	RS1/16S560J
X	301	Radiator 3	CSS1372	R	409	RS1/16S103J
X	401	Crystal Re	CSS1030			
VR	301	Semi-fixed	CCP1233	R R	411	$\begin{aligned} & \text { RS1/16S103J } \\ & \text { RS1/16S332J } \end{aligned}$
VR	302	Semi-fixed	CCP1232	R	412	RS1/16S101J
RESISTORS				R	413	RS1/16S222J
				R	414	RS1/16S104J
R	201		RS1/16S471J			
R	202		RS1/16S471J	R R	416	$\begin{aligned} & \text { RS1/16S244J } \\ & \text { RS1/16S154J } \end{aligned}$
R	203		RS1/16S472J	R	417	RS1/16S152J
R	204		RS1/16S472J	R	418	RS 1/16S331J
R	205		RS1/16S361J	R	419	RS1/16S122J

Part No.

RS1/16S470J
RAB4C471J
RS1/16S183J
RS1/16S822J
RS1/16S204J
RS1/16S913J
RS1/8S391J
RS1/16S681J
RS1/16S0R0J
RS1/4S152J

RS1/16S223J
RS1/16S223J
RS1/4S152J
RS1/16S181J
RS1/16S560J

RS1/16S102J
RS1/16S473J
RS1/16S0R0J
RS1/4S750J
RS1/16S102J
RS1/16S152J
RS1/4S121J
RS1/10S222J

CEAL330M6R3 CEAL330M6R3 CKSRYB103K50 CKSRYB103K50 CKSRYB392K50 CKSRYB392K50 CKSRYB332K50 CKSRYB332K50 CEAL1R0M50 CEAL1R0M50

CKSRYB102K50 CKSRYB102K50 CKSRYB102K50 CKSRYB102K50 CEAL100M16

CKSRYB103K50 CCSRCH120J50 CEAL220M16 CKSRYB104K16
CKSRYB103K50
CCSRCH101J50
CEALR47M150
CKSRYB103K50
CEAL100M16
CCSRCH160J50

CEAL100M16
CKSRYB104K16
CKSRYB105K10
CEAL220M16
CKSRYB104K16

CCSRCH271J50
CCSQCH162J50 CEAL100M16 CCSRCH270J50 CCSRCH270J50

CKSRYB104K16 CKSRYB102K50 CKSRYB473K16 CEALNP330M10 CEAL470M6R3

C	408	
C	409	
C	410	
C	411	
C	412	
C	413	
C	414	
C	415	
C	416	
C	417	
C	418	
C	419	
C	421	
C	422	
C	801	
C	802	
C	803	
C	806	
C	807	
C	808	
C	809	
C	810	
C	811	0.1F/5.5V
C	812	
C	813	
C	814	
C	815	
C	816	
C	817	
C	818	
C	819	

A Unit Number : CWX2495 Unit Name : CD Core Unit miscellaneous

IC	201	IC
IC	202	IC
IC	301	IC
IC	302	IC
IC	603	IC
IC	604	IC
IC	701	IC
IC	702	IC
IC	703	IC
IC	704	IC
IC	705	IC
Q	101	Transistor
Q	701	Transistor
Q	770	Transistor
Q	771	Transistor
D	601	Diode
D	730	Diode
D	770	Diode
X	202	Ceramic Resonator 16.93MHz
X	701	Radiator 10.00MHz
S	801	Push Switch(EJECT)
S	802	Push Switch(RESET)
S	803	Spring Switch(MAG)
VR	802	Semi-fixed $680 \Omega(B)$
RESISTORS		
R	101	
R	102	
R	103	
R	201	
R	205	

Part No.
CKSRYB104K16 CCSRCH180J50 CCSRCH100D50 CCSRCH330J50 CCSRCH180J50

CCSRCK1R0C50
CKSRYB103K50
CCSRCK1R0C50
CKSRYB103K50
CKSRYB103K50
CCSRCJ3R0C50
CKSRYB103K50
CKSRYB473K16
CEAL220M16
CEAL100M16
CEAT471M16
CKSRYB224K16
CEAT471M16
CKSRYB473K16
CKSRYB103K50
CEAL220M16
CKSRYB104K16
CCL1055
CKSOYB224K16
CKSRYB334K10
CEJA221M6R3
CEJA101M10
CEAS331M6R3
CKSRYB103K50
CKSRYB104K16
CKSRYB224K16

UPD63711GC
BA05FP
BA5986FM
LB1836M
BA4560F
BA4560F
PD5638A
LC35256FT-70U
HA12187FP
PAJ002A
TC7SH32F
2SB1132
DTA144EK
2SB1184F5
2SC2412K
UDZ7R5(B)
1SS356
1SS355
CSS1536
CSS1428
CSG1139
CSG1139
CSN1044
CCP1337

RS1/8S120J
RS1/8S100J
RS1/16S222J
RS1/16S104J
RS1/16S103J

6. ADJUSTMENT

6.1 CD ADJUSTMENT

- Precautions

- This unit uses a single power supply (+5 V) for the regulator. The signal reference potential, therefore, is connected to REFO (approx. 2.5 V) instead of GND.
If REFO and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the following.
Do not connect the negative probe of the measuring equipment to REFO and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to REFO with the channel 2 negative probe connected to GND.
Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status.
If by accident REFO comes in contact with GND, immediately switch the regulator or power OFF.
- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON, let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- Disc detection during tray extraction and return operations is performed by means of the photo transistor in this unit. Consequently, if the inside of the unit is exposed to a strong light source with the outer casing removed for repairs or adjustment, the following malfunctions may occur:
*Even with a disc loaded, the unit detects "no disc" and cannot start play.
*Although a $12-\mathrm{cm}$ disc is loaded, the unit detects " 8 cm disc" mistakenly.
When the unit malfunctions this way, either re-position the light source, move the unit or cover the photo transistor.
- During exchanging discs, do not press the keys for the discs to be exchanged.

Key to adjustment text inside (12 keys type)	HEAD UNIT (6 keys type)
BAND	BAND
TRK+/FF	TRK+/FF
TRK-/REV	TRK-/REV
7	1
8	2
9	3
10	4
11	5
12	6
DISC-	DISC-
SOURCE ON/OFF	SOURCE ON/OFF

CD Test mode

This mode is used for adjusting the CD mechanism module of the device.

- Test mode starting procedure Reset while pressing the 4 and $\mathbf{6}$ keys together.
- Test mode cancellation Switch ACC, back-up OFF.
- If the 8 or 9 key is pressed while focus search is in progress, immediately turn the power off (otherwise the actuator may be damaged due to the lens stuck).
- Jump operation of TRs other than 100TR continues after releasing the key. CRG move and 100TR jump operations are brought into the "Tracking close" status when the key is released.
- Powering Off/On resets the jump mode to "Single TR (91)", the RF AMP gain setting to 0 dB , and the automatic adjustment value to the initial value.
- During exchanging discs, do not press the keys for the discs to be exchanged.
- The following head units are exceptional so that their entering ways to the test mode are different from others.
Test mode starting procedure
Reset while pressing the $\mathbf{3}$ and 5 keys together.
KEH-P5010R/X1M/EW
KEH-4011/X1M/EE
KEH-P5011/X1M/EE
KEH-4010R/X1M/EW
KEH-P4010RB/X1M/EW
KEH-P4013R/X1M/EW
KEH-5015/X1M/ES
KEH-P4010/X1M/UC
KEH-P4015/X1M/ES

CDX-FM1277,FM1279

Flow Chart

Auto Adjustmen
Display Select

*7 $\quad \underset{(\text { F.T.AGC Gain }=(\text { Present Value } / \text { Initial Value }) \times 20)}{\square}$
*8 Voltage of CRG Motor $=2$ [V]
*9 $\quad[$ ELV motor select \longrightarrow TRAY motor select
$\begin{array}{llllll}72 & 00 & 0 X & \text { Display } 72 \quad 10 & 0 X\end{array}$
*10 $\left[\begin{array}{ccccccccc}8 \text { ms pulse drive } & \longrightarrow & 24 \mathrm{~ms} \text { pulse drive } & \longrightarrow & \text { DC drive } \\ 72 & 00 & 00 & \text { Display } & 72 & 00 & 01 & 72 & 00 \\ \hline\end{array}\right]$
*4 Single TR/32TR/100TR

*6 CRG Move, 100TR Jump Only

$\left[\right.$| 48 ms pulse drive $\longrightarrow 100 \mathrm{~ms}$ pulse drive | $\longrightarrow \mathrm{DC}$ drive | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72 | 10 | 00 | Display | 72 | 10 | 01 | 72 | 10 | 02 |$]$

*11 ELV select : ELV dowm (Disc $12 \rightarrow 1$)
TRAY select : TRAY out
*12 ELV select : ELV up (Disc $1 \rightarrow 12$) TRAY select : TRAY in

6.2 CHECKING THE GRATING

Checking the Grating After Changing the Pickup Unit

- Note :

CD mechanism modules the grating angle of the pickup unit cannot be adjusted after the pickup unit is changed. The pickup unit in the CD mechanism module is adjusted on the production line to match the CD mechanism module and is thus the best adjusted pickup unit for the CD mechanism module. Changing the pickup unit is thus best considered as a last resort. However, if the pickup unit must be changed, the grating should be checked using the procedure below.

