Service Manual

Pioneer TOYOTA

ORDER NO. CRT2538

© EXUS RX300 AUDIO SYSTEM DISC PLAYER ASSY

VEHICLE	DESTINATION	PRODUCED AFTER	TOYOTA PART No.	ID No.	PIONEER MODEL No.
LEXUS RX300	U.S.A., Canada, Italy, Denmark,	July 2000	86270-48020		CDX-M9086ZT-02/E
	Sweden,Finland,Norway,				
	Singapore,Brunei,France,				
	Belgium,Switzerland,		86275-48020		CDX-M9086ZT-92/E
	Austria,Germany,				
	Netherlands, Taiwan				

CDX-M9086ZT-02,M9086ZT-92

• This service manual should be used together with the following manual(s):

Model	Order No.	Mech. Module	Remarks
CDX-M9086ZT/UC	CRT2115		
CX-624	CRT1631	C3	CD Mech. Module:Mech.Description,Disassembly
CDX-P616/UC	CRT1632		Circuit Description

- As to CDX-M9086ZT-02/E, refer to CRT2115 (CDX-M9086ZT/UC) because of the same contents.
- As to CDX-M9086ZT-92/E, refer to CRT2115 (CDX-M9086ZT-91/UC) because of the same contents.

ervice

-CDX-P610

ORDER NO. CRT1632

The chapter 1 of this Service Manual will not be reprinted. On your additional orders, we may supply only the chapter 2. For the chapter 1, please make copies and attach to the chapter 2 at your side if necessary.

MULTI-COMPACT DISC PLAYER

uc UC, EW, ES X1B/EW

- See the separate manual CX-624 (CRT1631) for the CD mechanism description and disassembly.
- The CD mechanism employed in this model is one of CX-624 series.

SPECIFICATIONS

General	
System	Compact disc audio system
Usable discs	Compact Disc
Signal format	Sampling frequency: 44.1 kHz
_	Number of quantization bits: 16; linear
Power source	14.4 V DC
	(10.8 - 15.6 V allowable)
Max. current cor	nsumption 1.0 A
Weight	2.4 kg (5.3 lbs.)
	[10-7/8 (W) \times 2-3/4 (H) \times 6-1/8 (D) in.]

Audio	
	5 - 20,000 Hz (1 dB)
Signal-to-noise ratio	92 dB (1 kHz) (IHF-A Network)
Distortion	0.006 %
Dynamic range	90 dB (1 kHz)
Output level	1,000 mV (1 kHz, 0 dB)
Number of channels	2 (stereo)

These specifications were determined and are presented in accordance with specification standards established by the Ad Hoc Committee of Car Stereo Manufacturers. Note:

Specifications and design are subject to possible modification without prior notice due to improvements.

CONTENTS

CHAPTER 1	CHAPTER 2	
1. SAFETY INFOMATION1-2	1. EXPLODED VIEW	2-3
2. OPERATIONS AND CONNECTION1-3	2. PACKING METHOD	2-8
3. DISASSEMBLY1-4	3. CONNECTION DIAGRAM(1)	2-13
4. ADJUSTMENT1-5	4. SCHEMATIC CIRCUIT DIAGRAM(1)	2-17
5. CIRCUIT DESCRIPTION1-18	5. SCHEMATIC CIRCUIT DIAGRAM(2)	2-20
6. EXPLODED VIEW PARTS LIST1-39	6. CONNECTION DIAGRAM(2)	2-23
7. ELECTRICAL PARTS LIST1-42	7. BLOCK DIAGRAM	2-25

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan PIONEER ELECTRONICS SERVICE INC. P.O.Box 1760,Long Beach,California 90801 U.S.A.

PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R OP2 Canada PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1,9120 Melsele, Belgium

PIONEER ELECTRONICS AUSTRALIA PTY.LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL:[03]580-9911

© PIONEER ELECTRONIC CORPORATION 1994

CHAPTER 1

1. SAFETY INFORMATION

1.1 CDX-P616/UC,P610/UC

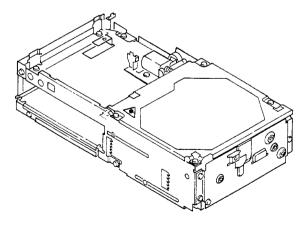
CAUTION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely; you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

Lead in solder used in this product is listed by the California Health and Welfare agency as a known reproductive toxicant which may cause birth defects or other reproductive harm (California Health & Safety Code, Section 25249.5). When servicing or handling circuit boards and other components which contain lead in solder, avoid unprotected skin contact with the solder. Also, when soldering do not inhale any smoke or fumes produced.

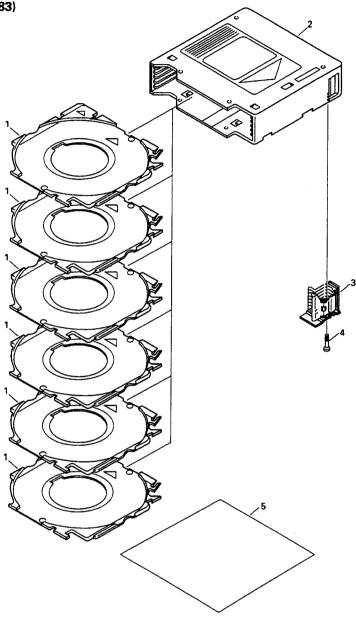

1.2 CDX-P610/EW,X1B/EW

- 1. Safety Precautions for those who Service this Unit.
- Follow the adjustment steps (see pages 1-5 through 1-14)in the service manual when servicing this unit. When checking or adjusting the emitting power of the laser diode exercise caution in order to get safe, reliable results.

Caution:

- 1. During repair or tests, minimum distance of 13cm from the focus lens must be kept.
- 2. During repair or tests, do not view laser beam for 10 seconds or longer.
- 2. A "CLASS 1 LASER PRODUCT" label is affixed to the rear of the player.
- 3. The triangular label is attached to the mechanism unit frame.

4. Specifications of Laser Diode


Specifications of laser radiation fields to which human access is possible during service.

= 785 nanometers

Radiant power = 69.7 microwatts(Through a circular aperture stop having a diameter of 80 millimeters) 0.55 microwatts(Through a circular aperture stop having a diameter of 7 millimeters)

1. EXPLODED VIEW

Parts List

Mark No. Description	Part No.	
1 Tray Unit	CXA5484	•
2 Case Unit	CXA5479	
3 Bracket Assy	CXA5480	
4 Screw(M2×13)	CBA1272	
5-1 Owner's Manual	CRD1639	
5-2 Label	CRW1248	

Fig.1

● CD Mechanism Unit(Parts List:Page 1-40)

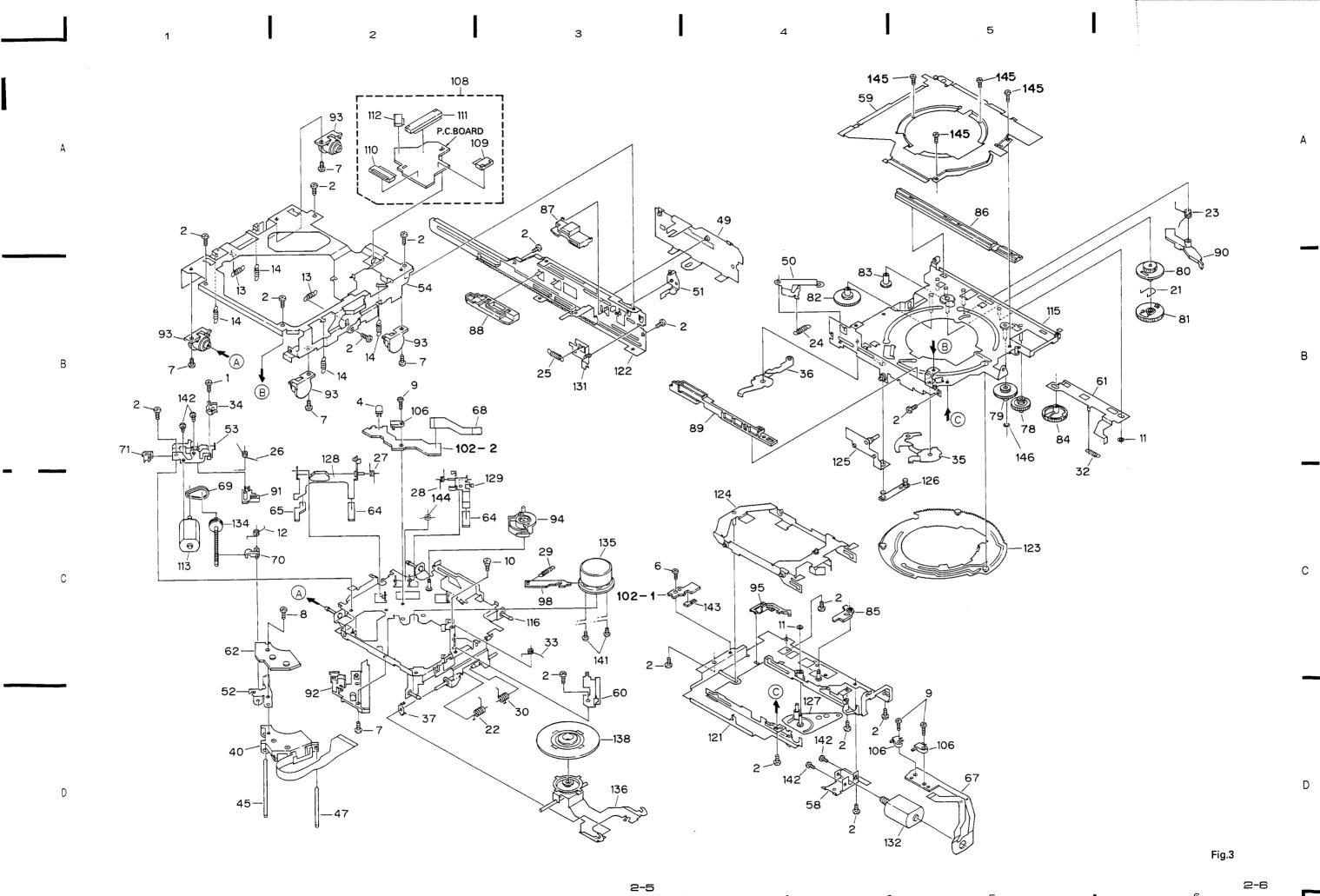
118 Fig.2

Α

В

С

D


2-4

С

D

2

3

2 ● Chassis(Parts List:Page 1-39) 2. PACKING METHOD В EXTENTION P.C. BOARD MAIN UNIT С Fig.5 D Fig.4

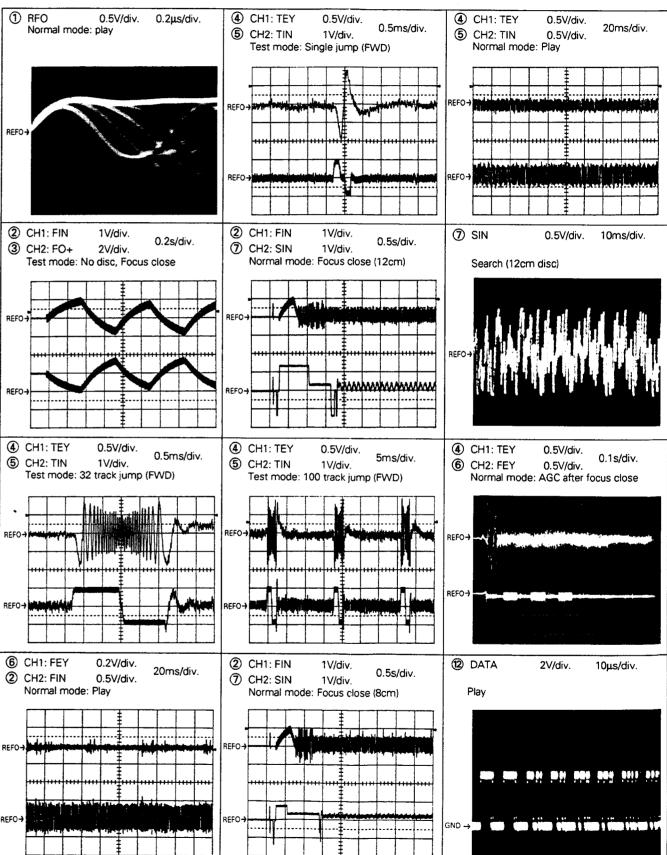
.

● Parts List(CDX-P616/UC)

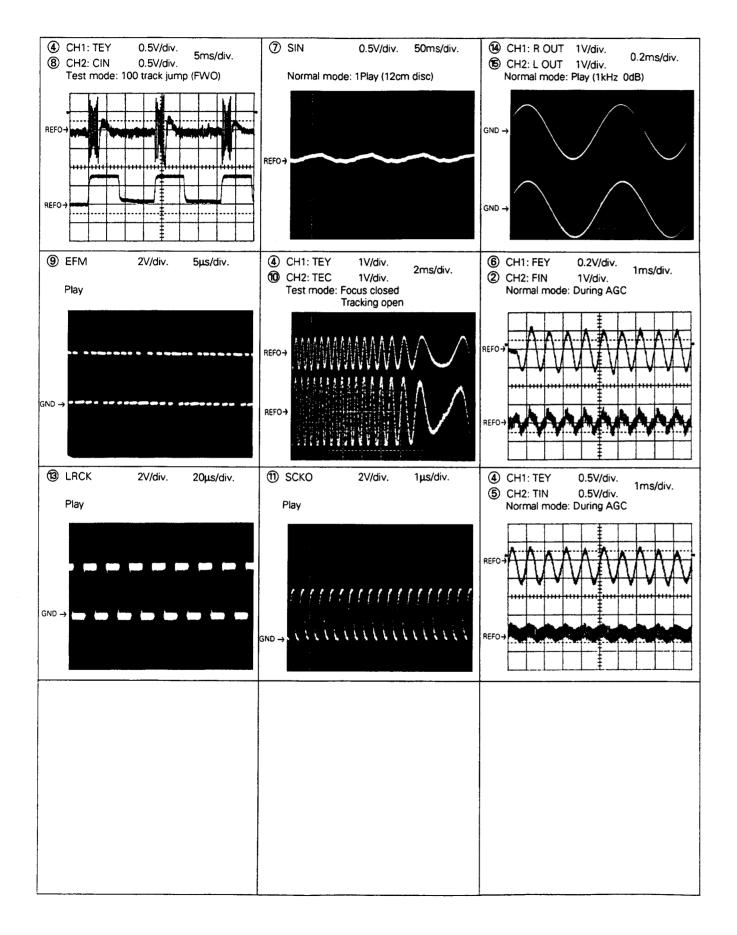
Mark	No.	Description	Part No.	Mark No.	Description	:Non spare part Part No.
	1-1	Polyethylene Bag	CEG1116	8-1	Screw Assy	CEA1962
	1-2	Owner's Manual	CRD1780		Screw(×4)	CBA1295
*	1-3	Warranty Card	CRY1070	* 8-1-2	Polyethylene Bag	E36-615
	2	Cord	CDE4211		Screw(×4)	HMB60P500FMC
	3	Magazine Assy	CXA5483	8-1-4	Screw(×4)	HMF40P080FZK
	4	Protector	CHP1662	8-1-5	Nut(×4)	NF60FMC
	5	Protector	CHP1661	8-2	Angle(×2)	CNB1874
	6	Polyethylene Bag	CEG1174		Polyethylene Bag	E36-634
	7	Carton	CHG2510		Contain Box	CHL2510
	8	Accessory Assy	CEA2019			•=••

• The CDX-P610/UC,EW,ES and CDX-P610/X1B/EW Parts Lists enumerate the parts which differ from those enumerated in the CDX-P616/UC Parts List only. The parts other than those enumerated in the former are identical with those in the latter, to which you are requested to refer, accordingly. The CDX-P616/UC Parts List is given on page 2-9.

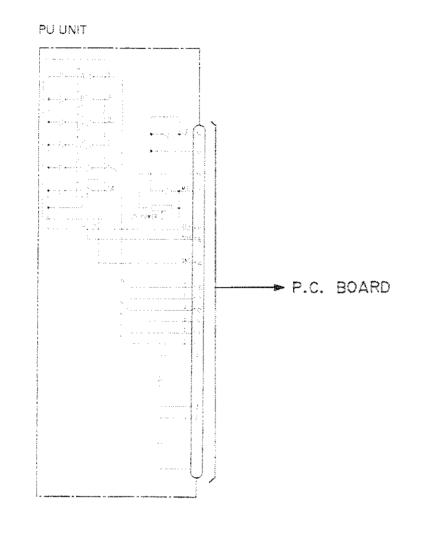
		CDX-P616/UC	CDX-P610/UC	CDX-P610/EW	CDX-P610/ES	CDX-P610/X1B/EW
Mark	No. Description	Part No.				
]	1-1 Polyethylene Bag	CEG1116	CEG1116	CEG1116	****	* UEG-004
	1-2 Owner's Manual	CRD1780	CRD1778	CRD1777	CRD1779	CRD1777
		[ļ	CRD1776		CRD1776
*	1-3 Warranty Card	CRY1070	••••	CRY1071	••••	URY-001
	2 Cord	CDE4211	CDE4211	CDE4210	CDE4211	CDE4210
	6 Polyethylene Bag	CEG1185	CEG1185	CEG1042	CEG1042	UEG-003
	7 Carton	CHG2510	CHG2508	CHG2507	CHG2509	CHG2507
	9 Contain Box	CHL2510	CHL2508	CHL2507	CHL2509	CHL2507
*	Card	••••	ARY1048	•••••	••••	••••

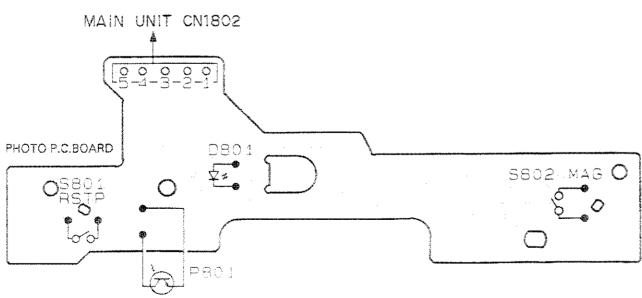

Owner's Manual

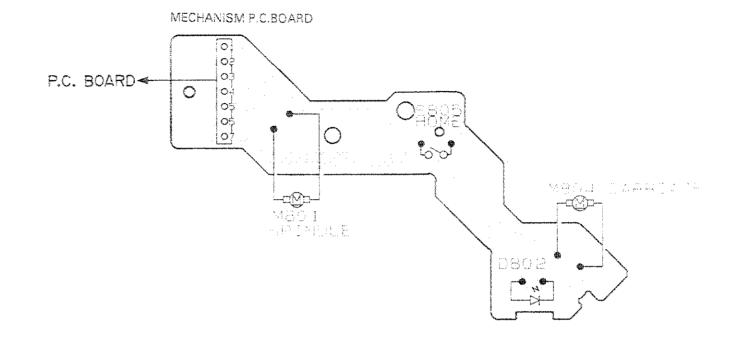
Part No.	Model	Language
CRD1776	CDX-P610/EW	English, Italian, French, German, Dutch
CRD1777	CDX-P610/EW	Spanish, Portuguese, Swedish, Norwegian, Finnish
CRD1778	CDX-P610/UC	English, French
CRD1779	CDX-P610/ES	English, French, German, Spanish, Arabic
CRD1780	CDX-P616/UC	English,French

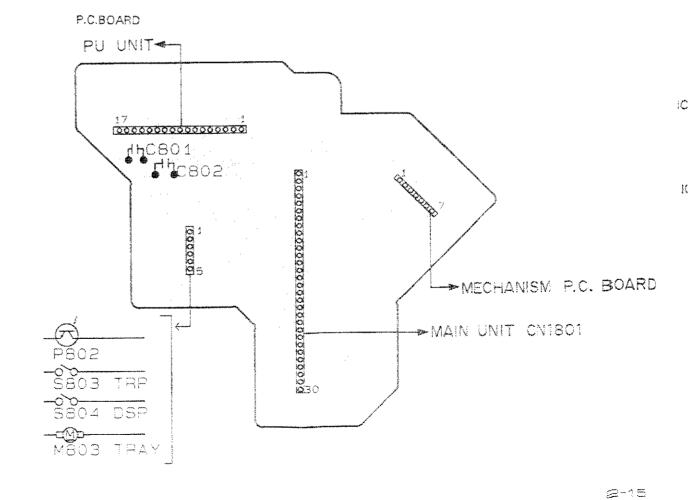

Note: 1. The encircled numbers denote measuring pointes in the circuit diagram.

