DENON # SERVICE MANUAL # FULLY AUTOMATIC DIRECT DRIVE TURNTABLE SYSTEM ### MODEL DP-11F SERIES U.S. and Canadian models do not include cartridge. NIPPON COLUMBIA CO., LTD. # ### TABLE OF CONTENTS | FEATURES | 1 | |-------------------------------------|-------| | SPECIFICATIONS | 2 | | BLOCK DIAGRAM | 3 | | PART NAMES AND FUNCTION | 4 | | EXPLANATION OF THE MICROPROCESSOR 5 | . ~ و | | ADJUSTMENT METHOD 9 | ~10 | | PARTS LIST OF EXPLODED VIEW | 11 | | EXPLODED VIEW OF MAIN PARTS | 12 | | SCHEMATIC DIAGRAM | 13 | | PRINTED CIRCUIT BOARD | 14 | | CONNECTIONS OF P.C. BOARD | | | PARTS LIST OF P.C. BOARD | | ### **WARNING:** ### 1. Component parts Parts marked with \triangle and/or shading in this service manual have special characteristics important to safety. Be sure to use the specified parts for replacement. ### 2. Leakage current Before returning the appliance to customer, test the leakage current when the power plug is connected. Use a calibrated (with an error of not more than 5%) leakage current tester and measure the leakage current from any exposed metal to the earth ground. Reverse the power plug polarity and test the above again. Any current measured MUST NOT EXCEED 0.5 miliamps. Corrective measure must be taken if it exceeds the limit. ### **FEATURES** # Silent, fully automatic operations with the use of a microprocessor controlled contactless servo tonearm. An innovative microprocessor controlled, contactless servo tonearm ensures safe, easy to use automatic operations with little loss in sound quality. ### Low mass straight arm This arm is fully capable of maximizing the performance of high compliance cartridges with outstanding tracing ability. Even with the newest, high grade records, its tracing ability is outstanding. ### **DENON Quartz** The turntable speed is controlled by the "DENON Quartz" which is the combination of the "High Precision Magnetic Pulse Detection Method", the most sophisticated method of FG detection, and the "Quartz Lock". ### **SPECIFICATIONS** **Phonomotor section** Drive system: Servo controlled direct drive Turntable speeds: 33-1/3, 45 rpm Wow & flutter: Below 0.02% wrms (servo system) Below 0.03% wrms (JIS) S/N ratio: Over 75 dB (DIN-B) Rise time: Normal speed within 2 seconds (at 33-1/3 rpm) Platter: Aluminum die-cast; 300 mm diameter Motor: Linear drive motor Speed control system: Speed servo by frequency detection, phase servo control Speed deviation: Below 0.002% Load characteristics: 0% (80 g stylus force; outermost groove) General Power supply: 50~60 Hz, Voltage is shown on rating label Power consumption: 7 W **Dimensions:** 100 x 365 x 335 mm (H x W x D) Weight: Approximately 5 kg Tonearm section Arm type: Dynamically balance, semi-integrated straight arm Effective length: 220 mm Overhang: 16 mm Tracking error: Within 3° Automatic mechanism: Electronically controlled, fully automatic Adjustable stylus force range: $0\sim3.0 \text{ g (1 scale}=0.1 \text{ g)}$ Suitable cartridge weight range: Approximately 4.0~6.0 g (including screws, nuts) Cartridge section (Only for those models with attached cartridge) **DL-60** Type: Moving magnet (MM) Output voltage: 2.5 mV Frequency response: 20~30 kHz Stylus force: 1.8±0.3 g Above specifications and outward appearance may be altered in future for improvement. U.S. and Canadian models do not include cartridge. ### BLOCK DIAGRAM ### Rotational speed detection Lock indication Rotation Power Reference voltage control amplifier **Phonomotor** F/V output Magnetic polarity Compare/ Motor_control detection Amplify microprocessor Memorize IR3T02 Magnetic polarity Speed selector P.D. output detection (33/45)Stop control Rotation Power amplifier control Xtal 4.5MHz Start/stop command Lifter o Stylus force Memorize adjustment Repeat o Speed detection Arm up/down command Memorize Vertical motor (Lifter motor) Start o Power Compare/ amplifier amplify Reference voltage 17/30 Position Accelaration detection input Arm control Size selector (30/17) microprocessor IR3T03 Compare/ amplify Accelaration output Memorize Compare/ Rest/end detection amplify Horizontal voltage killer Anti skate command End Mid-point detection detection Amplify Anti skate voltage