- Purpose :

To check that the grating is within an acceptable range.

- Symptoms of Mal-adjustment :

If the grating is off by a large amount symptoms such as being unable to close tracking, being unable to perform track search operations, or track searching taking a long time, may appear.

- Method :

- Measuring Equipment - Oscilloscope, Two L.P.F.
- Measuring Points •E, F, REFO
- Disc
- ABEX TCD-784
- Mode
- TEST MODE

- Checking Procedure

1. Enter Test mode, then select Multi-CD player and switch the 5 V regulator on.
2. Using the TRK+ and TRK- buttons, move the pickup unit to the innermost track.
3. Press key 9 to close focus, the display should read " 91 ". Press key 92 times. Enter Rough Servo mode. Press key 8 to implement the tracking balance adjustment the display should now read "81".
4. As shown in the diagram above, monitor the LPF outputs using the oscilloscope and check that the phase difference is within 75°. Refer to the photographs supplied to determine the phase angle.
5. If the phase difference is determined to be greater than 75° try changing the pickup unit to see if there is any improvement. If, after trying this a number of times, the grating angle does not become less than 75° then the mechanism should be judged to be at fault.

- Note

Because of eccentricity in the disc and a slight misalignment of the clamping center the grating waveform may be seen to "wobble" (the phase difference changes as the disc rotates). The angle specified above indicates the average angle.

- Hint

Change the disc changes the clamp position and may decrease the "wobble".

Grating waveform

Ech \rightarrow Xch $20 \mathrm{mV} /$ div, AC
Fch \rightarrow Ych $20 \mathrm{mV} /$ div, AC

45°

75°

30°

90°

6.3 ADJUSTMENT OF ELEVATION WHEN THE CD CORE UNIT HAS BEEN REMOVED FOR MAINTENANCE

- Adjustment When Error Code 60 is Displayed Because of Malfunctioning Elevation

- Note :

This mechanisms is detects the height of the stage using slide-variable resistance.
To absorb dislocation of the stage height caused by differences in the mechanism and the CD core unit, adjustment must be made for each CD-mechanism module using a variable resistor.
Normally, readjustment is not needed, as this has been adjusted at the factory. However, adjustment of elevation is required according to the procedure explained below if an elevation error has occurred or if the CD core unit has been removed.

- Purpose :

To adjust and confirm whether or not elevation operates correctly.

- Adjustment Method :
- Measuring Equlpment: Oscilloscope, One L.P.F.
- Measuring Points : EREF, EPVO
- Setting : Without a magazine in Test mode

With the mechanism placed upside-down (Place the CD mechanism module so that the $C D$ core unit is above.)

- Confirmation Procedure

1. Enter Test mode, then select Multi-CD player.
2. Press key 7 to enter Mechanism Test mode.
3. Press key 12 twice to specify the amount of movement.

Examples of display

TRACK	FUNCTION
72	$00^{\prime} 00^{\prime \prime}$

The amount of movement changes each time key 12 is pressed.

Key 12

minimum movement
$+$

TRACK	FUNCTION
72	$00^{\prime} 00 "$

Examples of display
4. Press key 9 to set ELV/TRAY mode to TRAY.

TRACK	FUNCTION
72	$01^{\prime} 02 "$

5. Press key FF to release the clamp and return the tray to the magazine.
6. Press key 9 to enter Elevation Move mode.

TRACK	FUNCTION
72	$00^{\prime} 02 "$

7. Use key FF/REV to operate elevation and set if to the graduation of the sixth step (Fig. 1).
8. Make the adjustment.

Use VR802 to adjust the difference in potential between EREF and EPVO to 0 ± 10 mV .
9. When adjustment is completed, press key BAND to exit Mechanism Test mode.

TRACK	FUNCTION
72	$00^{\prime} 02^{\prime \prime}$

10. Confirm operation of the mechanism.

Place the mechanism horizontally (CD core unit below). Take care not to short-circuit the PCB.
11. Confirm the height of the stage. Use the DISC \pm key to select Disc No.6.

Check if the stopper bend of the clamp lever is engaged in the groove of the frame
 stopper (Fig. 2-4).

- Note :

The stopper bend will be pressed downward into the groove for final clamping. Confirm the engagement position of the stopper bend.

- If the stopper bend is engaged in the center and pressed downward, adjustment is completed. Go to step 15.
- If the stopper bend is dislocated, check the amount of dislocation by following steps 12 to 14 .

12. To see the amount of dislocation, place the mechanism upside-down. If the stopper bend has been dislocated in the direction of the first CD, turn VR802 to the left(Fig. 2).

To lower the stage toward the twelfth step by 0.1 mm , reduce the voltage of EREF (adjusted in step 8) by 10 mV .

If the stopper bend has been dislocated in the direction of the twelfth CD, turn VR802 to the right(Fig. 4).

14. When adjustment of the stage height is completed, proceed as fol-

To raise the stage toward the first step by 0.1 mm , increase the voltage of EREF (adjusted in step 8) by 10 mV .
13. Place the mechanism horizontal. Go back to step 11 to reconfirm the stage height.
lows:
15. Press the EJECT switch.
16. Once operation of the mechanism has stopped, turn the power OFF.
17. Wait more than one minute after the power is turned off, then turn the power ON and insert a magazine.
18. Check if the mechanism operates correctly with the first, sixth, seventh and twelfth CDs.
19. If the mechanism operates properly, adjustment is completed. If the mechanism operates improperly, make the adjustment again.

6.4 MODULATOR ADJUSTMENT

- Connection Diagram

Adjustment
Note: When ajusting, the frequency is made 89.1 MHz .

	CD Signal	Adjusting Point	Adjustment Method	Notes
Tuning Voltage Adjustment	$-\infty$	L402	$\begin{aligned} & \text { DC V Meter:TV } \\ & 3.0 \mathrm{~V} \pm 0.1 \mathrm{~V} \end{aligned}$	
Balance Adjustment	$-\infty$	VR301	Oscilloscope:BAL 38 kHz signal becomes minimum	
Modulation Adjustment	400Hz 0dB (*1) or 499 Hz 0dB	VR302	Linear Detector(Spectrum Analyzer) $135 \pm 5 \mathrm{kHz}$ or Oscilloscope:MOD 0.23 Vpp	LEVEL = 7

[^0]
7. GENERAL INFORMATION

7.1 DIAGNOSIS

7.1.1 TEST MODE

- Error Messages

If a CD is not operative or stopped during operation due to an error, the error mode is turned on and cause(s) of the error is indicated with a corresponding number. This arrangement is intended at reducing nonsense calls from the users and also for facilitating trouble analysis and repair work in servicing.
(1) Basic Indication Method

1) When SERRORM is selected for the CSMOD (CD mode area for the system), error codes are written to DMIN (minutes display area) and DSEC (seconds display area). The same data is written to DMIN and DSEC. DTNO remains in blank as before.
2) Head unit display examples

Depending on display capability of LCD used, display will vary as shown below. xx contains the error number.

4-digit display
$\mathrm{E}-\mathrm{xx}$

* When the system is manufactured for an OEM basis, the error display will be configured according to the customer specification.
(2) Error Code List

Code	Class	Displayed error code	Description of the code and potential cause(s)
10	Electricity	Carriage Home NG	CRG can't be moved to inner diameter. CRG can't be moved from inner diameter. \rightarrow Failure on home switch or CRG move mechanism.
11	Electricity	Focus Servo NG	Focusing not available. \rightarrow Stains on rear side of disc or excessive vibrations on REWRITABLE.
12	Electricity	Spindle Lock NG	Spindle not locked. Sub-code is strange (not readable). \rightarrow Failure on spindle, stains or damages on disc, or excessive vibrations. A disc not containing CD-R data is found. Turned over disc are found, though rarely.
\rightarrow RF AMP NG	Sailure on home switch or CRG move mechanism. An appropriate RF AMP gain can't be determined. \rightarrow CD signal error.		
17	Electricity	Setup NG	APC protection doesn't work. Focus can be easily lost. \rightarrow Damages or stains on disc, or excessive vibrations.
30	Electricity	Search Time Out	Failed to reach target address. \rightarrow CRG tracking error or damages on disc.
A0	System	Power Supply NG	Power (VD) is ground faulted. \rightarrow Failure on SW transistor or power supply (failure on connector).
A1	System	Mechanism power failure	Mechanism elevation reference voltage is out of prescription. \rightarrow EREF adjustment VR and/or power abnormal.