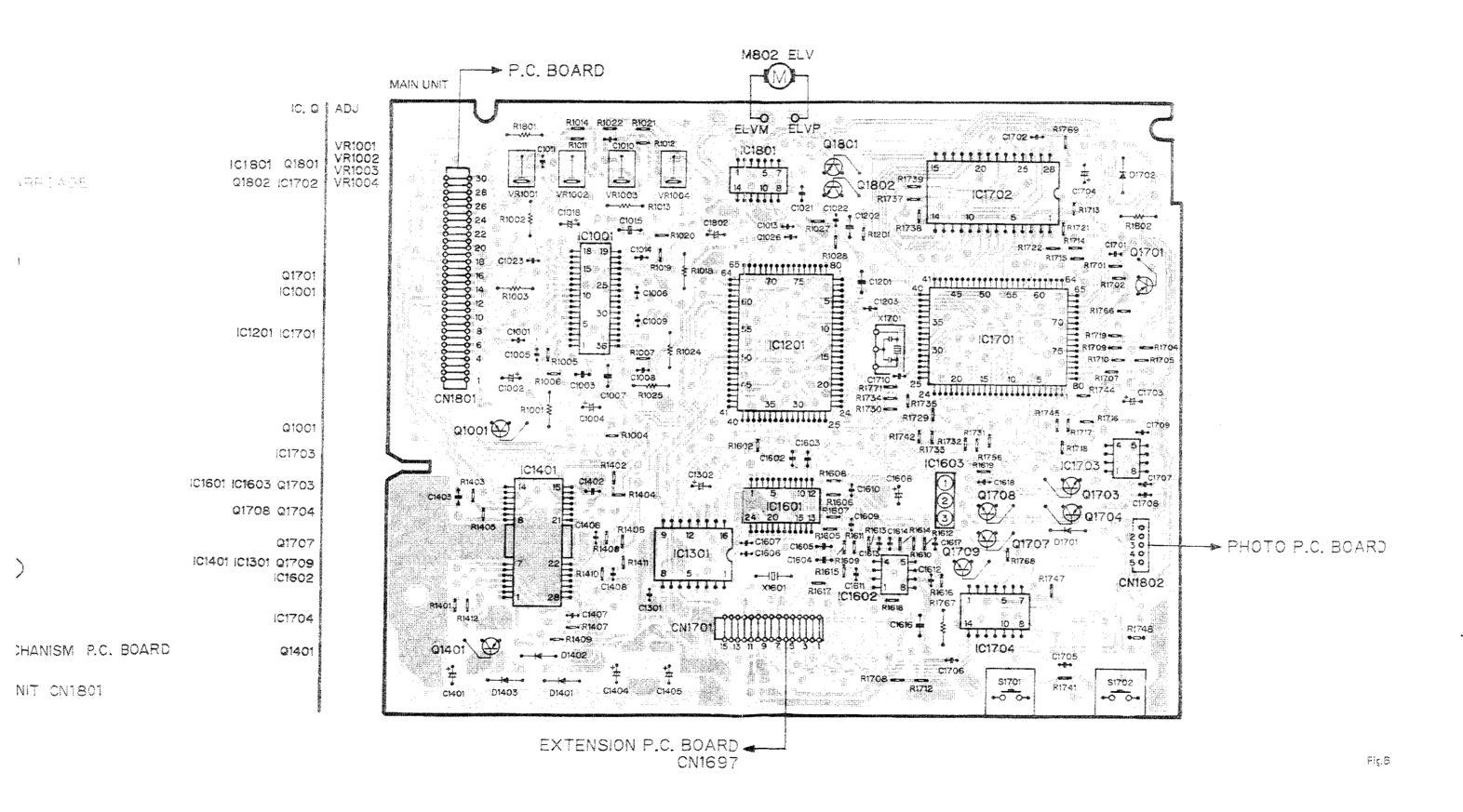
2. Reference voltage


Waveforms




REFO: 2.5V




3. CONNECTION DIAGRAM(1)

4. SCHEMATIC CIRCUIT DIAGRAM(1)

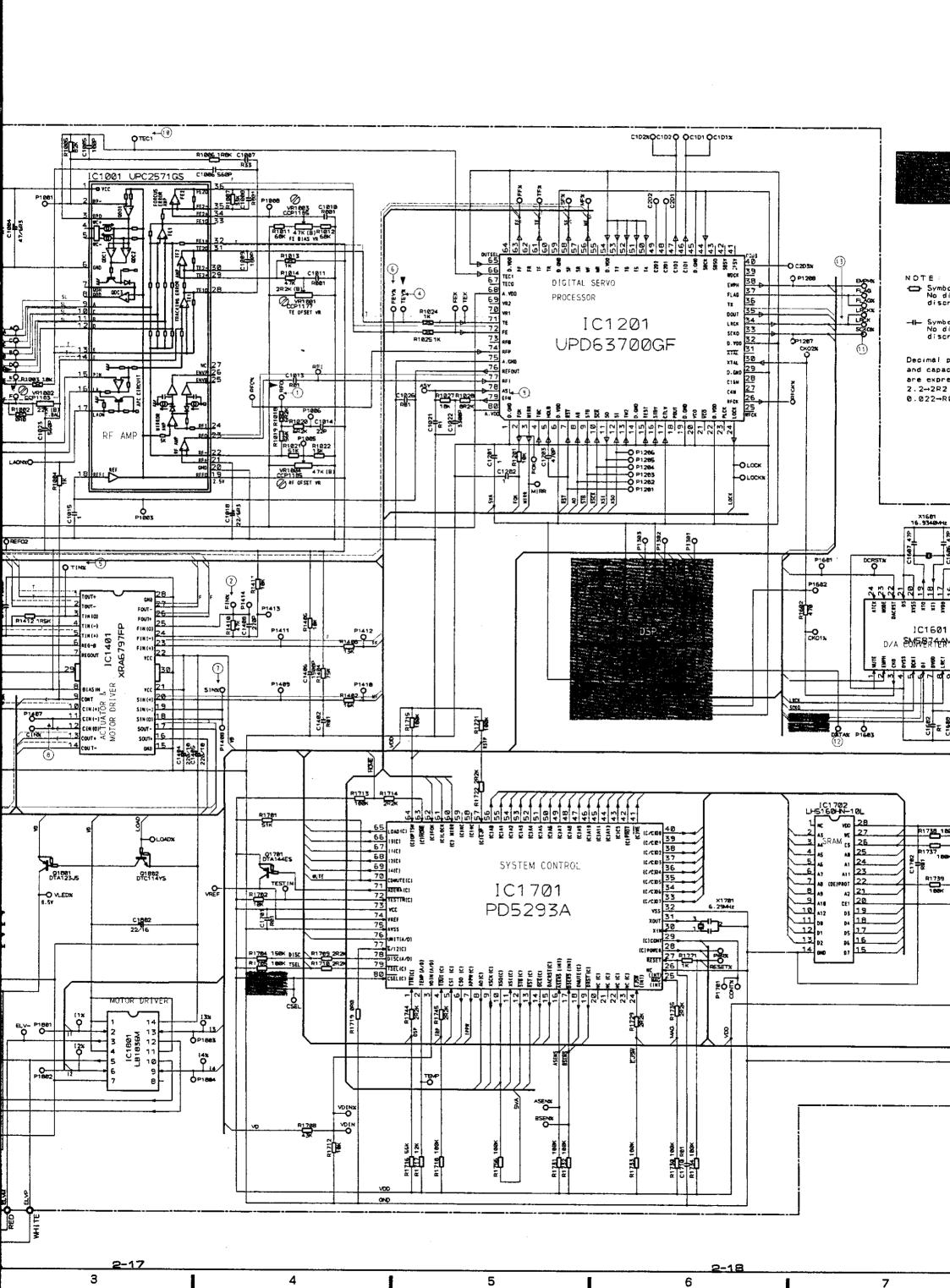
- SIGNAL LINE
 FOCUS SERVO LINE
 TRACKING SERVO LINE
 CARRIAGE SERVO LINE
- SPINDLE SERVO LINE P.C.BOARD MAIN UNIT PU UNIT (CGY1036) Отест € R1006 IRBK C1007 VR1903 C1818 CCP1185 R981 P1881 PIDIS

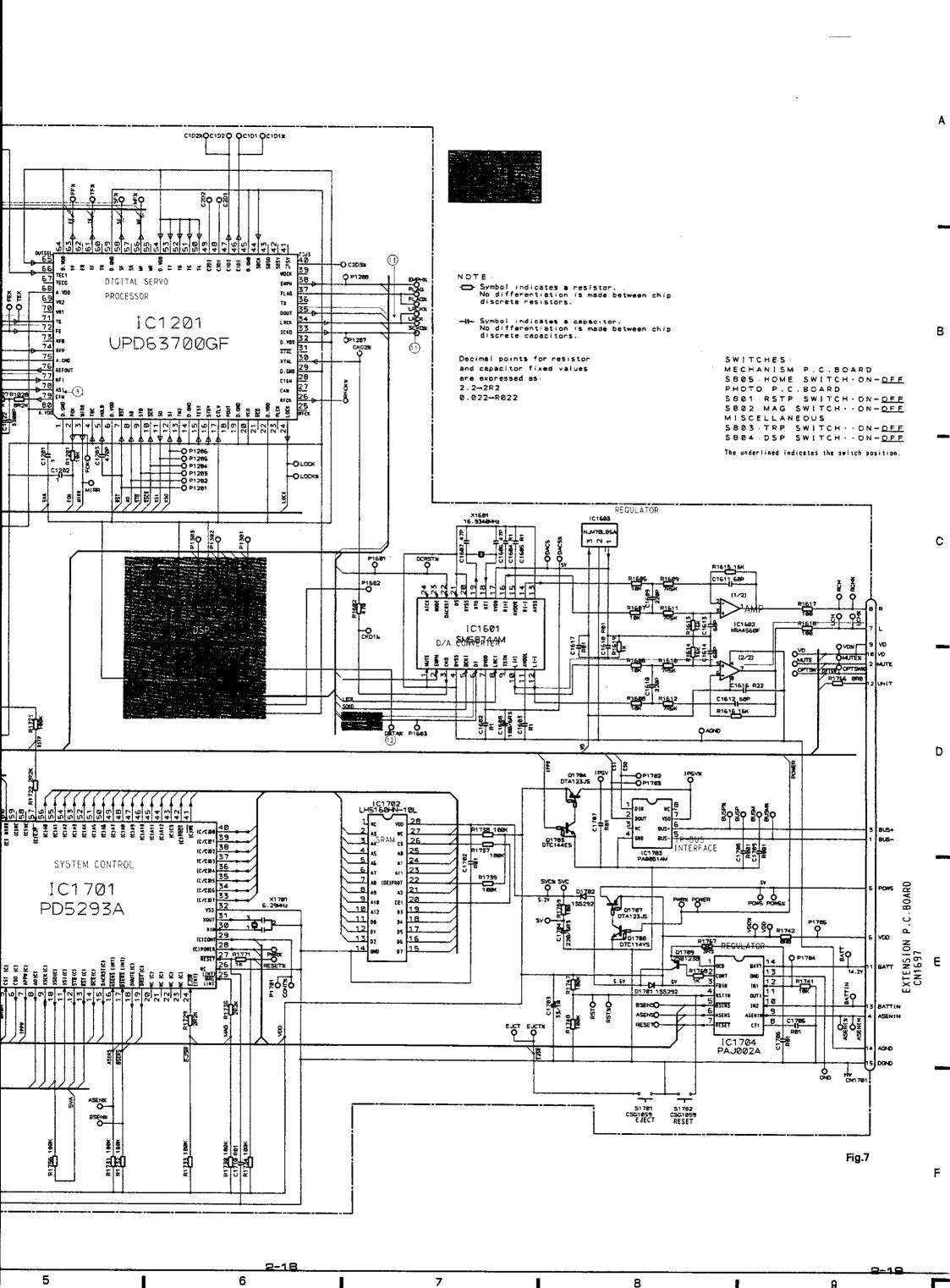
 RIDIA CIDII

 ATR POET

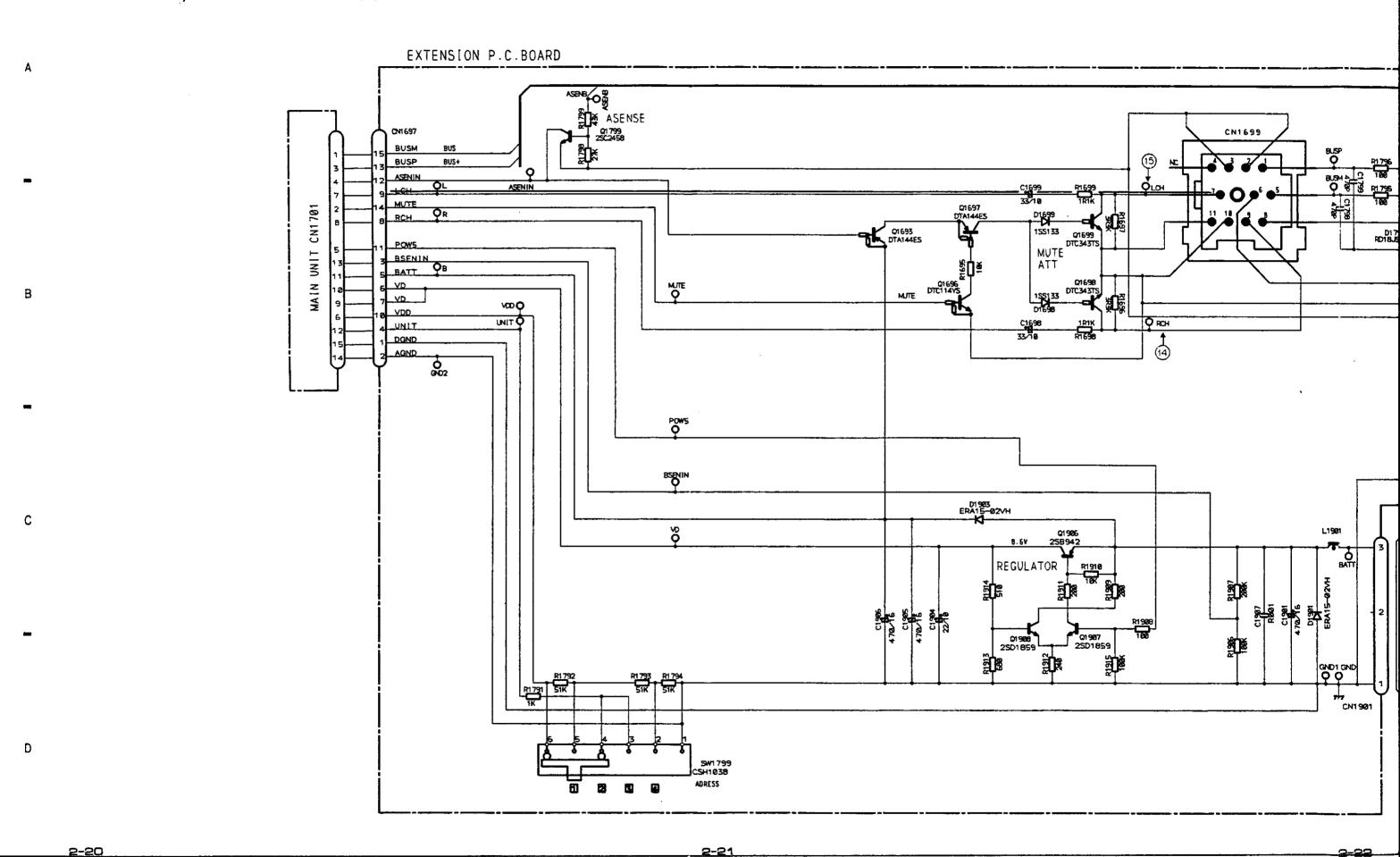
 2R2× (B)