Reference voltage Compare/ amplify Horizontal motor S Power amplifier Speed detection Note: indicates an analog switch. ### PART NAMES AND FUNCTION ### 1 POWER (Power switch) This switch turns the power supply on (__) and off (__). When turning the power off, always return the tonearm to the arm rest and hold it in place with the clamp. ### 2 SIZE (Record size selector switch) Set to the size of record to be played. ### 3 SPEED (Speed selector switch) Set to the desired record speed. ### (4) LOCK (Lock indicator) When the power is turned on, the lamp will light up. During play, the lamp will flicker until the proper turntable speed is reached. Once the proper speed is obtained, the lamp will, again, stay lit. ### (5) REPEAT (Repeat switch) When playing the records repeatedly, switch it on (lamp lit). ### 6 ARM LIFTER (Arm lifter switch) This switch is used to raise and lower the arm during play or when playing the records manually. The lamp is lit when arm is up. ### (7) START (Start switch) Press this switch when starting the records automatically. ### 8 STOP (Stop switch) Press this switch when stopping the record during play. ### (9) STYLUS FORCE (Stylus force adjustment knob) This knob is used to adjust the stylus force. ### **EXPLANATION OF THE MICROPROCESSOR** ## • Motor Control IC . . . IR3T02 (at standard revolution of 33 rpm) The numbers on the left hand side indicates the terminal number. ### 2. 4.5MHz OSC ### 3. 4.5MHz OSC ### 4. rpm selector H: 45 rpm L: 33 rpm ### 5. power source input Vcc: 5V ±0.5V ### 6. FG I bypass terminal E6 ≒ ½Vcc ### 7. FG I lowpass terminal ### 8. FG I output ### 9. FG I inverse input The gain set element is connected. E9 ≒ ½Vcc ### 10. FG I non-inverse input 10mVpp ~ 100mVpp E10 ≒ ½Vcc ### 14. ground terminal ### 15. F/V output slower than normal revolution: $2 \sim 4.5 V$ normal revolution: $\frac{1}{2} 2V$ faster than normal revolution: $0 \sim 2V$ ### 16. F/V hold terminal same as terminal 15 ### 17. F/V triangular wave slower than normal revolution ### normal revolution faster than normal revolution ### 18. timing pulse width-set terminal E18 = 0.6V ### 19. PD triangular wave ### 20. sample pulse monitor terminal ### 21 PD hold terminal slow phase: $2 \sim 4V$ normal phase: = 2Vadvanced phase: $1 \sim 3V$ ### 22. PD output same as terminal 21 ### 23. Lock detector time set terminal during lock: 0.6V lock disengaged: 0V ### 25. Revolution detector during revolution: __________ ≒ 4V stop: 0V ### 26. START/STOP terminal H → START L → STOP ### 28. Lock indicator during transition . . (LED flashes) ### • Arm Control IC IR3T03 The numbers on the left side indicates the terminal number of the IR3T03. ### 1. Accelaration input Except for the matching range of the lead-in detector (E7 \leq | \pm 0.6V |), it will recognize the situation and control the acceleration during automatic tonearm operation. ### 2. Accelaration output E1 \leq | ± 2.37 V ± 0.1 V | open (will not control the acceleration within the matching range) $E1 \ge |\pm 2.3V \pm 0.1V|$ $E2 = \pm 3.95V$ -3.95V: will accelarate toward the inside from rest. +3.95V: will accelarate toward rest from the inside. ### 3. UP/DOWN selection of the arm lifter When E9 is H, the control output for lifting the arm will be made at E3 $\stackrel{.}{=}$ -Vcc. When E9 is L, the control output for lowering the arm will be made at E3 $\stackrel{.}{=}$ +Vcc. ### 4. Detection of the rest position $E4 \le -2.64V$ will be recognized as the arm being at rest. ### 5. Detection of the END position When E5 \geq 2.64V, it will be recognized to be within the END detection range. E5 \geq 2.64V when the stylus tip nears the last sections of the sound groove. ### 6. End control Whithin the END detection range of 5 (above), (E5 \geq 2.64V), the arm will be returned by the END control when E6 \geq 0.23V. E5 \geq 0.23V when the stylus tip moves into the lead-out groove and the arm moves fast. ### 7. Matching input E7 \leq | ±0.6V | will be recognized as the match range for lead-in. ### 8. Drive output Connect to GND. ### 9. UP control output When the lifter is in the UP position during automatic arm operations or when the UP signal is sent by pressing the