Code	Class	Displayed error code	Description of the code and potential cause(s)
50	Mecha- nism	An error upon ejection	MAG switch release time has time out. Elevation time out when eject.
60	Mecha- nism	An error while putti- ng in and out the tray	Tray in / out time has time out. Tray is caught when put in.
70	Mecha- nism	An error upon elevation	Elevation time has time out.
80	Mecha- nism	An error with an em- pty magazine inserted	No disc is available.

Remarks: Unreadable TOC does not constitute an error. An intended operation continues in this case.
A newly designed head unit must conform to the example given above.
Upper digits of an error code are subdivided as shown below:
1x: Setup relevant errors, 3x: Search relevant errors, 3x: Search relevant errors, Ax: Other errors.

- New Test Mode

M-CD plays the same way as before.
If an error such as off focus, spindle unlocking, unreadable sub-code, or sound skipping occurs after setup, its cause and time occurred (in absolute time) are displayed.
During setup, operational status of the control software (internal RAM: CPOINT) is displayed.
These displays and functions are prepared for enhancing aging in the servicing and efficiency of trouble analysis.
(1) Shifting to the New Test Mode
(1) Turn on the current test mode by starting the reset from the 4 and 6 keys together.
(2) Select M-CD for the source through the specified procedure including use of the [SOURCE] key. Then, press the 12 key while maintaining the regulator turned off.
(3) After the above operations, the new test mode remains on irrespective of whether the M-CD is turned on or off. You can reset the new test mode by turning on the reset start.

* With some products, the new test mode can be reset through the same operations as that employed for shifting to the STBY mode (while maintaining the Acc turned off).
(2) Key Correspondence

Key (Example)	Test mode	New test mode		
	To power on (offset adjustment performed)	Power On	In-play	Error Production
UP	-	FWD-Kick	-	Time/Err.No. switching
DOWN	-	REV-Kick	FF/TR+	-
7	-	T.Close (AGC performed) /parameter display switching	Scan	-
8	RF AMP gain switching	Parameter display switching /T.BAL adjustment/T.Open	Mode	-
9	To power on (offset adjustment not performed)	F.Close/RF AGC/F.T.AGC	-	-
10	-	F.Open	-	-
11	-	Jump Off	-	-
12	-	F.Mode switching /T.Close (no AGC)/Jump switching	Auto/Manu	T.No./Time switching

CDX-FM1277,FM1279

Key (Example)	Mechanism Test Mode
BAND	Back to the test mode
UP	Playing the mechanism
DOWN	Playing the mechanism
7	Mechanism test mode in
8	-
9	TRAY/ELV select
10	-
11	-
12	Operation step select

Note: Eject and CD on/off is performed in the same procedure as that for the normal mode.

(3) Cause of Error and Error Code

Code	Class	Contents	Description and cause
40	Electricity	Off focus detected.	FOK goes low. \rightarrow Damages/stains on disc, vibrations or failure on servo.
41	Electricity	Spindle unlocked.	FOK = Low continued for 50 msec. \rightarrow Damages/stains on disc, vibrations or failure on servo.
42	Electricity	Sub-code unreadable.	Sub-code was unreadable for 50 msec. \rightarrow Damages/stains on disc, vibrations or failure on servo.
43	Electricity	Sound skipping detected.	Last address memory function was activated. \rightarrow Damages/stains on disc, vibrations or failure on servo.

Note: Mechanical errors during aging are not displayed.
The error codes should be indicated in the same way as in the normal mode.
(4) Display of Operational Status (CPOINT) during Setup

Status No.	Contents	Protective action
00	CD+5V ON process in progress.	None
01	Servo LSI initialization (1/3) in progress.	None
02	Servo LSI CRAM initialization in progress.	None
03	Servo LSI initialization (2/3) in progress.	None
04	Offset adjustment (1/3) in progress.	None
05	Offset adjustment (2/3) in progress.	None
06	Offset adjustment (3/3) in progress.	None
07	FZD adjustment in progress.	None
08	Servo LSI initialization (3/3) in progress.	None
10	Carriage move to home position started.	None
11	Carriage move to home position started.	None
12	Carriage is moving toward inner diameter.	Specified 10 seconds has been passed or failure on home switch.
13	Carriage is moving toward outer diameter.	Specified 10 seconds has been passed or failure on home switch.
14	Carriage outer kick in progress.	None
15	Carriage outer diameter feed (1 second) in progress.	None
20	Servo close started.	None
21	Pre-processing for focus search started.	None
22	Spindle rotation and focus search started.	None
23	Waiting for focus close (XSI=Low).	Specified focus search time has been passed.
24	Standing by after focus close is over.	Specified focus search time has been passed.
25	Focus search preprocessing is in progress while setup protection is turned on.	None

Status No.	Contents	Protective action
26	Focus search preprocessing is in progress while focus recovery is turned on.	None
27	Wait time after focus close is set up.	Off focus.
28	Standing by after focus close is over.	Off focus.
29	Setup (1/2) before T balance adjustment is started.	Off focus.
30	Setup (2/2) before T balance adjustment is started.	Off focus.
31	T balance adjustment started.	Off focus.
32	T balance adjustment (1/2).	Off focus.
33	T balance adjustment (2/2).	Off focus.
34	Waiting for spindle rotation to end. Spindle rough servo.	Off focus.
35	Standing by after spindle rough servo is over.	Off focus.
36	RF AGC started.	Off focus.
37	RF AGC started.	Off focus.
38	RF AGC ending process in progress.	Off focus.
39	Tracking close in progress.	Off focus.
40	Standing by after tracking is closed. Carriage closing in progress.	Off focus.
41	Focus/tracking AGC started.	Off focus.
42	Focus AGC started.	Off focus.
43	Focus AGC in progress.	Off focus.
44	Tracking AGC in progress.	Off focus.
45	Standing by after focus/tracking AGC are over.	Off focus.
46	Spindle processes applicable servo.	Off focus.
47	Check for servo close is started.	Off focus.
48	Check of LOCK pin started.	Off focus or spindle not locked.
49	RF AGC started.	Off focus.
50	RF AGC in progress.	Off focus.
51	Standing by after RF AGC is over.	Off focus.

(5) Display Examples

1) During Setup (When status no. = 11)
TRK No. MIN. SEC.

11 11' 11"
2) During Operation (TOC read, TRK search, Play, FF and REV)

The same as in the normal mode.
3) When a Protection Error Occurred

Switch to the following displays (A) and (B) using the [BAND] switch:
(A) Error occurrence timing display in absolute time.

An example: Error occurred in 12th tune at $34^{\prime} 56^{\prime \prime}$ in absolute time.
TRK No. MIN. SEC.

12 34' ${ }^{\prime}$ 56"
(B) Error No. display

An example: Error \#40 (Off focus is detected)
ERROR-40

7.1.2 DISASSEMBLY

- Removing the Upper Case (not shown)

1. Remove the nine screws.
2. Remove the Upper Case.

- Removing the CD Mechanism Module
(Fig.5)

Remove the four dampers.

Remove the two springs.
Disconnect the connector and then remove the CD Mechanism Module.

Fig. 5

- Removing the Extension Unit (Fig.6)

Remove the two screws.

Remove the screw.

Straight the tabs at location indicated and then remove the Extension Unit.

Removing the Door

1. Remove the $\operatorname{Door}(A)$ in the direction of arrow(2) while pushing the Grille in the direction of arrow(1), the slide is done as it is in the direction of arrow(3) and remove the $\operatorname{Door}(\mathrm{A})$. (Fig.7)

Fig. 6

2. The slide is done in the direction of arrow(5) and remove the $\operatorname{Door}(B)$ while spread out the $\operatorname{Door}(A)$ in the direction of arrow(4). (Fig.8)
*) The illustration of the text for 12-Disc type but disassembling method is the same for 6-Disc type.

Removing the Pickup Unit

1. Insert the short pin from the pickup unit in the flexible PCB.
2. Remove the flexible PCB from the connector.
3. Remove the flexible card from the connector.
4. Remove the lead wires to which the spindle motor and carriage motor assy were soldered.
5. Remove the two screws and lift the mechanism PCB up as shown in the figure on the upper right. At this time, make sure that the motor PCB and flexible relay card are not pulled excessively.

Fig. 9
6. Remove screw A and then remove the carriage motor assy, lighting conductor, feed screw holder, feed screw and belt (see Fig.10).
7. Remove screw B on the main side and the pickup unit together with the guide shaft (see Fig.10).