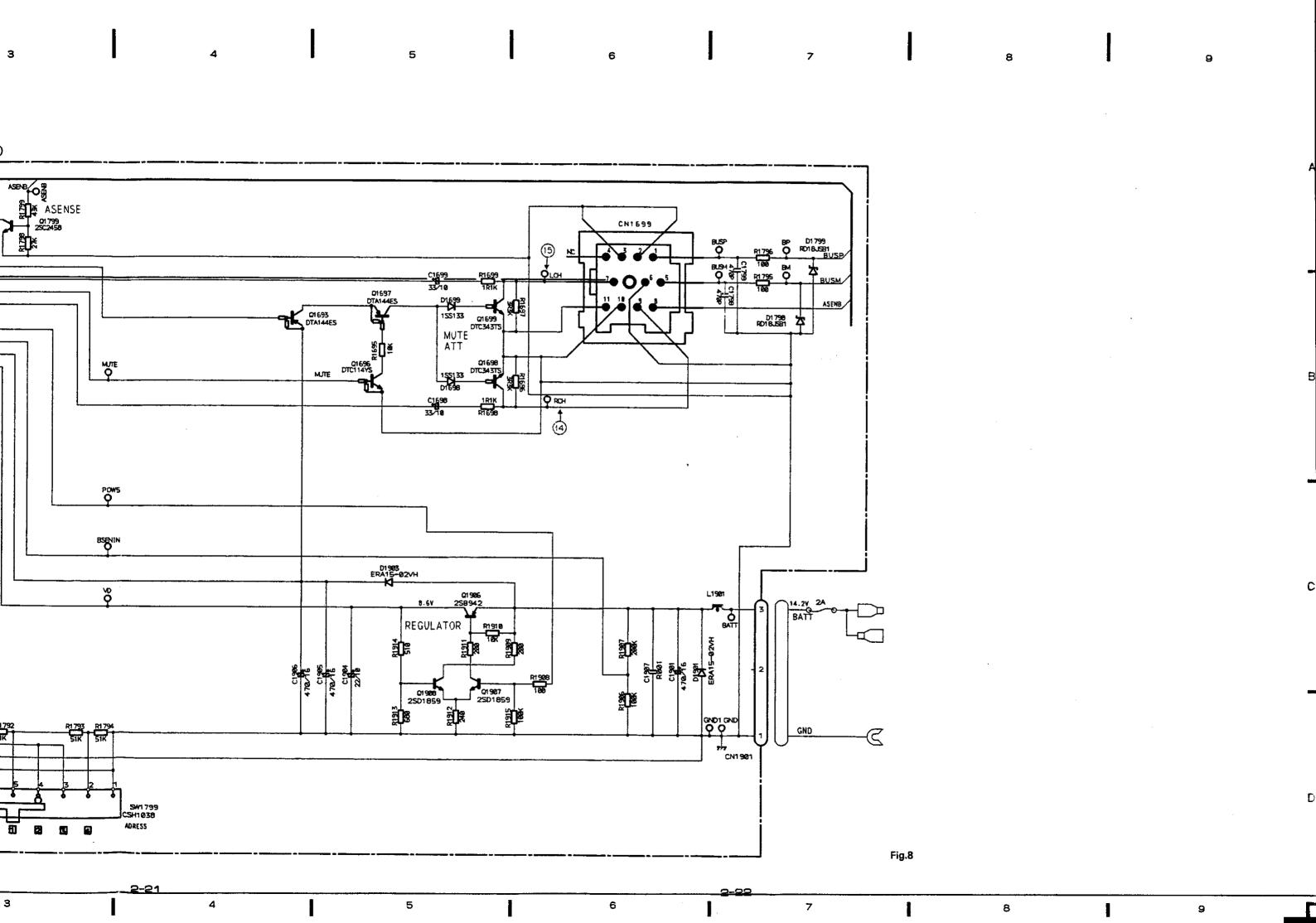
 VALORY

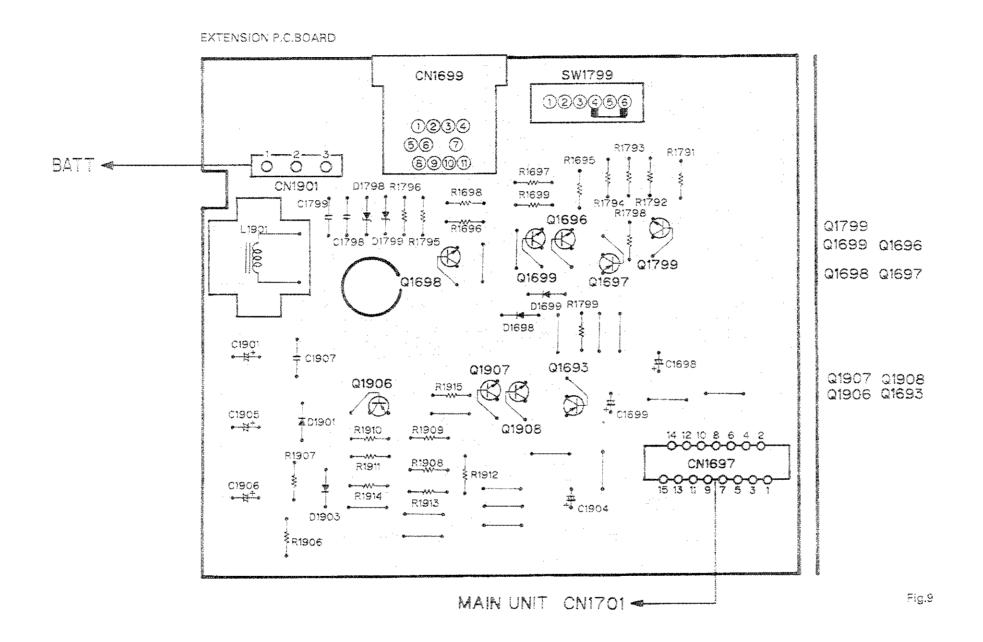

 TE OFSET VR **⑤** ₩ LD POWER T \$ \$4-4 P O-W FOUT-C1821 \$000 (3) C1826 RE AMP _T007 **≱** D 20019 REFOXO OPEFO Q TINK P1462Q E U R1412 1RSK TOUT-FOUT-TIN (D) FOUT R1403 154 T (N (- 1 XRA6797FP FIR (0) 6. SV 1C1 400 4 FIN (+) 24 FIN (+) 23 FIN (+) 22 7 30. BIASIN S 51NXQ SIN(+) 20 9 CONT 10 CIN(-) ACTUATOR ORLOW 16K SIN (-) 19 SIN (0) 18 048198 50413 **1** chw SOUT- 16 ERAIS-BOWH E MECHANISM P.C.BOARD 0 -OLOADX 11101 58 (7(C) 01781 DTA144ES 69 14(0) 01881 01A123JS 01882 DTC114YS 70 COMUTEICA CARRIAGE TESTIN 71 ADENA (C) VREF 72 TESTINIC) P1762 O VLEDX DB02 BR4361F 74 VRET VCC -O sourre SOUT-75 AVS5 **8**85 885 885 -O sourm C0077 76 WI(T(A/D) 77 E/12(C) 78 DISC(A/D) O cours -coor--О солм R1764 156K 915C R1769 2R24 POME_ DISC./ --O DISC MOTOR DRIVER OTRPX ODSPX TRP ELV- P1881 1C1801 LB1836M OP1863 BLACK O---(ND (P1999) OP1564 DB01 VLED BR4361F ONLED1 P801 **QTSELX** PT4888 Q MAGX MAG **QRSTP**≭ PHOTO P.C.BOARD


<u>2-17</u>

4

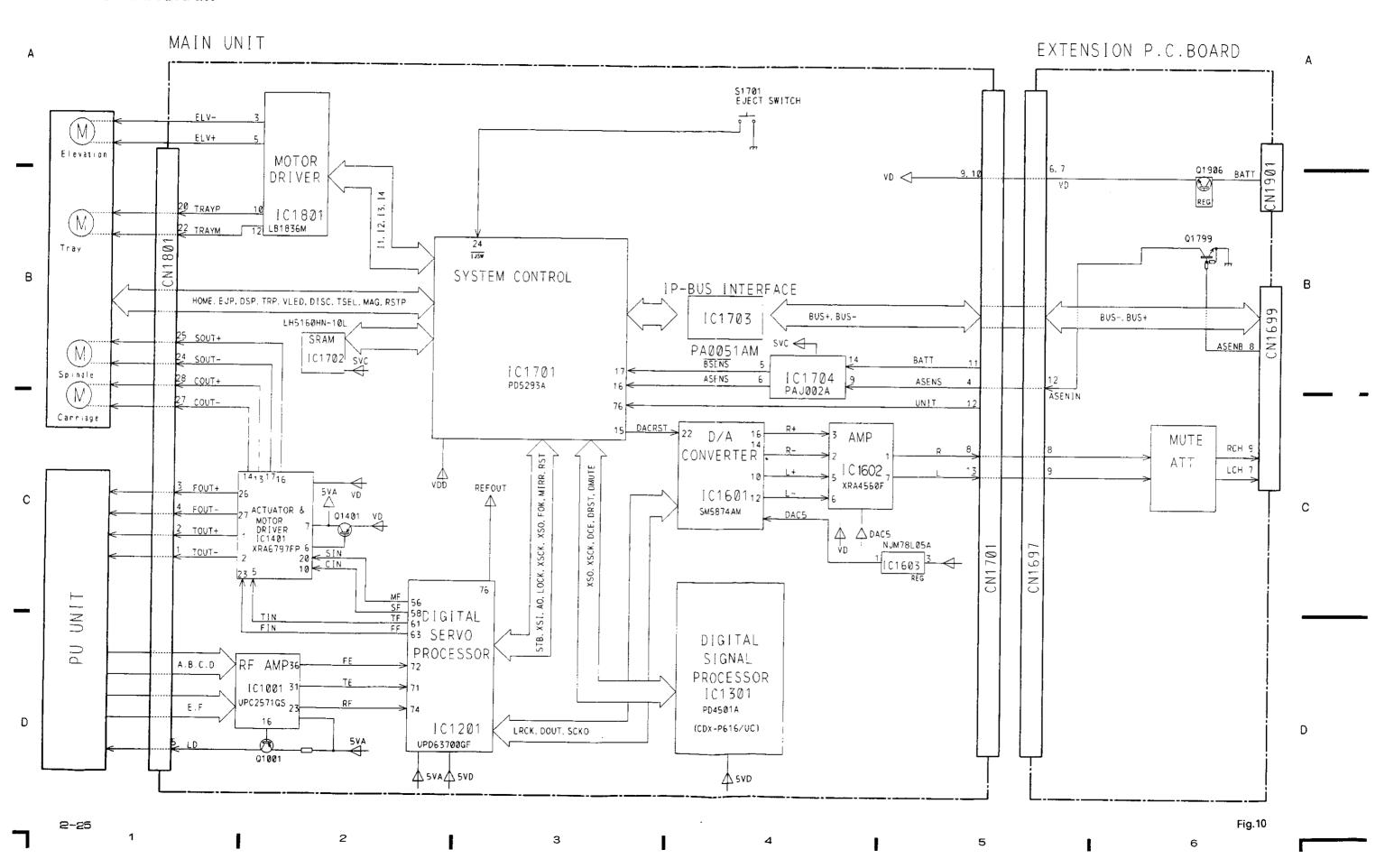

3


2



5. SCHEMATIC CIRCUIT DIAGRAM(2)

6. CONNECTION DIAGRAM(2)



2-23

Δ

2-24

7. BLOCK DIAGRAM

Service Manual

ORDER NO. CRT1631

CD MECHANISM UNIT

- This service manual describes operation of the CD mechanism incroporated in models listed in the table below.
- When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Unit
CDX-P610/UC,EW,ES	CRT1632	CXK4000
CDX-P616/UC		

CONTENTS

1. DISASSEMBLY	2
2. MECHANISM DESCRIPTION	5

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan PIONEER ELECTRONICS SERVICE INC. P.O.Box 1760, Long Beach, California 90801 U.S.A. PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R OP2 Canada PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium
PIONEER ELECTRONICS AUSTRALIA PTY.LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL:[03]580-9911
© PIONEER ELECTRONIC CORPORATION 1994

1. DISASSEMBLY

PU Unit Removal

When removing the connector to the PU unit, attach a short pin from the PU unit to the flexible circuit board.

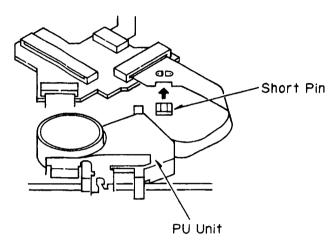


Fig.1

- 1. Remove the flexible circuit board from the connector.
- 2. Stretch the spring and hook it on the protrusion.
- 3. Undo the screw and remove the spring A.

NOTE: When assembling the PU unit, assemble so that section A clamps the shaft.

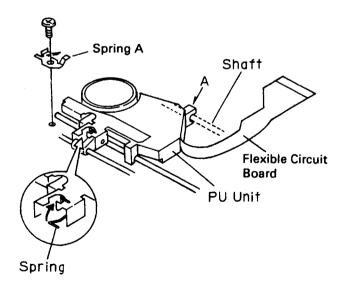


Fig.2

Carriage Motor Assy Removal

1. Remove the screw, spring, belt, screw unit, and then remove the carriage motor assy.

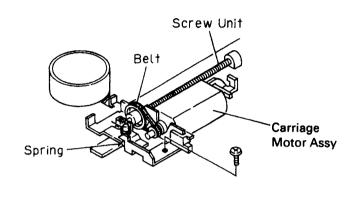


Fig.3

Spindle Motor Removal

- 1. Undo the seven screws A, and then remove the frame.
- 2. Undo the four screws B, and then remove the side frame.
- Run the tray motor to and set the carriage mechanism to play (carriage mechanism lock is released).

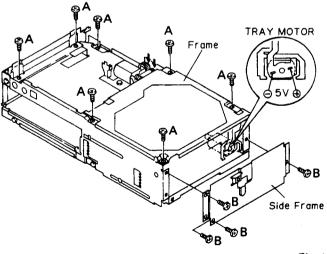
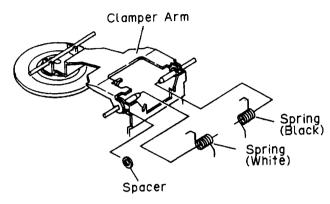
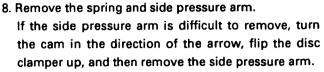
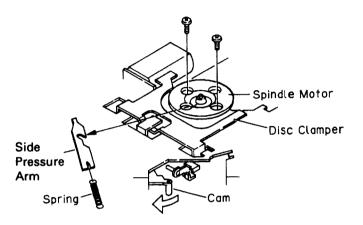


Fig.4

NOTE: When assembling the frame, assemble while placing the gear shaft of the arrow section in the chassis.

- 4. Turn the mechanism to its rear.
- 5. Remove the two springs; remove the clamper arm and spacer.


Fig.5

- 6. Face the mechanism forward.
- 7. Undo the six screws and remove the carriage mechanism assy.

9. Undo the two screws and remove the spindle motor.

NOTE: When assembling the motor, tighten the screws at the position (angle) where the motor's lead wires reach the circuit board.

Carriage Mechanism Assy

Fig.6

Tray Motor Removal

- 1. Turn the mechanism to its rear.
- 2. Undo the one screw and remove the tray motor unit.

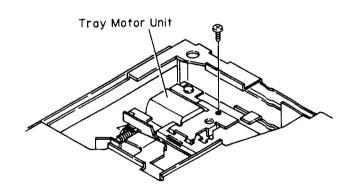
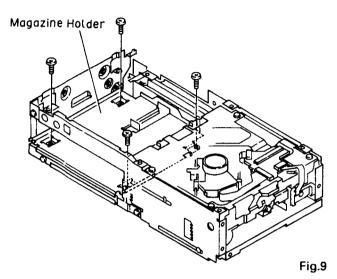



Fig.8

Fig.7

Magazine Holder Removal

- 1. Turn the tray motor to set the mechanism at the area halfway between play and stop.
- 2. Undo the four screws and remove the magazine holder.

Meshing of Gears When Assembling (fig. shows top view of mechanism)

Cam ring is turned all the way in the counterclockwise direction.

1. Tray extraction gear section

A) Intermittent gear

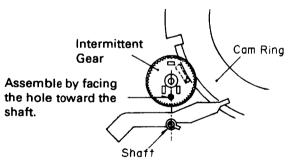


Fig. 10

B) Acceleration gear

Assemble by overlapping the holes of the intermittent gear and acceleration gear.

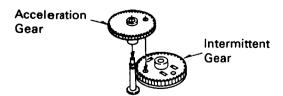


Fig.11

C) Idler gear

Assemble so that the tooth of the acceleration gear with the \triangle mark meshes with the valley of the idler gear with the \triangle mark.

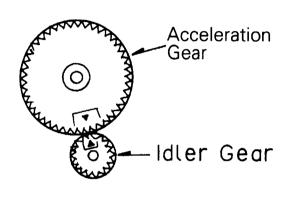
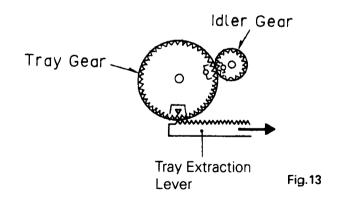



Fig.12

D) Tray gear

Assemble so that the tooth of the idler gear with the \bigcirc mark meshes with the valley of the tray gear with the \bigcirc mark. Also, assemble so that the valley of the tray gear with the \triangle mark meshes with the last tooth at the end of the tray extraction lever's rack.

2. MECHANISM DESCRIPTION

■ Magazine Insertion

 When the magazine is inserted against the force of the eject lever's spring, the eject lever pushes the tip of the magazine SW arm directly before the magazine lock position, causing the arm to swing. This in turn causes the part where the magazine lock arm and magazine SW arm overlap to separate, with the magazine lock arm swinging upward.

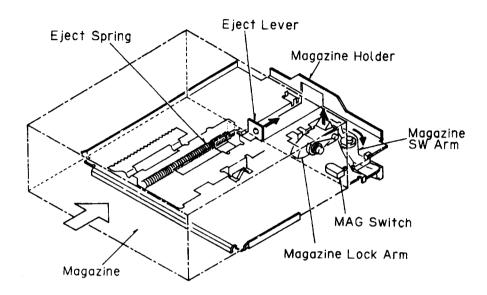
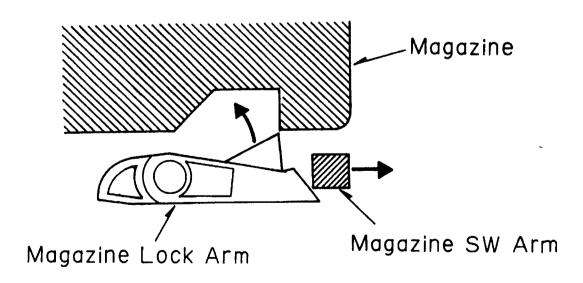



Fig.14

2. If the magazine is inserted up to the lock position, the catch of the lock arm enters the magazine's lock slot, thus locking the magazine. The tapered part of the tip of the magazine lock arm pushes the magazine SW arm, thus tripping the MAG switch.

Disc Clamp Operation

1. When the MAG switch is tripped, the tray motor turns and rotates the cam ring. When the cam ring rotates, the tray extraction intermittent gear and tray gear are rotated via the cam ring, causing the tray extraction lever to slide. The tray is then drawn out by the tray extraction lever.

View from below with the stage lower cover removed

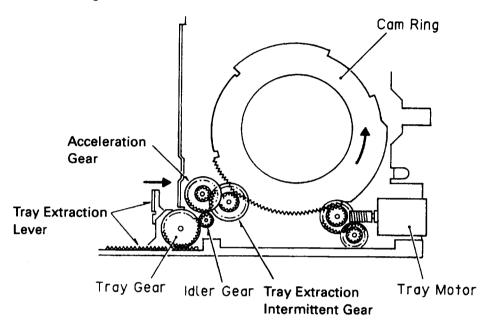


Fig. 16

2. After the tray is drawn out, if using an 8 cm disc, the fingers of the disc clamper are released.

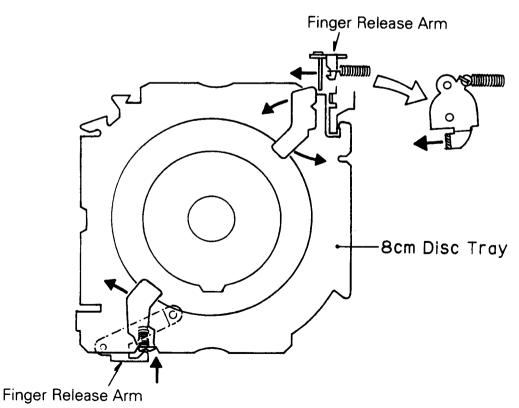


Fig.17

- 3. When the disc holder fingers have been released, the clamper arm rises and clamps the disc.
- 3-1. As the lever retaining the shaft at the tip of the clamper arm slides and escapes, the curved part of the cam ring simultaneously retains the shaft, and the spring-activated clamper arm rises.

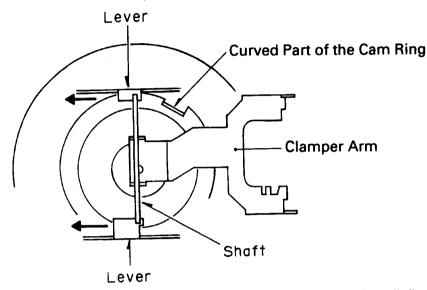


Fig. 18

3-2. At the same time the disc clamp performs this action, the clamp and the large and small disc holder arms clamp the disc.

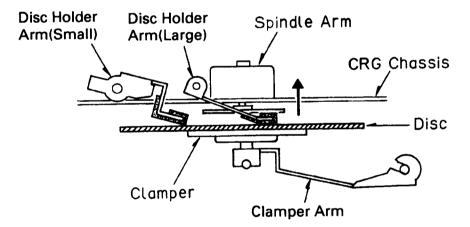


Fig. 19

3-3. The large and small disc holder arms are moved up and down by the turning of the disc holder cam. The cam turns while being clamped by the curved part of the CRG lock lever.