arm lifter button, pin 9 will be at H level. E9H = 4V E9L≒0V ### 10. DOWN time constant To ensure that the arm is lowered completely before proceeding to the next movement, a resistor between pins 9 and 10 and a capacitor on pin 10 has a preset discharge time constant which is somewhat longer than the time required for the arm to be lowered. Thus, when pin 9 becomes L (E9L \doteq 0V), and the fixed amount of time elapses, the arm will be recognized to be DOWN as soon as E10 < 2V. ### 11. ANT (Anti-skating) control When E10 < 2V, then E11 = -4V will be the control output needed for the anti-skating to be engaged. When E10 \geq 2V, then E11 $\stackrel{.}{=}$ +4V will be the control output needed for the anti-skating to be disengaged. ### 12. Negative power source Supplies -5V. ### 14. SUB (substratum) To prevent any interference from the inner elements of the LSI, the substratum terminal is connected to the unregulated side of the negative power source, since it has the lowest electric potential. ### 15. GND Standard zero electric potential is the GND. ### 17. Return control When the stop command is given, or when the repeat is disengaged and the END is detected (E6 \geq 0.23V), a control signal output (E17H > 4V) is made to return the arm to rest. E17H > 4V E17L: release ### 18. Horizontal drive control When the arm is in resting position, or when the arm reaches the lead-in position during automatic play, and comes into the matching range (E7 \leq | \pm 0.6V |), a control signal output (E18H \doteq 4V) is made to stop the horizontal motion of the arm. ### 19. Initial set This is the preparation time setting terminal when the power source is turned on. The resistor in the LSI and the outer capacitor will set the charge time constant and carry out the initial set. ### 20. LCTD (Located) time constant The LSI and its outer circuits will set the LCTD time constant to improve the detection accuracy of the lead-in position and the arm rest position. E20H = 1.2V A few moments after the arm reaches the range of detection, in other words, after the set LCTD time constant elapses, it will become H level, where it is memorized immediately and then reset to the L level. E20L = 0V Before and after detection, it will become L level. ### 21. Turntable (T/T) Drive Control E21L = 0V the turntable stops E21H release the turntable rotates (refer to the operational explanations for pin 22) ### 22. Turntable (T/T) Start Position This terminal establishes the turntable start position. The turntable will start when the arm separates from the arm rest and pin 22 is released, under manual and auto modes. ### 23. Start Will start automatically at the GND level. ### 24. Auto stop Will stop automatically at the GND level. ### 25. Lifter Will raise the lifter automatically at the GND level. ### 26. Repeat Will engage the repeat automatically at the GND level. ### **27. UP SW** An UP time constant circuit is used so that when the lifter is in the UP condition, this terminal is released and becomes H level; and at other times, it becomes GND level. With this unit, the arm will start to move approximately two seconds after the UP command. ### 28. Positive power supply Supplies +5V. ### **ADJUSTMENT METHOD** * Prepare a two-channel oscilloscope for the measuring instrument, ### Adjusting the Phonomotor Section * Measure, using the wrapping terminal number 8 of the motor drive circuit board as the ground referent point when adjusting the motor OP amp. voltage offset and the motor torque. ### 1. Adjusting the motor amp. offset voltage - Fix the tonearm to the arm rest and connect the oscilloscope to TP 203 and 204. - 2) Rotating the turntable by hand, adjust the center of amplitude at TP 203 to 0 \pm 0.1V by turning VR 201. - 3) Following the preceding directions adjust to 0 \pm 0.1V by turning VR 202 for TP 204 . ### 2. Adjusting the motor torque - Leave the oscilloscope connections as they were for the motor OP amp. voltage offset adjustments. - Take the turntable off the main body; move the tonearm close to the speed detection head and rotate the phonomotor at a fast speed. (Note) Be very cautious as not to damage the cartridge during this procedure. - 