Fig. 10

CDX-FM1277,FM1279

7.1.3 CONNECTOR FUNCTION DESCRIPTION

7.2 PARTS

7.2.1 IC

Pin No.	Pin Name	I/O	Format	Function and Operation
1	PLDT	0	C	PLL data output
2	PLCK	0	C	PLL clock output
3	$\overline{\text { ADENA }}$	0	C	A/D reference voltage output
4	TXTSTB	0	C	TEXT parameter output
5	TXTSO	0	C	TEXT control parameter serial output
6	TXTSI	1		TEXT data serial input
7	TXTSCK	0	C	TEXT clock output
8	BYTE	1		VCC joint
9	CNVSS	I		VSS joint
10	POWER	0	C	CD +5V control output
11	CONT	0	C	Servo driver output control
12	RESET	1		Reset input
13	XOUT	0		Crystal oscillating element connection pin
14	VSS			GND
15	XIN	1		Crystal oscillating element connection pin
16	VCC			VDD
17	$\overline{\text { NMI }}$	1		Pull up
18	$\overline{\text { BSENS }}$	I		Back up power sense input
19	$\overline{\text { ASENS }}$	I		Acc sense input
20	TXTPACK	I		TEXT PACK interrupt input
21	IPTA4IN	I		IPIN joint
22	IPPW	0	C	Power supply control output for IP-BUS interface IC
23	DISPPW	0	C	Key/Display microcomputer supply control
24	OPTSEL	1		Pull down
25	SRAMSW	I		"H"
26	FMPCB	I		Pull up
27	SIMUKE	I		"L"
28	NC			Not used
29	IPIN	1		Data input from IP-BUS interface IC
30	IPOUT	0	C	Data output for IP-BUS interface IC
31	DPDT	0	C	Display data output
32	KYDT	1		Key data input
33	FMIPSW	I		FM/IP-BUS select switch
34	TESTIN	I		Test program mode input
35	XSO	0	C	CD LSI data output
36	XSI	1		CD LSI data input
37	XSCK	0	C	CD LSI clock output
38	M6M12	1		6/12 disc select input
39-43	NC			Not used
44	$\overline{\mathrm{RD}}$	0	C	SRAM enable output
45	NC			Not used
46	$\overline{W R}$	0	C	SRAM write enable output
47	SYSPW	0	C	System power supply control output
48	$\overline{\text { CS }}$	0	C	SRAM chip select output
49	XAO	0	C	CD LSI data discernment control signal output
50	$\overline{\text { XSTB }}$	0	C	CD LSI strobe output
51	$\overline{\text { XRST }}$	0	C	CD LSI reset output
52	NC			Not used
53	LOCK	I		Spindle lock detector input
54	FOK	I		FOK signal input
55	NC			Not used
56	A11	0	C	SRAM address bus output
57	A9	0	C	SRAM address bus output
58	A8	0	C	SRAM address bus output
59	A13	0	C	SRAM address bus output
60	A14	0	C	SRAM address bus output
61	A12	0	C	SRAM address bus output
62	VCC			VDD

Pin No.	Pin Name	I/O	Format	Function and Operation
63	A7	O	C	SRAM address bus output
64	VSS			GND
$65-68$	A6-A3	O	C	SRAM address bus output
69	A10	O	C	SRAM address bus output
70	A2 \& (EPSK)	O	C	SRAM address bus output and (E2PROM clock output)
71	A1 \& (EPDI)	O/l	C	SRAM address bus output and (E2PROM data input)
72	A0 \& (EPDO)	O	C	SRAM address bus output and (E2PROM data output)
73	$\overline{\text { ASENSFM }}$	I		Select FM="ASENS"
74	$\overline{\text { EJSW }}$	I		Eject key switch interrupt input
75	$\overline{\text { MAG }}$	I		Magazine lock switch interrupt input
76	CDMUTE	O	C	CD mute output
77	NC			Not used
78	I13	O	C	Motor driver control output
79	I2	O	C	Motor driver control output
80	I4	O	C	Motor driver control output
$81-88$	D0-D7	I/O	C	SRAM data bus input/output
89	PREN	O	C	Preemphasis select output
90	PLCS	O	C	PLL chip select output
91	DSP	I		DISC detect timing input
92	$\overline{\text { DISK }}$			Disc detector input
93	ELVPVO			Voltage input from ELV position sense
94	ELVREF			ELV reference voltage input
95	TRP	I		Tray position input
96	AVSS			A/D GND
97	VDIN			Power supply short sensor input
98	VREF	I		A/D converter reference voltage input
99	AVCC			A/D VCC
100	EPCS	I/O	C	E2PROM detect input, Chip select output

*PD5638A

Format	Meaning
C	C MOS

IC's marked by* are MOS type.
Be careful in handling them because they are very liable to be damaged by electrostatic induction.

LC35256FT-70U

TC7SH32F

SEGMENT

CDX-FM1277,FM1279

7.3 OPERATIONAL FLOW CHART

$1.3 \mathrm{~V} \leqq \mathrm{VD}$ IN $\leqq 2.1 \mathrm{~V}$

Starts communication with Grille microcomputer.

DISPPW $\leftarrow \mathrm{H}$ Pin23 Source keys operative

POWER $\leftarrow \mathrm{H}$ Pin10 $\overline{\text { ADENA }} \leftarrow L$ Pin3

Start the CD player

8. OPERATIONS AND SPECIFICATIONS

8.1 OPERATIONS

Start the CD player

1. Switch the radio on and tune to Modulating Frequencies.

- The initial value is 89.1 MHz .
- If your radio does not have muting, there may be some noise before power switch of control unit is ON. If this happens, turn down the volume of the radio.

2. Press button to switch on and start the player.

Disc Number Search

\oplus : increase the number.: decrease the number.

CDX-FM1277,FM1279

Connecting the Units

8.2 SPECIFICATIONS

CD Player unit

System Compact disc audio system
Usable discs
Signal format
................. Sampling frequency: 44.1 kHz Number of quantization bits: 16; linear Power source
........ 14.4 V DC (10.8-15.1 V allowable)
Max. current consumption 1.0 A
Weight \qquad 2.2 kg (4.9 lbs)

Dimensions
$257(\mathrm{~W}) \times 94(\mathrm{H}) \times 170(\mathrm{D}) \mathrm{mm}$ $[10-1 / 8(W) \times 3-3 / 4(H) \times 6-3 / 4(D)$ in]
FM modulator usable frequency
.............. 87.9/88.1/88.3/88.5/88.7/88.9/89.1 /89.3/89.5/89.7/89.9/90.1 MHz
Backup current \qquad 1 mA or less

Antenna Switching unit	
Weight $140 \mathrm{~g}(0.3 \mathrm{lbs})$
Dimensions	
$\begin{array}{r} \ldots \\ {[1-3 / 4(W) \times} \\ (W) \times \end{array}$	$\begin{gathered} . \ldots . .4(\mathrm{~W}) \times 25(\mathrm{H}) \times 43(\mathrm{D}) \mathrm{mm} \\ {[1-3 / 4(\mathrm{~W}) \times 1(\mathrm{H}) \times 1-5 / 8(\mathrm{D}) \mathrm{in}]} \end{gathered}$
Display unit	
Weight	
Dimensions	
$\left[\begin{array}{c} \cdots-15 / 16 \\ \hline(\mathrm{~W}) \times 1-7 \end{array}\right.$	$\begin{aligned} & \ldots .100(\mathrm{~W}) \times 37(\mathrm{H}) \times 18(\mathrm{D}) \mathrm{mm} \\ & / 16(\mathrm{~W}) \times 1-7 / 16(\mathrm{H}) \times 5 / 8(\mathrm{D}) \mathrm{in}] \end{aligned}$

Antenna Switching unit

Weight
.. $45(\mathrm{~W}) \times 25(\mathrm{H}) \times 43$ (D) mm $[1-3 / 4(W) \times 1(H) \times 1-5 / 8(D) i n]$

Display unit

Weight
$.100(\mathrm{~W}) \times 37(\mathrm{H}) \times 18$ (D) mm
$[3-15 / 16(W) \times 1-7 / 16(H) \times 5 / 8(D) i n]$

Remote Controller unit
Power source
Weight (including battery)
... 15 g (0.03 lbs)
Dimensions
$\ldots 36(\mathrm{~W}) \times 92(\mathrm{H}) \times 9$ (D) mm $[1-2 / 5(\mathrm{~W}) \times 3-5 / 8(\mathrm{H}) \times 1 / 3(\mathrm{D}) \mathrm{in}]$

Note:

Specifications and the design are subject to possible modification without prior notice due to improvements.