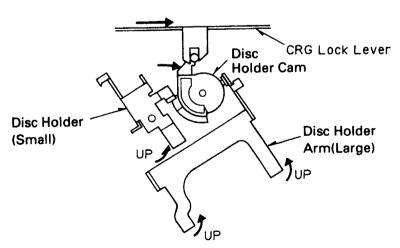
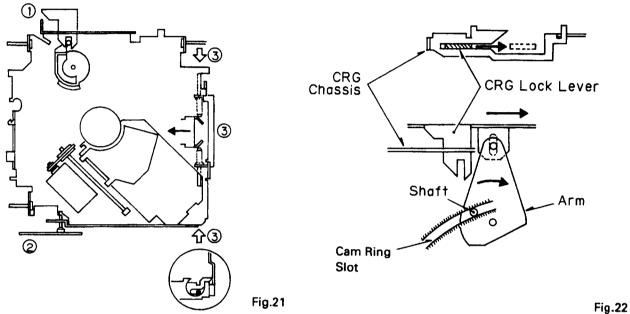



Fig.20

CRG Chassis Lock Release

- 1. After clamping is complete, the tray motor continues to turn, and begins the procedure to release the CRG chassis locks. The locations of the locks are indicated by ① ② ③ in fig. 21. Locks ① ② ③ are released almost simultaneously.
- ① The cam ring turns causing the arm to rotate. The contraction of the arm tip and the CRG lock lever's slot are interlinked. When the arm turns, the CRG lock lever slides, thus releasing the CRG chassis's lock (up/down direction).(Fig. 22)

- ② The cam ring turns causing the link to be pushed, sliding the CRG lock lever, thus releasing the CRG chassis's lock (up/down direction).(Fig. 23)
- ③ The cam ring turns and the CRG lock lever slides. The tip of the lever inserted between the CRG chassis's shafts such that it is clamped by the shafts separates, thus releasing the CRG chassis's lock (front/rear direction).(Fig. 24)

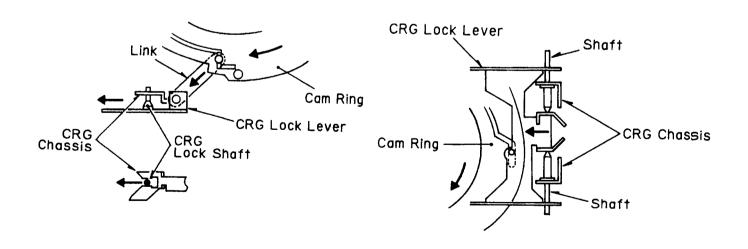


Fig.23

Simultaneously with the operation described above, the CRG lock lever slides, the CRG lock arm swings, freeing the clamped shaft and releasing the CRG chassis's up/down and right/left locks.

The operations described above release the locks of the CRG mechanism leaving it "floating."

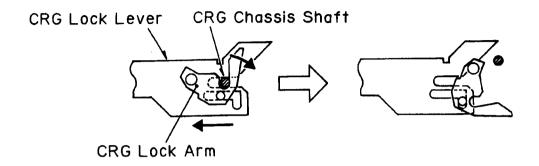
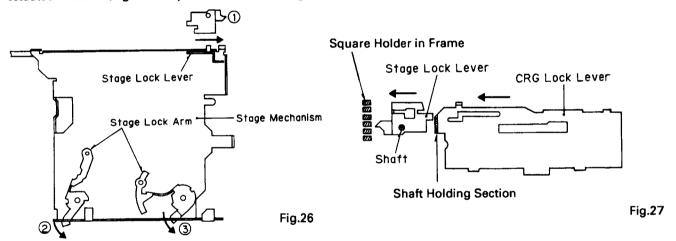
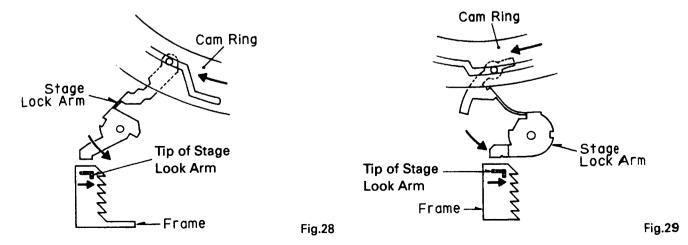



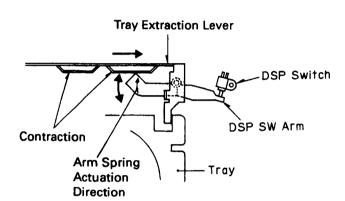
Fig.25

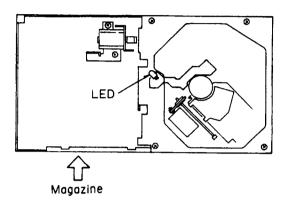

Stage Lock

Looseness in the elevator mechanism is eliminated and vibration resistance is enhanced by locking the three (1) ② 3) locations shown in fig. 26.

- 1. The CRG lock lever slides and pushes the stage lock lever. (Fig. 27)
- 2. The wedge shape of the lever tip is held in place by the square hole of the frame, and the stage mechanism is actuated in the left/right and up/down directions.(Fig. 27)

3. The rotation of the cam ring causes the stage lock arm to swing. The tip of the arm is held in place by the tapered part of the frame, and the stage mechanism is actuated in the left/right, up/down and front/rear directions.(Fig. 28,29)




● From Play to Tray Storage

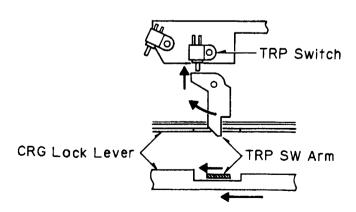
This operation is basically carried out in reverse of the operation from disc clamp to stage lock.

Disc Detection, Tray extraction/insertion Completion Detection

The DSP switch is turned on and off by the contracting part of the tray extraction lever for extracting and inserting the tray, and the photosensor detects whether the tray contains a disc or not, and whether the disc is 8 or 12 cm, while being timed.

The photo-transistor is on the stage mechanism side and the LED is on the CRG mechanism side. The tray passes between the two.

Fig.30


■ Tray extraction/insertion Completion Detection

A) Play side(Fig. 31)

When play is complete, the CRG lock lever slides, pushing the tip of the TRP switch arm and turning the switch on.

B) Tray return side (eject side)(Fig. 32)

When tray return is complete, the tray extraction lever pushes the TRP SW lever, the TRP SW lever pushes the TRP SW arm, turning the TRP switch on.

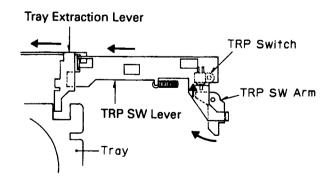


Fig.31

Fig.32

Elevator Operation

1. The inside steer slides when the ELV motor is driven. The front steer interlinked with the inside steer also slides. The shaft protruding from the stage mechanism is interrelated with the three front/rear stage holes, and the stage moves up or down when the steer slides. A gravitational force counter spring is provided on the magazine side arm in order to relieve the difference in load caused by gravitational force for rising and lowering.

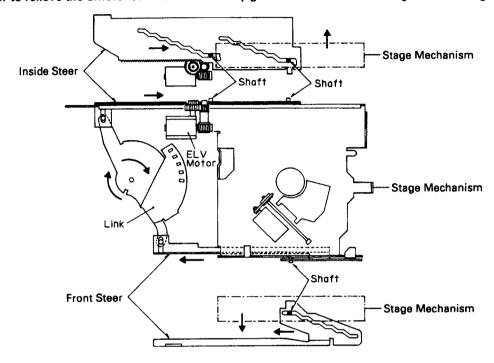
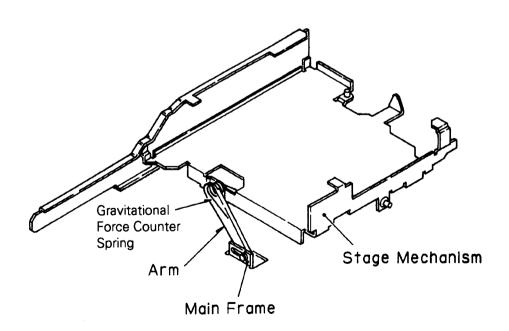
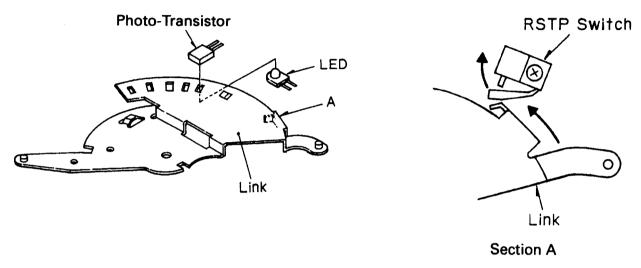



Fig.33


Gravitational force counter spring

Elevator Detection

- 1. There is a hole in the link in the position that corresponds to the straight part of the steer's stage holes. This hole is detected by the photo-transistor. (Fig. 35)
- 2. The highest stage is not detected by photo-transistor, but is rather detected when the RSTP switch is tripped. The magazine eject position is detected by the photo-transistor detecting the position of hole in the link when the steer moves.(Fig. 36)

The mechanism reset position is the position where the RSTP switch mentioned above is tripped.

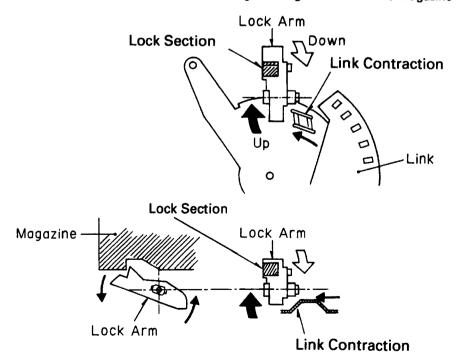


Fig.35


Fig.36

Magazine Discharge

1. If the steer is further driven from the detection position of the elevator's highest stage, the contraction of the link pushes up the tip of the lock arm mentioned in "Magazine insertion." When it does, the lock part which is the tip of the other lock arm drops down below, releasing the magazine's lock. The magazine is discharged by the eject lever.

2. OPERATIONS AND CONNECTION

(Fig. 1)

- [1] Multi CD controller or Multiple installation adapter (such as CD-P44)
- [2] IP-BUS output (black) Connect the black connector of the cable to this connector.
- [3] IP-BUS cable

To prevent incorrect connection, the input side of the IP-BUS connector is colored in blue, and the output side in black. Connect the connectors of the same colors correctly.

- [4] Fuse holder
- [5] Orange

To the terminal always supplied with power regardless of ignition switch position.

[6] Black (ground)
To the vehicle (metal) body.

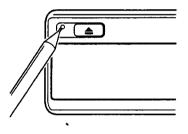


Fig.2

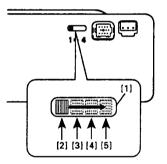


Fig.3

Pressing the clear button

If the power does not switch on or if the compact disc player does not operate when the button on the multi-CD controller is pressed, or if the multi-CD controller display is incorrect, press this button on the player with the tip of a pencil to restore normal operation. (This button is located inside the door.) Always press the clear button on the multi-CD contoller, too, after pressing this button (Fig. 2).

 If the clear button is pressed when the player contains a magazine or the ignition switch is set to the ON or ACC position, the CD title display and ITS memory are cleared.

Changing the Address Switch

- This unit can be connected from the second to fourth multi-CD players by using the separately sold multiple installation adapter (CD-P44). Each multi-CD player has an address switch so that the multiple installation adapter can identify which player is which. Set the address switch for each player as shown in Fig. 3.
- See the instruction manual for the multiple installation adapter (CD-P44) when you connect multi-CD players using the adapter.

(Fig. 3)

- [1] Address switch
 This switch can be set to address 1, 2, 3,
 or 4, starting from the left.
- [2] Address 1
- [3] Address 2
- [4] Address 3
- [5] Address 4

3. DISASSEMBLY

Removing the CaseRemove the five screws.

- 2. Remove the upper case and lower case.

Removing the Grille Assy

1. Press the four tabs indicated by arrows and then pull out the grille assy.

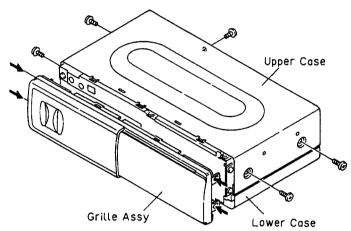


Fig.4

Removing the Extension P.C. Board

- 1. Remove the one screw.
- 2. Unbend the tab A until straight.
- 3. Remove the extension p.c.board.

Removing the Main Unit

- 1. Remove the one screw.
- 2. Unbend the tab B until straight.
- 3. Remove the main unit.

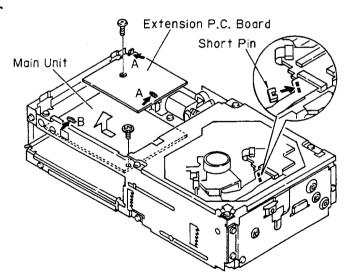


Fig.5

Before disconnecting the connector(PU unit connector), attach a short pin as illustrated.

4. ADJUSTMENT

4.1 CD ADJUSTMENT

1)Precautions

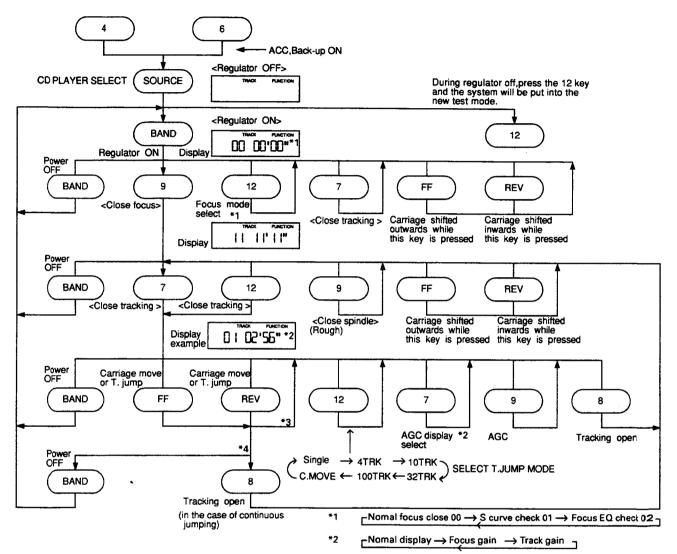
 This unit uses a single power supply (+5V) for the regulator. The signal reference potential, therefore, is connected to REFO(approx. 2.5V) instead of GND.

If REFO and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the following.

Do not connect the negative probe of the measuring equipment to REFO and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to REFO with the channel 2 negative probe connected to GND.

Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status.

If by accident REFO comes in contact with GND, immediately switch the regulator or power OFF.


- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON,let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- This unit is adjusted in a combination with the CD control unit (KEH-P7000, etc.). Each regulator key should be operated at the unit.

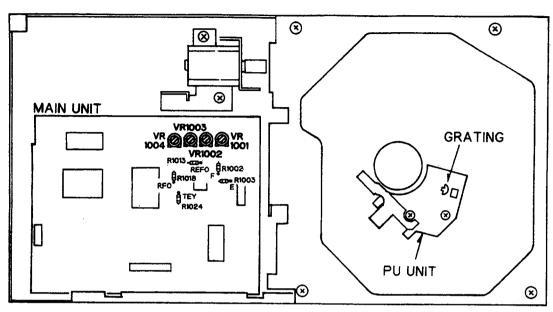
With the KEH-P7000 taken up for reference, a description will be given below concerning how to enter into the test mode, including key operations. The key in the adjustment text is also one of the KEH-P7000 keys.

- How to enter into the test mode
 Switch ACC,back-up ON while pressing the 4 and 6 keys together.
- Resetting the test mode Switch ACC,back-up Off.

- Disc detection during loading and eject operations is performed by means of a photo transistor in this unit. Consequently, if the inside of the unit is exposed to a strong light source when the outer casing is removed for repairs or adjustment, the following malfunctions may occur.
 - *During PLAY, even if the eject button is pressed, the disc will not be ejected and the unit will remain in the PLAY mode.
 - *The unit will not load a disc.
 - When the unit malfunctions this way, either reposition the light source, move the unit or cover the photo transistor.
- When loading and unloading discs during adjustment procedures, always wait for the disc to be properly clamped or ejected before pressing another key. Otherwise, there is a risk of the actuator being destroyed.
- Turn power off when pressing the button FF or the button REV key for focus search in the test mode. (Or else lens may stick and the actuator may be damaged.)
- SINGLE/4TRK/10TRK/32TRK will continue to operate even after the key is released. Tracking is closed the moment C-MOVE is released.
- JUMP MODE resets to SINGLE as soon as power is switched off.

Flow Chart

*3 100 TRK jump & carriage move continue only while the keys are pressed


Figs.6

Measuring Equipment and Jigs

Adjustment	Measuring equipment & jigs
1 Tracking Error Offset Adjustment 1	DC V Meter
2 Grating Check / Adjustment 1	Oscilloscope, ABEX TCD-784 (or SONY TYPE 4), Two L.P.F., Clock Driver
3 Grating Adjustment 2	Oscilloscope, Grating Adjustment Filter (B.P.F.),mV Meter, ABEX TCD-784 (or SONY TYPE 4), Two L.P.F., Clock Driver
4 Tracking Balance Adjustment 1	Oscilloscope, Low-pass Filter, ABEX TCD-784 (or SONY TYPE 4)
5 Focus Bias Adjustment	Oscilloscope, ABEX TCD-784 (or SONY TYPE 4)
6 RFO Offset Adjustment	Oscilloscope, ABEX TCD-784 (or SONY TYPE 4)
7 Tracking Error Offset Adjustment 2	DC V Meter
8 Tracking Balance Adjustment 2	Oscilloscope, Low-pass Filter, ABEX TCD-784 (or SONY TYPE 4)

^{*4} SINGLE/4/10/32 → continuous even after key release

Adjustment Point and Test Point

VR1001	TRACKING ERROR OFFSET
VR1002	TRACKING BALANCE
VR1003	FOCUS ERROR BIAS
VR1004	RFO OFFSET

Fig.7

1 Tracking Error Offset Adjustment 1

·Purpose:

To adjust the offset of the tracking pre-amp to zero.

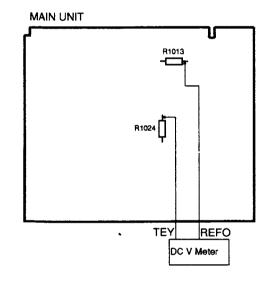
· Symptoms of Mal-adjustment :

Track search NG, Carriage runaway, Poor playability.

·Measuring

·DC V Meter

Equipment / Jig


·TEY

· Measuring Point · Test Disc , Mode

·No disc, TEST MODE

· Adjustment Point

·VR1001(TE OFFSET VR)

Adjustment Procedure

1.Switch the regulator on.

2.Using VR1001, adjust TEY to 0 \pm 25mV w.r.t. REFO.

2 Grating Check / Adjustment 1

·Purpose:

To check that the PU grating is correctly aligned after the PU unit has been replaced.

· Symptoms of Mal-adjustment :

Unable to play disc, track skip during search, search NG.