3) For T.P. 203 , rotate VR 203 and adjust to $15VP-P\pm0.5V$. - 4) For T.P. 204 , rotate VR 204 and adjust to $15VP-P\pm0.5V$. ### 3. Adjusting the head gap Adjust, so that the gap between the turntable magnetic coating surface and the detection head is 0.18 mm. ### 4. Lock adjustments for 45 rpm From hereafter, the earth reference point of the measuring instrument should be connected to T.P. 6 of the servo control circuit board. - 1) Connect the two-channel oscilloscope to T.P. 1 and T.P. 2. - 2) Set the speed selector to 45 rpm. - 3) Take the arm off the arm rest and move it toward the turntable to rotate the phonomotor. - 4) Adjust VR2 so that the pulse from T.P. 1 is positioned to ½ the triangular wave length from T.P. 2. ### 5. Lock adjustments for 33 rpm - Connect the oscilloscope in the same manner as the 45 rpm lock adjustments. Set the speed selector to 33 rpm. - 2) Adjust VR1 in the same manner as the lock adjustments for 45 rpm. ### Adjusting the Arm Control Section ### 1. Adjusting the horizontal OP amp. offset voltage - 1) Fix the tonearm to the armrest and connect the oscilloscope to T.P. 3. - 2) Set the lifter switch to the UP condition. - 3) Turn VR3 and adjust to 0V±0.01V. ### 2. Adjusting the lifter OP amp. offset voltage - Fix the tonearm to the armrest and connect the oscilloscope to T.P. 4. - 2) Set the lifter switch to the DOWN condition. - 3) Turn VR4 and adjust to -1V±0.1V. ### 3. Adjusting the stylus force - 1) Turn the power supply switch OFF. - Take the arm off the armrest. Rotate the balance weight so that the tonearm becomes parallel to the turntable surface when let go. - Return the arm to the armrest and turn the power supply switch ON. - 4) Wait five seconds after the arm has lowered. Place the cartridge stylus tip onto a stylus force guage and set the stylus force adjustment knob to 1.5 g. - (Note) At this time, the stylus tip height should be adjusted so that it is about the same height as during play. - Turn VR5 and adjust, so that the stylus force guage reads 1.5 g. ### 4. Adjusting the 30 cm lead-in position Place a 30 cm record on the turntable and set the record size selector switch to "30". (Note) Keep the bottom cover closed. - 2) Move the arm so that the stylus tip is at approximately the 30 cm lead-in position. Insert a small flat-headed screwdriver into the lead-in adjustment hole; move the arm back and forth and fit the screw driver into the groove of the cam inside gently. - After turning the screwdriver, pull it out. Press the start switch and adjust so that the stylus position stops at the 30 cm lead-in position. (Note) The 30 cm lead-in adjustments cannot be performed unless the stylus tip position is approximately in the 30 cm lead-in position. In addition, if the screwdriver is left inserted, the arm will not move. ### 5. Adjusting the 17 cm lead-in position Adjust as necessary, such as when parts of the sensor section have been replaced. However, the following procedures should only be used when a discrepancy is found for the 17 cm lead-in position, after the 30 cm lead-in position has been adjusted. - 1) Set the record size selector to 17 cm. - 2) By continuously pressing the start switch, the arm will move over and stop. At this time, check now many millimeters, toward the inside or outside, the stylus tip deviates from the required 17 cm lead-in position. - Take off the bottom cover of the cabinet and check the adjustment scale position of the shutter. (One adjustment scale corresponds to a stylus tip movement of 5 mm.) - 4) Untighten the screw holding the sub shutter and place a small screwdriver into the slot of the shutter. When the stylus position is toward the inside, compared to the required position, move the sub shutter toward the right of the scale; when the stylus position is toward the outside, move the sub shutter toward the left. When completed, tentatively tighten the screw holding the sub shutter. - 5) After the adjustments are made, press the start switch and check whether or not the stylus stops at the 17 cm lead-in position. - If the stylus stops at the required position, then tighten the sub shutter screw. ### PARTS LIST OF EXPLODED VIEW | Ref.