CD MECHANISM MODULE

This service manual describes the operation of the CD mechanism incorporated in models listed in the table below.
When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Module	Mechanism Unit
CDX-P1250/X1N/UC,ES	CRT2318	CXK4900	CXB3008
CDX-P1250/X1N/EW		CXK4905	CXB3008
CDX-FM1259/X1N/UC	CRT2320	CXK4916	CXB3008
CDX-FM1257/X1N/UC,ES		CXK4915	CXB3008

CONTENTS

1. CIRCUIT DESCRIPTIONS .. 2
2. DISASSEMBLY .. 18
3. MECHANISM DESCRIPTIONS................................. 23

1. CIRCUIT DESCRIPTIONS

The LSI (UPD63710GC) used on this unit comprises five main blocks ; the pre-amp section, servo, signal processor, DAC and CD text decoder (not used on this model). It also equips with nine automatic adjustment functions.

1.1 PRE-AMP SECTION

This section processes the pickup output signals to create the signals for the servo, demodulator and control.
The pickup output signals are I-V converted by the preamp with the built-in photo-detector in the pickup, then added by the RF amp to obtain RF, FE, TE, TE zero cross and other signals.
This pre-amp section is built in the servo LSI UPD63710GC (IC201). The following describes function of each section.
Since this system has a single power supply (+5 V), the reference voltage for this LSI and pickup are set to REFO (2.5 V). The REFO is obtained by passing the REFOUT from the LSI through the buffer amplifier. The REFO is output from Pin 89 of this LSI. All measurements are done using this REFO as reference. Note : During the measurement, do not try to short the REFO and GND.

Fig. 1 : BLOCK DIAGRAM OF BUILT-IN RF AMPLIFIER from the monitor diode so that the output may be constant. APC circuit is for it. The LD current is obtained by measuring the voltage between LD1 and $\mathrm{V}+5$. The value of this current is about 35 mA .

Fig. 2 : APC CIRCUIT

2) RF Amplifier and RFAGC Amplifier

The photo-detector outputs $(A+C)$ and $(B+D)$ are added, amplified and equalized on this LSI and then output to the RFI terminal as the RF signal. (The eye pattern can be checked by this signal.)
The RFI voltage low frequency component is :

$$
\mathrm{RFI}=(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}) \times 3.2
$$

RFI is used on the FOK generator circuit and RF offset adjusting circuit.
R215 is an offset resistor for maintaining the bottom reference voltage of the RFI signal at 1.5 VDC . The D/A output used for the RF offset adjustment (to be described later) is entered via this resistor.
After the RFI signal from Pin 77 is externally AC coupled, entered to Pin 76 again, then amplified on the RFAGC amplifier to obtain the RFO signal.
The RFAGC adjustment function (to be described later) built-in the LSI is used for switching feedback gain of the RFAGC amplifier so that the RFO output may go to $1.5 \pm 0.3 \mathrm{Vpp}$.
The RFO signal is used for the EFM, DFCT, MIRR and RFAGC adjustment circuits.

3) FOK Circuit

This circuit generates the signal that is used for indicating the timing of closing the focus or state of the focus close currently being played. This signal is output from Pin 4 as the FOK signal. It goes high when the focus close and in-play.
The RFOK signal is generated by holding DC level of the RFI at its peak with the succeeding digital section, then comparing it at a specific threshold level. Thus, the RFOK signal goes high even if the pit is absent. It indicates that the focus close can take place on the disc mirror surface, too.
This signal is also supplied to the micro computer via the low pass filter as the FOK signal and used for the protection and the RF amplifier gain switching.

Fig. 3 : RFAMP, RFAGC AND FOK CIRCUIT

CX-938

4) Focus Error Amplifier

The photo-detector outputs $(A+C)$ and $(B+D)$ are passed through a differential amplifier and an error amplifier, and then ($A+C-B-D$) is output from Pin 91 as the FE signal. The FE voltage low frequency component is :

$$
\begin{aligned}
F E & =(A+C-B-D) \times \frac{16 k}{10 k} \times \frac{(80 k / / 300 k)}{20 k} \\
& =(A+C-B-D) \times 5
\end{aligned}
$$

Using REFO as the reference, an S-curve of approximately 1.5 Vpp is obtained for the FE output. The final-stage amplifier cutoff frequency is 11.4 kHz .

Fig. 4 : FOCUS ERROR AMPLIFIER

5) Tracking Error Amplifier

The photo-detector outputs E and F are passed through a differential amplifier and an error amplifier, and then ($\mathrm{E}-\mathrm{F}$) is output from Pin 93 as the TE signal. The TE voltage low frequency component is :

$$
\begin{aligned}
T E & =(E-F) \times \frac{224 k}{(56 k+27 k)} \times \frac{80 k}{38 k} \\
& =(E-F) \times 5.7 \text { (Effective LSI output is } 5.0) .
\end{aligned}
$$

Using REFO as the reference, the TE waveform of approximately 1.3 Vpp is obtained for the TE output. The final-stage amplifier cutoff frequency is 20 kHz .

6) Tracking Zero Crossing Amplifier

TEC signal (the tracking zero crossing signal) is obtained by multiplying the TE signal four times. It is used for locating the zero crossing points of the tracking error. The zero cross point detection is done for the following two reasons:
(1) To count tracks for carriage moves and track jumps.
(2) To detect the direction in which the lens is moving when the tracking is closed (it is used on the tracking brake circuit to be described later).
The TEC signal frequency range is 300 Hz to 20 kHz .
TEC voltage $=$ TE level $\times 4$
Theoretical TEC level is 5.2 V . The signal exceeds D range of the operational amplifier and thus is clipped. It, however, can be ignored since this signal is used by the servo LSI only at the zero crossing point.

7) DFCT (Defect) Circuit

The DFCT signal is used for detecting defects on the mirrored disc surface. It allows monitoring from the HOLD pin (Pin 2). It goes high when defects are found on the mirrored surface.
The DFCT signal is generated by comparing the RF amplified signal (which is obtained by bottom holding the RFO signal) at a specific threshold level by the succeeding digital section.
Stains or scratches on the disc can constitute the defects on the mirrored disc surface. Thus, as long as the DFCT signal remains high in the LSI, the focus and tracking servo drives are held in the current state so that a better defect prevention may be ensured.

8) 3TOUT Circuit

The 3TOUT signal is generated by entering disturbance to the focus servo loop, comparing phase of fluctuations of the RF signal 3T component against that of the FE signal at that time, then converting the signal to DC level. This signal is used for adjusting bias of the FE signal (to be described later). This signal is not output from the LSI, thus its monitoring is not available.

9) MIRR (Mirror) Circuit

The MIRR signal shows the on track and off track data, and is output from Pin 3.
When the laser beam is
On track: MIRR = "L"
Off track : MIRR = "H"
This signal is used on the brake circuit (to be described later) and also as the trigger to turn on track counting when jumping take place.
The MIRR signal is supplied to the micro computer, too, for the protection purpose.

Fig. 6 : DFCT, MIRR AND 3T DETECTION CIRCUIT

Fig. 7 : HOLD OUTPUT WAVEFORM (When surface defects are present)

Fig. 8 : MIRR OUTPUT WAVEFORM (When an access is made)

CX-938

10) EFM Circuit

This circuit is used for converting the RF signal to digital signal consisting of " 0 " and " 1 ". The RFO signal from Pin 75 is externally AC coupled, entered to Pin 74, then applied to the EFM circuit.
Loss of the RF signal due to scratches or stains on the disc, or vertical asymmetry of the RF due to variations in the discs manufactured can't be eliminated by AC coupling alone. This circuit, therefore, controls the reference voltage ASY on the EFM comparator by use of the fact that " 0 " and " 1 " appear fifty fifty in the EFM signal. By this arrangement, the comparate level is constantly maintained at almost center of the RFO signal level. The reference voltage ASY is generated when the EFM comparator output is passed through the low pass filter. The EFM signal is output from Pin 71. It is a $2.5 \mathrm{Vp}-\mathrm{p}$ amplitude signal centering on REFO.

Fig. 9 : EFM CIRCUIT

1.2 SERVO SECTION (UPD63710GC : IC201)

The servo section controls the operations such as error signal equalizing, in focus, track jump and carriage move. The DSP is the signal processing section used for data decoding, error correction and interpolation processing, among others.
This circuit implements analog to digital conversion of the FE and TE signals generated on the pre-amplifier, then outputs them through the servo block as the drive signal used on the focus, tracking and carriage system. The EFM signal is decoded on the signal processing section and finally output via the D/A converter as the audio signal. The decoding process also generates the spindle servo error signals which is fed to the spindle servo block to generate the spindle drive signal.
The focus, tracking, carriage and spindle drive signals are then amplified on the driver IC BA5986FM (IC301) and fed to respective actuators and motors.