Measuring

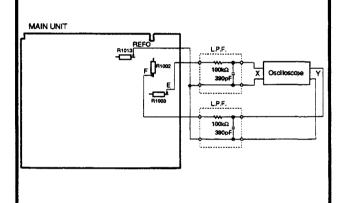
·Oscilloscope, Two L.P.F., Clock

Equipment / Jig

Driver

· Measuring Point

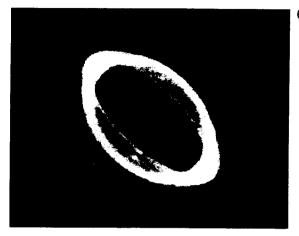
·E, F


·Test Disc , Mode

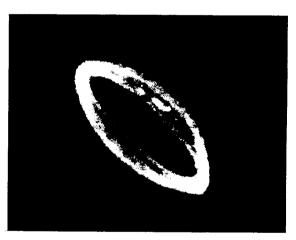
· ABEX TCD-784 (or SONY TYPE 4),

TEST MODE

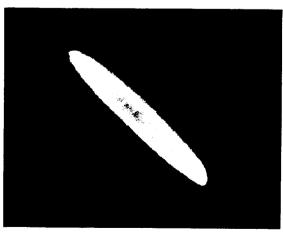
· Adjustment Point


· Grating hole

Adjustment Procedure


- 1.Load disc and switch regulator on.
- 2.Position the PU in the center of the disc using the **FF & REV** keys.
- 3.Press key 9 to close focus and once more to close spindle.
- 4.Refering to the photographs given check thatth e grating is within ±45°. If not, it should be possible to make a fine adjustment to the grating by slowly tuning the grating screw. If, however during the adjustment the lissajous figure is seen to "FLIP" then the null point must be found and the adjustment made from there(see next section).

Lissajous figure (AC input) Horizontal axis E 10mV/div. Vertical axis F 10mV/div.


60°=NG

Waveform 1

45°=OK (Limit)

Waveform 2

0°=BEST (Doesn't become a single line due to eccentricity)

Waveform 3

3 Grating Adjustment 2

· Purpose :

This needs to be done if the previous adjustment was unsuccessful.

·Symptoms of Mal-adjustment:

Unable to play disc, track skipping, track search NG.

· Measuring

·Oscilloscope, Grating

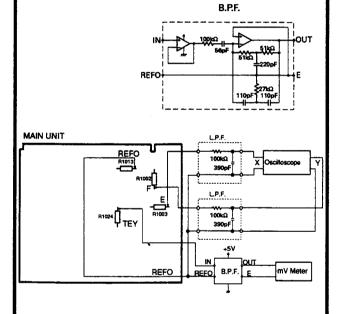
Equipment / Jig

Adjustment filter (B.P.F.), mV

Meter, Two L.P.F., Clock Driver

· Measuring Point

·TEY, E, F

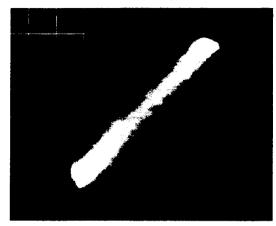

·Test Disc , Mode

ABEX TCD-784 (or SONY TYPE 4),

TEST MODE

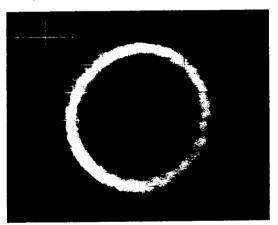
· Adjustment Point

· Grating hole

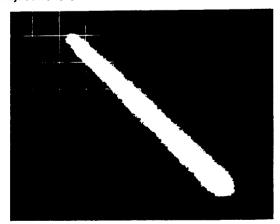


Adjustment Procedure

- 1.Load disc and switch regulator on.
- Position the PU unit in the center of the disc using the FF & REV keys.
- 3. Press key 9 to close focus and press once more to close spindle.
- 4. While monitoring the output of the B.P.F. connected to TEY, slowly turn the grating screw. The output voltage should pass through many minimums; search for the minimum which is clearly smaller than the rest this is the "null point", where the E & F sub-beams are lined up with the tracks on the disc.
- 5. From this null point, turn the grating screw clockwise (as seen from the underside of the PU unit) until the lissajous waveform is a single line (or close as possible) as shown in the photograph.


Null Point=180°

Lissajous figure (AC input) Horizontal axis E 10mV/div. Vertical axis F 10mV/div.


Waveform 4

"Rough" adjustment=90°

Waveform 5

Final adjustment=0°

Waveform 6

4 Tracking Balance Adjustment 1

·Purpose:

To equate the sensitivity of the F channel to that of the E channel.

Symptoms of Mal-adjustment:

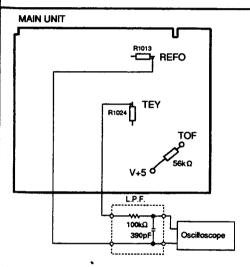
Track search NG, Poor playability carriage runaway.

Measuring

·Oscilloscope, L.P.F.

Equipment / Jig

Measuring Point · TE


·Test Disc , Mode

· ABEX TCD-784 (or SONY TYPE 4),

TEST MODE

· Adjustment Point

·VR1002 (T.BAL VR)

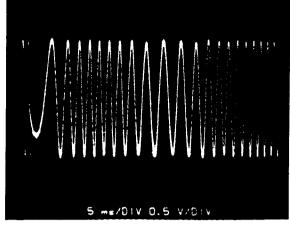
Pull up the TOF terminal to the V+5 terminal with a $56k\Omega$ resistor. (This is in order to cancel lens offset in the tracking direction.) (Sub-number of the main unit's p.c.board is -C and after.) NOTE: If the sub-number of the main unit's p.c.board is -B, it means

there is no TOF terminal, so instead of attaching a pull-up resistor, adjust the item by tilting 45° in the direction where the grille is lifted.

Adjustment Procedure

- 1.Load disc and switch the regulator on.
- Position the PU unit in the center of the disc using the FF & REV keys.
- 3.Close focus by pressing key 9.
- 4. Observing the TEY waveform on the oscilloscope, adjust VR1002 until the positive and negative halves have the same amplitude (see waveform 7–9).

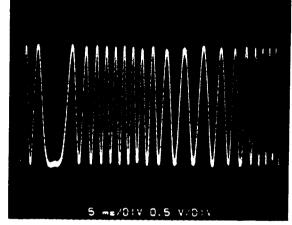
Check


After adjustment the TEY waveform should have an amplitude of 1.5±0.65 Vpp (ABEX TCD-784 or SONY TYPE 4)

(Providing focus bias is OK)

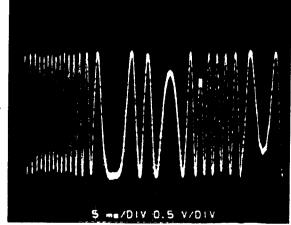
DC Mode 0.5V/div. 5ms/div.

+5% NG


REFO →

Waveform 7

±0% OK


REFO →

Waveform 8

-5% NG

REFO →

Waveform 9

5 Focus Bias Adjustment

·Purpose :

To adjust the focus servo reference so that the RF waveform is an optimum.

·Symptoms of Mal-adjustment:

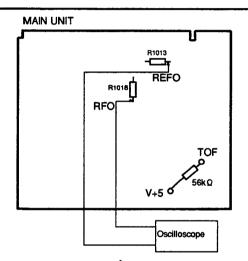
Difficulty in closing focus, poor playability.

· Measuring

·Oscilloscope

Equipment / Jig

·RFO


· Measuring Point · Test Disc , Mode

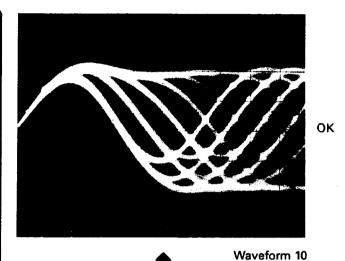
-ABEX TCD-784 (or SONY TYPE 4),

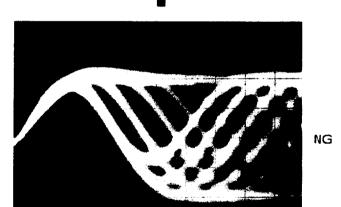
NORMAL MODE

· Adjustment Point

·VR1003 (FE BIAS VR)

Pull up the TOF terminal to the V+5 terminal with a $56k\Omega$ resistor. (This is in order to cancel lens offset in the tracking direction.) (Sub-number of the main unit's p.c.board is -C and after.) NOTE: If the sub-number of the main unit's p.c.board is -B, it means there is no TOF terminal, so instead of attaching a pull-up resistor, adjust the item by tilting 45° in the direction where the grille is lifted.


Adjustment Procedure


- 1. Play track number 18.
- 2. Adjust VR1003 so that the RFO waveform amplitude is a maximum and eye pattern is optimum.

Check

After adjustment the RFO waveform should have an amplitude of 1.7±0.65 Vpp (ABEX TCD-784 or SONY TYPE 4)

Remove the pull-up resistor after completing adjustment.

AC Mode Before adjustment

Waveform 11

6 RFO Offset Adjustment

DC Mode 0.2V/div. 0.5μs/div.

Purpose

To adjust the RFO waveform offset to an optimum.

Symptoms of Mal-adjustment

Difficulty in closing focus, poor playability.

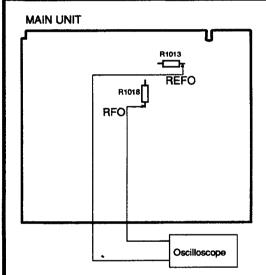
Measuring Equipment / Jig ·Oscilloscope

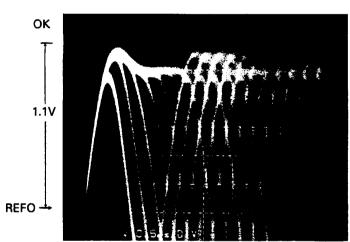
Measuring Point

Test Disc, Mode

· ABEX TCD-784 (or SONY TYPE 4),

+100mV NG

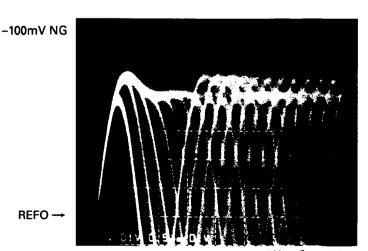

REFO →


NORMAL MODE

Adjustment Point

·VR1004 (RFO OFFSET VR)

Waveform 12


Waveform 13

Adjustment Procedure

1. Make sure the TOF terminal's pull-up resistor has been disconnected.

2. Play track number 18.

3. Adjust VR1004 so that the peak value of the upper envelope of the RFO waveform is at +1.1VDC w.r.t. REFO(See waveform 12-14).

Waveform 14

7 Tracking Error Offset Adjustment 2

·Purpose :

To check the offset of the tracking pre-amp is zero and adjust if necessary.

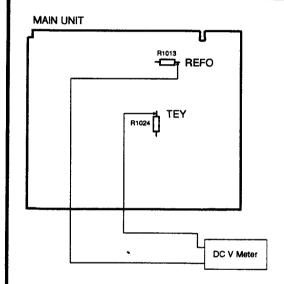
·Symptoms of Mal-adjustment:

Track search NG, Carriage runaway, Poor playability.

·Measuring

·DC V Meter

Equipment / Jig


·TFV

· Measuring Point · Test Disc . Mode

·No disc, TEST MODE

Adjustment Point

·VR1001(TE OFFSET VR)

Adjustment Procedure

1.Switch the regulator on.

2.Using VR1001, adjust TEY to 0 ± 25mV w.r.t. REFO.

8 Tracking Balance Adjustment 2

·Purpose:

To equate the sensitivity of the F channel to that of the E channel. This needs only be done if the TE OFF-SET volume was re-adjusted in the previous step.

Symptoms of Mal-adjustment:

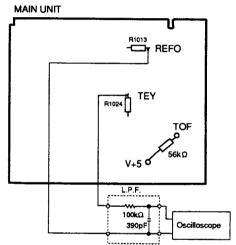
Track search NG, Poor playability, carriage runaway.

Measuring

·Oscilloscope, L.P.F.

Equipment / Jig

·TEY


· Measuring Point · Test Disc , Mode

· ABEX TCD-784 (or SONY TYPE 4),

TEST MODE

· Adjustment Point

·VR1002 (T.BAL VR)

Pull up the TOF terminal to the V+5 terminal with a $56k\Omega$ resistor. (This is in order to cancel lens offset in the tracking direction.) (Sub-number of the main unit's p.c.board is -C and after.) NOTE: If the sub-number of the main unit's p.c.board is -B, it means there is no TOF terminal, so instead of attaching a pull-up resistor, adjust the item by tilting 45° in the direction where the grille is liftered.

Adjustment Procedure

1.Load disc and switch the regulator on.

- 2.Position the PU unit in the center of the disc using the FF & REV keys.
- 3. Close focus by pressing key 9.
- 4. Observing the TEY waveform on the oscilloscope, adjust VR1002 until the positive and negative halves have the same amplitude (See waveform 7–9).

Check

After adjustment the TEY waveform should have an amplitude of 1.5±0.65 Vpp (ABEX TCD-784 or SONY TYPE 4)

5. Remove the pull-up resistor after completing a dijustment.

4.2 NEW TEST MODE

New Test Mode(aging operation and setup analysis)

The single CD player plays in normal mode. After being set up, it will display FOK (focus), LOCK (spindle), subcode, sound skip, protection against a mechanical error or the like, occurrence of an error, cause and time of an expiry, if any, (and disc number)

During the setup, the CD software operation status (internal RAM and C-point)is displayed.

(1) How to enter NEW TEST Mode

See the test mode flow chart Page 1-6.

(2) Relations of keys between TEST and NEW TEST Modes

Keys	Test Mode		New Test Mode			
	Regulator OFF	Regulator ON	PLAY in progress	Error Occurred, Protection Activated Time of occurrence/ cause of error select		
BAND	Regulator ON	Regulator OFF	_			
FF		FWD-Kick	FF/TR+	_		
REV	<u> </u>	REV-Kick	REV/TR-	_		
7		Tracking close	SCAN			
8		Tracking open	MODE	_		
9	_	Focus close	_	_		
12	To New Test Mode	Jump Mode Select	AUTO/MANU	TRACK No./ time of occurrence select		

Operations, such as EJECT, CD ON/OFF, etc. are performed normally

(3) Error Cause (Error Number) Code

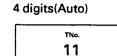
Error Code	Classification	Mode	Description	Cause/Detail	
40	ELECTRIC	PLAY	FOK=L 100ms	Put out of focus	Scratch,
41	ELECTRIC PLAY	PLAY	LOCK=L 100ms	Spindle unlock	Stain, Vibration,
42	ELECTRIC	PLAY	Subcode unacceptable 500ms	Failed to read subcode	Servo defect,
43	ELECTRIC	PLAY	Sound skipped	Last address memory operated	

(4) Indicating an Operation Status During Setup

Status No.	Description	Protection operation
01	Carriage home mode started	None
02	Carriage moving inwards	10-second time out, Home switch failed
03	Carriage moving outwards	10-second time out, Home switch failed
05	Carriage moving outwards	None
11	Setup started	None
12	Spindle turn/Focus search started	None
13	Waiting for focus closure (XSI=L)	Failure to close focus
10,14	Waiting for focus closure (FOK=H)	Failure to close focus
15, 16, 17	Focus closed, Tracking open	Focus disrupted
18	During focus AGC	Focus disrupted
19	During tracking AGC	Disrupted focus
20	Waiting for MIRR, LOCK or subcode read	Focus disrupted, MIRR NG, Failure to lock,
	Carriage closed, SPINDLE=ADAPTIVE	failed to read subcode

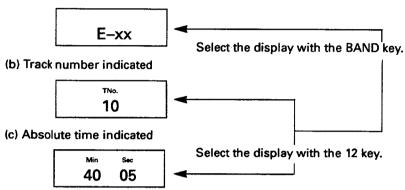
(5) Example of Display.

Min


11

Sec

11


·SET UP in progress 8 digits

11



4 di	gits(Ma	anual)	
	Min	Sec	
	11	11	

- Operation (PLAY, SEARCH, etc.) in progress perfectly identical with that in the normal mode.
- ·Protection/Error upon occurrence(4 digits display)
- (a) Error number indicated

- ·Protection/Error upon occurrence(8 digits display)
- (a) Error number indicated

● Error Number Indication

If the CD should fail to operate or if an error has taken place during operation the player will enter into the error mode, and the cause of the error will be numerically indicated.

This is aimed at assisting in analysis or repair.

(1) Basic Means of Display

·Examples of Display

E-XX

Error C	odes		
Error Code	Classification	Description	Cause/Detail
10	ELECTRIC	Carriage home failure	Carriage doesn't move to or from the innermost position →Home switch failed and/or carriage immobile
11	ELECTRIC	Focus failure	Focus failed →Defects, disc upside-down, severe vibration
12	ELECTRIC	SETUP failure Subcode failure	Spindle failed to lock or subcode unreadable →Spindle defective, defect, severe vibration
14	ELECTRIC	Mirror failure	Unrecorded CD-R The disc is upside-down, defects, vibration
17	ELECTRIC	Set up failure	AGC protect failed →Defects, disc upside-down, severe vibration
30	ELECTRIC	Search time out	Failed to reach target address →Carriage/tracking defective and/or defects
A0	SYSTEM	Power failure	Power overvoltage or short circuit detected Switching transistor defective and/or power abnormal
50	MECHANISM	An error upon ejection	MAG switch release time has time out Elevation time out when eject
60	MECHANISM	An error while putting in and out the tray	Tray in / out time has time out Tray is caught when put in
70	MECHANISM	An error upon elevation	Elevation time has time out
80	MECHANISM	An error with an empty magazine inserted	No disc is available

5. CIRCUIT DESCRIPTION

5.1 PRE-AMPLIFIER STAGE (UPC2571GS)

The optical signals are converted to voltage signals using an i/v amplifier inside the PU unit.

These voltage signals (A - F) are further processed by this pre-amp stage.

The pre-amplifier performs the following tasks

- · Automatic power control of the PU unit's laser diode.
- Generation of an equalized RF signal from the photodetector outputs (A - D).
- Generation of a focus error signal from the photodetector outputs (A - D).
- Generation of a tracking error signal from the photodetector outputs (E & F).
- Generation of a tracking zero crossing signal from the photo-detector outputs (E & F).

This IC runs from a single voltage supply (+5V). The reference voltage for this IC, the PU unit, and all the servo circuitry is REFO. This is obtained from pin 19 of the pre-amp; which in turn is derived from the output REFOUT of the servo LSI, IC1201, UPD63700GF. The voltages REFOUT and REFO should be at +2.5V DC with respect to GND. All measurements and observations should be made using REFO as the reference as this is a buffered output. Care should be taken not to inadvertently short REFO to GND.

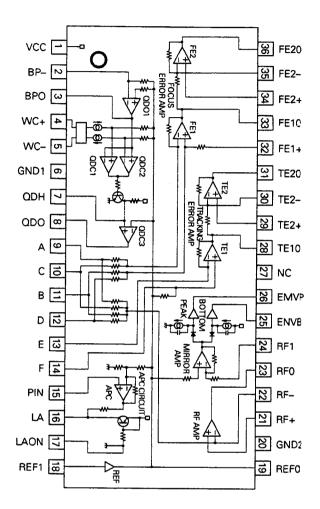


Fig.8: UPC2571GS BLOCK DIAGRAM

1) Automatic Power Control (APC)

The laser diode's junction voltage varies greatly with temperature; causing large output variations in optical power. To avoid this, a monitor diode is used in a feedback circuit to keep the optical power constant. As two different manufacturer's laser diodes are used the LD current falls into two broad bands: approx. 40mA and approx. 60mA.