No. | Part No. | Part Name | Remarks | |-------------|--------------------------|------------------------|-----------------------| | 1 | 4730306012 | 3×12 CBRTS (1) | | | 2 | 4751005004 | 4W | | | 3 | 1048066018 | INSULATOR ASS'Y | | | 4 | 4730306038 | 3x12 CBRTS (1) | i | | 5 | 1058083104 | BOTTOM COVER ASS'Y | | | 6 | 4218217209 | RECORDED TURN TABLE | | | | | | ĺ | | 7 | 4218288005 | RUBBER SHEET | | | 8 | 4628023009 | BUSHING | ļ | | 9 | 5298006002 | 45 ADAPTOR | | | 10 | 1468137103 | DUST COVER ASS'Y | | | 11 | 4018059007 | HINGE | | | 12 | | INCLUDED SCREW | | | 13 | 3158545113 | ARM REST | | | 14 | 3138003109 | CARTRIDGE GENE ASS'Y | E1,EF,EG,EA,
EK,E1 | | 15 | 3158705005 | MAIN BODY ASS'Y | EN,EI | | 16 | 2098251005 | TERMINAL WIRE | | | 17 | 4618113000 | SPRING PLATE | | | 18 | 2228468008 | OUTPUT P.C.B | | | 19 | 4712303017 | 3x6 CFS | | | 20 | 4638225004 | SPRING | | | 21 | 4711303018 | 3x6 CPS | | | 22 | 4751003006 | 3W | | | 23 | 4438545104 | COLLAR | | | 24 | 4338172004 | SUB SHUTTER | | | 25 | 4338177300 | SHUTTER | | | 26 | 4761003009 | 3E RING | | | 27 | 3158451003 | FRICTION WASHER | | | 28 | 3418025205 | MAGNET ASS'Y | | | 29 | 2398013105 | COIL ASS'Y | | | 30 | 4338181008 | YOKE (A) GENE ASS'Y | | | 31
32 | 4744102037
4248019105 | 3x3 SS
ADJUST CAM | | | 33 | 4418815003 | ARM PLATE | | | 34 | 4698008009 | INSULATER MAT | | | 35 | 2228468008 | CDS P.C.B | | | 36 | 4730304014 | 3x8 CBRTS (1) | | | 37 | 3939041001 | LED | LN81RCP (HL) | | 38 | 2228468008 | LED P.C.B | | | 39 | 4713808003 | 3×25 CBS | BsBW. MBNi II | | 40 | 4713806003 | 3×20 CPTS (1) | SUS305 | | 41 | 2178062101 | MOTOR ASS'Y | | | 42 | 4730309019 | 3×16 CBRTS (1) | | | 43 | WA-0107-4 | WASHER | | | 44 | 4620027003 | RUBBER BUSH | | | 45 | 2339051003 | POWER TRANS | | | | 2339058006 | POWER TRANS | E1 only | | | 2339050101 | POWER TRANS | EU only | | 40
47 | 4418846001
4418814208 | WASHER
HEAD SUPPORT | | | 48 | 3918423006 | MAGNETIC HEAD | | | 49 | 4700009019 | 3x6 CPSW | | | 50 | 2228468008 | VOLUME HOLDER P.C.B | | | 51 | 2118024002 | V16V15KB502 | ! | | 52 | 1128085003 | VOLUME KNOB | | | 58 | 2033642103 | OUTPUT CORD ASS'Y | | | 59 | 2062002031 | AC CORD | E2, EF, EG | | | 2006019307 | AS 3P AC CORD | EA | | | 2062024006 | AC CORD WITH LABEL | EK | | | 2006031026 | AC CORD WITH PLUG | E1 | | | 2062019008 | AC CORD WITH PLUG | EU | | | | | | | Ref.