1) Focus Servo System

The focus servo main equalizer is consisted of the digital equalizer. Fig. 10 shows the focus servo block diagram.
When implementing the focus close on the focus servo system, the lens must be brought within the in-focus range. Therefore, the lens is moved up and down according to the triangular focus search voltage to find the focus point. During this time, the spindle motor is kicked and kept rotating as a set speed.
The servo LSI monitors the FE and RFOK signals and automatically carries out the focus close at an appropriate point.
The focus closing is carried out when the following three conditions are met :
(1) The lens approaches the disc from its current position.
(2) $\mathrm{RFOK}=$ " $\mathrm{H} "$
(3) The FZC signal is latched at high after it has once crossed the threshold set on the FZD register (Edge of the FZD).
As the result, the $\mathrm{FE}(=\mathrm{REFO})$ is forced to low.

Fig. 10 : FOCUS SERVO BLOCK DIAGRAM

When the above conditions are all met and the focus is closed, the XSI pin goes to low from the current high, then 40 ms later, the microcomputer begins to monitor the RFOK signal after it that has been passed through the low pass filter.
When the RFOK signal is recognized as low, the micro computer carries out various actions including protection.
Fig. 11 a series of operations carried out relevant to the focus close (the figure shows the case where focus close is not available).
You can check the S-curve, search voltage and actual lens behavior by selecting the Display 01 for the focus mode select in the test mode, and then pressing the focus close button.

Fig. 11 : FOCUS CLOSE SEQUENCE

2) Tracking Servo System

The digital equalizer is employed for the main equalizer on the tracking servo. Fig. 12 shows the tracking servo block diagram.

a) Track jump

When the LSI receives the track jump command from the microcomputer, the operation is carried out automatically by the auto sequence function of the LSI. This system has five types of track jumps used for the search: 1, 4, 10, 32 and 32×3. In the test mode, in addition to three jumps (1,32 and 32×3), move of the carriage can be check by mode selection. For track jumps, the microcomputer sets almost half of tracks (5 tracks for 10 tracks, for instance) and counts the set number of tracks using the TEC signals. When the microcomputer has counted the set number of tracks, it outputs the brake pulse for a fixed period of time (duration can be specified with the command) to stop the lens. In this way, the tracking is closed and normal play is continued.
To improve the servo loop retracting performance just after the track jump, the brake circuit is turned on for 50 ms after the brake pulse has been terminated to increase gain of the tracking servo.
Fast forward and reverse operations are realized by through consecutive signal track jumps. The speed is about 10 times as fast as that in the normal mode.

Fig. 12 : TRACKING SERVO BLOCK DIAGRAM

Fig. 13 : SINGLE TRACK JUMP

2.9 mS (4.10 TRACK JUMP) 5.8 mS (32 TRACK JUMP)

Fig. 14 : MULTI-TRACK JUMP

CX-938

b) Brake Circuit

The servo retracting performance can be deteriorate during the setup or track jump operation. In this connection, the brake circuit is used to ensure steady retract of the tracking servo. The brake circuit detects in which direction the lens is moving, then slows down its move by outputting the drive signal that moves the lens into the opposite direction alone. Track slippage direction is determined by referencing the TEC and MIRR signals and their phase.

LENS MOVING FORWARDS
(INNER TRACK TO OUTER)

LENS MOVING BACKWARDS

 SWITCHING PULSE

FORWARD

Note : Equalizer output assumed to hava same phase as TEC.

Fig. 15 : TRACKING BRAKE CIRCUIT

3) Carriage Servo System

The carriage servo supplies the tracking equalizer's low-frequency component (lens position data) output to the carriage equalizer, then, after providing a fixed amount of gain to it, outputs the drive signal from the LSI. This signal is then applied to the carriage motor via the driver IC.
When the lens offset reaches a certain level during play, the entire pickup must be moved into the forward direction. Therefore, the equalizer gain is set to the level that allows to generate a voltage higher than the carriage motor starting voltage. In actual operations, a certain threshold level is set for the equalizer output by the servo LSI so that the drive voltage may be output from the servo LSI only when the equalizer output exceeds the threshold level. This arrangement helps reducing power consumption. Also, due to disc eccentricity or other factors, the equalizer output may cross the threshold level a number of times. In this case, the drive voltage output from the LSI will have pulse-like waveform.

Fig. 16 : CARRIAGE SERVO BLOCK DIAGRAM

TRACKING DRIVE

 (LOW FREQUENCY)III

LENS POSITION

CRG MOTOR VOLTAGE

Fig. 17 : CARRIAGE SIGNAL WAVEFORM

CX-938

4) Spindle Servo System

The spindle servo has the following modes.
(1) Kick:

This mode is used for accelerating the disc rotation during setup.
(2) Offset:
(a) After the kick is over in the setup, this mode is turned on until changing to rough servo mode.
(b) When focus is lost during play, this mode is turned on until the focus is restored.
Both of the above are used for maintaining the disc rotation rate near to the specified rate.
(3) Applicable servo :

The CLV servo mode is turned on for the normal operations.
In the EFM demodulation block, the frame sync signal and internal counter output signal are sampled for every WFCK/16 and a signal is produced for indicating whether or not they are matching.
They are determined to be asynchronous only when this signal fails to match 8 times in succession. In all other cases, above two signals are assumed to be synchronous. In the applicable servo mode, the retracting servo is automatically selected if the two signals are synchronous. If not, the regular servo is automatically selected.
(4) Brake:

This mode is turned on when stopping the spindle motor.
The microcomputer outputs the brake voltage through the servo LSI. The LSI monitors the EFM waveform and, if its longest pattern exceeds a certain interval (if the rotation is sufficiently slow), the flag is set the LSI and the microcomputer turns off the brake voltage. When the flag is not up within a specified period time, the microcomputer switches the mode from the brake to the stop mode, and maintains this mode for a fixed period of time. If this stop mode is continued for a fixed period of time, the disc will be ejected.
(5) Stop:

This mode is used for powering on the system and the eject operation. When this mode is turned on, voltage across the spindle motor is 0 V .
(6) Rough servo:

This mode is used for when the carriage feed (carriage mode for the long search, etc.) is turned on. The linear speed is calculated from the EFM waveform and high or low level is entered to the spindle equalizer. In the test mode, this mode is also used for the grating check.

Fig. 18 : SPINDLE SERVO MOTOR BLOCK DIAGRAM

1.3 AUTOMATIC ADJUSTMENT FUNCTIONS

Every circuit adjustment on the CD-LSI of this system is automated.

Every circuit adjustment is automatically implemented when the disc is inserted or the CD mode is selected from the source key. The following describes how the adjustments are executed.

1) FZD Cancel Setting

This setting is used for executing the focus close operation without fail.
When power is turned on, the FE offset level is read and a voltage opposite to this offset value is written to the CRAM on the IC to cancel the offset. In this manner, the FZD threshold level can be set to a constant value $(+240 \mathrm{mV})$, thereby ensuring to meet one of the requirements for the IC to execute the focus close that "the FZD signal is latched at high".

2) Automatic Adjustment of TE, FE and RF Offset

Using REFO as the reference, this function adjusts the pre-amp TE, FE and RF offsets to the respective target value when power is turned on (targets values of the TE, FE and RF are 0,0 and -1 V , respectively).

The following is the adjustment procedure :
(1) Respective offset (LD off) is read by the microcomputer via the servo LSI.
(2) The microcomputer calculates the voltages to be corrected from the read values, then sets them to the specified field.

3) Automatic Adjustment of Tracking Balance (T. BAL)

This adjustment is used for eliminating differences between the pickup E and F channels outputs by adjusting gain of the amplifier on the LSI. In the actual operation, the TE waveform is adjusted so that it may be vertically symmetric with REFO.
The following is the adjustment procedure :
(1) Make sure the focus close is complete.
(2) Kick the lens in the radial direction to generate the TE waveform.
(3) At this time, the microcomputer reads the TE signal offset value (via the servo LSI) being calculated by the LSI.
(4) The microcomputer determines if the read offset value is positive, negative or zero.
If the offset value $=0$, the adjustment is terminated.
If the offset value $=A$ positive or negative value, gain of the E and F channels amplifiers are modified according the predetermined rule.
Then above steps (2) through (4) are repeated until the "Offset value $=0$ " or "Specified limit count" is reached.