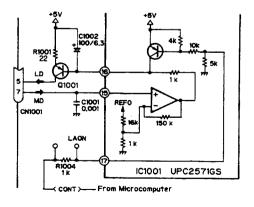


Fig.9: APC CIRCUIT

2) RF Amplifier

This performs a simple summation of the photodetector outputs A,B,C & D, amplifies, and equalizes to produce the RF signal at RFO. The RF eye pattern may be monitored here. The RFO OFFSET volume is used to ensure that the RFO waveform has the correct offset relative to the FOK threshold level inside the servo LSI UPD63700GF. The FOK signal is used in the focus close sequence, and during play to control the defect circuit inside the UPD63700GF.

The AC coupled RFO signal, RFI, is used by the UPD63700GF to generate the EFM signal which is used in turn by the DSP spindle CLV control sections.

For low frequency signals:

VRFO =
$$(A+B+C+D) \times (R1018+R1019)/10k = (A+B+C+D) \times 6.22$$

The RFO waveform should have an amplitude of approx. 1.9Vpp, with it's upper envelope at +1.1V DC w.r.t. REFO.

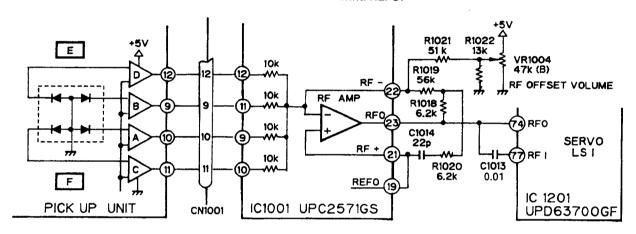


Fig. 10: RFO AMPLIFIER

3) Focus Error Amplifier

This produces a focus error signal used as the basis for the focus servo:

 $VFEY = ((A+C)-(B+D)) \times 5 \times (R1007//20k)/10k$

= FE x 6.23 (FE = PU unit focus error)

The S-Curve at FEY should have an amplitude of approx. 1.9Vpp.

The second amplifier stage is also a low pass filter, fc=11kHz, and has a bias volume adjustment. This adjustment is used to vary the reference bias level of the focus servo loop and is adjusted to obtain an optimum eye pattern at RFO.

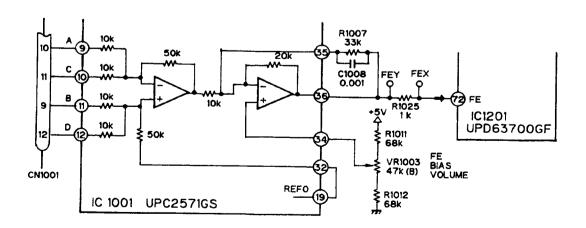


Fig.11: FOCUS ERROR AMPLIFIER

4) Tracking Error Amplifier

This produces the tracking error signal used in the tracking servo loop.

 $VTEY = (25 \times E) - (25 \times F \times 2 \times 10k / (T.BAL+10k))$

Normally, the sensitivity of E & F are the same and T.BAL=10k

$$=> VTEY = 25 \times (E-F)$$

If, however, the E and F sensitivities are different the T.BAL volume can be used to cancel out the unbalance. The offset adjustment TE OFFSET is to cancel any DC offsets from the photo-detectors or op-amps to ensure the reference bias for the servo loop is at zero. Maladjustment of either of these pre-sets will result in poor tracking performance and susceptibility to skipping.

For a typical unit, the TEY level should be approx. 1.8 Vpp.

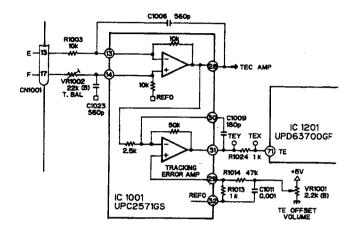


Fig. 12: TRACKING ERROR AMPLIFIER

5) Tracking Zero Crossing Amplifier

TEC1 is basically an amplified, AC coupled, version of the TEY waveform. It is used by the servo LSI IC1201, UPD63700GF to located the zero crossing points of the TEY signal to:

- Determine how many tracks have been crossed during track jumping or a carriage move operation.
- 2) Determine in which direction the lens is moving when attempting to close tracking. This is used in the "tracking brake" circuit described later.

For signals in the range 500Hz - 5kHz:

$$VTEC1 = R1005/R1006 \times (E-F) = 45.5 \times (E-F)$$

Typically TEC1 is around 4.2Vpp, this means that the TEC1 signal level may be greater than the saturation limit of the op-amp and the signal will clip. However, since the servo LSI only uses the zero-crossing points, this is not critical.

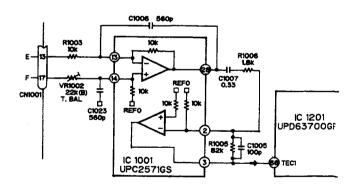


Fig. 13: TRACKING ZERO CROSSING AMPLIFIER

5.2 SERVO STAGE (UPD63700GF)

All the servo equalization & sequencing, such as focus closing, track jumping, carriage moving etc. are performed in this LSI, as well as all the DSP functions: data decoding, error protection, interpolation etc. The signals FE & TE are digitized and processed by the servo block to produce the focus, tracking & carriage drive signals, in a PWM format.

1) Focus Servo System

The main focus equalization takes place inside the UPD63700GF (figure 14). The equalizer response can be measured between FEX and FIN and has the shape shown in figure 15.

The RFI signal is converted to the EFM signal which is decoded by the DSP block to produce an audio signal; during this process, a spindle servo error signal is also generated and used by the servo block to produce a spindle drive signal, again in PWM form.

The PWM waveforms are filtered, to remove the PWM carrier, amplified by the driver IC1401 XRA6797FP, and output to the corresponding actuators.

Fig.14: FOCUS SERVO BLOCK DIAGRAM

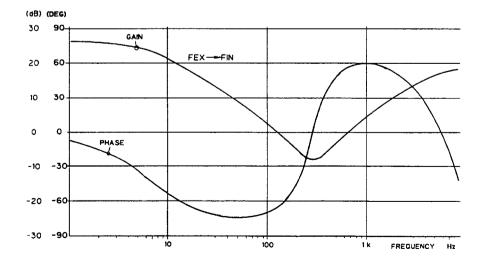


Fig. 15: FOCUS EQUALIZER

In order to smoothly close focus the lens must first be within approx. $5\mu m$ of the "just focused" position. This position is achieved by a focus search sequence. The lens is moved up and down using a triangular wave search voltage while the spindle motor is kicked and kept rotating at an appropriate speed. The servo LSI monitors the FE and RFO signals and, at an appropriate point, automatically closes focus.

The conditions for focus close are:

- 1) The lens is moving from a far to a near position relative to the disc,
- 2) FOK = HIGH (5V),
- 3) FZD (IC internal signal) was latched high and
- 4) FE = 0 (w.r.t. REFO).

When the focus servo closes, the servo LSI's serial data

output port, XSO, will show a high-low transition. This is received by the microcomputer as an indication that the servo loop was closed and after about 25mS it begins monitoring the FOK output, via a LPF, to verify that focus is still closed; in the event of FOK becoming low for an appreciable time, the microcomputer will take appropriate action.

The various signal levels which contribute to focus close are shown in figure 16, which shows the case where focus close has been inhibited.

In TEST MODE, using FOCUS CLOSE MODE 1, conditions 2 & 3 can be inhibited to allow the S-Curve, focus search voltage and the actual lens movement to be observed at ease.

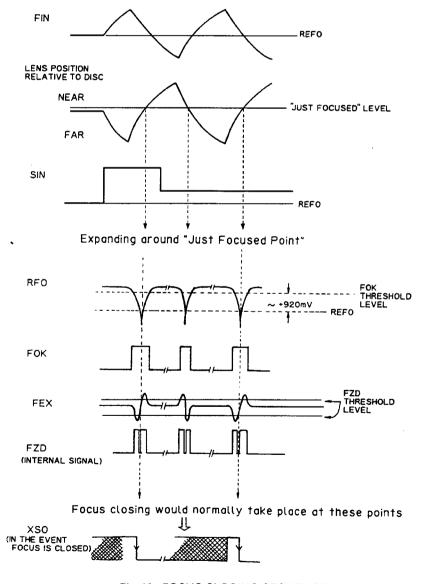


Fig.16: FOCUS CLOSING SEQUENCE

a) FOK CIRCUIT

The FOK circuit inside the servo LSI compares the lower envelope of the RFO signal with a threshold level fixed by the microcomputer. Should the envelope level fall below this FOK level then FOK becomes high. This is used during focus close as stated and also during play to control a defect circuit, which switches the focus &

tracking servos into a hold mode should the RFO envelope become disrupted by dirt, grease etc, thus increasing the player's defect response (figure 17). The FOK threshold is approx. +920mV w.r.t. REFO. It is for this reason that the upper envelope should be adjusted to +1.1V DC w.r.t. REFO.

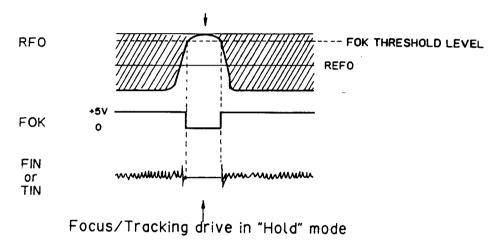


Fig.17: DEFECT CIRCUIT

b) FZD CIRCUIT

The FZD circuit inside the servo IC compares the absolute value of the FE signal to a threshold value and outputs a high!/low signal which is then used in the focus close sequence as stated.

At power on, the microcomputer switches the laser diode off and reads the value of the FE bias via the servo LSI's A/D port. The FZD threshold is set 200mV above this bias level.

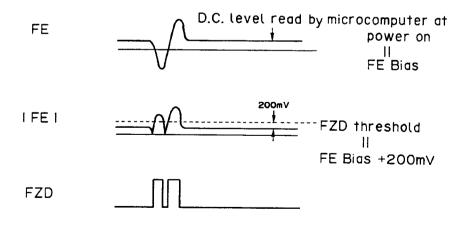


Fig. 18: FZD CIRCUIT

2) Tracking Servo System

The main tracking equalization takes place inside the UPD63700GF (figure 19). The equalizer response can be measured between TEX and TIN and will have the shape shown in figure 20.

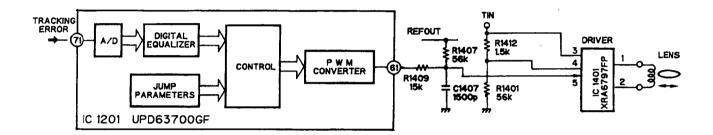


Fig. 19: TRACKING SERVO BLOCK DIAGRAM

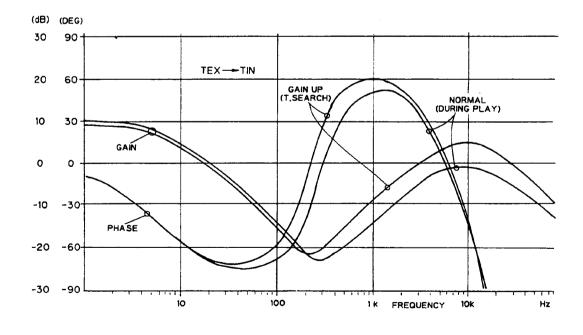


Fig.20: TRACKING EQUALIZER

a) Track Jumping

Track jumping is performed automatically by the servo LSI upon receipt of the appropriate command from the microcomputer. The present microcomputer is programmed to use 1,4,10 & 32 track jump commands to achieve searching. The 32 track jump command may be used in pairs (64 tracks) or triplets (100 track) as required. In TEST MODE the 1,4,10,32 & 100 track jump and carriage move sequences may be observed by selecting the appropriate mode.

Note that the number of tracks jumped is controlled by setting an internal counter to half the total value and then counting this down using the zero crossing edges of TEC1. Once the counter is at zero, a brake pulse of

fixed duration is output to bring the lens to a halt; allowing tracking to be closed and normal play to continue.

For a fixed period of time after a multi-track jump has been performed, a "tracking brake" circuit is activated in conjunction with a "gain-up" equalizer to ensure that the servo achieves stabilization before entering normal play.

Manual track search, in normal mode, uses a group of single track jumps to achieve FWD/REV at approx. ten times normal play speed.

The figures 21 & 22 show the timing charts for the single-track jump and multi-track jump commands.

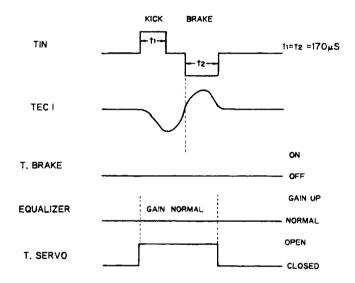


Fig.21: SINGLE TRACK JUMP

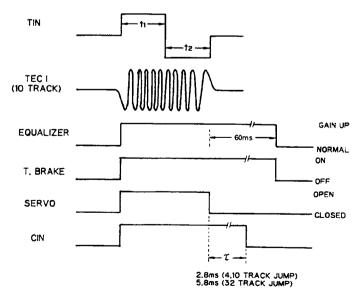
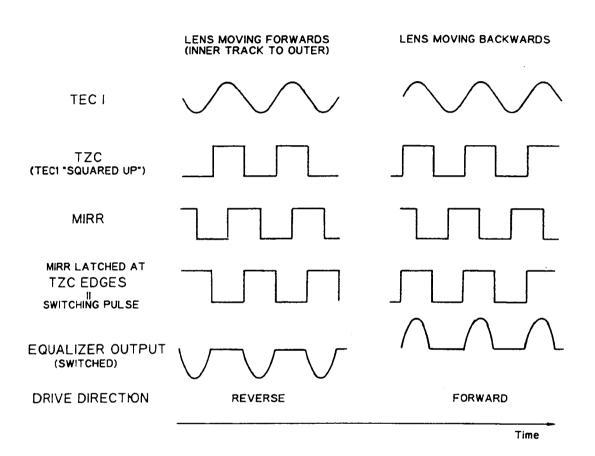



Fig.22: MULTI TRACK JUMP

b) Tracking Brake Circuit (Figure 23)

This relies on determining which direction the lens is moving and only outputting the portion of the drive waveform which acts to oppose this motion. Direction of motion is deduced from TEC1 and the MIRR signal and knowledge of their phase relation.

Note: Equalizer output assumed to have same phase as TEC1.

Fig.23: TRACKING BRAKE CIRCUIT

c) MIRROR Circuit

The MIRR circuit indicates if the laser beam is on or off track.

MIRR = 'H' => off track, MIRR = 'L' => on track.

MIRR is generated by detecting the upper and lower envelopes of the RFO waveform and producing a difference signal which is then compared with a peakheld version of itself to determine if the envelope size has dropped below a certain percentage.

If so, this is assumed to be due to the beam going offtrack; in practice dirt on the disc can also give the same effect (see figure 24).

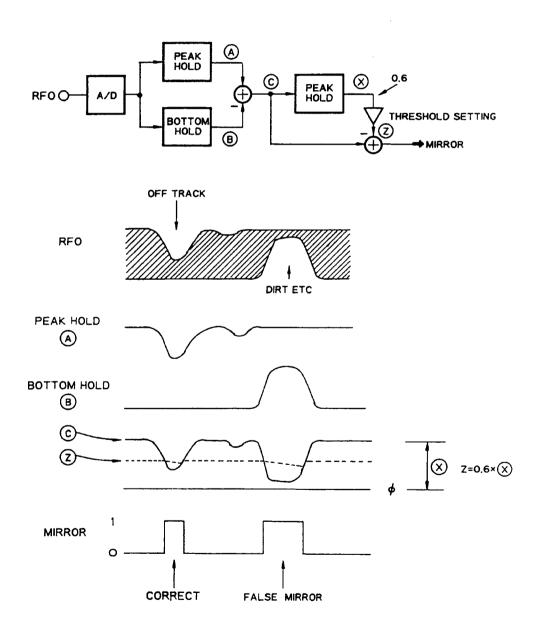


Fig.24: MIRROR CIRCUIT & SIGNAL DIAGRAM

3) Carriage Servo System

The carriage servo system takes it's input from the low frequency component of the tracking equalizer output. This is amplified and equalized, and the output fed to the carriage motor via the PWM converter, LPF and driver IC. The gain of the equalizer is set so that when the lens is offset from it's center by a set amount the voltage at the carriage motor is enough to overcome friction and move the carriage forward.

Because the carriage motor will only begin moving when the applied voltage is great enough to overcome friction the drive voltage is cut-off inside the servo LSI until it reaches an appropriate level; thus saving on wasted power dissipation.

Due to eccentricity of the disc etc. the threshold level may be crossed several times before the carriage assembly actually moves. This can result in a series of pulses being applied to the carriage motor.

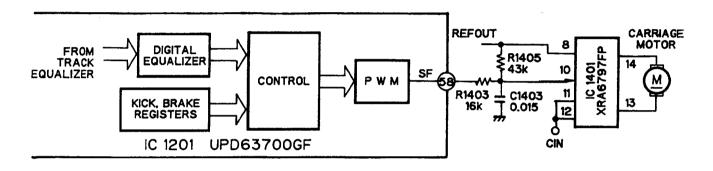


Fig.25: CARRIAGE SERVO CIRCUIT

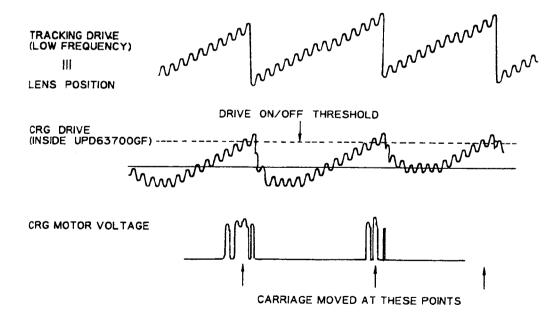


Fig.26: CARRIAGE WAVEFORM

4) Spindle Servo

The spindle servo has a number of different modes:

- (i) Kick: Used at set-up to bring the spindle up to speed from stand-still.
- (ii) Offset: This is used i) At set-up, after spindle kick and before AGC has finished.
 - ii) During play if focus is suddenly disrupted.
- (iii) Adaptive Servo: This is the CLV mode which ensures that the linear velocity of the disc as seen by the laser spot is kept constant. During play, a timing signal is extracted from the EFM signal and used to generate speed and phase error signals. These error signals are summed and fed into a servo equalizer to produce a drive signal via the PWM converter.
- (iv) Brake: This is used to bring the disc to a stop quickly, for ejection or when CD source is deselected or for any other reason. The servo LSI puts out a brake level and monitors the EFM signal. When the longest pattern in the EFM signal is longer than a fixed amount an internal flag is set. By monitoring this flag the microcomputer can judge when the disc has stopped and proceed to eject etc. If this flag is not set within a certain time limit the servo is switched to STOP mode and eject is implemented after a wait period.

- (v) Stop: This occurs at power on or during disc eject. The spindle motor voltage is zero.
- (vi) Rough: This is used in normal mode to control the linear velocity of the disc when the carriage is being moved for fast access. A speed signal is deduced from the EFM waveform and input to the spindle equalizer. This mode should be used in TEST MODE to perform the grating adjustment.

a) EFM Comparator

This circuit 'squares' up the analog RF signal into a digital EFM signal. In order to ensure minimum errors it is necessary to use a feedback circuit to match the DC level of the threshold to the center of the RF waveform. This circuit (shown in the spindle servo block diagram) uses the fact that the EFM signal should have no DC component. By feeding back the EFM signal's DC level the threshold level changes until the DC level is zero and the threshold, by definition, is at the exact center of the RFI waveform. The filtering in the feedback has been adjusted to ensure minimum error.