No. | Part No. | Part Name | Remarks | |-------------|------------|--------------------|------------| | 63 | 1038196406 | CABINET | | | | 1038196422 | CABINET | E1 only | | 64 | 2228468008 | LED P.C.B | | | 65 | 3939140009 | LED | GL-9PG24 | | 66 | 2129130008 | PUSH SWITCH | | | 67 | 3939153009 | LED | PR-5524S-1 | | 68 | 1138140103 | STOP KNOB | | | 69 | 1138139101 | START KNOB | | | 70 | 1138138102 | LIFTER KNOB | | | 71 | 1138137103 | REPEAT KNOB | | | 72 | 1138135105 | SPEED KNOB | | | 73 | 1138136104 | SIZE KNOB | | | 74 | 4730205016 | 2.6×10 CPTS (1) | | | 75 | 2129180003 | PUSH SWITCH | | | 76 | 1138134009 | KNOB | | | 77 | KU-0419 | SERVO CONTROL UNIT | | | 78 | 3168198000 | CONNECTOR | · · | | 79 | 3158693104 | BODY CASE | | | 80 | 3158695005 | BALANCE WEIGHT | | | 81 | 3158709001 | ADJUST SCREW | | | 82 | 2129185008 | SLIDE SWITCH | E1 only | | 83 | KU-0420 | MOTOR DRIVE UNIT | | Remark symbols in the parts list refer to the following countries and areas. EA: Australia EK: United Kingdom EU: U.S.A. and Canada E1: Multiple voltage model E2: European continent EF: French EG: German ### KU-419 SERVO CONTROL UNIT ### PARTS LIST OF P. C. BOARD ### **KU-419 SERVO CONTROL UNIT** | KU-419 3EF | | Dort Name | Remarks | | | |--------------|--|---|----------------------|--|--| | Ref. No. | Part No. | Part Name | Treffidi K3 | | | | SEMICONDUCTO | SEMICONDUCTOR GROUP | | | | | | IC1 | 2630173004 | IR3T02 | | | | | IC2 | 2630174003 | IR3T03 | | | | | IC3 | 2630189001 | M5218L | | | | | IC4 | 2630146002 | μPC324C | | | | | IC5 | 2630198005 | NJM4556 | | | | | . IC6 | 2630147001 | μPC78M05H
μPC7905H | | | | | IC7 | 2630160004
2620276005 | нD14066BP | | | | | 1C8 | 2620092001 | M53205P | | | | | TR1,2,10 | 2710102005 | 2SA1015 (Y) | | | | | TR4~9 | 2730198002 | 2SC1815 (Y) | | | | | TR3 | 2740038000 | 2SD467 (C) | | | | | D1~15, 20 | 2760049008 | IS2076 | | | | | 21,23,24, | | | | | | | 301 | | | | | | | D16~19 | 2760237001 | RV06 | | | | | TH1 | 2760311008 | THERMISTER | TD5-C210D | | | | LED1 | 3939140009 | LED | GL-9PG24 | | | | LED2~7 | 3939153009 | LED | PR-5524S-1 | | | | LED8,9 | 3939041001 | LED | LN81RCP(HL) | | | | CDS1,2 | 3939053001 | CDS | | | | | CDS3 | 3939053028 | CDS | 10~15KΩ | | | | RESISTOR G | ROUP | | | | | | | | l . | Metal film | | | | 520 | 2452195008 | RN14K2E332G | 3.3KΩ 1⁄4W | | | | R30 | 2452201002 | · · · · · · · · · · · · · · · · · · · | 5.6KΩ 14W | | | | R25
R15 | 2452207002 | 1 | 10KΩ 1/4W | | | | R17 | 2452223006 | 1 | 47KΩ 1/4W | | | | l ni/ | 2432225000 | 111111111111111111111111111111111111111 | Variable resistor | | | | VR1,2 | EP-5462H15 | SOLID VOLUME | 22ΚΩ | | | | VR3~5 | 2116000073 | | 20ΚΩ | | | | VR6 | 2118024002 | | 5ΚΩ | | | | CAPACITOR | CROUP | | | | | | CAPACITOR | GROOF | T | 0 | | | | | | 01/4504114041/ | Ceramic