4) Automatic Adjustment of FE Bias

This adjustment is intended at maximizing the RFI level by optimizing the focus point in-play. This adjustment utilizes the phase difference between the RF waveform $3 T$ level and the focus error signal when disturbance is applied.
Since disturbance is applied to the focus loop, this adjustment is designed to take place in the same timing as the auto gain control (to be described later).
The following is the adjustment procedure :
(1) Disturbance is injected to the focus loop by the command from the microcomputer (within the servo LSI).
(2) The LSI detects fluctuation of the RF signal 3 T component level.
(3) The LSI determines relationship between fluctuation of the 3 T component and the injected disturbance to detect magnitude and direction of the off-focus introduced.
(4) The microcomputer reads the detected results from the LSI.
(5) The microcomputer calculates necessary correction, then hands the calculated value to the bias adjustment term set on the LSI.
This adjustment is repeated several times, as it is so with the auto gain control, to ensure higher accuracy.

5) Focus and Tracking Automatic Gain Control

This function is used for implementing automatic control of the focus and tracking loop gain.
The following is the adjustment procedure :
(1) Inject disturbance to the servo loop.
(2) Extract the error signal (FE and TE) generated at when the disturbance is applied to obtain the signals G 1 and G 2 via the B.P.F.
(3) The microcomputer reads the G1 and G2 signals via the LSI.
(4) Based on the necessary correction calculated by the microcomputer, the LSI performs the loop gain adjustment.

Above adjustments are repeated several times to ensure higher adjustment accuracy.

6) Automatic RF Level Adjustment (RFAGC)

This adjustment is used for implementing intended signal transmission successfully by adjusting unevenness of the RF signal (RFO) levels, that results from disc and machine relevant factors, to a target value. The adjustment is actually done by varying gain of the amplifier provided between the RFI and RFO.
The following is the adjustment procedure :
(1) Using the command, the microcomputer reads the output from the RF level detection circuit on the servo LSI.
(2) Based on the read value, the microcomputer calculates an amplifier gain that will produce the target RFO level.
(3) The microcomputer sends the corresponding command to the servo LSI so that the above gain value may be set.

This adjustment takes place at the following timing :

- When the focus close alone is completed during the setup process.
- Just before the setup is completed (just before the play takes place).
- After the off-focus has been corrected during the play.

7) Adjustment of Pre-Amp Stage Gain

It is used for adjusting the entire RFAMP (FE, TE and RF amplifiers) to +6 dB or +12 dB depending on given gain level when reflected light from the disc is significantly below the required level due to stained lens. This phenomena can be noticed when playing back the CDRW.

The following is the adjustment procedure :
When reflected light from disc is judged to be significantly below the required level during the setup, set the entire RFAMP to +6 dB or +12 dB . In this case, if the gain is modified, the setup have to be repeated from the first step.

Through the adjustment, if you judged the play becomes available by setting the entire RFAMP to +6 dB , +6 dB should be selected for the setup next time on.

See the figure below :

8) Initial Adjusting Values

All the automatic adjustments are implemented using the previous adjustment values as the initial values unless the microcomputer power (the backup power) is not turned off (though there are some exceptions).
When the backup is turned off, automatic adjustment is executed based on the initial values rather than the previous adjustment values.

9) Displaying Coefficients After Adjustment

You can display and check results of some automatic adjustments (FE and RF offset, FZD cancel and F / T / RFAGC) from the test mode. The following coefficients are displayed in each automatic adjustment :
(1) FE and RF offset and FZD cancel

Reference value $=32$ (The coefficient of 32 indicates that no adjustment was required).
The results are displayed in multiples of approximately 40 mV .
An example : When FZD cancel coefficient $=35$
$35-32=3$
$3 \times 40 \mathrm{mV}=120 \mathrm{mV}$
Since the corrected value is
approximately +120 mV , the FE offset
before adjustment was -120 mV .
(2) F and T gain adjustment

Reference value $=$ Focus/Tracking $=20$
A coefficient displayed indicates an amount of adjustment conducted on the reference value.
An example : When AGC coefficient $=40$
$40 / 20=$ Overall gain has bee doubled
$(+6 \mathrm{~dB})$. (The original loop gain of $1 / 2$
has been doubled to have the targeted overall gain.)
(3) RF level adjustment (RFAGC)

Reference value $=8$
Coefficient $=9$ to $15 \cdots$. . The direction in which the RF level is increased (the gain is increased).
Coefficient $=7$ to $0 \cdots \cdots$. The direction in which the RF level is decreased (the gain is decreased).
Incrementing or decreasing the coefficient by "1" varies the gain by 0.7 to 1 dB .
Maximum gain $=$ Typically +6.5 dB . Coefficient at this time is 15.
Minimum gain $=$ Typically -6.0 dB . Coefficient at this time is 0 .

1.4 POWER SUPPLY UNIT CONFIGURATION

The power supply unit of this system consists of 4 power sources, VD(8.6V), 5VA(5V), 4R3VLR(4.3V) and EVREF(5V).
VD :Main power source. Generated in the expansion board.
5VA :Power source for IC201 and the Pick-up Unit. Generated by the regulator IC (IC101) from VD.

4R3VLR :Audio midpoint voltage. Generated by the regulator IC (IC603) from VD.
EVREF :Power source for Linear Position Sensor. A/D reference voltage of the microcomputer. Usually taken from the microcomputer's VDD line via on enabling switch.

1.5 MECHANISM OPERATION

1) Elevation Operation

The microcomputer determines the present elevation position from the voltage value (EPVO) obtained from the potential divider VR801.
The voltage of the position of the requested disk is calculated from figure 20 and the ELV Motor is controlled so that the EPVO voltage is matched to the value obtained from the calculation.

2) Tray Extension and Retractino

The microcomputer detects the DSP signal waveform (voltage) and TRP signal waveform (voltage) obtained at the DSP switch (S852) and the TRP switch (S851) by tray retraction, tray extension and clamp completion and controls the Tray Motor.

3) 0.6 mm UP/DOWN Operation

In order to secure clearance with the neighboring disk the Stage Mechanism is driven down by the ELV Motor (M852) when clamping is complete. The microcomputer detects the completion of clamping, and when the Tray Motor is brought to a full stop, the ELV Motor (M852) is forcibly driven for a 240 ms interval in the downward direction.

When the tray is being retracted, the ELV Motor (M852) is controlled to match the value of EPVO calculated during the elevation operation. The tray retraction operation is started when the Tray has been moved to the prescribed position.

Each motor is driven by the driver IC302 (LB1836M). LB1836M is an IC which usually operated through the combination of H and L of the 4 lines $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$ and I 4 . With this system, $\mathrm{I}=\mathrm{I} 3$ and control is realized through a combination of H and L of the 3 lines I1, I 2 and I 4 .

ELV Motor	Tray Motor	I1,I3	I2	I4
Forward	Brake	H	H	L
Reverse	Stand-by	L	L	H
Brake	Forward	H	L	H
Stand-by	Reverse	L	H	L
Brake	Brake	H	H	H
Stand-by	Stand-by	L	L	L

* ELV Motor Forward : ELV-up (Disc No. Down)

4) Disc Detection

The DSP signal waveform (voltage) at the DSP switch (S852) is used for determinating the existence and nonexistence of a disk and the disk type (8 cm or 12 cm). The disk detection operations are carried out while the Tray is being pulled out of the magazine. Disk detection is determined when the light passes through (DISC waveform L:less than 2.5 v) or is interrupted (DISC waveform $\mathrm{H}: 2.5 \mathrm{~V}$ or above) with an array of LEDs and photo transistors above and below the Tray.

The DISC waveform is continuously monitored within the intervals A and B above and if a L is detected even once, that interval is determined as L. If a L is not detected at all then that interval is determined as H in the following.

	A	B
12 cm	H	H
8cm	L	H
No Disk	-	L

Cautions on Service

1) Do not hold the upper frame of the magazine insertion port in the CD mechanism module, marked by an arrow in Fig. 21, when servicing. It's because this section is easily deformed.

CD mechanism module

Fig. 21
2) The stage mechanism section projects below the chassis when positioned at the tenth stage or lower. So, do not leave the stage mechanism section at these positions to avoid damage or malfunction.
3) Before removing the flexible card and pickup flexible PCB from the connectors on the relay PCB, be sure to insert a short pin into the pickup unit first.
4) When replacing the tray motor assy, mount the 2-stage gear(Not resable) on the shaft of a new tray motor assy. (As the gear uses snap-on fittings, push it in until it is snapped completely.)
5) When replacing the magazine holder assy, mount the worm wheel(Not resable) on the shaft of a new elevation worm wheel.
(As the gear uses snap-on fittings, push it in until it is snapped completely.)

2. DISASSEMBLY

- Removing the Pickup Unit

1. Insert a short pin into the pickup flexible PCB.
2. Remove the pickup flexible PCB from the connector.
3. Remove the flexible card from the connector.
4. Remove the lead wires of the spindle motor assy and carriage motor assy by removing solder.
5. Loosen the two screws. Lift up the relay PCB as shown in Fig. 22.