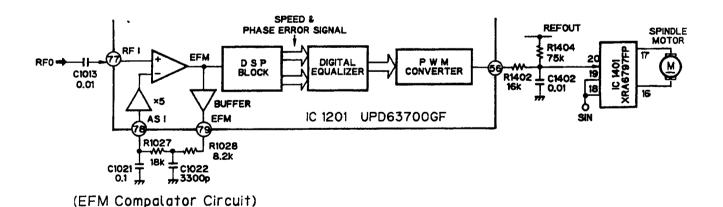
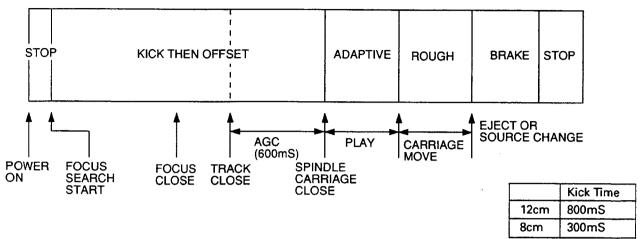



Fig.27: SPINDLE CIRCUIT

Normal Mode

Test Mode

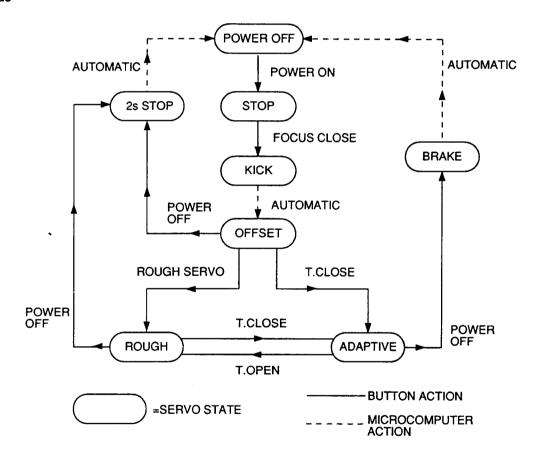


Fig.28: SPINDLE SERVO MODES

5) Automatic Gain Control (AGC)

The servo LSI UPD63700GF contains a new function which allows the microcomputer to automatically adjust the gain of the focus and tracking servos every time a new disc is inserted or the CD source is selected. The block diagram of the AGC circuit is shown in figure 29. Basically, a small disturbance signal is inserted into the servo loop at a fixed frequency and the response of the loop is measured via the filtered signals G1 and G2. For a properly adjusted servo loop the amplitudes of G1 and G2 should be equal. The microcomputer reads in these values, does a simply calculation and adjusts the loop gain appropriately.

In order to achieve a high degree of accuracy this adjustment is performed a number of times.

As long as there is power supplied to the microcomputer it remembers the previous adjustment point and uses this as a starting point. Thus, should the system degrade with time (actuator sensitivity, dirt build-up, circuit degradation etc.) the microcomputer can follow this trend and keep the loop gain optimized. If power to the microcomputer is removed, it forgets the previous adjustment point and assumes a default value.

At shipping the CD player will be within 5dB of this default and no problems should occur. For an older player however this is not so and it is possible that servo closure may not take place immediately. In this case, the microcomputer adjusts the gain 'blind', searching for a stable point.

In TEST MODE, the result of the AGC can be monitored. Once tracking close (with AGC) has been performed the set can be made to display the present value of the gain block. The default value is displayed as '20', which is the value a typical PU unit, PCB & test disc would result in. If for some reason the loop gain had dropped by, say, 6dB (1/2 the typical value) then the gain block will be adjusted during AGC to twice it's default value; resulting in a gain of '40'. Similarly a set with a loop gain twice the typical will display '10' as the present gain.

Using this, it is possible to 'measure' the loop gain of the servo without the need for any instrumentation. The players shipped from the factory are checked with a test disc so that the value of the gain block after AGC is within the range 11 - 45.

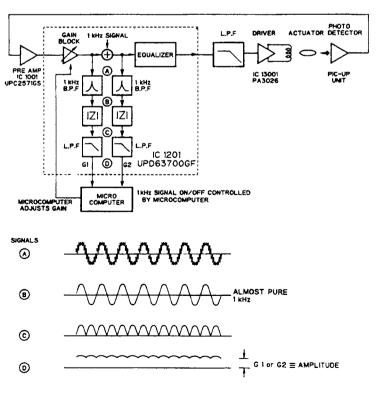


Fig.29: AGC BLOCK DIAGRAM

5.3 Power Source Configuration

The power source for this system consists of seven separate sources which are the SVC (5.2V), VDD (5.0V), VLED (8.5V), 5VA (5.0V), DAC5 (5.0V), VD (8.6V), and POW5 (5.0V) power sources.

SVC: Power source for SRAM (IC1702). Even if BU is cut off by diode switching, the charge voltage of C1704 (electrolytic capacitor) maintains SRAM's power supply for one day (minimum 2 V) and saves data of the ITS and title memories.

VDD: Power source for the microcomputer (IC1701). Constantly outputs power as long as the BU created by the IC power source PAJ002A is connected.

VLED: Power supply for the two LEDs for the elevation (vertical movement) sensor and disc sensor. The LEDs light during mechanical movement, and are controlled by LOAD.

5VA: Consists of power source for IC1001, IC1201 and the LD of the PU unit, plus the regulator circuit for IC1401 (XRA6797FP) and an external transistor. The 5VA power supply outputs power when VD is turned on.

DAC5: Consists of the IC1601 (D/A converter IC) and audio midpoint voltage, plus regulator IC from VD. The DAC5 power supply outputs power when VD is turned on.

VD: Main power supply for the system. Power is output when POW5, having switched VDD by POWER, reaches the reference voltage and is triggered.

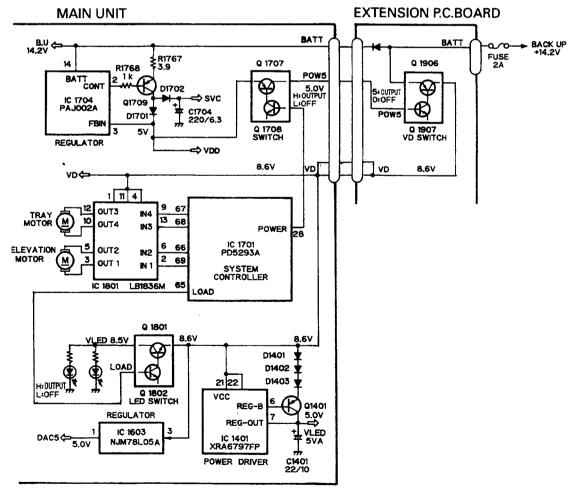


Fig.30

5.4 Mechanical Function

1) Elevation (Figure 31)

When BU is turned on, the elevator moves upward until RSTP becomes L. The elevator stops at L. This is the 6th position (reset position). While counting the number of L of TSEL, the elevator subsequently transfers to the position of the requested number of discs (place where TSEL is L). The TSEL waveform is detected by LED and photo transistor. MAG become L when the magazine is inserted. If there is no magazine, MAG becomes H. Even after magazine eject, the mechanism constantly detects the reset position and stops here.

2) Tray extension and retreat (Figure 32)

The series of movements consisting of storing the tray in the magazine, extending and retreating the tray, and completion of clamping is determined by the microcomputer according to the DSP and TRP waveforms. The motors are driven by the 2-circuit motor drivers IC1801 (LB1836M) for locomoting the elevator and trays. Forward and reverse are carried out by drive instructions from the microcomputer through a combination of H and L of four lines (I1, I2, I3, I4).

3) Disc detection (Figure 33)

DSP is not only used for the previously mentioned extension and retreat of trays, but is also used for timing of decisions of whether the tray contains a disc or not, and whether the disc is a 12 or 8 cm disc. A series of disc detection operations are carried out while trays are pulled out of the magazine. For disc detection, an LED and photo transistor are provided above and

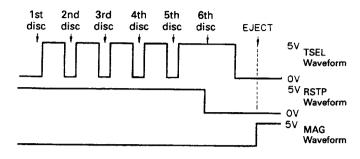


Fig.31

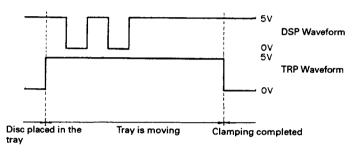


Fig.32

below the tray. Presence of the disc is determined according to whether the light passes through the tray (disc waveform is L) or is blocked by the disc (disc waveform is H).

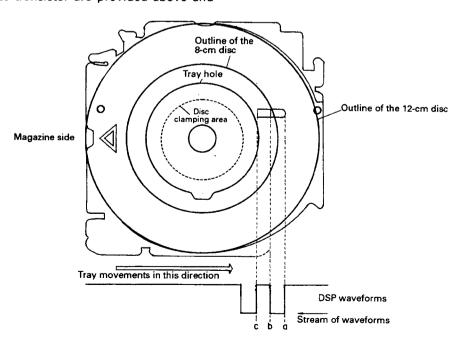


Fig.33

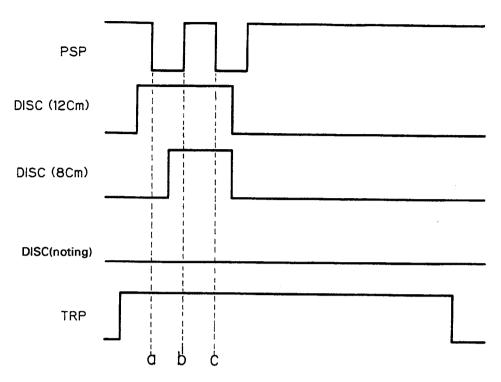


Fig.34

The flow of the waveform is opposite that of the previously mentioned DSP waveform.

Disc waveform is continuously detected during the periods of a-b and b-c:

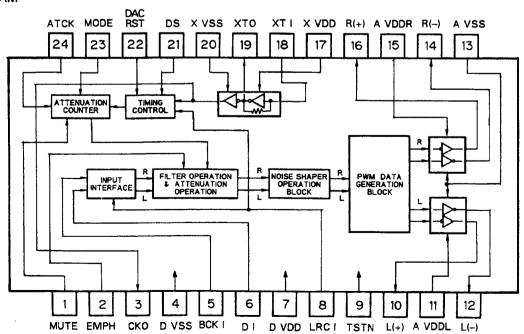
If L is detected at least once, that period is L.

If L is not detected at least once, that period is H.

	a-b	b-c
12Cm	Н	Н
8Cm	L	Н
Disc (nothing)	L	L

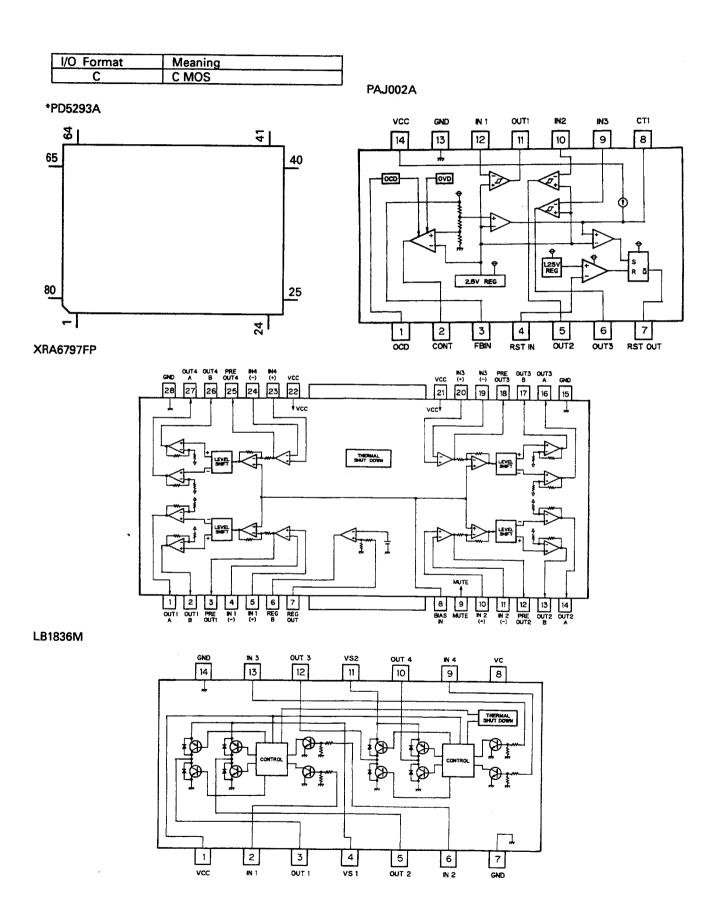
However, regardless of whether a-b is H or L, if b-c is L, all trays are determined to be empty.

• ICs


● Pin Functions (SM5874AM)

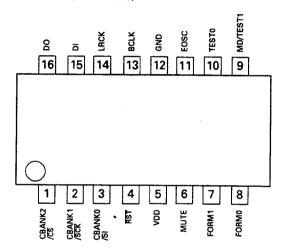
Pin No.	Pin Name	1/0	Function and Operation
1	MUTE	į į	Mode H: Soft mute ON/OFF
			Mode L: Attenuator level DOWN/UP
2	EMPH	1	De-emphasis ON/OFF terminal
3	СКО	0	Oscillation output clock
4	DVSS		Digital GND (0V)
5	BCKI	1	Input data bit clock
6	DI	1	Serial data input
7	DVDD		Digital VDD (5V)
8	LRCI	I	Input data sample rate (fs) clock
9	TSTN	1	Test
10	L(+)	0	Lch analogue output (+)
11	AVDDL		Analogue VDD
12	L(-)	0	Lch analogue output (-)
13	AVSS	1	Analogue VSS
14	R(-)	0	Rch analogue output (-)
15	AVDDR		Analogue VDD
16	R(+)	0	Rch analogue output (+)
17	XVDD		Crystal VDD (5V)
18	XTI	I	Oscillation input
19	XTO	0	Oscillation output
20	XVSS		Crystal VSS (0V)
21	DS	1	Normal / high-speed play mode select
22	DACRST	0	Reset output
23	MODE	I	Soft mute / attenuator mode select
24	ATCK		Attenuator level clock

IC's marked by* are MOS type.


Be careful in handing them because they are very liable to be damaged by electrostatic induction.

*SM5874AM

● Pin Functions (PD5293A)


Pin No.	Pin Name	1/0	I/O Format	Function and Operation
1	TIN	11	C	Tray position input
2	TEMP	li-		Temperature detector
3	VDIN	†i		Power supply short sensor input
4	TOUT	T i	С	Disc sensor timing input
5	CSI	11	Ċ	IP-BUS data input
6	CSO	0	Ċ	IP-BUS data output
7	APPW	Ō	Č	IP-BUS driver power supply control output
8	AO	ō	Ċ	Control signal distingshing from LSI
9	XSCK	1/0	c	LSI clock input/output
10	XSO	0	č	LSI data output
11	XSI	t ř –	Č	LSI data input
12	STB	Ö	Č	LSI strobe output
13	RST	Ö	Ċ	LSI reset output
14	DCE	Ö	č	Chip enable output
15	DACRST	0	č	D/A converter reset output
16	ASENS	 		ACC power sense input
17	BSENS	 	 	Back up power sense input
18	DMUTE	Ö	С	Mute output
19	DRST	0	Č	Reset output
20-23	NC	1-	 	Not used
24	EJSW	<u> </u>		
25	MAG	 		Eject key switch interrupt input
26	NC	 		Magazine lock switch interrupt input Not used
27	RESET	1		
28	POWER	0	С	Reset input
29	CONT	0	C	CD +5V control
30		1 -	<u>C</u>	Servo driver power supply control
31	XIN	6	 	Crystal oscillating element connection pin
32	VSS	 0		Crystal oscillating element connection pin
		1/0		GND
33-40 41	D7-D0 WE	0	C	External RAM data
42	PROT	0	C	External RAM write enable
43	CS .	0	C	External RAM output enable External RAM chip select
44-56	A12-A0	0	C	
57	EJP	1 +	C	External RAM address
58,59	NC	ļ	<u> </u>	Reset position switch
60	MIRR	 	С	Not used
61	LOCK	1	C	Mirror detector input
62	FOK	1 1	C	Spindle lock detector input
63	HOME	 	C	FOK signal input Home position detector input
64	OPTSW	 	C	
65	LOAD	0	C	Digital output ON/OFF input
66	I3	0	C	Mechanism power supply control
67	11	0	C	Motor driver control output
68	12	0	C	Motor driver control output
				Motor driver control output
69	CDM/ITE	0	С	Motor driver control output
70	CDMUTE	0	C	CD mute output
71	ADENA	0	C	A/D reference voltage output
72	TESTIN	 	С	Test program mode input
73	VCC	 . 		Back up 5V
74	VREF	!		A/D converter reference voltage input
75	AVSS			A/D GND
76	UNIT	!		Unit input
77	6/12	<u> </u>	С	6/12 switching input
78	DISK	 		Disc detector input
79	TSEL	 		Tray position detector photo sensor
80	CSEL		С	Compression select

● Pin Functions (PD4501A)

Pin No.	Pin Name	11/0	[
FIII NO.		1/0	Function and Operation
1	CBNK2/CS	1	CROM bank select signal input/Chip select
2	CBNK1/SCK		CROM bank select signal input/Clock
3	CBNK0/SI	I	CROM bank select signal input/Data
4	RST		Reset signal input
5	VDD		Power supply
6	MUTE	I	Mute control input
77	FORM1	ı	Bit clock rate select signal input
8	FORM0		Bit clock rate select signal input
9	MD/TEST1	1	CROM bank select /test mode select
10	TEST0		Test mode select
11	EOSC		External clock input
12	GND		GND
13	BCLK	l	Bit clock signal input
14	LRCK	1	L/R clock signal input
15	DI	1	Audio data serial input
16	DO	0	Audio data serial output

^{*}PD4501A (CDX-P616)

6. EXPLODED VIEW PARTS LIST

NOTE:

- Parts marked by " * "are generally unavailable because they are not in our Master Spare Parts List.
- Parts marked by "⊚" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- Chassis(Exploded View:Page 2-7)

Parts List

Mark No.	Description	Part No.
1	Screw	BMZ26P080FMC
2	Screw	BSZ30P055FZK
3	Cord	CDE4211
	(P616/UC,P610/UC,ES)	
	Cord	CDE4210
	(P610/EW,X1B/EW)	
	Connector	CDE4372
	Upper Case	CNB1886
6	Lower Case	CNB1815
7	Insulator	CNM3987
8	Main Unit(P616)	CWX1761
	Main Unit(P610)	CWX1721
_	Extension Unit	CWX1729
	CD Mechanism Unit	CXK4000
	Screw	PMS26P040FMC
	Earth Plate	CNC5769
13	Screw	HMF40P080FZK
	Angle	CNB1874
	••••	
	Connector(CN1701)	CKS2764
18	Connector(CN1801)	CKS2779
10	Campana-(CNI4000)	01/00407
	Connector(CN1802)	CKS3127
	Heat Sink	CNC4447
	Connector Bracket	CNC5570
	Connector(CN1697)	CKS2218
23	Connector(CN1699)	CKS2479
24	Plug(CN1901)	CKS-460
	Transistor(Q1906)	2SB942
	Screw	BPZ26P080FMC
	Button	CAC3982
	Door(P616)	CAT1650
	Door(P610)	CAT1624
	,	J. 11 100 f
29	Holder	CNC5362
30	Grille Unit(P616)	CXA7758
	Grille Unit(P610)	CXA7757
31	Connector	CDE4366