100PF 50V | | | | C33,54 | 2531055069 | | 0,0047µF | | | | C27 | 2531008003 | CK45B1H472K | 50V | | | | 200 40 | 2531004007 | CK45B1H102K | 0.001µF 50V | | | | C32,46 | 2531004007 | 1 | 0.0047µF | | | | - C4 | 253 1006003 | CK45BTT1472K | 50V | | | | C11,31,36, | 2531027000 | CK45F1H104Z | 0.1µF 50V | | | | 38~40,50 | | | , | | | | 51,60 | | | | | | | C9, 10 | 2533619005 | CD45SL1H470J | 47PF 50V | | | | C57 | 2533657009 | | 100PF 50V | | | | C58 | 2533662007 | | 270PF 50V | | | | C2,53 | 2533637003 | | 270PF 50V | | | | | | | Electrolitic | | | | C2O | 2544129005 | CE04W1A470= | 47μF 10V | | | | C8,30,41, | 2544132005 | CE04W1C100= | 10μF 16V | | | | 42,45,34 | | | | | | | C12,21, | 2544136001 | CE04W1C101= | 100μF 16V | | | | 35,37,49 | | | | | | | C44 | 2542037005 | L | 1000µF 25V | | | | C43 | 2542038004 | | 2200µF 25V | | | | C24 | 2544140000 | | 4.7µF 35V | | | | C61 | 2544044009 | 1 | 1μF 50V | | | | C1, 3, 5, 18 | 2544119905 | 5 CE04W1H010= | 1μF 50V | | | | [| | | Film | | | | C16 | 2554194017 | CQ93P1H473J | 0.047µF 50V | | | | L | ــــــــــــــــــــــــــــــــــــــ | <u> </u> | 1 | | | | Ref. No. | Part No. | Part Name | Remarks | | |----------------------------|--------------------------|----------------------|----------|--| | OTHER PARTS GROUP | | | | | | | 2228468008 | SERVO CONTRO | L | | | SW1~6 | 2129130008 | | | | | | 2129180003 | PUSH SWITCH | POWER SW | | | | 3998025000
4178028101 | CRYSTAL
HEAT SINK | 4.5 MHZ | | | 4450033005 WIRE CLAMP BAND | | ND | | | ### **KU-420 MOTOR DRIVE UNIT** | 5 (N | D N | Part Name | Remarks | | |----------------|----------------------------|---------------------------|-----------|--| | Ref. No. | Part No. | Part Ivallie | Remarks | | | SEMICONDU | CTOR GROUP | | | | | IC201 | 2630189001 | M5218L | | | | TR202,204 | 2710105002 | 2SA966 (Y) | | | | TR201, 203 | 2730201009 | 2SC2236 (Y) | | | | H-A, H-B | 2760303016 | HL-300C | | | | TH1,2 | 2760311008 | THERMISTER | TD5-C210D | | | RESISTOR GROUP | | | | | | V203, 204 | 2116000031 | VO8PB102 | | | | V201, 202 | 2116000073 | VO8PB203 | | | | CAPACITOR | GROUP | | | | | C202 | 2544034006 | CE04W1V4R7 | | | | C201 | 2544140000 | CE04W1 V4R7= | | | | C203, 204 | 2551076002 | CQ93M1H223K | | | | OTHER PAR | OTHER PARTS GROUP | | | | | | 2228477002 | 477002 MOTOR DRIVE P.C.B. | | | | | 2050134908 | 8 M TERMINAL PIN | | | | | 2090047903 0.6 JUMPER WIRE | | E | | ### CARTONE CASE GROUP | | Ref.
No. | Part No. | Part Name | Rena rks | |---|-------------|------------|-------------------|--------------| | ĺ | | 5018228222 | CARTON CASE ASS'Y | | | ı | | 5028060001 | PACKING ASS'Y | | | ١ | | 5058092023 | LAMINATE ENVELOPE | | | ١ | | 5058017011 | ENVELOPE | 60x260x€0.03 | | ı | | 5058006006 | ENVELOPE | 60x100xO.03 | | l | | 5058023018 | ENVELOPE | 350×640×0.05 | ### **ACCESSORIES GROUP** | Ref.
No. | Part No. | Part Name | Renarks | |-------------|------------|----------------------|-----------| | | 5298006002 | 45 ADAPTOR | | | | 4218288005 | RUBBER SHEET | ļ | | | 5118208003 | INSTRUCTION MANUAL | E2, EAEK, | |] | | | E1,EU | | i l | 5118211003 | INSTRUCTION MANUAL | EF | | | 5118212002 | INSTRUCTION MANUAL | EG | | 1 1 | 3158547001 | SHELL ACCESORIES ASS | EU | | | 3158752003 | ALIGNMENT PLATE | | | | 2033667007 | PLUG ADAPTOR | E1 | [•] The carbon resistors rated at ¼W are not listed herein. # DENON ### NIPPON COLUMBIA CO., LTD. No. 14-14, 4-CHOME AKASAKA, MINATO-KU, TOKYO JAPAN TEL: 03-584-8111 TLX: JAPANOLA J22591 CABLE: NIPPON COLUMBIA TOKYO