Be careful not to excessively pull the tray motor flexible PCB and the relay flexible PCB.

Fig. 22
6. Remove three screws A and then remove the carriage motor assy, remove the lighting conductor ,feed screw holder, feed screw and belt (see Fig. 23).
7. Remove screw C on the main side and the pickup unit together with the guide shaft (see Fig. 23).

Screw A

Fig. 23

Removing the CD Core Unit

1. Insert a short pin into the pickup flexible PCB.
2. Remove the flexible card from the CD core unit connector.
3. Remove the lead wires of the elevation motor assy that were soldered to the CD core unit.
4. Remove screw D and three screws E and then the CD core unit (see Fig. 24).

Cautions on Mounting the CD Core Unit

When mounting the CD core unit on the CD mechanism module, accurately insert the linear position sensor (Slide control: VR801) mounted on the CD core unit into the Ushaped groove of the elevation front lever (see Fig. 35).

If the linear position sensor is not inserted into the U-shaped groove, elevation operation will malfunction.

Removing the Carriage Motor Assy

After removing the pickup unit (see "Removing the Pickup Unit" in pages 17 and 18), remove the feed screw, belt , and feed screw holder.

CX-938

- Removing the Spindle Motor Assy

1. Rotate the tray motor until the clamp joint arm moves.
2. Slide and remove the clamp spring as shown in Fig. 25.
3. Remove the clamper.
4. As shown below, match the positions of the holes of the support wheel and screws F. Then remove the two screws F and spindle motor assy.

* When removing the clamper, be careful not to lose the ball mounted between the clamper and clamp spring.

Release the clamp spring from the hook(s), and then slide it in the

Fig. 25

Cautions on Mounting the Spindle Motor Assy

1. Mount the spindle motor assy so that the lead wires face the rear of the mechanism unit (see Fig. 26). Mechanism unit - bottom view Front side (magazine insertion port)

Rear
Fig. 26
2. Check that the torsion spring presses the side pressure plate (see Fig. 27).

Fig. 27
3. When mounting the clamper, confirm that the ball has been installed.

Removing the Tray Motor Assy (see Fig. 28)

1. Remove screw G.
2. Remove the elevation joint arm spring.
3. Remove the polyslider washer and the 2-stage gear.
4. Move the front lever to move the stage mechanism unit to the "4" position on the front lever.
5. Remove screw H.
6. Move the front lever again to move the stage mechanism unit to the uppermost stage.
7. Remove the tray motor assy.

- Cautions on Mounting the Tray Motor Assembly (see Fig. 28)

When mounting the 2-stage gear, verify that the positions of the holes of the 2-stage gear and the stage chassis match each other. For easy confirmation, check that the shapes of the 2-stage gear and the stage chassis form a concentric circle, as shown in the figure.

- Removing the Elevation Motor Bracket Assy (see Fig. 28)

1. Remove the elevation joint arm spring.
2. Remove the polyslider washer and the 2-stage gear.
3. Remove two screws I and the elevation motor bracket assy.

CX-938

Removing the Stage Mechanical Unit Section (see Fig. 29)

1. Remove the elevation joint arm spring.(See Fig. 28)
2. Remove the magazine lock spring.(See Fig. 28)
3. Remove the 2-stage gear. (See Fig. 28)
4. Remove the screw J and then the stopper.
5.Fully slide the front lever in the direction that the stage mechanism assy moves upwards. Then, the front lever and the rear lever can be removed at the same time.
5. Remove three screws K and two screws L, and then the magazine holder Assy.
6. Remove four screws M and then the lower frame.
7. Remove three screws N and then the front frame.
8. Move the stage mechanism assy to the lowest position. Slide the bent section of the stage mechanism assy along the L-shaped groove in the front frame to remove the stage mechanism assy.

3. MECHANISM DESCRIPTIONS

Inserting the Magazine

1. When the magazine is inserted against the force of the EJECT lever spring, the lock arm comes in along the groove in the rear side of the magazine to lock (see Fig. 30).

Direction of the magazine insertion

Fig. 30
2. The magazine lock is detected when the detection arm moves along the EJECT lever cam section and presses the magazine detection switch mounted on the CD core unit.
When the magazine is not inserted, the detection arm is held at the SW OFF position by the EJECT lever cam (see Fig. 31).
When the magazine starts insertion, the lock arm starts moving along the groove in the rear of the magazine. Then the lock arm stops at the detection arm "stop" position. Although the detection arm tries to move in the SW ON direction, the lock arm stops it. (See Fig. 32.)
When the magazine is completely inserted, the magazine to lock. At the same time, the detection arm is released to press the magazine detection switch with spring force. (See Fig. 33)

Fig. 31
Fig. 32
Fig. 33

CX-938

Elevation Operation (see Fig. 34)

When the elevation motor is driven, the elevation joint arm rotates. The front and rear levers, engaged with the ends of the elevation joint arm respectively, slide to move the stage mechanism unit up and down.

- Detecting Elevation (see Fig. 35).

When the elevation joint arm rotates, the front lever slides.
Because the knob of the linear position sensor (slide control: VR801) is inserted in the U-shaped groove of this front lever, the elevation joint arm moves in synchronization with the lever and detects the voltage at that time.

Fig. 34

- Tray Extraction to Clamp Operation (Loading Motor Drive Section) (See Fig. 36.)

When the loading motor drives the cam gear, the cam gear moves the tray extraction arm along the cam groove to extract the tray. At that time, the carriage assy (including the spindle motor assy and tray positioning pin) waits until the tray passes it. When tray extraction has been completed, the cam gear swings the clamp joint arm and slides the clamp lever engaged with the clamp joint arm. The shaft of the carriage assy is lifted along the step-shaped groove as the clamp lever slides. The carriage assy swings toward the stage chassis. Subsequently, the spindle motor assy comes to a CD disc to load and lift it up from the tray.

Fig. 36

CX-938

Elevation Mechanism - Play Elimination

Immediately before the clamp operation is completed, the bent sections of the clamp lever comes into the frame stopper section and press it downward to control the vertical position. This operation can press the stage downward by means of the elevation mechanism. At this time, the elevation motor stops, not by the detection of the pressed position, but in a certain period of time after the elevation mechanism moves up to the limit of the movement. (See Fig. 37)
The figure 37 shows the pressing mechanism. When the clamp lever bent sections press the framestopper section, the carriage chassis shaft inserted into the clamp lever groove is lifted up until it is pressed against the end of the vertical groove in the stage chassis. At this time, the stage chassis shaft, which is also inserted into the other groove in the clamp lever, is located at the wider portion of the groove so that the carriage chassis shaft can move to the end of the vertical groove in the stage chassis. This pressing operation eliminates the play at each of the stage chassis, carriage chassis, clamp lever, and the frame to improve the resistance against vibration. (See Fig. 39.)

* The elevation joint arm spring has been installed to keep this pressing state.

Disc detection

Fig. 39
The cam gear for tray extraction operation moves the DSP switch lever to turn the DSP switch (S852) ON and OFF. The photo sensors (0851 and D852) detect the presence of discs and their types (8 or 12 cm) with a certain timing.

Detecting Tray Extraction and Return

A) Tray extraction (Fig. 40)

The clamp joint arm moves the clamp lever and performs clamping. After clamping has been completed, the protrusion on the clamp joint arm presses the TRP switch (S851) via the TRP switch (S851) via the plate spring on the DSP switch lever and turns on the switch.

Fig. 40
B) Tray return (see Fig. 41)

The TRP switch (S851) is turned on by the DSP switch lever moved by the cam gear.

CX-938

- Tray Lock Mechanism

In other modes than the PLAY mode, the tray bouncing prevention spring is deflected by the rear lever and functions as a stopper to prevent the tray from coming out of the magazine. (Fig. 43)
In the PLAY mode, the window in the rear frame catches the projection of the tray bouncing prevention spring.
Accordingly, the spring is not deflected to enable the tray's insertion and extraction. (Fig. 42)
Consequently, in other modes than the PLAY mode (during the waiting mode), the tray will not come out of the magazine even if external shock is applied to it. (Fig. 43)

When set in the PLAY position

Fig. 42

When set to a position other than PLAY

Fig. 43

Ejecting the Magazine (see Fig. 44)

When the rear lever is further driven from the uppermost stage position of the elevation, the bent end face of the rear lever presses the boss on the lock arm to release the lock and the magazine is ejected by the EJECT lever.

Fig. 44

Lubrication points (Fig. 45)

(1) Around the pickup assy -> Use EM-60L for all points.

(2) Slide section with clamp ball

Fig. 45
(3) For the other sections, use the E paste.

[^0]: * $1: L$ and R are input at the same time.