● CD Mechanism Unit(Exploded View:Page 2-4)

Parts List

Mark No.	Description	Part No.	Mark No.	Description	Part No.
	Screw	BMZ20P030FMC	49	Lever	CNC5166
2	Screw	BMZ20P025FMC	50	Arm	CNC5168
3	Screw(M2.6×3)	CBA1065	51	Arm	CNC5169
4	LED	BR4361F		Bracket	CNC5170
5	••••			CM Bracket	CNC5171
6	Screw	CBA1041	54	Cover	CNC5172
7	Screw	CBA1077	55	Upper Frame	CNC5175
8	Screw	CBA1086		Main Frame	CNC5176
9	Screw	CBA1229	57	Side Frame	CNC5178
10	Screw	CBA1243	58	Bracket	CNC5462
	Washer	CBF1038	59	Cover	CNC5567
	Spring	CBH1488	60	Cover	CNC5576
	Spring	CBH1497	61	Lever	CNC5678
	Spring	CBH1498	62	Plate	CNC5782
15	••••		63	Spacer	CNM1787
	•				
	Spring	CBH1588		Sheet	CNM3897
	Spring	CBH1589		Sheet	CNM4337
	Spring	CBH1744		Insulator	CNM4266
	Spring	CBH1592		P.C.Board	CNP3642
20	Spring	CBH1593	68	P.C.Board	CNP3730
21	Spring	CBH1594	69	Belt	CNT1047
	Spring(Silver)	CBH1596		Rack	CNV3355
	Spring	CBH1597	71	Holder	CNV3363
	Spring	CBH1599		Gear	CNV3753
	Spring	CBH1604	73	Gear	CNV3754
26	Spring	CBH1605	74	Guide	CNV3756
	Spring(Silver)	CBH1606		Arm	CNV3757
	Spring(Brown)	CBH1607		Arm	CNV3757
	Spring	CBH1631		Arm	CNV4185
	Spring(Black)	CBH1633		Worm Wheel	CNV3761
50	opinig(black)	CDITIOSS	76	AAOIIII AAIIeei	CINVS/01
31	Spring	CBH1667	79	Gear	CNR1382
	Spring	CBH1706	80	Gear	CNV3763
33	Spring	CBH1721	81	Gear	CNV3764
34	Spring	CBL1157	82	Gear	CNV3765
	Arm	CBL1186	83	Gear	CNV3766
	Arm	CBL1187	84	Gear	CNV3767
	Spring	CBL1210	85	Arm	CNV3769
	Connector	CDE4244		Guide	CNV3770
	• • • • •		87	Guide	CNV3771
40	PU Unit	CGY1036	88	Guide	CNV3772
41-44			89	Guide	CNV3773
	Shaft	CLA2027		Arm	CNV3775
	Shaft	CLA2322		Bearing	CNV3778
	Shaft	CLA2345		Holder	CNV3779
	Link	CNC5150		Damper	CNV3780
40	LITTE	C14C3 130	33	Darriber	CINV3/80

Mark No.	Description	Part No.	Mark	No.	Description	Part No.
94	Cam	CNV3781		145	Screw	JFZ20P014FMC
95	Guide	CNV3784		146	Washer	CBF1002
96	Guide	CNV3785				
	Arm	CNV3787				
	Plate	CNV3912				
•	. 1015	3.77.00				
	Arm	CNV3914				
	Composite P.C.Board	CNX2236				
	••••					
	Composite P.C.Board	CNX2237				
103	••••					
104,105	••••					
•	Switch(S802-805)	CSN1012				
	Switch(S801)	CSN1029				
	P.C.Board Unit	CWX1809				
	Connector(6P)	CKS1944				
109	Connector(or)	CK3 1344				
110	Connector(17P)	CKS1955				
111	Connector(30P)	CKS1968				
	Connector(7P)	CKS2406				
	Motor Unit(M804)	CXA4649				
	Damper Unit	CXA6443				
	Damper ome	0,010440				
115	Stage Chassis Unit	CXA6608				
	CRG Chassis Unit	CXA6609				
	Steer Unit	CXA6610				
	Bracket Unit	CXA6611				
	Magazine Holder Unit	CXA6612				
113	Magazine noider Onic	CAA0012				
120	Lever Unit	CXA6613				
121	Lower Cover Unit	CXA6614				
122	Bracket Unit	CXA6615				
	Cam Ring Unit	CXA6616				
	Lever Unit	CXA6619				
	20101 01111	0.0.00.0				
125	Lever Unit	CXA6620				
126	Link Unit	CXA6621				
127	Arm Unit	CXA6622			*	
128	Arm Unit	CXA6623				
	Arm Unit	CXA6624				
		014.000				
	Frame Unit	CXA6625				
	Lever Unit	CXA6626				
132	Motor Unit(M803)	CXA6977				
133	Motor Unit(M802)	CXA6978				
134	Screw Unit	CXA6990				
135	Motor Unit(M801)	CXA6991				
	Arm Unit	CXA7153				
	····	V//// 193				
		CXA7632				
	Clamper Unit	UAM/032				
139,140						
141	Screw	JFZ17P025FNI				
142	Screw	JFZ20P025FNI				
143	Photo-transistor	PT4800				
	(P801,802)					
144	Spring	CBH1741				
1-4-4	~P9	351117-1				

7. ELECTRICAL PARTS LIST

NOTE:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

RS1/OSOOOJ,RS1/OOSOOOJ

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

=====Circuit Symbol &	No. Part Name=====	Part No.	=====Circuit Symbol 8	k No. Part Name=====	Part No.
Unit Number :			IC 1704		PAJ002A
Unit Name : Extensi	on P.C.Board		IC 1801	***	LB1836M
			Q 1001		2SA1015
MISCELLANEOUS			Q 1401 1709		2SB1238
			Q 1701		DTA144ES
Q 1693 1697		DTA144ES	, .,		D 17 14463
Q 1696		DTC114YS	Q 1703		DTC144ES
Q 1698 1699		DTC343TS	Q 1704 1707 1801		DTA123JS
Q 1799		2SC2458	Q 1708 1802		DTC114YS
Q 1906		2SB942	D 1401 1402 1403		ERA15-02VH
		2000-12	D 1701 1702		1SS292
Q 1907 1908		2SD1859	5 1701 1702		133232
D 1698 1699		1SS133	X 1601	Resonator 16.9340MHz	CSS1328
D 1798 1799		RD18JSB1	X 1701	Ceramic Resonator	CSS1328
D 1901 1903		ERA15-02VH	S 1701 1702	Switch(EJECT,RESET)	CSG1059
L 1901	Choke Coil	CTH1129	VR1001	Semi-fixed 2.2kΩ(B)	CCP1177
	Chicks Con	01111125	VR1002	Semi-fixed 2.2kΩ(B)	CCP1177
SW1799	Switch(Adress)	CSH1038	VI 1002	Serni-lixed 22k (2 (B)	CCPTI83
		00111000	VR10031004	Semi-fixed 47kΩ(B)	CCP1185
RESISTORS			RESISTORS		
R 1695 1910		RD1/4PS103JL	RESISTORS		
R 1696 1697		RD1/4PS332JL	R 1001		RD1/4PS220JL
R 1698 1699		RD1/4PS112JL	R 1002		
R 1791		RD1/4PS102JL	R 1003		RD1/4PS0R0JL
R 1792 1793 1794		RD1/4PS513JL	R 1003		RD1/4PS103JL
1 1702 1700 1754		1101/41 35 1352	R 1004 1708		RS1/16S102J
R 1795 1796 1908		RD1/4PS101JL	n 1005		RS1/16S823J
R 1798		RD1/4PS273JL	R 1006		DC1/16C1011
R 1799		RD1/4PS433JL	R 1007		RS1/16S182J
R 1906	•	RD1/4PS104JL	R 1011 1012		RS1/16S333J
R 1907		RD1/4PS204JL	R 1013 1024 1025		RS1/16S683J
11 1007		ND 1/4F 32043L	R 1013 1024 1025		RD1/4PS102JL
R 1909 1911		RD1/4PS201JL	N 1014 1410		RS1/16S473J
R 1912		RD1/4PS241JL	R 1018		DD4/4DCCC411
R 1913		RD1/4PS681JL	R 1019 1401 1407 1716		RD1/4PS622JL
R 1914		RD1/4PS511JL	R 1020		RS1/16S563J
R 1915		RD1/4PS104JL			RS1/16S622J
(1915		NO 1/4F3 1043E	R 1021 1701		RS1/16S513J
CAPACITORS			R 1022 1408		RS1/16S133J
• ••••			R 1027		RS1/16S183J
C 1698 1699		CEA330M10LL	R 1028		RS1/16S822J
1798 1799		CKPYB471K50L		1606 1607 1608 1702 1712 1741	RS1/16S103J
1901 1905	470 μ F/16V	CCH1183	R 1402 1403 1613 1614	1615 1616	RS1/16S163J
1904		CEA220M10LL	R 1404		RS1/16S753J
1906	470 μ F/16V	CCH1183			
			R 1405 1708		RS1/16S433J
1907		CKPYB102K50L	R 1409		RS1/16S153J
			R 1412		RS1/16S152J
Init Number : CWX17			R 1602		RS1/16S471J
Jnit Name : Main U	nit		R 1609 1610 1611 1612		RS1/16S752J
			R 1617 1618 1769		RS1/16S101J
MISCELLANEOUS			R 1619		RS1/16S102J
					RS1/16S154J
C 1001		UPC2571GS	R 1704		
C 1001 C 1201		UPD63700GF	R 1705 1713 1715 1718	1721 1730 1731 1732 1733 1734	RS1/16S104J
C 1001 C 1201 C 1301				1721 1730 1731 1732 1733 1734	
C 1001 C 1201 C 1301 C 1401		UPD63700GF PD4501A XRA6797FP	R 1705 1713 1715 1718	1721 1730 1731 1732 1733 1734	RS1/16S104J
C 1001 C 1201 C 1301 C 1401		UPD63700GF PD4501A	R 1705 1713 1715 1718 R 1707 R 1709 1710 1714 1722		RS1/16S104J RS1/16S0R(J RS1/16S222J
C 1001 C 1201 C 1301 C 1401 C 1601		UPD63700GF PD4501A XRA6797FP SM5874AM	R 1705 1713 1715 1718 R 1707 R 1709 1710 1714 1722 R 1717		RS1/16S104J RS1/16S0R(J RS1/16S222J RS1/16S123J
C 1001 C 1201 C 1301 C 1401 C 1601		UPD63700GF PD4501A XRA6797FP SM5874AM XRA4560F	R 1705 1713 1715 1718 R 1707 R 1709 1710 1714 1722 R 1717 R 1719 1742 1766		RS1/16S104J RS1/16S0RU RS1/16S222J RS1/16S123J RS1/16S0RU
C 1001 C 1201 C 1301 C 1401 C 1601 C 1602 C 1603		UPD63700GF PD4501A XRA6797FP SM5874AM XRA4560F NJM78L05A	R 1705 1713 1715 1718 R 1707 R 1709 1710 1714 1722 R 1717 R 1719 1742 1766 R 1737 1738 1739		RS1/16S104J RS1/16S0RU RS1/16S222J RS1/16S123J RS1/16S0RU RS1/16S104J
MISCELLANEOUS C 1001 C 1201 C 1301 C 1401 C 1601 C 1602 C 1603 C 1701		UPD63700GF PD4501A XRA6797FP SM5874AM XRA4560F NJM78L05A PD5293A	R 1705 1713 1715 1718 R 1707 R 1709 1710 1714 1722 R 1717 R 1719 1742 1766		RS1/16S104J RS1/16S0R(J RS1/16S222J RS1/16S123J RS1/16S0R(J
C 1001 C 1201 C 1301 C 1401 C 1601 C 1602 C 1603		UPD63700GF PD4501A XRA6797FP SM5874AM XRA4560F NJM78L05A	R 1705 1713 1715 1718 R 1707 R 1709 1710 1714 1722 R 1717 R 1719 1742 1766 R 1737 1738 1739		RS1/16S104J RS1/16S0RU RS1/16S222J RS1/16S123J RS1/16S0RU RS1/16S104J

=====Circuit Symbol &	No. Part Name=====	Part No.	=====Circuit Symbol & No. Part Name=====	Part No.
R 1756 R 1767		RS1/16S104J	RESISTORS	
R 1771		RD1/4PS3R9JL	D 1001	
R 1801 1802		RS1/16S102J RD1/4PS391JL	R 1001 R 1002	RD1/4PS220JL
11 1001 1002		ND 1/41 333 IJL	R 1002	RD1/4PS0R0JL
CAPACITORS			R 1003 R 1004 1768	RD1/4PS103JL RS1/16S102J
			R 1005	RS1/16S823J
C 1001 1008 1010 1011	1708 1709	CKSRYB102K50		
C 1002	,	CEA101M6R3LL	R 1006	RS1/16S182J
C 1003 1021 1602 1603	1604 1605	CKSQYB104K16	R 1007	RS1/16S333J
C 1004 C 1005		CEA470M6R3LL	R 1011 1012	RS1/16S683J
C 1005		CCSRCH101J50	R 1013 1024 1025	RD1/4PS102JL
C 1006 1023		CKSRYB561K50	R 1014 1410	RS1/16S473J
C 1007		CKSYB334K16	R 1018	RD1/4PS622JL
C 1009		CCSRCH181J50	R 1019 1401 1407 1716	RS1/16S563J
C 1013 1301 1701 1702	1705 1707	CKSRYB103K25	R 1020	RS1/16S622J
C 1014		CCSRCH220J50	R 1021 1701	RS1/16S513J
0			R 1022 1408	RS1/16S133J
C 1015 1201 1202		CKSYF105Z16		
C 1018		CEA220M6R3LL	R 1027	RS1/16S183J
C 1022 C 1026		CKSRYB332K50	R 1028	RS1/16S822J
C 1203		CKSRYB103K25 CKSRYB471K50	R 1201 1406 1411 1605 1606 1607 1608 1702 1712 1741	
- 1200		CKSH104/ IKSU	R 1402 1403 1613 1614 1615 1616 R 1404	RS1/16S163J
C 1302		CEA470M6R3LL	11 I+U+	RS1/16S753J
C 1401		CSZA220M10	R 1405 1708	RS1/16S433J
C 1402		CKSQYB103K50	R 1409	RS1/16S153J
C 1403		CKSQYB153K50	R 1412	RS1/16S152J
C 1404 1405		CEAS221M10	R 1601	RS1/16S0R0J
			R 1602	RS1/16S471J
C 1406 1407		CKSRYB152K50		
C 1408		CKSRYB271K50	R 1609 1610 1611 1612	RS1/16S752J
C 1606 1607 C 1608		CCSRCH470J50	R 1617 1618 1769	RS1/16S101J
C 1609 1610		CEA101M6R3LL	R 1619	RS1/16S102J
C 1003 1010		CCSRCH221J50	R 1704	RS1/16S154J
C 1611 1612 1613 1614		CCSRCH680J50	R 1705 1713 1715 1718 1721 1730 1731 1732 1733 1734	KS 1/165104J
C 1616		CKSYB224K16	R 1706	RS1/16S104J
C 1617 1618		CKSRYB103K25	R 1709 1710 1714 1722 1729 1735 1744 1745	RS1/16S222J
C 1703		CASA330M10	R 1717	RS1/16S123J
C 1704		CEA221M6R3LL	R 1719 1742 1766	RS1/16S0R0J
			R 1737 1738 1739	RS1/16S1 04J
C 1706		CKSRYB103K50		
C 1710		CKSRYB103K25	R 1747 1748	RS1/16S1 04J
C 1802		CEA220M16LL	R 1756	RS1/16S1 04J
Unit Number : CWY17	• 21(CDX-P610/UC,EW,X1B/EW	(EC)	R 1767	RD1/4PS3R9JL
Unit Name : Main U		,63)	R 1771 R 1801 1802	RS1/16S102J
MISCELLANEOUS				RD1/4PS391JL
			CAPACITORS	
IC 1001 IC 1201		UPC2571GS	C 1001 1008 1010 1011 1708 1709	CKSRYB1 02K50
IC 1201		UPD63700GF XRA6797FP	C 1002	CEA101M6R3LL
IC 1601		SM5874AM	C 1003 1021 1602 1603 1604 1605 C 1004	CKSQYB1 04K16
IC 1602		XRA4560F	C 1004	CEA470M 6R3LL CCSRCH1 01J50
			2 1000	CC3UCUI () 1330
IC 1603		NJM78L05A	C 1006 1023	CKSRYB561K50
IC 1701		PD5293A	C 1007	CKSYB334K16
IC 1702		LH5160HN-10L	C 1009	CCSRCH181J50
IC 1703		PA0051AM	C 1013 1701 1702 1705 1707	CKSRYB103K25
IC 1704		PAJ002A	C 1014	CCSRCHz20J50
IC 1901		I Dances	C 1015 1001 1005	
IC 1801 Q. 1001		LB1836M	C 1015 1201 1202	CKSYF105Z16
Q 1401 1709		2SA1015 2SB1238	C 1018 C 1022	CEA220M 6R3LL
Q 1701		DTA144ES	C 1022 C 1026	CKSRYB332K50
Q 1703		DTC144ES	C 1203	CKSRYB103K25 CKSRYB471K50
			- 1879	CRON 1047 INOU
Q 1704 1707 1801		DTA123JS	C 1401	CSZA220M10
Q 1708 1802		DTC114YS	C 1402	CKSQYBI 03K50
D 1401 1402 1403		ERA15-02VH	C 1403	CKSQYB1 53K50
D 1701 1702		1SS292	C 1404 1405	CEAS221M110
X 1601	Resonator 16.9340MHz	CSS1328	C 1406 1407	CKSRYB152K50
X 1701	Coramio Paganeta-	CCC1210	0.1400	
S 1701 1702	Ceramic Resonator Switch(EJECT,RESET)	CSS1310 CSG1059	C 1408	CKSRYB271K50
VR 1001	Semi-fixed 2.2kΩ(B)	CCP1177	C 1606 1607 C 1608	CCSRCH470J50
VR 1002	Semi-fixed 22k Q (B)	CCP1177	C 1608 C 1609 1610	CEA101M 6R3LL CCSRCH221J50
VR 1003 1004	Semi-fixed 47kΩ(B)	CCP1185	C 1611 1612 1613 1614	CCSRCH620J50
			2 1411 1412 1414 1414	CCC11C11020000

====Circuit Symbol	& No. Part Name=====	Part No.
C 1616 C 1617 1618 C 1703 C 1704 C 1706		CKSYB224K16 CKSRYB103K25 CASA330M10 CEA221M6R3LL CKSRYB103K50
C 1710 C 1802		CKSRYB103K25 CEA220M16LL
Unit Number : Unit Name : P.C.B	oard	
C 801 802		CKSQYB561K50
Unit Number : Unit Name : Meci	nanism P.C.Board	
D 802 S 805	LED Switch(Home)	BR4361F CSN1012
Unit Number : Unit Name : Phot	o P.C.Board	
D 801 S 801 S 802	LED Switch(RSTP) Switch(MAG)	BR4361F CSN1025 CSN1012
Miscellaneous Parts I	ist	
M 802 M 803 M 801 M 804	PU Unit Motor Unit(ELV) Motor Unit(Tray) Motor Unit(Spindle) Motor Unit(Carriage)	CGY1036 CXA6978 CXA6977 CXA6991 CXA4649
P 801 802 S 803 804	Photo-Transistor Switch(TRP,DSP)	PT4800 CSN1012